
1

Active Databases
Part 1: Introduction

CS561

Active Databases

n  Triggers and rules are developed for data integrity
and constraints

n  Triggers make “passive” database “active”
¨ Database reacts to certain situations

n  Event Condition Action rule :
¨ on event insert/update/delete,
¨  if condition C is true
¨  then do action A

2

Brief History
n  1975: Idea of “integrity constraints”

n  Mid 1980-1990: research in constraints & triggers
¨  Languages and algorithms

n  SQL-92: constraints
¨  Key constraints; referential integrity, domain constraints
¨  Declarative spec and procedural interpretation

n  SQL-99: triggers/ECA (limited)
¨  Early acceptance; Widely-varying support in products;

“execution semantics” differ, how far to go ?

4

Event-Condition-Action (ECA)
n  Event occurs in databases

¨ addition of new row, deletion of row by DBMS

n  Conditions are checked
¨ SQL condition

n  Actions are executed if conditions are satisfied
¨ SQL + procedures
¨ All data actions performed by the trigger execute

within the same transaction in which the trigger fires,

Triggers
n  A procedure that runs automatically when a certain event

occurs in the DBMS

n  Implementation of the ECA rules

n  The procedure performs some actions, e.g.,
¨  Check certain values
¨  Fill in some values
¨  Inserts/deletes/updates other records
¨  Check that some business constraints are satisfied
¨  Cancel or roll back forbidden actions

5

6

Database Triggers in SQL
n  Available in most enterprise DBMSs (Oracle, IBM DB2,

MS SQL server) and some public domain DBMSs
(Postgres)

n  Some vendor DBMS permit native extensions to SQL for

specifying the triggers
¨  e.g. PL/SQL in Oracle, Transact SQL in MS SQL Server

n  Some DBMS extend the triggers beyond tables
¨  for example also to views as in Oracle

Trigger Components
n  Three components

¨  Event: When this event happens, the trigger is activated
¨  Condition (optional): If the condition is true, the trigger

executes, otherwise skipped
¨  Action: The actions performed by the trigger

n  Semantics
¨  When the Event occurs and Condition is true, execute

the Action

7

8

Types of SQL Triggers
n  How many times should the trigger body execute

when the triggering event takes place?
¨ Per statement: the trigger body executes once for

the triggering event. This is the default.
¨ For each row: the trigger body executes once for

each row affected by the triggering event.

n  When the trigger can be fired
¨ Relative to the execution of an SQL DML

statement (before or after or instead of it)
¨ Exactly in a situation depending on specific system

resources (e.g. signal from system clock)

9

SQL> INSERT INTO dept (deptno, dname, loc)
 2 VALUES (50, 'EDUCATION', 'NEW YORK');

Example 1: Monitoring Statement Events

SQL> UPDATE emp
 2 SET sal = sal * 1.1
 3 WHERE deptno = 30;

Example 2: Monitoring Row Events

Statement and Row Triggers

Execute for each row of table affected by event

Execute only once even if multiple rows affected

Granularity of Event

n  An UPDATE or DELETE statement may update (or delete)
many records at the same time
¨  May insert many records in the same statement as well

n  Does the trigger execute for each updated or deleted
record, or once for the entire statement ?
¨  We define such granularity

10

Create Trigger <name>
Before| After Insert| Update| Delete

For Each Row | For Each Statement
….

That is the event

That is the granularity

That is the timing

11

EMPNO

7839

7698

7788

ENAME

KING

BLAKE

SMITH

DEPTNO

30

30

30

BEFORE statement trigger

BEFORE row trigger
AFTER row trigger
BEFORE row trigger
AFTER row trigger
BEFORE row trigger
AFTER row trigger

AFTER statement trigger

Firing Sequence of Database
Triggers on Multiple Rows

EMP table

12

Example: Logging Operations
SQL> CREATE TRIGGER increase_salary_trg
 2 AFTER UPDATE OF sal
 3 ON emp
 4 BEGIN
 if :new.sal > :old.sal Then
 5 INSERT INTO sal_hist(increased, changedOn)
 6 VALUES (‘YES’, SYSDATE);
 end;
 7 END;
 8 /

Trigger name: increase_salary_trg
Timing: AFTER executing the statement
Triggering event: UPDATE of sal column
Target: emp table
Trigger action: INSERT values INTO sal_hist table

Example: Checking Values

13

If the employee salary increased by more than 10%, make sure the
‘comment’ field is not empty and its value has changed, otherwise reject
the update

Create Trigger EmpSal
Before Update On Employee
Referencing

 OLD ROW AS oldRec,
 NEW ROW AS newRec
For Each Row
Begin
 IF (newRec.salary > oldRec.salary * 1.10) Then
 IF (newRec.comment = ‘’ or newRec.comment is null or
 newRec.comment = oldRec.comment)

 RAISE_APPLICATION_ERROR(-20004, ‘Comment field not correct’);
 End IF;
 End IF;
End;

Example: Using Temp Variable

14

If the newly inserted record in employee has null date field, fill it in with
the current date

Create Trigger EmpDate
Before Insert On Employee
Referencing

 NEW ROW AS newRec
For Each Row
Declare
 temp date;
Begin
 Select sysdate into temp from dual;
 IF (newRec.date is null) Then
 newRec.date := temp;
 End IF;
End;

Oracle system table always
has the current date

Updating the new value to
be inserted

Define variables

15

SQL>CREATE OR REPLACE TRIGGER derive_commission_trg
 2 BEFORE UPDATE OF sal ON emp
 3 FOR EACH ROW
 4 WHEN (new.job = 'SALESMAN')
 5 BEGIN
 6 :new.comm := :old.comm * (:new.sal/:old.sal);
 7 END;
 8 /

Example: Calculating Derived Columns

Trigger name: derive_commission_trg
Timing: BEFORE executing the statement
Triggering event: UPDATE of sal column
Filtering condition: job = ‘SALESMAN’
Target: emp table
Trigger parameters: old, new
Trigger action: calculate the new commission
 to be updated

16

Controlling Triggers using SQL

n Disable/Re-enable database trigger

n Disable or Re-enable all triggers for

table

n Removing a trigger from database

ALTER TRIGGER trigger_name DISABLE | ENABLE

ALTER TABLE table_name DISABLE | ENABLE ALL TRIGGERS

DROP TRIGGER trigger_name

17

Using Database Triggers
¨ Auditing Table Operations

¨  each time a table is updated auditing information is recorded
against it

¨ Tracking Record Value Changes
¨  each time a record value is changed the previous value is recorded

¨ Maintenance of Semantic Integrity
¨  e.g. when the factory is closed, all employees should become

unemployed

¨ Storing Derived Data
¨  e.g. the number of items in the trolley should correspond to the

current session selection

¨ Security Access Control
¨  e.g. checking user privileges when accessing sensitive information

18

USER_NAME

SCOTT

SCOTT

JONES

TABLE_NAME

EMP

EMP

EMP

COLUMN_NAME

SAL

INS

1

0

UPD

1

1

0

DEL

1

1

MAX_INS

5

5

MAX_UPD

5

5

0

MAX_DEL

5

1

… continuation

Auditing Table Operations

19

Example: Counting Statement Execution

Whenever an employee record is deleted from database,
counter in an audit table registering the number of deleted rows
for current user in system variable USER is incremented.

SQL>CREATE OR REPLACE TRIGGER audit_emp
 2 AFTER DELETE ON emp
 3 FOR EACH ROW
 4 BEGIN
 5 UPDATE audit_table SET del = del + 1
 6 WHERE user_name = USER
 7 AND table_name = 'EMP’;
 7 END;
 8 /

20

USER_NAME

EGRAVINA

NGREENBE

TIMESTAMP

12-SEP-04

10-AUG-04

ID

7950

7844

OLD_LAST_NAME

NULL

MAGEE

NEW_LAST_NAME

HUTTON

TURNER

OLD_TITL
E

NULL

CLERK

NEW_TITLE

ANALYST

SALESMAN

NEW_SALARY

3500

1100

… continuation
OLD_SALARY

NULL

1100

Example: Tracing Record Value Changes

21

SQL>CREATE OR REPLACE TRIGGER audit_emp_values
 2 AFTER UPDATE ON emp
 3 FOR EACH ROW
 4 BEGIN
 5 INSERT INTO audit_emp_values (user_name,
 6 timestamp, id, old_last_name, new_last_name,
 7 old_title, new_title, old_salary, new_salary)
 8 VALUES (USER, SYSDATE, :old.empno, :old.ename,
 9 :new.ename, :old.job, :new.job,
 10 :old.sal, :new.sal);
 11 END;
 12 /

Example: Recording Changes

Whenever some details for an employee are updated, both the
previous and new details are recorded in an audit table to allow
tracing the history of changes. An insert operation cannot be
recorded with this trigger as old.empno has no value.

22

Restrictions for Database Triggers

n  Problem: impossible to determine certain values during
execution of a sequence of operations belonging to one
and the same transaction

n  Mutating tables: contain rows which change their
values after certain operation and which are used again
before the current transaction commits

23

SQL> CREATE OR REPLACE TRIGGER emp_count
 2 AFTER DELETE ON emp
 3 FOR EACH ROW
 4 DECLARE
 5 num INTEGER;
 6 BEGIN
 7 SELECT COUNT(*) INTO num FROM emp;
 8 DBMS_OUTPUT.PUT_LINE(' There are now ' ||

 num || ' employees.');
 9 END;
 10 /

SQL> DELETE FROM emp
 2 WHERE deptno = 30;

ERROR at line 1:
ORA-04091: table CGMA2.EMP is mutating, trigger/
function may not see it

Example: Mutating Table

Under the bar is code entered in SQL-PLUS
which triggers cascade_updates in this case.
Triggers are not executed directly.

24

SQL> CREATE OR REPLACE TRIGGER emp_count
 2 AFTER DELETE ON emp
 3 -- FOR EACH ROW
 4 DECLARE
 5 num INTEGER;
 6 BEGIN
 7 SELECT COUNT(*) INTO num FROM emp;
 8 DBMS_OUTPUT.PUT_LINE(' There are now ' ||

 num || ' employees.');
 9 END;
 10 /

SQL> DELETE FROM emp WHERE deptno = 30;

There are now 8 employees.

6 rows deleted.

Example: Mutating Table (fixed)
Now the trigger becomes a statement trigger
and the EMP table is no longer mutating.

25

Summary
n  Triggers change databases from “passive” to “active”

n  Triggers have Event-Condition-Action
¨  Event: I/U/D
¨  Timing: Before/After
¨  Granularity: Row-level/Statement-level

n  Usage:
¨  Auditing Table Operations
¨  Tracking Record Value Changes
¨  Maintenance of Semantic Integrity
¨  Storing Derived Data
¨  Security Access Control

26

Active Databases
Part 2: Classifications &

Scalability
CS561

Types of Triggers

n  Generated: based on some higher-level
specification
¨ Foreign keys, primary keys, unique constraints, etc.

n  Handcrafted: usually specific to some application
¨ Capture the application semantics

Why “Generated” Triggers

n  Triggers (active rules) are difficult to write
correctly

n  Idea:
¨ Trigger application specified at higher level

(declarative)

¨ Automatic generation of actual triggers

¨ Guaranteed Correctness

Classification of Usage

n  Generated Triggers
¨  Kernel DBMS: hard coded into kernel
¨  DBMS services: enhances database functionality
¨  External applications: creating triggers specific to application

n  Handcrafted Triggers
¨  External applications: creating triggers specific to application

“Generated” Triggers/ DBMS
Kernel
n  Referential integrity

¨  If foreign key in a table is deleted or updated, it causes an action
usually specified by user: set null/cascade

¨  Primary keys, Unique columns, etc…

n  Materialized views
¨  Set of triggers that keep data consistent

n  Either re-computes view, or
n  Better changes view each time base data is changed

“Generated” Triggers/ DBMS
Services
n Alerter

¨ When data changes, message can be sent to user

n Replication
¨  If a table is copied, a trigger will observe updates to

that original table and will change copied table.

n Audit Trails
¨ Monitoring any changes over a given table

“Generated” Triggers/ External
Applications

n Workflow management

n External tools with support for generation
of “Process Rules/Models”

“Handcrafted” Triggers
n  External Applications

¨  Straightforward use of triggers
¨  Application specific

n  Additional forms of “data integrity”
n  Could be used to compute derived columns
n  Or, enforce arbitrarily complex application-specific semantics

n  Examples:
¨  Business rules, supply chain management, web applications,

etc.

Challenges

Challenge : Semantics ?

n  What causes a rule to be triggered? (states, ops,
transitions)

n  At what granularity are rules triggered ? (after
tuple change, set level change, transaction, etc).

n  What happens when multiples rules are
triggered? (arbitrary order, numeric or priorities
suggested)

n  Can rules trigger each other, or themselves?

In general, many subtle design choices exist !

36

EMPNO

7839

7698

7788

ENAME

KING

BLAKE

SMITH

DEPTNO

30

30

30

BEFORE statement trigger

BEFORE row trigger
AFTER row trigger
BEFORE row trigger
AFTER row trigger
BEFORE row trigger
AFTER row trigger

AFTER statement trigger

Multiple Triggers at Same Event

EMP table

Challenge: Rule Analysis
n  Termination: produces a final state

n  Confluence : terminates and produces a final state that does not depend
on order of execution

n  Termination :
¨  Find cycles
¨  Examine rules in cycle for behavior
¨  Could determine that terminate in some cases
¨  Data dependent : even if at compile-time has cycle, still may be useful

n  In practice (Oracle) :
¨  Optimistic solution
¨  Terminate after 25 trigger invocations, and rollback

Scalable Trigger
Processing

Discussion of publication by
Eric N. Hanson et al
Int Conf Data Engineering 1999

CS561

Motivation
n  Triggers popular for:

¨  Integrity constraint checking
¨ Alerting, logging, etc.

n  Commercial database systems
¨ Limited triggering capabilities
¨  few trigger/update-type on table; or at best 100.

n  But : Current technology doesn‘t scale well
n  And, internet and web-based applications

may need millions of triggers.

Problem Definition
n  Given: Relational DB, Trigger statements, Data Stream
n  Find: Triggers corresponding to each stream item
n  Objective: Scalable trigger processing system

n  Assumptions:
¨ Number of distinct structures of trigger expressions is

relatively small
¨ All trigger expression structures small enough to fit in

main memory

Overall Driving Idea
n  If large number of triggers are created, then

many have the same format.
n  Triggers share same expression signature

except that parameters substituted.
n  Group predicates from trigger conditions based

on expression signatures into equivalence
classes

n  Store them in efficient main memory data
structures

Triggers for stock ticker notification

n  Create trigger T1 from stock
 when stock.ticker = ‘GOOG’ and stock.value < 500
 do notify_person(P1)

n  Create trigger T2 from stock
 when stock.ticker = ‘MSFT’ and stock.value < 30
 do notify_person(P2)

n  Create trigger T3 from stock
 when stock.ticker = ‘ORCL’ and stock.value < 20
 do notify_person(P3)

n  Create trigger T4 from stock
 when stock.ticker = ‘GOOG’
 do notify_person(P4)

Expression Signature

n  Idea: Common structures in condition of triggers
n 

 Expression Signature:
n  E1: stock.ticker = const1 and stock.value < const2

n 
¨  Expression Signature:

n  E2: stock.ticker = const3

n  Expression signature defines equivalence class of all
instantiations of expression with different constants

T4: stock.ticker = ‘GOOG’

T1: stock.ticker = ‘GOOG’ and stock.value < 500
T2: stock.ticker = ‘MSFT’ and stock.value < 30
T3: stock.ticker = ‘ORCL’ and stock.value < 20

Main Idea

n  Only a few distinct expression signatures,

build data structures to represent them
explicitly (in memory)

n  Create constant tables that store all different
constants, and link them to their expression
signature

Main Structures

n A-treat Network
¨ Network for trigger condition testing

n  For a trigger to fire, all conditions must be true

n Expression Signature
¨ Common structure in a trigger

n  E1: stock.ticker = const1 and stock.value < const2

n Constant Tables
¨ Constants for each expression signature

Predicate Index

Goal: Given an update, identify all predicates that match it.

hash(src-ID)

