\qquad
Earlier definitions, conjugate acid/base, strong and weak acids and bases, Ka and Kb relation to the strength of the acid or base, $\mathrm{pH}, \mathrm{pOH},[\mathrm{OH}-],[\mathrm{H}+]$, percent ionization of weak acid/base

1) According to the Arrhenius concept, an acid is a substance that \qquad .
A) is capable of donating one or more H^{+}
B) causes an increase in the concentration of H^{+}in aqueous solutions
C) can accept a pair of electrons to form a coordinate covalent bond
D) reacts with the solvent to form the cation formed by autoionization of that solvent
E) tastes bitter
2) $A \operatorname{Br} \phi$ nsted-Lowry base is defined as a substance that \qquad .
A) increases $\left[\mathrm{H}^{+}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
B) decreases $\left[\mathrm{H}^{+}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
C) increases [OH^{-}] when placed in $\mathrm{H}_{2} \mathrm{O}$
D) acts as a proton acceptor
E) acts as a proton donor
3) $A \operatorname{Br} \phi$ nsted-Lowry acid is defined as a substance that \qquad .
A) increases K_{a} when placed in $\mathrm{H}_{2} \mathrm{O}$
B) decreases $\left[\mathrm{H}^{+}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
C) increases [OH^{-}] when placed in $\mathrm{H}_{2} \mathrm{O}$
D) acts as a proton acceptor
E) acts as a proton donor
4) A substance that is capable of acting as both an acid and as a base is \qquad .
A) autosomal
B) conjugated
C) amphoteric
D) saturated
E) miscible
5) The molar concentration of hydronium ion in pure water at $25^{\circ} \mathrm{C}$ is \qquad .
A) 0.00
B) 1.0×10^{-7}
C) 1.0×10^{-14}
D) 1.00
E) 7.00
6) The molar concentration of hydroxide ion in pure water at $25^{\circ} \mathrm{C}$ is \qquad .
A) 1.00
B) 0.00
C) 1.0×10^{-14}
D) 1.0×10^{-7}
E) 7.00
7) The magnitude of K_{w} indicates that \qquad .
A) water autoionizes very slowly
B) water autoionizes very quickly
C) water autoionizes only to a very small extent
D) the autoionization of water is exothermic
8) In basic solution, \qquad .
A) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
B) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
C) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
D) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0 \mathrm{M}$
E) $\left[\mathrm{OH}^{-}\right]>7.00$
9) Which solution below has the highest concentration of hydroxide ions?
A) $\mathrm{pH}=3.21$
B) $\mathrm{pH}=12.6$
C) $\mathrm{pH}=7.93$
D) $\mathrm{pH}=9.82$
E) $\mathrm{pH}=7.00$
10) Which one of the following statements regarding K_{w} is false?
A) pK_{w} is 14.00 at $25^{\circ} \mathrm{C}$
B) The value of K_{w} is 1.0×10^{-14}
C) K_{w} changes with temperature.
D) The value of K_{w} shows that water is a weak acid.
E) K_{w} is known as the ion product of water.
11) The hydride ion, H^{-}, is a stronger base than the hydroxide ion, OH^{-}. The product(s) of the reaction of hydride ion with water is/ are \qquad .
A) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
B) $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{aq})$
C) $\mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})$
D) no reaction occurs
E) $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$
12) An aqueous solution contains 0.10 M NaOH . The solution is \qquad .
A) very dilute
B) highly colored
C) basic
D) neutral
E) acidic
13) Nitric acid is a strong acid. This means that \qquad .
A) aqueous solutions of HNO_{3} contain equal concentrations of $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$
B) HNO_{3} does not dissociate at all when it is dissolved in water
C) HNO_{3} dissociates completely to $\mathrm{H}^{+}\left(\mathrm{aq}\right.$ and $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$ when it dissolves in water
D) HNO_{3} produces a gaseous product when it is neutralized
E) HNO_{3} cannot be neutralized by a weak base
14) Of the following acids, \qquad is not a strong acid.
A) HNO_{2}
B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
C) HNO_{3}
D) HClO_{4}
E) HCl
15) Of the following, \qquad is a weak acid.
A) HF
B) HCl
C) HBr
D) HNO_{3}
E) HClO_{4}
16) Which one of the following is the weakest acid?
A) $\mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}\right)$
B) $\mathrm{HClO}\left(\mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}\right)$
C) $\mathrm{HNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}\right)$
D) $\mathrm{HCN}\left(\mathrm{K}_{\mathrm{a}}=4.9 \times 10^{-10}\right)$
E) Acetic acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
17) Of the acids in the table below, \qquad is the strongest acid.

Acid	K_{a}
HOAc	1.8×10^{-5}
HCHO_{2}	1.8×10^{-4}
HClO	3.0×10^{-8}
HF	6.8×10^{-4}

A) HOAc
B) HCHO_{2}
C) HClO
D) HF
E) HOAc and HCHO_{2}
18) The K_{a} of hypochlorous acid (HClO) is 3.0×10^{-8} at $25.0^{\circ} \mathrm{C}$. What is the \% ionization of hypochlorous acid in a 0.015 M aqueous solution of HClO at $25.0^{\circ} \mathrm{C}$? (may use calculator)
A) 4.5×10^{-8}
B) 14
C) 2.1×10^{-5}
D) 0.14
E) 1.4×10^{-3}
19) In which of the following aqueous solutions does the weak acid exhibit the highest percentage ionization?
A) $0.01 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)$
B) $0.01 \mathrm{M} \mathrm{HNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}\right)$
C) $0.01 \mathrm{M} \mathrm{HF}\left(\mathrm{Ka}_{\mathrm{a}}=6.8 \times 10^{-4}\right)$
D) $0.01 \mathrm{M} \mathrm{HClO}\left(\mathrm{Ka}=3.0 \times 10^{-8}\right)$
E) These will all exhibit the same percentage ionization.
20) Which one of the following is a $\operatorname{Br} \phi$ nsted-Lowry acid?
A) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$
B) $\mathrm{CH}_{3} \mathrm{COOH}$
C) HF
D) HNO_{2}
E) all of the above
21) Classify the following compounds as weak acids (W) or strong acids (S): benzoic acid nitric acid acetic acid
A) Weak Weak Weak
B) Strong Strong Strong
C) Strong Weak Weak
D) Weak Strong Strong
E) Weak Strong Weak
22) Classify the following compounds as weak acids (W) or strong acids (S): hydrocyanic acid hydrofluroic acid phenol
A) Weak Weak Weak
B) Strong Strong Strong
C) Strong Weak Weak
D) Weak Strong Strong
E) Weak Strong Weak
23) Classify the following compounds as weak acids (W) or strong acids (S): nitrous acid hydrochloric acid hydrofluoric acid
A) Weak Weak Weak
B) Strong Strong Strong
C) Strong Weak Weak
D) Weak Strong Strong
E) Weak Strong Weak
24) Classify the following compounds as weak acids (W) or strong acids (S): hypochlorous acid perchloric acid chloric acid
A) Weak Strong Strong
B) Strong Strong Strong
C) Strong Weak Weak
D) Weak Weak Weak
E) Weak Strong Weak
25) Ammonia is a \qquad .
A) weak acid
B) strong base
C) weak base
D) strong acid
E) salt
26) Using the data in the table, which of the conjugate acids below is the weakest acid?

Base	K_{b}
ClO^{-}	3.3×10^{-7}
$\mathrm{CO}_{3}-2$	1.8×10^{-4}
HS^{-}	1.8×10^{-7}
$\mathrm{NH}_{2} \mathrm{CH}_{3}$	4.4×10^{-4}

A) HClO
B) $\mathrm{HCO}_{3}{ }^{-}$
C) $\mathrm{H}_{2} \mathrm{~S}$
D) $\mathrm{NH}_{3} \mathrm{CH}_{3}{ }^{+}$
E) $\mathrm{H}_{2} \mathrm{~S}$ and HClO
27) Using the data in the table, which of the conjugate acids below is the strongest acid?

Base	K_{b}
NH_{3}	1.8×10^{-5}
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.7×10^{-9}
$\mathrm{H}_{2} \mathrm{NOH}^{-9}$	1.1×10^{-8}
$\mathrm{NH}_{2} \mathrm{CH}_{3}$	4.4×10^{-4}

A) $\mathrm{NH}_{4}{ }^{+}$
B) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$
C) $\mathrm{H}_{3} \mathrm{NOH}^{+}$
D) $\mathrm{NH}_{3} \mathrm{CH}_{3}{ }^{+}$
E) $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{NH}_{3} \mathrm{CH}_{3}{ }^{+}$
28) Using the data in the table, which of the conjugate acids below is the weakest acid?

Base	K_{b}
NH_{3}	1.8×10^{-5}
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.7×10^{-9}
$\mathrm{H}_{2} \mathrm{NOH}^{-9}$	1.1×10^{-8}
$\mathrm{NH}_{2} \mathrm{CH}_{3}$	4.4×10^{-4}

A) $\mathrm{NH}_{4}{ }^{+}$
B) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$
C) $\mathrm{H}_{3} \mathrm{NOH}^{+}$
D) $\mathrm{NH}_{3} \mathrm{CH}_{3}{ }^{+}$
E) $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{NH}_{3} \mathrm{CH}_{3}{ }^{+}$
29) Which of the following ions will act as a weak base in water?
A) OH^{-}
B) Cl^{-}
C) $\mathrm{NO}_{3}{ }^{-}$
D) ClO^{-}
E) None of the above will act as a weak base in water.
30) Which of the following ions will act as a weak base in water?
A) HS^{-}
B) F^{-}
C) NO_{2}
D) ClO^{-}
E) All of the above will act as a weak base in water.
31) Which of the following aqueous solutions has the highest $\left[\mathrm{OH}^{-}\right]$?
A) a solution with a pH of 3.0
B) a 1×10^{-4} solution of HNO_{3}
C) a solution with a pOH of 12.0
D) pure water
E) a 1×10^{-3} solution of $\mathrm{NH}_{4} \mathrm{Cl}$
32) Which of the following aqueous solutions has the lowest $\left[\mathrm{OH}^{-}\right]$?
A) a solution with a pH of 3.0
B) a 1×10^{-4} solution of HNO_{3}
C) a solution with a pOH of 12.0
D) pure water
E) a 1×10^{-3} solution of $\mathrm{NH}_{4} \mathrm{Cl}$
33) An aqueous solution of a particular compound has $\mathrm{pH}=2.46$. The compound is
A) a weak base
B) a weak acid
C) a strong acid
D) a strong base
E) a salt
34) Complete the following table for each aqueous solution at $25^{\circ} \mathrm{C}$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH	Acidic or basic
2.0×10^{-5}				
		6.25		
	5.6×10^{-2}			
			9.20	
8.7×10^{-10}				

35) What is the $\left[\mathrm{H}^{+}\right]$when $\left[\mathrm{OH}^{-}\right]=8.1 \times 10^{-5}$?
A) $8.1 \times 10^{-5} \mathrm{M}$
B) $1.0 \times 10^{-7} \mathrm{M}$
C) $1.2 \times 10^{-10} \mathrm{M}$
D) $3.6 \times 10^{-6} \underline{\mathrm{M}}$
E) $8.1 \times 10^{-5} \mathrm{M}$
36) What is the $\left[\mathrm{H}^{+}\right]$when $\left[\mathrm{OH}^{-}\right]=3.3 \times 10^{-9}$?
A) $3.0 \times 10^{-6} \mathrm{M}$
B) $1.0 \times 10^{-7} \mathrm{M}$
C) $3.3 \times 10^{-5} \mathrm{M}$
D) $6.6 \times 10^{-5} \mathrm{M}$
E) $3.3 \times 10^{-9} \mathrm{M}$
37) What is the $\left[\mathrm{H}^{+}\right]$in a 0.0025 M HCl solution?
A) $1.0 \times 10^{-7} \mathrm{M}$
B) $4.0 \times 10^{-12} \underline{\mathrm{M}}$
C) $2.5 \times 10^{-3} \mathrm{M}$
D) $3.6 \times 10^{-5} \mathrm{M}$
E) need more info
38) What is the $[\mathrm{OH}]$ in a 0.0050 M HCl solution?
A) $5.0 \times 10^{-3} \mathrm{M}$
B) 1.0 M
C) $1.0 \times 10^{-7} \mathrm{M}$
D) 6.6×10^{-5}
E) $2.0 \times 10^{-12} \underline{\mathrm{M}}$
39) A solution in which $\left[\mathrm{H}^{+}\right]=10^{-8}$ has a pH of \qquad and is \qquad .
A) 8 , acidic
B) 6, basic
C) -6, basic
D) -8 , neutral
E) 8 , basic
40) What is the pH of a $0.00030 \underline{\mathrm{M}} \mathrm{HNO}_{3}$ solution?
A) 8.11
B) 2.22
C) 3.52
D) 4.48
E) none of these
41) What is the pH of a 0.0060 M KOH solution?
A) 5.12
B) 2.22
C) 11.72
D) 8.88
E) 7.00
42) A sample of lemon juice is found to have a pH of 2.55. What is the $\left[\mathrm{H}^{+}\right]$concentration of the juice?
A) 0.0035 M
B) 0.0028 M
C) 11.6 M
D) 0.0080 M
E) 355 M
43) A sample of milk is found to have a pH of 6.60 . What is the OH^{-}concentration of the milk?
A) $2.5 \times 10^{-21} \mathrm{M}$
B) $1.0 \times 10^{-7} \mathrm{M}$
C) $5.0 \times 10^{-7} \mathrm{M}$
D) $4.0 \times 10^{-8} \mathrm{M}$
E) $2.5 \times 10^{-7} \mathrm{M}$

May use the calculator for the following problems:
44) What is the conjugate acid of NH_{3} ?
A) NH_{3}
B) $\mathrm{NH}_{2}{ }^{+}$
C) $\mathrm{NH}_{3}{ }^{+}$
D) $\mathrm{NH}_{4}{ }^{+}$
E) $\mathrm{NH}_{4} \mathrm{OH}$
45) The conjugate base of HSO_{4}^{-}is \qquad .
A) OH^{-}
B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
C) $\mathrm{SO}_{4}{ }^{2-}$
D) HSO_{4}^{+}
E) $\mathrm{H}_{3} \mathrm{SO}_{4}^{+}$
46) The conjugate acid of HSO_{4}^{-}is \qquad .
A) $\mathrm{SO}_{4}{ }^{2-}$
B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
C) $\mathrm{HSO}_{4}{ }^{+}$
D) H^{+}
E) $\mathrm{HSO}_{3}{ }^{+}$
47) What is the conjugate base of OH^{-}?
A) O_{2}
B) O^{-}
C) $\mathrm{H}_{2} \mathrm{O}$
D) O^{2-}
E) $\mathrm{H}_{3} \mathrm{O}^{+}$
48) What is the pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ in which $\left[\mathrm{H}^{+}\right]$is 0.0025 M ?
A) 3.40
B) 2.60
C) -2.60
D) -3.40
E) 2.25
49) What is the pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ in which $\left[\mathrm{OH}^{-}\right]$is 0.0025 M ?
A) +2.60
B) -2.60
C) +11.4
D) -11.4
E) -2.25
50) What is the pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ that contains 3.98×10^{-9} hydronium ion?
A) 8.400
B) 5.600
C) 9.000
D) 3.980
E) 7.000
51) What is the pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ that contains 3.98×10^{-9} hydroxide ion?
A) 8.40
B) 5.60
C) 9.00
D) 3.98
E) 7.00
52) What is the concentration (in M) of hydronium ions in a solution at $25.0^{\circ} \mathrm{C}$ with $\mathrm{pH}=4.282$?
A) 4.28
B) 9.71
C) 1.92×10^{-10}
D) 5.22×10^{-5}
E) 1.66×10^{4}
53) What is the concentration (in M) of hydroxide ions in a solution at $25.0^{\circ} \mathrm{C}$ with $\mathrm{pH}=4.282$?
A) 4.28
B) 9.72
C) 1.91×10^{-10}
D) 5.22×10^{-5}
E) 1.66×10^{4}
54) Calculate the pOH of a solution at $25.0^{\circ} \mathrm{C}$ that contains 1.94×10^{-10} hydronium ions.
A) 1.94
B) 4.29
C) 7.00
D) 14.0
E) 9.71
55) Calculate the concentration (in M) of hydronium ions in a solution at $25.0^{\circ} \mathrm{C}$ with a pOH of 4.223.
A) 5.98×10^{-5}
B) 1.67×10^{-10}
C) 1.67×10^{4}
D) 5.99×10^{-19}
E) 1.00×10^{-7}
56) What is the pH of a 0.015 M aqueous solution of barium hydroxide?
A) 12.48
B) 12.25
C) 1.82
D) 10.41
E) 1.52
57) What is the pOH of a 0.0150 M solution of barium hydroxide?
A) 12.2
B) 12.5
C) 1.52
D) 1.82
E) 10.4
58) An aqueous solution contains 0.100 M NaOH at $25.0^{\circ} \mathrm{C}$. The pH of the solution is
A) 0.100
B) 1.00
C) 13.00
D) 7.00
E) -1.00

Dissociation of Weak acids and Bases, poly-protic acid dissociation, hydrolysis of salts, oxy-acids

59) HZ is a weak acid. An aqueous solution of HZ is prepared by dissolving 0.020 mol of HZ in sufficient water to yield 1.0 L of solution. The pH of the solution was 4.93 at $25.0^{\circ} \mathrm{C}$. The K_{a} of HZ is \qquad .
A) 1.2×10^{-5}
B) 6.9×10^{-9}
C) 1.4×10^{-10}
D) 9.9×10^{-2}
E) $2.8 \times 10-12$
60) The pH of a 0.55 M aqueous solution of hypobromous acid, HOBr , at $25.0^{\circ} \mathrm{C}$ is 4.48 . What is the value of Ka_{a} for HOBr ?
A) 2.0×10^{-9}
B) 1.1×10^{-9}
C) 6.0×10^{-5}
D) 3.3×10^{-5}
E) 3.0×10^{4}
61) A 0.15 M aqueous solution of the weak acid HA at $25.0^{\circ} \mathrm{C}$ has a pH of 5.35 . The value of Ka for HA is
A) $3.0 \times \overline{10^{-5}}$
B) $1.8 \times 10-5$
C) 7.1×10^{-9}
D) 1.3×10^{-10}
E) 3.3×10^{-4}
62) The K_{a} of hypochlorous acid (HOCl) is 3.0×10^{-8} at $25.0^{\circ} \mathrm{C}$. Calculate the pH of a 0.0385 M hypochlorous acid solution.
A) 1.41
B) 8.94
C) 4.47
D) 7.52
E) -1.41
63) The K_{a} of hypochlorous acid (HOCl) is 3.0×10^{-8}. What is the pH at $25.0^{\circ} \mathrm{C}$ of an aqueous solution that is 0.0200 M in HOCl ?
A) +2.45
B) -2.45
C) -9.22
D) +9.22
E) +4.61
64) The Ka of hydrofluoric acid (HF) at $25.0^{\circ} \mathrm{C}$ is 6.8×10^{-4}. What is the pH of a 0.35 M aqueous solution of HF ?
A) 3.25
B) 1.81
C) 3.64
D) 0.46
E) 1.22
65) The Ka of hydrazoic acid $\left(\mathrm{HN}_{3}\right)$ is 1.9×10^{-5} at $25.0^{\circ} \mathrm{C}$. What is the pH of a 0.35 M aqueous solution of HN_{3} ?
A) 1.14
B) 2.41
C) 5.23
D) 2.59
E) -2.46
66) The acid-dissociation constants of sulfurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ are $\mathrm{K}_{\mathrm{a} 1}=1.7 \times 10^{-2}$ and $\mathrm{K}_{\mathrm{a} 2}=6.4$ $\mathrm{X} 10^{-8}$ at $25.0^{\circ} \mathrm{C}$. Calculate the pH of a 0.163 M aqueous solution of sulfurous acid.
A) 4.53
B) 1.30
C) 1.86
D) 6.21
E) 1.93
67) The acid-dissociation constants of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ are $\mathrm{K}_{\mathrm{a} 1}=7.5 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=6.2 \mathrm{X}$ 10^{-8} and $\mathrm{K}_{\mathrm{a} 3}=4.2 \times 10^{-13}$ at $25.0^{\circ} \mathrm{C}$. What is the pH of a 2.5 M aqueous solution of phosphoric acid?
A) 1.82
B) 0.40
C) 2.51
D) 0.88
E) 0.13
68) The pH of a 0.10 M solution of a weak base is 9.82 . What is the Kb_{b} for this base?
A) 2.1×10^{-4}
B) 4.4×10^{-8}
C) 8.8×10^{-8}
D) 6.6×10^{-4}
E) 2.0×10^{-5}
69) Calculate the pH of a 0.500 M aqueous solution of NH_{3}. The K_{b} of NH_{3} is 1.77×10^{-5} is
A) 8.95
B) 11.47
C) 2.52
D) 5.05
E) 3.01
70) Determine the pH of a 0.35 M aqueous solution of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ (methylamine). The K_{b} of methylamine is 4.4×10^{-4}
A) 10.00
B) 3.86
C) 12.09
D) 1.96
E) 13.24
71) An aqueous solution contains 0.050 M of methylamine. The concentration of hydroxide ion in this solution is \qquad M . K_{b} for methylamine is 4.4×10^{-4}
A) 0.050
B) 2.2×10^{-5}
C) 2.9×10^{-3}
D) 4.5×10^{-3}
E) 4.7×10^{-3}
72) The acid-dissociation constant, K_{a}, for gallic acid is 4.57×10^{-3}. What is the basedissociation constant, K_{b}, for the gallate ion?
A) 4.5×10^{-3}
B) 2.19×10^{-12}
C) 5.43×10^{-5}
D) 7.81×10^{-6}
E) 2.91×10^{-2}
73) The base-dissociation constant, K_{b}, for pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, is 1.4×10^{-9}. The acid-dissociation constant, K_{b}, for the pyridinium ion, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$is \qquad -.
A) 1.0×10^{-7}
B) 1.4×10^{-23}
C) 7.1×10^{-4}
D) 1.4×10^{-5}
E) 7.1×10^{-6}
74) The K_{a} for HCN is 4.9×10^{-10}. What is the value of K_{b} for CN^{-}?
A) 2.0×10^{-5}
B) 4.0×10^{-6}
C) 4.9×10^{4}
D) 4.9×10^{-24}
E) 2.0×10^{9}
75) K_{a} for HF is 7.0×10^{-4}. K_{b} for the fluoride ion is \qquad .
A) 2.0×10^{-8}
B) 1.4×10^{-11}
C) 7.0×10^{-18}
D) 7.0×10^{-4}
E) 1.4×10^{3}
76) Calculate the pOH of a 0.0827 M aqueous sodium cyanide solution at $25.0^{\circ} \mathrm{C} . \mathrm{K}_{\mathrm{b}}$ for CN^{-}is 4.49×10^{-10}.
A) 9.33
B) 10.00
C) 5.20
D) 1.17
E) 8.89
77) Determine the pH of a 0.15 M aqueous solution of KF . For hydrofluoric acid, $\mathrm{K}_{\mathrm{a}}=7.0 \times 10^{-4}$.
A) 12.01
B) 5.85
C) 8.17
D) 2.32
E) 6.68
78) Calculate the pH of 0.726 M anilinium hydrochloride $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}\right)$ solution in water, given that K_{b} for aniline is 3.83×10^{-4}.
A) 1.77
B) 12.2
C) 5.36
D) 8.64
E) 12.4
79) K_{b} for NH_{3} is 1.8×10^{-5}. What is the pH of a 0.35 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ at $25.0^{\circ} \mathrm{C}$?
A) 9.76
B) 4.35
C) 9.11
D) 4.86
E) 11.23
80) The Ka_{a} for formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ is 1.8×10^{-4}. What is the pH of a 0.35 M aqueous solution of sodium formate $\left(\mathrm{NaHCO}_{2}\right)$?
A) 11.64
B) 5.42
C) 3.39
D) 8.64
E) 4.26
81) K_{a} for HCN is 4.9×10^{-10}. What is the pH of a 0.068 M aqueous solution of sodium cyanide?
A) 0.74
B) 2.96
C) 11.07
D) 13.24
E) 7.00
82) Ka for HX is 7.5×10^{-12}. What is the pH of a 0.15 M aqueous solution of NaX ?
A) 7.97
B) 1.96
C) 6.00
D) 8.04
E) 12.10
83) The pH of a 0.15 M aqueous solution of NaZ (the sodium salt of HZ) is 10.7 . What is the Ka_{a} for HZ?
A) 1.6×10^{-6}
B) 6.0×10^{-9}
C) 8.9×10^{-4}
D) 1.3×10^{-12}
E) 3.3×10^{-8}
84) What is the concentration of OCl^{-}in a 0.60 M solution of HOCl ? $\mathrm{K}_{\mathrm{a}}=3.1 \times 10^{-8}$.
A) $1.8 \times 10^{-4} \mathrm{M}$
B) $7.1 \times 10^{-11} \mathrm{M}$
C) 0.40 M
D) $1.4 \times 10^{-4} \mathrm{M}$
E) $1.1 \times 10^{-4} \mathrm{M}$
85) What is the pH of a 0.50 M solution of NaNO_{2} ? For $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}$.
A) 12.18
B) 5.48
C) 1.82
D) 8.52
E) $\quad 7.00$
86) What is the pH of a 1.0 M solution of NaOCl ? For $\mathrm{HOCl}, \mathrm{Ka}=3.1 \times 10^{-8}$.
A) 10.75
B) 3.25
C) 3.75
D) 10.25
E) 7.00
87) What is the pH of a 1.0×10^{-2} molar solution of HCN ? (For $\mathrm{HCN}, \mathrm{Ka}=4.0 \times 10^{-10}$)
A) 10
B) Between 7 and 10
C) 7
D) Between 4 and 7
E) 4
88) What is the pH of a 0.020 M solution of hydrosulfuric acid, a diprotic acid? $\mathrm{K}_{\mathrm{a} 1}=1.1 \times 10^{-7} \mathrm{~K}_{\mathrm{a} 2}=1.0 \times 10^{-14}$
A) 7.00
B) 9.67
C) 7.84
D) 4.33
E) 3.05
89) What is the concentration of $\mathrm{CO}_{3}{ }^{2-}$ in a 0.010 M solution of carbonic acid? The relevant equillbria are,
$\mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \quad \mathrm{K}_{\mathrm{a} 1}=4.3 \times 10^{-7}$
$\mathrm{HCO}_{3} \leftrightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \quad \mathrm{K}_{\mathrm{a} 2}=5.6 \times 10^{-11}$
A) $6.6 \times 10^{-5} \mathrm{M}$
B) $5.6 \times 10^{-11} \mathrm{M}$
C) $6.7 \times 10^{-11} \mathrm{M}$
D) $\quad 7.5 \times 10^{-7} \mathrm{M}$
E) $7.9 \times 10^{-7} \mathrm{M}$
90) What is the S^{2-} concentration in a saturated solution $(0.10 \underline{\mathrm{M}})$ of $\mathrm{H}_{2} \mathrm{~S}$, in which the pH has been adjusted to 6.00 by the addition of HCl ? For $\mathrm{H}_{2} \mathrm{~S}, \mathrm{~K}_{\mathrm{a} 1}=1.1 \times 10^{-7}$ and $\mathrm{K}_{\mathrm{a} 2}=1.0 \times 10^{-14}$.
A) $1.1 \times 10^{-16} \mathrm{M}$
B) $1.1 \times 10^{-10} \mathrm{M}$
C) $1.0 \times 10^{-2} \mathrm{M}$
D) $3.2 \times 10^{-8} \mathrm{M}$
E) $3.2 \times 10^{-6} \mathrm{M}$
91) Of the following substances an aqueous solution of \qquad will form basic solution.
$\mathrm{NH}_{4} \mathrm{Cl} \quad \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{~K}_{2} \mathrm{CO}_{3} \mathrm{NaF}$
A. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
B. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$
C. NaF only
D. $\mathrm{NaF}, \mathrm{K}_{2} \mathrm{CO}_{3}$
E. $\mathrm{NH}_{4} \mathrm{Cl}$ only
92) A 0.1 M aqueous solution of \qquad will have a pH of 7.0 at 25 C .
A. NaOCl
B. KCl
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. $\mathrm{Ca}(\mathrm{OAc})_{2}$
E. None of these
93) A 0.1 M solution of \qquad has a pH of 7.0
A. $\mathrm{Na}_{2} \mathrm{~S}$
B. KF
C. NaNO_{3}
D. $\mathrm{NH}_{4} \mathrm{Cl}$
E. NaF
94) An Aqueous solution of \qquad will produce a basic solution.
A. $\mathrm{NH}_{4} \mathrm{ClO}_{4}$
B. KBr
C. NaCl
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
E. NaHCO_{3}
95) Which of the following salts will result in a basic solution when it is dissolved in water?
A) KCl
B) $\mathrm{NH}_{4} \mathrm{I}$
C) NaCN
D) MgBr_{2}
E) none of these
96) Of the following which is the strongest acid?
A) HIO
B) HIO_{4}
C) HIO_{2}
D) HIO_{3}
E) all nearly the same
97) of the following which is the strongest acid?
A) $\mathrm{CH}_{3} \mathrm{COOH}$
B) $\mathrm{ClCH}_{2} \mathrm{COOH}$
C) $\mathrm{Cl}_{2} \mathrm{CHCOOH}$
D) $\mathrm{Cl}_{3} \mathrm{CCOOH}$
E) $\mathrm{BrCH}_{2} \mathrm{COOH}$
98) which of the following is the strongest?
A) $\mathrm{H}_{2} \mathrm{SO}_{4}$
B) HSO_{4}^{-}
C) $\mathrm{H}_{2} \mathrm{SO}_{3}$
D) $\mathrm{H}_{2} \mathrm{SeO}_{4}$
E) HSO_{3}^{-}
99) Which of the following is the strongest?
A) HClO
B) HF
C) HBr
D) HI
E) HCl

Conceptual Questions: No calculator

1) Write the name and formula for the conjugate bases of the following.
A) HNO_{2}
B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
C) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
D) HF
E) $\mathrm{CH}_{3} \mathrm{COOH}$
2) For each of the following predict whether an aqueous solution would be acidic, basic or neutral?
A) Sodium nitrate NaNO_{3}
B) Ammonium iodide $\mathrm{NH}_{4} \mathrm{I}$
C) Sodium bicarbonate NaHCO_{3}
D) Ammonium cyanide $\mathrm{NH}_{4} \mathrm{CN}$
E) Sodium hypochlorite NaOCl
F) Potassium acetate $\mathrm{KCH}_{3} \mathrm{CO}_{2}$
3) Complete the $\operatorname{Br} \phi$ nsted-Lowry equilibria, label the components acid or base and pair up the conjugate acid base pairs.
A) $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
B) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
C) $\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
D) $\mathrm{H}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
E) $\mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
4) In the laboratory, $\mathrm{H}_{2}(\mathrm{~g})$ can be produced by adding which of the following to $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$? I. 1 M NH 3 II. $\mathrm{Zn}(\mathrm{s}) \quad$ III. $\mathrm{NaHCO}_{3}(\mathrm{~s})$
A) I only
B) II only
C) III only
D) I and II only
E) I, II and III
5) $2 \mathrm{NH}_{3} \leftrightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{2}^{-}$In liquid ammonia, the reaction represented above occurs. In the reaction, $\mathrm{NH}_{4}{ }^{+}$acts as
A) a catalyst
B) both an acid and base
C) the conjugate acid of NH_{3}
D) the reducing agent
E) the oxidizing agent
6) At $25^{\circ} \mathrm{C}$, aqueous solution with a pH of 8 have a hydroxide ion concentration, $\left[\mathrm{OH}^{-1}\right]$, of
A) $1 \times 10^{-14} \mathrm{M}$
B) $1 \times 10^{-8} \mathrm{M}$
C) $1 \times 10^{-6} \mathrm{M}$
D) 1 M
E) 8 M
7) How can 100 ml sodium hydroxide solution with a pH of 13 be converted to a sodium hydroxide solution of pH 12 ?
A) By diluting the solution with distilled water to a total volume of 108 ml
B) by diluting the solution with distilled water to a total volume of 200 mL
C) by diluting to a total volume of 1.00 L
D) By adding 100 mL of 0.10 M HCl
E) By adding 100 mL of 0.01 M NaOH
8) The pH of a solution prepared by the addition of 10 mL of $0.002 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$ to 10 mL of distilled water is close to
A) 12
B) 11
C) 10
D) 4
E) 3
9) In solution, which of the following has the greatest $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?
A) HCN
B) HNO_{3}
C) $\mathrm{H}_{2} \mathrm{O}$
D) OH^{-}
E) $\mathrm{CH}_{3} \mathrm{OH}$
10) Which of the following is not true for a solution at $25^{\circ} \mathrm{C}$ that has a hydroxide concentration of $1.0 \times 10^{-6} \mathrm{M}$?
A) $\mathrm{Kw}=1 \times 10^{-14}$
B) the solution is acidic
C) The solution is basic
D) $\left[\mathrm{H}^{+}\right]=1 \times 10^{-8} \mathrm{M}$
E) the pOH is 6.0
11) Equal volumes of two solutions of pH 3 and pH 4 are mixed. The pH of the resulting solution will be
A) 7
B) 3.5
C) 2.96
D) 3.26
E) 3.5
12) The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCL in water is
A) 8
B) -8
C) between 7 and 8
D) between 6 and 7
E) between 8 and 9
13) Which of the following will occur if a 0.1 M solution of a weak acid is diluted to 0.01 M at constant temperature?
A) $[\mathrm{H}+]$ will decrease to 0.01 M
B) pH will decrease
C) percentage ionization will increase
D) Ka will increase
E) nothing will happen
14) Which of the following ions is the strongest Lewis acid?
A) Na^{+}
B) Cl^{-}
C) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
D) Mg^{2+}
E) Al^{3+}
15) Each of the following can act as both a Brönsted acid and a Brönsted base EXCEPT
A) HCO_{3}^{-}
B) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
C) $\mathrm{NH}_{4}{ }^{+}$
D) H 2 O
E) HS^{-}
16) Which, if any, of the following species is in the greatest concentration in a 0.100 -molar solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water?
A) $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecules
B) $\mathrm{H}_{3} \mathrm{O}^{+}$ions
C) HSO_{4}^{-}ions
D) $\mathrm{SO}_{4}{ }^{2-}$ ions
E) All species are in equilibrium and therefore have the same concentrations
17) $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}<===>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2-}$

In the equilibrium represented above, the species that act as bases include which of the following?
I. $\mathrm{HSO}_{4}{ }^{-}$
II. $\mathrm{H}_{2} \mathrm{O}$
III. $\mathrm{SO}_{4}{ }^{2-}$
A) II only
B) III only
C) I and II
D) I and III
E) II and III
18) Which of the following acids can be oxidized to form a stronger acid?
A) $\mathrm{H}_{3} \mathrm{PO}_{4}$
B) HNO_{3}
C) $\mathrm{H}_{2} \mathrm{CO}_{3}$
D) $\mathrm{H}_{3} \mathrm{BO}_{3}$
E) $\mathrm{H}_{2} \mathrm{SO}_{3}$
19) The reaction represented below has an equilibrium constant equal to 3.7×10^{4}. Which of the following can be concluded from this information?
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})<===>\mathrm{HCN}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})$
A) $\mathrm{CN}^{-}(\mathrm{aq})$ is a stronger base than $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$(aq)
B) $\mathrm{HCN}(\mathrm{aq})$ is a stronger acid than $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$(aq)
C) The conjugate base of $\mathrm{CN}^{-}(\mathrm{aq})$ is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})$
D) The equilibrium constant will increase with an increase in temperature.
E) The pH of a solution containing equimolar amounts of $\mathrm{CN}^{-}(\mathrm{aq})$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})$) is 7.0.
20) When a 0.1 M solutions of $\mathrm{HF}, \mathrm{HCl}, \mathrm{KF}$ and KCl are arranged in order of increasing pH which order is correct?
A) $\mathrm{HF}, \mathrm{HCl}, \mathrm{KF}, \mathrm{KCl}$
B) $\mathrm{HCl}, \mathrm{HF}, \mathrm{KF}, \mathrm{KCl}$
C) $\mathrm{HCl}, \mathrm{HF}, \mathrm{KCl}, \mathrm{KF}$
D) $\mathrm{HF}, \mathrm{HCl}, \mathrm{K} \mathrm{Cl}, \mathrm{KF}$
E) $\mathrm{KCl}, \mathrm{KF}, \mathrm{HF}, \mathrm{HCl}$
21) Which is not a conjugate acid/base pair?
A) $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{CO}_{3}{ }^{2-}$
B) HSO_{4}^{-}and $\mathrm{SO}_{4}{ }^{2-}$
C) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$
D) $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{O}$
E) HNO_{3} and $\mathrm{NO}_{3}-$
22) What is the $\left[\mathrm{OH}^{-}\right]$in an aqueous solution which has a $\mathrm{pH}=11$
A) 1.0×10^{-3}
B) 1.0×10^{-4}
C) 4.0×10^{-11}
D) 1.0×10^{-2}
E) 1.0×10^{3}

Answers:

1 B	9 B	17 D	25 C	33 C	41 C	49 C	57 C	65 D	73 E	81 C	89 B	97 D
2 D	10 D	18 E	26 D	34 C	42 B	50 A	58 C	66 B	74 A	82 E	90 B	98 A
3 E	11 B	19 C	27 B	35 C	43 D	51 B	59 B	67 D	75 B	83 B	91 D	99 D
4 C	12 C	20 E	28 D	36 A	44 D	52 D	60 A	68 B	76 C	84 D	91 B	
5 BD	13 C	21 E	29 D	37 C	45 C	53 C	61 D	69 B	77 C	85 D	93 C	
6 C	14 A	22 A	30 E	38 E	46 B	54 B	62 C	70 C	78 C	86 A	94 D	
7 C	15 A	23 E	31 D	39 E	47 D	55 B	63 E	71 D	79 D	87 D	95 C	
8 C	16 D	24 A	32 C	40 C	48 B	56 A	64 B	$72 B$	80 D	88 D	96 B	

(C)34

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH	acidic or basic
2.0×10^{-5}	5.0×10^{-10}	4.70	9.30	acidic
5.6×10^{-7}	1.8×10^{-8}	6.25	7.75	acidic
1.8×10^{-13}	5.6×10^{-2}	12.75	1.25	basic
1.6×10^{-5}	6.3×10^{-10}	4.80	9.20	acidic
8.7×10^{-10}	1.1×10^{-5}	9.06	4.94	basic

Explanation for some of the above answers in the table;
85)

$K_{b}=K_{w} / K_{a}=\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NO}_{2}\right]^{-}=x^{2} / 0.5=2.22 \times 10^{-11}$
$p H=14-p O H=8.52$
88) Only the first dissociation is significant so only $K_{a 1}$ is needed
89). From the first dissociation, $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}^{3-}\right]$. The second dissociation does not change this much. $\mathrm{Ka}_{\mathrm{a} 2}=\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]$. But $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}{ }^{-}\right]$and cancel each other out.

So $K_{a 2}=\left[\mathrm{CO}_{3}{ }^{2-}\right]=5.6 \times 10^{-11}$
90) Combine the two dissociations
$\mathrm{H}_{2} \mathrm{~S} \leftrightarrow \mathrm{H}^{+}+\mathrm{HS}^{-}$
$H S^{-} \leftrightarrow H^{+}+S^{2-}$
$H_{2} S \leftrightarrow 2 H^{+}+S^{2-}$

$$
\begin{array}{r}
K=K_{a 1} \times K_{a 2} 1.1 \times 10^{-21}=\left[H^{+}\right]^{2}\left[S^{2-}\right] \\
\left.---H_{2} \mathrm{~S}\right]
\end{array}
$$

$$
\left[S^{2-}\right]=k\left[H_{2} S\right] /\left[H^{+}\right]^{2}=1.1 \times 10^{-10}
$$

Conceptual questions:

1)

A) $\mathrm{NO}_{2}^{-} \quad$ nitrite
B) $\mathrm{HSO}_{4}^{-} \quad$ hydrogen sulfate
C) $\mathrm{HPO}_{4}{ }^{2-}$ hydrogen phosphate
D) $\mathrm{F}^{-} \quad$ fluoride
E) $\mathrm{CH}_{3} \mathrm{COO}^{-}$acetate
2)
A) Neutral
B) Acidic
C) Basic
D) Neutral
E) Basic
F)basic
3)
A) (A) $\mathrm{HSO}_{4}^{-}+(\mathrm{B}) \mathrm{H}_{2} \mathrm{O} \rightarrow$ (CB) $\mathrm{SO}_{4}{ }^{2-}+(\mathrm{CA}) \mathrm{H}_{3} \mathrm{O}^{+}$
B) (B) $\mathrm{NH}_{3}+$ (A) $\mathrm{H}_{2} \mathrm{O} \rightarrow$ (CA) $\mathrm{NH}_{4}^{+}+$(CB) OH^{-}
C) (B) $\mathrm{CN}^{-}+$(A) $\mathrm{H}_{2} \mathrm{O} \rightarrow$ (CA) $\mathrm{HCN}+(\mathrm{CB}) \mathrm{OH}^{-}$
D) (B) $\mathrm{H}^{-}+(\mathrm{A}) \mathrm{H}_{2} \mathrm{O} \rightarrow(\mathrm{CA}) \mathrm{H}_{2}+(\mathrm{CB}) \mathrm{OH}^{-}$
E) (A) $\mathrm{HClO}_{4}+(\mathrm{B}) \mathrm{H}_{2} \mathrm{O} \rightarrow(\mathrm{CB}) \mathrm{ClO}_{4}^{-}+(\mathrm{CA}) \mathrm{H}_{3} \mathrm{O}^{+}$

4 B	9 B	14 E	19 A
5 C	10 B	15 C	20 C
6 C	11 D	16 B	21 A
7 C	12 A	17 E	22 A
8 B	13 C	18 E	

Free Response Questions:

1) The overall dissociation of oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, is represented below. The overall dissociation constant is also indicated.

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \leftrightarrow 2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \quad K=3.78 \times 10^{-6}
$$

(a) Give the equations representing the first and second dissociations of oxalic acid.
(b) Calculate the value of the first dissociation constant, K_{1}, for oxalic acid if the value of the second dissociation constant, K_{2}, is 6.40×10^{-5}.
(c) To a 0.015 -molar solution of oxalic acid, a strong acid is added until the pH is 0.5 . Calculate the $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2}\right]$ in the resulting solution. (Assume the change in volume is negligible.)
(d) Calculate the value of the equilibrium constant, K_{b}, for the reaction that occurs when solid $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is dissolved in water. (Do later)
2) $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{3}$, and $\mathrm{H}_{3} \mathrm{PO}_{4}$ are monoprotic, diprotic and triprotic acids, respectively, and they are about equal strong acids.
$\mathrm{HClO}_{2}, \mathrm{HClO}_{3}$, and HClO_{4} are all monoprotic acids, but HClO_{2} is a weaker acid than HClO_{3} which is weaker than HClO_{4}. Account for:
(a) The fact that the molecules of the three phosphorus acids can provide different numbers of protons.
(b) The fact that the three chlorine acids differ in strengths.
3) The value of the ionization constant, Ka , for hypochlorous acid, HOCl , is 3.1×10^{-8}.
(a) Calculate the hydronium ion concentration of a 0.050 molar solution of HOCl .
(b) Calculate the concentration of hydronium ion in a solution prepared by mixing equal volumes of 0.050 molar HOCl and 0.020 molar sodium hypochlorite, NaOCl .
(c) A solution is prepared by the disproportionate reaction below. (Do later)
$\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCl}+\mathrm{HOCl}$
Calculate the pH of the solution if enough chlorine is added to water to make the concentration of HOCl equal to 0.0040 molar.
4) Methylamine $\mathrm{CH}_{3} \mathrm{NH}_{2}$, is a weak base that ionizes in solution as shown by the following equation.

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-}
$$

(a) At $25^{\circ} \mathrm{C}$ the percentage ionization in a 0.160 molar solution of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is 4.7%. Calculate $\left[\mathrm{OH}^{-}\right],\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right],\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right],\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, and the pH of a 0.160 molar solution of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ at $25^{\circ} \mathrm{C}$.
(b) Calculate the value for K_{b}, the ionization constant for $\mathrm{CH}_{3} \mathrm{NH}_{2}$, at $25^{\circ} \mathrm{C}$.
5) The acid ionization constant, K_{a}, for propanoic acid, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$, is 1.3×10^{-5}.
(a) Calculate the hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$, in a 0.20 -molar solution of propanoic acid.
(b) Calculate the percentage of propanoic acid molecules that are ionized in the solution in (a).
(c) What is the ratio of the concentration of propanoate ion, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$, to that of propanoic acid in a buffer solution with a pH of 5.20 ?
6) In water, hydrazoic acid, HN_{3}, is a weak acid that has an equilibrium constant, K_{a}, equal to 2.8×10^{-5} at $25^{\circ} \mathrm{C}$. A 0.300 L sample of a 0.050 M solution of the acid is prepared.
(a) Write the expression for the equilibrium constant, K_{a}, for hydrazoic acid.
(b) Calculate the pH of this solution at $25^{\circ} \mathrm{C}$.
7) $\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \leftrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \leftrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

In aqueous solution, ammonia reacts as represented above. In $0.0180 \mathrm{M} \mathrm{H}_{3}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$, the hydroxide ion concentration, $\left[\mathrm{OH}^{-}\right]$is $5.60 \times 10^{-4} \mathrm{M}$. In answering the following, assume that temperature is constant at $25^{\circ} \mathrm{C}$ and that volumes are additive.
(a) Write the equilibrium-constant expression for the reaction represented above.
(b) Determine the pH of $0.0180 \mathrm{MNH}_{3}(\mathrm{aq})$.
(c) Determine the value of the base ionization constant, K_{b}, of $\mathrm{NH}_{3}(a q)$.
(d) Determine the percent ionization of NH_{3} in $0.0180 \mathrm{MNH}_{3}(a q)$.
8) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \leftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Aniline, a weak base, reacts with water according to the reaction represented above.
(a) Write the equilibrium constant expression, K , for the reaction represented above.
(b) A sample of aniline is dissolved in water to produce 25.0 mL of a 0.10 M solution. The pH of the solution is 8.82 . Calculate the equilibrium constant, K_{b}, for this reaction.

Answers:

1. a) $\quad \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}^{-} \leftrightarrow \mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$(eq. constant $=\mathrm{K}_{1}$)
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \leftrightarrow \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ (eq. constant $=\mathrm{K}_{2}$)
b) $\quad \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-1} \mathrm{~K}_{1}$
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-1} \rightarrow \mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-2} \mathrm{~K} 2$
$\mathrm{K}=\mathrm{K}_{1} \times \mathrm{K}_{2}$
$K_{1}=K / K_{2}$
$=3.78 \times 10^{-6} / 6.40 \times 10^{-5}=5.91 \times 10^{-2}$
c) $\quad \mathrm{K}=\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}^{2-}\right]$

$$
=3.78 \times 10^{-6}=(0.316)^{2}(x) /(0.015)
$$

$\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right.$]
$\mathrm{X}=5.68 \times 10^{-7} \mathrm{M}$
d) $\quad \mathrm{C}_{2} \mathrm{O}_{4}^{-2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{OH}^{-}$
$K_{b}=K_{w} / K_{a} 1.0 \times 10^{-14} / 6.40 \times 10^{-5}=1.56 \times 10^{-10}$
2. (a) The structure for the three acids are as follows:

The hydrogen atom(s) bonded directly to the phosphorus atom is/are not acidic in aqueous solution; only those hydrogen atoms bonded to the oxygen atoms can be released as protons.
(b) The acid strength is successively greater as the number of oxygen atoms increases because the very electronegative oxygen atoms are able to draw electrons away from the chlorine atom and the $\mathrm{O}-\mathrm{H}$ bond. This effect is more important as the number of attached oxygen atoms increases. This means that a proton is most readily produced by the molecule with the largest number of attached oxygen atoms.
3. (a) $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OCl}^{-}$

[HOCl$] \quad(0.050-\mathrm{X})$
$\mathrm{X}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.0 \times 10^{-5} \mathrm{M}$
(b) $\quad \mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OCl}^{-}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][0.020+\mathrm{X}]$
$\square \quad=\quad 3.1 \times 10^{-8} \quad X \ll 0.010$
[0.020 - X]
$\mathrm{X}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.0 \times 10^{-8} \mathrm{M}$
(c) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{HCl}+\mathrm{HOCl}$
$[\mathrm{HOCl}]=[\mathrm{HCl}]=0.0040 \mathrm{M}$
HCl as principal source of $\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.40$
4. (a) $\mathrm{CH}_{3} \mathrm{NH}_{2} ; 0.160 \mathrm{M} \times 4.7 \%=7.5 \times 10^{-3} \mathrm{M}$ ionizing
($0.160 \mathrm{M}-0.0075 \mathrm{M}$) $=0.152 \mathrm{M}$ at equilibrium
$\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]=\left[\mathrm{OH}^{-}\right]=7.5 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{w}}$

$$
=1.3 \times 10^{-12} \mathrm{M}
$$

7.5×10^{-5}

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=11.89
$$

(b) $\mathrm{K}_{\mathrm{b}}=\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]$
[$\mathrm{CH}_{3} \mathrm{NH}_{2}$]

$$
=3.7 \times 10^{-4}
$$

5. (a) $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}\right]\left[\mathrm{H}^{+}\right]=\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\mathrm{X}$

$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]$
$\frac{x^{2}}{}$
$\frac{\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]}{}=0.20 \mathrm{M}-\mathrm{X} \sim 0.20$ (assume x is small)
0.20

(b) From (a), $\mathrm{x}=\mathrm{amount}$ of acid that ionized, therefore
1.6×10^{-3}
—— $\times(100)=0.80 \%$ ionized
(c) At $\mathrm{pH}=5.20\left[\mathrm{H}^{+}\right]=-\log (5.20)=6.31 \times 10^{-6} \mathrm{M}$
$\left(6.31 \times 10^{-6}\right)\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$
$=\mathrm{K}_{\mathrm{a}}=1.3 \times 10^{-5}$

$\frac{$| $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]$ |
| :---: |
| $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}\right]$ |}{$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]$}$=\frac{2.1}{1}$

6. a) $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{N}_{3}{ }^{-3}\right]\left[\mathrm{HN}_{3}\right]$
(b) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{N}_{3}\right]=\mathrm{x}$
$2.8 \times 10^{-5}=x^{2} / 0.050 ; x=1.2 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.92$
7. (a) $\mathrm{Kb}_{\mathrm{b}}=\left[\mathrm{NH}_{4}+\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH}_{3}\right]$
(b) $\mathrm{pOH}=-\log \left(5.6 \times 10^{-4}\right)=3.252$
$\mathrm{pH}=14-3.252=10.748$
(c) $\mathrm{K}_{\mathrm{b}}=\left(5.6 \times 10^{-4}\right)^{2} /\left(0.0180-5.6 \times 10^{-4}\right)=1.80 \times 10^{-5}$
(d) $\left(5.6 \times 10^{-4} / 0.0180\right) 100=3.11 \%$
8. (a) $\mathrm{Kb}^{2}=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]$
[$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$] $\left[\mathrm{H}_{2} \mathrm{O}\right.$]
(b) $\mathrm{pH}=8.82$
$\mathrm{pOH}=14-8.82=5.18$
$\left[\mathrm{OH}^{-}\right]=10^{-5.18}=6.61 \times 10^{-6} \quad\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]=\left[\mathrm{OH}^{-}\right]=6.61 \times 10^{-6}$
$\mathrm{K}_{\mathrm{b}}=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]=6.61 \times 10^{-6} / 0.10$
$\mathrm{K}_{\mathrm{b}}=4.4 \times 10^{-10}$
