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Active Filters
Motivation:

• Analyse filters  
• Design low frequency filters without large capacitors
• Design filters without inductors
• Design electronically programmable filters
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Some waveforms, to show the effect of filtering 

Frequency domain                  Time domain

Noisy sine

Low Pass

High Pass

Band Pass

Band Reject
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Filter types
Low pass High pass

Band pass Band Reject

Observe that a real filter is not sharp, and its transmission is not constant! 
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• Filters do not only change magnitude of signal
• Filters alter phase as a function of frequency, i.e. introduce delays
• The derivative of phase is a time delay
• All pass filters delay signals without affecting their magnitude
• All pass filters can be used to synthesise other filters:

• All pass filter based analogue filters are similar to the digital filters 
encountered in Digital Signal Processing

All Pass Filters
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The transfer function

• The transfer function is the Fourier transform of the impulse response
• Filters we can make have a rational transfer function:  the transfer 

function is  is a ratio of two polynomials with real coefficients. 
(strictly speaking this is called the “Padé approximation”: it states that 
any real function can be approximated by a rational function. The higher 
the degree of the polynomials the closer the approximation can be made) 
The notation is s=jω. The signals assumed to be sinusoid:

• The roots zk of the numerator polynomial are called the “zeroes” of H
• The roots pk of the denominator polynomial are called the “poles” of H
• The pole positions on the complex frequency plane entirely determine 

the filter properties. 
• Note that since s=jω the denominator is seldom zero
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Families of filters
• Filters are classified into different families according to how the 

passband, stop band, transition region and group delay look like.
• Most filters you are likely to encounter have a low pass power transfer 

function of the form :

• Pn is a suitable polynomial, or a polynomial approximation to some
desired function. Pn are tabulated in reference books.

• Some common filter families (determined by Pn,) are:
– Butterworth. Maximally flat pass-band, slow transition to stop band
– Chebyshev: Fast transition at the cost of pass-band ripple
– Inverse Chebyshev: Fast transition at the cost of stop-band ripple
– Elliptic: Fastest transition at the cost of ripple everywhere
– Bessel: Maximally flat group delay (almost linear dependence of 

phase on frequency)
• HPF, BPF, BRF, APF can be derived from a low pass prototype (next)
• Note that a fast passband - stopband transition results in a large 

variation of delay with frequency, i.e. unsuitable for digital signals!
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Pole-zero plots of Low Pass Filters

Pole locations determine filter response. The closer poles are to the 
imaginary axis the steepest the transition from passband to stopband.
a: Butterworth: poles on a circle
b: Chebyshev: Poles on an ellipse (sharper)
c: Elliptic: Like Chebyshev, plus zeroes on the imaginary axis (sharpest)
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• Write the desired transfer function.
• Find Z(s) so that the following voltage divider is equal to the transfer function.

Passive filter synthesis
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• Use R,L,C to implement Z(s); 
• Rs and YL are assumed known, usually real. The ideal cases Rs=0, YL=0 are trivial
• If Rs and Ys are not real we can add and subtract their imaginary parts from Z(s)
• There are many ways to make Z(s)
• We prefer “canonical forms”, which  use least number of components
• We commonly use “Cauer forms” which are canonical ladder networks.                          
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L1 L2 L3 Ln

L1C1 Cn
C1 L2C2 C3

Ln
Cn

C2

(b)(a)

Cauer forms 

Cauer forms are derived by a continued fraction expansion of Z(s):

First  Cauer form Second Cauer form
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2nd order filter transfer functions: Review
Second order filter transfer functions 
are all of the following form:

H0 is the overall amplitude, ω0 the 
break (or peak) frequency, and ζ the 
damping factor

ζ is related to the quality factor Q by: 
Q=1/2ζ

The 3dB bandwidth of an 
underdamped 2nd order filter is 
approx 1/Q times the peak frequency.

The coefficients A, B, C determine the 
function of the filter:
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2nd order filters are useful: we can always decompose higher order filters to a
cascade of 2nd order filters! 



Imperial College London – EEE   11L7 Autumn 2009 E2.2 Analogue Electronics
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Filters solve differential equations

Substitute:

To get:
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This is the transfer function of a 2nd order filter. It follows that the filter solves the ODE.

The impulse responses (IR) of lowpass, bandpass and highpass filters are related*: 

• The IR of the BP is proportional to the time derivative of the IR of the LP  
• The IR of the HP is proportional to the time derivative of the IR of the BP
• It follows that a loop of 2 integrators can implement any 2nd order filter. Such a loop is 
called a “biquad”. 

* (remember that H(s) is the Laplace  transform of the impulse response)

Consider the ODE:
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Filter transformations: LP HP

From a 2nd order low pass filter we can get a 2nd order high pass filter:
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If the components of a filter are replaced so that any impedance
dependence on ω is replaced by a similar dependence on 1/ω the filter 
changes from low pass to high pass
In practice we replace C with L and L with C so that:
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The same transformation generates a  low pass filter from a high pass filter.
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Filter transformations LP BP

From a 1st order low pass filter we can get a 2nd order band pass filter:
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In practice we replace the low pass elements, following the following recipe:
• all capacitors with parallel LC circuits, (open at resonance) and 
• all inductors with  series LC circuits (short at resonance)

1
n

n

C
L

ω
ω

=

ωn is the centre frequency of the filter. The BPF has the same BW as the LPF

,4 2n n B LPFf fδ πζω παω= = =
To get a band reject filter replace in the low pass prototype:
C series LC
L parallel LC
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Filter design from prototypes
Tabulated filter prototypes are usually given for low pass filters, with break frequency 
1 rad/s and load impedance 1 ohm

From a LP filter prototype to get a HP filter with the same break frequency by the 
mapping: f 1/f. 

• replace C with L and L with C
• component values so that new components have same Z as old. 
• for a 1rad/s prototype this means C 1/L, L 1/C

From a LPF we get a BPF of bandwidth equal to the low pass bandwidth by:

• Replacing each L with series LC resonating at ωn. L stays the same
• Replacing each C with parallel LC resonating at ωn. C stays the same
• Choosing the undetermined components to resonate at the filter centre frequency 
product 

From a high pass ladder LC filter we get a band-stop filter by applying the same 
recipe as going from low-pass to band-pass.

These rules arise from requiring components to have the required impedance at 
important points of the frequency response: The centre frequency and the band edge. 
(Remember that a LPF is a BPF centred at f=0!)
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Filter design from Ladder prototypes: component scaling
To scale the filter so it works at the required impedance level Z0 ohms:

To scale a low pass so that its break frequency is the required f0 Hz:

After these transformations we can use the transformations from low pass 
to the required filter function as described before

0 0 , C f C L f L′ ′= =

0 0/  , C C Z L Z L′ ′= =

Note: 
it is unusual to treat signal sources as pure voltage or current sources in 
professional engineering applications. (This would make circuits too noisy!)
In professional audio the standard impedance used is 600 Ohms.
In cable, video and television applications the standard is 75 ohms 
In most other radio frequency applications the standard is 50 ohms.
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1st order low pass filter: the “Integrator”
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“ideal” integrator Lossy integrator

Note: The ideal integrator is unstable at DC, and can only be used inside a 
feedback loop

With ideal op-amp:
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(a)

Vin Vout

(b)

R1

Vin Vout

C

R

C

R

1st order high pass filter: the “differentiator”

Ideal differentiator Lossy differentiator

Note: The ideal differentiator when implemented with real op-amps 
becomes a very sharp Band Pass filter (lab, homework exercise)!
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R1

Vin

C2

Vout

R2

C1

A simple band pass filter

Band pass filters are often a cascade of an LPF and an HPF,
In this example the op-amp acts both as a differentiator and an 
integrator. 
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2nd order low pass passive RC filter
R1 R2

C1 C2Vin

Vout

• Since the minimum value of x+1/x is 2
• It follows that passive RC 2nd order filters are OVERDAMPED
• The passive band pass filter transfer function calculation is part of 
experiment “Y” in the lab.
• Easiest way to analyse ladder networks is to construct successive 
Thevenin equivalent circuits starting from the source.

( ) ( ) ( )2 2
1 1 2 2 1 1 2 2 1 2 1 2 1 2 12

1 2 12
0 1 2

2 1 21

1 1
1 1

1 11/   , 2 = = 2
Q 2

H s
s R C R C s R C R C R C s s

Q

τ τ τ τ τ

τ τ τω τ τ ζ
τ τ τ

= =
+ + + + + + + +

= + + > ⇒ <



Imperial College London – EEE   20L7 Autumn 2009 E2.2 Analogue Electronics

Active RC Filters (“KRC”)

• The Q of a passive filter can be increased by the addition of feedback. 
In the following slides we will see several methods of doing this. The 
circuits are mostly known by the names of their inventors. 

• Some common families of active filters are:
– The Sallen-Key filter (finite amplifier gain)
– The Deliyannis-Friend filters (assumes infinite amplifier gain)
– State variable filters, such as KHN (several amplifiers)
– Tow-Thomas Biquadratic filters (several amplifiers, several 

possible transfer functions, possible to electronically program the 
filter function)

• Note: Although we show these filters made with op-amps, they can be 
made with ANY amplifying device, e.g. with bipolar transistors or 
FETs. 

• The actual device we use will have input and output impedance which 
we need to account for in the filter element value calculation.
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The Sallen Key Low Pass Filter (1)

R1 R2

C1 C2Vin

Vout
K

By superposition,  there are:
• An RC LPF in the forward signal path, of gain:

• An RC BPF in the (positive) feedback path, reinforcing Q
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The Sallen Key Low Pass filter (2)
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From the block diagram it follows that

A and B are both rational functions, with the same denominator:

( ) ( )

( )( )

1 1

2
1 1 1 1 2 2 1 1 1 2 2 2

1  , 

1 1

sR CA B
Q s Q s

K KH
Q KR C s R C R C s K R C R C R C

= = ⇒

= =
− + − + + +



Imperial College London – EEE   23L7 Autumn 2009 E2.2 Analogue Electronics

The Sallen Key Low Pass filter (3)
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For large enough K the circuit will have Q<0 and will become dynamically 
unstable, i.e. it will become an oscillator
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The Sallen Key High pass filter

C1 C2

Vin

Vout

R1 R2
K

By superposition,  there are:
• An RC HPF in the forward signal path
• An RC BPF in the (positive) feedback path, reinforcing Q
• Analysis very similar to that of the SK-LPF
• Detailed calculation left as a homework problem
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The Sallen Key Band pass filter

C1

C2

Vin

Vout
R1

R2

R3

K

This has identical in form passive band pass filters in the forward
and feedback paths, shown on the middle. The block diagram in the
right is the same form as the other SK filters. If R1=R3 then the two
filters are identical and A=B . The transfer function of each path filter is:
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The entire SK filter has a transfer function:
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This circuit is studied in exercise 4 of the  lab experiment ”Y”. 
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The Sallen Key Notch filter

Vin

Vout
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Networks A, B may be solved by nodal analysis or any other suitable method.
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Multiple feedback filters: “Deliyannis-Friend” (“DF”)

• Op-amp is ideal
• Inverting input is virtual GND, V=0, i=0
• Nodal analysis usually simple
•Tee-Pi transforms may simplify algebra

Low Pass Band Pass

All Pass
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“State Variable” filters - KHN

• “state variable filters” treat both the signal and its derivatives as variables 
• A low pass filter performs time integration on signal waveforms
• A high pass filter  performs time differentiation on signal waveforms
• Recall that filters are analogue computers which solve ODEs
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“State Variable” filters – KHN : analysis

• Block A is a weighted sum amplifier
• Blocks B and C are integrators
• Some maths: (after we get the constants K1 , K2, K3 by nodal analysis) 
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Another state variable filter: the Tow-Thomas “Biquad”

• the term “Biquadratic” or “Biquad” describes the 2nd order filter 
transfer function as a ratio of two quadratic polynomials 
• R1, R2, R3 act as logical switches. Their presence or absence 
determines the filter function as Low, High or Band Pass 
• This is a single output universal filter; its function can be switched.
• The Tow Thomas filter an be treated:

• By nodal analysis (easiest) or
• As a “state variable” filter (note the two integrators and the 
summing operators )
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Higher order filter synthesis using 2nd order sections
• A general filter transfer function is of the form:

• P(s) and Q(s) have real coefficients. To make a higher order filter:
– factor Q(s) into quadratic  and linear factors
– Implement factors as biquads
– Cascade biquad sections to obtain the original transfer function
– Note that P and Q have real coefficients, so that their roots are either 

real or come in conjugate pairs.
• The centre frequencies and damping factors of the sections required to 

implement standard forms (Butterworth, Chebyshev, Elliptic etc)  are 
tabulated in reference books. 

• Tables are also included in CAD software for automated filter synthesis
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A useful network transformation: 
Impedance inversion and the gyrator

A gyrator can perform
• impedance inversion (L C)
• Impedance scaling
• series parallel connection conversion!

“Proper” symbol of gyrator

Alternate symbol
Simple active implementation (very 
popular by analogue CMOS designers.
Each gm is made of a MOSFET or two!)
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Passive Gyrators

• ¼ wavelength transmission line

• Pi and Tee networks with 
negative elements

negative values of components 
will be added to preceding and 
subsequent stage impedances 
resulting in overall positive 
impedances!

Ladder LC filters can be 
synthesised only with 
capacitors and gyrators

Z, -Z is completely arbitrary, 
can be a filter transfer function.
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•Two identical gyrators in series are 
the identity operator

•Two different gyrators in series form 
a transformer, i.e. perform 
impedance scaling.

Gyrator function - basics

• A series (floating) component 
between two gyrators appears 
gyrated and grounded

• A grounded component 
between two gyrators appears 
gyrated and in series 
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More gyrator identities

how to make e.g. a series resonance circuit  when you only have 
parallel resonators in your component box… and vice versa
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A generalised Impedance Converter (“GIC”)

The GIC an be used as a gyrator to:
• Synthesise L from C
• Synthesise  C from L
• Synthesise a parallel LC from a series LC
• Synthesise a series LC from a parallel LC
• Scale component values
• Synthesise  the FDNR (next slide)
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FDNR: the frequency dependent negative resistor
• The filter transfer function of a circuit 
does not change if all components are 
multiplied by a constant K
•There is no requirement that the 
constant K is frequency independent!
• A useful multiplicative constant is         

which
• Transforms R C
• Transforms L R
• C FDNR

• FDNR is a fictitious circuit element with:

•A GIC can be used to implement an 
FDNR as illustrated on the right
• FDNR filters is one possible 
implementation of inductorless filters

2Y Dω=−

1/K jωτ=
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Example of FDNR transformation

Note that we can scale the filter coefficients by any factor of our 
choice, including jω. All we need is that the voltage divider works as 
intended at all frequencies!
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Switched Capacitor Filters: introduction

C

S1 S2

V1 V1

I R

(a) (b)

V2 V2

C

S

V S

S1

S1

Vout=-V

CSV

Vout=2V

C
S1S1

S

(a) (b)

•(a) And (b) circuits are equivalent as long as signal frequency is much 
smaller than switching frequency
•The SC equivalent resistance is proportional to frequency

• Switched Cap circuits can be used for voltage amplification 
• Switched Cap voltage amplifiers are called “charge pump” circuits
• examples of charge pump circuits: (a) V-gain=-1 ,  (b) V-gain=2
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Switched Capacitor Biquads

• Commercial chips contain several (typically 4) SC biquads in a package, 
which are then programmed and cascaded to synthesise higher order filters
• Frequencies of operation beyond audio (20kHz), typical constraint is 
product of fo and Q. Switching frequenies in the MHz (need > 10x of highest f)
• This example has a structure similar to the Tow-Thomas

Summing junction
Inverting
Lossy integrator Inverter

Inverting
Ideal integrator
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Beyond KRLC: high Q filters

• Crystals. They behave in a circuit as series or parallel LC resonators:
– “Series mode” show an impedance minimum at resonance
– “Parallel mode” show an impedance maximum at resonance
– Quality factors very high
– Low temperature variation, if necessary stabilised with “oven”

• Dielectric Resonators
– A magnetic ceramic bead placed near a coil
– Dimensions of bead determine frequency of resonance

• Surface acoustic wave filters
– Printed conductor patterns on piezoelectric crystals
– Filter function synthesised by interference of surface piezoelectric 

waves coupled to printed electrodes
– Filter function extremely sensitive to source-load impedance
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Summary

• Types of filters: LP, HP, BP, BR, AP
• Transfer functions
• Bode Plots review
• Lumped element synthesis – Ladder filters
• Prototypes and transformations
• 1st order filters
• 2nd order filter transfer function
• Active filters: SK, DF, KHN, TT
• Gyrators and Generalised Impedance Converters
• Introduction to Switched capacitor filters


