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Abstract

An acoustic study was conducted in the Galician shelf (NW Spain) during the late winter of 2012, to
detect and assess larval fish abundance. An echo sounder operating with 18, 38, 70, 120 and 200 kHz
split-beam, hull-mounted transducers was employed. We analyzed the acoustic records in order to
describe vertical and horizontal distribution patterns of larval fish aggregations. Regressions
between acoustic backscattered energy and density of the most abundant species (Micromesistius
poutassou) indicated that larvae with a swimbladder incremented notably the acoustic response at
38, 70 and 120 KHz. However, the predicted acoustic resonance at larval size and depth shows that
the 120 kHz is unlikely being effective to detect fish larvae. Contribution of zooplankton (fish larvae
excluded) to total scattering was negligible even at the higher frequencies, except for several groups
of fluid-like zooplankton, such as chaetognats and polychaets. Horizontal and vertical distribution of
acoustic backscattering also indicated that larval fish aggregations can be detected in Galician waters
with acoustics, and suggest this technique as a useful tool to overcome difficulties associated with

larval ecology and fish recruitment studies.

Keywords: acoustics, fish larvae, frequency response, Galician shelf, zooplankton
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Introduction

The embryonic and larval periods in fish have important ecological and evolutionary functions.
For many species, they represent an effective means of dispersal that can extend the range of a
population and mix the gene pool (Cowen & Sponaugle 2009, Pusack et al. 2014). They are also
interactive components of the pelagic ecosystem that can, for example, temporarily reduce local
zooplankton populations, so that the potential for competition for food is heightened (Nielsen &
Munk 1998, Beaugrand et al. 2003). However, one of the most important reasons for studying the
early life stages of fishes is that the year-class strength of fish populations is determined at these
stages, shortly after the yolk-sac depletion, when larvae must find suitable amounts and types of
plankton prey (Hjort 1914, Houde 2008). Predicting recruitment represents a challenge in fisheries
science, and our ability to do that remains poor. To estimate larval fish abundance is a complex and
difficult process involving elaborated and expensive surveys, but such surveys provide detailed
descriptions of phenological relationships affecting recruitment (Hare 2014). Additionally,
understanding dispersal distance is important for a variety of reasons, including fisheries
management, effective marine protected areas design, and control of invasive species (Cowen et al.
2006, Becker et al. 2007, Almany et al. 2009, Cowen & Sponaugle 2009, Aiken & Navarrete 2011, Le
Corre et al. 2012). Long-time series of egg and larval abundance and distribution data facilitate a
spatial comparison of spawning habitats (Van der Lingen & Huggett 2003, Ibaibarriaga et al. 2007,
Alvarez & Chifflet 2012) and play an important role in fishery management of many species through
applying egg and larval production methods to estimate fish stock biomass (Motos et al. 1996,
Stratoudakis et al. 2004, Lo et al. 2009).

To sample fish larvae effectively, proper nets and efficient sampling designs are required. These
conventional sampling methods, however, suffer from many well-known drawbacks, including those
related with sampling devices, larval size and larval behavior, such as net avoidance, extrusion and
clogging (Barkley 1972, Wiebe et al. 1982, Leslie & Timmins 1989, Johnson & Morse 1994,

Hernandez Jr et al. 2011), and problems associated with the nature of sequential sampling. The high
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patchiness and low mean density, typically shown by larval distribution, contribute to increase in
variance and uncertainty, and reduces precision of abundance estimations (Lo et al. 2009). Methods
that overcome such limitations are required (e.g., acoustic and molecular techniques).The virtues of
echo sounder records are the speed of areal coverage and the real-time data presentation of the
echogram.

The acoustic method is often used for abundance estimation of juvenile and adult fish of
commercially important stocks worldwide (Misund 1997). Also, plankton has been studied
acoustically for many years, and the growing importance of this field is now evident (MacLennan &
Holliday 1996). The increased use of acoustics may help elucidate some problems related with the
estimation of larval fish abundance (Rudstam et al. 2002, Godg et al. 2014). However, to date, few
studies on fish larvae applying the acoustic techniques have been carried out. In order to assess the
Engraulis encrasicolus larval distribution in the Strait of Sicily, Bonanno et al. (2006) divided the
acoustic signal according to the percentages of zooplankton and fish larvae found in biological
samples. Rudstam et al. (2002) concluded that it is difficult to exclude noise or invertebrate targets
in the abundance estimates of fish larvae smaller than 15 mm, although they reported reliable
estimates of abundance of fish as small as 15 mm.

In the case of fish with small-volume swimbladders, e.g., fish larvae and mesopelagic fish, the
likelihood of acoustic detection is increased at low frequencies due to resonance scattering (Godg et
al. 2009). Using theoretical models, Miyashita (2003) estimated higher sound scattering levels at 38
kHz than at 120 kHz for Euonymus japonicus post-larvae with inflated swimbladders during the night.
Recently, in the Argentinean shelf, Alvarez-Colombo et al. (2011) detected Merluccius hubbsi
aggregations acoustically, in coincidence with the development of larval functional swimbladders at
about 4 mm total length. These authors demonstrated that the high-intensity levels of acoustic
backscattering recorded from these aggregations at 38 kHz were due to resonance scattering,

showing the potential of the acoustic method during fish assessment surveys applied to the
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detection and spatial distribution analysis of larval fish aggregations. This innovative use of acoustics
should be contrasted not only in other fish species but also in different geographical areas.

The aim of this study was to test the hypothesis that larval fish aggregations may be detected
and assessed by acoustic techniques in the waters of the Iberian Peninsula. We analyzed the
acoustic records in order to estimate abundance, and to describe horizontal and vertical distribution
patterns of larval fish aggregations. We tested our hypothesis in the Galician shelf (NW of Spain)
during the course of a holistic research project on hake recruitment. This region is located in the
northern border of the seasonal coastal upwelling that extends along the eastern coasts of the North
Atlantic, and whose intensity depends on the North Atlantic anticyclonic eddy (McClain et al. 1986).
The upwelling is associated with high primary productivity which determines the structure of the
pelagic and benthic food webs (Farifia et al. 1997). This produces one of the most important and
intensive fisheries in the European Union, making this area the most fishing-dependent region in

Europe (Suris-Regueiro & Santiago 2014).

Methods
Biological sampling
Within the framework of the research project on hake recruitment ecology, a specific cruise

(Cramer1203) was carried out off the NW lberian Peninsula (Fig. 1) in the late winter of 2012 (from
February 28 to March 13), during the main spawning peak of this species in the region. The sampling
design covered the area from Finisterre to Estaca de Bares, from a depth of around 40 m to 500 m.
Considering that hake presents a highly aggregated spawning behavior, adaptive cluster sampling
was implemented starting with a grid of 80 stations arranged in 15 transects perpendicular to the
coastline. The distance between stations was 4 nm, and 8 nm between transects (Fig. 1). Four
stations were not included in the study because of sampling errors.

At the sampling grid stations, zooplankton was collected at five fixed-depth strata (0-20, 20-40,

40-60, 60—100 and 100-200 m depth), with a multiple opening/closing MultiNet MiDi, 50 x 50 cm
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aperture (MultiNet Hydro-Bios Apparatebau), equipped with 5 nets of 200 um mesh size. The net,
programmed to open/close at the predefined depths, was towed obliquely, from 200 m depth or
from ~10 m above the bottom, at shallower stations. The tow speed was 2.5-3 knots, and the
retrieval rate of the net was 20 m per minute. The volume of water filtered in each stratum was
measured by an electronic flow meter located in the mouth of the net. Samples were immediately

preserved in a 5% solution of buffered formalin and seawater.

In the laboratory, all fish larvae were sorted from the samples and identified up to the lowest
taxonomic level possible. Larvae of the most abundant taxa (those with 220 larvae caught, both day
and night) were photographed with a Nikon Act-2u camera, and subsequently measured for
standard length using the Imagel 1.45s image analysis software (available at

http://rsb.info.nih.gov/). Larval lengths were not corrected for shrinkage (Theilacker 1980).

Zooplankton samples (fish larvae excluded) collected with the Multinet Midi were analyzed using
a semiautomated zooplankton counting and classification method. For each zooplankton sample, the
whole volume was measured and a subsample of 5 ml was taken and stained. The stained samples
were digitized using an EPSON V750 PRO scanner (VueScan Professional Edition 8.5.02 software)
generating an image resolution of 2400 dpi. After that, images were analyzed using Zoolmage free
software (licensed under GNU/GPL) to obtain mesozooplankton abundance and size (Bachiller &
Fernandes 2011, Bachiller et al. 2012). Each zooplankton individual was automatically counted and
measured. Mesozooplankton counts were standardized by the software to number of individuals per
m’. Detailed analyses of larval fish and zooplankton distribution and abundance from this survey are

found in Rodriguez et al. (2015a), and Rodriguez et al. (2015b).

Acoustic data
During the survey, acoustic backscattering was continuously recorded by an EK60 echo
sounder operating with 18, 38, 70, 120 and 200 kHz split-beam, hull-mounted transducers. A beam

width of 7° was common for all frequencies, except 18 kHz, with an 11° beam. A transmitted pulse
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length of 1.024 ms was employed in all frequencies. The acoustic system was calibrated before the
survey following the standard target method (Foote et al. 1987) with a 38.1 mm diameter tungsten-
carbide sphere positioned under the extended dropkeel.

The acoustic signals were analyzed and integrated by the postprocessing system Echoview
v4.20. The volume backscatter threshold (Sv, dBre 1 m™) was -75 dB. In order to analyze the
relationship between the volume scattering intensities with net catches, the sampling gear
trajectory was plotted in the echogram from depth data obtained with a Scanmar™ pressure sensor
attached to the MultiNet sampler. Real-time depth data registered by this sensor was transferred by
acoustic telemetry to hull-mounted hydrophones, allowing to monitor the net's path, and to send
the datagram via a LAN port to the ER-60 echo sounder. A specific software routine (‘El Gregoriano’,
developed at the Centre Oceanographic de les Balears by one of the authors, J. Miquel) was used to
represent the gear trajectory over the echograms in the postprocessing software. The datagrams
from the depth sensor towed behind the ship were thus matched to the echograms, with a file
structure compatible with the Echoview version used in this work. Finally, from the gear trajectory
line represented in the echograms, virtual parallel lines were generated by the Echoview software,
defining the areas employed for subsequent analysis (Fig. 2).

Before any processing of the echograms, background noise was removed using the Echoview
Data Generator Operator. This operator amplified the background noise at 1 m, i.e., the initial S,
value of noise, according to the formula of time-varied-gain (TVG):

(1) 20xlogxR+2x axR

where R is the depth (m) and a is the attenuation coefficient. To calculate the background
noise at 1 m, a region with exclusive background noise was integrated, and its average S, was
estimated. The TVG amplification was subtracted from the 20 log R echograms. During the survey,
the average of noise level at 1 m was: -122.9 + 3.9 (mean + SD), -128.2 + 4.9, -137.9+ 4.9, -140.7

5.2 and -141.1 + 4.6 dB at frequency of 18, 38, 70, 120 and 200 kHz, respectively.
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To analyze the spatial distribution of echo intensities at the five frequencies employed, echo
integration measurements in terms of the Nautical Area Scattering Coefficient (NASC in m*nmi?,
(MacLennan et al. 2002)) were determined during the scrutinizing process of the echograms (Foote
et al. 1991) over regions delimiting aggregations characterized as fish larvae. This characterization
was based on (i) the frequency response results from the acoustic-biological data relationships; (ii)
the output from the Andreeva model, both approaches described below; and (iii) the aggregation's
shape and vertical distribution. The NASC values were averaged at EDSU (Elementary Distance
Sampling Unit, (MacLennan et al. 2002)) of 1 nmi, and interpolated between sampling transect over
the study area and mapped with Surfer® (Golden Software, Inc.).

The comparative analysis of the horizontal distribution of fish larvae densities and acoustic
backscattering at the frequencies used was done considering only fish larvae with a functional
swimbladder. In order to estimate the density of larvae with developed swimbladders, 7 taxa with
swimbladders (Micromesistius poutassou, Merluccius merluccius, Trisopterus minutus, Maurolicus
muelleri, Sardina pilchardus, Trachurus trachurus and Callionymus spp.) were selected between the
nine most abundant taxa, which represent 72% of the total fish larval community. Only hauls where
the average length of larvae exceeded that of size of the initial development of the swimbladder
were included in the analysis. These sizes were taken from the literature whenever possible: M.
merluccius (Bjelland & Skiftesvik 2006), S. pilchardus (Ré 1986), M. muelleri (Ozawa 1976) and T.
trachurus (Russell 1976). In species for which no references were found, the minimum length was
taken as the mean of the length-range in the samples.

Variations in the vertical distribution patterns of larval aggregations were examined only at
38 and 70 kHz. In order to do so, the echograms obtained along the survey track were divided into
layers of 10 m depths, and also averaged over EDSU of 1 nmi. The depth of layers with maximum
mean S, at each averaging point provided a reference of the depth of the aggregation core during

day and night hours.
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In order to determine the relationship between biological and acoustic data, linear models
were fitted using R software (R Development Core Team 2014). Fish larvae abundances were log10-
transformed prior to analysis, to meet the assumptions of linear regression. The density of fish
larvae at each net/depth was compared with the S, extracted from echogram regions defined
following the opening-closing time at each level. Regions were extended four meters in height (2 m
above and 2 m below the net track).

For the most dominant species, M. poutassou, the size of gas-bearing fish larvae at
resonance was estimated following the methodology detailed by Alvarez-Colombo et al. (2011). It
was performed considering the acoustic resonance response of small bubbles at the frequency range
employed (Gjgsaeter 1977, Kloser et al. 2002, Davison et al. 2015). The size and depth at resonance
for the five frequencies employed during the survey were determined in two steps: first, the
Andreeva (1964) model was used to infer the size of resonant swimbladders, and then to estimate
the corresponding larvae lengths we used the swimbladder’s size to larval total length relationship
established for the Argentine hake (M. hubbsi) by Alvarez-Colombo et al. (2011), assuming a similar

development and inflation process on the initial life stages of these two gadiformes.

Results
Biological sampling

Larval density pooled for all fish species ranged from 8.26 to 14400.00 larvae -1000 m>. A
total of 62 taxa (59 species and 3 genera) of larvae of 28 families were caught. The most abundant
larval fish species were M. poutassou (accounting for 32.61% of the total larval fish density),
Scomber scombrus (19.48%), T. minutus (4.49%), S. pilchardus (3.98%) M. merluccius (3.55%), and T.
trachurus (2.69%). Larvae of M. poutassou and M. merluccius were widespread over the study area,
while larvae of S. pilchardus, S. scombrus, T. trachurus and T. minutus were restricted to the shelf
region (Fig. 3). Length frequency distribution of these species is shown in Fig. 4. Up to 78.7% of the

total larval fish concentration was found in the upper 60 m of the water column, and 92.5% in the
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upper 100 m. A more detailed description of the larval fish community composition and structure,
horizontal and vertical distribution and diel movements of fish larvae are found in Rodriguez et al.

(2015a) and Rodriguez et al. (2015b).

Spatial distribution

Zooplanktonic aggregations were detected along the sampling transects. They were
particularly intense at depths lower than 100 m, at frequencies of 38 and 70 kHz, being higher than
the acoustic threshold used during the survey (-75 kHz). The average S, detected at 18-200 kHz
ranged from -70.6 to -64.8 dB. The horizontal distribution of the densities of fish larvae with a
functional swimblader estimated from the multinet catches was compared with the acoustic
backscatter distribution at all frequencies analyzed. Density of fish larvae increased from south to
north (Fig. 5). The main aggregation of fish larvae occurred in the northernmost area, followed by a
relatively high larval fish density off A Corufia (see Fig. 1 for locations). Acoustic backscatter and
swimbladdered larval fish density showed similar distribution patterns for all frequencies (Fig. 5).
However, the best correspondences between acoustic sizes and the main larval fish agreggation was
found at 38 and 70 kHz (Fig. 5c,d), while less similarity was found considering the other three
frequencies, particularly at 120 and 200 kHz (Fig. 5b,e,f).

Daytime and nighttime vertical distribution of larval fish aggregations in 38 and 70 kHz
echograms did not appreciably differ, particularly at 70 kHz. At 38 kHz, the maximum S, values over
the surveyed area were found at depths ranging between 20 and 130 m during daylight, and
between 10 and 110 m depth at night (Fig. 6). However, S, was mostly confined between 20 and 70
m in coincidence with larval fish concentrations in net samples. A wider dispersion of the maximum
acoustic values through the water column during day, and a tendency to concentrate in the
shallower layers during the night, was also observed.

The depth-compensated noise levels for the frequency range used, estimated from the

average recorded noise levels at 1 m, reached the mean sacttering levels of the plankton layers at a

10
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minimum depth of 190 m for 200 kHz, and a maximum depth of 480 m for 38 kHz (190 and 290 m
depth for the threshold of -75 dB employed, respectively). Given that those depths are greater than
the maximum depth of the studied acoustic layers, the noise contribution to plankton-scattering
levels was considered negligible.

Relating biological sampling with acoustics

The scatterplots and linear relationships between the acoustic backscattered energy
(expressed as S,) and density of total fish larvae are shown in Fig. 7. There was a significant
relationship between S, and density of fish larvae at all frequencies (Table 1). The best fit was
obtained at 70 kHz (R?=0.577). The regression model, including fish larvae and zooplankton
abundances, reduced only slighlty the AIC and did not increase significantly the coefficients of
determination (Table 1), and actually the zooplankton contribution was not significant at all
frequencies (p>0.07).

To check that swimbladders of fish larvae produced the backscatter detected by the echo
sounder, we compared the S, values with the density of all fish species that develop swimmbladders
(Table 1). The regressions at each frequency yielded virtually the same results as in previous analyses
and, likewise, the zooplankton abundance was not significant. Since swimbladder inflates some time
after hatching, and most of the larvae collected were small (Fig. 4), we assessed the impact of larval
size on the relationship between S, values and the density of the most abundant species, M.
poutassou, which was also well distributed over the studied area. The linear fit improved at 38, 70
and 120 kHz when hauls with average larval length smaller than 3.0 mm were removed (Table 2).
Thus, excluding those hauls, the coefficient of determination at 70 and 120 kHz was 0.556 and 0.509,
respectively. When hauls with average larval length smaller than 3.5 mm were excluded, the
coefficient of determination at 38 KH was 0.428. A possible explanation may be that an inflated, i.e.,
functional swimbladder, can be disregarded in M. poutassou larve smaller than 3.0-3.5 mm. The
relationships slightly improved with increasing larval length at 200 kHz, whereas at 18 kHz, the linear

fit was not significant in any case.
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By contrast, the relationship between zooplankton (fish larvae excluded) density and
backscattering (in S,) was lower at all frequencies, not only for the total zooplankton but also for
most groups (Table 3). The best fit was found for chaetognats and polychaetes, which reached an R®
higher than 0.35 at 38 (in the case of chaetognats) and 70 kHz (in both groups).

iError! No se encuentra el origen de la referencia.For depths ranging 20-70 m, a resonance
is expected in 3—5 mm larvae of M. potassou at 70 kHz, and 5-8 mm at 38 kHz. Most of M. potassou
larvae caught with the plankton net fall into similar length-ranges and depths. However, at
frequencies of 120-200 kHz, resonance would be expected in larvae smaller than 3 mm, for which an
inflated swimbladder in M. pottasou was not considered. At the lowest frequency employed, 18 kHz,
the models predict resonance from larvae of 10 mm and larger, which were not found in this study.
In accordance, the 18 kHz echograms did not show significant echotraces in correspondence with
larval fish catches, likely because the survey was completed at the beginning of the spawning

season, supported by the fact that most of the larvae were in early posthatch stages.

Discussion
Potential use of acoustic techniques and limitations

This is the first acoustic study on the larval community in the Galician waters. In this paper,
we compare data of the abundance and size of fish larvae collected with conventional
ichthyoplankton methodology, with the results from an acoustic survey at five frequencies. Because
the acoustic backscattered energy is proportional to the number and/or size of swimbladders in fish
(or gas inclusions in zooplankton), we have compared fish and zooplankton densities instead of
comparing scatters with biomass of the individuals. The regression analyses revealed that the
acoustic response at the frequency range of 38-120 kHz were effective to detect larval fish
aggregations. However, the predicted acoustic resonance at larval size and depth show that the 120

kHz is unlikely in being effective to detect fish larvae, at least for M. poutassou in this study. This
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seems to be in accordance with the lack of agreement between the larvae abundance and the
acoustic response at this frequency observed in the spatial distribution.

There are a few examples of the use of acoustics to detect fish larvae aggregations at the
acoustic range employed for adult fish assessments. The importance of the 38 kHz frequency for
detecting M. hubbsi larval aggregations from echograms has been previously highlighted (Alvarez-
Colombo et al. (2011). Rudstam et al. (2002) found that the assessment of fish larvae smaller than 15
mm at 70 kHz was obscured due to the presence of invertebrate targets and noise. Our results
indicate that the contribution of zooplankton (other than fish larvae) to total scattering at 18-120
kHz range in the acoustic regions corresponding with the net path was negligible, except for several
groups of fluid-like zooplankton, such as chaetognats and polychaetes. Also, the contribution of
background noise was found to be low at the entire frequency range and depths analyzed.

The relationships between acoustic signals and M. poutassou larvae densities improved
considerably when the stations with smaller average larval length were removed from the analyses.
The best fits were found when considering sizes larger than 3.0-3.5 mm, possibly related to the
development of a functional swimbladder and the highest abundances at these sizes. This clearly
indicates that smaller larvae did not contribute significantly to the recorded acoustic echoes. On the
other hand, when considering hauls with an average size larger than 3.0-3.5 mm, the coefficients of
determination were lower. This was likely due to the low abundance at these sizes, and then the
residual noise or the contribution to total backscattering from other organisms may contribute more
to the acoustic signals.

The time, and hence larval size, of the swimbladder’s first inflation is species-specific. For
example, swimbladder formation in T. trachurus occurs at 4 mm standard length (Russell 1976), in E.
encrasicolus at 7 mm, and in S. pilchardus at 10 mm (Ré 1986). Thus, it is critical to study the
ontogeny of swimbladder inflation for the construction of backscattering models used to interpret
acoustic surveys (Davison 2011). Our results suggest that the development of a functional

swimbladder in M. poutassou occurs at a length of 3.0-3.5 mm standard length, slightly smaller than
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that observed for other Gadiformes, like M. hubbsi (Alvarez-Colombo et al. 2011) and M. merluccius
(Bjelland & Skiftesvik 2006).

As contrasting examples, while the detection and analysis of M. hubbsi larvae in the
Argentine shelf is carried out in a rather straightforward manner, given the low larval species
diversity and the enormous abundances of all larval stages of M. hubbsi during its reproductive
season (Alvarez-Colombo et al. 2011), in Galician waters, this constitutes a complex task because of
the relatively high diversity of the larval fish assemblage in this region. Nevertheless, the high
abundance of resonant fish larvae, particularly M. potassou, provided an opportunity to isolate and
map the spatial distribution of their aggregations over the entire survey.

The scrutinizing process employed to interpret the survey datasets implies the fact that the
user, not the system, makes all the important decisions in the course of interpreting the data, as
denoted by (Foote et al. 1991). This methodology is inherently subjective, as this involves making
decisions about the nature of scatterers from an underdimensioned graphical representation, and
based on the operator experience (Foote et al. 1991, Godg et al. 2004). However, auxiliary data
provided by the postprocessing software (TS distribution, NASC relative frequency response) and
others features contribute to the interpretation criterion.

Although the MultiNet MiDi allows to study the vertical distribution of fish larvae (Rodriguez
et al. 2015b), some degree of avoidance of this sampler from the larger fraction of the actual larvae
length range is normally assumed. However, the survey was completed at the beginning of the
spawning season, with most of the caught larvae being in early posthatch stages. Consequently,
most larvae caught in this study were early larvae with little ability to avoid the net. Also, our models
predicted a resonance from larvae of 10 mm and larger at the frequency of 18 kHz, but the related
echograms did not show significant echo traces in correspondence with larval fish catches. This
suggests that larvae of these sizes were not present in the study area at the time of the sampling.

In environments characterized by multispecific assemblages of acoustic targets, detecting

and isolating the different acoustic signals requires advanced multifrequency acoustic techniques,

14



348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

allowing for the classification of echotraces and scattering layers into species, or species groups,
with distinct scattering properties (Korneliussen & Ona 2002, Korneliussen & Ona 2003). The
contribution of acoustic targets, other than fish larvae, to the total scattering recorded at the
different frequencies employed has not been accomplished in this preliminary study, focused on the
detection of resonant fish larvae at a frequency range where the contribution of other zooplankton
taxa was negligible. However, multifrequency acoustic techniques should be included in future
research to study in detail the complexity of the zooplankton community structure in Galician
waters.

This study emphasizes the opportunity for the use of echo-sounding data obtained at
frequencies routinely used during research cruises, and also during vessels of opportunity
operations, which could extend the spatial and temporal coverage of acoustic data collection beyond
those of research vessel programs (Dalen & Karp 2007). Also, the acoustic characterization of fish
larvae aggregations at narrow band, commonly employed frequencies provide an available
methodology for the study of trends in the distribution and relative abundance of this group in

existent acoustic databases.

Implications of the results in recruitment and fisheries management

The poorly defined stock-recruitment relationship is a cornerstone of fisheries assessment
and management via projected stock development, and is inherently found in biological reference
points (Saborido-Rey & Trippel 2013). The understanding of recruitment variability has been
improved in recent decades through the concept of stock reproductive potential (Trippel 1999,
Saborido-Rey & Trippel 2013) intimately linked to larval survivorship, through the parental effects on
larval viability (Kamler 2005, Green 2008). Field applications of these results have been prevented by
the inherent difficulty in getting proper data on larval distribution and abundance, to conduct
correlation analysis (Lo et al. 2009). Yet, recruitment in fish populations is largely determined during

the early life-history stages by a combination of factors operating over multiple spatiotemporal
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scales, such as predation, starvation, and spatial mismatch with appropriate areas (Leggett & Deblois
1994, Subbey et al. 2014, and references therein). Despite some advances, it remains difficult to
obtain accurate and precise estimates of abundance of early life stages of fishes, their predators,
and prey, at the spatial scales over which they interact (Houde 2009).

With the potential of the acoustic methodology, improved studies can be conducted to test
with highest confidence the enduring theories and hypothesis on recruitment fluctuations (reviewed
by Houde (2009) and Hare (2014)), and, in particular (i) to observe the density-dependent
interactions between fish larvae and their predators and prey; (ii) to determine the drivers and
factors affecting movement and distributional patterns of fish larvae; (iii) building and assessing
quantitative drift models, pairing with the high-resolution ocean circulation models developed in
past decades (Staaterman & Paris 2014); (iv) to understand the underlying processes determining
the timing and duration of the recruitment interval, which is critical to assess the impact of specific
mortality; (v) to study habitat selection and, consequently, a better estimation of recruitment at the
stage of presettlement and, finally (vi) to estimate the spawning biomass using the larval production
method, especially when fish eggs are not available or accessible, or they are difficult to identify (Lo
et al. 2009).

In summary, this study shows that larval aggregations in Galician waters can be detected and
quantified with a relative abundance index derived from acoustic methods. Abundance of
swimbladder larval fish estimated with acoustics was comparable, and correlated with that obtained
with conventional sampling methods, particularly at 38 and 70 kHz. Thus, in this period of
technological advances, acoustics point to being a useful tool to overcome difficulties associated

with larval ecology and fish recruitment.
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552  Tables
553  Table 1. GLM results (Akaike information criteria and coefficient of determination) comparing
554 models for testing the relationship between the acoustic backscatter (S,) and all fish larvae
555  abundance (FISH), abundance of fish larvae with functional swimbladder (SWFISH), and zooplankton
556 other than fish larvae (ZO0O), for each of the frequencies analyzed. p-value <0.001 for all cases.
Frequency
18 kHz 38 kHz 70 kHz 120 kHz 200 kHz
Model AIC R? AIC R? AIC R? AIC R? AIC R?
S,~FISH 1893 0.130 1878 0.489 1788 0.577 1724 0.463 1814 0.342
S,~FISH+Z00O 1861 0.132 1845 0.489 1755 0.577 1691 0473 1773 0.362
S,~SWFISH 1697 0.067 1660 0.381 1567 0.515 1520 0.410 1574 0.291
S,"SWFISH+ZO0O 1668 0.083 1624 0.398 1532 0.527 1492 0.428 1540 0.331
557
558  Table 2. Coefficients of determination (adjusted R?) and p-values from the scatterplots of acoustic
559  backscatter (in S,) versus Micromesistius poutassou larvae abundance (log10-transformed)
560 estimated by Multinet Midi trawl. The inclusion or exclusion of the different hauls in these lineal
561 regression analyses was based on the average larval lengths of M. poutassou for each haul.
Frequency
Micromessistius 18 kHz 38 kHz 70 kHz 120 kHz 200 kHz
poutassou R’ p-value R p-value R p-value R’ p-value R’ p-value
Total larvae 0.003 0.245 0.223 <0.001 0.407 <0.001 0.349 <0.001 0.227 <0.001
Larvae 22.0mm  0.002 0.275 0.207 <0.001 0.397 <0.001 0.345 <0.001 0.232  <0.001
Larvae 2 2.5 mm 0.003 0.257 0.295 <0.001 0.495 <0.001 0.464 <0.001 0.333 <0.001
Larvae23.0mm  0.016 0.123 0.409 <0.001 0.526 <0.001 0.503  <0.001 0.314 <0.001
Larvae23.5mm  -0.003  0.378 0.428 <0.001 0.440 <0.001 0.414 <0.001 0.251 <0.001
Larvae 24.0mm  -0.020  0.945 0.352 <0.001 0.315 <0.001 0.260 <0.001 0.211  <0.001
Larvae 2 4.5mm -0.021 0.609 0.379 <0.001 0.349 <0.001 0.284 <0.001 0.321 <0.001
562
563  Table 3. Coefficients of determination (adjusted R?) and p-values from the scatterplots of acoustic
564  backscatter (in S,) versus zooplankton (fish larvae excluded) abundance (log10-transformed), and the
565 abundance of the different groups of zooplankton individually analyzed. Abundances were
566 estimated from Multinet Midi trawl.
Frequency
18 kHz 38 kHz 70 kHz 120 kHz 200 kHz
R’ p-value R? p-value R’ p-value R’ p-value R? p-value
Total zooplankton 0.050 <0.001 0.194 <0.001 0.171 <0.001 0.132  <0.001 0.119  <0.001
Copepods 0.023  <0.01 0.141 <0.001 0.117 <0.001 0.091 <0.001 0.079  <0.001
Other crustaceans 0.064 <0.001 0.209 <0.001 0.221 <0.001 0.167 <0.001 0.141 <0.001
Cnidarids -0.003 0.386 0.008  0.206 0.010 0.190 -0.012 0.712 -0.003 0.385
Moluscs 0.114  <0.001 0.249 <0.001 0.218 <0.001 0.170 <0.001 0.169 <0.001
Chaetognats 0.058 <0.001 0.375 <0.001 0.359 <0.001 0.273  <0.001 0.243  <0.001
Tunicates 0.044  <0.001 0.214 <0.001 0.223 <0.001 0.151  <0.001 0.099  <0.001
Polichaetes 0.032 0213 0.215  <0.05 0.350 <0.01 0.095 0.115 0.014 0274
Eggs 0.037 <0.01 0.100 <0.001 0.078 <0.001 0.043 <0.001 0.045 <0.001
567
568
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Fig. 1. Map of the Galician shelf (NW Iberian Peninsula). The sampling stations are represented by

red points, outlining a total of 15 transects.
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Fig. 2. Echogram (after noise removal) at four frequencies (18, 38, 70 and 120 KHz) recorded on 7

March 2012. The gear trajectory and the two parallel virtual lines (which delimited the analysis area)
are represented by turquoise lines. The scale on the right indicates the volume backscattering

strength (dB) in the echogram.
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m) of the six most abundant species collected by the MultiNet MiDi during the cruise.
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Fig. 5. Distribution maps of (a) larval fish density (in number of individuals - 1000 m™) estimated for
the whole survey (considering only larvae with functional swimbladders), (b) acoustic backscatter
(NASC; m% nmile™) at 18 kHz, (c) acoustic backscatter (NASC; m* nmile™) at 38 kHz, (d) acoustic
backscatter (NASC; m* nmile™) at 70 kHz, (e) acoustic backscatter (NASC; m? nmile™) at 120 kHz,

and (f) acoustic backscatter (NASC; m*- nmile™) at 200 kHz.
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Fig. 6. Frequency of occurrence (expressed in percentage) of maximum acoustic backscattering

(measured as S,) registered during the survey in each 10 meters depth for (a) day and (b) night.
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596

597 Fig. 7. Scatterplot of S, versus larval fish abundance (log10-transformed) estimated from the pelagic

598  trawls (a) at 18 kHz, (b) at 38 kHz, (c) at 70 kHz, (d) at 120 kHz and (e) at 200 kHz.
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