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ABSTRACT 

This paper investigates the active damping of the vertical and horizontal transverse 
modes of a rigidly-terminated vibrating guitar string. After describing the 
characteristics of various actuators and sensors, we motivate the choice of collocated 
electromagnetic actuators and a multi-axis piezoelectric bridge sensor. Next, we 
introduce a state-space model that emulates the behavior of the string, and we 
explain the theory behind band pass filter control and PID control as applied to a 
vibrating string. Finally, we discuss the experimental results and implications of 
applying these control methods. In particular, we consider the difference between 
damping the energy in only one transverse axis, versus damping the energy in both 
the vertical and horizontal transverse axes simultaneously. 

1 INTRODUCTION 

The field of “active instruments” is the study of actively controlling the vibrating 

structures in a musical instrument in order to alter its behavior [1]. Although it is 

possible to design the instrument from beginning to end in consideration of the control 

aspects, we choose to apply control to traditional instruments. This means that more 

musicians will be available to masterfully play the active instruments, but it also means 

that the control task is more challenging because some aspects of the instrument may be 

non-ideal from a control perspective. 

In this paper, we choose to limit the effects of the instrument body and focus on the 

vibrating guitar string itself. This forms a solid starting point because the musician 

interacts most intimately with the string and only tangentially with the body. In 

addition, since canceling vibration is generally more difficult than inducing vibration, 

we jump directly to the heart of the matter by focusing on a detailed study of actively 

damping the string. Furthermore, while damping the string, we strive to preserve the 

musical qualities of the string that have been optimized during the evolution of stringed 

instruments. 

From a practical standpoint, we also wish for the damping to be independent of the 

fundamental frequency (the lowest resonance) 0f . That is, for better control of the 

active instrument by the musician, we wish for the damping parameter to be orthogonal 

to the string length, which is adjusted by the musician during play. 

a Email address: eberdahl@stanford.edu 
b Email address: jos@ccrma.stanford.edu 

http://cnmat.berkeley.edu/publications/active-damping-vibrating-string

http://cnmat.berkeley.edu/publications/active-damping-vibrating-string


2 PRIOR WORK 

2.1  “Infinite” Sustain 

Various forms of active instruments have already been designed and played. For 

instance, the inverse problem of indefinitely sustaining string vibration has long been 

investigated, especially in the framework of electric guitars. Musicians have used 

acoustic feedback from power amplifiers to re-excite their electric guitar strings thus 

producing sustain; however, due to the complex nature of the transfer functions 

involved and the nonlinear nature of the amplifiers, this has been difficult to control 

precisely. The commercially-available EBow [2] and Sustainiac [3] have mitigated this 

problem using phase-locked-loops (PLLs). Similarly, Weinreich and Caussé have 

electromechanically induced the Helmholtz “stick-slip” bowing motion in a vibrating 

string in the absence of a traditional bow [4]. 

 

2.2 Active Structural Control 

Active control has also been applied to instrument body structures. For example, in 

order to suppress tendencies toward acoustic feedback in amplified situations, Griffin 

has altered the behavior of the plate modes in an acoustic guitar [5]. Similarly, Hanagud 

has modified the plate modes in an inexpensive acoustic guitar to make it behave more 

like an expensive acoustic guitar [6]. In addition, Charles Besnainou has tuned the 

Helmholtz body resonance of a guitar using PID control [7]. 

 

2.3 Active Instruments 

Besnainou has also applied control to the violin, a snare drum, a pipe organ, and a 

marimba bar, and he has coined the term “Active Instruments” [1][8]. For example, he 

has changed the damping time and pitch of a marimba bar using PID control. He may 

have chosen the marimba bar in particular because the second-to-lowest resonance is 

normally tuned to almost two octaves above the fundamental frequency (lowest 

resonance), and each bar has a fixed fundamental frequency [9]. This simplicity makes 

the instrument much easier to control. Besnainou has carried out additional work on 

other instruments, but much of this work has remained unpublished. 

More recently, Rollow has written his PhD thesis on controlling the vibrations of an 

air-loaded drum head [10], and Maarten van Walstijn and Rebelo have used various 

filtering techniques to alter the modes of a conga drum [11]. 

 

3 OVERVIEW 

3.1 Physics Of A Vibrating String 

Primarily transverse waves govern the musical characteristics of a vibrating string. 

When the string is actuated transversely in only the vertical y-axis, transverse waves 

arise exclusively in the y-axis along the string. Standing waves result when the string is 

terminated in at least two points. The standing waves can be any linear combination of 

vibrations at the harmonics of the fundamental frequency 0f . 

In general, however, strings on musical instruments vibrate in both the vertical and 

horizontal transverse axes because musicians actuate the string in both axes, and non-

ideal string terminations allow an exchange of energy between the horizontal and 

vertical transverse axes. In addition, various nonlinear effects can cause additional 



exchanges of energy between the transverse axes and even energy exchanges between 

the harmonics [12]. 

3.2 Control Configuration 

In order to control the transverse waves in a vibrating string, both the vertical and 

horizontal axes need to be sensed and actuated. Although there is some exchange of 

energy between the axes, any robust control strategy should allow these exchanges to be 

neglected. Since ideally the axes are independent of each other, we can design identical 

controllers for each axis. Figure 1 shows a block diagram for controlling the vertical 

axis. K(s) represents the transfer function of the controller, Gain represents the amount 

of control used, and G(s) represents the transfer function of the vibrating string between 

the actuator and sensor. Note that G(s) may be time-varying as the musician may 

change the length of the string in order to adjust 0f . 

 

 
Figure 1: System block diagram for the vertical axis. 

 

3.3 Actuators 

One might imagine that actuating the string with a piezoelectric device would be 

feasible. However, piezoelectric bending elements have much smaller impedances than 

a guitar string, and piezoelectric stacks have much larger impedances than a guitar 

string. Surprisingly, there are no widely-available piezoelectric-based actuators that are 

matched to a guitar string’s impedance. As a result, we chose to use electromagnetic 

actuators [13]. Due to the slight stiffness of the string, these actuators are inefficient 

when mounted too closely to the termination; however, they behave too nonlinearly 

when mounted too far from the termination, so a compromise is needed. 

 

3.4 Sensors 

Many different kinds of sensors can be used to detect the string’s motion. 

Electromagnetic sensors are traditionally used in electric guitars, but they are large and 

behave more nonlinearly than other string sensors [14]. In contrast, piezoelectric sensors 

are smaller and linear, but they must usually be mounted at a string termination. Sensing 

both the vertical and horizontal transverse axes with piezoelectrics is more complicated, 

but the Center for New Music and Audio Technologies (CNMAT) at UC Berkeley was 

kind enough to lend us a special piezoelectric multi-axis string sensor, which we used to 

terminate the string [14]. Optical sensors involving infrared emitter and detector pairs 

are quite common, and so we used a pair of these to calibrate the multi-axis string 

sensor [12]. 

 



3.5 Actuator/Sensor Placement 

Since collocated control is generally more robust, we chose to mount the sensors 

and actuators as closely together as possible at the bridge (see Figure 2). In this manner, 

the musician may change the length of the string by moving the opposite string 

termination (not shown). A pair of electromagnetic actuators was placed 4cm to the left 

of the string termination (see Figure 2a) to make for a good compromise between 

efficiency and linearity. A pair of optical sensors was mounted 1cm from the string 

termination in order to record the motion of the string (see Figure 2b). Finally, the string 

was terminated with the piezoelectric multi-axis string sensor from CNMAT (see Figure 

2c). The piezoelectric sensor was used to close the control loop as it was less prone to 

noise than the optical sensors. All sensors and actuators were mounted such that the 

horizontal and vertical axes could be sensed and actuated independently of each other. 

 

 
Figure 2: Diagram of one end of the string showing the actuator and sensor placement at the bridge. 

 

3.6 Control Strategy 

In order to actively damp the string, we may simply drive the string’s displacement 

to zero at a point arbitrarily close to the bridge. This is equivalent to decreasing the 

resistive component of the bridge termination’s effective impedance. We must however 

take care to avoid making the bridge termination impedance complex. This would result 

in detuning the harmonics of the string, which would conflict with our goal of 

preserving the sound quality of the instrument [9]. 

 



3.7 State-Space Model 

The simplest state-space model of the string incorporates only the lowest resonance 

at 0f . Figure 3 shows the physical diagram of a simple system with one resonance, 

where y(t) is the displacement of the mass, and fact(t) is the force exerted on the mass. 

 

 
Figure 3: A simple mechanical oscillator with damping. 

 

The behavior of the system can be easily represented in the Laplace domain. 
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By matching the decay time constant Rm /2/1 == ατ  (in sec) and mK /0 =ω  

(in rad/sec) to those of the lowest resonance of a vibrating string, we can build a simple 

model of a vibrating string since the lowest resonance usually has the longest decay 

time. The transfer function of the linear system between the input force and the output 

displacement is as follows: 
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If we consider for example the 10=N  lowest resonances, then we can build a more 

accurate model. Since the modes are ideally independent of each other, the resonances 

are placed in parallel. 
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4 CONTROL ALGORITHMS 

4.1 Band Pass Filter Control 

Before investigating classical control methods, it is worth mentioning that there is a 

simple controller that can be built using standard audio hardware despite its inherent 

system delays. For example, our implementation includes a personal computer, a 

standard audio interface, and the signal processing environment for computer music 

known as Max/MSP. It should be noted that this control method is particularly useful 

for testing the controllability and the role of nonlinearity in a highly-resonant system. 

The block diagram for the controller is shown in Figure 4. 

 



 
Figure 4: Block diagram for the controller )(sK  consisting of a bank of band pass filters. 

 

 The controller uses precisely-tuned band pass filters to isolate the energy in each of 

the harmonics. The phase of the output from each filter can be adjusted manually so that 

the associated mode either grows or decays over time. Finally, the gain adjustment 

controls how fast the mode grows or decays. The controller is highly sensitive to the 

fundamental frequency 0f  and the quality factor Q  of the filters. We found that 30=Q  

made for a good compromise between sensitivity and isolation of the modes. 

4.2 PID Control 

On the other hand, classical controllers are much more appealing since they are 

independent of 0f . This makes them much more useful in a performance context, even 

though individual modes cannot be easily independently controlled. The analysis is 

simple for controlling a single resonance using the proportional, integral, and derivative 

functions of the velocity. For unity with the following sections, we will equivalently 

investigate the second derivative (PDD), the derivative (PD), and the proportional (PP) 

functions of the displacement y(t). 
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The solution is of the following form: 
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The frequency of vibration 0ω̂  is affected by PP  and DDP . 
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Similarly, the damping rate α̂  is affected by DP  and DDP . Thus, PD could be used to 

control the decay rate independently of the frequency. This is the kind of orthogonal 

control that we seek. 
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4.2.1 Derivative Control 

Since a vibrating string actually has multiple resonances, it is instructive to create 

the root locus for the PD term (see Figure 5) using the state-space model. The magenta 

squares show the pole locations when a moderate amount of control is applied, such that 

the damping time is about the same as achieved in the experimental section. As 

expected, the additional damping is roughly independent of the frequency of the 

harmonic. 

One might also be concerned that the truncated order of the model would drastically 

change the locus’ characteristics, but since each resonance of the string is accompanied 

by a nearby anti-resonance, each harmonic only affects the locus locally. 

 

  
Figure 5: 180° Root locus (left: zoomed out, and right: zoomed in) for derivative control. 

 

Since the lower harmonics of the uncontrolled string have less damping, we might 

optimally wish to invest more control energy in damping the lower harmonics. 



4.2.2 Integral Control 

By applying integral control of the displacement (PI), we can invest a larger fraction 

of the control energy in damping the lower harmonics. 
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An approximate derivation of the effects of PI can be made by assuming that || IP  is 

small enough such that the solution is approximately the same as when 0=IP except 

for the damping coefficient α~ : 
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Further simplifications can be made since αω ~
0 >>  as long as the resonance is not 

being damped especially quickly. For example, if 10~/1~ == τα  sec
-1 

for a fairly fast 

decay time of 1/10 sec, while 1560)248(20 ≈> πω  sec
-1
, then we certainly have 

αω ~
0 >> . After substituting )(~ ty  into the time-domain version of the dynamics 

differential equation (9), simplifying, and solving for α~ , the following approximation 

can be obtained in terms of the passive damping rate α : 
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Thus, for moderately-sized α~ , the increase in the damping rate decreases with 

mK /2

0 =ω . Integral control applied to the string model results in the 0° locus shown in 

Figure 6. As expected the lower harmonics are damped more than the higher harmonics. 

 

  
Figure 6: 0° Root locus (left: zoomed out, and right: zoomed in) for integral control. 



 

One additional advantage of integral control over derivative control is the low-pass 

characteristic of integration, which makes the controller more robust to system delays. 

Theoretically, in order to damp the string as quickly and efficiently as possible, a 

combination of integral and derivative control would perform better than derivative or 

integral control alone; however, we will see that for the given experimental system, only 

integral control will be suitable due to system delay. 

5 EXPERIMENTAL RESULTS 

We carried out several experiments in order to learn about the challenges one would 

encounter in building the active instrument. The results from the most successful 

experiment will be explained here. 

In order to reduce the effects of the body, we mounted the string on an 8.9cmx8.9cm 

(3½”x3½”) block of hardwood ash, and the string terminations were made as rigid as 

possible. The string itself was an E electric guitar string (1.1mm in diameter) with a 

steel core and wound with nickel. We powered the actuators with a 100W/channel 

Marantz audio power amplifier, and because the current-output of the amplifier behaved 

roughly like an integrator above 200Hz, we shortened the string to approximately 24cm. 

The fundamental frequency then became 2480 =f Hz. 

 Derivative control was found to be unsuitable for the experiment due to system 

delay—the actuator and sensor were not exactly collocated. In addition, the actuator was 

placed 4cm from the string termination, and so it was near a node for the 6
th
, 12

th
, 

18
th
,… harmonics. As a result, only the four or five lowest modes were damped using 

integral control, but this proved quite sufficient in greatly reducing the damping time of 

the string. 

5.1 Dual-Axis Cancellation 

Since the active instrument was designed to be played by a musician, the string was 

plucked manually by hand in tests. For example, Figure 7 depicts four actively-

cancelled plucks followed by one pluck without control. In particular, the top waveform 

in Figure 7 shows the horizontal displacement of the string at the bridge, while the 

bottom waveform in Figure 7 shows the vertical displacement. 

 

 
Figure 7: Waveforms displaying four cancelled string plucks and then one pluck without control.  

(top: horizontal axis, bottom: vertical axis) 

 



Spectrograms of the same waveforms were generated and displayed in Figure 8. The 

decay times of the lowest four modes were greatly reduced, while the decay times of the 

higher modes remained approximately constant. The small differences in the plucks 

resulted from the fact that the string could not be plucked perfectly consistently by 

hand, while the plucks were nevertheless of roughly the same magnitude. 

 

 
Figure 8: Spectrograms displaying four cancelled string plucks and then one pluck without control.  

(top: horizontal axis, bottom: vertical axis) 

 

The behavior was consistent and independent of fundamental frequency. Active 

damping required less than 1 Watt according to the power meters on the Marantz 

amplifier. By varying the loop gain, it was of course possible to vary the damping over a 

large range of intermediate values. 

5.2 Single-Axis Cancellation 

Theoretically, if the vibrations in the vertical axis were cancelled, while no control 

were applied to the horizontal axis, then the two axes would behave independently. 

However, in practice the sensors and actuators cannot be perfectly aligned, and so there 

will be some exchange of energy between the axes. It follows that single-axis 

cancellation is a good test of sensor/actuator alignment. 

Figure 9 shows the waveforms of the string displacement resulting from the 

following experiment during which the string was plucked by hand repeatedly at 

roughly the same magnitude: at the beginning (the left side of the waveforms), control 

was applied to only the vertical axis. Then as time progressed, control was added to the 

horizontal axis. Near the midpoint, the amounts of control were equal, after which time 

the control applied to the vertical axis was slowly reduced to zero. 



It can be seen that the vertical actuator and sensor were well aligned—at the 

beginning of the waveforms, the vertical axis remains largely cancelled even when the 

horizontal axis is not cancelled. On the other hand, the horizontal actuator and sensor 

were not perfectly aligned as the horizontal axis was only well-damped when both the 

vertical and horizontal axes are damped. This was due to the fact that the piezoelectric 

sensor did not measure the horizontal axis as accurately as it measured the vertical axis. 

 

 
Figure 9: Waveforms displaying cancelled string plucks as the controlled axes are gradually varied.  

 (top: horizontal axis, bottom: vertical axis) 

 

6 CONCLUSION 

We have reviewed the prior work on active instruments and discussed the 

advantages and drawbacks of various string actuators and sensors. Then, after 

developing a model of the string, we have discussed band pass filter control, which 

could control the modes independently but was dependent on the fundamental 

frequency 0f of the string. In contrast, PID control of string displacement did not 

depend on 0f  and could be used to damp the string quickly. Finally, we have presented 

waveforms of actively damped string vibrations and demonstrated that the sensors and 

actuators must be carefully aligned in order to obtain independent control of the vertical 

and horizontal transverse axes. 

Future work will likely involve exploring the complete PID(DD) space as well as 

implementing various sound effects for electric guitar directly upon the strings 

themselves. For example, the tremolo effect consists of periodically varying the 

amplitude of an input signal, and so the active damping parameter could simply be 

varied periodically to approximately achieve this effect. 

  

7 WAVEFORMS 

The waveforms corresponding to the model, the magenta poles displayed in the root 

loci, and the experiments are available on the internet. They can be downloaded from 

the website:  http://ccrma.stanford.edu/~eberdahl/Projects/ActiveDamping/index.html 
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