	Score	\%	
	33	55.0	
	32	53.3	
ACS Standard	32	53.3	
Physical Chem	32	53.3	
Exam Taken	31	51.7	
Tuesday by	29	48.3	
21 students	28	46.7	
	28	46.7	
	27	45.0	
	27	45.0	
	26	43.3	
	25	41.7	
	24	40.0	
	23	38.3	
	22	36.7	
	21	35.0	
	19	31.7	
	19	31.7	
	18	30.0	
	16	26.7	
	16	26.7	
	Average	25.1	41.9 \%
	Last Year		38.6\%
	Nat. Avg.		52 \%

CHMY 361 How to estimate your final grade Handout

December 7, 2017
Total points = 700; Homework is worth 100; midterms = 100 each, and final =200
The total possible homework points $=150$, so:
Total \% = (total HW/150 * $100+$ total exam points)/700 (after including your Final)
Last year's letter grades were typical, but could be slightly different this year. T
Total \% Grade (Estimate)
90-100 A
86-89 A-
80-85 B+
75-80 B
70-74 B-
68-70 C+
63-67 C
60-62 C-
50-59 D

20 pts) 1. State the 3 Laws of Thermodynamics in words and with a commonly used equation; indicate in a few words the importance of each. Define all symbols used.
, st Energy of the universe is conserved $\Delta U=q+w$
and Entropy of the universe increases for day natural process

$$
\begin{aligned}
& \Delta S+\Delta S_{\text {Bur }} \geq 0 \\
& =\text { only for equilibrium }
\end{aligned}
$$

$3^{r d}$ Entropy of a perfect crystal at 0 Kelvin $=0$

$$
S=k_{B} \ln W
$$

A little quiz

System = insulated room with weight lifter Surr.

Weight lifter works out and the room heats up from $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$

Are $\Delta \mathrm{U}, \mathrm{q}, \mathrm{w}$ positive, zero, or negative?

Always True	Conditional
$\Delta U=Q+w$	Adiabatic: $\mathrm{q}=0 ; \Delta \mathrm{U}=\mathrm{w}$; Constant V: $\quad \Delta U=\int_{T_{1}}^{T_{2}} C_{\mathrm{V}} d T$ $\Delta U=C_{v}\left(T_{2}-T_{1}\right)$ if C_{v} constant For ideal gas the above is always true (even if volume changes)
$\begin{aligned} & H=U+P V \\ & \Delta H=\Delta U+P_{2} V_{2}-P_{1} V_{1} \end{aligned}$	For $\mathrm{P}=$ Pext = constant and PV work only: $\begin{aligned} \Delta \mathrm{H} & =\mathrm{q}=\Delta H=\int_{T 1}^{T 2} C_{p} d T \\ \Delta H & =\mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \text { if } \mathrm{C}_{\mathrm{p}} \text { constant } \end{aligned}$ For ideal gas the above is always true (even if pressure changes)
$\begin{aligned} & \mathrm{dw} \mathrm{w}_{\mathrm{pv}}=-\mathbf{P}_{\mathbf{e x t}} \mathbf{d V} \\ & \mathrm{w}_{\mathrm{pv}}=-\int_{V_{1}}^{V_{2}} \mathbf{P}_{\mathrm{ext}} \mathbf{d V} \end{aligned}$	for $\mathrm{P}_{\text {ext }}$ constant: $\mathrm{w}_{\mathrm{pv}}=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$; if isothermal reversible and ideal gas: $\mathrm{w}_{\mathrm{pv}}=-\int_{\mathrm{V}_{1}}^{V_{2}} \mathbf{P d V}=-n R T \ln \frac{V_{2}}{V_{1}}$ Solids and Liquids (volume changes are very small) $C p \cong C v \text { and } \Delta H \cong \Delta U$

*Some useful state functions are DEFINED from other state functions. We are immediately concerned with enthalpy $\equiv \mathrm{H}=\mathrm{U}+\mathrm{PV}$ (by definition)

Because $\Delta H=q$ (if $P=P_{\text {ext }}=$ constant and there is only $P V$ work) This is a common condition

because $\Delta \mathrm{G}=-\mathrm{T} \Delta \mathrm{S}_{\text {univ }}$
(if T , and P constant and the process is doing only obligatory pV work)
and $\Delta \mathrm{G}=$ maximum useful (non-PV work) the system can deliver. (important in life processes), called $\mathbf{W}_{\text {other }}$ in this book.

Reversible Isothermal PV work (ideal gas)

 $p_{\text {ext }}=p=n R T / V \quad$ (balanced forces)An integral is just a
$\underset{W}{\text { Sum }}=-\int_{V_{1}}^{V_{2}} p_{\text {ext }} d V=-\int_{V_{1}}^{V_{2}} p d V=-\int_{V_{1}}^{V_{2}} \frac{n R T}{V} d V$
$w=-n R T \int_{V_{1}}^{V_{2}} \frac{d V}{V}=-n R T \ln \frac{V_{2}}{V_{1}}$

Sum of fractional changes

= natural logarithm
ONLY if $p=p_{\text {ext }}=$ and ideal gas (but is common case)
What are $\Delta \mathrm{U}$ and q ?
$\Delta U=0$ (isothermal, ideal gas), therefore $q=-w$

CHAPTER 2: THE SECOND LA WW ${ }^{-0.7-1} \begin{gathered}361 \mathrm{Lec} 9 \\ \text { Tue 14sep10 }\end{gathered}$
CONCEPTS:

- Entropy, Sj is a measure of DISORDer
- In an isolated system ENTROPY INCREASES until EQUILIBRIUM IS REACHED
- Rna Law:

$$
\begin{aligned}
\underbrace{\Delta S+\Delta S_{\text {SUR B }}}_{\text {UNIVERSE }}>0 & \begin{array}{c}
\begin{array}{c}
\text { for actual process } \\
\text { (Spontaneous) }
\end{array} \\
\Delta S+\Delta S_{\text {SUMP }}=0 \\
\text { for a REVEIBLE } \\
\text { PRocess } \\
\\
\text { (Equilibrium })
\end{array}
\end{aligned}
$$

\& Calculate $\Delta S+\Delta S_{\text {surv }}<0$ THEN THE Process is Impossible

$$
\begin{aligned}
& d S=\frac{d q_{\text {reversible }}^{T}}{T} \text { (constant } T \text {) } \\
& \Delta S=\frac{q_{\text {rev }}}{T} \text { (c) }
\end{aligned}
$$

$$
E_{\text {eFFicIENCY }}=\frac{T_{H}-T_{C}}{T_{H}}
$$

TRUE for ALL Heat engines regardless of design \& materials
Reason: A more efficient engine could Drive the reversible one in reverse, ie., heat would SPONTANEOUSLY FLOW FROM COLD \rightarrow HOT !
this has never been seen to happen
That would be a violation of the Zeroth Law of Thermodynamics:
The "People's Law" . All people who ever lived are the scientists who established this "Law".

Old Exam question

$$
\text { 06:11-4 oz: } 11-1
$$

$$
\begin{aligned}
& \text { OZ: } 11-1 \\
& \text { of: } 8-5
\end{aligned}
$$

State $A \rightarrow$ state B isothermal

$$
T=400 \mathrm{~K}
$$

Path 1 irreversible $q=12000 \mathrm{~J}$
Path reversible $q=8000 \mathrm{~J}$
a) What is ΔS for path 1? ? $8000 / 400=20$
b) What is ΔS for path z ? $\quad 8000 / 400=20$
c) What is $\Delta S_{\text {surv }}$ for path 1? $\quad-12000 / 400=-30$
d) What is $\Delta S_{\text {sur }}$ for path 2 ? $-8000 / 400=-20$
e) What is $\Delta S_{\text {universe for path } 1} \frac{20-30=-10}{\text { (Is this path possible?) }} \frac{\mathrm{NOOO}}{0}$
(Is
f) $\Delta S_{\text {univ }}$ for path 2 ?

MoLecular interpretation

$$
\begin{aligned}
S=k \ln N \quad K & =\text { Boltzmann ConstanT } \\
& =\frac{R}{6 \times 10^{23}}=\frac{R}{N_{a v o}} .
\end{aligned}
$$

$N=$ \# of microstates available to system

* microstate $=$ position ξ_{i} velocity vector for each atom
SINGLE MOLECULE:
N is proportional to Volume only
(20 pts) 9. From Table A.5, calculate $\Delta \mathrm{S}_{\mathrm{f}}^{0}$ of $\mathrm{CO}_{2}(\mathrm{~g})$.

$$
\begin{aligned}
\Delta S_{f}^{0}= & \Delta S^{0} \text { for } C_{(\text {gr })}+O_{2}(9) \rightarrow \Delta D_{2} s \\
& =S^{0} C_{O_{2}}-S_{C(g r)}^{0}-S_{\mathrm{O}_{2}}^{0} \\
& =213.74-5.74-205.138=+2.862 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

$$
\begin{aligned}
\begin{array}{l}
\text { (b) reversible: }
\end{array} & =-n R T \ln \frac{V_{2}}{V_{1}}=-3\left(8.3145 \mathrm{Jmol}^{-1} \mathrm{k}\right)(300 \mathrm{k}) \ln \frac{25}{15}+382 \mathrm{~J} \mathrm{~J} \\
& =-382.3 \mathrm{~J} \\
\Delta S & =\frac{\mathrm{w}-3823 \mathrm{Jev}}{T}=\frac{3823}{300}+12.74
\end{aligned}
$$

(c) Do your results indicate that the process is spontaneous for the path in (a)? Explain.

Yes; $\Delta s+\Delta s_{\text {surf }}>0 \because$ spontaneous by $2^{\text {nd }}$ Law.

At constant T and P, the Gibbs Free Energy is king.

Definition: $\quad G=H-T S$

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\Delta \text { (TS) } \quad \text { always true }
$$

But, most useful for constant T and $P=P_{\text {ext }}=$ constant so that: $\Delta(\mathrm{PV})=\mathrm{P} \Delta \mathrm{V}$ and $\Delta(\mathrm{TS})=\mathrm{T} \Delta \mathrm{S}$; then
$\Delta G=\Delta U+p \Delta V-T \Delta S=q-P_{\text {ext }} \Delta V+w_{\text {useful }}+p \Delta V-T \Delta S$
but, $\Delta S_{\text {surr }}=-q / T \quad$ so $q=-T \Delta S_{\text {surr }}$
$\Delta G=-T\left(\Delta S+\Delta S_{\text {surr }}\right)+\mathbf{w}_{\text {useful }}$

$$
\left(w=-p_{\text {exx }} \Delta V+w_{\text {usefut }}\right)
$$

$\Delta G=-T \Delta S_{\text {univ }}+w_{\text {useful }}$ if T and p constant
$\Delta G=-T \Delta S_{\text {univ }}+w^{*}$ if T and P constant
Two limits most often used:

1. If $w_{\text {useful }}=0---\Delta \Delta=-T \Delta S_{\text {univ }}$
so a negative ΔG means spontaneous process (because
$\Delta S_{\text {univ }}$ is positive) i.e, what you already know and use, but what is NOT always true if useful work is involved
2. Reversible: $\quad--->\Delta G=W_{\text {useful }}$ (reversible) here, $\mathbf{w}_{\text {useful }}(\mathrm{rev})$ is the most negative possible w (meaning most work system can do, or least work done on the system to force a non-spontaneous process to proceed backwards.) i.e., even if ΔG is negative, the process will not be spontaneous if $w_{\text {useful }}$ is equal to, or more positive than ΔG
$(20 \mathrm{pts})$

20 pts) 1. (12 pts) If an isothermal, constant volume spontaneous process clearly creates a final state that is more ordered than the initial state, and if $\mathrm{P}=\mathrm{Pext}=$ constant, and there is PV work only, tell whether the following are positive, 0 , or negative. Indicate your reasoning very briefly.
q \qquad w \qquad $\Delta \mathrm{E}$ \qquad $\Delta \mathrm{H}$ \qquad $\Delta \mathrm{S}$ \qquad $\Delta \mathrm{G}$ \qquad
$\Delta G \leqslant 0$ spontaneous. $\Delta G=\Delta H-T \Delta S$
$\Delta S<0$ ordering.

$$
\begin{array}{ll}
w=0 \quad \Delta v=0 \\
\Delta E=q+w & \quad w=-p_{0 x} \Delta V
\end{array}
$$

($\mathbf{1 5} \mathrm{pts}$) 3. Supercooled (much below freezing point) water suddenly turns to ice in an isolated chamber at constant pressure, and eventually comes to equilibrium. Tell whether the following are positive, zero, or negative. Give a brief justification for each of your answers. If it is not possible to unequivocally know the answer for any of these, indicate this and say why.

$q, w, \Delta U=0$ became isolated
$\Delta T=+$ exothermic \sum_{i}^{i} isolated.
$\Delta S=\Delta S_{\text {UNiV }}=+$ it happened and isolated
$\Delta S_{\text {Sufi }}=0 \quad$ isolated
$\Delta H=\Delta U+\Delta(P V)=0+$ what you assume for $\Delta P V$
$\Delta G=\Delta H-T \Delta S=$? if you make no assumption about
$\triangle P V$ or if $\triangle P V=$ neg.
$=$ negative if you assume $\triangle P V=0$

	$\begin{aligned} & \Delta H_{f}^{0}=\bar{H}^{0} \\ & \mathbf{(k J \mathrm { mol } ^ { - 1 })} \end{aligned}$	$\begin{gathered} \bar{S}^{0} \\ \left(\mathbf{J} \mathbf{K}^{-1} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{aligned} & \Delta G_{f}^{0}=\bar{G}^{0} \\ & (\mathbf{k J ~ m o l} \end{aligned}$
$\mathrm{Ag}(\mathrm{s})$	0	42.55	0
$\mathrm{Ag}^{+}(a q)^{+}$	105.579	72.68	77.107
$\mathrm{AgCl}(\mathrm{s})$	-127.068	96.2	- 109.789
C(g)	716.682	158.096	671.257
C(s, graphite)	0 •	5.740	0
$\mathrm{C}(\mathrm{s}$, diamond)	1.895	2.377	2.900
Ca (s)	0	41.42	0
$\mathrm{CaCO}_{3}(5$, calcite)	-1206.92	92.9	-1128.79
$\mathrm{Cl}_{2}(\mathrm{~g})$	0	223.066	0
$\mathrm{Cl}^{-}(a q)$	-167.159	56.5	-131.228
$\mathrm{CO}(\mathrm{g})$	-110.525	197.674	-137.168
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.509	213.74	-394.359
$\mathrm{CO}_{2}(\mathrm{aq})$	-413.80	117.6	-385.98
$\mathrm{HCO}_{3}^{-}(\mathrm{aq})$	-691.99	91.2	-586.77
$\mathrm{CO}_{3}^{2-}(a q)$	-677.14	-56.9	-527.81
$\mathrm{Fe}(\mathrm{s})$	0	27.28	0
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-824.2	87.40	-742.2
$\mathrm{H}_{2}(\mathrm{~g})$	0	130.684	0
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.818	188.825	-228.572
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.830	69.91	-237.129
$\mathrm{H}^{+}(a q)$	0	0	0
$\mathrm{OH}^{-}(a q)$	-229.994	-10.75	-157.244
$\mathrm{H}_{2} \mathrm{O}_{2}(a q)$	-191.17	143.9	-134.03
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.63	205.79	-33.56
$\mathrm{N}_{2}(\mathrm{~g})$	0	191.61	0
$\mathrm{NH}_{3}(\mathrm{~g})$	-46.11	192.45	-16.45
$\mathrm{NH}_{3}(\mathrm{aq})$	-80.29	111.3	-26.50
$\mathrm{NH}_{4}^{+}(a q)$	-132.51	113.4	-79.31
$\mathrm{NO}(\mathrm{g})$	90.25	210.761	86.55
$\mathrm{NO}_{2}(\mathrm{~g})$	33.18	240.06	51.31
$\mathrm{NO}_{3}(a q)$	-205.0	146.4	-108.74
$\mathrm{Na}^{+}(a q)$	-240.12	59.0	-261.905
$\mathrm{NaCl}(\mathrm{s})$	-411.153	72.13	-384.138
$\mathrm{NaCl}(a q)$	-407.27	115.5	-393.133
$\mathrm{NaOH}(\mathrm{s})$	-425.609	64.455	-379.494
$\mathrm{O}_{2}(\mathrm{~g})$	0	205.138	0
$\mathrm{O}_{3}(\mathrm{~g})$	142.7	238.93	163.2
S(rhombic)	0	31.80	0
$\mathrm{SO}_{2}(\mathrm{~g})$	-296.830	248.22	-300.194
$\mathrm{SO}_{3}(\mathrm{~g})$	-395.72	256.76	-371.06

