
Actor Programming with Static
Progress and Safety Guarantees

Actors
● Encapsulated, autonomous, concurrent active objects.
● Communicate via asynchronous message passing.

○ Full encapsulation, so no shared memory.

Minas Charalambides
Open Systems Laboratory
University of Illinois at Urbana-Champaign

Issues
● Deadlocks, livelocks, etc.
● Communication safety.

○ Avoid undesired situations.
○ e.g. full buffer vs empty buffer

Proposed solution
● Uses types.
● Tokens for obligations and requirements.

thread thread

mailbox mailbox

message

Proof Assistants as Macros
David Christiansen Indiana University

Accurate bindings

Proofs about macros

Tool integration

Fauxquet: Parquet in Scala
James Decker and Tiark Rompf

We look at Apache Parquet, a compressed, column store, file format used in the Hadoop ecosystem
in big data processing. We reduce some inefficiencies in this project (including a speedup of up to
25x), as well as move the format to Scala. Our future work includes taking a generative, multi-staged
approach to this format to further increase our efficiency gains as part of the Flare ecosystem at
Purdue University.

James Decker wishes to express his regret that he is unable to attend today due to a family
emergency. Come swing by the poster anyway for more information!

The Effect of Instruction Padding on
SFI Overhead
Navid Emamdoost

Software-based Fault Isolation
Google Native Client

Reducing instruction padding
Updating verifier

Coq proof

Ritwika Ghosh
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign.

Heterogeneous
platform

In seconds, with
guarantees

PCCL: Physical Coordination and Control Language

ORC²A Proof Assistant
A new proof assistant for pedagogical use in

introductory computer science courses

Grinnell College, Iowa
Jerry Chen, Medha Gopalaswamy,

Sooji Son, Peter-Michael Osera

Finding Races Due to Asynchrony
in Mobile Applications

Chun-Hung Hsiao
Satish Narayanasamy

• Important class: mobile, web, autonomous vehicles, …

• New class of concurrency errors to asynchrony

• Found 147 data races in 20 applications.

invoke(A)
A

wait(A)

invoke(B)
B

wait(B)

Synchronous Asynchronous

invoke(A)
A

invoke(B)
B

1. Causality Inference

R
W

2. Race Detection 3. Commutativity Filter

Cristiano Pereira
Gilles Pokam

[PLDI’14, ASPLOS’17]

Seonmo	Kim

• Ph.D student	at	University	of	Minnesota
• Title:	Bit-Vector	Model	Counting	using	Statistical	Estimation
• SearchMC:	Approximate	model	counter	for	CNF	and	SMT	formulas
• Quantitative	information	flow

• https://github.com/seonmokim/SearchMC

Program
Output

Sensitive	Input

Non-sensitive	Input

DCatch Poster Introduction
Haopeng Liu from Prof. Shan Lu’s group at University of Chicago

1. DCbugs

 -- Distributed timing bugs widely existing in cloud systems.

 -- Unique scalability, coverage, and accuracy challenges to bug detection.

2. DCatch

 -- A new Happens-Before model for real-world cloud systems.

 -- An effective tool to detect DCbugs during correct runs.

This work will appear at ASPLOS 2017

Affordable 2nd-class values for
fun and (co-)effect

Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I. González Alayón,
and Tiark Rompf

PurPL

Atul Sandur
2nd year Computer Science PhD student, Advisor: Prof. Gul Agha
University of Illinois at Urbana-Champaign

Poster: Programming Large Scale IoT Applications

 Keywords: adaptive control, simulation, distributed monitoring,
 probabilistic programming, model checking

Finding	Seman+cally-Equivalent	
Binary	Code	By	Synthesizing	

Adaptors	
Vaibhav	Sharma	

int musl_isalpha(int c) { return ((unsigned)c|32)-’a’ < 26; }

int glibc_isalpha(int c) { return table[c] & 1024; }

Ruby Tahboub, PhD Student

I apply PL and Compilers techniques to natively compile
SQL queries and speed up query engines.

1

Gregory Essertel, PhD Student

I use generative programming to generate efficient and
provable secure low-level code from high level language.

Flare: Scaling-up Spark SQL
with Native Compilation

In this work, we bridge the performance gap
between Spark SQL and what can be achieved by
best-of-breed query engines or hand-written low-
level C code.

Formal Proof of
features in
System D<:

Fei Wang
Dr. Tiark Rompf

Key words:
PL calculus (D<:)

Mechanical proof (Coq)
Strong Normalization

Grander Goals

We love Scala

Toward Fixed-Point
Optimization in LLVM

Nathan Wilson, KCG/UChicago
Hal Finkel, Argonne

Are we generating the most optimal code?

