ACS Standard Physical Chem Exam Taken Tuesday by 21 students

Score	%		
33	55.0		
32	53.3		
32	53.3		
32	53.3		
31	51.7		
29	48.3		
28	46.7		
28	46.7		
27	45.0		
27	45.0		
26	43.3		
25	41.7		
24	40.0		
23	38.3		
22	36.7		
21	35.0		
19	31.7		
19	31.7		
18	30.0		
16	26.7		
16	26.7		
Average	25.1	41.9	%
Last Year		38.6	%
Nat. Avg.		52	%

CHMY 361 How to *estimate* your final grade Handout

December 7, 2017 Total points = 700; Homework is worth 100; midterms = 100 each, and final =200 **The total possible homework points =150**, so: Total % = (total HW/150 * 100 + total exam points)/700 (after including your Final)

Last year's letter grades were typical, but could be slightly different this year. T

Total %	Grade (Estimate)
90-100	A
86-89	A-
80-85	B+
75-80	В
70-74	В-
68-70	C+
63-67	С
60-62	C-
50-59	D

20 pts) 1. State the 3 Laws of Thermodynamics in words and with a commonly used equation; indicate in a few words the importance of each. Define all symbols used. 1st Energy of the Universe is Conserved $\Delta U = g + w$ 2nd Entropy of the Universe increases for any natural process $\Delta S + \Delta S_{surr} \ge 0$ = only for equilibrium3rd Entropy of a perfect crystal at 0 Kelvin = 0 $S = K_{sl} ln W$

<u>A little quiz</u>

System = **insulated** room with weight lifter

Weight lifter works out and the room heats up from 20° C to 25° C

Are ΔU , q, w positive, zero, or negative?

Always True	Conditional			
$\Delta U = q + w$	Adiabatic: q = 0 ; $\Delta U = w$; Constant V: $\Delta U = \int_{T_1}^{T_2} C_V dT$			
	$\Delta U = C_v (T_2 - T_1)$ if C_v constant For ideal gas the above is always true (even if volume changes)			
H = U + PV $\Delta H = \Delta U + P_2V_2 - P_1V_1$	For P=Pext = constant and PV work only: $\Delta H = \mathbf{q} = \Delta H = \int_{T1}^{T2} C_p dT$			
	$\Delta H = C_P (T_2 - T_1)$ if C_P constant For ideal gas the above is always true (even if pressure changes)			
$\mathbf{dw}_{pv} = -\mathbf{P}_{ext}\mathbf{dV}$ $\mathbf{w}_{pv} = -\int_{V_1}^{V_2} \mathbf{P}_{ext}\mathbf{dV}$	for P_{ext} constant: $w_{pv} = -P_{ext} (V_2 - V_1)$; if isothermal reversible and ideal gas: $w_{pv} = -\int_{V_1}^{V_2} P dV = -nRT \ln \frac{V_2}{V_1}$ <u>Solids and Liquids</u> (volume changes are very small) $Cp \cong Cv$ and $\Delta H \cong \Delta U$			

*Some useful state functions are <u>DEFINED</u> from other state functions. We are immediately concerned with enthalpy = H = U + PV (by definition)

Why?

Because $\Delta H = q$ (if $P = P_{ext} = constant$ and there is only PV work) This is a common condition Entropy Gibbs Free Energy = G = H - TS (by definition)

because $\Delta G = -T\Delta S_{univ}$ (if T, and P constant and the process is doing only obligatory pV work)

and $\Delta G = maximum useful (non-PV work)$ the system can <u>deliver</u>. (important in life processes), called W_{other} in this book.

<u>Reversible Isothermal PV work (ideal gas)</u>

 $p_{ext} = p = nRT/V$ (balanced forces)

An integral is just a

$$\int_{W}^{V_{2}} V_{2} p_{ext} dV = -\int_{V_{1}}^{V_{2}} p dV = -\int_{V_{1}}^{V_{2}} \frac{nRT}{V} dV$$
$$w = -nRT \int_{V_{1}}^{V_{2}} \frac{dV}{V} = -nRT \ln \frac{V_{2}}{V_{1}}$$
$$\int_{V_{1}}^{V_{2}} \frac{dV}{V} = -nRT \ln \frac{V_{2}}{V_{1}}$$
Sum of fractional changes
= natural logarithm

ONLY if $p = p_{ext}$ = and ideal gas (but is common case) What are ΔU and q?

 $\Delta U = 0$ (isothermal, ideal gas), therefore q = -w

361 Lec 9 CHAPTER 2: THE SECOND LAW Tue 14sep10 CONCEPTS: · ENTROPY, S, is a measure of DISORDER · In an isolated system ENTROPY INCREASES Until EQUILIBRIUM IS REACHED · 2nd LAW: AS+AS SURR > O For actual process (INIVERSE (Spontaneous) UNIVERSE 15+ ASSURT = O For 2 REVESIBLE PROCESS (Equilibrium) & Calculate AS+ASsurr 2 O THEN THE PROCESS IS IMPOSSIBLE d5 = dBreversible AS = Brev (Constant T)

8

That would be a violation of the Zeroth Law of Thermodynamics:

The "People's Law". All people who ever lived are the scientists who established this "Law".

(20 pts) 9. From Table A.5, calculate ΔS_f^0 of $CO_2(g)$.

$$\Delta S_{f}^{\circ} = \Delta S^{\circ} \text{ for } C_{(qr)} + O_{2}(q) \longrightarrow C_{0} J_{2}(q)$$

$$= S^{\circ} C_{02} - S^{\circ} C_{(qr)} - S^{\circ} O_{2}$$

$$= 213.74 - 5.74 - 205.138 = (+2.862 J/k)$$

•

(c) Do your results indicate that the process is spontaneous for the path in (a)? Explain.

ŕ

361 Lec 12 Mon 20sep10

At constant T and P, the Gibbs Free Energy is king.

Definition: **G** = **H**-**TS**

 $\Delta G = \Delta H - \Delta (TS) \quad always true$ But, most useful for constant T and P=P_{ext} = constant so that: $\Delta (PV) = P \Delta V$ and $\Delta (TS) = T \Delta S$; then non-PV ("other") work

$$\Delta G = \Delta U + p\Delta V - T\Delta S = q - P_{ext}\Delta V + w_{useful} + p\Delta V - T\Delta S$$

but, $\Delta S_{surr} = -q/T$ so $q = -T \Delta S_{surr}$

 $\Delta \mathbf{G} = -\mathbf{T}(\Delta \mathbf{S} + \Delta \mathbf{S}_{surr}) + \mathbf{W}_{useful} \qquad (w = -\mathbf{p}_{ext}\Delta V + w_{useful})$

 $\Delta G = -T\Delta S_{univ} + W_{useful}$ if T and p constant

 $\Delta \mathbf{G} = -\mathbf{T} \Delta \mathbf{S}_{univ} + \mathbf{W}^*$ if T and P constant

Two limits most often used:

1. If $w_{useful} = 0 \longrightarrow \Delta G = -T \Delta S_{univ}$

so a negative ΔG means spontaneous process (because ΔS_{univ} is positive) i.e, what you already know and use, but what is <u>NOT</u> always true if <u>useful</u> work is involved

2. Reversible: $----> \Delta G = w_{useful}$ (reversible) here, w_{useful} (rev) is the <u>most negative</u> possible w (meaning most work system can do, or <u>least</u> work done on the system to force a non-spontaneous process to proceed backwards.) i.e., even if ΔG is negative, the process will not be spontaneous if w_{useful} is equal to, or more positive than ΔG

20 pts) 1. (12 pts) If an isothermal, constant volume spontaneous process clearly creates a final state that is more ordered than the initial state, and if P = Pext = constant, and there is PV work only, tell whether the following are positive, 0, or negative. Indicate your reasoning very briefly.

$$q - w \circ \Delta E - \Delta H - \Delta S - \Delta G - \Delta G$$

 $\Delta G \leq 0$ spontaneous. $\Delta G = \Delta H - TAS$
 $\Delta S < 0$ ordering.
 $w = 0$ $\Delta V = 0$ $w = -Pex \Delta V$
 $\Delta E = q + w = -$
 v_0

SH=q

Supercooled (much below freezing point) water suddenly turns to ice in an *isolated* (15 pts) 3. chamber at constant pressure, and eventually comes to equilibrium. Tell whether the following are positive, zero, or negative. Give a brief justification for each of your answers. If it is not possible to unequivocally know the answer for any of these, indicate this and say why. $q \ O \ W \ O \ \Delta T + \Delta U \ O \ \Delta H \ C \ \Delta S + \Delta G \ C \ \Delta S_{surr} \ O \ \Delta S_{univ} + C$ 9, W, AU = O because isolated AT=+ exothermic & isolated. AS = ASUNIV = + it happened and isolated 1550FF = 0 isolated is you assume for APV AIH = AU+ N(PV) = 0 + what you assume for APV △G= △H-TAS = ? if you make no assumption about △Pr or if △Pr = neg. = negative if yoy assume DPV=0

			TABLE A.5 Inorganic Compounds*			
				$\Delta H_f^0 = \overline{H}^0$ (kJ mol ⁻¹)	<u></u> ∫ J K ⁻¹ mol ⁻¹)	$\Delta G_f^0 \equiv \overline{G}^0$ (kJ mol ⁻¹)
			Ag(s)	0	42.55	0
			$Ag^{+}(aq)^{\dagger}$	105.579	72.68	77.107
			AgCl(s)	-127.068	96.2	- 109.789
			C(g)	716.682	158.096	671.257
TADACA TO BRANI DA			C(s, graphite)	0.	5.740	0
CALLER TI COCULT	iysical comandits		C(s, diamond)	1.895	2.377	2.900
	SI units	cgs-esu units	Ca(s)	0	41.42	0
Gas constant	. R 8.3145 J K ⁻¹ mol ⁻¹	$8.3145 \times 10^7 \mathrm{erg}\mathrm{deg}^{-1}\mathrm{mol}^{-1}$	CaCO ₃ (s, calcite)	-1206.92	92.9	-1128.79
		1.987 cal deg mol	$Cl_2(g)$	0	223.066	0
Avogadro's number	10^{23} mol^{-1}	0.08205 L atm deg ⁻¹ mol ⁻¹	$Cl^{-}(aq)$	-167.159	56.5	-131.228
Boltzmann constant	$k = 1.3807 \times 10^{-23} \mathrm{K}^{-1}$	$1.3807 \times 10^{-16} \text{ erg deg}^{-1}$	CO(g)	-110.525	197.674	-137.168
Faraday constant	$F = 9.6485 \times 10^4 \mathrm{C mol^{-1}}$	$9.6485 \times 10^4 \mathrm{C mol^{-1}}$	$CO_{2}(g)$	-393.509	213.74	-394.359
Speed of light	c $2.9979 \times 10^8 \mathrm{m s^{-1}}$	$2.9979 \times 10^{10} \mathrm{cm s^{-1}}$	$CO_2(aq)$	-413.80	117.6	-385.98
Planck constant	h 6.6261×10^{-34} Js	$6.6261 \times 10^{-27} \text{ erg s}$	HCO ⁻ (aq)	-691.99	91.2	-586.77
Electron mass	$m_{e} = 9.1094 \times 10^{-31} \text{ kg}$	$9.1094 \times 10^{-28} \text{ g}$	$CO_2^{2-}(aq)$	-677.14	-56.9	-527.81
Proton mass	m_p 1.6726 × 10 ⁻²⁷ kg	$1.6726 \times 10^{-24} \mathrm{g}$	Fe(s)	0	27.28	0
Standard gravity	g 9.8066 m s ⁻²	980.66 cm s ⁻²	$Fe_2O_2(s)$	-824.2	87.40	-742.2
Permittivity of vacuum	$\epsilon_0 = 8.8542 \times 10^{-12} \text{ C}^2 \text{ N}^2 \text{ m}^3$	· ·	$H_2(g)$	0	130.684	0
4 .	C = coulomb L	= liter	$H_2O(g)$	-241.818	188.825	-228.572
	g = gram m	= meter	$H_{2}O(l)$	-285.830	69.91	-237.129
	K = Kelvin	= newton : = second	$H^{+}(aq)$	0	0	0
	kg = kilogram		$OH^{-}(aq)$	-229.994	-10.75	-157.244
			$H_2O_2(aq)$	-191.17	143.9	-134.03
			$H_2S(g)$	-20.63	205.79	-33.56
			$N_2(g)$	0	191.61	0
			$NH_3(g)$	-46.11	192.45	-16.45
			$NH_3(aq)$	-80.29	111.3	-26.50
			$NH_4^+(aq)$	-132.51	113.4	-79.31
			NO(g)	90.25	210.761	86.55
			$NO_2(g)$	33.18	240.06	51.31
			$NO_{3}^{-}(aq)$	-205.0	146.4	-108.74
			$Na^+(aq)$	-240.12	59.0	-261.905
			NaCl(s)	-411.153	72.13	-384.138
			NaCl(ag)	-407.27	115.5	-393.133
			NaOH(s)	-425.609	64.455	-379.494
			$O_2(g)$	0	205.138	0
			$O_3(g)$	142.7	238.93	163.2
			S(rhombic)	0	31.80	. 0
			$SO_{2}(g)$	-296.830	248.22	-390.194
			$SO_3(g)$	-395.72	256.76	-371.06