Date: 17/12/16 Max. Marks : 50 Duration : 90 Minutes Time : 12.00 noon to 1.30 p.m.

General Instructions:

1) All questions are compulsory.

2) Mark your *responses on the separate answer sheet* provided to you only with a pencil.

3) No negative marking. Correct answer will get one mark.

4) If *more than one option* is marked then the student will *get zero mark* and will be disqualified.

Q. No.	Use of calculator and rough sheet is allowed			
1				
	system			
	a) Δq_p will be negative	b)∆U will be negative		
	c) Δq_p will be positive	d) ΔH will be positive		
2	In an Isothermic expansion of an ideal gas against Vacuum, the work involved is			
	a)Zero	b)Maximum		
	c) Minimum	d) None of the above		
3	The average molecular Kinetic energy of a ga	as depends on		
	a)Pressure	b)Volume		
	c)Temperature	d)Number of moles		
4	When the temperature is increased ,surface	e tension of water		
	a) Increases	b)decreases		
	c)remains constant	d)shows irregular behaviour		
5	A gas can be liquefied			
		b)at its critical temperature		
		d)at any temperature		
6	For an ideal gas , number of moles per liter i	in term of its pressure P, Gas constant R and Temperature T		
	is			
	a) pT/R	b) pRt		
	c) p/RT	d) RT/p		
7	The percentage composition of carbon in urea, CO(NH ₂) ₂ is			
	(Atomic mass : C = 12, O =16, N = 14 and H			
	a) 40%	b) 20%		
	c) 50%	d) 80%		
8	The sum of the masses of reactants and products is equal in any physical or chemical reaction. This is in			
	accordance with			
	a) Law of Multiple Proportion	b)Law of definite Proportion		
	c)Law of Conservation of Mass	d)Law of Reciprocal proportion		
	The Number of Significant figures in 0.00010	D1 is		
9	a)3 b)2	c)4 d)5		
10	Which of the following molecules is electron deficient?			
	a) BCl ₃	b) PCl ₃		
	c) PCl ₅	d) NH ₃		
11	The electronic configuration of a metal M is $1s^22s^22p^63s^23p^1$, the formula of its oxide will be			
	a) MO	b) M_2O		
	c) M_2O_3	d) MO_2		
12	O ₂ molecule is			
	a) Diamagnetic	b)Paramagnetic		
	c)Ferromagnetic	d)None of these		

13	In which of the following, the angle between the two covalent bonds is largest		
10	a) H ₂ O b) NH ₃		
	c) CO_2 d) CH_4		
14	A molecule is square planar with no lone pair what type of hybridization is associated with it?		
	a) sp^3d b) sp^3d^2		
	c) dsp^3 d) dsp^2		
15	How many electrons are there in Li ₂ ?		
	a) 4 b) 6		
	c) 5 d) 3		
16	According to fajan's rule, covalent bond is favoured by		
	a) Small cation and large anion b) Small cation and small anion d) Large action and large anion		
47	c) Large cation and large anion d) Large cation and small anion		
17	2p _x ,2p _y and 2p _z orbitals differs in there a) Energy b) Orientation		
	c) Shape d) Size		
18	Alkyl group is ortho and para directing because of		
10	a) Steric effect b) hyperconjugation effect		
	c) electromeric effect d) all the three		
19	Inductive effect involves		
	a) delocalisation of σ electron b) displacement of σ electron d) displacement of σ electron		
	c) delocalisation of л electron d) displacement of л electron		
20	Correct IUPAC name of compound is		
	a) 5,6 – Diethyl -8-methyldec-6-ene b) 6 – Butyl-5-ethyl-3-methyloct-4-ene		
	c) 5,6 – Diethyl -3-methyldec-4-ene d) 2,4,5- Triethylnon-3-ene		
21	The central C-atom of a carbanion possesses		
	a) Sextet of electrons b) Duplet of electrons		
	c) Octet of electrons d) None of these		
22	Which of the following is a cylic compound?		
	a) Anthracene b) Pyrole		
	c) Phenol d) Neopentene		
23	Which of the following compounds will exihibit geometrical isomerism?		
25	a) 1-Phenyl-2-butene b) 3-Phenyl-1-butene		
	c) 2-Phenyl-1-butene d) 1,1-Diphenyl-1-propene		
24	The state of hybridization of C_2, C_3, C_5 and C_6 of the hydrocarbon		
	CH ₃ CH ₃		
	$CH_2 = C - CH = CH - CH - C \equiv CH$		
	is in the following sequence		
	a) sp, sp^2, sp^3, sp c) sp^2, sp^2, sp^3, sp b) sp, sp^3, sp^2, sp^2 c) sp^2, sp^2, sp^3, sp b) sp, sp^3, sp^2, sp^2 c) sp^3, sp^2, sp^3, sp		
	c) sp , sp , sp , sp d) sp , sp , sp , sp		
25	Methoxy methane and ethanol are		
	a) Functional isomers b) Optical isomers		
	c) Position isomers d) Chain isomers		
26	Among the following compounds the one that is most reactive towards electrophilic nitration		
	ls		
	a) Benzoic acid b) Nitrobenzene		
	c) Toluene d) Benzene		

27	For I ⁻ , Cl ⁻ and Br ⁻ the increasing order of nucleophilicity would be				
	a) Cl ⁻ < Br ⁻ < l ⁻ b) l ⁻ < Cl ⁻ < Br ⁻				
	c) $Br^{-} < Cl^{-} < l^{-}$ d) $l^{-} < Br^{-} < Cl^{-}$				
28	Which of the following species contains three bond pairs and one lone pair around the central atom ?				
	a) H ₂ O b) BF ₃				
	c) PCI_5 d) PCI_3				
29	XeF ₂ is isostructural with				
	a) SbCl ₃ b) ICl ₂				
	c) BaCl ₂ d) TeF ₂				
30	Which of the following molecules has the maximum dipole moment?				
	a) CO ₂ b) CH ₄				
	c) NH ₃ d) NF ₃				
31	Which of the following elements shown as pairs with their atomic numbers, belong to the same period?				
	a) Z = 19 and Z = 35 b) Z = 10 and Z = 17				
	c) Z = 19 and Z = 38 d) Z = 11and Z = 21				
32	Identify which is the most non-metallic element among the following?				
	a) $1s^2 2s^2 2p^6 3s^1$ b) $1s^2 2s^2 2p^5$				
	c) $1s^2 2s^2 2p^6 3s^2$ d) $1s^2 2s^2 2p^3$				
33	Among the following metals, which one of them will have the highest second ionisation enthalpy?				
34	a) Znb) Fec) Crd) MnWhich of the following is arranged in the order of increasing metallic character?				
34					
	a) P < Si < Na < Be < Mg				
35	K ⁺ and Cl ⁻ ions are isoelectronic. Which of the statements is not correct?				
	 a) Both K⁺ and Cl⁻ ions contain 18 electrons. b) Both K⁺ and Cl⁻ ions have same configuration. c) K⁺ ion is bigger than Cl⁻ ion in size. d) Cl⁻ ion is bigger than K⁺ ion in size. 				
36	The decreasing order for the electronegative property of C,N,Si and P follows the order				
	a) P < Si < C < N b) Si < P < N < C				
	c) Si < P < C < N d) P < Si < N < C				
37	What is the maximum number of orbitals that can be identified with the following quantum numbers?				
	n = 3, l = 1, m = 0				
	a) 1 b) 2 c) 3 d) 4				
38	The total number of atomic orbitals in fourth energy level of an atom is				
	a) 8 b) 16 c) 32 d) 4				
39	The mass of an electron is 9.1×10^{-31} kg Planck's constant is 6.626×10^{-34} Js. The uncertanityinvolved in the measurement of velocity within a distance of 0.1A isa) 5.79×10^5 ms ⁻¹ b) 5.79×10^8 ms ⁻¹ c) 5.79×107 ms ⁻¹ d) 5.79×10^6 ms ⁻¹				

40	40 The number of s- electrons in Fe is equal to the number of electrons in which one of t following?					
	a) p- electrons in Ne atom	· ·				
	c) d- electrons in Ni atom	d) d- electrons in Cu ²⁺ ion				
41	The number of electrons, protons and neutrons in an ion are 18,16 and 16 respectively. The correct symbol for the ion is					
	a) S b) O^{2-}	c) S ²⁻ d) O ⁻				
42	f the orbit					
	a) decreasesc) remains unchanged	b) increases d) none of these				
43	The orbital diagram in which Aufbau principle and Hund's rule are violated is					
	a) L L	b)				
	c)	d)				
44	How much water is needed to dilute 10ml of 10N hdrochloric acid to make it exactly 0.1N?					
	a) 990ml	b) 1000ml				
	c) 1010ml	d) 100ml				
45	The number of atoms in 0.1mol of a triatomic gas	is b) 1.806 x 10 ²³				
	a) 6.026 x 10 ²² c) 3.600 x 10 ²³	b) 1.806×10^{2} d) 1.800×10^{22}				
46						
40	, , , , , , , , , , , , , , , , , , , ,					
	²⁰⁰ X :90% , ¹⁹⁹ X :8% , ²⁰² X :2%					
	The average atomic mass of the naturally occuring element X is closest to					
	a) 200amu c) 199amu	b) 202amu d) 201amu				
47						
47	Given that bond energies of H – H and Cl – Cl are					
	ΔH_{f} for HCl is -90kJmol ⁻¹ . Bond energy of HCl is					
	a) 290kJmol ⁻¹	b) 380kJmol ⁻¹				
	c) 245kJmol ⁻¹	d) 425kJmol ⁻¹				
48	Which one of the following reactions has ΔS^0 greater than the following reactions has ΔS^0 greater the following reactions have been set of the followin	ter than zero?				
	a) $CaO_{(s)} + CO_{2(g)} \rightarrow CaNO_{3(s)}$ b) $NaCl_{(aq)} \rightarrow NaCl_{(s)}$					
	c) NaNO _{3 (s)} \rightarrow Na ⁺ _(aq) + NO ₃ ⁻ _(aq)					
	d) $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$					
49	Free energy change for a reversible process is					
	a) greater than zero	b) less than zero				
	c) equal to zero	d) unpredictable				
50	ressure? (R = 0.0821L atmK ⁻¹ mol ⁻¹)					
	a) 1.40 gm^{-1}	b) 2.81gm^{-1}				
	c) 3.41gml ⁻¹	d) 0.29gml ⁻¹				

Answers shall be available on ACT website <u>www.actgoa.weebly.com</u> on 20/12/2016. The list of prize winners shall be displayed by the first week of January 2017.

Please note

There was an error in question number 22. Question should be read as

22	Which of the following is an acylic compound?		
	a) Anthracene	b) Pyrole	
	c) Phenol	d) Neopentene	