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Abstract

This paper presents a method for human action recog-
nition based on patterns of motion. Previous approaches to
action recognition use either local features describing small
patches or large-scale features describing the entire human
figure. We develop a method constructing mid-level motion
features which are built from low-level optical flow informa-
tion. These features are focused on local regions of the im-
age sequence and are created using a variant of AdaBoost.
These features are tuned to discriminate between different
classes of action, and are efficient to compute at run-time.
A battery of classifiers based on these mid-level features is
created and used to classify input sequences. State-of-the-
art results are presented on a variety of standard datasets.

1. Introduction

In this paper we address the problem of human action
recognition from image sequences. We aim to develop algo-
rithms which can recognize low-level actions such as walk-
ing, running, or hand clapping from input video sequences.
A reliable solution to this problem would allow for a vari-
ety of applications such as automated surveillance, human-
computer interaction, and video retrieval and search.

This problem has been the subject of a vast amount of re-
search in the computer vision literature. Approaches based
on features which describe the entire human figure (e.g.
[3, 8]) and those which describe local patches such as hands,
feet, or elbows (e.g. [24, 19]) have been developed. As
in other object recognition problems, the approaches which
use features derived from local patches have the benefit of
being robust to clutter and tolerant to global deformation
due to varying body shapes and viewpoint. However, these
local patches lack descriptive power. Features built at the
scale of the entire human figure, for example based on mo-
tion [8] or a combination of shape and motion [3], are richer
descriptions of human action.

We believe a promising direction lies in between these
two types of features – building mid-level features which
can be used to recognize actions. The focus of this paper
is developing algorithms for discriminatively learning mid-
level motion features.

The learning framework we use is based on the shapelet
features of Sabzmeydani and Mori [22]1. In that work, mid-
level shape features were constructed from low-level gradi-
ent features using the AdaBoost algorithm. In this work, we
use motion features based on the work of Efros et al. [8] in
this framework, with the goal of recognizing human actions
in video sequences.

The main contribution of this paper is the development of
an approach for action recognition based on mid-level mo-
tion features. We show that this approach gives state-of-the-
art performance on a variety of standard datasets (KTH [24],
Weizmann [2], soccer [8]) and is computationally efficient.

2. Related Work

Moeslund et al. [16] provide a survey of the literature
on action recognition. A variety of approaches use features
which describe the motion and/or shape of the entire human
figure to perform action recognition. Bobick and Davis [3]
develop the temporal template representation which cap-
tures both motion and shape, represented as evolving sil-
houettes extracted using background subtraction. These
templates are described using their global Hu moment prop-
erties. Cutler and Davis [4] and Liu et al. [14] classify
periodic motions. Efros et al. [8] recognize the actions of
small scale figures using features derived from blurred op-
tical flow estimates.

Another group of methods uses features derived from
small-scale patches, usually computed at a set of interest
points. Schuldt et al. [24] compute local space-time features
at locations selected in a scale-space representation. These

1There was an error in the experiments reported in [22]. In particular,
this method does not outperform the HOG method of [5]. For more infor-
mation please see http://www.cs.sfu.ca/˜mori/research/
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features are used in an SVM classification scheme. Blank et
al. [2] represent an action by considering the shape carved
by its silhouette in time. Local shape descriptors based on
the Poisson equation are computed, then aggregated into
a global descriptor by computing moments. Niebles et
al. [19] quantize local space-time features and use a “bag-
of-words” representation together with Latent Dirichlet Al-
location to recognize actions. Rao et al. [21] track hands,
and describe actions based on inflection points of these
2D tracks. Nowozin et al. [20] classify image sequences
by finding discriminative subsequences of quantized local
space-time features. Laptev and Prez [12] find actions in
movies. They use AdaBoost to learn a cascade of boosted
classifiers from shape and motion features. They use his-
tograms of oriented gradients and optical flows to represent
shape and motion respectively.

We build on the mid-level shapelet features [22] in which
low-level spatial gradient features are combined to form dis-
criminative mid-level features. These features share sim-
ilarity with features constructed by biologically inspired
methods for object recognition [13, 25, 17]. The work by
Serre et al. [25] and Mutch and Lowe [17] use many ran-
domly sampled patches as their features. These features are
used as templates in a feed-forward network structure con-
taining alternating stages of template matching and pooling
operations for invariance.

The gradient-based learning methods [13] have a similar
structure of alternating between layers which mimic simple
and complex cell behaviour. LeCun et al. [13] learn a set of
convolution kernels to be used as the simple cell features us-
ing back-propagation. The shapelet features are more com-
plex in structure, containing combinations of gradients over
a mid-level scale; and also discriminatively learned from
training data, using positive and negative class examples to
decide on their contents. This line of work was recently ex-
tended to action recognition by Jhuang et al. [10]. Motion
gradients were added as a low-level feature in this model.
In our work we show that by using motion features to build
mid-level features in the shapelet feature framework, highly
accurate action recognition performance, as in [10], can be
achieved.

3. Method
Our method for action recognition operates on a “figure-

centric” representation of the human figure extracted from
an input image sequence. This figure-centric representation
is obtained by running a detection/tracking algorithm over
the input image sequence. The input to our action recog-
nition algorithm will be a stabilized sequence of cropped
frames, centered on the human figure. In our experiments
we use a variety of previously developed algorithms to con-
struct this representation – pedestrian detection [22] (KTH),
background subtraction (Weizmann), and normalized corre-

lation tracking (soccer).
The use of this figure-centric representation guarantees

that we are in fact recognizing actions and not just simple
translations. While we will have removed information that
would certainly be useful in some surveillance settings, our
algorithm can be directly applied to video footage captured
with a moving camera, such as the soccer dataset.

We will consider this sequence of figure-centric frames
as a 3D space-time volume for future processing. We
will build algorithms which attempt to classify short sub-
sequences (5 frames long in experiments) of this figure-
centric volume into low-level actions. In the exposition that
follows, we will describe this in terms of a binary classi-
fication task, discriminating between two classes. In Sec-
tion 3.4 we will use standard algorithms for converting our
true multi-class task into such binary tasks.

The training part of our approach for learning a classi-
fier to distinguish between two different actions consists of
three layers:

1. Low-level Motion Features as Weak Classifiers:
The input to this layer is a figure-centric volume. We
compute low-level motion features on this input se-
quence, which will be described in Section 3.1. Any
of these features, identified by its location and motion
direction, can be used as a weak classifier of the two
action classes by setting a threshold on its responses.
These weak classifiers will be used to make more so-
phisticated features.

2. Mid-level Motion Features: For some small cuboids
inside the figure-centric volume, we run Adaboost [27]
to select a subset of the weak classifiers inside each
figure-centric volume to construct better classifiers. By
only using the features inside each cuboid, we force
AdaBoost to extract as much information as possible
at local neighborhoods of the image sequence. This
process, described in Section 3.2, will provide us sev-
eral mid-level motion features that are intended to be
stronger local classifiers than the low-level features
and discriminative regarding our action classes. Each
mid-level feature consists of a combination of a set of
motion directions at various locations.

3. Final Classifier: The mid-level features only act in
local neighborhoods of the image sequence and there-
fore their overall classification power is still much be-
low an acceptable level. By merging those features to-
gether we can combine the information from different
parts of the image sequence. In order to archive this
goal, we use AdaBoost for a second time to train our
final classifier from the mid-level motion features. Ad-
aBoost will choose the best subset of mid-level motion
features that can separate the two action classes. The
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Figure 1. Constructing the low-level motion features.

construction of the final classifier is described in Sec-
tion 3.3.

3.1. Low-level Motion Features

To calculate the low-level motion features, we first com-
pute a figure centric spatio-temporal volume for each per-
son. This can be obtained by using any of a number of
trackers to track the person and constructing a fixed size
window around it. Given the stabilized human figure, the
Lucas and Kanade [15] algorithm is employed to compute
the optical flow for each frame. The optical flow vector
field F is then split into horizontal and vertical components
of the flow, Fx and Fy , each of which is then half-wave rec-
tified into four non-negative channels Fx+ , Fx− , Fy+ , Fy− ,
similar to Efros et al. [8]. We add another bin corresponding
to zero motion F0 which is obtained by computing the L2

norm of the four basic channels. These five non-negative
channels are then blurred with a gaussian and normalized to
obtain the five channels which will be used as our low-level
motion features, F̂x+ , F̂x− , F̂y+ , F̂y− , F̂0, for each frame.
Blurring the optical flows reduces the influence of noise and
small spatial shifts in the figure centric volume. For each
frame, low-level motion features are extracted from optical
flow channels at pixel locations in that frame and a temporal
window of frames adjacent to it.

These low-level features F̂c(p) at individual locations p
are not capable of discriminating between the positive and
negative classes (e.g. two different action categories) much
better than random classification. To make them more in-
formative, AdaBoost is used to combine them together to
create more informative mid-level features.

3.2. Mid-level Motion Features

Mid-level motion features are weighted combinations
of thresholded low-level features. Each low-level feature
F̂c(p) corresponds to a location p in the figure-centric vol-
ume, a channel c ∈ C = {x+, x−, y+, y−, 0}, and has

a strength. Each mid-level feature covers a small spatio-
temporal cuboid, part of the whole figure-centric volume,
from which its low-level features are chosen.

We will consider k such cuboids wi ∈ W , i = 1, . . . , k
inside our figure-centric volume. We will build a separate
mid-level feature for each cuboid wi. To do this, we collect
all the low-level features that are inside that cuboid {fp

c =
F̂c(p) : p ∈ wi, c ∈ C} and consider them as potential weak
classifiers of an AdaBoost run.

In each iteration t of the AdaBoost [27] training algo-
rithm, one of the features ft ∈ {fp

c } is chosen as the feature
of the weak classifier ht(x) to be added to the final classi-
fier. This weak classifier is of the form:

ht(x) =
{

1 if ptft(x) < ptθt

0 otherwise (1)

for a figure-centric volume x, where θt ∈ (−∞,∞) is
the classification threshold of the classifier and pt = ±1 is
a parity for inequality sign.

After all T iterations of the algorithm, we get the final
classifierHi(x) for cuboidwi. This classifier is of the form:

Hi(x) =
{

1
∑T

t=1 α
i
th

i
t(x) ≥ 0

0 otherwise
(2)

where αi
t is the selected weight for classifier hi

t(x), as
chosen by the AdaBoost algorithm. We train such a classi-
fier for every cuboid wi.

Each Hi(x) is a local classifier, containing some of the
low-level features inside the cuboid wi. If we take a second
look at the classifier form in equation 2, it can be seen that
the weighted sum of weak classifiers is a continuous value.
Let us call this sum si(x) =

∑T
t=1 α

i
th

i
t(x). A useful char-

acteristic about these classifiers is that this si(x) contains
more information than only specifying the class by its sign.
The further away the value of si(x) from the zero, the more
certain we are about its estimated class. Therefore this value
can be used as a confidence measure of the classification.
This is similar to the confidence prediction AdaBoost that
has been developed by Schapire and Singer [23].

We define our mid-level motion features as these {si(x) :
i ∈ {1, 2, . . . , k}}. The index i corresponds to one of the
cuboids wi ∈ W , and hi

t(x) and αi
t are the parameters

associated with the classifier Hi(x). Note that si(x) is a
mid-level feature that is trained specifically to distinguish
between the two action classes, based on low-level motion
features from its cuboid.

We train these mid-level features for a set of cuboids in-
side the figure-centric volume. We visualize the results of
the mid-level feature learning algorithm in Figure 2, which
shows the weighted sum of all the low-level features se-
lected inside all the mid-level features over the entire the
figure-centric volume.
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Figure 2. An illustration of low-level features selected and weighted in each mid-level feature across the figure centric volume for the
soccer dataset [8]. Set of positive features selected from the final binary classifiers are shown. (a) run left 45o, (b) run left, (c) walk left,
(d) walk in/out, (e) run in/out, (f) walk right, (g) run right and (h) run right 45o.

3.3. Final Classification

Now that we have defined our mid-level features si(x),
we use AdaBoost to create a final classifier from them. The
details of creating weak classifiers gt(s) are the same as
previous step. Each gt(s) consists of one of the mid-level
motion features st(x), a threshold θt, and a parity pt. The
final classifier is in the form of:

C(s) =
{

1
∑T

t=1 αtgt(s) ≥ 0
−1 otherwise

(3)

where s = (s1(x), s2(x), . . . , sk(x)) denotes all the
mid-level motion features for input figure-centric volume
x. Note that this time the weak classifiers gt(s) (equivalent
of ht(x) in the previous step) are applied in the new fea-
ture domain s instead of the low level features x, and there-
fore the final classifier will be a combination of weighted
thresholded mid-level features. Again, the selection of the
mid-level feature, threshold, and parity for use in classifier
gt(s), along with its weight αt, are chosen using the variant
of AdaBoost used by Viola and Jones [27].

3.4. Multiclass Action Recognition

AdaBoost is a binary classifier, however, in our problem
we are interested in classifying an input figure-centric vol-
ume into one of k discrete action classes. A number of ap-
proaches exist to reduce the k-way multi-class classification
problem into binary classification.

In the simplest approach, each class is compared to all
others (“one versus all”). However, because of the huge
size of our datasets, this approach is not practical for us for
computational reasons. Dietterich and Bakiri [6] propose a
general framework in which the classes are partitioned into
different subsets using error-correcting codes. Allwein et
al. [1] have introduced a unifying approach for margin clas-
sifiers. They proposed two methods: Hamming decoding, in

which each binary classifier essentially contributes a binary
vote, and loss-based decoding in which the empirical loss,
a measure of the confidence of a prediction, is included in
the classification decision.

We have experimented with these methods for our final
multi-class classification problem. Among them the Ham-
ming decoding scheme outperforms the others in most of
the experiments. In this method, we learn a binary clas-
sifier using our algorithm, for every pair of classes. Hav-
ing l binary classifiers, f1(x), ..., fl(x), and k class labels,
ŷ ∈ 1, ..., k, the predicted label will be

ŷ = arg min
r

l∑
s=1

1− sign(M(r, s)fs(x))
2

(4)

in which, M is a given coding matrix M ∈ {−1, 0, 1}k×l.
In our case, M is a matrix which it has k rows and k×(k−1)

2
columns. In each column all the elements are zeros except
a 1 for the positive class and −1 for the negative class for
binary classifier fs.

Though we have obtained good performance using Ham-
ming loss, a drawback of the aforementioned methods is
that they don’t take into account the structure of the output
labels – actions classes such as “run left” and “walk left”
are “closer” than “run left” and “run right”. A variety of
methods for handling structured outputs have been devel-
oped (e.g. using SVMs [26, 9]) and we believe these would
be useful future extensions.

4. Experiments
We have tested our algorithm on four datasets: KTH

human motion dataset [24], Weizmann human action
dataset [2], Soccer dataset [8], and a ballet dataset collected
by ourselves. For the KTH dataset, we have splitted the
dataset into training and testing parts. For the other datasets,



we perform “leave one out” cross validation. KTH and
Weizmann datasets contain single-action video sequences,
and most of the previously published results assign a sin-
gle label to each sequence (per-video classification). As a
result, we will also report per-video classification on these
two datasets. The per-video classification is performed by
assigning a single action label aquired from majority voting,
to a sequence of frames.

The running time of our algorithm is efficient. Our un-
optimized implementation in Matlab, exhaustively performs
classification with a range of 0.2-4 seconds per frame. Al-
though, the speed of the classifier changes based on the set
of parameters described in 4.1, even our most complicated
classifier trained for soccer dataset is fast compared to other
methods such as nearest neighbor used in [8], since the soc-
cer dataset contains about 4700 frames. The speed of our
classifier doesn’t change relative to the size of the training
data, however, this is not the case in [8].

4.1. Parameters

For each dataset, we manually set a few parameters.
These parameters are, total number of weak classifiers , lo-
cal area of the mid-level features defined by the cuboid wi,
and the size of the strides between the cuboids.

Our mid-level features are learned using the AdaBoost
algorithm. There are different ways to limit the number of
AdaBoost iterations, such as defining a fixed number of it-
erations or setting a performance threshold as the ending
condition. We fixed the number of weak classifiers selected
by each window, by assigning an equal portion of the total
number of features to it.

We scan the figure centric volume with the mid-level fea-
ture’s cuboid size (e.g. 15× 15), with the strides of particu-
lar size (e.g. 5) between cuboids. This dense scan will pro-
vide us many local cuboids inside the figure centric volume.
Each cuboid is considered as the effective region of one of
the mid-level features. That mid-level feature is learned by
using only the low-level features inside its cuboid.

4.2. Evaluation

For each dataset we have evaluated our results by com-
paring it to previous methods, which are current state of the
arts for action classification.

KTH dataset: The KTH human motion dataset, con-
tains six types of human actions (walking, jogging, running,
boxing, hand waving and hand clapping). Each action is
performed several times by 25 subjects in four different con-
ditions: outdoors, outdoors with scale variation, outdoors
with different clothes and indoors. We first track and stabi-
lize the video sequences using the method in Sabzmeydani
and Mori [22]. Representative frames of this dataset are
shown in Figure 3(a).

Methods Training method Accuracy(%)
Our method Splits 90.50

Jhuang et al. [10] Splits 91.70
Nowozin et al. [20] Splits 87.04
Niebles et al. [19] Leave one out 81.50
Dollár et al. [7] Leave one out 81.17

Schuldt et al. [24] Splits 71.72
Ke et al. [11] Splits 62.96

Table 1. Comparison of different reported results on KTH dataset.

Unfortunately, most of the previous methods do not de-
scribe precisely how they split the KTH dataset into training
and testing parts. This makes the fair comparison impracti-
cal. In our experiments, we use 2

3 of the dataset for training
and the other 1

3 for test. We prevent the same subject doing
the same action to be in both training and testing portions.
The confusion matrix for the per-video classification on the
KTH dataset is shown in Figure 3(b). The most confusion is
between the last three actions: running, jogging and walk-
ing. We have compared our results with the current state of
the art in Table 1. Our results are comparable to Jhuang et
al. [10] and significantly outperform other methods.

In the KTH dataset, for each frame, we concatenate the
motion descriptors of the five adjacent frames to it and use
it as our figure centric volume. So the size of the volume
will be 85×50×5. We set the total number of weak classi-
fiers to 1200, mid-level feature size to 15× 15× 5, and the
length of the strides to 5. Each mid-level feature will con-
sist of 10 weak classifiers. The final classifier runs with a
speed of 0.75 seconds per frame. We observed in our expe-
riences, that we get better results by increasing the depth of
figure centric volume (concatenating more frames). How-
ever, since the KTH dataset has a huge size, it was imprac-
tical for us to increase the depth of volume to more than
5.

(a) (b)
Figure 3. Results on KTH dataset: (a) sample frames. (b) con-
fusion matrix for per-video classification (overall accuracy of
90.5%). Horizontal rows are ground truth, and vertical columns
are predictions.

Weizmann dataset: The Weizmann human action



per-frame(%) per-video(%)
Our method 99.9 100

Jhuang et al. [10] N/A 98.8
Niebles & Fei-Fei [18] 55 72.8

Table 2. Comparison of the overall accuracy on Weizmann dataset
with previous work.

dataset contains 93 low-resolution (180× 144 pixels) video
sequences showing nine different people, each of which per-
forming 10 different actions. We have tracked and stabi-
lized the figures using background subtraction masks that
come with the dataset. In figure 4(a) we have shown some
sample frames of the dataset. The confusion matrix of our
results for per-frame classification is shown in Figure 4(b).
Our method has achieved a 100% accuracy for per-video
classification and 99.9% for per-frame classification. Since
the confusion matrix for per-video classification, is simply
a perfect diagonal matrix, we have just shown the confusion
matrix for per-frame classification. We have compared our
results with previous work in Table 2. The discriminative
low level features are visualized in figure 5.

Soccer dataset: The soccer dataset contains several
minutes of a World Cup soccer game which is digitized
from an NTSC video tape. We have used the tracked and
stabilized dataset provided by Efros et al. [8], which con-
sists of 66 video sequences, each corresponding to a person
moving in the center of the field of view. Each frame is
hand-labeled with one of the 8 action labels: run left 45o,
run left, walk left, walk in/out, run in/out, walk right, run
right, run right 45o.

This dataset is the very noisy and complicated, and it is
hard to discriminate between the classes manually. The run
left/right 45o, are confused by other classes as the running
angle significantly varies in different sequences of these two
classes. Also it is very hard to discriminate between walk-
ing in/out versus running in/out, especially since there are
fewer instances of these classes in the dataset. AdaBoost
doesn’t perform as well in situations that the number of
training instances is unbalanced. Since our algorithm had
difficulty classifying the walk in/out and run in/out, we
merged these two into a single walk/run in/out class. Note
that we do much better at certain classes, when we have
greater number of frames. We have shown some sample
frames of this dataset in Figure 6(a).

We rescale each frame to 3 different sizes. Afterwards,
we concatenate the motion descriptors of each frame with
its 8 adjacent frames. The size of the volume is 21×35×9.
We have set the total number of the weak classifiers to 2040,
mid-level feature size to 4 × 4 × 9, and the length of the
strides to 2. The confusion matrix of our results is shown
in Figure 6(b). Our results are compared with the results of
Efros et al. [8] in Table 3. The results in Figure 6(b) are

Action F Our method Efros et al. [8]
run left 45o 567 0.63 0.67

run left 567 0.59 0.58
walk left 844 0.86 0.68

walk/run in/out 740 0.89 0.85
walk right 844 0.85 0.68
run right 567 0.65 0.58

run right 45o 567 0.53 0.66
Overall 0.71 0.67

Table 3. The main diagonal of the confusion matrix of our method
and the method in Efros et al. [8] are compared. (F) presents the
number of frames existing in the dataset for each action.

calculated by applying the Hamming decoding for multi-
classification, however, we get 1% accuracy gain by apply-
ing the loss-based decoding method of Allwein et al. [1].

Ballet dataset: We have tested our algorithm on a Ballet
dataset we collected from an instructional Ballet DVD (un-
fortunately, the Ballet dataset used in [8] is not available).
There are 44 sequences and we have manually labeled each
frame with 8 different actions: R-L presenting, L-R pre-
senting, presenting, Jump & swing, Jump, Turn, Step, and
Stand still. In this dataset there exist 3 subjects: 2 men and
a woman.

The sample frames and the confusion matrix of our re-
sults is shown in Figure 7. For the Ballet dataset, we have
used the 5 frame concatenation. We have resized all frames
to 50×50. We have set the total number of features to 1620,
the mid-level feature size to 10× 10× 5, and the size of the
strides to 5. Our performance on this dataset is not as good
as the previous ones, which might be because of the com-
plexity of actions in this dataset, and significant variation in
clothing (the woman is wearing a skirt).

5. Conclusion

In this paper we presented a method for human action
recognition using mid-level motion features. These features
are computed on a figure-centric representation, in which
the human figure is stabilized inside a spatio-temporal vol-
ume. These mid-level motion features were constructed
from low-level optical flow features computed on this vol-
ume. Each mid-level feature is focused on a small cuboid
inside the figure-centric volume, and is built from the low-
level features which best discriminate between pairs of ac-
tion classes.

We demonstrated that these mid-level features can be
used to obtain action recognition results which are equiv-
alent to the state-of-the-art on the KTH [24] and Weiz-
mann [2] datasets. On the challenging soccer dataset [8], we
obtain results which are superior to the nearest-neighbour
classifier of Efros et al. [8] on categories for which sufficient



(a) (b)
Figure 4. Results on Weizmann dataset: (a) sample frames. (b) confusion matrix for per-frame classification (overall accuracy of 99.9%).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 5. The representation of the positive low-level features from the final binary classifiers for the Weizmann dataset. (a) bend, (b) jack,
(c) jump, (d) pjump, (e) run, (f) side, (g) skip, (h) walk, (i) wave1 and (j) wave2.

training data exists. The classifiers built using the mid-level
features are also computationally efficient, and are much
faster than this nearest-neighbour approach.
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