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Abstract

Insurers match the cash flows of typically illiquid insurance liabilities, such as
in-force annuities, with government and corporate bonds. As they intend to buy
corporate bonds and hold them to maturity, they can capture the value attached to
liquidity, without running the market liquidity risk that is associated with having
to sell bonds in the open market. During the long consultation period dedicated to
the mark-to-market valuation of insurance assets and liabilities for the Solvency II
regulatory framework, CEIOPS noted the importance of the accurate breakdown of
the credit spread into its components, most notably the credit and non-credit (i.e.
liquidity) components. In this thesis we review many modelling efforts to isolate the
liquidity premium and propose a reduced-form modelling approach that relies on a
new, relative liquidity proxy.

Challenging the status quo when it comes to active and passive investment strate-
gies, products and funds, Exchange Traded Funds and ‘smart-beta’ products provide
investors with straightforward ways to strategically expose a portfolio to risk drivers,
raising the bar for traditional investment funds and managers. In this thesis, we
investigate how traditional sources of equity outperformance (alpha), such as small
caps, low volatility and value, translate to UK corporate bonds. For automated
trading strategies in corporate bonds, and those with specific factor exposure re-
quirements in particular, transaction costs, rebalancing and an optimal turnover
strategy are crucial; these aspects of building factor portfolios are explored for the
UK market.

Since the financial crisis, mathematical models used in finance have been sub-
ject to a fair amount of criticism. More than ever has this highlighted the need
of better risk management of financial models themselves, leading to a surge in
‘model validation’ roles in industry and an increased scrutiny from regulatory bod-
ies. In this thesis we look at stochastic credit models that are commonly used by
insurers to project forward credit-risky bond portfolios and the model uncertainty
and parameter risk that arises as a result of relying on published credit migration
matrices. Specifically, our investigation focuses on two violations of the Markovian
process that credit transitions are assumed to follow and statistical uncertainty of

the migration matrix.
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Chapter 1

Motivation to the PhD Thesis

This thesis is the end-product of my PhD research on the topic of liquidity, fac-
tor investing and model uncertainty, specific to the corporate bond market in the
United Kingdom. All topics of research covered in this thesis have been, or are
currently, ‘hot’ topics affecting the corporate bond market, whether purely from an
insurer’s perspective, a regulatory perspective or a general investor’s perspective. In
the section that follows, an introduction to the topics in this thesis and how it fits
within the body of literature, are provided. Before discussing the motivation and
background to the research presented in this PhD thesis, I feel it is necessary to men-
tion how this thesis came about. This research was conducted under the umbrella
of the Actuarial Research Centre (ARC) of the Institute and Faculty of Actuaries
(IFoA) and is the result of one of its two inaugural projects. Financial assistance
was provided by Partnership Assurance Ltd., with support from jointly the IFoA
and ARC-appointed supervisors from Heriot-Watt University. The purpose of the
PhD studentships under the ARC are to encourage collaboration between academia
and industry to generate impact. Partnership is a specialist provider of (enhanced)
retirement annuities with more than 5 billion pounds under management, looking
after affairs for more than 120,000 policyholders. The need for in-house, longer term
research into the liquidity and investment practices in the domestic bond market
brought Partnership and the ARC together. As a result of the strong desire to
generate insights for the benefit of Partnership and industrial partners, the topics

covered in this thesis share a practical and data-centric philosophy.



Chapter 1: Motivation to the PhD Thesis

1.1 Regulatory Environment of the Liquidity Pre-
mium in Solvency 11

In their Consultation Paper 40, the Committee of European Insurance and Occupa-
tional Pensions (CEIOPS) discussed the discount rate used to calculate the present
value of future cash flows of insurance obligations for the purpose of setting technical
provisions. With the release of the consultation paper, concerns were raised because
of the absence of a liquidity premium. Suggesting that the lack thereof would in-
crease the cost of providing annuities in the UK market, news outlets reported that
this cost would subsequently be passed on to newly written annuities.

Where assets are illiquid, investors demand an additional premium as a reward
for the risk of incurring additional costs and for the uncertainty about costs in case
the asset has to be sold at a future date. This additional premium leads to an
increase in the implicit yield of the instrument. However, the liquidity premium
is only one component of the total spread between the yield of a credit-risky asset
and the liquid risk-free rate. This spread also includes a compensation for other
risks such as expected credit losses, credit risk (unexpected credit risk/losses) and a
‘residual’ element, which could represent compensation for anything from taxes to
conversion costs.

The cash flows of annuity contracts are more predictable than other types of
insurance contracts and therefore easier to match using trade-able assets. Generally,
gilts and corporate bonds are used to match annuity cash flows and these bonds will
be on the books of an insurer with the intent to hold until maturity. The bondholder
can mitigate against the risk attached to the part of the credit spread attributed
to liquidity in a straightforward way; holding the bond until maturity. Then, the
argument goes that the bondholder, in this case the annuity provider, can earn the
value of the liquidity risk premium in their valuation.

Thus, to determine the part of the spread attributable to liquidity risk, the chal-
lenge that has to be faced is the accurate breakdown of this spread into its compo-

nents. In this thesis, the focus lies with the research to establish, using data-driven



Chapter 1: Motivation to the PhD Thesis

methods and practical for potential industry implementation, the size and dynamics
of the compensation for the ‘illiquidity component’ of corporate bond spread. This
thesis does not attempt pass judgement, nor does it attempt to quantitatively de-
scribe or stress test values of asset and liabilities under any of the proposed pieces of
legislation that discusses a liquidity premium, adjustment factors or discount rates
of the last five years. The remainder of this motivation briefly covers the timeline of
the regulation and considers the way the Matching Adjustment addresses the issue
of the “liquidity premium” before coming back to the core of the research to review
briefly the types of analyses that are being used to disentangle the credit spread and
how this thesis contributes to that discussion.

In their final advice in the consultation, CEIOPS concluded further work on the
liquidity premium for technical provisions was necessary and a Task Force was cre-
ated. The European Commission requested CEIOPS to run the fifth Quantitative
Impact Study (QIS 5) for Solvency II, which was published in March 2011. Sub-
sequent important milestones in the evolution of the liquidity premium include the
Long Term Guarantees Impact Assessment, published in June 2013 by the Euro-
pean Insurance and Occupational Pensions Authority (EIOPA) and the Omnibus II

directive that passed European Parliament in June 2014.

e QIS 5 The liquidity premium is recognised and can be calculated using a
straightforward formulaic approach: LP,ssets = max(0,z x (Spread —y)). QIS
5 has taken liquidity premium estimates from three pieces of external (prac-
titioner) research and concludes that a simple approach can be calibrated
to reach a good consensus among estimates; parameters of x = 50% and
y = 40bps are suggested. It notes the aim of practitioners to use the liquidity
premium as a tool to mitigate pro-cyclical behaviour of the solvency balance
sheet during market turmoil. It also includes a ‘three bucket system’, where
the categorization of the liabilities into these three buckets depends on specific
product features and the second bucket with an application of 50% of the illig-
uidity premium is applied where liabilities do not fall under one of the other

buckets.
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e Long Term Guarantees Impact Assessment Two new concepts are ex-
plored in this report; a Matching Adjustment (MA), that brings relief to qual-
ifying liabilities backed by qualifying assets and a Counter Cyclical Premium
(CCP) which could be activated to increase the discount factor, at EIOPA’s
discretion in the event of a sudden fall in financial markets. The MA is an al-
lowance that can be applied to the discount factor when sets of criteria are met
for the insurance liabilities and the criteria on the matching of its cash flows
to assets held. The report considers several implementations of the MA such
as the ‘classic” and ‘extended’ Matching Adjustment. Regarding the CCP, the
report expresses concerns over the triggering mechanism and recommends it

is replaced with a ‘volatility rebalancer’ that would operate automatically.

e Omnibus IT The expected cash flows from the MA Assets must replicate
each of the expected cash flows of the MA Liabilities in the same currency,
they must be fixed, cannot be changed by the issuer or any third party and
there must be no mismatch giving rise to material risks. The size of the MA
is determined by the (corporate) bonds held as MA Assets and are based on
the spread less cost of expected defaults and downgrades (referred to as the
Fundamental Spread), with a minimum of 35% of average long term spreads.

The Fundamental Spread is set by EIOPA on a monthly basis.

Whereas the research in this thesis is motivated by a regulatory need (to break
down the credit spread in liquidity and non-liquidity components), at its core lie
statistical methods that are used to isolate the liquidity premium on corporate
bonds. There is a considerable body of research that this thesis contributes to and
the aim of the proposed modelling approach is to devise a modelling strategy that
is straightforward enough to implement, relies on readily available data only and
models liquidity at the level of individual bonds.

The modelling attempt in this thesis is far from the first study to concern itself
with the disentanglement of the credit spread of corporate bonds. Chapter 2 dis-
cusses previous modelling efforts in great detail, highlighting how this thesis aims to

contribute to the existing body of research. Models of the firm, or structural mod-
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els, describe the dynamics of pricing corporate debt and find their roots in Merton
(1987). The original Merton model has seen many extensions over the last decades,
most of which attempt to investigate particular aspects of a firm in greater detail;
some of these models are discussed and these innovations can pertain to incorporat-
ing stochastic interest rates, allowing for complex capital structures or allowing for
endogenous default boundaries. The model innovations however, are pedagogical in
nature and aim to highlight how particular characteristics of the firm, or assump-
tions in the model, translate to model outcomes such as estimated probabilities of
default. Empirical evidence continues to show these models are capable of captur-
ing the probability of defaults rather accurately, but fail to model credit spreads,
especially at the level of individual assets.

The Bank of England published an influential working paper (Churm and Pani-
girtzoglou, 2005) where a structural model (Leland and Toft, 1996) was calibrated
to the UK corporate bond market and the liquidity premium computed as the resid-
ual of model spreads and observed market spreads, computed at aggregate market
levels. Other modelling efforts include CDS-based methods, where the reasoning is
that the CDS premium is compensation for only the credit component of the credit
spread which would make for an easy computation of the liquidity premium; unfor-
tunately empirical evidence demonstrates this is not as straightforward. By far the
largest group of models are looking at the extent to which illiquidity is priced in
corporate bonds through statistical models. Generally, the literature of statistical
models use regression analyses to relate some proxy for liquidity to observed bond
prices/spreads, of which the most thorough treatment can be found in Dick-Nielsen
et al. (2012). These statistical models vary widely in the time period under study,
the sample of bonds that are investigated and the data requirements that come with
the model; most importantly, the liquidity proxy that is chosen has tremendous ef-
fects on model outcomes. This thesis is of a similar nature and therefore suffers
from some of the same pitfalls, but attempts to address several others explicitly;
the model most notably constructs a new liquidity proxy, uses only readily available

bond data and explicitly allows for the frequent estimation of bond-level premia.
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1.2 Rise of ETFs and Smart Beta Products

Exchange Traded Funds (ETFs) have continued to present both challenges and
opportunities for the traditional investment management industry as well as insti-
tutional and retail investors. Perhaps fuelled by persisting low yield in fixed income
markets, the ETF hype also saw a tremendous increase in both the number of fixed
income focussed ETFs and inflows into those ETFs, with fixed income ETFs seeing
the largest inflows in January 2016 when investors poured 13 billion US dollars in
US-based fixed income ETFs.

Exchange Traded Funds which are commonly referred to as falling under the
umbrella of ‘smart beta’ funds, continue to be at the centre of a debate of active
versus passive management and continue to grow in size, with 950 products currently
on offer and more than 475 billion dollars invested (December 2015 estimates by
Morningstar (Johnson et al., 2016)).

The first index trackers surfaced in the early 1970s and tracked the performance
of DJI 30 stocks, on which Malkiel (2007) commented in his book (first published
in 1973) that ‘What we need is a no-load, minimum management-fee mutual fund
that simply buys the hundreds of stocks making up the broad stock-market averages
and does no trading from security to security in an attempt to catch the winners.
Whenever below-average performance on the part of any mutual fund is noticed,
fund spokesmen are quick to point out ’You can’t buy the averages.” It’s time the
public could’. Standard index trackers do exactly this, with very low expense ratios.
Research by Morningstar (Johnson et al., 2016) suggests that strategic beta ETFs
are on average more expensive than their market-cap weighted counterparts with
a total expense ratio up to three times higher on average, but note that fees have
been falling and are expected to continue falling as the market for smart products
matures and competition intensifies.

One could argue that the ‘active’ element of strategic-beta ETF's justifies higher
fees, but investors should remember that fees are a great predictor of future per-
formance over the long term and that the costs of running smart indices are not

necessarily significantly higher than the costs of maintaining a standard market



Chapter 1: Motivation to the PhD Thesis

weighted fund. Therefore, it is reasonable to question whether the higher costs are
justified and investors need to consider carefully whether their belief in the merits
of the underlying strategy over long time horizon justifies the higher expense.

The roots of ‘smart beta’ products can be traced back all the way to early days
of Modern Portfolio Theory (Markowitz, 1952), where holding negatively correlated
assets reduced a portfolio’s risk. In the 1960s, this led to the development of the
Capital Asset Pricing Model (CAPM), where the concept of ‘beta’ first made an
appearance. Representing the systemic risk and return of a fully diversified market
portfolio, this beta is generally captured by passively managing a portfolio against
a market-capitalisation weighted (market cap) benchmark. Later, Jensen (1968)
introduced ‘alpha’, which represents the outperformance. If beta is delivered through
passive management and alpha through active management, where does ‘smart beta’
come in?

Weights according to market capitalization might not necessarily describe a ‘fully
diversified” investment as suggested in a CAPM world. Currently, Apple and Mi-
crosoft account for more than 20% of the NASDAQ 100, even though the index
consists of 100 stocks, these can be considered individual weights that represent
an overweighting towards any single asset. Consequently, a vast array of smart
beta strategies have been built, typically involving analytics and screening to build
passive portfolios of assets weighted by almost any criteria other than market cap.
Rather than an attempt to create a better way of building a fully diversified in-
vestment by using alternative weights, these funds might strategically expose the
resulting portfolio to underlying factors/constructs. This strategic exposure can be
interesting (for generating traditional alpha) and investors in ETFs can easily ex-
pose their portfolio to risks in order to achieve or enhance, for example, the risk
and reward trade-off they are after. Since alpha is considered a measure of outper-
formance, it is common practice to judge investments and portfolio managers by
their alpha statistics as an indication of ‘true’ skill, but measurement of alpha is
far from straightforward. Most importantly, one needs to distinguish between alpha

and beta, a line which can be very fuzzy indeed. This performance measurement has
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been the subject of many discussions, where Kidd (2014) very eloquently describes
how certain investment strategies, capitalizing on systematic return drivers ‘occupy
the space between traditional beta and alpha’.

This thesis aims to capture the effect of some well-documented factor risk premia
(systematic return drivers) from (international) equity markets, applied to the cor-
porate bond market. These phenomena are well-established in academic literature
and are the building blocks or philosophy of many traded alternative/strategic/smart
beta ETFs and include risk drivers such as Value, Small Caps and Low Volatility.
Not only are comprehensive reviews of the risk and return characteristics of sev-
eral factor premia in the corporate bond market sparsely researched, the thesis also
contributes to the existing body of research by quantifying the impact of corporate
bonds trading in an illiquid market, bearing non-negligible transaction costs. To
further the treatment of quantitative factor investing in corporate bonds, the thesis
challenges the typical fixed holding period (6-12 months) under which strategies are
typically evaluated, with allocated opportunities for rebalancing. Rather, a flexible
rebalancing model is constructed that aims to maximise returns net of transaction
fees as a result of diluted factor exposure and decreased portfolio turnover.

The methodology for arriving at factor portfolios, which is the ‘secret sauce’ in
true smart beta funds, is extremely simple in definition, yet not necessarily out of
touch with reality. Using some results from the statistical investigation earlier in
the thesis, we use the attractive properties of the newly created liquidity proxy to
build illiquidity factors that will not only give us insight into the performance of
underlying constructs, but might also be used to estimate (market-wide) liquidity
premia.

Special attention is given to an illiquidity factor definition as an alternative way
of deriving the liquidity premia of subsets of the investment grade market. Based on
simple (‘dumb’) specifications of the factor portfolio, a nearly model-free approach
is used to see whether estimates of liquidity premia arise by observing the risk and

return characteristics of the portfolio.
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1.3 Financial Risk of Non-Financial Risks: Model
Risk

Mathematics has been the cornerstone for innovation in the financial sector, from
the Nobel prize winning Black-Scholes formulae (Black and Scholes, 1973) to the
bundling and trading of assets in the early 2000s. Regardless of the root causes and
catalysts of the financial crisis, the aftermath of the financial crisis saw repeated calls
for the urgent need to gain better insights into the risks of mathematical modelling.
Articles in popular news outlets (Salmon, 2009) reporting that Li’s (1999) Gaussian
copula is ‘The Formula that Killed Wall Street’, fail to distinguish between the merit
of a mathematical construct, the assumptions in applying a mathematical theory
and the misjudgement or disregard of the limitations presented by mathematical
model. The aftermath of the crisis has most definitely led to increased scrutiny
of mathematical modelling, which can only be encouraged, but in itself passes no
judgement on the use of mathematics in finance.

Yet, both industry practice and regulatory oversight frequently fail to acknowl-
edge adequately the risk that models themselves carry, despite this issue being high-
lighted for a considerable time (examples include Hendricks, 1996 and Berkowitz and
OBrien, 2002). After all, the existing literature is relatively sparse on quantifying
model risk and generally only looks at back-testing as a means of assessing model
risk.

Model risk and uncertainty should be an integral part of the risk management
function and whereas quantifying model risk can be difficult, the concept of model
risk is intuitive to define. Essentially, all financial models are wrong in the sense
that they represent a simplification to a real-world phenomenon. However, there are
many potential models to describe any particular phenomenon of financial markets
including option pricing, hedging strategies or portfolio allocations; the simplifica-
tion depends on the chosen model. To describe a real-world phenomenon, one firstly
has to decide which model to use from a large pool of potential and seemingly valid

candidate models. After choosing a specific model, one needs to decide on model pa-
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rameters, which in turn can either be entirely subjective or can be prone to indirect
subjectivity as one needs to choose calibration methods and calibration/validation
data. This leaves the modeller exposed to both model and parameter risk. Chap-
ter 4 aims to study some of the model and parameter uncertainty that comes with
projecting forward credit-risky instruments using a stochastic credit model.

Model risk and model uncertainty, or parameter risk and parameter uncertainty
are commonly used interchangeably (as are the more general concepts of risk and
uncertainty). In this thesis these terms are mostly used interchangeably in the
empirical work, but it is worth making a distinction between the two concepts,
based on the seminal work published by Knight (1921). His work distinguishes

between two situations;

e The probabilities of every possible outcome are known

e The probabilities of every possible outcome are unknown

The latter situation is referred to by Knight (1921) as uncertainty whereas the
situation in which a probabilistic description of outcomes can be made, is referred to
as risk. Naturally, risk is a special case of uncertainty and a far better situation to
be in than uncertainty, as risk allows for risk management, that is, taking advantage
of the known information about probabilities to act in a way that minimizes some
function concerning adverse effects.

Extending the concepts of risk and uncertainty to financial models, a situation
where a modeller has to choose a model (P) from a set of possible models (P) would
be referred to as model uncertainty. If every model P € P can be described by
the parameter set f from a space of parameters (©), one speaks about parameter
uncertainty. However, if a probability measure R is available on P on the set of
possible models (or parameter space ©) that indicates the model as the correct
model, one deals with the model risk (or parameter risk).

Whereas mathematical models of the physical world date back hundreds or thou-
sands of years in physics, mathematical models and stochastic models in particular,

are a far more recent trend in finance, often credited to Bachelier (1900). Comparing
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the modelling of financial markets and the modelling of classical mechanics, one can
easily observe the tremendous complexity of the financial markets given the many
forces that are at play, and the influence of those forces are non-negligible and ever-
changing. One could argue that given the endless possibilities to simplify financial
processes, many different models are competing with each other at all times, leading
to (true) model uncertainty. Parameter uncertainty is more difficult to pin down as
in most models, it is likely that some probabilistic measure exists around the true
parameters, which would lead to model uncertainty and parameter risk according
to the classification by Knight (1921); hence the title of this Chapter.

Whereas the focus in Chapter 4 lies with the model uncertainty and parameter
risk in stochastic credit models and specifically the risks associated with the use of
readily-available migration matrices, the modelling of liquidity premia in Chapter
2 also touches upon the topic of model risk heavily. Chapter 2 reviews many im-
plementations of statistical models and structural models that have been used to
extract liquidity premia. In particular it stresses not only the model uncertainty of
trying to estimate liquidity premia, but also the parameter risk of structural models;
these models have many, rather complex parameters, which makes for a subjective
calibration process.

With the importance of model and parameter risk highlighted and the concepts
defined, the question arises how to study the model and/or parameter risk of a
modelling challenge. Danielsson et al. (2015) argue that back-testing is a relatively
poor method to capture model risk as it is highly dependent on assumptions about
the statistical distribution of financial variables, for which, almost by definition,
insufficient information exists. In the same work, they argue that looking at the
disagreement or discrepancies amongst candidate models is a far superior method
of assessing model risk. They find that market risk models exhibit model risk that
becomes particularly apparent during periods of financial turmoil. They argue that
this is particularly concerning as risk models are designed to manage the risks of
crisis. However, not only is market crash data rare and models would struggle to

capture these infrequent events, the risk management function is also likely to place
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an emphasis on the management of day-to-day risks. Danielsson et al. (2015) note
however that of particular concern they find that financial turmoil is considered
exogenous to the model.

The model risk assessment in this thesis is concerned with stochastic credit mod-
els and takes a similar approach to Danielsson et al. (2015) in that the ultimate
outcomes of a typical simulation exercise are compared against the outcomes using
several competing models. The competing models are investigated for the risk asso-
ciated with one aspect of credit models only; the specification of migration matrices
that form an integral part of the model.

When used in simulation exercises, the migration matrices are vital to the
stochastic evolution of an obligor’s credit quality and the matrices are seen as an
exogenous input, generally taken directly from rating agencies’ publications. The
matrix used is generally the non-sector specific, long term (30 year) average matrix,
as computed and provided by the rating agency. There is a disregard for the mod-
elling that is used to arrive at rating matrices or the assumptions underlying the
matrix as a Markov Chain to project forward credit ratings.

Using raw data, that is, rating event data, this thesis attempts to quantify the
model risks embedded in typical stochastic credit models and refers to these risks as
risks of ignorance. Investigating the risk of ignoring two non-Markovian properties
of the rating process that are well-established (time homogeneity and rating momen-
tum) and additionally investigating the risk of ignoring statistical uncertainty in the
best estimates of the migration matrices, model risk is quantified by comparing risk
measures of simulated credit-risky bond portfolios across competing models.

The research in this thesis may be relevant to any application of stochastic credit
models and may be of particular interest to projections of spreads over long time
horizons, such as the simulations from an Economic Scenario Generator (ESG).
For companies relying on solutions provided by external ESGs, the analysis might
provide some guidance to interpreting the uncertainty in the produced estimates
or might serve to start meaningful discussions regarding the model risk with their

provider. For those building their own stochastic credit models, the analysis illus-
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trates the potential added value of incorporating the modelling of the migration
matrix from first principles rather than relying on migration matrices that are read-
ily available. Not only can the model be better tailored to its specific purpose, it

allows for a comprehensive review of the some of the embedded risks in the model.
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Chapter 2

Quantifying the Liquidity

Premium on Corporate Bonds

2.1 Introduction

In 2009 the Committee of European Insurance and Occupational Pensions (CEIOPS)
set up a special task force to investigate the Illiquidity Premium. In March 2010
the task force published its findings and argued for the introduction of an illiquid-
ity premium. The argument made by the insurance industry is simple in principle.
The cash flows associated with annuity contracts are predictable and easy to match
with traded assets; gilts and corporate bonds are used to match liability cash flows
and will be held until maturity. The yield on a corporate bond is higher than the
yield on a ‘risk-free’ gilt or swap, with the additional yield referred to as the credit
spread. This credit spread compensates investors for excess risk the holder bears;
for example, the issuer of the bond may default, the issuer of the bond may get
downgraded and the bond may be difficult to convert to cash, i.e. it is illiquid.
Whereas the default related risk is always present and cannot be fully diversified
away, the difficulty to turn a bond into cash is easily avoided by holding the bond
until maturity. The argument goes that the bond holder can capture the value of
that liquidity risk premium in their valuation. The difficulty lies in calculating or
even defining the liquidity of insurance liabilities, as it cannot be easily compared

to the liquidity of assets. For some sceptics this fundamental issue is where the
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insurer’s argument breaks down. On the other hand, CEIOPS defines the liquidity
of liabilities as the degree to which a liability’s cash flows are predictable, since
predictable cash flows can be replicated using illiquid assets. This implies that the
definition of ‘illiquid’ liabilities excludes liabilities for which cash flows are not as
predictable (because the policyholder can surrender their policy before the redemp-
tion date for example). Determining the eligibility of liabilities based the proposed
definition of ‘predictability’ is problematic since the relatively unpredictable cash
flows, can nonetheless be matched with a combination of bonds and derivatives that
can be held to maturity. In its first report in 2010, the CEIOPS task force states
that ‘to determine the part of the spread attributable to liquidity risk, the challenge
that has to be faced is the accurate breakdown of this spread into its components’
(CEIOPS, 2010). In the same report it offered a simple formula that could be used
as a proxy for the Liquidity Premium, based on a fixed percentage of the spread.
The calibration of this one parameter would determine the liquidity premium and
issues were raised immediately to the potential subjectivity and the frequency of
calibration.

The technical issue of quantifying the Liquidity Premium on corporate bonds
is the focus of this Chapter. In particular, this Chapter focuses on a review of
popular (mathematical) methods of corporate spread decompositions and assesses
their results and practical use. Previous work regarding spread decompositions had

four major issues making industry adoption problematic:

e outcomes relied heavily on chosen sample of bonds, time period or require the

calibration of many parameters

e modelling techniques required input data that is simply unavailable for a large

part of the relevant bond universe

e estimates of liquidity premium are aggregated and do not account for differ-

ences in for example rating, sector, duration or seniority and lastly

e all estimates are at low frequencies (monthly or quarterly)
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Academic literature has studied the effect of illiquidity on corporate bond prices
extensively over the past three decades, from both theoretical and empirical per-
spectives. Amihud et al. (2006) discuss a series of asset pricing models in which
frictional costs lead to higher expected returns, compensating investors for investing
in illiquid assets. The work in Amihud et al. (2006) is a special case of Amihud
and Mendelson (1986) where investors have exogenous time horizons and assets bear
illiquidity due to exogenous trading costs. Amihud et al. (2006) and Acerbi and
Scandolo (2008) also discuss the heterogeneity of corporate bond investors with re-
spect to expected holding times and how these different groups lead to a market
equilibrium in which investors with short expected holding periods hold very liquid
assets and investors with the longest expected holding periods hold illiquid assets.

A related concept in asset pricing theory is that of the marginal investor that
ultimately determines an asset’s price (Sharpe, 1964; Cochrane, 2005). With respect
to the corporate bond market, this raises the question whether there are sufficient
hold-to-maturity investors to take up the entire supply of corporate bonds; if suf-
ficient long-term investors are vested in the market the yield spreads would only
reflect credit factors and liquidity premia would be very small.

Empirical literature investigates whether illiquidity is priced by relating bond
prices to various proxies for liquidity using a reduced form modelling approach, but
also aims to quantify the liquidity premium as part of the credit spread. In addition
to using reduced form models to quantify the liquidity premium, structural models
of default (for example Merton, 1974 and Leland and Toft, 1996) have been used, as
have direct computation methods (for example Breger and Stovel, 2004 and Koziol
and Sauerbier, 2007). Section 2.2 discusses the empirical literature in more detail.

With the focus solely on the quantitative measurement of liquidity premia in
the corporate bond market, this Chapter leaves the regulatory aspects of market
consistent valuation, matching assets, discount factors and pro-cyclicality far behind.
In this Chapter, the liquidity premium is defined as the difference in yield to maturity
of a bond relative to the yield on a hypothetical perfectly liquid bond with otherwise

identical characteristics. To an investor who is prepared to buy and hold to maturity,
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the liquidity premium represents the expected reward, per annum, in return for
sacrificing the option to sell a bond before maturity. Any investor who plans to or
might need to sell before maturity will, on average, earn a lower premium than the
estimated liquidity premia.

A new methodology for estimating liquidity premia on corporate bonds is formu-
lated, addressing some of the pitfalls of other modelling approaches. Using quoted
bid-ask prices and a comprehensive dataset (Oct 2003 - Jul 2014) of end-of-day bond
characteristics and statistics (GBP investment-grade), a liquidity measure, uncorre-
lated with bid-ask spreads and bond characteristics, is derived. This new liquidity
measure is used to extract liquidity premia, but the liquidity score on individual
bonds can be a useful tool in portfolio management in itself.

In addition to deriving a new liquidity measure, the research in this Chapter
estimates liquidity premia on a more granular level than existing literature. Daily
cross-sectional regression analyses allow estimation of liquidity premia at the indi-
vidual bond level, on a daily basis. The research in this Chapter is novel in the
sense that the same methodology for estimating liquidity premia is applied over a
relatively long period of time (11 years), capturing both the benign economic cli-
mate prior to the financial crisis, the financial crisis, and more recent years. The
modelling approach of daily cross-sectional regressions also allows for the evolution
of model parameters to be studied. In particular, the time-varying nature of liquid-
ity premia, both in basis points and in proportion of total credit spread, is clearly

visible.

2.2 Review of Literature

Liquidity is regarded a desirable property of both financial markets and asset classes
in aggregate and individual securities. Before delving into attempts at defining
liquidity, it is important to distinguish between two ‘types’ of liquidity. Liquidity in
financials markets can generally refer to either liquidity in funding, or liquidity in
trading. Following Brunnermeier and Pedersen (2009), these two aspects of liquidity

can be defined as follows;
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e Funding liquidity is the ease with which market participants can obtain funding
e Market liquidity is the ease with which an asset can be traded.

Even though this Chapter is primarily concerned with so-called market liquidity
rather than funding liquidity, the two cannot be seen in total isolation, especially
during periods of (extreme) market distress when funding and market liquidity can
lead to a spiral of illiquidity (Brunnermeier and Pedersen, 2009). Brunnermeier and
Pedersen (2009) argue that their mutually reinforcing effect during crisis periods
causes well-known liquidity phenomena such as ‘flight-to-quality’. When traders
(speculators, hedge funds, investment banks, all marked-to-market) buy a security,
they are required to use some of their own capital (difference between security’s
price and its collateral value) to finance the trade. Similarly, short selling requires a
margin on all positions. Traders are less willing to put on trades if funding is sparse,
especially in capital-intensive securities, which has direct consequences for liquidity
across the entire market.

Market liquidity is difficult to define, especially since different markets partici-
pants (for example, day traders and pension funds) and different sides of the market
(buy or sell), might have different requirements of a liquid market. Various defini-
tions are offered by recent literature and this section aims to extract all aspects of
liquidity that might need to be considered when evaluating the liquidity of a market
or individual security.

In its Stability Report in April 2007, the Bank of England (2007) argues that
liquidity risk, defined as ‘the harmful consequences of illiquidity’, is present when
‘one cannot easily offset or eliminate a position without significantly affecting the
market price’. Linking liquidity directly to adversarial movements in market price is
likely to describe one aspect of liquidity, as the existing body of empirical research
also often considers the price impact of trades when evaluating liquidity. However,
on its own this definition is rather narrow in scope and many other aspects of
liquidity are likely to come into play.

Taking a step back, the theory of market micro-structure studies market liquidity

in the first instance. Market micro-structure theory is defined by O’Hara (1995)
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as ‘the study of the process and outcomes of exchanging assets under a specific
set of rules’. While much of economics originates from the mechanics of trading,
micro-structure theory focuses on how specific trading mechanisms affect the price
formation process. Kyle (1985) identifies three characteristics of a market that

describe its liquidity:
e Tightness: size of the spread between bid-ask prices

e Depth: maximum trade size / volume that does not affect current prices,

reciprocal of equilibrium price to trade volume
e Resilience: speed with which the price impact of trades disappear

Even though these three dimensions of market liquidity are unlikely to describe
all aspects of liquidity, they are well-established. These dimensions form the basis of
several factors that Amihud et al. (2006) identify as the main elements affecting the
micro-structure of a market and the market liquidity of its traded assets: exogenous
transaction costs, private information, inventory risk and search friction.

Exogenous transaction costs are costs incurred by both/either the buyer and/or
seller of a security every time the security is traded. These costs can include trans-
action taxes, order processing costs and broker fees. Dealers will adjust their quote
spread to protect themselves, on average, against counter-parties with superior
knowledge from which a trading loss will occur. Inventory risk refers to the wider
spread dealers will quote for holding an inventory in a security that deviates from
their desired inventory and search friction describes how an investor might be mak-
ing concessions on price if he cannot find a counterparty for his trade; specifically,
it refers to the opportunity cost of an investor between an immediate transaction
(price concession) and waiting for willing counter parties in the market.

The resulting bid-ask spreads are of particular interest, as they are central to the
understanding and modelling of liquidity premia in this research. A different branch
of the micro-structure literature, concerned with the decomposition of the bid-ask
spread, considers all of the aforementioned components, such as exogenous trans-

action costs, private information, inventory risk and search friction. Early work
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on decomposing the bid-ask spread focussed on explaining quoted spreads cross-
sectionally using market variables such as trading volume and security risk (Benston
and Hagerman, 1974 and Demsetz, 1968). Other work decomposes the spread into
adverse information dealer profit components (Glosten and Harris, 1988 and Stoll,
1989), where the dealer profit represents compensation for inventory holding and
order processing costs. Estimates by Stoll (1989) and Madhavan and Smidt (1991)
indicate that inventory costs are relatively small for liquid asset classes but increase
substantially for illiquid assets and, hence, the remainder of the spread is mostly
determined by order processing costs and adverse information costs. Copeland and
Galai (1983) observe that order costs, the clerical costs of carrying out the trans-
action, which includes the cost of the market makers’ time, are fixed irrespective of
trade size. Therefore, the average cost of order processing per unit decreases with
trade size. The effect of informed counter-parties has been studied at length (see
for example Glosten and Milgrom, 1985) and models describe how dealers / market
makers demand compensation for losses incurred from counter-parties with supe-
rior knowledge. Specifically, Lin et al. (1995) empirically verify a model developed
by Easley and O’Hara (1987) in which well-informed traders prefer to trade larger
amounts.

With the above in mind, especially considering the ‘search friction’ identified by
Amihud et al. (2006), another aspect of liquidity can be defined as ‘immediacy’;
the ability to execute a trade contemporaneously. Of course, immediacy is highly
dependent on the trade size; at any given point in time, the ability to execute a
trade with immediacy will differ substantially across small and large quantities. This
implies that liquidity does not only operate at the level of (international) financial
markets, varying by asset class or individual asset, but operates at a much more

granular level; individual trades.

2.2.1 Liquidity Proxies

Empirical work involving liquidity and asset pricing relies on variables that are

(indirectly) inherited from the micro-structure literature and are associated with
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different levels of market liquidity. This section attempts to give an overview of
‘liquidity proxies’ that are extensively used in the empirical literature; by no means
is the overview exhaustive in the proxies it lists.

The most intuitive liquidity proxy, and central in this Chapter, is the Bid-Ask
spread, as it is regarded an ‘aggregate’ measure of liquidity (Hasbrouck and Seppi,
2001). The availability of bid-ask spread data is highly dependent on the choice of
asset class under study, time period and granularity. An indirect, implicit approx-
imation of the effective Bid-Ask spread introduced by Roll (1984), continues to be
a widely used proxy in recent empirical work (Dick-Nielsen et al., 2012 and Bao
et al., 2011). The Roll-measure constructs implicit Bid-Ask spreads based on prices
alone. Recognising that negative serial dependence exists between observed price
changes when dealing with a market maker, as first pointed out by Niederhoffer and
Osborne (1966), Roll (1984) computes the spread as twice the negative covariance
between subsequent price changes. To see why this negative dependence exists, Roll
(1984) considers the following. Assuming, for simplicity, that all transactions are
with a market maker with constant spread and no new information about the se-
curity arrives, successive transactions are equally likely to be a purchase or sale by
the market maker since trades arrive randomly at both sides, exogenously. There-
fore, the joint probability of successive price changes (Ap; = p; — p;—1) depends on
whether the last transactions was at the bid- or ask side. As the transaction at time
t — 1 is equally likely to be at the bid- or ask side, the joint distribution of successive

changes in price can be written using Table 2.1.

Ap,

-S 0 +s

—S 0 .125 .125
Api_q
01 .125 25 125

+s | 125 125 0

Table 2.1: Joint distribution of successive price changes (conditional on no new informa-
tion).

Given that expected values of both Ap, and Ap,_; are zero and can be ignored,
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the covariance reduces to;
1 2 .2
Cov(Apy, Apyi1) = g(—s —5)=—

In addition to the Roll measure, other measures of (implicit and effective) Bid-
Ask spread have been used. Other (implicit) spread measures include Holden’s
(2009) effective spread measure based on observed price clustering and the “LOT”
effective spread measure based on the assumption of informed trading on non-zero-
return days and the absence of informed trading on zero-return days developed by
Lesmond et al. (1999). Another popular measure of transaction costs inferred from
transaction data is the Unique Roundtrip Cost (URC) measure, which matches up
trades of similar volume within a short time period, assuming the trades occurred
at different sides of the bid-ask. Contrary to literature that uses transaction data
(Goldstein et al., 2007), primarily in the equity markets, the side of a particular
trade as well as the type of agent executing the trade is unknown for Dick-Nielsen
et al. (2012), using the TRACE (Trade Reporting and Compliance Engine) database
for US corporate bonds.

A second class of liquidity proxies directly relates to market depth, one of market
liquidity dimensions in Kyle (1985), and it assesses the price impact of trades. The
idea is that a liquid asset should be able to trade in substantial quantities without
moving price and, conversely, price movements will reflect the depth of a securities’
market. By far the most commonly used liquidity proxy in this class is the Amihud-
measure (Amihud, 2002), which captures the ‘daily price response associated with
one currency unit of trading volume’, serving as a rough measure of price impact.

The defined ILLIQ) measure (Amihud, 2002) dened as the average ratio of the daily

|Riyd|
VOLD; 4

absolute return to the (dollar) trading volume on that day; . Here, R;yq is
the return on stock ¢ on day d of year y and VOLD,,, is the respective daily volume

in dollars. Defining ILLIQ annually;

1 |Riyadl
ILLIQ. = _myel
=5, dzD: VOLD,

Y
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where D, is the set of days for which data is available for stock 7 in year y.

The use of the Amihud-measure as a proxy for liquidity (price impact) is widespread
in academic literature; from Dick-Nielsen et al. (2012) who use the measure in vari-
ous regression analyses on the US corporate bonds market to Hasbrouck (2009) who
links trading costs and returns in US equity markets. Its popularity and widespread
use also caused the Amihud-measure to be subjected to further study, criticism and
refinement. Theoretical work by Brennan et al. (2012) questioning the symmetric
micro-structure framework suggested by Kyle (1985) finds that equilibrium rates of
return are sensitive to changes between seller-initiated trades and returns, but not
sensitive to buyer-initiated trades. Whereas the Amihud-measure treats positive
and negative returns the same, Brennan et al. (2013) decomposes the traditional
Amihud-measure into components that correspond to up-days and down-days, point-
ing towards research by, for instance, Brunnermeier and Pedersen (2009) arguing
liquidity in a down market may be different from liquidity in an up market. They
find that for US equity markets, the down-day component of the Amihud-measure is
associated with a return premium whereas the up-day component is not significantly
priced.

A third class of liquidity proxies can be referred to as trading intensity variables,
which frequently covers both measures based on turnover and zero-trading-days.
Turnover is intuitively defined as the ratio of the trading volume in a given period and
the amount outstanding. The inverse of the turnover measure can be interpreted as
the average holding period. Alternatively, zero-trading-days is a measure of trading
intensity as it simply calculates the percentage of trading days with no trades in a
given time period. In addition to a strict asset specific measure, Dick-Nielsen et al.
(2012), analysing corporate bond liquidity, develop a firm specific zero-trading-days
measure; the number of days in a given time period where none of the bonds issued
by a particular firm trade. At any time, this measure tries to capture the fact issuers
will have bonds of varying maturities outstanding and a shorter waiting time between
trades within a firm indicates there is relatively frequent new information about the

firm. In addition to liquidity proxies on their own, proxies can be aggregated into one
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index or one component for their analysis. Kerry (2008) builds an index by averaging
nine different proxies for liquidity including six micro-structure variables, evenly
split between various bid-ask spread approximations and price impact (all return-
to-volume). Dick-Nielsen et al. (2012) provide a comprehensive review of many
liquidity proxies, all of which they subject to Principal Component Analyses to both
assess communality between individual proxies and create ‘new’ aggregate liquidity
measures. They conclude that the Amihud-measure and the Unique Roundtrip Cost
measure are most consistent and statistically significant in explaining bond spreads,
results that hold across bonds of different quality and market conditions (pre sub-

prime crisis and during sub-prime crisis).

2.2.2 Empirical Results

The empirical estimation of liquidity premium generally considers one of three (cat-
egories of) methodologies for estimating this premium. The first methodology is
a model-free approach where market prices for Credit Default Swaps are used, the
second approach relies on the vast literature of the ‘value of the firm” and the pricing
of credit risky debt using option pricing theory and the last approach is referred to
as ‘reduced-form’ and consists of empirical, statistical models that often rely on lig-
uidity proxies in their estimation. The next sections will consider the CDS approach
and structural models carefully by setting out the model rationale and methodology
of literature in the category, evaluate empirical results and discuss the merits and

imperfections of each presented approach.

2.2.3 CDS-based Approach

Credit derivatives cover a broad class of securitized derivatives whereby the credit
risk of the underlying loan is transferred to an entity other than the lender (Sen-
gupta, 2005). Credit derivatives can be divided into two groups; unfunded credit
derivatives where two counter-parties sign a bilateral contract, and funded deriva-
tives where the seller of protection puts up initial capital to settle possible credit

events. Examples of unfunded credit derivatives include Total Return Swaps (TRS)
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and Credit Default Swaps (CDS), the latter accounting for almost forty per cent
of the total credit derivative market. Examples of funded credit derivatives include
(synthetic) Collateralized Debt Obligations (CDOs). The market for CDS was non-
existent before the 1990s and the creation of CDS as they are known today is often
credited to JP Morgan & Co in 1994 (Stulz, 2009), selling on the credit risk from
the line of credit it had extended to Exxon. The market growth of CDS since its
inception is extraordinary, peaking at the end of 2007 when the notional value of
the CDS market reached 62 trillion USD (International Swaps and Derivatives As-
sociation, 2010). Even when one acknowledges that the cash flow generated by the
market is only a fraction of its notional value (historically only 0.2% of investment
grade companies default in a year (Moody’s Investor Services, 2011)), it has quickly
grown to become an important financial market.

The structure of a single-name CDS contract is fairly straightforward; two parties
are involved in the contract, the protection buyer who is looking to insure against the
possibility of default on a particular bond and the protection seller, who is willing
to bear the risk. The company that issued the bond is referred to as the reference
entity, the bond itself being the reference issue. In case of a credit event (default,
failure to pay or other ‘trigger’) the protection seller agrees to buy the reference issue
at face value and in return receives a default swap premium, a periodic (quarterly)
fee. The contract simply expires at maturity date in case no credit event happens
during its lifetime and in case there is a credit event, the protection seller buys the
reference issue at face value and the periodic payments are discontinued.

The CDS premium, the periodic fee at which the protection seller is willing to
take on the risk of a credit event on the reference issue, is central to the Negative CDS
Basis approach. Using arbitrage, Duffie (1999) shows that the spread of a corporate
floating rate note (FRN) over a default free FRN should equal the CDS premium.
Even though this is an approximation when applied to ordinary fixed coupon bonds,
it is generally accepted. In reality, the difference between the CDS premium and
the spread on the bond can observed to non-zero and negative, implying that other

factors contribute to the entirety of the bond’s spread. Longstaff and Schwartz
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(1995), in their direct approach, interpret this negative basis as the difference in
yield between an illiquid corporate bond (synthetically free of expected defaults and
credit risk) and the yield on a liquid credit risk free bond. The residual yield is
then interpreted as a direct quantification of the discounted yield associated with
liquidity. This model free approach allows for the, in principal, easy computation of

the liquidity premium using a simple equation:

Liquidity Premium = —CDS basis = Corporate Bond Spread — CDS premium

The extreme simplicity of the method comes with both a set of assumptions
and data / computation restrictions. The key methodological assumption, based on
Duffie (1999), is that the CDS premium is only compensation for bearing the credit
risk of bond. In reality CDS contracts bear other risks, one of which is counterparty
(credit) risk. One can argue that during periods of calm or benign financial markets,
counterparty risk can be neglected, but in the aftermath of the 2008 global crisis,
counterparty risk rapidly became a priority and concern. The extreme jumps in CDS
spreads for troubled financials during the second half of 2008 seem to suggest that
other factors, on top of mere credit risk, might contribute to the spread. The other,
implicit, methodological assumption is that the negative basis is compensation for
liquidity, whereas in fact, Longstaff and Schwartz (1995) are careful to point out
that this is short-sighted.

Using a unique proprietary dataset with quotes and trades from fourteen CDS
dealers selling protection on the same set of reference firms, Arora et al. (2012)
investigate how counterparty credit risk affects CDS pricing. They find that despite
the significant relation between dealer credit risk and cost of credit protection, the
effect on CDS premia is small. Specifically, they estimate that a 645 basis point
increase in dealer’s credit spread translates into only a one basis point decline in
selling the credit protection. Theoretical work exploring the magnitude of counter-
party credit risk on CDS pricing generally estimates the price effect to be in the

range of 7 basis points (Kraft and Steffensen, 2007) to 20 basis points (Hull and
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White, 2000), implying an effect many times the empirical estimates. However, it is
crucial to recognize that the theoretical literature focuses on CDS contracts in which
the liabilities are not collateralized. Standard market practice during the sample pe-
riod of the studies was full collateralization by both parties to the contract. Full
collateralization would seem to imply that counterparty credit risk is not priced in
CDS contracts. Reality is however, as became clear after the Lehmann bankruptcy,
that firms putting down collateral in excess of their liabilities, often required by
large Wall Street dealers (Arora et al., 2012), are at risk of becoming unsecured
creditors of a defaulting counterparty. Arora et al. (2012) ultimately conclude that
counterparty risk is most definitely priced in CDS contracts, but estimation cannot
be seen without the context of collateralization, industry sector and chosen sample
period.

Another factor that is likely to contribute to the CDS spread, beyond pure credit
risk, is the illiquidity of CDS contracts themselves. Empirical work on the liquidity
of credit derivatives is limited; Tang and Yan (2010) use regression analyses and
capture the impact of expected liquidity and liquidity risk in CDS spread, Chen
et al. (2005) use the term structure of CDS spreads to find both an expected lig-
uidity premium and liquidity risk premium are earned, and Bongaerts et al. (2011)
infer liquidity risk premia on CDS prices from expected excess returns. In other
derivative markets, examples include Deuskar et al. (2011) who conclude that in-
terest rate options with low levels of liquidity trade at higher prices than liquid
equivalents and Cetin et al. (2006) who incorporate illiquidity into a standard
Black-Scholes framework. Bongaerts et al. (2011) apply a theoretical asset pricing
model that incorporates liquidity and allows for short selling to the credit default
swap market. Estimating a non-linear asset pricing model by applying Generalized
Method of Moments to quotes over a sample period between 2004 and 2008, they
find significant and robust enough evidence of liquidity premia to conclude that
CDS spreads cannot be used as a pure measure of credit / default risk. Their re-
sults hold for the last two quarters of 2008, when both CDS spreads and bid-ask

spreads increased dramatically, arguably due to counterparty risk and deleveraging.
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In addition to methodological imperfections, the Negative CDS Basis approach
also suffers from impracticality, despite its easy-to-compute nature. Finding equiv-
alent CDS contracts and corporate bonds by issuer and maturity is not straightfor-
ward. Using an index to approximate introduces further practical difficulties: CDS
indices are not widely available across different economies, do not cover high yield
bonds as the market for these CDS contracts is very thin and using an index can
result in a mismatch with bond index constituents having substantial impact on the
result. In case a (set of) bond(s) can be perfectly matched with a (pool of) CDS,
ignoring the above mentioned methodological issues and assuming the CDS spread
is a pure measure of credit risk, the estimated liquidity premium should not be
generalized to a wider set of bonds (of similar duration, notional amount or sector).
Moreover, the availability of CDS contracts is self-selecting in nature, with more
illiquid bonds unlikely to have an active CDS market and any estimated liquidity
premium is likely to understate the liquidity premium on bonds for which no ac-
tive CDS market exists. Given the self-selecting nature the liquidity premia derived
from a Negative CDS Basis approach that matches bonds and CDS directly, they

can only ever be applied to the same set of bonds.

2.2.4 Structural Model Approach

Merton’s model is of the structural kind, meaning it attempts to describe the explicit
relationship between default probabilities, value of the firm and capital structure.
Merton’s model makes clever use of option pricing theory by treating a company’s
equity as a call option on its assets. The original model by Merton (1974) is intuitive
and relatively straightforward; it assumes a very simple debt structure of one zero
coupon bond maturing at time 7" and the underlying value of the firm follows a

standard Geometric Brownian Motion;

AV = uVdt + oVdz,

where V' is the total value of the firm, p is the asset drift, oV is the volatility of

assets and dz is a standard Wiener process.
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If, at time T', the value of the company’s assets are lower than the amount of
debt (interest and principal, D) due to be repaid, it is (in theory) rational for the
company to default, leaving an equity value of zero. In case Vi > D, the company
should make the repayment, leaving an equity value of DVp. Then, from standard
option pricing theory (Black and Scholes, 1973), the value of the company’s equity
(E) at time T is given by the pay-off structure of a call option on the value of the

assets with a strike price equal to the required repayment on the debt;

Er =max(Vr — D,0)

Using the standard Black and Scholes, (1973) formula to solve for the value of

the equity today;

E(] = ‘/E)N(dl) - De(irT)N(dg)

where
0.2
4 — In(¥8) + (r 4+ (F)T
(ovVT)
and
dg = d1 - O'V\/T,

with constant risk-free rate r, and volatility of assets oV'. The risk-neutral
default probability, using a drift rate of r, of the debt is given by N(—d2). In
order to calculate the value of the equity, V5 and oV, are required but unobservable
quantities in the marketplace. Fy however, is observable equity volatility (0 F) can
be estimated from Ito’s Lemma. This gives a pair of simultaneous equations that

can be solved numerically for values of Vy and oy;
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oE
opky = WUVVO

O'EEO = N(dl)a'v%

Empirical applications of Merton’s model show that there is some discrepancy
between the default probabilities produced by Merton and those observed histor-
ically, in particular at (very) short maturities. The fair credit spreads estimated
by Merton’s model are reported to underestimate the observed credit spread from
the market, as found by Jones et al. (1984) who are one of the first to calibrate
Merton’s model to real-world data. Bohn (2000), in his survey of risky debt valu-
ation using option pricing, similarly found model spreads to be consistently lower
than observed credit spreads. Merton’s model has been criticised for making a set
of strict assumptions that may not be reflecting the real-world accurately enough to
produce realistic outcomes. As a result, Merton’s model has been subject to many
extensions over several decades, each extension addressing some of the simplifying
assumptions made by Merton. The list of extensions below is by no means exhaus-
tive, but includes a brief discussion of several well documented extensions/variations

to model that have been applied to real world data.

e Default in Merton’s model can only occur at the debt’s maturity date. The
model can be modified to allow for early default by introducing a threshold
level so that default occurs as soon at V; falls below this level. In some models
this can be the result of shareholders’ strategy to maximize equity value (Fan
and Sundaresan, 2000). Models with a default barrier were pioneered by Black
and Cox (1976) and are often referred to as ‘first passage’ models. Within first
passage models, an important distinction needs to be made; those specifying
an exogenous default boundary and those specifying an endogenous boundary.
A typical application of a structural model with an exogenous default barrier

can be found in Longstaff and Schwartz (1995). They extend the work of
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Black and Cox (1976) by not having the barrier to be a (discounted) constant,
but to have it evolve according to its own stochastic process. An example of
a structural model that incorporates an endogenous default barrier, that is, a
default barrier that is dependent on model parameters and the current state, is
the model by Leland (1994). The bankruptcy point in this model is the value
of the firm such that the market price of equity drops to zero. The model
in Leland (1994) and Leland and Toft (1996) in particular, are scrutinised in

greater detail in Section 2.8.

e The firm’s assets are modelled by a Geometric Brownian Motion in Merton’s
original model, implying a log-normal distribution of assets. Critics have ar-
gued that a simple diffusion model might not be sufficient to capture the real
world dynamics of the firm. Firms that are not currently in financial distress
are, under the diffusion assumption, never in danger of defaulting on (very)
short term debt obligations; i.e. firms cannot default unexpectedly. If the dif-
fusion dynamics were accurate, (near-) zero credit spreads on short term debt
would be observed, which is strongly rejected. Credit spreads on bonds with
short maturities are non-zero, positive and often substantial. Both Fons (1994)
and Sarig and Warga (1989) report that near-zero credit spreads on short term
debt does not agree with observed credit spreads, and that the yield spread
curves of certain bonds are not upward sloping as implied by the diffusion
model, but are flat or even downward sloping. To allow for unexpected de-
faults and subsequently increase the default probability on short term debt,
a jump-diffusion model for the firm’s assets can be used within the Merton
framework. Zhou (2001) observes that by incorporating jump risk in the de-
fault process, the model matches the size of the credit spreads more closely
and the yield curve can take various shapes (upward, downward and humped),
even if the firm is not in financial distress. Mason and Bhattacharya (1981)
were the first include jump processes in the valuation of risky debt. Zhou
(2001) claims that his model, based on a continuous diffusion process and a

discontinuous jump process is more realistic compared to their model in which
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the evolution on the firm follows a pure jump process with the jump amplitude

following a binomial distribution, for reasons of flexibility and generality.

e The assumption of a constant risk free interest rate is not realistic and a
stochastic interest rate model can be incorporated into Merton’s model or any
of its extensions. This also allows for the stochastic element of the evolution of
the firm to be correlated with the interest rate process, if this is desired. One
example of a model where interest rates are modelled by a stochastic process is
a study by Shimko et al. (1993), who estimate the effect of asset and interest
rate correlation on credit spread. They incorporate the short term nominal Va-
sicek interest rate model Vasicek (1977) into Merton’s model and report that
for a correlation of -0.25 between interest rate and asset dynamics, the esti-
mated credit spread is between 5 and 7 basis point below the estimated credit
spread when using a non-stochastic interest rate. Both Kim et al. (1993) and
Longstaff and Schwartz (1995) show and argue that introducing a stochastic
interest rate might be conceptually right, but has a relatively small effect on
credit spreads while substantially increasing the complexity of the analysis.
They argue that the cost of added complexity does not weigh up against in-
troducing stochastic rates for conceptual reasons. Leland (1994), also working
with a non-stochastic interest rate, notes that stochastic rates do not only
unnecessarily complicate calculations, even from a real-world perspective they
add very little. Referring to the criticism by Jones et al. (1984) that a contin-
gent claims approach to valuing risky debt produces too small credit spreads,
he argues that stochastic interest rates in the Merton framework lower spreads
(assuming negative correlation between the asset and interest rate processes)

and therefore do not ‘solve the problem’ of small spreads.

e Assuming a single zero-coupon bond as the total debt structure of the firm,
or trying to map all existing debts into a single zero-coupon bond is clearly
restrictive and not a realistic model assumption. The first structural credit
risk model that allows for multiple debts with different characteristics was the

Geske Compound Option model developed by Geske (1977). More recent work
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has tackled the oversimplified capital structure of the firm and several models
allow for more complex capital structures. Extensions have been made to in-
clude coupon paying debt; an example is Nielsen et al. (2001) who extend the
basic Merton model to include an exogenous stochastic default boundary that
is triggered when cash flows are unable to meet interest payments. In addition
to models that include coupon bearing debt, more complex capital structure
can also be modelled. Leland (1994) assumes a straightforward model where
debt is perpetual and pays a continuous coupon stream, and Fan and Sun-
daresan (2000) build on this model by also assuming single-layered perpetual
debt but including negotiations between creditors and shareholders in case of
distress. In order to avoid inefficient liquidation, the model allows for share-
holders to service debt strategically, with bargaining power 7. For n > 0, the
default barrier is lower than its counterpart in Leland (1994), with the model
defaulting to the Leland (1994) when n = 0. Leland and Toft (1996) move
away from the perpetual capital structure by assuming the firm continuously
issues debt of the same maturity, implying the firm is also redeeming debt
issued many years ago. Therefore, at any given moment in time, the firm
has various debt obligations outstanding of various durations, which are all
to receive coupon payments. Shorter maturities place a greater burden on
the firm’s cash flow because of the debt that needs to be redeemed and as a
result the endogenous default barrier is much higher in the Leland and Toft
(1996) model than in Leland (1994), especially for shorter specified maturi-
ties. When the maturity goes to infinity, Leland and Toft (1996) converges to
Leland (1994).

e Almost all extended models include a continuous payout as part of the evolu-
tion of the firm’s assets. Adjusting the drift rate to account for negative cash
flow can be thought of as dividend payments to its shareholders. This simple
extension was offered by Merton himself in his first publication and is analo-
gous to the pedagogical extension of the Black-Scholes model with continuous

dividend payments. In addition and similar to the inclusion of a payout ratio
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in the evolution of the firm’s assets, many extensions (see for example, Leland
(1994) or Fan and Sundaresan (2000)), include tax advantages in their model.
This ties in directly with model extensions regarding the firm’s capital struc-
ture since the tax advantage is applied to coupon payments and is added to

the evolution of the firm’s assets as a tax shield.

e Further refinement of a more complex / realistic debt structure is needed as
debt does not only vary in maturity but can have various seniority / prior-
ity structures too. Several extensions of Merton’s model allow for debt to be
issued with various levels of seniority (see for example, Benos and Papanasta-
sopoulos, 2007). Debt of lower seniority is valued at a higher credit spread due
to a decreased recovery rate in the event of default. Recovery rates represent
the percentage of the face value or market value of the debt that is received
by debt holders in case of bankruptcy of the firm. These recovery rates are
exogenous in structural models but are thought to vary on a firm-to-firm basis
in the real world, depending on the outstanding debt across seniority classes,
but also depending on the state of the economy. Recovery rates are calibrated
to fit historical averages across the market. Models that take into account
seniority of debt assume that absolute-priority rules are fully adhered to in
case of default so that outstanding debt is paid off in strict order of senior-
ity. Empirical evidence suggests that absolute priority rules are violated in
reality; Franks and Torous (1994) investigate firms that have either entered
bankruptcy through Chapter 11 of the Bankruptcy Reform Act 1978 or have
informally completed a distressed exchange of traded debt. Firms entering
bankruptcy under Chapter 11 only do so after attempting to resolve finan-
cial issues informally, but these firms often benefit from specific provisions in
Chapter 11 because they are less solvent or liquid. As a result, the average
expected recovery rate for creditors claims under a Chapter 11 bankruptcy are
approximately 30% lower than recovery rates under more informal proceed-
ings. In addition, Eberhart et al. (1990) examined bankruptcy proceedings

under the same Act and measured the amount paid to shareholders in excess of
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what they should have received under strict absolute priority rules. Eberhart
et al. (1990) report this percentage to be 7.6% and also found evidence that
equity markets expected deviations from the absolute priority rule as common
share values reflect part of the value ultimately received by a violation of the

strict rules.

Empirical results Structural models of default attempt to mathematically de-
scribe how default occurs, and what dynamics exist between the various factors
playing a role in default or the value of the firm. Most of the structural models
that relax one or more of the simplifying assumptions are theoretical in nature and
describe dynamics of the firm and the dynamics of the firm’s debt. No structural
model tries to relax all of the simplifying assumptions nor do any of the structural
models claim to be an accurate representation of the real-world dynamics of the
firm. Instead, structural models allow the dynamics of how one (or several) spe-
cific factors relate to probability of default / credit spread to be studied. Examples
include what effect stochastic interest rates and a correlation between firm’s asset
process and interest rate process has on the default probabilities or how the effect
of a jump-diffusion process for the firm’s assets can describe default probabilities
over short maturities better. The models themselves are theoretical in nature, the
credit spreads (or default probabilities) produced by these models require calibrated
values for all the parameters in the model.

The standard reference for the discrepancy between credit spreads observed his-
torically and those produced by (early) structural models after calibration is Jones
et al. (1984), who reported the yield spreads derived from structural models to
underestimate historical spreads. They report that on average, predicted spreads
underestimate observed spreads substantially, the errors being the largest for specu-
lative grade bonds. In addition they find that pricing errors are significantly related
to maturity, equity variance and leverage. Ogden (1987), in a similar study of bond
prices between 1977-1981, finds that the Merton model underestimates spreads by
104 basis points on average. Both studies emphasized the lack of stochastic interest

rates in their conclusions. Given the time period under study, this is no surprise
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since US Treasury rates were extremely volatile as a result of the Federal Reserve’s
money supply target during 1979-1982, when inflation reached double-digits. Few
implementations of structural models using individual bond prices appear until Ly-
den and Saraniti (2000), who use a sample of non-callable bonds to calibrate and
fit both Merton’s original model (modified to treat coupon bonds as if they were
a portfolio of zero-coupon bonds, each of which can be priced using the standard
zero-coupon version of the model) and the model derived by Longstaff and Schwartz
(1995), in which the firm issues a constant amount of new coupon paying debt with a
fixed maturity and in which equity holders have to the option to issue new equity to
service the debt or default. They find that both models underestimate yield spreads
and pricing errors are correlated with coupon rate and maturity.

More recently, Eom et al. (2004) have taken five structural models, calibrated the
required parameters of all models to the same sample of 182 bonds during the period
1986-1997 and compared spread predictions across models with observed historical
spreads. Using the Fixed Income Database they chose a very particular set of bonds
to include in their study, meeting strict requirements; only non-financial firms are
included to ensure the leverage ratio is comparable across the sample, utilities are
excluded since return on equity and revenues (and thereby probability of default)
are dependent on regulatory influences, only fixed-rate coupon bearing bonds that
are not convertible and only bonds with a simple capital structure (firms with a
maximum of two publicly traded bonds and exclusion of subordinated debt) are
included. In addition, the chosen firms must have publicly traded stock in order to
qualify for a structural approach in the first place. Eom et al. (2004) implement five
structural models (Merton, 1974; Geske, 1977; Longstaff and Schwartz, 1995; Leland
and Toft, 1996 and Collin-Dufresne et al., 2001) and, contrary to previous empirical
literature, fail to conclude structural models are incapable of producing sufficiently
high yield spreads. They do agree that the five structural models cannot accurately
price corporate debt, but the difficulties are far from limited to an underestimation
of spreads. Whereas Merton (1974) and Geske (1977) are reported to consistently

underestimate yield spreads, as previous work indicated, the Longstaff and Schwartz
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(1995), Leland and Toft (1996) and Collin-Dufresne et al. (2001) models, on average,
produce yield spreads that are too high. Both the Longstaff and Schwartz (1995)
model and the Collin-Dufresne et al. (2001) model have an incredible dispersion of
predicted spreads; often they are either very small or extremely large. That across
the sample of bonds this averages out (slightly) higher on average is rather irrelevant
as prediction error on a bond-to-bond basis is often a magnitude several times the
average prediction error. The Leland and Toft (1996) model is different in the sense
that it appears to consistently produce yield spreads that are too high, which Eom
et al. (2004) attribute to the simplifying assumptions about coupons. The most
relevant empirical application of a structural model to UK corporate bond data is
in Churm and Panigirtzoglou (2005), where the Leland and Toft (1996) model is
used to estimate the non-credit (liquidity) component of credit spreads. This work,

published by the Bank of England, is discussed in some detail in Section 2.8

2.3 Description of the Data

The dataset used in this Chapter comes from Markit, a financial information services
company providing independent data, valuations and trade processing of assets.
Markit aims to enhance transparency in financial markets and improve operational
efficiency for its clients. The iBoxx indices provide fixed income bond data on a
daily basis, essential for many market participants in structured products, fixed
income research, asset allocation and performance evaluation. iBoxx indices cover
Euro, Sterling, Asian, US Dollar denominated markets, both investment grade and
high yield. In addition to daily consolidated prices, a range of analytical values are
provided for all the bonds in the Markit bond universe. For the research, historical
iBoxx GBP Investment Grade Index data was available.

Eligibility for inclusion in the iBoxx GBP Investment Grade Index is based on
several selection criteria. The following bond types are specifically excluded: bonds
with American call options, floating-rate notes and other fixed to floater bonds,
optionally and mandatory convertible bonds, subordinated bank or insurance debt

with mandatory contingent conversion features, CDOs or bonds collateralized by
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CDOs. In addition, retail bonds and private placements are reviewed by the iBoxx
Technical Committee on an individual basis and excluded if deemed unsuitable
(Markit, 2012a).

All bonds in the Markit iBoxx GBP universe must have a Markit iBoxx Rating
of investment grade (Markit, 2012b). The average rating of Fitch Ratings, Moody’s
Investors Service and Standard & Poor’s Rating Services determines the iBoxx rat-
ing. Investment grade is defined as BBB- or higher from Fitch and Standard &
Poor’s and Baa3 or higher from Moody’s. Ratings from the rating agencies are
converted to numerical scores and averaged, then consolidated to the nearest rating
grade; the iBoxx Rating system does not use tranches. Eligibility for inclusion is also
conditional on the amount outstanding, where the issue needs to be of a minimum
size. Gilts need to have an outstanding amount of at least GBP 2bn, whereas the
minimum amount for non-Gilts is set to 250m.

The sample (Oct 2003 - Jul 2014) of 2767 trading days includes 2392 unique
bonds from 744 different issuers (by Ticker), with data for approximately 900 bonds
on any given day. The analysis uses a range of analytical values (Markit, 2014)
included in the index. These bond characteristics can be contractual (e.g. coupon
rate, issuer, maturity, seniority, date of issue, industry) or time dependent (e.g. bid-
and ask prices, credit rating, credit spread).

All bonds are classified based on the principal activities of the issuer and the
main sources of the cash flows used to pay coupons and redemptions. In addition,
a bond’s specific collateral type or legal provisions are evaluated. Hence, it is pos-
sible that bonds issued from different subsidiaries of the same issuer carry different
classifications. The issuer classification is reviewed regularly based on updated in-
formation received by Markit, and status changes are included in the indices at the
next rebalancing if necessary. This implies that even though several analytical val-
ues or variables in the dataset are considered ‘static’, there is the possibility of them
changing. The main sector classifications within the Markit iBoxx GBP Index are

the following:

e (Gilts. Bonds issued by the UK central government denominated in Sterling.
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e Sovereigns. Bonds issued by a central government other than the UK and

denominated in Sterling.

e Sub-Sovereigns. Bonds issued by entities with explicit or implicit government

backing due to legal provision or the public service nature of their business.

— Agencies. Bonds issued by entities whose major business is to fulfil a
government-sponsored role to provide public, non-competitive. Often,
such business scope is defined by a specific law, or the issuer is explicitly

backed by the government.

— Supra-nationals. Bonds issued by supranational entities, i.e. entities that

are owned by more than one central government (e.g. World Bank, EIB).

— Public Banks. Bonds issued by publicly owned and backed banks that

provide regular commercial banking services.

— Regions. Bonds issued by local governments (e.g. Isle of Man)

e (Corporates. Bonds issued by public or private corporations. Bonds secured
by a floating charge over some or all assets of the issuer are considered corpo-
rate bonds. Corporate bonds are further classified into Financials and Non-
Financials bonds and then into their multiple-level economic sectors, according
to the issuer’s business scope. The category insurance-wrapped is added un-
der Financials for corporate bonds whose coupon and principal payments are

guaranteed by a special mono-line insurer.

In addition to a classification based on the issuer’s business scope and activities,
corporate debt is further classified into senior and subordinated debt. Subordinated
debt is mostly issued by financials, but other corporate issuers might be forced to do
so if indentures on earlier issues mandate their status as senior bonds. Subordinated
debt can be especially risk-sensitive since the bond holders only have claims on
an issuer’s assets after other bond holders, but without the upside potential that
shareholders enjoy. Capital in the form of debt instruments is always sub-ordinated

because senior debt does not count towards bank capital. From a regulatory point
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of view the bank’s capital serves as protection of depositors, a safety net that can
absorb unexpected losses to guarantee depositors. A financial institution’s debt can

be categorized as one of the following:

e Tier 1. Shareholder’s equity and retained earning are commonly referred to
a banks ‘core’ (Tier 1) capital for regulatory purposes. The Tier 1 capital, as

issued debt, consists of other securities qualifying as Tier 1.

e Upper Tier 2 From a regulatory perspective of a bank’s capital, Tier 2 debt
comprises undisclosed reserves, revaluation reserves, general provisions, hybrid

instruments (preferred) and subordinated term debt.

e Lower Tier 2 From a regulatory perspective of a bank’s capital, only 25% of a
bank’s total capital can be Lower Tier 2 debt; it is easy and cheap to issue. In
order to ensure that a bank’s capital from subordinated debt issues does not
fall substantially after and issue matures, the regulator demands that Tier 2

capital debt amortises on a straight line basis from maturity minus five years.

The market information on the tier of subordination for insurance capital is
often less standardized than the equivalent issues by banks. In these cases, the
classification is based on the maturity, coupon payment and deferral provisions of
the bond from the offering circulars of the bonds (Markit, 2012a).

Bonds with option-like characteristics (embedded options) are included in the
dataset. These option-like features are part of the bond rather than separately
traded securities and the option-like characteristics are not necessarily mutually
exclusive; one bond may have multiple option features embedded. Embedded bonds

can include but are not limited to:

e Callable Bonds. Bonds that give the issuer the option of buying back the bond
at a predetermined price at some point in the future. The lockout period refers

to the initial time period in which the bond cannot be redeemed by the issuer.

e Puttable Bonds. Bonds that give the bond holder the option to demand early

redemption at a predetermined price at some point in the future.
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e Convertible Bonds. Bonds that give the bond holder the option to demand
conversion of bonds into stocks at a predetermined price at some point in the

future.

Depending on the type of option feature(s) embedded in a bond, the Credit
Spread can either be higher or lower than the Credit Spread for an equivalent bond
without option features. No information about a bond’s optionality is included in
the dataset explicitly.

The database reports a number of different measures of the credit spread includ-
ing the annual benchmark spread (ABS), Option-Adjusted Spread and Z-spread
(Markit, 2014). Of these, only the annual benchmark spread is reported for the full
duration of the dataset and this is used as the measure of the credit spread in all
statistical analyses. The analyses have been repeated over shorter periods with the
alternative measures of credit spread and the results are found to be robust (results
appear in Section 2.7.2).

Markit iBoxx index calculations are based on multi-sourced pricing which, de-
pending on the structure of each market, takes into account a variety of data inputs
such as transaction data, quotes from market makers and other observable data
points. For the GBP Corporate Index, the source of data is quotes from market
makers. Currently ten market makers submit prices, including Barclays Capital,
Goldman Sachs, HSBC, Deutsche Bank and JP Morgan. All submitted prices and
quotes have to pass through a three-step consolidation process before being included
in the end-of-day value (Markit, 2008).

In addition to descriptive classifications of a bond, a range of analytical values
is available on a daily basis. This section aims to give an overview of the most im-
portant of these analytical values, focusing on Credit Spread measures in particular.
The analytical values that are available on a daily basis include key measures such
as Years to Maturity, (Modified) Duration, (Annual) Yield, (Annual) Convexity and
Age of the bond. In addition to these key measures, many more are reported on a
daily basis including Daily Returns, Month-Date-Returns, Number of Contributors,

Excess Return over Sovereigns, Duration weighted exposure; all yield calculations
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use the bid price of the bond.

During the course of the sample period of the study (October 2003 — July
2014) there have been more than a handful of changes to the availability of certain
analytical values. Most importantly, the available pieces of information of every
bond on any given day has increased from twenty in October 2003 to more than
forty in July 2014. For this reason, to maintain backwards compatibility in order
to include the entire sampling period, many of the newer bits of information need
to be excluded. This is not a problem for the majority of information as they add
very little value (for example, seven buckets of Expected Remaining Life), but when
it comes to Spread calculations it is important to note what changes have occurred
during the sample period. For the last day included in the sample, four different
credit spread measures are reported on a daily basis.

The only spread measure that is available for the entire period under study is

the Annual Benchmark Spread, mathematically;

BMSZt = Yzat - YgM(z‘),t

where Y} is the annualized yield of bond i at time ¢ and Y, , is the annualized
yield of benchmark bond ¢ at time ¢. Note that for benchmark bonds BMS{, = 0.
On any given day 20-25 Gilts are classified benchmark bonds. For example, on 9th of
October 2012, 23 Gilts are classified as benchmark bonds and used to calculate the
Annual Benchmark Spread for all bonds in the dataset on that particular day. Figure
2.1 plots those 23 bonds (years to maturity versus annual yield), and illustrates the

credit spread.
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Benchmark Curve Example
9 October 2012
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Figure 2.1: The Annual Benchmark Spread is based on the difference in annual yield
between a bond and the corresponding benchmark bond. A benchmark bond is chosen as
to minimise the difference in maturity (remaining life) between a bond and its reference.

It is important to mention that the methodology of assigning a specific bench-
mark bond to each of the bonds in the dataset could, potentially lead to jumps
in credit spread that are purely ‘mechanical’. The maturity of the bond and its
assigned benchmark bond are expected to decline in tandem; if, however, a bond
were to switch benchmark bond there could be a jump/fall in credit spread due to
a change of the reference bond. Since the anticipated effect of this phenomenon is

negligible, the Annual Benchmark Spread is used directly.

2.4 Descriptive Analysis of Credit Spreads

The Markit iBoxx dataset provides Annual Benchmark Spreads, for all bonds on
every trading day which makes computations readily available. This allows Credit
Spreads to be monitored through time for all individual bonds, but also allows the
description of Credit Spreads at more aggregate levels; one can think for example,
of Spreads aggregated by Rating, by Financials and Non-Financials, by Senior and
Subordinate debt, or by a combination of several of the above. When examining
data by means of plots, the data will be split in eight categories or groups; split by
Rating (AAA, AA, A and BBB) and Financials / Non-Financials. The split into

eight categories is granular enough to get a good idea of how different segments of
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the market behaved at any one point, yet sufficiently aggregate not to get lost in
details.

To describe the distribution of Credit Spreads of the eight categories defined
above on any given day during the sample period (Oct. 2003 Jul 2014), the Credit
Spread time series is plotted using the mean Credit Spread as well as the interval

between which 90% of all observed Credit Spreads lie;

Exploring Credit Spreads by Rating
and Financial/Non-Financial Issuance
AAA AA A BBB

A " M
g W M
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! J i i i i J i i i i i ! J i i i i i ! i i i i
2004 2006 2008 2010 2012 2014 2004 2006 2008 2010 2012 2014 2004 2006 2008 2010 2012 2014 2004 2006 2008 2010 2012 2014
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Figure 2.2: Daily average Credit Spreads (and 5 and 95" quantile) over time for
Financial /Non-Financials and the four investment grade rating categories.

Several, perhaps obvious, observations can be made from the time series plots in

Figure 2.2:

e Credit Spreads move together, regardless of Rating and Financial status of the
issuer. Credit Spreads across all eight groups start to increase mid-2007, peak

early 2009 and decline rapidly in the following year.

e Credit Spreads for Financials and Non-Financials seem to be at very similar
levels (within a given Rating category) in the years prior to the ‘credit crunch’.
During the crisis years, spreads of Financials rise substantially, far more than

spreads on Non-Financials; this is no surprise given the nature of the crisis.

e Credit Spreads increased in 2011 in response to the sovereign debt crisis in
Europe. The Credit Spreads peaked early 2012 and have since been declining.

The downward trend continues until the last day in the dataset in July 2014.
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2.4.1 Timeline Analysis

Rather than treating ‘the credit crunch’ and the subsequent ‘European sovereign cri-
sis” as single events or single periods of time, major financial events can be described
in isolation. This is used to subjectively quantify the impact certain events had on
Credit Spreads of each of the eight groups (split by rating and financial status) and
perhaps whether the market responded prior to the event occurring, indicative of
market expectations. Sixteen major financials events have been selected and can be
seen in Figure 2.3.

Exploring Credit Spreads
with a timeline of events
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Figure 2.3: Average Credit Spread by Rating (on a logged y-axis) over time, annotated
with a non-exhaustive selection of events during the ‘credit crunch’. Tick marks indicate
the start of the year.

e A, 5th May 2005. Tony Blair is re-elected as Prime Minister of the United
Kingdom by popular vote, with 35.2%, the lowest majority government in

British history.

e B, 9th August 2007. BNP Paribas indicate they cannot value the complex
assets (CDOs) for three of their funds, for which trading freezes. It is the
first major bank to acknowledge the risk of exposure to sub-prime mortgage
markets. Northern Rock’s chief executive later reflects saying that it was ‘the

day the world changed’.

e C, 14nd September 2007. Northern Rock has borrowed large sums of

money to fund mortgages for customers, and needs to pay off its debt by re-
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selling those mortgages in the capital markets. Due to fallen demand, Northern
Rock faces a liquidity crisis and it needs a loan from the British government.
This sparks fears that the bank will shortly go bankrupt; Britain’s first bank

run since 150 years was a result.

e D, 17nd February 2008. The government nationalises the troubled mort-

gage lender Northern Rock as a result of prolonged liquidity problems.

e E, 14th March 2008. The investment bank Bear Stearns is bought out by

JP Morgan. This makes Bear Stearns the biggest player fallen in the crisis.

e F, 7th September 2008. The US government bails out Fannie Mae and
Freddie Mac; two huge firms that had guaranteed thousands of sub-prime

mortgages.

e G, 15th September 2008. Lehman Brothers, deeply involved in the sub-
prime mortgage markets, files for bankruptcy causing worldwide financial

panic.

e H, 17th September 2008. The UK’s largest mortgage lender, HBOS, is

rescued by Lloyds TSB after a huge drop in its share price.

e I, 8th October 2008. Iceland’s three biggest commercial banks Glitnir,
Kaupthing, and Landsbanki collapse. To protect the deposits of their many
British customers, Gordon Brown uses anti-terror legislation to freeze the as-

sets of the banks’ UK subsidiaries.

e J, 13th October 2008. The British government bails out several banks,

including the Royal Bank of Scotland, Lloyds TSB, and HBOS.

e K, 2nd April 2009. The G20 agrees on a global stimulus package worth $5

trillion.

e L, 2nd May 2010. Signalling the start of the Eurozone crisis, Greece is bailed

out for the first time, after Eurozone finance ministers agree loans worth 110
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billion Euros. This intensifies the austerity programme in the country, and

sends hundreds of thousands of protesters to the streets.

e M, 28th November 2010. European ministers agree a bailout for Ireland

worth 85 billion Euros.
e N, 5th May 2011. The European Central Bank bails out Portugal.

e O, 21st July 2011. Greece is bailed out for a second time, after it failed to

get all its affairs in order.

e P, 6th June 2012. The level of Spanish borrowing reaches a record high,

indicating the Euro-crisis is still on-going and recovery is a slow process.

Prior to the May 2005 parliamentary elections (event A) Credit Spreads had
been increasing for some time. Elections were announced on April 4", a month
before the elections on May 5%, but the general election had been covered in the
media for weeks. Uncertainty over the outcome and the lead up to the election
may have spurred higher spreads. The subsequent two events, B and C, are often
regarded as the events that signify the start of the financial crisis and coincide with
the start of the increase in Credit Spreads throughout the crisis. Looking at the
time series closely is clear that the increase in spreads precedes the actual events,
indicating the market seemed to perceive an increased risk several days/weeks before
the day labelled as the event. Looking very closely at B and C it can be seen
that immediately after Northern Rock’s loan from the UK Government (event C),
the Credit Spread appears to drop, or at least move sideways for a brief period
of time. The unrest in September 2008 later appeared to be a surprise to the
market as the large jump in spreads exactly coincides with the events. One could
argue that for financial markets this might have been the true start of the crisis,
given the tremendous jump in spreads. Spreads continue to increase until the UK
government bailout of the Royal Bank of Scotland, Lloyds TBS and HBOS on 13
October 2008. Whereas the bailout coincides with the peak observed for Financials,
it appears as if the non-Financials peaked a few months earlier, and were on the way

to recovery before Financials. The bailout seems to start a steady downward trend
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which continues well into 2011, only to be interrupted for a very brief period of time
due to the bailing out of Greece (event L) and Ireland (event M). The bailing out
of Portugal followed by the second bailing out of Greece two months later (events
N and O) caused another steady increase in Spreads until 2012 when again Spreads
were slowly declining, a trend that is slow and continues until the last day in the

dataset.

2.4.2 Descriptive Analysis of Market Data

The dynamics of movement in Credit Spreads over time have been described in detail
in the previous section. This section aims to provide further understanding of, on
the one hand, the available pieces of information contained in the iBoxx dataset, and
on the other hand aims to provide some insight into the dynamics of the corporate
bond market it describes. Firstly, the amount of data is investigated in Figure 2.4
using the number of bonds in the dataset (top left), the total notional amount of
debt outstanding (top right), the average duration of bonds (bottom left) and the

number of ‘new’ bonds (bottom right).
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Figure 2.4: Descriptive analysis of market data: number of issuers (top left), total no-
tional amount outstanding (top right), average duration by rating (bottom left and the
proportion of the bonds universe issued fewer than twelve months ago.)
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Based on the two graphs at the top of Figure 2.4, one can see that the number
of unique issues (investment grade only) peaked around 2008, when, possibly in
response to ongoing financial distress, firms were likely to postpone new issues. The
amount of outstanding debt however, has increased over the entire period under
study. Figure 2.4 (bottom left) shows how the average duration of the observed
bonds varies over time. In general, the figure shows how there appears to be a
response to the financial distress leading to a decline in observed durations; this is
certainly the case for AAA, A, and BBB-rated bonds, whereas the effect of AA-rated
bonds is more difficult to observe. Figure 2.4 (bottom right) gives an indication of
the issuance of new bonds, as it shows the percentage of bonds that were issued less
than twelve months ago. One can easily observe that across rating categories, the
numbers are very similar, with the post-2009 numbers for AAA-rated bonds being
very volatile due to the number of bonds in this rating category in general.

From a very high level, Figure 2.5 shows how the market for investment grade
corporate bonds has changed during the period under study. For instance, the
average Bid-Ask Spread of bonds (Figure 2.5, left) evolves over time and bivariate

relationships (based on correlation estimates) have changed (Figure 2.5, centre and

left).
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Average Bid—Ask Spread by Rating
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Figure 2.5: Exploratory Analysis of a selection of available analytical values and their
change over time (top), coupled with the way in which some bivariate relationships vary
over time (centre, bottom).

Figure 2.5 (top) provides a very high-level overview of a key component to the
study of liquidity; Bid-Ask Spreads. Important to note is the log-scale of the y-axis
which illustrates the extreme increase in compensation demanded by market makers
to take the opposite side of trades. This appears to follow anecdotal evidence that
liquidity becomes a major issue when financial uncertainty (the credit crunch) hits.

Without trying to over-analyse a simplistic visualization, it does, interestingly ap-

50



Chapter 2: Quantifying the Liquidity Premium on Corporate Bonds

pear as if the A-rated bonds were hit the hardest when looking at pre- and post-crisis

numbers for the Bid-Ask Spread. In addition to aggregating over many underlying

variables, Figure 2.5 also fails to show the width of the range of observed Bid-Ask

Spreads within a rating category. The centre and bottom plot in Figure 2.5 both

show Pearson correlation coefficients as a straightforward means to quantifying the

bivariate relationship of several key variables. Important to note that no causal rela-

tionship is implied to exist, the plots merely show a co-occurrence of values and how

this may have changed over time; for simplicity, standard errors of the correlation

estimates are omitted. As such, careful to draw conclusions, it is worth noting that;

The correlation estimates for AAA-rated bonds, particularly for those issued
by Financials, are volatile due to the small number of bonds that fall within

this category.

The correlation between the Duration and Credit Spread is positive on the
whole, which would be indicative of an upward sloping Duration-Spread curve,
subject to controlling for non-Duration differences that cause variation in

spreads.

The correlation is highly positive prior to the onset of financial distress in 2007,
when the coefficients drop substantially, across ratings and across Financial
and non-Financial firms. From the end of 2010 onwards, the coefficient has

been increasing, in general, until the last day in the dataset.

Comparing across rating categories, a few observations stand out; BBB-rated
Financial firms appear to have a consistently lower correlation over the entire
time period, where all the other rating categories move together, with the
exception of the period post-2011. After 2011, all the coefficients for Financial
firms take a different path; AA recovers to pre-crisis levels very quickly, A
recovers a lot more slowly even though pre-crisis coefficients were near-identical
to the AA-coefficients and the BBB coefficient stays flat until a slight recovery
is visible in 2013. Considering the non-Financials, coefficients are all rising

together with the exception of AAA-rated bonds, for which the coefficient is
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below pre-2008 levels. The caveat to this descriptive analysis is the effect all
other variables have on the credit spread; these attributes may have changed

over time and may have changed across rating category.

Figure 2.5 (bottom) shows the bivariate relationship of the age of a bond (mea-
sured in years since issuance) and the Bid-Ask Spread, where the universe of bonds
is divided into two groups, bonds younger than five years and those older than five
years. Previous literature by Houweling et al. (2005) suggests that age itself can
be a good proxy of liquidity and suggests that corporate bonds may be (relatively)
actively traded when they are first issued, but after some time a very large portion
of the market will find its way into institutional portfolios. Based on empirical work
in Houweling et al. (2005), a simple cut-off at six or twelve months may capture

this effect best; hence the inclusion of this indicator variable in later analyses.

2.5 Modelling Process

The liquidity premium is defined as the difference in spread between a bond’s ob-
served spread in the market and the spread of a hypothetical bond, identical in
all aspects, but perfectly liquid. Figure 2.6 illustrates this concept further (highly

stylised);

e A represents the yield curve for risk free, perfectly liquid bonds (bid price =

ask price), against which theoretical credit spreads are measured.

e B (not observable) adds in expected default losses for perfectly liquid corporate

bonds of a given rating.

e C (not observable) adds in a risk premium for default losses (sometimes re-
ferred to as the allowance for unexpected default losses) for perfectly liquid

bonds.

e D1 and D2 represent the ask and bid yields respectively on bonds with

medium levels of illiquidity.
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e E1 and E2 represent the ask and bid yields respectively on bonds with high

levels of illiquidity.

Markit credit spreads are based on bid prices (Markit, 2008). The liquidity
premium is defined as the difference between an individual bond’s credit spread
(e.g. E2) and the credit spread for an equivalent but perfectly liquid bond (curve

C). The challenge is that curve C cannot be observed and needs to be estimated.

Corporate Bond Yields (Stylised)
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o Risk Free Liguid (observable) (A)
° T T T
20 15 10 5 0

Term to Maturity (years)

Figure 2.6: Stylised representation of bond yields, illustrating the challenge to estimate
yield curve C in order to extract liquidity premia. Yield curves: A- risk free (e.g. gilts);
B- as A plus expected default losses; C- as B plus credit risk premium; D 2- as C plus
liquidity premium and bid/ask spread; E; 2- as D but higher bid/ask spread.

2.5.1 Modelling Methodology

To extract liquidity premia from corporate bond prices, a three stage modelling
process is constructed. In the first stage the Bid-Ask Spread is modelled and a
new liquidity proxy, the Relative Bid-Ask Spread (RBAS), is derived. The RBAS
is a measure of a bond’s illiquidity relative to bonds with identical characteristics

(on the same day) and is used in the second stage of the modelling process. In
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the second stage, Credit Spread is modelled as a function of bond characteristics,
including the bond’s RBAS. The third and final stage extracts liquidity premia by
computing the difference between a bond’s observed spread with the hypothetical

spread on a perfectly liquid equivalent bond, estimated by extrapolation.

2.5.2 Modelling the Bid-Ask Spread

In the first stage the Bid-Ask Spread is modelled using bond characteristics. Sep-
arate cross-sectional regression models are fitted to each trading day (¢), for each
rating (r). A total of 2767 days x four ratings (AAA, AA, A and BBB) means a

total of 11068 regression models are fitted.

BAS(i,r,t) =(Ask Price — Bid Price)/Bid Price € (0, 00)
Ix(r,t) =indicator X: 0 or 1
log(BAS(i,r,t)) = c(r,t)
+ B1.rn (1, t) X log Duration(i, t) x Ipry(7)
+ B1.np(r, t) x log Duration(i, t) X Inp(4) (2.1)
+ Ba(r, t) x log Notional(, t)
+ B3(r,t) x Coupon(i, t)

+ > Bulr,t) x In(i t)
k
+ epas(i,t)  (residual),

where ¢(r,t) is a constant for rating r at time ¢, indicator variables (I(i,t)) are
Financial (FIN) or Non-Financial (NF) Issuer, Sovereign or Non-Sovereign Issuer (for
AAA and AA-rated bonds), Senior or Subordinate (for A and BBB-rated bonds),
Collateralized or Not-Collateralized, Bond Age (Age < 1 / Age > 1) and Debt Tier
(Lower Tier 2, for A and BBB-rated bonds).

The inclusion of covariates is based on both economic intuition and previous
literature; Houweling et al. (2005) for example, examine the use of Issue Size,

Duration and Bond Age as liquidity proxies in their regression models. Parameters
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are estimated using least squares regression (OLS).

The relative liquidity measure (Relative Bid-Ask Spread) is defined as;

RBAS(i,t) = exp(epas,it)-

By design, log(RBAS) is uncorrelated with any covariates included in Equation
(2.1), which makes for an attractive property; RBAS can be interpreted as the bond’s
liquidity, independent of any bond characteristics (included as covariates). By de-
sign, the distribution of log(RBAS), for a given rating and day, is centred around 0,
irrespective of rating, day or economic climate. The variance of the distribution is
directly related to the quality of fit of the regression analysis in equation (2.1) and
determines the variation of observed values for RBAS and ultimately contributes to

the variation of the estimated liquidity premium.

2.5.3 Modelling the Credit Spread

Credit Spreads are modelled using the same approach; bond characteristics are used
to explain variation in Credit Spreads, cross-sectionally, for each trading day and

rating (approximately 11,000 regressions).

log(C'S(i,r,t)) = c(r,t)
+ v rrn(r, t) x log Duration(i, t) x Irpn (i)
+ v np(r,t) x log Duration(i, t) x Inp(i)
+ vo(r, t) x log Notional(i, t)
+ 73(r, t) x Coupon(i, t)
+ y4(r, t) x RBAS(i, 1)

+ ) (i t) x Ii(i, t)

+ecs(i,t)  (residual),

where the indicator variables are identical to Equation (2.1).
Corporate debt is classified into senior and subordinated debt, where subordi-

nated debt is mostly issued by financials, but other corporate issuers might be forced
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to do so if indentures on earlier issues mandate their status as senior bonds. Subor-
dinated debt can be especially risk-sensitive since the bond holders only have claims
on an issuer’s assets after other bond holders (without the upside potential that
shareholders enjoy).

Estimated regression coefficients from equation (2.2) give an insight into which
bond characteristics influence credit spreads cross-sectionally, and how this changes
over time. It also allows the testing whether illiquidity is positively priced (y4(r,t) >
0), and whether the price of relative illiquidity varies over time (and by rating).

Whereas the linear model specification in equation (2.2) is unable to capture
potential higher order effects and is restricted to the functional form imposed on
the regression, it does allow for intuitive interpretation of the model coefficients
(Section 2.6.2). Even though the functional form and choice of co-variates introduce
a considerable amount of subjectivity, the calibration of those parameters is pre-

determined and does not require any judgement on part of the modeller.

2.5.4 Credit Spread of Perfectly Liquid Bonds

As conceptually illustrated in Figure 2.6, the liquidity premium is interpreted as
additional spread of an illiquid bond over its perfectly liquid equivalent, where the
perfectly liquid equivalent is not observable in the market. Using regression Equation
(2.2), a model is formulated to estimate the spread of a perfectly liquid equivalent
bond by extrapolating RBAS to zero. Since RBAS! is designed to be uncorrelated

with any other covariate in Equation (2.2), one can extrapolate to zero, without

IStrictly speaking, log(RBAS) is uncorrelated with the bond characteristics included in the
regression modelling bid-ask spread.
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having to make adjustments to other covariates;

log(C'Syiq(i, 7, 1)) = é(r, 1)
+ A1 rin (1, t) x log Duration(i, t) X Ipry(7)
+ Y1.nvr(r,t) x log Duration (i, t) X Iyp(i)
+ () x log Notional(z, t)
(2.3)
+ 3(r, t) x Coupon(i, t)
+ J4(r,t) X 0 (perfectly liquid)
+) A t) x L(i,t)
k

+écs(i, t) X0 (no residual).

Then, the Liquidity Premium (7, r,t) is easily derived from both the fitted Credit
Spreads (C'S(i,r,t)) and the estimated perfectly liquid equivalent Credit Spreads
(CSuig (i, t));

LPy,(i,7,t) =CS(i,r,t) — CSyy(i,r t)

- CSG,rt)— CSygli,rt
LPy(i,r,t) = ( 025@ . tl)q( ).

2.6 Numerical Results

By way of example, much of the discussion of results focuses on A-rated bonds.
For other rating classes similar results are obtained and interpretation can follow
the same lines. Where appropriate, charts are provided charts to compare results
across ratings and primary model outcomes, such as estimates liquidity premia, are

reproduced across all rating categories in Appendix A.

2.6.1 Modelling Bid-Ask Spread

Since the model in Equation (2.1) has been fitted over a relatively long period of time,
the robustness of the model parameters, [, can be investigated over time, where

robustness is defined as stability over short periods of time. Given the significant
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shock financial markets endured during the credit crunch, it is reasonable to expect
relationships to (temporarily) change, or at least respond, as a result. The evolution
of several model parameters is shown in Figures 2.7 and 2.8. To aid the interpretation
of model parameters in both the Bid-Ask Spread and Credit Spread models, it is
important to note the log transformation on some variables (e.g. duration and
notional amount). Whereas for indicator variables the range of possible values is
well-defined (either 0 or 1), the range of possible values for log-transformed variables
is less straightforward; hence, a measure of dispersion for each regression co-variate

is provided in Table 1.

Rating | Duration Not. Amount Coupon Age Financial Senior Collateralized Tier LT2
AAA 0.82 0.78 1.28 0.15 0.90 0.10 0.26 NA
AA 0.56 0.73 1.41 0.13 0.49 0.45 0.22 0.11
A 0.54 0.63 1.29 0.12 0.47 0.48 0.10 0.14
BBB 0.48 0.57 1.23 0.12 0.67 0.48 0.12 0.08

Table 2.2: Average of daily standard deviations by variable and rating class. Note that
Duration and Notional Amount are logged variables in the model.
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Figure 2.7: Beta parameters () for log duration, grouped by Financials and Non-
Financials.

The duration beta parameter for both Financial issuers and Non-Financial is-
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suers, for A-rated bonds can be seen in Figure 2.7. The duration coefficient, (3, is
close to one (approximately 0.9) for both Financial and Non-Financial issuers, prior
to the crisis. In 2008, just after the nationalisation of Northern Rock, the coefficient
dropped substantially. The duration beta coefficient for Non-Financials recovered
to pre-crisis levels far more quickly than its Financials counterpart (mid-2010 versus

beginning 2013).
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Figure 2.8: Beta parameters () for log Notional (left) and Seniority indicator (right).

Figure 2.8 shows the evolution of the beta-coefficient for log Notional (Amount)
(left) and for the Senior / Subordinate indicator (right). The negative coefficient of
the Notional Amount beta parameter (Figure 2.8, left) indicates that larger issues
generally have lower bid-ask spreads. This relationship broke down at the height
of the crisis in 2009, suggesting that large issues were more difficult to trade at the
desired volumes. The apparent unexpected result could be a data artefact; since
large issues were the only bonds trading at the time, the quotes for small bonds
may not have been updated. Figure 2.8 (right) shows that Senior bonds did not
trade at different levels of liquidity prior to the credit crunch. The onset of the
credit crunch caused Senior bonds to trade at much lower bid-ask spreads. The

increased (decreased) liquidity of Senior (Subordinate) bonds seems to support the
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often-quoted ‘flight-to-quality’ of safer Senior (Financial) bonds.
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Figure 2.9: Beta parameters for the Age Category indicator (left) and Capital Tier (LT2)
indicator (right).

Lastly, Figure 2.9 displays the beta parameters for the indicator variables related
to Bond Age (>1 year) (left) and Capital Tier (LT2) (right). The coefficient for the
Age indicator (Figure 2.9, left) is rather volatile and relatively small in magnitude;
with a value of approximately 0.1 on average, implying that recent issues (age < 1
year) typically have a bid-ask spread that is 10% narrower than older issues (age >
1 year). The sign of the beta parameter is according to expectations on most days;
older issues (>1 year) appear to be less liquid. However, from late 2007 to the end
of 2008, the coefficient was negative indicating that newly issued bonds were more
difficult to trade at that time, perhaps because short-term traders suddenly found
it difficult to offload recently purchased new issues. A financial institution’s debt is
capital that serves as protection of depositors from a regulatory viewpoint and the
regulator categorizes this capital in tiers. From a regulatory perspective of a bank’s
capital, only 25% of a bank’s total capital can be Lower Tier 2 debt and is generally
the easier and cheapest to issue. Not unsurprisingly, the ‘flight-to-quality /liquidity’
can also be observed in Figure 2.9 (right), where LT2 capital becomes more illiquid

after the onset of the credit crunch, with extreme levels of illiquidity during early
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2009.

Throughout the results section, the focus will be on displaying numerical results
for the models fitted to A-rated bonds, as this corresponds most closely to the
typical credit quality of an insurance portfolio. However, the modelling approach
also allows for beta coefficients to be compared across rating, providing insight into
market behaviour at different segments of the credit quality spectrum. For example,
the duration coefficients (f;) for Financials and Non-Financials can be compared

across rating.
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Figure 2.10: The weekly duration coefficient, /3, for Non-Financial Issuers (left) and Fi-
nancials (right) for all four rating categories.

The weekly duration coefficient for Non-Financial Issuers (Figure 2.10, left) is
both similar in magnitude across rating categories and evolves similarly over time
across category. The equivalent coefficient for Financial Issuers (8, r in Equation
2.1) follows a similar evolution over time (drops lower than Non-Financial parameter
and recovers slower, seen in Figure 2.7) for AAA-, AA- and A-rated bonds. It is
important to emphasize that the small sample size of AAA-rated Financial issuers
(bonds) post-2010 is responsible for the volatility in the AAA-rated coefficient; for
example, on 15-09-2011 only twelve such securities are present in the dataset. The

BBB-rated coefficient (/31 ) is very different from the other rating categories, before,
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during and after the credit crunch.

2.6.2 Modelling Credit Spread

Markit’s Annual Benchmark Spread is used as the measure of credit spread. Similar
to the Bid-Ask Spread model, some model parameters () are reviewed for several
sub-models (by rating and date, as in Equation (2.2)). Referring back to Table 2.2 to
aid in the interpretation, please note that the Relative Bid-Ask Spread is modelled
as the exponential of the residuals of the regression equation. Figure 2.11 shows the
v coefficients for two indicator variables; Non-Financial issuer (Financial issuer)
and Senior (Subordinate) issuer. Bonds issued by Financials and Non-Financials,

ceteris paribus, are expected to trade at similar prices prior to the crisis.
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Figure 2.11: Gamma coefficient for Non-Financials (left) and Senior (right) bond indica-
tors.

Given the relative instability of the financial services industry (particularly banks)
during the crisis, Financials are expected trade at lower prices / higher spreads
(vields) after the Northern Rock bank run (14-09-2007). Figure 2.11 shows that
yields of Financial- and Non-Financial issuers, ceteris paribus, started to diverge at
the time of the Northern Rock bank run and are yet to recover fully to pre-crisis lev-
els. Similarly, Senior and Subordinate bonds traded at similar prices until mid-2007,

but have since diverged. The negative coefficient for the relevant gamma coefficient,
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implying lower yields for senior bonds, is not surprising, nor is the fact that the
coefficient was close to zero; in a low default regime, recovery rates (affected by
seniority status) are not likely to be an important determinant of bond prices. In a
regime with high (perceived) default risk (premia), especially for Financial issuers,
which issue most subordinate bonds, recovery rates are more likely to impact an

investor’s decision.
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Figure 2.12: Gamma coefficient for Non-Financials across rating categories.

Looking at the Non-Financial indicator across rating categories (Figure 2.12),
similar patterns emerge; the AA- and AAA-rated model coefficients follow the A-
rated coefficients from Figure 2.11 very closely, where the AAA-rated model coeffi-
cient shows a high variance for the post-2010 period as a result of a small sample
size. The BBB-rated model coefficients seem slightly different with coefficients far
lower than the other rating categories pre-crisis, far more volatile estimates and an
extreme reaction around the time of the Northern Rock event. Its coefficient remains

below the coefficient of other rating categories for the entire period under study.
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Figure 2.13: Gamma coefficient for log Duration (NF) on the left and RBAS on the right.

Figure 2.13 shows the evolution of the gamma parameters for Duration and the
relative liquidity proxy, RBAS. The gamma coefficient of Duration (NF) is positive
for most days during the observed time period, indicating a rising Credit Spread
curve. Upon close inspection of Figure 2.13 (left), it becomes clear that the Duration
parameter started its steep drop just days/weeks before the indicated Northern Rock
Event (14-09-2007). Lastly, the zero/negative value of this parameter indicates a
flat or falling credit spread curve which could be interpreted as the market trading
on price rather than yield, where short term concerns over the value of investments
dominate an investor’s behaviour. Given the specification of Equation (2.2), the
gamma parameter of RBAS (Figure 2.13, right) is directly related to the size of the
liquidity premium that is extracted in the next section. At this point it suffices to
observe that the relative liquidity proxy is positively priced on all days during the

sample period, except for a very brief period during 2006/2007.
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Figure 2.14: Gamma coefficient for Coupon (left) and Collateralized indicator (right).

Figure 2.14 shows the evolution of the gamma coefficients for Coupon (left)
and the Collateralized indicator (right). The gamma parameter for Coupon rate is
positive throughout the sample period, indicating that bonds with higher coupon
rates trade at higher spreads. Please note coupon rates are expressed as whole
numbers; e.g. the effect of a 5% paying bonds would be 5 x . This is also according
to expectations and in line with literature (for example Leland, 1994) that speaks of
a ‘tax-effect’, where the underlying idea is that bonds with a low coupon rate have a
more favourable tax treatment than high coupon paying bonds. Collateralized bonds
would also be expected to trade at lower credit spread, which is what is observed for
most of the sample period, although with some variability (Figure 2.14, right). The
zero /negative coefficient from 2004-2006 is unexpected at first sight but might be
explained by the dynamics of supply and demand for, for example, mortgage backed
securities.

Finally, the fit of the model from Equation 2.2 is considered by looking at the
explained variation in credit spreads. Figure 2.15 shows the aggregated weekly R2-
statistic over time for all four rating categories. The R2-statistic is a commonly
used indicator of goodness-of-fit in linear regression (OLS) and is defined, most
commonly, as the ratio of explained variance (variance of model’s predictions) to

the total variance (sample variance of dependent variable).
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where 55,4 and S5, are the regression and total sum of squares.

As can be seen, the model describes the data very well, but varies by both rating
and time. Two additional observations can be made; values for R? are high in
general, and between 2009-2013 the R? of A- and BBB-rated bonds seems to be
substantially higher than the R? of the AAA- and AA-models.
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Figure 2.15: Variation of the coefficient of determination, R2, for the credit spreads model
over time (weekly) and by rating category.

The model coefficients presented in this section have focused on the A-rated
bonds, but comparisons across rating have been made where most appropriate (Fig-

ure 2.12 and Figure 2.15, for instance).

2.6.3 Liquidity Premium Estimates

As remarked earlier, the liquidity premium will be investigated both in number of
basis points and as a proportion of total credit spread. Whereas this section will
focus on the numerical results for A-rated bonds in particular, similar results for
other rating categories can be found in Appendix A (replications of Figure 2.16).

For A-rated bonds, Figure 2.16 shows the following:
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e (left) shows a time varying decomposition of the median credit spreads into

a liquidity (black) and non-liquidity component (grey)
e (middle) shows the liquidity component in bps

e (right) shows the liquidity component as proportion of spread
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Figure 2.16: Decomposition of credit spread (left) for A-rated bonds of average liquidity
into a liquidity and non-liquidity component; Liquidity component of credit spread (mid-
dle) in basis points and the liquidity component of credit spread as a proportion of total
credit spread (right).

Since liquidity premia in Figure 2.16 are shown to vary over time, the liquidity
premium of an A-rated bond of average liquidity is said to be time dependent. The
time dependency of liquidity premia is not limited to basis points (if Figure 2.16
(right) were constant, liquidity premia would simply move proportionally with credit
spreads), but extends to the proportion of credit spreads. In the pre-crisis period
average liquidity premia appear low (relative to the rest of the sample period) and
somewhat volatile. Just prior to the start of the credit crunch (2006-2007), average
liquidity premia were near zero (Figure 2.16 (right)) on low credit spreads in general
(Figure 2.16, left). The onset of the credit crunch caused the liquidity premium to
rise from near-zero levels to approximately 50% of credit spreads.

The non-liquidity component, consisting of both the expected default losses and
a credit risk premium, also increased dramatically in bps. This increase could be

contributed to a number of factors. First, within the economic cycle and in the
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context of the crisis, short-term expected default probabilities would have risen
even if a bond’s rating was unchanged. Arguably, though, this could only contribute
marginally to the overall increase. Second, investors’ levels of risk aversion due to
higher (perceived) levels of uncertainty might have increased significantly during the
crisis, pushing up risk premia. Third, there might have been increased uncertainty
in what future default probabilities and recovery rates would be. This additional
uncertainty attracts its own risk premium which would, therefore, have risen during
the crisis.

Liquidity premia (Figure 2.16, right) were relatively high and stable for several
years during/after the credit crunch (Figure 2.16, right), irrespective of levels of
credit spreads (Figure 2.16, left) and appear to have started to decline at the start
of 2013.

Rather than looking at the average (point-estimate) of the liquidity premia over
time, Figure 2.17 investigates the distribution of liquidity premia by plotting various
percentiles of the daily distributions (in basis points) over time, on a monthly basis.
In the left-hand plot, for example, an 80% quantile of 200 on a given date means

that 20% of bonds had a liquidity premium of more than 200 basis points on that

date.
Distribution Liquidity Premium (bps) Distribution Liquidity Premium (%)
A-rated bonds A-rated bonds
o
B | — 80% quantile —— 80% quantile
— 65% quantile —— 65% quantile

o 50% quantile o 50% quantile
& §7 25% quantile . © 7 25% quantile
Q X
8 ~
E g _ g
E ™ E o
o £ v
k=] 9
3 g o |
5 o - N

o —

—

O o -

T T T T T T T T T T T T
2004 2006 2008 2010 2012 2014 2004 2006 2008 2010 2012 2014

Figure 2.17: Time-varying nature of four weekly quantiles of daily liquidity premium
distributions, in basis points (left) and in proportion of spread (right).
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The distribution of liquidity premia is tight pre-crisis, but widens substantially
during the 2008-2013 period, only recently becoming tighter again. The skew of the
distribution (long upper tail) is a direct results of the skewed distribution of RBAS
as exp(epas) from Equation (2.1). Lastly, estimates of average liquidity premia

across rating category are compared in Figure 2.18.
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Figure 2.18: Monthly estimates of median liquidity premia across rating category.

Taking monthly estimates to remove most of the very short term volatility of
the time series to improve legibility, Figure 2.18 shows that before the crisis, the
four categories behaved similarly, with the exception of the AAA-rated bonds, which
saw far smaller liquidity premia. All rating categories display very low premia (0%
- 10%) from mid-2006 to mid-2007 and shoot up as a response to the credit crunch
(again, AAA-rated bonds are the exception). After the start of the credit crunch,
the A- and BBB-rated bonds appear to behave differently; whereas AAA- and AA-
rated bonds return towards pre-crisis levels (AAA-rated slightly elevated), bonds of
lower credit ratings see far higher liquidity premia for a prolonged period of time,
starting to return to pre-crisis levels in 2013. In general, bonds with a lower credit
rating have higher liquidity premia (as proportion of spread).

The extensive descriptive analysis of the market in Section 2.4 demonstrates to

some extent the changes that have happened over the period under study. Whereas
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Figure 2.18 illustrates the liquidity premia as they are ‘observed’ in the market
it may also be useful to consider the liquidity premium over time of a fictional,
representative bond. To that end, Figure 2.19 shows the estimated liquidity premium
of a typical bond over time, where the bond is A-rated, has a duration of five years,
is senior, Non-Collateralized, paying a 2% annual coupon, two years old and with an
average notional amount outstanding. The Financial status of the issuer is varied

as well as the value for RBAS.

Liquidity Premium for Constant Bonds Constant Bond
250 - liquid — illiquid
=== Fin. Avg Liquidity r
—— Fin. High llliquidity 200- <~ Avg. Liquidity
200 — = Non~Fin. Avg. Liquidity = Higher lliquidity
—— Non~—Fin. High llliquidity = Highest lliquidity
1?150 i === L ow llliquidity
o é === Very High llliquidity
150 -
IS
=]
e
g 100
100 - >
=
=
k=3
- -
50 - 50
0- 0-
T T T T T T T T T T T T
2004 2006 2008 2010 2012 2014 2004 2006 2008 2010 2012 2014
Datum Datum

Figure 2.19: Predicted liquidity premia for constant bond over time (left), for various
degrees of liquidity (right).

The general evolution of the graph in Figure 2.19 (left) corresponds to the ob-
served liquidity premia reported earlier (Figure 2.16). The plot on the right illus-
trates to what extent, for the fictional bond, the liquidity premia would vary across
various levels of liquidity; this plot corresponds to the observed liquidity premia

quantiles from Figure 2.17.

2.7 Additional Analyses

Three additional analyses provide additional insight; the first is related to the choice
and derivation of the new, relative liquidity proxy. The second additional analysis

looks at the robustness of the model outcomes with respect to credit spread measure
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and the section is concluded by investigating some of the properties of the RBAS.

2.7.1 Alternative Liquidity Proxy Specification

The Relative Bid-Ask Spread (RBAS) is probably, after an extensive literature re-
view in Section 2.2, the only truly relative liquidity proxy, which exhibits the perhaps
counter-intuitive property of having a constant average (expected) value, on a daily
basis. Since RBAS is defined as the exponential of the residual term from Equa-
tion (2.1), its distribution, on a daily basis, is always expected to centre around 1
(standard log-normal for normally distributed residuals), irrespective of economic
climate. The distribution for RBAS can either be wider or narrower, depending
on the daily fit of the regression model (Equation (2.1)). Its relative nature and
design does bring the attractive property of being uncorrelated with common bond
characteristics. Using the same period and bond universe, a similar set of regres-
sion models is specified, but with the 'raw’ bid-ask spread as liquidity proxy. The
methodology to extract the liquidity premia is different and does not create a hypo-
thetical perfectly liquid alternative; the method of premium extraction is based on
and similar to the method used in Dick-Nielsen et al. (2012).

The use of bid-ask spreads, or indirect measures of the bid-ask spread such as
the Roll-measure (as recently in Bao et al., 2011) or Imputed Roundtrip Costs
(Feldhiitter, 2012), have frequently been used to study the effect of illiquidity on
asset prices. Figure 2.20 clearly shows that the time series of daily median bid-
ask spread for investment grade bonds is highly time-, rating- and Financial /Non-
Financial dependent, with the spread on financials increasing by much more during

the crisis.
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Figure 2.20: Shown on the same scale, the bid-ask spread for all IG ratings, both Financial
and Non-Financial issuers, increased dramatically during the financial crisis.?

Again, regression models of credit spreads and bond characteristics are formu-
lated (using identical covariates to Equation (2.2)), but including the bid-ask spread
directly instead of RBAS;

(C5(i, 1) = c(rt)
+ 61 prn (7, t) x log Duration(i, t) X Iprn (i)
+ 61 nr(r,t) x log Duration(i,t) x Inp(7)
+ 05(r,t) x log Notional(i, t)
(2.4)
+ 63(r,t) x Coupon(i, t)
+ 04(r,t) x BAS(i, t)

+ Zé’k(r, t) X Ik(Z,t)
k

+ ecs(i,t)  (residual).

Since the dependent variable is credit spread rather than log(CS), the coefficients
and covariates can be interpreted directly to evaluate their contribution to credit

spread in basis points. Instead of estimating the perfectly liquid equivalent bond, an

2Note that the abnormality for AAA-rated Non-Financials is due to a methodology change in
the data; several Non-Financial issuers became Financial issuers on that day.
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estimation procedure similar to Dick-Nielsen et al. (2012) is followed. The liquidity
score for each bond is defined as 0,(r,t) x Bid-Ask Spread(i,t). Within each rating
category (AAA, AA, A, BBB) and day, bonds are sorted on their liquidity score.
Then, the size of the illiquidity contribution to the spread, for an average bond, is
defined as the 50% quantile minus the 5% quantile of the liquidity score distribution
in a particular bucket (6 x (BAS5y — BAS5)). Therefore, the liquidity contribution
measures the difference in credit spread between a bond of average liquidity and a
bond that is very liquid. Compared to the approach of estimating perfectly liquid
bonds, this measure is relative; the 5% quantile represents a very liquid bond on a
particular day.

Comparing the time series of daily liquidity premium estimates for the A-rated
bucket, with the estimates of median A-rated liquidity premia from the previous
model shows (Figure 2.21) that the two move together somewhat, but are rather
different. The alternative approach shows spreads of near zero for the entire pre-
crisis period (bid-ask spread is not significantly priced), seems to react to the credit
crunch more slowly, peaks around similar levels but drops much deeper in 2010-
2011, increases drastically for only a few weeks during the European debt crisis
from approx. 15% of spread to 65% of spread, only to return to near zero levels very

quickly.
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Figure 2.21: Comparison of A-rated liquidity estimates in basis points (left) and % of
spread (right) for the proposed modelling approach (black) and the alternative approach
(grey)-

2.7.2 Robustness of Credit Spread Measure

The use of the Annual Benchmark Spread, in favour of other spread measures is
described in Section 2.3 and on the one hand comes down to the tradability of
the reference asset, but, more importantly can be attributed to reasons of back-
wards compatibility; other spread measures are only available after June 2009 in
the Markit dataset. The asset swap margin and, in particular, the Z-spread and
Option-Adjusted Spread are commonly used spread metrics that are only available
after 2009. To show the extent to which the choice of spread measure influences
the analysis in general and ultimately the estimated liquidity premia, a simple ro-
bustness check is performed by substituting in the new spread measures (using a

post-2009 subset of the data) and documenting the results and potential differences.
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Figure 2.22: Daily average values of three credit spreads measures for Non-Financials
across four rating categories.

On aggregate, in Figure 2.22, spread measures appear to have very similar val-
ues and dynamics. Apart from some instability in the early days of publishing the
Benchmark Curve and some discrepancies in the Z-spread after 2010, the spread
measures appear very similar. Note that the Z-Spread and OAS are identical for
bonds without optionality. Naturally, for modelling purposes, differences on the indi-
vidual bond level are of most interest, rather than market-wide aggregates. Looking
at individual bonds some discrepancies appear; in order to summarise how spread
measures vary in one simple statistic, a straightforward metrics, namely a Mean

Absolute Deviation, is used to summarize the data;

=N
! |Spread, ; , — BMS;,| 1
MAD; = Z BAS,, X

=1

where s is the spread measure (either Annual Benchmark Curve, Z-Spread or
OAS) for bond i on day ¢t and N; are the number of bonds in the universe at time

t. The resulting series MAD, is plotted in Figure 2.23.
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Figure 2.23: Daily average values of three credit spreads measures for Non-Financials
across four rating categories.

With a better understanding of the differences between spread measures for indi-
vidual bonds and how these differences vary over time, the entire modelling process
is repeated on a subset of the data (post 2009); this includes the modelling of the
Credit Spreads, but not the modelling of Bid-Ask Spread in the first stage. Ulti-
mately the interest of this Chapter lies with the different liquidity premia estimates.
In Figure 2.24 liquidity premia are compared for each of the alternative spread mea-
sures; to aid interpretation, the liquidity premium using the Annual Benchmark

Spread is used as a reference point.
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Figure 2.24: Comparison of liquidity premia estimates across various credit spread mea-
sures, aggregated by year to aid interpretation.

With the exception of the liquidity premium estimated in 2009 based on the
Annual Benchmark Curve, for which very odd values are reported (see Figure 2.22),
all spread measures lead to liquidity premia that are very close to the liquidity

premia estimates using the Annual Benchmark Spread.

2.7.3 Investigating RBAS Properties

As remarked earlier, the liquidity proxy RBAS is entirely relative (daily distribution
centred around one) and uncorrelated with common bond characteristics, all of
which allows for the direct comparison of intrinsic bond liquidity. To gain a better
insight into the properties of the relative liquidity measure, a set of Financial and
Non-Financial issuers with multiple bonds outstanding on a particular day is used to
graphically explore whether there seems to be evidence for an issuer specific liquidity
effect. It is noteworthy that issuer specific liquidity has only been briefly explored
by Dick-Nielsen et al. (2012), who considered an issuer specific liquidity proxy
(non-zero trading days for issuer). Including additional covariates in the specified

regression models, such as number of bonds outstanding by issuer or total notional
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outstanding by issuers, yields a beta parameter that is largely insignificant and has
been omitted from Equation (2.1). In Figures 2.25 and 2.26 the bid-ask spread (left)

and RBAS (right) are shown for Financial and Non-Financial Issuers respectively.
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Figure 2.25: Bid-ask spreads (left) and RBAS (right) for bonds issued by selected Finan-
cials. Ordering of bonds (by issuer and then by magnitude of BAS) on the left is preserved
in the right-hand plot.

Two observations are important to make; first, daily BAS and RBAS for in-
dividual bonds/issuers are uncorrelated. The second observation is related to the
issuer specific liquidity. Whereas issuer specific variables have been omitted from
the model, Figure 2.25 appears to display a some issuer specific effect for Financials
during the credit crisis. Issuer specific liquidity is defined as ‘generally more or
less liquid than average’, where Figure 2.25 shows that issuers ABBEY, HSBC and
LLOYDS seem to have most bonds outstanding with RBAS less than one. This ef-
fect is very limited for Non-Financial issuers (Figure 2.26), where perhaps the same
issuer specific liquidity effect can only be observed for GE (General Electric).

The evolution of a bond’s relative liquidity over time is important to consider,
as the distribution of the population of bonds does not change on a daily basis, it
is of interest to find out how volatile the bond’s position is within that distribution.
Estimates for RBAS are relatively robust over time, meaning that over short-medium

periods of time, RBAS changes little. The volatility of RBAS is thereby mainly
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Figure 2.26: Bid-ask spreads (left) and RBAS (right) for bonds issued by selected Non-
Financials. Ordering of bonds (by issuer and then by magnitude of BAS) on the left is
preserved in the right hand plot.

dependent on volatility of model parameters (5, in Equation 2.1, which are robust
over short periods of time, and dependent on the movement of the bond’s Bid-
Ask Spread; both move in response to a changing market (model parameters) and
idiosyncratic shocks. Figure 2.27 shows the evolution of weekly bid-ask spreads (left)
and RBAS (right) of three bonds over a long period of time (multiple years) and
it is clear that these bonds, despite short term volatility, operate at three different
points of the RBAS spectrum. Please note the particular issue of the Royal Bank of
Scotland (Figure 2.27 (third row)), which in recent years appears to be consistently
more liquid compared to identical bonds which is likely the result of the government

backing of RBS.
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Figure 2.27: Bid-Ask Spreads (left) and RBAS (right) for three individual bonds over
time.

2.8 Bank of England’s Structural Model

The Bank of England published an article in their quarterly bulletin about decom-
posing credit spreads and liquidity premia (Webber, 2007), for which the details
can be found in an earlier working paper by Churm and Panigirtzoglou (2005). The
working paper discusses how the Leland and Toft (2006) structural model is used
to arrive at historical default probabilities on the one hand, and is used to derive
‘contemporaneous forward-looking’ estimates of the fair credit spread on the other
hand, which in turn dictates the estimated liquidity premium. This section aims to
discuss some of the results from the Bank of England’s work and perform a sensi-
tivity analysis on the structural model to illustrate the subjectivity and difficulty
to arrive at decent parameters for the model. It also serves as an interesting ex-

ample, given that Chapter 4 of this thesis is concened with model uncertainty and
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parameter risk.

2.8.1 Quick Model Overview

At the centre of the modelling effort in the working paper, is the Expected Default
Frequency (EDF), directly taken from the Leland and Toft (1996) paper, with the

EDF up to time t given by;

—b—(u—08—0.502)t _2bu=5-050%) —b+ (u— 3 —0.50%)t
+ 2 N 2.5
M e R e

with a list of parameters,

e 1, risk-free rate P, leverage

e 0, asset volatility T, tax advantage

e T' debt maturity

C, coupon yield

e «, bankruptcy costs 0, payout ratio

where b = ln(%) and Vj, the default trigger, is described by;

QA_B AP 7Cx
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The endogenous default boundary is computed using its subcomponents;
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In the Bank of England article, the above expression for the EDF is used to
describe historical default data from the United States. The parameters of the
model are chosen to best reflect a long running history. For instance, r is set to
0.08 (8%) as the average long-term (ten-year) government yield, Leland (1994) is
followed in setting the bankruptcy costs to a = 30%, the average maturity set to
five years and the leverage set to 41% as determined in a study by Standard and
Poor’s in 2001. The average historical credit spread for an investment grade bond
is set to 136 basis points based on the Merrill Lynch Index.

Rather than producing EDF's, a calibrated model can also be used to generate
credit spreads. The value of a coupon bond with semi-annual coupon payments K

is given by the following equation:

T
BT — Z %e”(l — (1 — R)EDFt(bnu?(s? U)) +

t=1

1+ K
T2 ¢

The par coupon spread is the value of K that makes the bond value equal to
1 (par value). This optimisation is solved using a Newton-Raphson method and
the resulting value for K annualised. The credit component of the spread (both
expected default and the risk premium) is computed by subtracting the risk-free
rate; K — r. Using the above historical calibration, the fair credit spread comes to
83bps, which is 61% of the observed credit spread of 136bps.

To arrive at contemporaneous estimates of the credit spread, the Bank of England
working paper uses several datasets and modelling choices to arrive at monthly
estimates for several parameters of the model. The Merrill Lynch Global Index
System is used to collect monthly credit spread estimates on UK corporate bonds,
firm-level 1-year option implied volatility is collected from Bloomberg and a three
stage dividend discount model is used to estimate the cost of equity (equity risk
premium) using data from the Institutional Brokers Estimate System (IBES). The
equity risk premium is based on firms with trading equity in the FTSE 100, which
far from covers the entire Merrill Lynch bond index. The equity implied volatility

does not have the correct maturity, not all firms in the index have options trading
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on its equity and some do not have trading equity at all and need to be excluded
(implied volatility data is available for 62% of the index constituents). To transform
equity volatility to asset volatility a set of simultaneous equations from the Merton
model is used to solve for ¢ numerically, but the Leland and Toft model is not
equivalent to Merton, and this is only an approximation. The Bank of England
paper discusses the difficulty in deciding whether an average or time-varying value
for leverage is best to use; long-term average is used as target®. Recovery rates and
bankruptcy costs are assumed to be fixed values and the long-term average leverage
is derived from a sample of US equity. The choices for calibration are abundant and
difficult to make due to the complexity of several parameters themselves (equity risk
premium and asset volatility) or the inability to access reliable data at a granular
level (earnings growth, leverage or bankruptcy costs).

Acknowledging the difficulty in deriving model parameters, the effect some of
the parameters have on the estimated long-term investment grade liquidity premium
(which translates directly to fair credit spread and in turn to liquidity premia) is
substantial.

Apart from the model uncertainty when it comes to modelling something as
complex as the liquidity premium, the structural models seem to be riddled with
parameter risk, as there are many (unobservable) parameters to pin down. Added
in the complexity of deriving some of the parameters and the difficulty to access re-
liable and frequently updated data, makes for a very complex model to parametrise;
attempting to derive liquidity premia for individual issues rather than a deriving a

market-wide estimate adds another layer of complexity.

3Long-term averages are used as those would serve well as leverage targets. The study fails
however to distinguish between the leverage of financial and non-financial firms, which due to the
business models is likely to differ irrespective of solvency risk. The leverage figures are based on
US estimates.
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Chapter 3

Quantitative Factor Investing in

the UK Corporate Bond Market

3.1 Introduction

The modelling efforts presented in Chapter 2 fall under the category of statisti-
cal models that attempt to extract the liquidity portion of the credit spread. The
models do so by building a new, relative liquidity proxy and estimate the credit
spread of an artificially liquid bond. The estimated figures for the liquidity premia
are conditional on a strict hold-to-maturity basis, which may not be feasible, or
desired from a risk management perspective, yet is generally accepted among life
insurers (annuity providers). This Chapter aims to introduce an alternative, nearly
model-free approach to deriving liquidity premia using an intuitive interpretation of
liquidity premia. Whereas the previous statistical model does not suffer from some
of the obscure data and parametrisation requirements structural models carry, one
could argue that it does describe a model in which a rather arbitrary and fictitious
perfectly liquid alternative bond is created to derive premia. This somewhat theo-
retical interpretation and derivation of the liquidity premia might still benefit from
an even simpler derivation based on a simpler interpretation of liquidity premia.
If we consider liquidity premia to present itself as higher returns (as an accrued,
expected, present value of credit spreads), liquidity premia can simply be observed

by comparing the returns of relatively illiquid bonds and the returns of bonds that
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are relatively liquid.

Again, the same Markit iBoxx dataset is used to compute liquidity premia in
this Chapter, which makes full use of the dataset that is available by taking the
opportunity to not only evaluate the risk and return characteristics of various def-
initions of an illiquidity factor, but extend factor investing principles to the wider
dataset and aims to provide a review of quantitative factor investing in corporate
bonds.

The topic of alternative/strategic/smart beta is often misrepresented in popular
finance articles and may be abused as a marketing term rather than an accurate
description of a group of investment types or strategies. According to Morningstar
(Johnson et al., 2016), 950 such products are traded with an estimated value of more
than 475 billion US dollar (December 2015), in an effort to cater to investors by
promising alternative strategies with higher returns or cater to investors by allowing
them to alter the relative risk profile of their portfolio.

‘Smart beta’ generally refers to passively following an index in which the index
weights are not proportional to their market capitalizations, but based on alternative
weighting rules. The alternative weighting can be designed to strategically expose
the portfolio to factors. A factor can be thought of as any characteristic shared by
or pertaining to a group of securities that is important in explaining their return
and risk and is typically presented as a systematic risk premium, but can de related
to anything including for instance, employee satisfaction (Blackrock, 2015). The
Exchange Traded Fund (ETF) market has been instrumental in the rise of easily
traded products, some of which are classed “smart beta”. Some of the factors that
funds attempt to capture might be difficult to characterise as “smart” products, as
most are geared towards capturing factor risk premia that are well-known. Investors
need to be aware of smart product ETFs that try to justify higher management fees
based on overly complex strategies and the ambiguous position of alternative beta
products as both an active and passive investment (strategy). Smart products are
active in design, where the ‘intelligence’ of an alternative index is created and is

passive in its implementation as no day to day decisions about portfolio positions is
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necessary and mostly quantitatively, pre-defined criteria rebalance portfolios.

As alternative beta funds generate tremendous inflows and subsequent (media)
attention, these new ETFs have also received their fair share of criticism. The
criticism ranges from sceptics regarding the validity of factor outperformance versus
higher implied risk, over-specification or data dredging to create strategies without
longevity, and the reasoning that the market anomalies, if behavioural biases, that
strategic funds systematically might attempt to exploit will simply cease to exist
due to incredible inflows, leading to an almost self-fulfilling prophecy. With cheap
index funds at anyone’s disposal and the realisation that naive allocations tend to
outperform more sophisticated allocations over long periods (DeMiguel et al., 2009),
the justification of high fees continues to be challenged.

A large body of academic research highlights the empirical finding that long
term equity performance can largely be explained by factors; for example, five well-
documented factors associated with the equity risk premium include Value (Basu,
1977; Reinganum, 1981), Low Size (Banz, 1981), Low Volatility (Jensen et al.,1972,
Haugen and Heins, 1975), Quality (Sloan, 1996) and Momentum (Jegadeesh and
Titman, 1993; Carhart, 1997). Long term equity performance can be captured by
these systematic risk premia, which alternative beta funds attempt to do, where the
possibilities for the operationalisation of these risk premia are endless.

The remainder of this Chapter is organized as follows: Section 3.2 will briefly
revisit the Markit iBoxx GBP Corporate Bond dataset; Section 3.3 discusses the
portfolio methodology (of the replication) as well as the practical implementation of
the factors, Section 3.4 discusses the distributional properties, (risk-adjusted) per-
formance, turnover and transaction costs of single-factor portfolios, where Section
3.4.5 is specifically dedicated to a discussion about liquidity premia. Finally, Sec-
tion 3.5 studies multi-factor portfolio construction and optimisation under several

strategies.
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3.1.1 Review of Credit Specific Literature

The body of literature for factors in equity risk premia is extensive and spans several
decades, with the most well-known work by Fama and French (1993) who extend a
standard Capital Asset Pricing Model (CAPM) to include factors beyond the market
factor. Whereas the empirical evidence in equity markets is extensive, the research
on corporate bond factors is far more limited. The first work to jointly analyse
multiple factors using a unified approach was by Houweling and Van Zundert (2014).
In addition to this work, there are also some contributions on Low-Risk (Quality),
studied by Frazzini and Pedersen (2014), and Value, studied by Correia et al. (2012).

Correia et al. (2012) and Frazzini and Pedersen (2014) evaluate the existence
of individual factor outperformance. Specifically, Correia et al. (2012) evaluate the
predictive power of accounting-based and equity market based information in rela-
tion to corporate credit spreads. Incorporating these inputs leads to a structural
model that is best able to forecast default, and, interestingly, the market does not
completely price this and does so with a lag; Correia et al. (2012) capture the
possibility to take advantage of value-investing to achieve excess returns. Frazz-
ini and Pedersen (2014) construct a ‘BAB’ (Betting-against-Beta) factor which is
based on the driving factor of leverage constraints in their model for US equities, 19
international equity markets and other asset classes, including US-Treasury bonds
and corporate bonds. Across all asset classes they find that a self-financing, market
neutral portfolio, long in low-beta assets (levered to one) and short in high-beta
assets (de-levered to one) produces significantly higher Sharpe ratios and positive
alpha. The existence of Momentum in corporate bonds has recently been docu-
mented by Jostova et al. (2013), who find that non-investment grade bonds carry
Momentum profits of 192bps, with bonds placed by private firms commanding even
higher Momentum profits of 282bps. They fail to find evidence of momentum prof-
its for investment grade bonds, but do find that while some momentum spills over
from equities to both investment and non-investment grade bonds, there are large
and significant bond-specific momentum effects in non-investment grade bonds. The

treatment in Houweling and Van Zundert (2014) covers multiple factors studied in
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the US corporate bond market, in both the investment grade and high-yield seg-
ment. They find statistically significant premia for Size and Value factors in both
market segments; out-performances for Size being 75bps and 402bps for investment
grade and high yield respectively. Their ‘Low Risk’ factor does not outperform the
general market on a strict return basis, but due to its low levels of volatility, results
in a significantly higher Sharpe ratios. Houweling and Van Zundert (2014) continue
to consider the value of corporate bond factors as part of a diversified portfolio
of asset classes and show positive alpha of the investigates corporate bond factors
exists.

This Chapter builds on the relatively small body of literature in several ways.
Using a similar approach to Houweling and Van Zundert (2014) in identifying and
constructing the factor portfolios, seven factors, rather than five are considered,
adding High Volatility and Illiquidity to the factors considered in Houweling and
Van Zundert (2014). The research presented in this Chapter is the first comprehen-
sive study of seven factors using a common methodology applied to the same UK
dataset, in which the risk and return characteristics and relative risks of each factor
portfolio are reviewed.

The Illiquidity factor is investigated in greater detail and used in interpreting
liquidity premia for corporate bonds. Not only are the risk and return characteristics
for the factor portfolio discussed, liquidity premia are also derived for subsets of the
market, where particular interest in this application lies in the risk characteristics
of the returns associated with illiquid assets. The relative merits of the proposed
modelling methodology are discussed and both the size of the premia as well as its
dynamics over time are of interest.

Existing literature, in both equities and credit generally employ a fixed holding
period for portfolios when working with quantitative factor portfolios, whereas the
proposed methodology allows for changes to the portfolio to be made on a monthly
basis. Rather than fixing the holding period of portfolios for a typical six or twelve
months, i.e. yearly rebalancing according to some set of quantitative criteria, and

rather than immediately trading bonds that fail to meet the specified factor criteria,
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a tolerance level is specified, effectively controlling the portfolio’s turnover at the
expense of diluting the factor’s exposure. An optimal tolerance level for each of the
factor portfolios is studied, maximising return net of transaction costs. Rebalancing
a corporate bond portfolio at random times using a tolerance parameter rather than
at fixed intervals adds a degree of realism to the proposed methodology as fund
managers would typically like the opportunity to re-balance at frequent intervals.

The UK corporate bond market, even the investment grade segment, is an illig-
uid market resulting in significant trading costs. Not only the extent to which
transaction costs, explicitly defined as bid-ask spreads, eat into the strategy’s re-
turn (investigating post-transaction levels of alpha) is investigated, but also how the
tolerance level can be set to achieve an optimal holding strategy. This represents a
trade-off between factor dilution (at high tolerances) and portfolio turnover / trans-
action costs. Evidence of factor dilution exists for most factors and it is observed
that the suggested, optimal holding strategy allows for a substantial tolerance level,
realising limited portfolio turnover.

Motivated by a relatively high degree of benchmark risk for single-factor port-
folios, that is, the risk associated with the outperformance versus the market, the
benefits of allocating to multiple factors are studied in some detail. It is paramount
that a strategic asset or factor allocation should first and foremost be driven by an
institution’s objectives and constraints, yet three strategies and several implemen-
tations are formulated under which multi-factor allocations might be used. Each of
the strategies represents a general, potential objective for pursuing a multi-factor
corporate bond allocation: enhance risk-adjusted returns, limit downside risk and
limit relative risk. Multi-factor allocations allow higher returns, lower risk, reduced
cyclicality and lower relative risk through diversification of outperformance of single
factor portfolios.

The period under study is relatively short (11 years) and includes several years of
severe financial distress. Since factor investing is concerned with excess returns that
materialise over longer periods of time, and market participants in the corporate

bond market can have investment horizons that span several decades, some cursory
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insight into the variability of optimal portfolio weighting schemes is provided.

3.2 Description of the Data

Using the same Markit iBoxx dataset for Investment Grade corporate bonds in the
UK, discussed in detail in Chapter 2, granular data is available, updated with high
frequency and supplemented with many bond characteristics at any given time.
Unfortunately, the dataset is not free from survivor-ship bias as bonds can leave
the dataset prior to maturity without accurate information about what happened.
To account for bonds being downgraded to High Yield and bonds defaulting, the
following heuristics are used to compute a final return value on the day the bond
disappeared. As the dataset provides no information about what happened to the
bond, it is assumed to either have defaulted, downgraded to high yield status or
become unrated. The probability of each of these outcomes depends on the rating
category prior to disappearance, and is represented by a credit rating migration
matrix (see Table B.1 in Appendix B). To compute the final return, a probability
weighted average (based on Table B.1) of losses associated with each event is used.
For the default and NR event a fixed recovery rate of 35% of the last observed price
is assumed, for downgrades to High Yield a loss of 25% is assumed, irrespective of
initial rating or time to maturity. It is important to note that while these adjust-
ments are extreme simplifications, the impact of this exercise is rather small. Figure
B.1 in Appendix B contains the number of bonds that disappear from the dataset
for each of the factor portfolios.

When evaluating the performance of factor portfolios of corporate bonds, the
analysis focuses on the excess returns over maturity-matched government bonds.
Each bond is assigned a benchmark-Treasury bond by Markit, matching the time-
to-maturity of the corporate bond, and the excess return of the corporate bond is
provided as one of the analytical values in the dataset.

The daily excess (simple) return is provided in the dataset. This accounts for
cash payments (coupons) and is based on quoted bid prices (Markit, 2014). These

daily excess simple returns are converted into log returns and aggregated to monthly
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returns. Using excess returns effectively removes the Term risk premium, which can
be captured by investing in Treasuries alone; the emphasis lies in capturing the
default /transition premium or credit (risk) premium element of a corporate bond’s

return.

3.3 Methodology & Risk Factors

The general strategy employed by the factor portfolios is to invest in a fraction of
the market with particular attributes; the fraction of the market with high ‘factor
exposures’. The Value factor for example, would invest in bonds that are considered
undervalued according to some pre-specified, quantitatively defined, criteria. This
is a alternative weighting scheme that moves away from the traditional market
portfolio. In Section 3.3.1 the quantitative criteria that determine a bond’s factor
exposure at any given time are discussed. The initial portfolio consists of those
bonds that score above the 90" percentile on the factor exposure. This uses the top
10% exposure, which follows Houweling and Van Zundert (2014) and is a common
definition in equity market factor modelling. In the famous extensions of the CAPM
by Fama and French, 1993), the factor exposures are modelled by going long equities
with high factor exposures and shorting the equities with the lowest factor exposures.
Their additional factors (in the three-factor model) are aptly named ‘Small-minus-
Big’ and ‘High-minus-Low’, referring to the long/short positions taken in small
and large caps, and equities with high and low price-to-book values, respectively.
Whereas shorting large cap equities on a major stock exchange sees no constraints,
the shorting of corporate bonds is very expensive and cumbersome, and often no
market will exist whatsoever. In this respect, the factor construction therefore
deviates from the common practice by Fama and French (1993).

The initial portfolio, containing the top 10% bonds with the highest factor expo-
sure, is then rolled forward in time. In the case of the UK investment grade market
this translates to a portfolio of around 140 different issues, at any time. Whereas
previous literature has taken a fixed holding period approach (albeit with overlap-

ping portfolios (Jegadeesh and Titman, 1993), a portfolio approach is considered

91



Chapter 3: Quantitative Factor Investing in the UK Corporate Bond Market

in which changes to the (factor) portfolio can be made on a monthly basis. This
strikes a balance between maintaining factor exposure, i.e. trading a bond when it
fails to meet the specified criteria for inclusion and a fixed re-balancing scheme that
is entirely inflexible. This ‘semi-continuous’ approach relies on the factor specifica-
tion (10% of bonds with highest exposure, market-value weighted) and a tolerance
level, denoted by A. Therefore, rather than switching all bonds that are no longer
in the top 10% of a factor’s exposure in a subsequent month, the tolerance controls
how strictly defined the factor remains. Only if a bond falls outside the top 10% —+
A, is a bond replaced by the bond with the highest exposure to the factor among
those that are currently not in the portfolio. Higher levels of A will prevent excessive
turnover, but might also lead to diluted factor exposure, an interesting optimisation

hypothesis that is investigated in the remainder of this Chapter.

3.3.1 Risk Premia Factors

The risk factors described in this section represent well-established concepts in eq-
uity markets and are observed to exist in many international equity markets. Lit-
erature describing how these premia become to exist from a, usually, behavioural,
supply/demand or systematic risk viewpoint is also well-established and is briefly
mentioned here for each of the factors. The exact operationalisation of the factors
is subject to debate, naturally; whereas one, rather arbitrary, method of using a
proxy for the factor is chosen, this can be done in numerous ways. However, at least
in equity markets, there is strong evidence that over longer time horizons, these
factors, despite their simplistic application here, have led to abnormal returns. The
well-known concepts introduced here, many part of standard finance textbooks, are
therefore by no means implemented as ‘smart beta’, yet have a proven track records

as constructs (in equity markets), spanning many decades.

Size The small cap premium on equities is perhaps the most widely acknowledged
factor commanding a risk premium and has been shown to exist in both developed
and emerging markets. The source of the premium in equity markets can be seen

as either an increased systematic risk under the efficient market hypothesis or as a
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proxy for other underlying risk factors such as illiquidity (Amihud, 2002), default
risk (Vassalou and Xing, 2004) and information asymmetry (Zhang, 2006). Size is
typically defined as the index weight of a company in a given month; the market value
of the issuer’s outstanding debt as a proportion of the total value of all outstanding
debt is used in this study.

Following Houweling and Van Zundert (2014), this reflects the size of a company’s
public debt and is directly related to the often-used definition of the Size factor
in equity investing, where total market capitalization can be seen as a proxy for
incomplete information (Daniel and Titman, 1997; Van Dijk, 2011). An alternative
definition of the factor could be, for instance, the market capitalization of the firm’s
(publicly trading) common equity. The Size factor invests in companies with the

smallest weight in the index.

Value Value investing is a well-documented concept in equity markets and is, in
essence, concerned with buying company stock that is priced cheaply relative to
the fundamental value of the firm, using some criteria. The Value factor in the
Fama-French framework (Fama and French, 1993) is referred to as the High-Minus-
Low (HML) factor and represents the difference in performance between companies
with high and low book-to-market values. Many alternative criteria, often based on
company fundamentals, have been used to identify companies offering ‘good value’.
Correia et al. (2012) extend this principle to the bond market where they compare
the company’s implied riskiness (credit spread) to several measures of fundamental
value, including distance-to-default (Merton, 1974), leverage and profitability. Since
factors in this study are designed using bond characteristics alone, only the analytical
values available in the dataset are used to identify bonds that appear to be relatively
cheap. More specifically, the observed credit spreads are regressed on several risk

drivers, similar to the modelling process in Chapter 2;

4
log(CS;it) = c+Z BrRating; , .+ Bslog(Dur; 1)+ PeSen; i+ :Col; y €, i =1,..., N

r=1

(3.1)

93



Chapter 3: Quantitative Factor Investing in the UK Corporate Bond Market

where NN is the number of unique bonds in the dataset, Rating; .. is an indicator
variable equal to 1 if the bond’s rating is r in month ¢, Dur; is the bond’s modified
duration, Sen; is an indicator variable (Senior / Subordinate) and Col; is an indi-
cator variable (Collateralized / Not-Collateralized). The cross-sectional regression
in Equation 3.1 is estimated for each month (¢) using standard OLS.

The bonds eligible to enter the Value factor are the bonds with the largest
positive percentage deviation between fitted and observed (log) Credit Spreads in a
given month; i.e., the bonds that appear to be undervalued according to the pricing

equation, indicated by negative values of the error term in the regression equation

(€it)-

Quality Quality investing is widely accepted as part of a ‘fundamental analysis’ or
‘stock selection’ strategy, but even in equity markets it is a relatively recent concept
when defined in quantitative terms. Beside accruals, which was used as a proxy
for quality by Sloan (1996), proxies in equity markets include earning persistence
(Dechow et al., 2010), stable growth and a high payout ratio (Asness et al., 2013).

In line with the estimate of fundamental value for the previous factor and follow-
ing the established literature that illustrates how bonds of short maturity (de Car-
valho et al., 2014) and high rating (Frazzini and Pedersen, 2014) earn higher risk-
adjusted returns than the benchmark, a analogous rating/maturity approach to
constructing a Quality factor is deployed.

Similar to the approach taken in Houweling and Van Zundert (2014), all A- and
BBB-rated bonds are excluded, and, each month, select M bonds (AAA- or AA-
rated) with the lowest term-to-maturity that make up 10% of the total index. The

resulting boundary value M, varies over time (Figure 3.1).
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Figure 3.1: Boundary value M; indicating the highest time-to-maturity included in the
Quality factor on each day. Tick marks indicate 15 January.

Momentum Momentum represents the excess return of securities with a stronger
past performance. Over periods of time, securities might follow a trend whereby
strong performers will continue to perform strongly. The evidence from equity mar-
kets comes from, for instance, Jegadeesh and Titman (1993) who observed that
buying strong performers and selling weak performers in the US stock market dur-
ing 1965 - 1995 produced abnormal returns. Carhart (1997) extended the three
factor Fama-French model to include a momentum factor. Empirical research sug-
gests the momentum effect is strongest over the next 3-12 months, which typically
leads to momentum strategies having high turnover. The reason for the existence
of a momentum effect is widely discussed and debated. The most cited theories
are all behavioural; investors irrationally over- or under-react to news, the reactions
driven by self-attribution, conservatism bias, overconfidence or aversion to realize
losses (Barberis et al., 1998; Hong et al., 2000).

The Momentum factor has previously been explored for corporate bonds, but
the results are far from conclusive. The results seem particularly divided when it

comes to the distinction between Investment Grade and High Yield bonds. Khang

95



Chapter 3: Quantitative Factor Investing in the UK Corporate Bond Market

and King (2004) and Gebhardt et al. (2005) find evidence for a reversal effect for
Investment Grade bonds that may be due to institutional herding (Cai et al., 2012)
and Jostova et al. (2013) fail to find a momentum effect for Investment Grade bonds.
In the High Yield segment of the market, the Momentum effect has been shown to
exist and lead to excess returns (Jostova et al., 2013).

In this study Momentum is defined as the cumulative return over the past six

months;

t
MOM;, = Y Ry,

s=t—>5

where R;; is the log return of bond i at month (time) ¢.

High & Low Volatility The Low Volatility factor seems at odds with the fun-
damental principle that higher systematic risk is associated with higher returns in
a CAPM-world, where riskier assets (characterised by high beta) command higher
required returns. The outperformance of low volatility stocks is well-documented
and spans a range of volatility measures and international stock markets (see for ex-
ample Clarke et al., 2006). Many behavioural explanations have been offered for the
outperformance of low volatility stocks: representativeness, overconfidence, agency
issue or asymmetric behaviour in bull/bear markets. Please refer to Sefton et al.
(2011) for a comprehensive review for the behavioural biases that may underpin the
low volatility phenomenon.

The equity market literature has documented the low volatility effect using a
wide range of volatility estimates and is defined, in this study, as the rolling six

month standard deviation of returns, as a proxy for volatility;

VOL;, = \/ >0 (Rié_k R

o (Rit—k) )

where R; is the average return over the six-month period ( G

In addition to the Low Volatility factor, a High Volatility factor is explicitly
defined, which is constructed in an identical, but opposite manner. The rationale

for including the High Volatility factor is to challenge the rejection of a CAPM-type
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world where risk (volatility) is not rewarded. It is expected that high volatility
bonds would have suffered from great losses during the financial crises, but would
have recovered from the crisis more rapidly. Lastly, the difficulty in trading high
volatility bonds during periods of financial distress (2008-2009) is acknowledged, as
market liquidity can disappear and the practical obstructions to trading these bonds

are not to be underestimated.

Iliquidity The effect of illiquidity and (excess) stock returns on equities has been
well-documented (Amihud, 2002; Brennan and Subrahmanyam, 1996). A related
strand of literature has investigated the role of liquidity in the relatively illiquid
market for corporate bonds (Bao et al., 2011; Chen et al., 2007). Amihud et al.
(2015) investigate the addition of a liquidity factor IML (illiquid-minus-liquid) to the
commonly used Fama-French factor framework and observe statistically significant
outperformance across global economies. In this Chapter, an explicit illiquidity
factor for corporate bonds is introduced. Using the results obtained in Chapter 2,
bonds are sorted according to their relative liquidity. The newly derived relative
liquidity proxy from the previous Chapter, the RBAS (Relative Bid Ask Spread),
defined as the exponent of the residual of the regression equation (2.1) in Section
2.5.2 in the previous Chapter, is used directly. The detailed modelling process
to arrive at a (relative) liquidity proxy is described in Section 2.5 in the previous
Chapter.

Alternative definitions of an illiquidity factor could be equity market cap, trading
volume, age of the bond or bid-ask spreads directly; all of which have been used
as proxies for illiquidity directly (Houweling et al., 2005). The relative liquidity
measure defined in van Loon et al. (2015) and Chapter 2 of this thesis benefits
from being uncorrelated to common bond characteristics by definition; this means
the ‘illiquidity factor’ is less likely to capture the underlying effects of, for instance,
long-duration bonds.

In addition to being part of the wider quantitative factor analysis investigated
in this Chapter, special attention is reserved for the illiquidity factor as a way of

providing competing estimates of a liquidity premium. The illiquidity factor is
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defined using the RBAS statistic introduced in Chapter 2, and is computed on

subsets of the bond universe, in addition to the market-wide illiquidity factor.

3.4 Single-Factor Portfolios

In order to evaluate the extent to which factor portfolios historically earned a pre-
mium beyond the market-wide credit risk premium, a portfolio strategy with a
tolerance (\) of 40% is used, meaning that a bond will only be switched if it falls
outside a wider definition of the factor criterion (outside top 50% exposure rather
than top 10% factor exposure, as per the strict factor definition). The following sec-
tions discuss the non-normality of factor returns, risk-adjusted (out)performance,

turnover, transaction costs and optimal choice of factor tolerance.

3.4.1 Non-Normality of Factor Returns

Before evaluating the (risk-adjusted) performance of the factors, the distributional
properties of the factor and market portfolios are investigated. For a full review
of risk, not only are several different measures of risk-adjustment specified, but
most importantly, deviations from normality in the distribution which greatly affect
tail risk, are specified. Ultimately, when constructing multi-factor portfolios, the
traditional mean-variance approach is flawed when the return series are skewed and
leptokurtic, properties of monthly financial returns that are, to varying degrees,
present in all asset classes (see for example Jondeau et al., 2007; Kat and Brooks,
2001 and Rachev et al., 2005). Formally, the excess return series of each factor
portfolio is subjected to a Shapiro-Wilk test of normality (Shapiro and Wilk, 1965)
and extremely strong evidence against normality of all factor returns is observed!.
A skewed Student t-distribution from Fernandez and Steel (1998) is fitted to the
return series, in an attempt to better capture fat tails and skewness. Note that many
‘skewed t-distributions’ have been formulated and a review is beyond the scope of

this Chapter; Aas and Haff (2006), Azzalini and Capitanio (2003) and Hansen (1994)

!The p-value for the observed (excess) return series (N = 110 months); Market = 1.0e-05,
Liquidity = 9.9e-06, Low Vol. = 7.3e-11, High Vol. = 2.1e-07, Momentum = 4.2e-09, Value =
0.0003, Quality = 1.9e-08, Size = 2.8e-06
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provide a non-exhaustive overview of skewed t-distributions. Though the skewed ¢-
distributions will better capture some of the non-normality of the observed return
series, the choice for this particular (implementation) of a distribution somewhat
arbitrary, though in line with common practice. Formal tests do not reject the
skewed t¢-distribution for any return series (p > 0.1), which does not imply better
or more appropriate distributions might exist. Figure 3.2 shows histograms of the
factor distributions with fitted empirical Gaussian (red) and skewed ¢-distribution

(blue) densities.

Size Quality Value

0.00 002 004 -0.04 -0.02 0.00 002 004 -0015  -0010  -0.005 0.000 0.005
Monthly Log Returns Monthly Log Returns. Monthly Log Returns

Momentum High Volatility Low Volatility

0.00 0.05 010 015 020 -015  -010  -005 000 0.05 010 015 020 0020  -0015 0010  -0005
nihly Log Returns Monthly Log Returns. Monthly Log Returns

Liquidity Market

Figure 3.2: Distribution of returns for each of the factor portfolios and the market portfolio.
The blue and red line correspond to the fitted densities of a skewed t- and Gaussian
distribution respectively.

The estimated densities for the fitted Gaussian and fitted skewed-t differ con-
siderably for all factors. Looking at the market factor, considerable kurtosis and a
slight negative skew is observed. Naturally, the variance of the High Volatility fac-
tor is several multiples of the variance of the Low Volatility. Every factor portfolio,
including the market portfolio, suffers from excess kurtosis.

For the purposes of risk management, the tails, and in particular the left tail of
a distribution, are vital as this governs probabilities of large losses. The fat tails for

the return distributions of the factor portfolios cannot be ignored.
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3.4.2 (Risk-adjusted) Measures of (Out-)performance

The distributional properties of the factor returns suggest the need for appropriate
measures to evaluate the risk-return trade-off for each factor. Before presenting the
risk-adjusted performance of the factors in Table 3.1, the (risk-adjusted) measures
of performance are briefly reviewed.

Risk is portrayed in numerous ways, and since each risk adjustment has its own
merits and flaws, the resulting spectrum of risk measures considers riskiness in a most
comprehensive way. Firstly, the Sharpe ratio, the most common risk adjustment, is
used, where the Sharpe Ratio is defined as the expected return of the asset over the
risk-free rate per unit of total risk, defined as the standard deviation. Since only

returns in excess of Gilts are used throughout this Chapter, this reduces to;

E(R
SRp — ( p) ’
var(R,)
where E(R,) is the expected return of the portfolio and (/var(R,) its standard
deviation. Next, the Omega ratio (Keating and Shadwick, 2002) is considered,

defined as the probability weighted ratio of gains versus losses for a return target

equal to the mean return of the market portfolio;

B fgng)(l — Fr (2))dx
ff(RP) Fr, (z)dx

o0

where Fg, () is the cumulative distribution function of the factor portfolio. In-
vestors would prefer assets, strategies or factors with high values for €2, indicating
a large proportion of gains relative to losses for threshold E(R,).

Value-at-Risk measures are considered by computing the VaR and the Condi-
tional VaR (or TVaR, Expected Shortfall) at the 99" percentile, where TVAR is

computed as;

TVaRg.99(R,) = E[R,|R, < —VaRgg9(R,)],
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for a continuous random variable z,.

It is important to note that the VaR and TVaR are computed using the fitted
distributions (Gaussian and skewed-t) rather than historical return values. Given
that some of the return distributions appear to exhibit non-normality (Section 3.4.1),
the values for the Gaussian- and skewed-t based VaR measures can be very different;
this reflects the tail risk present in most factors, but also the market factor.

Maximum Drawdown (MDD) is defined as the peak-to-trough decline of an in-
vestment during a specific period and is usually quoted as a percentage of the peak
value;

P—-L
MDD = ——
P

where P is the peak value before largest drop and L is the lowest value before a
new high is established.
Next, risk adjustments based on systematic risk are considered using both a

CAPM framework as well as a Fama and French (Fama and French, 1993) factor

model. The return of the factor portfolio (R,) are regressed on the market portfolio;

Rpﬂg = Oép + 5pRm7t + Epﬂg

where R, ; and R,,; are the return of factor portfolio p and the market portfolio
in month ¢, respectively.

The value of the intercepts, «,, are interpreted as a measure of a risk-adjusted
outperformance, adjusting for the risk inherent in its exposure to the market (mea-
sured by f,). The Fama-French factor model extends the 1-factor market model

with four additional factors;

vat =q —+ ﬁlRMRFt + BQSMBt + 63HML1§ + /64WML75 + BSRm,t + €ty

where RMRF, is the equity market premium, SMB; is the equity size premium,

HML; is the equity value premium, WML, is the equity momentum premium and
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R, is defined as before. Again, values of «, are interpreted in a similar fashion,
where positive «, indicates an outperformance of the asset after accounting for its
exposure to a set of systematic (equity) risk factors.

Measures of relative risk, the risk associated with outperformance, are also re-
ported. The realized tracking error, defined as the standard deviation of active

returns, provides insight into the volatility of the outperformance;

T

1 S

TE, = \| 7 > (Rys = Ry — Ry — Ry)?
t=1

where IR, — R, is the active return of factor portfolio p at time ¢, relative to the

returns of the market (R,,;) at time ¢. Lastly, the information ratio is computed,

for which higher values indicate a greater ability to out-perform given the relative

risk assumed in the portfolio;

3.4.3 (Risk-adjusted) (Out-) Performance of Factor Portfo-
lios

Before moving on to the risk and return characteristics of the factor portfolios, it is
useful to investigate the return series graphically. Figure 3.3 (left) shows the total
return of each factor portfolio and the market portfolio; Figure 3.3 (right) shows
the total return series of interest in this Chapter; the return over duration-matched
Gilts. The duration matching is performed on an individual bond basis where each
corporate bond that could be included in a factor portfolio is assigned (on each
trading day) a matching Gilt. The ‘reference’ portfolio of duration-matched Gilts
therefore varies for each factor portfolio. On an absolute basis, investing in the
market portfolio would have led to a greater terminal value than investing in the
Quality, Low Volatility or Value portfolio, but on a Term Premium adjusted basis

(Figure 3.3, right) only, marginally, outperforms the Quality factor.
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Figure 3.3: Total return for each of the factor portfolios and the market portfolio (left)
and the total return in excess of duration-matched Gilts (right). Tick marks indicate the
start of the year.

As can be reasonably expected, the factor portfolios are affected differently by
the financial crisis in 2008/2009, which can be observed directly from the return
series. Whereas the market portfolio dropped around 25% relative to duration-
matched Gilts, the Momentum portfolio lost close to 50% and the Low Volatility
market lost less than 10%. A summary of risk and performance measures can be

found in Table 3.1; please note all statistics are reported on a monthly basis.
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Size Quality Value Momentum High Vol. Low Vol. Liquidity Market
Mean (bps) 17 3 8 21 33 6 27 5
St.Dev. (bps) 135 145 48 431 428 45 255 167
Sharpe Ratio | 0.118 0.020 0.166 0.048 0.078 0.120 0.106 0.028
Skewed T-VaRgg | -4.6% -4.6% -1.7% -13.5% -13.4% -1.5% -8.8%  -6.4%
Skewed T-TVaRgg | -9.3% -9.5% -3.2% -27.8% -26.9% -3.1% -181%  -13.2%
Max. Drawdown | 23.3% 24.2%  7.6% 54.8% 46.1% 8.2% 34.6%  27.3%
Omega 5.01 3.90 4.98 3.61 3.44 6.35 5.06 3.84
CAPM alpha (bps) 12.5 -0.9 6.9 9.5 22.2 4.3 204
5-Factor alpha (bps) 10.4 -0.8 5.1 7.7 18.6 2.8 19.5
Tracking Error (bps) 66 55 131 284 276 128 107
Information Ratio | 0.172 -0.032  0.026 0.056 0.104 0.006 0.211

Table 3.1: Risk and Return measures (excess returns, gross of transaction costs) for all factor portfolios
over the period October 2003 - July 2014.

All factor portfolios, with the exception of Quality, have a mean excess return
that is at least as high as the excess return of the market portfolio, whose 5bps excess
return reflects the market-wide credit risk premium beyond the Term premium. The
Low Volatility and Value factor have a mean return similar to the market (8bps
and 6bps respectively), whereas the High Volatility and Liquidity factor have mean
returns far higher at 33bps and 27bps. Volatility estimates for the factor portfolios
can be used to classify Value and Low Volatility as relatively safe factors with
lower than market volatility, whereas Liquidity, Momentum and High Volatility can
be classed as risky factors, seeing substantially higher volatility estimates. With
respect to Sharpe ratios however, factors outperform the market, indicating that
the increased risk associated with several factors is more than compensated for in
expected excess return.

Figure 3.2 showed that the skewed-t distribution appears to fit the return distri-
butions better and will lead to more conservative VaR measures; this is even more
pronounced in the TVaR estimates. The smallest VaRgg is for the Low Volatility
at only 1.5% (monthly) and is followed in ascending order by Value, Quality, Size,

Liquidity, High Volatility and Momentum, with a VaR of 13.5%.
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The highest maximum drawdowns are observed for the Momentum and High
Volatility factors, with estimates of 55% and 46% respectively. Relative to the
market portfolio, with a drawdown of 27%, the drawdown of Value is very low at
only 7%. The only Omega estimates lower than the market estimate of 3.8 are for
the Momentum and High Volatility factor at 3.6 and 3.4. These results are not
unexpected from a cursory inspection of the empirical histograms and estimated
densities since both strategies exhibit positive skewness.

In terms of outperformance versus the market, positive values for alpha are
observed, both under the standard-CAPM framework as well as the 5-factor model,
indicated by statistically significant non-zero intercepts. These significant results
indicate that the higher excess returns are not merely a compensation for taking
more systematic risk (CAPM model, estimated by ) or compensation for known
equity risk premia (5-factor model).

The relative risk of all single factor portfolios is large considering the market
wide credit risk premium (5bps per month); this results in large tracking errors
and low information ratios. It is important however, in interpreting the estimated
information ratios, to bear in mind that these are based on returns in excess of
duration-matched Gilts. The chosen weighting scheme, which merely invests in 10%
of the market, effective applies a zero weight to 90% of the bond universe; with some
portfolio turnover added in, the volatility versus the market is understandable. The
relatively small sample of bonds causes a higher risk of outperformance.

The risks associated with outperformance re-iterate the need for a relatively long
holding period. Even though the sample only spans about 11 years, the performance
of the factors is volatile relative to the benchmark. The tracking error is indicative
of the relative risk of single portfolio factor investing. This largely corresponds to
the general (equity) factor investment literature, where the performance of factor
portfolios has been examined over several decades. Whereas factor investing pro-
vides excess returns that materialise over long periods of time, over shorter periods
of time the performance of factors can be highly cyclical and excess returns can be

negative for considerable periods of time. In a research report published by MSCI
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(Bender et al., 2013), the performance of six factors is examined over a 25 year
period (1988 - 2013). They note how each of the well-documented factors included
in this study has experienced periods of at least 2-3 years of under-performance,
with the Small Cap (Size) factor experiencing 6 years of under-performance during
the 1990s. They conclude that factor investing is no free lunch and the continued
existence of excess returns for factors might be a result of the relatively short time
horizon (less than several years) a typical market participant (in equities) adheres
to; the excess returns cannot be arbitraged away. The period under investigation is
relatively short (121 months), and one should be careful about drawing any conclu-
sion regarding the performance of factor portfolios given observations from equity
factor outperformance volatility. However, even in the short time period under out
investigation, the relative risk is apparent.

One can argue that, in order to be successful in investing at factor portfolios, an

investor would need to:
e Achieve superior timing mechanism
e Set a sufficiently long time horizon, with an appropriate risk tolerance

Achieving superior timing for the initial investment, with respect to the differ-
ent factors, might be a viable option for market participants with relatively short
investment horizons, but, arguably, will be difficult to realise. One could argue that
it is only institutional investors that are insensitive to time of entry, specifically due
to their long investment horizon and constant investment in the market. The nat-
urally long (intended) investment horizon of insurers and pension funds, typically
more than 15 years, appears to be a successful premise to earn factor premia.

Despite having the sufficiently long investment horizon that appears to be ideal
to earn factor premia, institutional investors may be partially reliant on external
parties, managing (parts of) their portfolio. External fund managers might be re-
luctant to take advantage of the existence of factor risk premia, despite their clients
having a sufficiently long investment horizon. Benchmarked fund managers might
be unlikely to pursue a strategy that would see the fund under-perform for pro-

longed periods of time, especially if compensation is directly tied to outperformance
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of the benchmark. Whereas a relatively passive multi-factor approach might reduce
the risk of prolonged under-performance, a fund manager arguably has a better
chance of outperforming the market on a yearly basis, by adopting a passive strat-
egy to replicate market, seeking out opportunities as they arise (active alpha, or

core-satellite approach).

3.4.4 Turnover & Transaction Costs

In a relatively illiquid market, replicating factor portfolios in the corporate bond
market might prove impractical if portfolio turnover is such that transaction costs
are too high. Trades generally occur for three reasons: maturing of a bond, default-
/downgrade of a bond, or the bond fails to meet inclusion criterion for the factor.
Section 3.2 explored the extent to which bonds disappear as a result of survivor-
ship bias in the dataset. The methodology for dealing with disappearing bonds by
computing a final return value which captures the expected loss is discussed. For
the purposes of transaction costs, the expected loss is assumed to include transac-
tion costs. Naturally, only a small proportion of bonds in a portfolio matures in
any given month, but the number varies considerably between factor portfolios (see
Figure B.2 in Appendix B) where for example, the Quality factor contains bonds
with short maturities by definition?.

Instead, the purely incremental transaction costs that arise from maintaining
factor exposure, i.e. the switching of bonds that fall outside the factor criteria and
tolerance level (Figure B.3 in the Appendix B), are highlighted. For this subset
of bonds transaction costs are computed, since they arise purely as a result of the
factor allocations. Since the dataset contains end-of-day estimates of both Bid- and
Ask prices for each bond, Bid-Ask spreads are easily computed. On the day a bond
fails to meet the factor inclusion criteria, the quoted Bid-Ask Spread is taken as a
direct measure of transaction cost.

Table 3.2 shows how turnover, transaction costs and returns (net and gross)

differ between the factor portfolios for the given level of factor tolerance (\ is 40%).

2The replacement of maturing bonds is not included in the transaction cost calculations
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Size Quality Value Momentum High Vol. Low Vol. Liquidity

Turnover (monthly) 0.2% L.7% 11.1% 42.6% 5.1% 0.7% 6.0%
Return (bps, gross) 17 3 8 21 33 6 27
Return (bps, net) 16 1.3 5.8 -51 26 3.6 21

Table 3.2: Monthly turnover and excess returns (gross and net) over duration-matched Gilts for each
of the factor portfolios.

In absolute terms the transaction costs (Bid-Ask Spreads) are considerable for the
included Investment Grade bonds during the period 2004-2014. The assumed factor
tolerance of 40% seems conservative but still results in excessive turnover for the
Momentum factor portfolio, which, as a result, posts substantial negative returns net
of transactions costs. All other factors post positive returns net of costs; keeping in
mind the 5bps credit premium on the market portfolio, which given the assumptions
bears no transactions costs, the Quality and Low Volatility portfolios under-perform
the market on a strict excess return basis. Various risk/return characteristics might
still favour those factor portfolios however, and the absence of any transaction costs

for the market portfolio is an oversimplification.

3.4.4.1 Choice of Factor Tolerance

The results so far are based on the methodology outlined in Section 3.3, using
tolerance levels of 40%. This means that a bond will not be switched immediately
when it fails to meet the factor criteria (top 10% exposure), but only after it has
exceeded the allowed tolerance in addition to the factor definition. Considering
the tolerance in the limits, a tolerance of 0% indicates a strategy where bonds
in the portfolio at time ¢, that fall outside the factor criteria at time ¢t + 1, are
switched immediately; a tolerance of 90% indicates a strategy where bonds in the
portfolio at time ¢ will never be switched. Naturally, higher tolerance levels will
reduce turnover and lead to lower transaction costs. On the other hand, higher
tolerance levels might dilute the factor portfolio leading to decreased exposure to
the risk premia, resulting in lower returns. Some optimal tolerance level may exist

that maximises the expected return, net of transaction costs. Institutional investors
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attempting to earn risk premia may strategically expose (parts) of their portfolio
to factors, but maintain a relatively passive approach to investing (buy-and-hold /
buy-and-maintain) due to their long time horizon, allowing them to generate income
(cash flow) rather than speculate on short term (price) gains. Figure 3.4 shows how
changing the tolerance level of the strategy impacts the turnover, transaction costs
and returns of each factor portfolio. Note that the Momentum factor has been

omitted in Figure 3.4 (right), as net returns are highly negative for most values of
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Figure 3.4: For various levels of factor tolerance A, the turnover (left), gross excess return
(middle) and net excess return (right), for each of the seven factor portfolios.

Turnover declines rapidly for high-turnover factors as the tolerance level in-
creases. The difference in monthly turnover for the Momentum, Value, High Volatil-
ity and Liquidity factor decreases by approximately 50% when lambda increases from
20% to 60%. Figure 3.4 (middle) shows that factor dilution generally causes excess
return to decrease, but not all factors appear to be equally affected. Whereas the
difference in gross excess return between low and high values of lambda for the High
Volatility and Momentum portfolio is more than 50%, the Liquidity, Value and Size
portfolios are far less affected and the Quality and Low Volatility are hardly affected
at all; note that the last two factor portfolios saw the lowest turnover. In Figure
3.4 (right) optimal values of the tolerance level may be found; decreased turnover

reduces transaction costs whereas factor dilution decreases excess return to some
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degree. Firstly, net returns for the Momentum factor are observed to be negative
across all tolerance levels. The low yielding factors (Low Volatility and Quality)
only saw minor decreases in gross return and very low levels of turnover across tol-
erance levels and are relatively unaffected by the introduction of transaction costs.
The Value factor, also relatively low yielding, saw little change in gross return across
tolerance levels, but did see a substantial decrease in turnover, leading to a strictly
increasing function of net returns as a function of tolerance levels. The turnover of
the Size factor is, understandably, very low, and the net return therefore mimics the
gross return series, showing an optimal tolerance level of around 40%. The High
Volatility and Liquidity factor have the same turnover function and both appear to
arrive at optimal net returns at similar levels as the Size factor.

The pattern of the factor dilution, visible in Figure 3.4 (middle), shows increasing
gross returns for the Liquidity factor (to a lesser extent also for the Size factor) when
moving from A = 0.2 to A\ = 0.4. This appears to suggest there are two ways to
take advantage of relatively illiquid bonds: holding to maturity, or, wait for mean
reversion of the relative liquidity and sell at a higher price. The data suggest that
apparently it may not be optimal, in general, to hold to maturity. Instead mean
reversion of the relative liquidity must be sufficiently strong to allow you to crystallise
the benefit of the initial high yield at an earlier date when the relative liquidity has

closed by a sufficient margin.

3.4.4.2 Annualised Performance Measures

All (risk-adjusted) performance measures and derived statistics are reported using
monthly returns rather than their annualised counterparts. While this may make
interpretation slightly more difficult (in absolute sense for returns), the difficulty of
annualising volatility is avoided for reasons of convenience. Whereas the ‘square-
root of time’ is generally accepted as a way to transform volatility from one time
unit to another, it is strictly only true under the assumption of independent and
identically distributed returns. Whereas the following analysis does not to aim to

replace the observed monthly statistics with annualised figures, some annualised
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figures are reported here to, on the one hand allow for a perhaps straightforward
interpretation and comparison, but most importantly to illustrate the process one
could go through to annualise returns. Since the returns are dependent over time,
the scaling of volatility estimates is less straightforward. However, the dependence
structure (Figure B.4 in Appendix B) of the returns can be explicitly modelled and
its properties used to appropriately scale volatility. Assume the monthly returns of
factor portfolio P follow a first-order autoregressive process with normal innovations

(Kaufmann, 2004);

P, =¢1P,_1 +¢ where ¢ ~ N(0,0?) (3.2)

where P, is the monthly return of portfolio P.

In this case, both the 1-month and T-month gains/losses are normally dis-

tributed;

which gives an expression for the ratio (Q) of the the T-period volatility to the

1-period volatility;

1—¢ 1—¢f

Equation 3.3 illustrates that as ® — 0, Q ~ v/T. Table 3.3 summarises the

QZ\/1+¢1(T—2¢11_¢1)- (3:3)

annualisation of risk and return statistics after applying the Q-scaling parameter to

volatility estimates;
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Size Quality Value Momentum High Vol. Low Vol. Liquidity Market

Mean month | 0.0017  0.0003 0.0008 0.0021 0.0033 0.0006 0.0027  0.0005
Mean year | 0.0204  0.0012 0.0096 0.0252 0.0396 0.0072 0.0324  0.0060

StdDev month | 0.0135  0.0145 0.0048 0.0431 0.0428 0.0045 0.0255  0.0167
Sharpe month | 0.118 0.020 0.166 0.048 0.078 0.120 0.120  0.0278
StdDev year (v/12) | 0.0467  0.0502 0.0166 0.149 0.1482 0.0155 0.0956  0.0579
Sharpe year (v/12) | 0.408 0.692 0.5774 0.1662 0.2701 0.4156 0.3263  0.1037
StdDev year (@) | 0.0827  0.0304 0.0234 0.2255 0.2341 0.0235 0.1495  0.0856
Sharpe year (Q) | 0.2465  0.3943 0.4091 0.1117 0.2204 0.2548 0.2086  0.0701

Table 3.3: Annualised volatility estimates using different scaling parameters; scaling under the assumption
of independence,and the scaling factor under the assumption of an estimated AR(1) process.

Assuming independent innovations (@) = 1/12) clearly understates the scaling

factor and therefore underestimates the volatility on an annual basis for each factor
portfolio, including the market portfolio. Even though these methods are a vast
improvement of the square root of time rule, they do not come without caution.
The scaling parameter in Equation 3.3 assumes a return distribution following an
AR(1) and i.i.d errors, but not necessarily a Gaussian error term, ¢;, as is assumed
in Equation 3.2. This is a rather strong assumption given the empirical data; see

Kaufmann (2004) for a more elaborate discussion.

3.4.5 Illiquidity Factor as Liquidity Premium

The previous section illustrates, in great detail, the extent to which investing in
factors can lead to more favourable (risk-adjusted) returns, compared to investing
in a broad market index. In Table 3.1 we can see that the illiquidity factor returns 27
bps versus 5 bps of the market-wide index when using the standard tolerance factor

(A =0.4). When interpreting these figures we need to be aware of the following;

e The factor inclusion is based on one particular proxy, derived in Chapter 2.
Earlier analyses indicate that this liquidity proxy is uncorrelated with com-
mon bond characteristics and always follows a log-normal distribution. It is

important to precisely define the liquidity proxy used in the factor analysis as
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the proxy, RBAS, has a different ‘liquidity price’ (y-coefficient in the models)

across rating categories (and days).

e The quoted numbers are all based on returns over duration-matched treasuries,

which effectively removes the term premium.

e The liquidity premium, intuitively, is defined differently. Whereas the liquidity
premium in Chapter 2 is a theoretical construct, the result of a complex effort
to disentangle the credit spread and directly linked to the additional return an
investor can earn if the bond is held to maturity, the liquidity premium here

represents an active effort to maintain exposure to a particular set of bonds.

e The market-wide portfolio will have some exposure to the illiquidity factor.
Arguably, the market-wide index will be of ‘average’ liquidity, where one needs
to be aware of the effect a ‘market-cap’ weighted index and an equal weighted
index may have as liquidity is often thought be be directly linked to size-
measures. In a ‘market-cap’ weighted larger issues naturally carry more weight,

implying the index may carry a below (equal-weighted) average liquidity.

The overall estimates for the illiquidity factor returns are an estimate that could
be earned, monthly, when investing in illiquid bonds over longer periods of time.
Naturally, over the period under study, some months have returned a greater lig-
uidity premium, whereas others would have returned a negative liquidity premium.
For instance, the liquidity factor can be built on subsets of the entire bond universe,
with Table 3.4 showing basic risk measures for the illiquidity factor, constructed

separately for each rating.

Market Liquidity AAA AA A BBB

Mean (bps) 27 5 10 22 52
St.Dev. (bps) 255 112 158 228 346
Sharpe Ratio 0.120 0.045 0.063 0.096 0.150

Table 3.4: Risk and return characteristics of Liquidity factors constructed on subsets of
the bond universe data.
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3.5 Multi-Factor Portfolios

Selecting the right mix of factors should primarily be driven by an institution’s
objectives and constraints. The reasons for pursuing a multi-factor strategy will
differ and could include enhanced risk-adjusted returns or limiting downside risk.
With respect to the objectives, different institutions will also have varying beliefs
regarding the persistence of factor performance going forward. The constraints
institutions face are likely to vary widely; constraints are predominantly determined
by the governance structure and risk tolerance/attitude. The stronger the internal
governance and the longer the investment horizon, the more likely the institution
will have a higher risk tolerance; one could think of constraints related to the size
of the managed assets.

In addition to ‘asset-side’ constraints, some institutional investors will face in-
vestment constraints related to the liability side. Unexpected demands for cash
might cause forced sales or capital requirements might make certain classes of bonds
relatively more or less attractive. These liability-side constraints might be driven
by regulation or can be due to more important financial risks such as interest rates
risk. Arguably, an insurer is far more interested in pursuing the right interest rate
risk strategy across assets and liabilities than an insurer is interested in trying to
achieve a slightly higher return on those assets; other considerations are likely to
take priority.

Assessing the potential diversification benefits of a multi-factor portfolio, Table
3.5 shows that the excess returns (over duration-matched treasuries) of the factor
portfolios and the market portfolio are very strongly correlated (p > 0.9).

Considering the outperformance of the factor portfolios relative to the market
portfolio (Table 3.6) however, lower and negative correlations can be seen, suggesting
diversification potential. In terms of outperformance there appears to be a division
between the safer factors (Value, Size, Quality and Low Volatility) and the higher
risk factors (High Volatility, Momentum and Liquidity) that could complement each
other well. Intuitively, this is what is expected given the nature of the period under

study. The safer factors are far less affected by the financial crisis during 2007-2010,

114



Chapter 3: Quantitative Factor Investing in the UK Corporate Bond Market

Size Quality Value Momentum High Vol. Low Vol. Liquidity Market

Size 1.00 0.79  0.69 0.85 0.86 0.81 0.91 0.91

Quality 1.00  0.71 0.78 0.81 0.84 0.84 0.94

Value 1.00 0.61 0.63 0.79 0.68 0.81
Momentum 1.00 0.96 0.76 0.96 0.92
High Volatility 1.00 0.72 0.96 0.92
Low Volatility 1.00 0.81 0.90
Liquidity 1.00 0.96
Market 1.00

Table 3.5: Pearson correlation between excess returns over duration-matched treasuries for factor

portfolios and the market portfolio.

whereas the higher risk factors would have lost substantial amounts; High Volatility
and Momentum saw maximum drawdowns of 46% and 55% respectively, compared
to 7% and 8% for the Quality and Low Volatility factors (Table 3.1). Diversification
benefits might be overestimated due to the sample period under investigation as a
significant portion of the sample period is characterised by severe financial distress

which may not be an accurate representation of an ‘average’ period of eleven years.

Size Quality Value Momentum High Vol. Low Vol. Liquidity

Size 1.00 0.66  0.67 -0.58 -0.55 0.71 -0.41

Quality 1.00 094 -0.83 -0.80 0.96 -0.75

Value 1.00 -0.87 -0.86 0.97 -0.82
Momentum 1.00 0.91 -0.84 0.86
High Volatility 1.00 -0.85 0.88
Low Volatility 1.00 -0.79
Liquidity 1.00

Table 3.6: Pearson correlation between the outperformance over the market portfolio for all
seven factor portfolios.

A traditional mean-variance optimization (Markowitz, 1991) will lead to unde-
sirable results for heavy-tailed assets (Huisman et al., 1998) and does not account
for the spectrum of potential objectives/constraints. For instance, (Huisman et al.,
1998) note that mean-variance optimizations lead to an overallocation of capital to
assets that exhibit high levels of kurtosis, ignoring the more extreme event risk. In-
stead, bearing in mind the 5bps premium on the market portfolio, several scenarios
are offered. Generally, scenarios are considered that enhance risk-adjusted returns,
limit downside risk or limit relative risk. The exact 'goals’ have been arbitrarily de-

fined (often in reference to the market portfolio), but could be considered a realistic
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representation of typical targets for a portfolio (manager) to achieve. See Section
3.4.2 for details on the computation of the risk and return measures used in the

scenarios.

e Enhance risk-adjusted returns

— A1 Seek maximum excess return keeping Value-at-Risk at market levels

— A2 Maximise Sharpe Ratio, subject to a minimum excess return of 25

basis points a month
e Limit downside risk

— B1 Seek expected excess return of 15 basis points a month, minimizing

Value-at-Risk

— B2 Seek expected excess return of 15 basis points a month, minimizing

Maximum Drawdown
e Limit relative risk

— C Minimise tracking error keeping volatility at market levels

Each of these strategies is a potential reflection of an institution’s objectives in
general; the constraints individual institutions might face are far more difficult to
replicate. For these strategies all factors are assumed to be persistent in the future
and each factor included in the analysis. In addition, only long-only portfolios are
considered. The exclusion of short positions in the corporate bond market is realistic
due to the costs and constraints (Asquith et al., 2013) associated with borrowing
of corporate bonds and prevents superior allocations that are highly impractical or
unrealistic.

A Monte Carlo sampling approach is used to arrive at optimal portfolios under
each of the scenarios by generating random portfolio weights w = (wy, ..., wk)
from a K —dimensional Dirichlet distribution with parameters (a,...,ax). This
is achieved by drawing K independent samples Y = (Yi,...,Yx) from Gamma

distributions each with density;
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y. e Yi
G i1l) = : )
amma(a;, 1) (o)
and then setting
Y;
Wi = &K
Zj:l Yj
has wy, ..., wg following a K-dimensional Dirichlet distribution. More specifi-

cally, samples are taken from a symmetric Dirichlet distribution, where all parame-
ters (aq, ..., ak) are equal. The single value of « is the concentration parameter for
which smaller values lead to a sparser distribution; the larger the values, the more
the resulting distribution tends to the uniform distribution. The concentration pa-
rameter to 1, corresponding to the uniform distribution on a simplex and condition
on weights being less than 60% by omitting some scenarios.

In total 20,000 sets of random multi-factor portfolio weights are drawn and risk
and return characteristics of each strategy computed (Figure 3.5). The risk and

return characteristics are reported before transaction costs.
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Figure 3.5: Optimisation of multi-factor approach for five scenarios describing an institu-
tion’s risk/return objective.

The plots in Figure 3.5 show how multi-factor portfolios achieved a return 4
times the return of the market portfolio, for similar levels of VaR (scenario Al),
achieved a return 20 basis points above the market portfolio with an increase in
Sharpe Ratio of 400% (scenario A2). For a return 10 basis points above the market
return, VaR decreased from 8% to 4% in scenario B1 and for the same level of return
(10 basis points above the market), maximum drawdown decreased to 16% from 28%

for the market (scenario B2). Lastly, keeping the standard deviation similar to the
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market portfolio (¢ = 0.0167), Information Ratio (IR) almost double the highest
IR of any single-factor portfolio is achieved; the optimised portfolio achieved an IR
of 0.395, whereas Size saw the highest IR of any single portfolio at 0.211. Table

3.7 summarises the optimal weights for each strategy as computed using the entire

sample period.

Size Quality Value Momentum High Volatility Low Volatility Liquidity

Al 59.0 1.4 1.7 1.0 5.6 1.0 30.3
A2 204 0.2 2.6 3.0 31.0 5.8 37.0
Bl 354 5.9 10.6 0.9 0.4 22.3 24.5
B2 6.1 4.3 498 0.5 6.6 5.7 27.0
C 87 0.5 39.2 4.1 2.9 1.0 43.7

Table 3.7: Optimised factor portfolio weights in percentages under each of the strategies.

The optimal portfolio weights as a static measure is only of limited use as it
leaves out any information about the variability of these optimal weights or whether
near-optimal solutions can be found using different portfolio weights. Before ad-
dressing these considerations, two alternative, straightforward, multi-factor weight-
ing schemes are presented. For these two alternative weighting schemes, the relative
performance versus the optimal weights (W) are noted. Table 3.8 shows a selection
of results for an equally weighted portfolio (W) and a portfolio with factor weights
inversely proportional to its volatility (W;). Note that not all risk/return metrics
are provided for each of the strategies (Al - C). In Table 3.8, the factor weights of
the Wy portfolio varies by strategy while the weighting schemes Wy and W; are

fixed by definition.
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Strategy (metric) Wo Wg 4%}

A1 (return, bps 20 16 10

A2 (Sharpe Ratio) 0.093 0.079 0.087

B2 (Drawdown) 19.8% 29.8% 21.4%

)
)
Bl (VaR) -4.8% -6.9% -3.6%
)
C (Information Ratio)  0.39  0.20  0.07

Table 3.8: Comparing two simple weighting schemes, equal weighted (Wg) and inversely
proportional to variance (Wy), to the risk and return metric using the optimal portfolio
weights (Wp). Each scenario is evaluated here using a difference risk or return metric; the
portfolio weights W vary for each of the scenarios, whereas the weights for Wg and Wy
are fixed by definition.

To see to what extent similar results, that is, similar risk/return characteristics
for each of the strategies (Al - C) can be achieved using portfolio weights different
from the optimal weights (W), a ‘dissimilarity approach’ is used where a boundary
is defined at which results are considered similar (different) and find all sets of
portfolio weights that meet this criteria. Then, ultimately, the portfolio weights
of all qualifying portfolios are compared with the weights of the optimal portfolio
and the least similar portfolio is selected. A portfolio is defined ‘similar’ if the
return objective of the portfolio is within 5% of the return objective of the optimal
portfolio. A straightforward Manhattan distance is subsequently used to measure
the distance between the optimal weights (O, ...,Ok) and the alternative weights
(A, ..., Ak);

K
di(0,A) = |0 — A|l' =) |0; — Ajl.

For all the random portfolios that meet the objective criteria, the portfolio that

is least similar, i.e. has the largest Manhattan distance, is selected (Table 3.9).

3A deviation of 5% within the target would, in the example of B1 achieve an excess return over
the market of 23.75bps - 26.25 basis point, which a specified target of 25bps.
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Size Quality Value Momentum High Vol. Low Vol. Liquidity

Optimal  59.0% 1.4%  1.7% 1.0% 5.6% 1.0% 30.3%

Al Alternative  8.5% 0.7%  2.2% 0.8% 8.6% 30.5% 48.7%
Optimal 20.4% 0.2%  2.6% 3.0% 31.0% 5.8% 37.0%

A2 Alternative  2.3% 3.5%  8.3% 4.3% 23.8% 4.2% 53.6%
Optimal 35.4% 5.9% 10.6% 0.9% 0.4% 22.3% 24.5%

bl Alternative  6.1% 4.3% 49.8% 0.5% 6.6% 5.7% 27.0%
Optimal  6.1% 4.3% 49.8% 0.5% 6.6% 5.7% 27.0%

b2 Alternative  4.9% 4.7% 49.2% 0.5% 18.8% 10.6% 11.4%
Optimal  8.7% 0.5% 39.2% 4.1% 2.9% 1.0% 43.7%

¢ Alternative 31.6% 0.2% 23.4% 1.7% 10.1% 7.1% 25.9%

Table 3.9: Portfolio weights for the optimal portfolio and the portfolio that meets the similarity
criterion, but is least similar, for each of the strategies.

Using rather different portfolio weights, in some strategies, can lead to simi-
lar results (within the specified boundaries). This appears to be largely driven by
the strong positive correlation (of outperformance) between several factors and the
strong negative correlation between others (Table 3.6), effectively offering up al-
ternative factors. On one hand this makes the allocation of factor weights more
difficult, as near optimal results can be achieved with portfolio weights that vary,
but it is also encouraging as the benefits of diversification and the possibility of
meeting a risk/return target are not dependent on an exact specification of portfo-
lio weights, especially given potential uncertainty of beliefs about how these factor
portfolios might perform going forward.

Most important, of course, is how a set of portfolio weights will perform out-of-
sample, relative to the market and relative to alternative weighting schemes. Given
the relatively short period under study, the dataset is not split into a formal training
and test set, but the variability of performance is illustrated using a bootstrap-like
procedure. Ignoring the serial correlation in the return series (Figure B.4, Appendix
B), 10,000 return series are sampled (without replacement), each consisting of 110

months (90% of sample) of data. Using the sampled data, the optimal factor weights
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(strategy A1) are determined using the random portfolio approach and the Sharpe
ratio (Figure 3.6) is computed for the out-of-sample period with the market portfolio
as benchmark. Comparing the out-of-sample performance of the optimal weights,
equal weights, weights inversely proportional to individual factor variance, one can

gauge the extent to which optimal weights lead to outperformance.

Distribution of bootstrapped
out-of-sample Sharpe Ratio estimates

—— Optimal Weights
—— Equal Weights
—— Inverse Variance Weights

50
|

Density
30

20
|

10

-0.05 0.00 0.05 0.10

Sharpe Ratio

Figure 3.6: Bootstrapped distribution of out-of-sample outperformance versus the market
for optimal weights (strategy Al), equal weights and weights inversely proportional to
volatility.

Figure 3.6 showed the distribution of the Sharpe Ratio of the out-of-sample re-
turn period (versus the market). A Sharpe lower than 0, in this instance, indicates
that the alternative weights performed worse than the market portfolio during the
out-of-sample period. Since the optimal weights are determined using only 90% of
the observations in the sample, this may give some indication of future performance.
Of the 10,000 simulated return series, the optimal weights outperformed (in terms
of Sharpe ratio) the equal weighting scheme in 72%, the inverse weighting in 82%
and both in 66%. It remains difficult however to draw conclusions regarding the
outperformance of static weights going forward. Arguably, one could allow for a
dynamic rebalancing of portfolio weights, in response to changed market percep-

tions or changing market conditions, but this is beyond the scope of this Chapter,
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and arguably very difficult to implement dynamic trading rules that lead to an en-
hanced performance, out-of-sample. Nevertheless, the bootstrap exercise illustrates
how multi-factor portfolios can be employed to decrease the relative risk of factor
portfolios and have provided cursory evidence that optimisation of portfolio weights

can lead to outperformance, in an attempt to reach pre-defined strategies.

3.5.1 Benefits of Natural Crossing and Reducing Trading

Costs

In addition to the potential diversification benefits of constructing multi-factor port-
folios, investors should also consider the potential to reduce trading costs through op-
erational efficiency. Combining factor portfolios has the potential to reduce turnover
from ‘crossover’ effects. At each month-end, the multi-factor portfolio would be
switched to adhere to the separate factors exposure and tolerance targets/rules, and
turnover may be reduced as bonds falling out-with one factor’s exposure rules, may
be included in another factor portfolio. An example; it could concern a bond that
might drop out of the Momentum portfolio due to negative (or low) returns, but
included in the Value portfolio as a result. The dynamics of these ‘crossovers’ are
not obvious; consider the example of a bond that meets the inclusion criteria for
two factor portfolios, on a given day. In the multi-factor portfolio setting this bond
is effectively included with an increased weight and the bond falling out-with one
of the factor criteria does not lead to a crossover gain. The natural crossovers that
are expected, albeit rather infrequently, lead to lower turnover, lower transaction
costs and ultimately a higher net return. Section 3.4.4.1 illustrates how turnover is
directly related to the tolerance level of the factor exposure criteria; for a tolerance
level of 40%, the mean monthly turnovers are 6%, 11%, 2%, 42%, 1%, 5% and 2%
for the Liquidity, Value, Quality, Momentum, Low Volatility, High Volatility and
Size factor portfolio respectively. If these factor portfolios were replicated sepa-
rately (and equally weighted), the combined turnover would be 9.5%. Replicated as

a multi-factor portfolio, the combined turnover would be lower at 8.7%.
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Chapter 4

Model Uncertainty & Parameter
Risk in Stochastic Credit Models

4.1 Introduction

The forward projection of prices, returns and yields of credit-risky assets is vital to
many financial institutions, whether computing the Value-at-Risk of a portfolio of
corporate bonds or performing long-term projections of credit spreads as an insurer.
Credit ratings and the corresponding default and transition probabilities over various
time horizons, are crucial inputs to stochastic capital models for (corporate) credit
portfolios. Another area in which risk models rely heavily on transition probabilities
is in credit derivatives, where rating-dependent derivatives are directly impacted by
non-default transitions in addition to defaults. Since this risk management function
is concerned with rating transitions over short periods of time, typically shorter
than the migration matrices published by major credit rating agencies, the correct
estimation of these matrices is paramount.

Credit migrations and, in particular, credit defaults, are rare events. The di-
agonal dominance of commonly published migration matrices is particularly strong
for investment grade bonds, making transitions away from the current state rare
events, with very few direct defaults over the last few decades. Models that aim to
project prices of credit-risky assets into the future frequently rely on the credit rat-

ings as a main risk driver, which, consequently, needs to be projected forward. This
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stochastic element to projecting forward ratings relies on known rating dynamics
through migration matrices, which are readily available and published by all major
credit rating agencies. For the purposes of these models, credit migrations are seen
as risk drivers and inputs to a more complex model. The process of credit-risky
instruments changing ratings is itself highly complex and far from transparent.

Credit rating agencies assign ratings based on a constant review process that is
highly subjective in nature (Goh and Ederington, 1993) and which does not directly
relate to any quantitative measure of default. Standard & Poor’s (2014) make
this explicit in their recent note: ‘Credit ratings are not intended as guarantees
of credit quality or as exact measures of the probability that a particular issuer
or debt issue will default.” Despite observing more downgrades during periods of
economic downturn, rating agencies apply a so-called through-the-cycle approach
to assigning ratings in an effort to decrease rating volatility; this highlights the
fact that ratings are explicitly non-quantitative. Yet, many sophisticated stochastic
credit models, as part of commercially exploited Economic Scenario Generators or
portfolio simulators, take rating migrations as cardinal or primary risk drivers due
to their observable nature.

In addition to applying through-the-cycle principles, credit rating agencies have
been criticized for the timeliness of their rating changes (Cheng and Neamtiu, 2009).
Rating agencies are cautious in general and attempt to avoid rapid reversals and un-
necessary rating volatility (Beaver et al., 2006). The question of timeliness is crucial
to the notion of rating drift, the observation that transition probabilities not only
depend on the current rating, but also its rating history (see for example Frydman
and Schuermann (2008) and Christensen et al. (2004)); after an up-/downgrade, a
subsequent change in the same direction is more likely.

In this Chapter the ignorance risk when using transition matrices in stochastic
credit models for the purposes of risk management or economic capital modelling is
investigated. The migration matrix is really the outcome of a modelling process of
rating transition events, a model that implicitly makes assumptions about the un-

derlying, real-world process of transitions that are unlikely to hold. These violations
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of the Markov properties are well-documented but generally ignored.

Rather than relying on published migration matrices, raw migration data is used
in this Chapter, allowing for the construction of alternative models that aim to
address some of the known violations of the Markov assumption.

Several approaches to modelling non-Markovian properties of credit ratings are
described and competing transition matrices are generated using the same dataset
of rating events. A Jarrow, Lando & Turnbull (JLT) credit model (Jarrow et al.,
1997) is calibrated, with a stochastic market price of risk (one driver) to spreads of
corporate bonds from 2003 - 2014. Simulating from the competing models, with
varying underlying migration matrices, accounting for rating momentum, time-
inhomogeneity or allowing for statistical uncertainty, it is shown how the distri-
bution of portfolio values is affected and how the distribution of ratings varies at
future dates. This approach to evaluating model and parameter risk is pragmatic
and practical in nature as ultimately the amount of risk is evaluated using the pro-
jections from the baseline model and the projections from the competing models.

Whereas both the phenomena of time-inhomogeneity and rating drift have been
well-documented, this is the first study to consider both effects at the same time;
for example, to what extent does the business cycle have an effect on the sever-
ity of the observed rating drift? More importantly, this study does not intend to
demonstrate the extent to which different methodologies or models are exploited to
show the existence of non-Markovian properties of rating migrations. Even though
a particular method of arriving at alternative migration matrices is applied, this
is considered ‘as-is” and the focus lies with the resulting effect on (tail) risk mea-
sures of portfolios simulated using a stochastic credit model. In a similar fashion,
a relatively straightforward model of stochastic credit spreads is employed where
more accurate models may exist; a model with one stochastic driver contains little
complexity, but is perfectly suited to the study of risk that arises as a result of
alternative credit processes. Not only are the effects of non-Markovian properties of
the rating process considered, which are classified as ‘model uncertainty’, but the

issue of ‘parameter risk’, interpreted as the risk of not accounting for the statistical
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uncertainty in the estimates of the migration matrix, is also investigated. The third
ignored risk is perhaps the easiest to address and is the least subject to specification
errors or decisions. Credit migration matrices are presented by rating agencies as
values, rather than estimates. The estimates are usually the best estimates under
the maximum likelihood estimator of the Markov Chain, but carry uncertainty in
the same way a quoted correlation coefficient or coefficient from a linear regression
carries uncertainty. This uncertainty can be relatively large given the rare nature of
the observed events and this uncertainty is quantified and integrated into an alterna-
tive model. Lastly, this study briefly considers the sensitivity of parameter choices
in the Monte Carlo simulations on the risk measures for all model specifications.
This serves two purposes; firstly, it re-iterates the fact that this Chapter attempts
to isolate the risk that is ignored in using ready-made migration matrices and does
not intend to produce the most accurate Value-at-Risk outcomes, while putting this
ignored risk into perspective when some of the other parameters in the model, which
are considered to be ‘fixed’; are varied. On the other hand, it illustrates how model
uncertainty is generally treated as a brief sensitivity analysis to provide the reader
with some understanding of the parameter risk.

This Chapter is organized as follows; Section 4.2 reviews some of the underlying
principles and discusses the rating process as a Markov process and looks at (in-
dustry) standard (stochastic) credit models and extensions, Section 4.3 investigates
three ignored risks (rating history, time-inhomogeneity and statistical uncertainty),

and Section 4.4 discusses the simulation exercise and the empirical results.

4.2 Review of Modelling Methodologies

This section introduces some of the modelling methodologies that are employed
throughout the analysis of migration matrices. In particular the process of moving
from observed rating events (upgrades, downgrades and defaults on truncated data)
to a real-world and risk-neutral migration matrix representing a Markov Chain, is
articulated. The analysis presented here goes one step further and continues to

challenge not only the time homogeneity and conditional expectation assumption
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that define a Markov process, but also discuss more ‘abstract’ requirements of a
Markov process on observed and estimation generator matrices that are engineered
from rating events data, or reverse-engineered from published real-word transition
matrices. Towards the end of the section, the concepts of real-world and risk-neutral
migration matrices, for the purpose of pricing corporate bonds are revisited, with

extensive examples using a positive risk premium.

4.2.1 Review of Credit Ratings as a Markov Chain

In this section two general approaches to estimating migration matrices are reviewed;
one method is referred to as the ‘discrete’ approach and the other method uses
more granular data to construct a Continuous Time Markov Chain (CTMC). The
‘cohort’” approach uses end-of-year rating membership to determine the migration
matrix directly. Under the cohort-approach, transition probabilities (g;;) can be
readily computed as the total number of rating transitions from rating R; to R;
(327, Nyj(t,t + 1)) divided by the number of obligors in R; at the start of the year
(N;), formally;

0 = > Nig(t t +1) _ Ny
Y N;i(t) N;

The likelihood function, L(P), of the Discrete Time Markov Chain (DTMC)

comes from K independent multinomial distributions;

K K
L(p) = [T T#"

i=1 j=1
where N;j(m) is the number transitions from grade ¢ to j during a period of s

observations, typically one year.

The main drawback of the cohort approach is that it does not account for rat-

ing changes within one time period, but other limitations include the handling of

censored data. As a result of those limitations, the cohort approach is known to

underestimate rare rating transitions consistently as it does not allow for multiple

transition in one time period and is known to estimate rare transitions with high
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volatility (Hanson and Schuermann, 2006).

A continuous-time approach to estimate transition probabilities overcomes many
of the issues associated with the cohort approach. If \;; (i # j) is the instantaneous
transition intensity of moving from state R; to rating R; and \;; (i = j) is the
negative row sum of the off-diagonal elements (i # j), then Ap is the real-world

generator matrix of the Continuous-Time Markov Chain R(t) € S =1,2,--- | K.

Al A12 A3 MK
A1 A22 23 e Ak
Ap =
AK-11 AK-12 AK-13 **° AK-1K
0 0 0 e 0

where the K" column contains instantaneous probability of default. The absorb-
ing nature of the default state (Axx = 1) implies that ratings will move towards the
default state in the limit (At — o). In practical terms this means that a defaulted
firm cannot re-emerge as the same entity, but would enter the dataset as a new
obligor. In the generator Ap, the instantaneous probability of migrating from R; to

R; between time ¢ and t + At is \;;At;

Nij(At) = PIR(t + At) = j|R(t) =i > 0,Vi,j € S. (4.1)

In order to ensure that a generator matrix produces valid transition matrices with
desirable properties for modelling default and credit spreads, several conditions are

imposed on the generator (A).

1. Off-diagonal elements of A should be non-negative:

2. All diagonal elements of A should be non-positive:

3. The row-sums of A should be zero:

K .
Zi:l )\ij =0 ] = 1, ,K
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4. The default state K is absorbing:
0, j#K

0, j=K

A =

5. Depending on the use of the transition matrix, it might be a desirable for
the matrix to be stochastically monotonic. This guarantees that the resulting
credit spreads are positively monotonic in rating; for example, the credit spread
of an AAA bond will always be lower than the spread of an equivalent A or
BBB rated bond. This is equivalent to saying that class ¢ + 1 is always riskier

than class i:

ijk )\ij < ijk )‘i+1,j Vik k#i+ 1.

Under the assumption of a known initial state, the likelihood of observations
under transitions from ¢ to j at time 7 followed by a subsequent transition from j

to k at time 7y, for each obligor, with rating i (R;T);

L(Ap) =exp(—Ai(T2 — 71))Aij X exp(—=Aj(T3 — 72)) \j, - - -

K (4.2)
= H H(Aij)Nij(T)eXp(_)\iRi<T))
i=1 itj
with log-likelihood;
K K
logL(Ap) =) > log(a:i)Nij(T) = D > aiBu(T) (4.3)
i=1 i#j i=1 i#j

Therefore the Maximum Likelihood (ML) estimator of Ap, with hazard rates
Aij is given bys;
N N;;(0,T)

Aij = m 1# 7, (4.4)

where N;; is the total number of transitions from R; to R;, Y;(t) is the number
of obligors rated R; at time ¢ and fOTY;-(s)ds is the time spent in rating i over all

obligors.

130



Chapter 4: Model Uncertainty & Parameter Risk in Stochastic Credit Models

4.2.1.1 Finding a Generator for Public Migration Matrices

The existence of a historical generator matrix is assumed in most academic literature
(for example, Figlewski et al. (2012), Hill et al. (2010) or Xing et al. (2012)). The
original work by Jarrow et al. (1997) addresses the existence of valid generators, as
do Israel et al. (2001) in much more detail. They investigate how and under what
circumstances a generator may not exist, and even when one does exist, under what
circumstances it may not necessarily be unique. They prove that if the transition
matrix is strictly diagonally dominant (i.e. transition probabilities p; > 0.5 V i),
which historical one-year matrices usually are empirically, and if P is a N x N
transition matrix, then the matrix series Q is defined by;
5 (P—17? (P-1P° (P-I)

Q=P 1) -5+ st (4.5)

is guaranteed to converge and produces an N x N matrix Q so that log(P) = Q.

Even though this theorem proves to be very powerful due to the empirical obser-
vation that historical (one-year) transition matrices, as published by major rating
agencies, are always strictly diagonally dominant, it does not guarantee non-negative
elements of Q. This becomes problematic since any negative off-diagonal elements
in Q will result in negative elements of P, = exp(t@) for sufficiently small ¢, when
t > 0. Negative transition probabilities in P, are a clear violation of the Markov
property. More specifically, we refer to the classical problem whether a discrete-time
Markov process can be embedded in a continuous-time process. This problem is not
only related to the modelling of credit risk, and is, for instance, discussed in the
context of modelling disablility in actuarial health care modelling (Pritchard, 2006).
A penalized likelihood solution is used in Bladt and Sgrensen (2005) to model the
process when a Maximum Likelihood estimator does not exist.

Since the negative off-diagonals in Q tend to be very close to zero, the resulting
Q can be made Markovian by simply replacing negative off-diagonals with 0 and

adding back the value into the corresponding diagonal to preserve row-sums of zero.
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Therefore, using matrix Q, a new generator matrix () is estimated by setting;

¢ij = maz(Gi;, 0); g = G+ »_ min(qy;,0) (4.6)
J#i

Then, row-sums of zero are ensured by setting the diagonal of @ equal to — ) i i

Qii = —Zqzj (4.7)

J#

The newly estimated matrix ) will have non-negative off-diagonal entries and
maintain zero row-sums. It will however not satisfy P = exp(Q) exactly. Even if
the estimated @ is not a valid generator of P, this does not mean no such generator
exists. Even more so, there might be more than one valid generator. For a more
extensive discussion of uniqueness of generators, please see Israel et al. (2001).

Rather than investigating the existence and uniqueness of ) generators, the
non-existence of valid generators is investigated more easily. The non-existence of a
valid generator Q of transition matrix P is conditional on meeting any the following

criteria such that;
e (a) det(P) <0 or
e (b) det(P) > I;p;;, or
e (c) existence of states i and j so that j is accessible from i, but p;; = 0,

then no exact valid generator of P exists.

4.2.1.2 From Published Matrix to Valid Generator

Moody’s traditionally publishes data on defaults for various markets internationally.
In February 2011 it published its 26" annual default study, in which they update
statistics on the default, loss, and rating transitions of corporate bond issuers for
2010 and historically since 1920.

From Moody’s Annual Default Study 2011, consider the one-year transition ma-

trix (1980-2011 average), reproduced in Table 4.1.
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Aaa Aa A  Baa Ba B Caa Ca-C NR Default

Aaa 8720 821 0.63 0.00 0.03 0.00 0.00 0.00 3.93 0.00
Aa 091 8457 843 049 0.06 0.02 0.01 0.00 548 0.02
A 006 249 86.07 547 057 0.11 0.03 0.00 5.13 0.06
Baa 0.04 0.17 4.11 8487 405 0.7 016 0.02 5.65 0.17
Ba 001 005 035 552 7575 722 058 0.07 9.39 1.06

B 001 003 011 032 458 7353 582 0.59 11.16 3.85
Caa 0.00 0.02 0.02 012 038 870 61.71 3.72 12.00 13.34
Ca-C 0.00 0.00 0.00 0.00 040 203 9.38 3546 14.80 37.94

Table 4.1: Migration matrix published by Moody’s in their annual default study (Moody’s
Investor Services, 2011)

The reported table includes rating transitions to the ‘Not Rated’ category, but no
estimates of further default or re-rating are reported (no row for NR). To eliminate
this category from the matrix, Jarrow et al. (1997) are followed and the ‘Not Rated’
category is re-distributed by redefining the transition probabilities from states i to
i, when ¢ or j # N R using Equation 4.6;

fraction of firms going from i to j (4.8)

Pij = fraction of firms going from state i to state # NR

The resulting transition matrix (denoted by II) will be used for further anal-
ysis. Please note all the elements of the migration matrix below are reported in

percentages.
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90.77 8.54

0.66

0.96 89.47 892

0.06
0.04
0.01
0.01
0.00
0.00
0.00

2.62 90.72 5.77

0.18
0.06
0.03
0.02
0.00
0.00

4.36
0.38
0.13
0.02
0.00
0.00

0.00 0.03 0.00 0.00 0.00 0.00
0.52 0.07 0.02 001 0.00 0.02
0.60 0.12 0.03 0.00 0.07
89.95 4.30 080 0.17 0.02 0.18
6.10 83.60 7.97 0.64 0.08 1.17
0.36 5.16 82.76 6.55 0.67 4.34
0.13 044 988 70.12 4.23 15.16
0.00 047 239 11.00 41.61 44.53
0.00 0.00 0.00 0.00 0.00 100.00

Despite the migration matrix not being strictly diagonally dominant because of

element Ilgg or log—cca—c = 0.4161, the series in Equation 4.5 converges (quickly)

and produces A:

0.0101
0.0006
0.0004
0.0001
0.0001
0.0000
0.0000

0.0000

Using Equations 4.6 and 4.7 to re-distribute the few negative off-diagonal ele-

—0.0967  0.0896

0.0069

—0.1113  0.0943

A:

0.0000
0.0055

—0.0974  0.0606

0.0275

0.0019  0.0459
0.0007  0.0042
—0.0002 0.0014
0.0002  0.0002
0.0000  —0.0002
0.0000  0.0000

—0.1059
0.0666
0.0040
0.0015

—0.0001
0.0000

0.0003

0.0007

0.0063

0.0453

—0.1791

0.0566

0.0052

0.0071

0.0000

—0.0001
0.0002
0.0013
0.0084
0.0871

—0.1890
0.1174
0.0359
0.0000

0.0000  0.0000
0.0001  0.0000
0.0003  0.0000
0.0018  0.0002
0.0070  0.0009
0.0719  0.0074
—0.3550  0.0503
0.1652 —0.8765
0.0000  0.0000

0.0000
0.0002
0.0007
0.0019
0.0128
0.0476
0.1801
0.6687
0.0000

ments in A, the generator is computed. To show that the generator found using the

series expansion in Equation 4.5 is more efficient than the original method used by

JLT, several distance measures are computed for the NR-adjusted one-year transi-
tion matrix published by Moody’s and estimates of the migration matrix after trans-

forming to the generator. Estimates using the series expansion follow IT = exp(A)

and the JI.T-method follows 11,77 = exp(Ayrr), where Ajpp is computed by the
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general formula in their method:

pijlog(pij) ., .
NI = log(ps); AT = #(1]) (i # J) (4.9)

The Ll-norm, referred to as the Manhattan distance, and the L2-norm, the
Euclidean distance, are used to compare the ‘accuracy’ of the two generator matrices

A and Ajppr. The two distance measures are defined as:

1. Manhattan Distance:

K K
Dy = Zizl Zj:l |Hij - Yij|

2. Euclidean Distance:

Dy = Zf; Zf:l(ﬂij - Yij)2

where Y;; are the best estimates I and II si7 based on generators A and Ajpr
respectively. Table 4.2 illustrates that the generator matrix based on the series ex-
pansion (Equation 4.6) and a simple redistribution of negative off-diagonals resulted
an estimate II that is many times closer than the generator based on the method

outlined in Jarrow et al. (1997).

A Ay Factor Gain

Ll-norm 0.00257 0.11647 45.30
L2-norm +0.00000 0.00055 906.31

Table 4.2: Comparison of methods of conversion from published annual migration matrix
to generator and back.

4.2.1.3 Historical Data

In the remainder of this Chapter a historical dataset of raw transition events is used
to investigate rating transitions and estimations of transition probabilities. The
sample of 19,060 corporate bond rating events (S&P) covers the period 1980 to
2002. Following industry conventions to disregard notches brings the number of
rating classes to eight, including default. In total, the dataset consists of 19,060
rating events from 10,439 issuers. The total database is geographically divided into

North America, United Kingdom, Western Europe & Other and contains data from
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debt issued by firms operating in 11 different sectors (Appendix A). Only transition
events from North America are included!, keeping 74% of all rating events. Figure

4.1 illustrates the breakdown of the total dataset (US only) by sector.
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Figure 4.1: Sample of rating events (US) broken down over time and sector.

The sampled rating events include a total of 950 defaults, 3340 censored ratings
and 3421 ‘NR’ (Not Rated) assignments. Following Altman and Kao (1992), Fry-
dman and Schuermann (2008) and Fei et al. (2012), ‘NR’ assignments are initially
treated as just another rating category, but ultimately, transitions to (from) ‘NR’ are
assumed not to contain any information about the default risk and are not counted as
either downgrades or upgrades. While this may be empirically challenged, following
convention, these are transition are disregarded.

A benchmark transition matrix is provided here, based on the Continuous Time
Markov Chain approach (equation 4.1), which, for easy comparison and by industry
convention, is transformed from the estimated generator matrix into a one-year

probability matrix;

P(1) = exp(A x 365.25). (4.10)

INot only does the breakdown of events by domicile change substantially over time, restriction
to US events only is convenient in order to link events directly to (US) economic indicators.
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From / To AAA AA A BBB BB B CccC D

AAA 0.9287 0.0624 0.0073 0.0007 0.0008 0.0001 0.0000 0.0000
AA 0.0061 0.9143 0.0717 0.0061 0.0009 0.0007 0.0001 0.0000
A 0.0008 0.0187 0.9188 0.0549 0.0049 0.0017 0.0001 0.0001
BBB 0.0003 0.0025 0.0404 0.8965 0.0508 0.0076 0.0009 0.0010
BB 0.0003 0.0010 0.0056 0.0494 0.8403 0.0896 0.0076 0.0061
B 0.0000 0.0007 0.0025 0.0049 0.0447 0.8402 0.0584 0.0486
CCC 0.0007 0.0001 0.0029 0.0051 0.0118 0.0797 0.4481 0.4518
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 4.3: One-year CTMC benchmark migration matrix estimated on all rating events
from US-based issuers (1980 - 2002).

Because of the multiple transitions a bond can make in a single year, an estimate
of the default probability is never zero, despite not observing any transitions directly
in the data?. The estimated migration matrix in Table 4.3 is the equivalent of the
long-term transition matrix published by major rating agencies, typically with a

sample period of 30 years (Vazza and Kraemer, 2014).

4.2.2 Review of Default Probability and Credit Spreads

The credit spread (on a zero-coupon bond) can be defined as the difference between
the yields to maturity (spot rates) on credit-risky and default free bonds, where 7 is

the rating class at time 0;

1 1 .
CS = TlogP(O, T)— TlogV(O,T, i)

The value of a zero coupon bond with maturity 7" and rating class i, V(0,7 1)
can simply be defined as the sum of the discounted future value in case of no default
before time 7' and the discounted future values when the bond does default, recov-

ering only a fraction  of the face value. The survival probability of rating class ¢ in

2Please note that the default probabilities for, for example, AAA-rated bonds are not actually
zero. The probabilities are so small that four decimal places is insufficient to display them in Table
4.3.
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T years time is described in terms of the generator (A);

1-— PDTJ; = exp(TAivK) (411)

Next, a straightforward zero coupon bond price can be computed using time-
homogeneous default probabilities (real-world), a deterministic (fixed) discount rate

r and recovery rate 9;.

survival claim recovery payment
7\ 7\

N N

V(0,T,i) = V(T,T,i) exp(—rT)(1 — PDr;) + 0;(exp(—rT)V(T,T,i)(PDr;))
(4.12)
In Figure 4.2 (left), the real-world default probabilities (market price of risk is
zero for all i and T') are presented for rating classes i = 1,..., K — 1 and maturities
0 > T < 30. On the right in Figure 4.2, the corresponding Credit Spreads are

produced for rating classes AAA (highest) to Ca-C (lowest).

0.6

Default Probability

04

0.2

0.0

20

Term to Maturity, T

Credit Spread (%)

20

Term to Maturity, T

Figure 4.2: Real-world default probabilities (left) and corresponding credit spreads (right)
against the term to maturity. The seven curves correspond to seven initial credit ratings;

AAA to Ca-C.

In Figure 4.2 (left) a clear link between rating class and default probability
is shown; for 'bad’ credit ratings (rated B or lower), the structure of the generator
illustrates that default will occur quickly or the bond will improve its rating, bringing

substantially lower default intensities; these curves are therefore concave. Figure 4.2
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(right), with the credit spreads plotted against term to maturity, shows that for high
rating classes, the credit spread intercepts the y-axis only at zero. The real-world
probability of default is so low for maturities near zero, that it is not priced. This is
contrary to what is empirically observed (see for example, Christensen et al., 2004).

So far only transition probabilities and intensities under the real-world probabil-
ity measure P have been considered. We can introduce a set of transition intensities
under the risk-neutral probability measure, Ag, with elements )\g fore,5 =1,...,k

where;

A2>0 & Ngforall i

A=A

i#]
)\gj =0 forall j.

Using both the real-world and risk-neutral transition intensities, we can derive

market prices of risk associated with each jump;

Hij =
1 otherwise.

From the above it follows that p;; —1 can be regarded as the market price of risk
for jumps from state ¢ to state j. Similar to Lando (2009), the following is noted

with respect to the likely sign and size of yu;;

e Bonds that carry default risk are by definition more risky than identical
default-free bonds. It is intuitive to assume credit-risky bonds trade at a

discount compensating investors for the positive risk premium.

e Diversification within a bond portfolio can significantly reduce the exposure to
default uncertainty. In the extreme, perfectly-diversified portfolio, the uncer-
tainty associated with default could be eliminated completely with sufficientl.

This equilibrium state implies that default risk is priced under the probability
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P (real-world) and no risk premia exist. However, sources of systematic risk
factors are present in the market. These risk factors cause dependence be-
tween bonds (of various ratings, issuers and other characteristics) and cannot
be eliminated by holding a well-diversified portfolio on bonds. The existence of
systematic risk factors and risk aversion among investors gives rise to positive

risk premia.

e Despite the rating-based modelling approach taken in this Chapter, one could
think of each individual bond having its own market price of risk (risk pre-
mium). At first, it might seem intuitive to consider two bonds with the same
rating, issued by the same corporate entity as having identical market prices of
risk. However, there could be numerous reasons for the two bonds to command

different risk premia; size of the issue or seniority are two examples.

We follow Jarrow et al. (1997) in showing the effect estimates of z;; have on the
subsequent default probabilities and spreads. Risk-neutral default probabilities are
obtained by transforming the generator using scaling parameters, p;;. Expressed as

survival probabilities (as in Equation 4.11);

1-— PD% = exp(T'pijNi k) (4.13)

Assuming, for illustration purposes, that for each ¢ = 1,...,mn — 1, p;; — 1 =
@ —1 > 0, implying p,; is independent of credit class, has the effect of speeding
up time to exit from state i, but leaving the distribution of transition into different
states unaffected. Similar to Figure 4.2, but setting p;; — 1 = 0.4, the resulting

credit default probabilities and zero-coupon credit spreads are plotted in Figure 4.3.
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Figure 4.3: Default probabilities (left) and corresponding credit spreads (right) against
the term to maturity, introducing a market price of risk p;; —1 = 0.4 for all 7 and ¢. The
seven curves correspond to seven initial credit ratings; AAA to Ca-C.

Comparing Figure 4.2 and Figure 4.3, the effect of introducing a positive market
price of risk is clearly observed, where the effect on default probability (left) is most
significant for AAA-rated bonds; the same applies to credit spreads where a market
price of risk of y;; > 0 has a large effect. Across rating classes however, the impact
of 11;; is observed to be more significant for bonds with shorter maturities. This
follows from positive values of ji;; speeding up all times to exit.

Using the resulting credit spread in Figure 4.2 and 4.3, risk premia associated
with each rating class and maturity can be computed, given a recovery rate of
0; = 0.4 and a market price of risk of y;;; —1 = 0.4. The estimates of the risk premia
are easily computed as the difference in credit spread of the credit instrument when

using a zero and non-zero market price of risk.
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Figure 4.4: Risk Premium as a function of Term to Maturity, where the seven curves
correspond to seven initial credit ratings; AAA to Ca-C.

For long-dated bonds, the computed risk premia might look counter-intuitive at
first sight (Figure 4.4); bonds perceived to be the riskiest (Ca-C) have the lowest
risk premium at long horizons. Over a long period of time (30 years) however, bonds
subject to high default probabilities (Ca-C), are almost certain to default; using the
generator of real world probabilities (such as the Moody’s matrix in Table 4.1), a
mere 5% of Ca-C bonds will not have defaulted after 30 year. Therefore, the price of
those bonds will be approximately ¢ times the price of the default-free bond. In that
case, a default in the near future has only a small impact on its price. Consequently,
the investment can be perceived as far less risky than holding a bond with 30 years
to maturity of AAA quality since the impact of re-rating or default on the price of

the AAA-rated bond are much greater.
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4.3 Ignoring Complexities in the Rating Process

The Markov assumption in credit migrations is often assumed to hold in practice
despite the evidence that suggests the rating process is non-Markovian. Ignoring
the non-Markovian traits of the rating process is common industry practice and
this section describes two examples of such non-Markovian behaviour, modelling
these using very simple concepts to illustrate their existence. The other risk under
investigation is the risk of ignoring statistical uncertainty of parameter estimates.
Rather than the general term ‘model uncertainty’, the term ‘parameter risk’ is used
in this instance, as the underlying model itself is not in question nor is the validity of
the specification of the model, but the results of the observation that the transition
matrix is merely an estimate with a certain degree of uncertainty in its estimates.
In summary, this section investigates the effect of ignoring three potential violations
of the assumptions that underpin common stochastic credit models that rely on

published transition matrices;
e Rating history (non-Markovian process)
e Time variability (non-Markovian process)
e Estimation error / uncertainty.

In the next sections we will see how transition probabilities are dependent on
rating history (downgrade history in particular), how transition probabilities are
unlikely to be constant throughout time and that published transition matrices
carry substantial amounts of estimation uncertainty, which is rarely commented on

in rating agency publications.

4.3.1 Rating History

A firm’s rating history does affect future transition probabilities, contrary to the
Markov assumption where transition probabilities are conditional on current state
only, regardless of its filtration. Rating drift or momentum, the tendency that a

rating change is more likely to be followed by a subsequent rating change in the
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same direction than suggested under the Markov assumption, is a well-documented
phenomenon (Lando and Skedeberg, 2002; Altman and Kao, 1992 and Hamilton
and Cantor, 2004). Since rating drift is more pronounced for downgrades (Lando
and Skgdeberg, 2002; Altman, 1998) than upgrades, rating drift is often narrowed
in definition and referred to as downward momentum (Giittler and Raupach, 2010).

Given the existence of downward momentum, the rating process cannot be
strictly Markovian. However, following Christensen et al. (2004), returning to a
Markovian process by extending the state space with excited states may be a pos-
sibility. The transition intensities of the extended state space are then estimated
following the usual Continuous Time Markov Chain (CTMC). To capture the ten-
dency for recently downgraded bonds to be downgraded further, a simplified version
of the approach taken in Christensen et al. (2004) is used, similar to the approach
in Giittler and Raupach (2010). Extending the state space of eight rating classes

(including default) to fourteen classes, including excited states;

S = AAA, AA, AA*, A, A*, BBB, BBB*, BB, BB*, B, B*,CCC,CCC*, D

where * denotes the excited states.

A state is defined a being excited if the rating was previously subjected to a
downgrade, where the excited state has infinite memory; it will stay excited until a
further rating change. Also note that AAA-rated bonds cannot be excited since the
state cannot be reached by a downgrade. At this point it is useful to consider which
transitions are feasible under the extended state space; for instance, a transition from
A to BBB is not possible. This would constitute a downgrade and subsequently lead

to a rating classification of BBB*.
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In the suggested approach, creating extended states where excitement has an in-

finite memory, it is impossible to move from an excited to a non-excited state within

the same rating class (as depicted in Table 4.4). The above model is likely to be the

simplest way to model any dependency on rating history. For the purposes of this

Chapter, any adjustment for rating drift suffices, but naturally more sophisticated

and /or realistic models exist. Perhaps most popular are models that do extend the

state space in a similar fashion but allow for a hidden (up-)transition within the

rating category with a certain instantaneous intensity (Christensen et al., 2004).

Alternatively, the excited states can follow alternative definitions, not necessarily

be linked to a historical downgrade, but rather the entire rating history in general.
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4.3.1.1 Evidence for Downward Momentum

Before applying the above methodology of extended states to return to a Marko-
vian process, the extent to which the readily-available migration matrices published
by major rating agencies hint at non-Markovian properties is investigated, with a

particular emphasis on rating momentum.

Published Matrices over time horizons In addition to the (thirty year aver-
age) one-year transition matrix, which is the shortest time period for which transi-
tion matrices are typically estimated, Moody’s also publishes the five-year transition
matrix (as a long term average). The published five-year matrix, after correcting

for the 'NR’-rated category using Equation 4.8, can be seen in Table 4.5.

Aaa Aa A Baa Ba B Caa Ca-C Default

Aaa 64.09 2848 6.42 043 038 0.05 0.05 0.00 0.11
Aa 3.85 61.57 28.00 490 091 0.28 0.08 0.02 0.40

A 025 10.01 65.47 18.67 3.41 1.07 022 0.01 0.88

Baa 024 144 16.45 63.43 11.70 3.73 0.72 0.10 2.19
Ba 0.07 0.27 3.36 19.22 4354 1793 2.30 0.18 13.15

B 006 0.08 048 3.00 11.78 39.67 9.16 1.15 34.63

Caa 0.00 0.00 004 1.03 299 13.17 16.39 1.86 64.51
Ca-C  0.00 0.00 000 0.00 000 370 3.17 4.53 88.61
Default  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Table 4.5: Long term average migration matrix of 5-year transition probabilities published
by Moody’s in their annual default study (Moody’s Investor Services, 2011).

Where the one-year matrix was strictly diagonally dominant (with the exception
of the lowest rating category), the five-year matrix is clearly not for several of the
lower rating classes. Again, intuitively, one would expect to see lower probabilities
across the diagonals as states have more time to jump.

As an estimate of the internal consistency of the one-year and the five-year
transition matrix, which will be the basis for evaluating the Markov property, using
the generator matrix (A;y) derived from the one-year matrix to estimate the five-

year transition matrix by multiplying the one-year matrix by a factor of five using;

ﬁ5y = eprly X 5.

The matrix D is computed, where D is the element wise difference between
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the reported five-year transition matrix (Table 4.5) and the estimated matrix sy
D =1l5y — ﬁ5y. The resulting matrix D shows which elements of the matrix are

cither overestimated (D;; > 0) or underestimated (D;; < 0) by the estimator ITs,.

D=
—0.021 0.005 0.016 0.006 —0.004 —-0.000 —0.000 0.000 —0.001

-0.008 —-0.016 0.020 0.011  0.001 —0.003 —-0.001 —0.000 -0.004
-0.002 -0.010 -0.005 0.013  0.006 —0.001 -0.002 -—0.000 0.001
-0.002 —-0.004 -0.015 -0.004 0.013 0.013 0.003 —0.001 -0.002
—0.001 —-0.003 —-0.004 -0.012 0.015 0.021  0.017 —0.002 —0.052
-0.001 -0.001 0.005  0.000 0.012 0.053 0.028 —0.001 -—0.106
0.000  0.000 —0.000 —0.000 0.000 0.048 0.046 0.011 —0.115
0.000  0.000  0.000 0.000 0.010 0.023 0.038 —0.025 —-0.046

0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000 0.000

Matrix D illustrates that the discrepancies are relatively small for bonds with
a good credit rating (Baa and higher), but non-investment grade bonds show non-
negligible differences. The discrepancies are most obvious for the default categories.
The fact that the 1-year matrix cannot be converted into the 5-year matrix, is
preliminary evidence that the assumptions of a strict Markov process may not be

met, which appears to be more pronounced for rating classes of lower credit quality.

Extended States As the original state space is extended to include excited states,
the default probabilities of the excited states are hypothesized to be greater than
its non-excited counterpart. In an identical bootstrap approach to the benchmark
matrix, confidence intervals for the default probabilities are estimated under the
extended state space. A comparison of the best estimates against its 99% upper
and lower confidence bounds is shown in Table 4.6. A quick inspection of Table 4.6
shows the extent to which default probabilities for the excited and non-excited stated
differ; there appears to be large differences in default probabilities for low rating
classes (B, BB, BBB), no difference for A-rated bonds and an unexpected result
for AA-rated bonds, where the default probability for the non-excited state appears

to be higher than its excited counterpart. Using the bootstrapped distribution of
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default probability estimates, an ANOVA and post-hoc (Tukey) tests are used to
formally check the differences. The last column in Table 4.6 and the corresponding

level of significance® confirm what is expected from the cursory inspection of the

default rates.

Lower Estimate Upper Significance

AAA 0.000000 0.000007 0.000013 NA
AA 0.000015 0.000086 0.000138

AA* 0.000003 0.000048 0.000092 *
A 0.000099 0.000166 0.000224
A* 0.000084 0.000158 0.000227
BBB 0.000603 0.001045 0.001397

BBB* 0.001080 0.002301 0.003330 orok
BB 0.005247 0.006409 0.007491

BB* 0.012532 0.016619 0.020753 oAk
B 0.036854 0.040490 0.044397

B* 0.084314 0.095172 0.107225 oAk
CCC 0.109219 0.146456 0.190627

CCC* 0.486243 0.521876 0.562614 oAk

Table 4.6: Best estimates of the default probability for all ratings and states and the
corresponding 99% confidence interval.

Table 4.6 shows that the default probabilities of the excited and non-excited
states are significantly different for lower-rated classes (CCC, B, BB and BBB),
whereas the evidence for high quality classes is less convincing. As an example,
Figure 4.5 shows how the bootstrapped estimates of B and B* default probabilities

are distributed.

4.3.2 Time Inhomogeneity

The impact of the business cycle or economic indicators on transition probabilities
has been studied extensively over the last two decades (see for example Bangia et al.
(2002) or Fei et al. (2012). The underlying premise of this research is that the real
economy has a direct impact on a firm’s asset value and on its default boundary, as
in a Merton model (Merton, 1974). While this makes intuitive sense and is central in
the treatment of time-inhomogeneity in this Chapter, it is important to consider that

credit rating agencies use a ‘Through-The-Cycle’ basis, making ratings a somewhat

3% — significance at the 10% level, ** = significance at the 5% level, *** = significance at the
1% level
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Figure 4.5: Bootstrapped distribution of 1-year default probabilities for B (left) and B*
(right) rated bonds.

relative notion not directly related to actual probability of default (Bar-Isaac and
Shapiro, 2013). Closely related to the credit rating agencies’ TTC approach, is the
potential time lag between movement in economic indicators and rating changes /
defaults; Mueller (2008) links activity in the real economy (GDP growth) to credit
spreads/rating and finds a lagged response.

A well-known method to illustrate the time-inhomogeneity effects using economic
variables is used in this section, but before modelling transition probabilities as a
function of economic variables, transitions on an annual basis are explored by fitting
the Markov Models on yearly subsets of the data. If the rating process is time
homogeneous, annually estimated migration matrices are expected to be the same,
subject to noise.

Many approaches have been used to link economic variables to the default process
and for the purposes of this Chapter a straightforward approach is used, following
Nickell et al. (2000) closely in conditioning the estimation of transition matrices on
economic indicators directly. Similar to Nickell et al. (2000), three economic states
are specified; ‘peak’, ‘normal” and ‘trough’, depending on whether the real GDP

growth (US) was in the upper, middle two or lower quarter of recorded growth rates
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during the sample period (Figure 4.6, right). An alternative model that directly
conditions on economic variables is a model similar to Bangia et al. (2002) which
conditions on the business cycle directly using the National Bureau of Economic
Research (NBER) recession indicator, leaving a recession/non-recession indicator

(Figure 4.6, left).
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Figure 4.6: Division of sample period by NBER recession indicator (left) and real GDP
growth (right).

Conditioning on external economic variables is a convenient way to illustrate
how estimated CTMC transitions are different in clearly defined time periods. Ide-
ally however, both the real economy, as well as its relationship with the transition
probabilities are treated as a ‘continuous’ process. Estimating a migration matrix
using the maximum likelihood approach quickly proves inadequate and unstable
when time periods get smaller. To construct migration matrices over very short pe-
riods of time, one has to overcome the difficulty of few or no observed rating events
in ever smaller periods of time. An attempt to join together discretely estimated
matrices over rolling periods of time, so-called ‘dynamic’ transition matrices have
been estimated (Berd, 2005). Several alternative approaches exist, which will be
briefly highlighted here, but not implemented. The most simplistic, and somewhat

ad-hoc solution would be to somehow scale the long-term ‘benchmark’ generator
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matrix according to some variable (¢;);

A:CtXA

The variable ¢; can be a variable believed to be indirectly related to the rating
process, or can be directly related to the rating process such as the monthly up-
grade/downgrade ratio. Another approach, far less ad-hoc, with very high data and
modelling requirements would be to build up the probability of default from first
principles on an issuer basis and aggregating over the constituents. The most well-
known commercial model is perhaps the Moody’s/KMV model, which is capable of
producing real-world PD estimates on a monthly basis. This does result, however,
in a time series of default probabilities rather than a full transition matrix. A last
class of models attempts to build up the transition matrices from scratch using, for
instance, hazard models (with frailties), relating transition intensities to observable

economic time series (see for example Delloye et al., 2005)

4.3.2.1 Evidence for Time-Inhomogeneity

Before estimating any migration matrices, the number of defaults is explored, as
well as the up/downgrade ratio over time. The up/downgrade ratio is defined as
Nup.t/Naownt, where Ny, and Ngoyn+ are the number of upgrades and downgrades
respectively, in month t. Figure 4.7 shows how these variables vary over time?.
Generally, this ratio (Figure 4.7, left) is substantially lower than 1, suggesting that

bond downgrades are far more common than upgrades.

4The number of defaults will be directly related to the size of the relevant S&P bond universe.
Without data regarding the size of the universe, this is treated as constant for simplicity.
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Figure 4.7: The up/downgrade ratio (left) and the number of defaults (right) vary over
the sample period.

Sub-setting the data set by calendar year and subsequently fitting the standard
CTMC (an annual ‘benchmark’ matrix), shows how yearly estimates of transition
matrices vary. Again, these best estimates are subject to statistical error, similar
to all matrices presented in this Chapter. Bootstrapped samples of the annual
matrices are not computed, but since the number of observations is split over 22

years, confidence intervals will be be much wider.
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Figure 4.8: Estimates of default probabilities by rating fitted on annual subsets of the
dataset.

Since the state of the economy (GDP growth) is vital in the investigation of time
inhomogeneity in this Chapter, these regimes are explored further. A time period is
classed as a period of ‘low growth’ if the real GDP growth is in the lowest quarter
of the growth rates observed during the sample period (GDPx < 0.37%) or a ‘peak’
if it is in the upper quarter (GDPx > 1.06%). The mean quarterly growth rate
is 1.48% for ‘peak’ periods, 0.74% for ‘normal’ periods and -0.31% for low growth
periods.

Conditioning on the state of the economy (real GDP growth), patterns clearly
emerge. Rather than report the full migration matrix for all three states, Table
4.7 reports the one-year persistence (non-transition probabilities) and the one-year

default probability by rating category.
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Low Growth Normal Growth High Growth

Persistence Default Persistence Default Persistence Default

AAA 86.1 0.0 91.7 0.0 96.4 0.0
AA 87.1 0.0 89.5 0.0 95.1 0.0
A 86.4 0.0 88.4 0.0 96.4 0.0
BBB 82.9 0.2 84.9 0.2 95.1 0.0
BB 79.1 1.0 80.4 0.7 91.3 0.3
B 79.0 6.7 80.8 5.9 90.3 2.8
CCC 40.8 50.4 40.0 47.3 55.3 38.1

Table 4.7: Persistence and default probability conditioned on the state of the economy
across rating categories.

During ‘peaks’, higher persistence and lower default probabilities across the en-
tire rating spectrum are observed (Table 4.7). Interestingly, greater differences are
observed for peaks than for periods of low growth when compared to ‘normal’ peri-
ods; this illustrates the importance of modelling time-inhomogeneity as more than
just economic downturn. A more restrictive specification of ‘peak’ periods would,
most likely, have resulted, similar to a stricter ‘low growth’ definition using the
NBER classification, in even more distinct transition probabilities. This would be
relatively simple to achieve by defining a peak not as the top quarter of observed
GDP growths, but rather the top 10%, for example. It is possible to specify, for
instance, 10 buckets of GDP growth, each with an estimated matrix. Figure 4.9
shows how GDP growth appears to be linked to the persistence across ratings and

the entire GDP growth spectrum.
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Figure 4.9: Rating persistence across all rating categories for ten GDP growth buckets.

If the GDP growth variable were to be extended to ten buckets, a fairly ‘con-
tinuous’ variable would be achieved, which, as shown in Figure 4.9, the persistence
clearly depends on. Several patterns emerge from Figure 4.9; ratings lower down
the quality spectrum generally have lower persistence, persistence generally increases
with GDP growth across the entire quality spectrum and sub-setting into ten buck-
ets appears to bring some uncertainty in the estimates. Since persistence takes no
direction, low values of persistence could be the result of more mass shifting to-
wards upgrades. Far more mass sits in the downgrade portion of the matrices (seen
in Table 4.3, as well as the downgrade/upgrade ratio in Figure 4.7), indicating that
lower persistence is generally associated with more downgrades and defaults. For
the purposes this investigation, allowing for three GDP growth regimes suffices, but

this can easily be extended.

4.3.3 Interaction between Rating Drift and the Business
Cycle

In addition to investigating rating drift and time-inhomogeneity in separation, the
interaction of the two phenomena is studied. Fitting the CTMC with the ex-

tended state space, with infinite memory, to periods of recession and periods of
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non-recession, as indicated by NBER, provides the following insight. Figure 4.10
displays the difference in default probabilities for excited and non-excited states of
the downward-momentum aware matrix fitted previously, as well as those condi-

tioned on NBER recession status.

BB+
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Rating
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Figure 4.10: Difference in default probabilities between excited and non-excited counter-
parts for the CTMC fitted to the entire sample, and the recession/non-recession subsam-
ples. The difference in PD (x-axis) is provided on a log-scale.

Interesting at this point is whether the downward rating drift is stronger during
periods of recession and this is investigated by looking at the difference in default
probabilities between excited and non-excited states. Figure 4.10 emphasizes once
more that downgrade momentum particularly affects lower rated bonds, but also
shows that downgrade momentum is more prominent during periods of recession.
For CCC rated bonds, the difference in default probability between excited and
non-excited state is 27% higher during periods of recessions than non-recession. For
B-rated bonds this is 19%, for BB-rated bonds 33% and 23% for BBB-rated bonds.
It is important to keep in mind that the combination of the extended state space
and the few events that are classed ‘recession’, cause the estimates to have consid-
erable variance; the observed differences are only marginally statistically significant

(significant at o = 5%).
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4.3.4 Statistical Uncertainty

A crucial part of the investigation into model uncertainty associated with the es-
timation of migration matrices is statistical uncertainty. The observed (realised)
transition events is only one realisation of the true underlying stochastic process.
Therefore, an estimated migration matrix, such as the annual matrices published
for each calendar year, or the long-term migration matrix (1981-2013) published by
Standard & Poor’s (Vazza and Kraemer, 2014), are simply an estimates that carry
uncertainty. Given the diagonal dominance of migration matrices, one can reason-
ably expect the largest estimation error to present itself in the far off-diagonals. As
default is such a low probability event (1-year matrix) for investment-grade bonds,
the observation of rare events (e.g. AAA default) can lead to direct overestimation
of the probability; this is even more important when applying a cohort approach.
Using a simple parametric bootstrap procedure by taking a random sample of rating
histories of all obligors (with replacement), estimates of the N;;(T') and R;(T) statis-
tics and estimates of generator A are computed using the ML-estimator in equation
(4.4). Lastly, the transition matrix P(1) is derived as P(1) = exp(A x 365.25);
10,000 bootstrap simulations are performed.

For the benchmark migration matrix, ignoring downward momentum and time-
inhomogeneity effects, 10,000 bootstrap samples of the generator A are estimated
and, in turn, P(l). The 99% confidence intervals for 1-year default probabilities are
investigated to gain insight into the statistical error associated with the estimation.
Figure 4.11 illustrates the bootstrapped probability distribution of default proba-

bilities for BBB and CCC rated bonds. Table 4.8 summarizes default confidence

intervals at the 99% level across ratings.
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Figure 4.11: Bootstrapped distribution of 1-year default probabilities for BBB (left) and
CCC (right) rated bonds.

Lower Estimate Upper

AAA 0.000001 0.000003 0.000006
AA 0.000010 0.000054 0.000086
A 0.000052 0.000084 0.000110
BBB 0.000602 0.001019 0.001386
BB 0.005095 0.006124 0.007120
B 0.045037 0.048554 0.052143
CCC 0.422274 0.451760 0.482689

Table 4.8: Best estimates of the default probability and the corresponding 99% confidence
interval.

Table 4.8 shows that the 99% upper bound for the default probability of BBB-
rated bonds is 1.36 times the best estimate from Table 4.3; for AA this is 1.59 and
for CCC this is 1.06 times. As expected, statistical noise is greater for those matrix
elements with the least mass. Even from this initial evidence, the statistical un-
certainty appears to be economically significant, even when working with historical

long-term estimates based on more than twenty years of data (more than 19,000
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rating events of which approximately 1000 are default events).

4.3.5 Stochastic Credit Model & Calibration

Typically, the modelling of credit spread for a specific risky bond features both a
jump and a continuous component. The jump part may reflect credit migration
and default, i.e. a discontinuous change of credit quality. Meanwhile, credit spreads
also exhibit continuous variation so that the spread on a bond of a given credit
rating may change even if the risk-free rates remain constant. This may be due to
continuous changes in credit quality, stochastic variations in risk premia (for bearing
default risk) or liquidity effects.

The JLT credit risk model is based on ratings and thereby centres around the
observable change in credit rating rather than changes in a firm’s unobservable asset
value in a Merton model (Merton, 1974). Using the credit transitions it is fairly
straightforward to compute ‘break-even’ prices (and yields) of credit risky bonds as
an expected value of future coupon and principal payments (with pre-determined
recovery assumptions). This is calculated using the real-world (cumulative) default
probabilities and would be a price at which the market price of risk is assumed to
be non-existent and investors are only compensated for the expected credit losses.

As illustrated in Section 4.2.2 when reviewing default probabilities, credit spreads,
risk premia and risk-neutral pricing, a Cox-Ingersoll-Ross (CIR) process scales up
the generator matrix. This effectively assumes one market price of risk for all rating
classes, which follows the same simplification from the theoretical market price of
risk attached to each possible transition to a single price of risk, depicted in Figure
4.3. Modelling the market price of risk as a scalar that acts on the generator matrix
creates a stochastic credit risk-premium as the difference between risk-neutral (Q)
and real-world (P) transition expectations. The CIR process follows the following

stochastic differential equation;

d’fft = Oé(,u — ’ﬂ't) -+ UﬁdZt, (414)
where § = (a, u,0) are the model parameters. The drift function p(m,0) =
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a(p — m) is linear and mean reverting, resulting in the m-process moving in the

2 is proportional

direction of u at speed a. The diffusion function o*(m,0) = mo
to the risk premium. The risk premium process from Equation 4.14 relates the

previously estimated real-world generator to the risk-neutral generator;

AQ,t = 7TtAP.
Regarding this stochastic credit process, the following is observed;

e The model will produce strictly positive risk premia, which is the main benefit
to modelling the stochastic scalar using a CIR process rather than, for example,
a more simplistic Vasicek process. The square root in the variance factor
o,/ guarantees strictly positive market prices of risk. Generally, the variance
decreases as the process approaches zero reducing the effect of random shocks
as the process is dominated by its drift term pushing the process back towards

equilibrium.

e The continuous shock component, which comes from the m-process, is perfectly
correlated across rating categories. From cursory evidence when exploring the
Markit dataset in greater detail in Chapter 2, market-wide credit spreads
are observed to be highly correlated across rating categories. In addition to
perfect correlation across rating categories, it is worth mentioning that in the
simulation exercise, the same risk premium (and shocks to the risk premium)
is applied to all individual bonds; the shocks to the stochastic process are

modelled through a one-factor model dependency.

Risk neutral probabilities are seen as scaled real-world probabilities in the model
which now include compensation for unexpected losses making up the entire credit

spread.

4.3.6 Calibrating the Market Price of Risk

Recall that the scaling process m; from Equation 4.14 follows a CIR process to trans-

form Ap to Ag. The m-process is calibrated in two steps. For the period 2003-2015,
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information about bond prices, coupon payments/dates, time-to-maturity and credit
rating (history) for approximately 1100 bonds are collected on a monthly basis from
the Markit iBoxx GBP Investment Grade index constituents. For each month in
the dataset the pricing equation is inverted as a function of the risk-neutral default
probability and solved for the scalar value m; that minimises the sum of squared
errors between observed prices and prices obtained using the pricing equation, since
exp(Ag:) = exp(mAp). Each bond is given an equal weight in this estimation pro-
cedure. Iterating over all months produces a relatively short time series of estimated
realisations of 7r; (139 observations), to which a CIR process can be calibrated us-
ing standard methods including least squares regression and maximum likelihood.
The calibration procedure is detailed below, where the objective of finding CIR-
parameters 6§ = (o, u,0) that best fit the observed realisations (7;) found in the
empirical data. In order quantify the effect of the three risks under investigation,
risk neutral credit spreads and bond prices are projected into the future. To in-
vestigate the time variability assumption, real world rating dynamics are used as
calibrating the CIR-dynamics of the market price of risk would be distractingly dif-
ficult due to the existence of distinctly different time periods. Both the downgrade
momentum investigation and the statistical uncertainty investigation use different
real world dynamics for the rating process (extended state space) and require a
different calibration of the parameter set (6 = («a, p,0)) of the CIR process that

governs the evolution of the market price of risk.

4.3.6.1 Calibration of a CIR process

If > 0,€ 0 and 2apu > o2 holds, the CIR process is well defined and has Gamma-
distributed marginal distributions. To estimate the parameter vector 6 = (a, u, o),
transition densities are required. The CIR process has a tractable, closed-form
solution. Following the notation in the original publication Cox et al. (1985) on

page 391; given ry, the density of 7., a¢ is

—u—v(

4 1,(2/aw) (4.15)

P(Tt+At’7”t; 0, At) = ce

SIS
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where

2a

C= ———-—

0-2(1 _ efaAt>’
u = cre %At
U = CTr'iAts

2au
g=-——1

o

and I,(2y/uv) is a Bessel function of the first kind and order ¢. The transitional
density from Equation 4.15 was originally derived in Feller (1951). From Feller
(1951), it is convenient to work with a transformation, s;4a; = 2¢ryya, for which

the transition density follows;

1
9(5t+At|5t; 0, At) = 9(207’t+At‘207“t; 9, At) = %p(TtJrAtV’t; 0, At)

which is the non-central x?-distribution with 2¢ + 2 degrees of freedom and non-

centrality parameter 2u.

4.3.6.2 Likelihood Function

Parameters estimates of the vector § = (a, u,0) are obtained from a time series
of N observations, with equally spaced time steps of At. Using the log-likelihood

function with respect to 6

N-1

InL(0) = Z Inp(re,,, |14,3 0, At)

=1

from which the log-likelihood function of the CIR process is derived

N-1
InL(0) = (N—1) In(c)+»  —u,—v,+0.5g ln(%)—i—ln{]q(l/rivtiﬂ}) (4.16)
i=1 ti

where
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—aAt
U, = CTI', € 3

(o = CI'¢

it+1 it+1

The maximum likelihood estimates 6 are obtained by maximising the log-likelihood

function (4.16) over the parameters contained in 6:

0

(&, f1,6) = argmax In L(6) (4.17)
0

4.3.6.3 Initial Estimates using OLS

For the estimates of 6 to converge and the log-likelihood function to reach a global
maximum, sensible initial estimates are crucial; the likelihood function is particularly
flat with respect to a. Brigo and Mercurio (2007) suggest using Ordinary Least
Squares (OLS) to arrive at initial estimates. For OLS purposes a discretized version

of the SDE in Equation 4.14 is used;

reear — 10 =l — ) At + o/ (r)e (4.18)

where ¢, is a white noise process. In order to perform OLS, equation (4.18) is

transformed:

Tevat — Tt apAt
\/T_t \/(7’0

To solve for the initial estimates of the drift parameters (&, i1) the OLS objective

— a/(r) At + o¢

function is minimised;

i

N . TtiH—Tt _O[,UAt
@)= argin 3

i=1 V7T "t

The estimate of the diffusion parameter & is obtained as the standard deviation

+ ay /T At)?

of the residuals. Parameters (&, [i, &) are used as initial estimates in Equation

(4.17). The calibrated CIR processes m; (separate process for statistical uncertainty
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and downgrade momentum investigation) with parameters 6 = (a, i, o) are used to
project forward the risk premium; a ‘scalar’ that transforms the real-world generator

matrix into the risk-neutral generator.

4.4 Empirical Results using Monte Carlo Simula-
tion

The simulation exercise is used to assess the model uncertainty with respect to the
use of migration matrices and highlights three ways in which benchmark stochastic
credit models could be misrepresented; time-inhomogeneity, rating drift and statisti-
cal uncertainty. Assessing the embedded model uncertainty is through a comparison
of the outcomes of a typical simulation exercise of a portfolio of corporate bonds,
with a stochastic credit model at heart; the model uncertainty is represented by the
different outcomes of the models with respect to Value-at-Risk of the portfolios one
year ahead or the rating distribution of the underlying portfolios at various time

horizons.

4.4.1 Simulation of Rating Process

To evaluate the impact of different estimation models for migration matrices, the
Value-at-Risk (VaR) of a bond portfolio at relatively high confidence levels (o =
99%) is compared over a one-year period (but can easily be used for multi-year
projections). The simulation exercise follows an approach similar to simulating
credit migrations based on Merton’s model of value of the firm (Merton, 1974).

Obtaining an obligor’s asset value using a one-factor model;

X = VoF + /(L= )2

where the asset values (X;) take a common dependence on a systematic risk fac-
tor (F) and depend on idiosyncratic shocks (Z;). Since both F' and Z; are standard
normal i.i.d. random variables, p is the correlation between changes in asset value

among all firms. The dependence model of the obligors’ asset values may be simplis-
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tic, and can easily be substituted for more complex or realistic models. One could
think of modelling the dependence according to multiple factors, which may reflect
drivers such as, for instance, country, industry or currency. In addition one could use
a non-Gaussian dependence and employ, for instance, a straightforward t-copula to
emphasize a heightened dependence in tail events. Merton’s model assumes a firm

defaults if its asset value (X;) drops below some critical value D;;

1 X, <o (D)

0 X;,>o (D))
where I; is the default indicator. The above model is extended to include nine
states (all rating classes and default) rather than the default / non-default indicator

I;. By specifying a threshold matrix D with elements d;;, where 7 refers to the origin

state of the rating process, the threshold d;; for non-default states (w) is given by;

8
di,w - (I)_l (Z pi,w)a

where ®7!(1) = +inf and therefore d;; = +inf. Each realisation of the asset

value X; and the threshold matrix D jointly determine the rating one year ahead;

Si=j when d;; <X; <djj41),

for the state vector S = (Raaa,...,Rp).
If the bond enters the absorbing default state, a stochastic recovery rate is applied,
as modelled by a beta distribution, to the market value of the bond (Altman et al.,
2004). The asset value generating process, the recovery rate process, the credit risk
premium and the risk-free rate are all assumed to be independent. If the year-ahead
state is a non-defaulting state, bond prices (B;) are computed as straightforward

expected present values of future cash flows with a random recovery rate in a discrete
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setting using an equation similar to 4.12.

= Gi(1 = PDQgy) + Ci(6 x PDQry) (1= PDQrr)+ (6; X PDQrr)
Bigrs = Z +

t (1+r)t (1+’I“)T

(4.19)

As stated earlier, the formulated stochastic credit model can be said to be doubly
stochastic since the model contains both a stochastic jump process (credit rating
driver) and a stochastic diffusion element (the CIR process reflecting spread fluctua-
tions, i.e. credit spread risk). In addition to these two drivers of risk, it is important
to consider that the model does not consider stochastic interest rates, nor are any
of the random processes made to be dependent; the rating, market price of risk and
recovery generating process are all constructed to be independent.

To arrive at 1-year risk measures, such as VaR,, estimates, ratings for N bonds
in a portfolio are simultaneously simulated forward in time, and project forward the
market price of risk scalar to obtain the (risk-neutral) present values for each bond.
At the portfolio level this is turned into an aggregate profit/loss (PnL). Repeating
the simulation exercise 25,000 times, this approximates the entire PnL distribution.

Every choice regarding the simulation specification determines the results of the
simulation exercise, with consequences potentially far greater than the specification
errors under study. In order to effectively evaluate the impact the input of migration
matrices has, simulation parameters and methods are fixed. However, some insight
into the sensitivity of parameter choices (asset correlation, initial rating distribution

and portfolio size) on the VaR estimates are presented.

4.4.2 Empirical Results of the Simulated Portfolios

Previous sections have shown how bootstrapped estimates of default probabilities
capture statistical noise; Table 4.8 shows that the 99% upper bound for the default
probability of BBB is 1.36 times the best estimate from the benchmark matrix.
Empirical evidence has been presented that shows that downward momentum is

(statistically) significant, with probabilities of default of excited states higher than
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the non-excited states in the same rating category. Lastly, approaches to capturing
time-varying effects of the rating process show how real-world default probabilities
are linked to the real economy.

Based on these observations it is straightforward to hypothesize that VaR esti-
mates using bootstrapped matrices will have higher VaR than the non-bootstrapped
counterparts, that the presence of downward momentum leads to higher VaR and
that attempts to capture time-inhomogeneity lead to higher VaR estimates. Ul-
timately, the interest lies with the extent to which VaR estimates differ from the
benchmark.

The Monte Carlo model is parametrized as follows; simulating a portfolio using
100 bonds (N = 100) of 100 notional amount, a maturity date in 6 years (T' = 6), a
coupon rate of 5% paid annually and a fixed annualized risk-free rate of 2% for all
maturities. An asset correlation of 0.1998 is used, as estimated by Zeng and Zhang
(2001). Both Diillmann et al. (2007) and Lopez (2004) arrive at similar estimates
for asset correlations for medium to large US corporations. Recovery rates are
simulated from a beta distribution with mean of 0.476 and standard deviation of
0.229 (Altman and Kishore, 1996) in the event of a default.

For the benchmark matrix, the bootstrapped estimates of the benchmark ma-
trix and the migration matrix with an extended state space, the CIR processes are
projected forward one year from their September 2015 historical value in monthly
time steps®. For the simulations challenging the time-homogeneity assumptions, no
stochastic scalar is used and instead the focus lies with illustrating how the distri-
bution of rating classes varies from the benchmark using the real world transition
dynamics.

Based on 25,000 simulations, the 1-year VaR,—_gqy of the benchmark matrix
(Table 4.3) is -4.01%, which will be the value against which the VaR values of
competing models based of different migration matrices are compared in Figure

4.12.

5Please note that two CIR processes have been calibrated; one based on the benchmark matrix
(used in the benchmark en bootstrapped benchmark case) and a process calibrated using the matrix
with an extended state space.
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Figure 4.12: VaR differences from benchmark matrix for simulation with standard param-
eters.

Figure 4.12 illustrates clearly how ignoring statistical uncertainty of estimated
migration process impacts the simulated risk of the credit risky portfolio. With levels
of VaR,—g9y 21% higher than the benchmark, this result is economically significant.
Since the statistical uncertainty is straightforward to quantify given the underlying
ratings events, and given that running simulations using varying realisations of the
same underlying process is straightforward, the results are easily obtained which
makes constructing a simulation that accounts for statistical uncertainty a realistic
option on a real world commercial setting. The difference in VaR levels is as hy-
pothesized for the rating process that attempts to incorporate rating history under
a new Markov process; the VaR of the ‘momentum-aware’ transition model is 49%
higher than the benchmark. Using a model based on bootstrapped samples of the
‘momentum-aware’ matrix, thereby accounting for statistical uncertainty in the es-
timation of the transition matrix with downward momentum, yields, as expected,
an ever larger difference in Value-at-Risk of 83%.

For the matrices that have been conditioned on the state of the economy (GDP
growth), the regime is allowed to switch on a monthly basis, projecting forward 20

years using the transition matrix in Table 4.9, estimated from the event data in
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Figure 4.6 (right).

From / To High Growth Normal Growth Low Growth

High Growth 0.285 0.653 0.062
Normal Growth 0.064 0.847 0.092
Low Growth 0.043 0.736 0.221

Table 4.9: Quarterly transition matrix for three economic regimes, defined by GDP growth.

In each of the simulated months, ratings are projected forward according to the
rating migration matrix that corresponds to the regime. Rather than look at Value-
at-Risk measures, the focus of the investigation is on the real-world distribution of
simulated ratings and how it varies between a model where the benchmark matrix
is used and a model where the transition matrix depends on the projected state
of the economy. Both simulations start with 1000 bonds of credit quality AA and
for simulation years 1, 5, 10 and 20, rating membership is observed for each of the
25,000 simulations. Recording the percentage of bonds in each rating category, for
each simulation, gives, at each point in time, a distribution of rating membership
for each of the ratings. For instance, using the benchmark model, it could turn out
that in year five, a mean percentage of 70% of bonds still labelled A-rated, and, for
instance, the 5th quantile is 45% and the 95th quantile is 84%. These numbers are
only for illustrative purposes®, ultimately the interest lies in the differences between
the values in the benchmark model and the economy-dependent model, rather than
the observed values. Figure 4.13 shows how the difference in 5th quantile and 95th
quantile of the rating distributions for the economy-dependent simulation compare

to those of the benchmark model, expressed in terms of the benchmark model.

SNote that the expectation of the resulting distribution could easily obtained by taking powers
of the 1-year migration matrices.
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Figure 4.13: Relative distribution of rating membership at various years ahead, for the
benchmark model and the economy dependent model

Figure 4.13 shows how the 5th and 95th quantile of the rating distributions
(AAA, BBB and B) are different, at various years ahead, for the benchmark model
and the economy dependent model. The results are expressed as a percentage of the
benchmark model. For instance, simulation 5 years ahead, the 5th quantile for AAA
is only 74% of the benchmark model indicating a lower 5th quantile, which indicates
there is the potential for fewer AAA-rated bonds using the economic-dependent
model. Figure 4.13 shows that relative to the benchmark, in general, the distribution
of rating membership is wider for the economy-dependent model. There is both
the potential for (far) more, or (far) less rating changes in the economy-dependent
model; a result of the randomness in the economic growth that is simulated which
can be very different from the average case. Table 4.9 illustrates how GDP growth
appears to be highly mean reverting with the highest transition probabilities always
towards the medium growth. Evidence of this tendency for mean reversion can be
seen in Figure 4.13 as well. The difference between the benchmark model and the
economy-dependent model appears to decrease with simulation time, indicating that
over longer time period it is rather unlikely that one would experience, say, twenty

years of low growth”.

"As twenty years equals eighty time periods in Table 4.9, this extreme result is expected in
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4.4.3 Sensitivity Analysis

A selection of input parameters are varied and used to assess the impact on VaR and
VaR differences between estimation methods and the benchmark. The results for
varying the asset correlation, initial rating distribution (low/high risk) and portfolio

size are summarized in Table 4.10.

Benchmark | Downward Momentum
Low p 64% 103%
Standard p 100% 149%
High p 213% 246%
Small sample (50) 152% 217%
Standard sample (100) 100% 149%
Large sample (500) 93% 132%
Low risk 74% 102%
Standard risk 100% 149%
High risk 147% 213%

Table 4.10: Value-at-Risk relative to the benchmark matrix with standard model param-
eters (Benchmark).

As expected, increasing asset correlation, decreasing portfolio size and increasing
risk appetite all lead to more higher levels of VaR (o = 99%), where the difference
in VaR from the standard parameters can can be substantial. The VaR differences
arising from changes in some of these model parameters, in particular the very high
levels of asset correlation, can be of similar magnitude to VaR differences that arise
from model specification and statistical uncertainty. This highlights and leads to
an important conclusion that an investigation into model uncertainty during the
Monte Carlo simulation stage should not only be concerned with model parameters
like asset correlation or recovery rates, but also admit that the rating process is a
cardinal input.

Firstly the risk appetite of the portfolio is varied. The low-risk portfolio has an

‘average’ of rating AA, and the high-risk portfolio has an initial rating distribution

only 1 in 5530 simulations
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with an ‘average’ of BBB; this follows the approach in Jacobson et al. (2006) to
assessing the impact of investor’s risk appetite on portfolio return distributions,
where the results indicate that a riskier portfolio has a more extreme VaR. The
rating distribution (risk appetite) appears to have a stronger effect on the model
with a matrix accounting for downward momentum. Intuitively, this makes sense
as the difference in default probabilities between excited and non-excited states are
most pronounced for ratings lower down the quality spectrum.

Secondly, the portfolio size is varied to represent a small (50 bonds) and large
(500 bonds) investor. Jacobson et al. (2006) show that portfolio size is crucial to
analysing tail risk in bond portfolios, where they find that larger portfolios have
lower VaRs, ceteris paribus. This research finds evidence for the same effect and the
effect is similar across models. The diversification effect is clearly non-linear, visible
even in this small simulation experiment.

Lastly, Giittler and Raupach (2008) are followed and the asset correlation varied
to be the 5th (low) or 95th (high) percentile of Zeng and Zhang’s (2001) model,
0.0824 and 0.4331, respectively. Whereas these estimates are more extreme than
estimates by Lopez (2004), they clearly provide a best/worst case scenario. As-
set correlation is a crucial driver of risk with far-reaching consequences across all

models.
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Closing Remarks & Directions for

Future Research

5.1 Quantifying the Liquidity Premium on Cor-
porate Bonds

In Chapter 2 a new reduced-form modelling approach to estimating liquidity premia
on corporate bonds is proposed that has few data constraints compared to other
methodologies using CDS data, structural models or reduced-form models relying
on external data for credit risk control variables. The time-varying nature of liquidity
premia is demonstrated for various rating categories over an 11-year period capturing
a benign financial climate, the financial crisis and more recent years. Liquidity
premia are observed, as a proportion of total credit spread, to be bigger for bonds
of lower credit quality and emphasize the existence of a distribution of liquidity
premia on any given day rather than daily point-estimates. The sign, magnitude
and evolution of model parameters provides insight into market dynamics, especially
how drivers such as Seniority, Duration Collateralization and Credit Spread changed,
broke down or remained stable during the credit crunch. The evolution of parameter
estimates in more recent years indicates how market dynamics have recovered, not
yet recovered or changed as a result of the crisis.

The model developed in Chapter 2 aims to alleviate some of the difficulties ob-
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served in previous modelling efforts that are difficult to calibrate (demonstrated
using an analysis of the working paper of the Bank of England that implemented
a Leland and Toft model), have extensive data requirements, are difficult to use
on a regular basis and provide estimates at only an aggregate level. Using read-
ily available data used to mark to market corporate bond portfolios, a modelling
methodology is introduced that produces liquidity premia estimates for individual
bonds on a daily basis, without the need to undergo extensive calibration.

Despite the economically intuitive and significant changes in model parameters
and outcomes over time, the modelling approach in Chapter 2 defines no explicit
time component. Time series analysis could be applied to the daily changes in values
for RBAS (on the individual bond level) and its coefficient (for both the individ-
ual and aggregate levels). This could provide forward looking estimates of aggre-
gate or bond specific liquidity premia with relatively high frequency (daily/weekly /-
monthly). Other than, the modelling exercise is conducted entirely cross-sectionally,
independent of time.

In addition to the merits of the new modelling approach, several downsides
deserve consideration; most importantly, the use of quoted prices and unknown
trade/quote sizes are worth discussing. The Over-The-Counter (OTC) nature of
the corporate bonds market makes the availability of transaction level data lim-
ited. Whereas the Trade Reporting and Compliance Engine (TRACE), where most
trades are recorded, is available in the United States, a similar database does not
exist in the UK. The use of quotes is second best as the user of the data does not
know whether anyone actually acted upon those quotes; one can also wonder how
to interpret quotes during times of extreme market distress. Even though the data
provider goes to considerable lengths to ensure that the collected quotes from dealer
desks are aggregated fairly, other pieces of accompanying information are missing.
The average trade size has decreased substantially during the period under study,
some of which may be the results of decreased inventories of market makers, which
raises the following issue; if the quoted (bid-ask) spreads are recorded for for a ‘typ-

ical’ trade size, then Bid-Ask Spreads are likely to give a flawed picture as quotes
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cannot be compared like-for-like over time. Similarly, the methodology is unable to
capture the effect of trade size on the liquidity premium and can certainly not con-
clude whether this effect would vary across bonds with varying degrees of notional
amount outstanding.

An area of future work, of particular interest in reference to some of the consid-
erations under the ongoing discussions about the Solvency II regulatory regime with
matching assets and liabilities, may focus on the extent investors ‘earn’ the liquidity
premium as a function of expected holding period. All estimates of liquidity premia,
produced in this thesis and other modelling efforts, relate to the additional expected
return when holding the bond to maturity. Even buy-and-hold investors that have
the intent to hold to maturity will be faced with an expected holding period that is
shorter than maturity due to, for instance, a mandate to sell bonds below BBB, a
switch of bonds to lower capital charges, immediate cash needs or a desire to pursue
a different risk-bearing strategy. Most importantly, imposing a strict buy-and-hold
only policy would make for bad risk management practices. Figure 5.1 is an il-
lustration of what a credit spread decomposition would like with an explicit time

component.
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Decomposing the Credit Spread
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Figure 5.1: Schematic, theoretical decomposition of Credit Spreads, with a time-dependent
element.

The expected losses component of the spread (fundamental spread in Solvency
IT), is split between compensation for losses arising from default and losses from
re-ratings. The top component in Figure 5.1 is the accrual of a liquidity premium
over time; instantaneous buying and selling of a corporate bond would results in a
negative return, of exactly the Bid-Ask Spread. Over time, the liquidity premium (of
the acquisition date) is earned. Given that bonds are traded prior to their maturity
date for a variety of reasons, one could think of an expected value of the liquidity
premium which would be a function of the expected holding period of the asset and

the stochastic evolution of the estimates.
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5.2 Quantitative Factor Investing in the UK Cor-

porate Bond Market

In Chapter 3 seven factors are reviewed, well-documented in the equity market
literature, but for which the credit literature is rather sparse. All factors offer both
statistically and economically significant returns beyond the traditional credit risk
premium, yet cannot alone be explained by an increased market risk or by exposure
to equivalent equity factors in a CAPM or Fama-French framework, respectively. All
single-factor portfolios, except Quality, show favourable Sharpe Ratios compared to
the market and have significant alphas.

Higher management fees for alternative beta funds are commonly justified due
to the (allegedly) partially active nature of the invest strategy, in which an increased
turnover can also contribute to the higher transaction costs, which is subsequently
passed on to the investors. Due to the illiquid and Over-The-Counter nature of
corporate bond trading, transaction costs and turnover are of particular concern.
Using a ‘semi-continuous’ approach that allows bonds to be traded (switched) on
a monthly basis using a tolerance parameter to control turnover, outperformance
appears to be persistent for most strategies using typical values for the tolerance
parameter.

Relaxing the fixed holding period offers attractive benefits in favour of a tol-
erance factor, where portfolio turnover can effectively be controlled. The factor
tolerance represents a trade-off between the observed dilution of factor exposures
and decreased turnover (transaction costs), with tentative, yet promising suggestions
that indeed factor dilution can be observed and there might be an optimal holding
strategy that optimizes factor returns net of transaction costs. The tentative results
suggest that, depending on the chosen factor, the trade-off between costs and higher
returns leads to a suggested optimal holding strategy with medium to high levels of
tolerance.

In a multi-factor portfolio context three strategies are specified under which

a financial institution might be exploring a multi-factor approach; enhanced risk-
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adjusted returns, limited downside risk and limited relative risk. Under each of the
strategies and several implementations, opportunities for diversification leading to
enhanced returns, reduced risk across a range of metrics, decreased dependency on
the economic cycle and reduced relative risk, are achieved.

The results have several implications for institutional investor’s managing a large
portfolio of corporate bonds. Bearing in mind the cyclicality of factor performance
from equity markets over the last forty years, with the example of more than six
years of under-performance of the Small Cap factor in the 1990s, and the volatility
of outperformance observed in the smaller time period under study in Chapter 3, the
importance of a long-term strategy becomes paramount when it comes to capturing
systematic risk premia. The naturally long investment horizon of insurance compa-
nies and pension funds seem well-suited to harvesting risk premia that materialise
over long time periods. The systematic premia may only exist because the holding
period of a typical investor may not be long enough to diversify away the risks at
hand.

There are further caveats to consider. Firstly, external money managers might
be reluctant to implement factor strategies since tracking errors are large for single-
factor portfolios. Combining factor portfolios leads to increased information ratios of
up to 0.4, based on returns over duration-matched Gilts. Holding a well-diversified
multi-factor portfolio under the proposed methodology would lead to holding up
to 650 bonds, with varying weights, at any one time; a large number of bonds
to manage, especially given the size of the UK investment grade market. It is very
possible that upon further investigation this number can be greatly reduced without
affecting the risk and return characteristics of the portfolio. The large tracking error
observed of all factor portfolios however is likely the results of having few bonds in
factor portfolios, compared to its market-wide benchmark. As the factor portfolios
effectively set zero weights to ninety percent of the bonds in the market, alternative
strategies to capturing the same premia, using a larger part of the market in order
to reduce the volatility of outperformance, might also be of interest.

Secondly, large institutional investors may face additional constraints, unable
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to trade bonds to maintain the desired factor exposure. These could include, but
are certainly not limited to duration matching of assets and liabilities. The focus of
institutional investors would lie with an appropriate cash low matching and interest
rate risks across both sides of the balance sheet, as mismatches in this respect are far
more costly than the potential to generate slightly higher returns using a particular
investment strategy, that may carry some uncertainty over its outperformance. In
addition to these 'top-down’ constraints dictated by asset and liability mismatches,
institutional investors might have to adhere to internal risk exposure limits (with
respect to rating, Duration-Times-Spread or sector) or capital charges that may
make individual bonds unsuitable from a portfolio perspective.

Nevertheless, factor investing appears to allow market participants with a suf-
ficiently long time horizon to take advantage of risk premia beyond the credit pre-
mium. Depending on beliefs about the persistence of factor returns and subject
to individually determined constraints, a multi-factor approach is likely to achieve
enhanced risk-adjusted returns, limited downside risk and a decrease in relative risk,
regardless of the exact portfolio weights.

Special attention is reserved for the illiquidity factor as an alternative and most
importantly intuitive method of deriving liquidity premia. Whereas all other mod-
elling efforts use abstract constructs and complicated models, the intuitive observa-
tion of how much additional return is earned on investments in illiquid bonds versus
the market, proves useful. Using the, admittedly, arbitrary, relative liquidity proxy
developed in Chapter 2 to construct an illiquidity factor, the risk and return charac-
teristics of liquidity premia on several subsets of the investment grade market have
been estimated. Whereas this approach appears simple due to the absence of ‘mod-
els” or any mathematical subjectivity for that matter, it is completely dependent on
the chosen criteria for the construction of the factor portfolio.

Future research could focus about the robustness and sensitivity of factor def-
initions, where the factors constructed in Chapter 3 are (deliberately) simple in
definition, there might be far better (smarter) ways to capture some of the men-

tioned effect. This may be the result of more data, such as balance sheet data,
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or different modelling techniques. Rather than relying on traditional equity factors
(dumb alpha), it would be interesting to see to what extent smarter algorithms
can be designed to forecast the returns of traditional factors for the next twelve
months and see to what extent novel data sources can lead to more ‘obscure’ fac-
tors. Chapter 3 tried to illustrate to what extent factor returns vary over time and
this becomes critical to developing any trading strategy and the need for adequate
backtesting becomes apparent. When smart-beta products are concerned, a novel
area of research would be the joint study of risk factors across the equity and credit

space in strategy design.
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5.3 Model Uncertainty & Parameter Risk in Stochas-

tic Credit Models

In Chapter 4 several fairly straightforward, competing (stochastic) credit model
specifications are reviewed to capture some well-known non-Markovian properties
of the rating process, primarily concerned with the risk of ignorance, that is, the
effect of ignoring non-Markovian properties in transition matrices for modelling,
for instance, capital requirements. In addition to addressing this case of model
uncertainty, the effect of statistical error in the estimation of migration matrices is
investigated, a fact often overlooked. To study these phenomena effectively, existing
literature is followed and straightforward models specified to capture downward
momentum by extending the state space conditioned on the state of economy (‘Low
Growth’, ‘Normal Growth’, ‘High Growth’) to capture variations over time or take
bootstrapped estimates of the migration matrix to capture statistical uncertainty.

Extending the state space to account for downgrade momentum through excited
and non-exited states with infinite memory is clearly a restrictive assumption that
has previously been modelled in more sophisticated ways, but compelling evidence
for downgrade momentum exists nevertheless. Differences in default probabilities
between excited and non-excited states are both statistically and economically sig-
nificant; one-year VaR is 49% higher than the VaR on the benchmark matrix. Some
evidence suggests that the downward momentum effect is stronger (between 19% -
33%) during periods of recession than during non-recession periods, but due to small
sample size for the extended state space the results are only marginally statistically
significant.

Investigating the time-homogeneity assumption of a Markov process, annual de-
fault numbers and annual up/downgrade ratios are computed; these are clearly not
constant, even after considering that these estimates are subject to statistical uncer-
tainty. Fitting migration matrices to annual subsets of the dataset shows substantial
variation in estimated default and persistence probabilities. The convention of sub-

setting the dataset according to measures of the real economy, focusing on GDP
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growth, is followed. The results are certainly economically significant; by specify-
ing either three or ten buckets of GDP growth a clear trend in the persistence and
default probability of transition matrices can be seen. Allowing for the economic
regime to change on a quarterly basis, evidence exists that the distribution of rating
membership is substantially different over a simulation time of twenty years. As the
GDP regimes are highly mean reverting, the discrepancy between the benchmark
model and the model based on regime switching of GDP growth is less pronounced
in long-term simulations.

Accounting for the statistical uncertainty in the migration matrix is relatively
straightforward when the underlying transition events are available and accounting
for this uncertainty in a simulation exercise gives direct insight into the risk of
this ‘parameter’, which appears to be economically significant; Value-at-Risk is 21%
higher taking into consideration this uncertainty.

Results indicate that the the studied ‘risk of ignorance’ for simulations using
(stochastic) credit models leads to substantial differences, which has direct conse-
quences when estimating, for instance, required capital on credit risky portfolios.
For very long term projections of credit risky assets, for the purposes of life insur-
ance for instance, ignoring the parameter uncertainty associated with the migration
matrix in favour of a long-term average matrix published my major rating agencies
may seem appropriate at first sight. However, whereas the expected value in future
time periods does not change, the variance of the distribution certainly does. A
similar logic could be made for ignoring the (short/medium) term effects of vari-
ations in the economic cycle in very long-term projections. The long-term matrix
published by rating agencies is of sufficient length to include all stages of the busi-
ness cycle and includes periods of financial crises and rapid growth. Therefore, even
over longer time horizons the resulting distributions are not too dissimilar, but over
shorter time horizons substantial differences arise.

It is worth re-iterating that this cannot be considered a comprehensive treatment
of non-Markovian properties of the rating process, nor an attempt to capture rating

drift or time-inhomogeneity in the best possible way. While arriving at Value-at-Risk
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estimated for hypothetical portfolios of bonds, the actual VaR estimates are of lesser
importance than their relative difference, as the assumptions about the portfolio as
well the simulation exercise are open for debate. For instance, for high quality bonds
the largest sources of risk is arguably not credit risk, but interest rate risk, which
is assumed to be fixed and flat. Not to mention more advanced topics that have
been studied extensively such as PD - LGD correlation, correlated movements in
interest rates and the credit process or alternative dependence structures between
the movement of asset values. The differences in VaR estimates when using standard,
readily available long-term matrices published by rating agencies versus ‘competing’
matrices are the focus. The relative differences are substantial and this, in turn, will
be critical to the capital modelling of actual credit-risky portfolios.

To gain a full understanding and appreciation of the model uncertainty, or param-
eter risks that come with the modelling of credit-risky instruments, a comprehensive
review of ‘all the moving parts’ is needed. To aim of Chapter 4 was to discuss in some
detail the risks attached to the specification of the rating transition process, which is
only one ‘moving part’ of the entire modelling exercise. This comprehensive review
could indeed be endless, from varying the dependence modelling of the credit jump
process to depend on multiple factors (country, sector) and different dependence
models (copulas) to stochastic interest rates or different methods of capturing the
stochastic diffusion of the risk premium (credit spread volatility). A comprehensive
review would however be unlikely to arrive at any definite conclusions about the
model risk of this particular model as a whole, but would provide insight into how
different parts of the modelling process are subject to uncertainty and how these

model risks may interact.
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Figure A.1: Decomposition of credit spread (left) for AAA-rated bonds of average liquid-
ity into a liquidity and non-liquidity component; Liquidity component of credit spread
(middle) in basis points and the liquidity component of credit spread as a proportion of
total credit spread (right).
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Figure A.2: Decomposition of credit spread (left) for AA-rated bonds of average liquidity
into a liquidity and non-liquidity component; Liquidity component of credit spread (mid-
dle) in basis points and the liquidity component of credit spread as a proportion of total
credit spread (right).
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Figure A.3: Decomposition of credit spread (left) for BBB-rated bonds of average liquid-
ity into a liquidity and non-liquidity component; Liquidity component of credit spread
(middle) in basis points and the liquidity component of credit spread as a proportion of
total credit spread (right).
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Aaa Aa A Baa Ba B Caa Ca-C NR Default

Aaa 87.198 8205 0.631 0.000 0.028 0.002 0.002 0.000 3.933 0.000
Aa 0908 84.566 8.434 0.492 0.064 0.021 0.008 0.001 5.484 0.021
A 0.057 2487 86.070 5475 0.568  0.111  0.032  0.004  5.135 0.062
Baa 0.039 0.172 4110 84.870 4.054 0.755 0.163 0.017  5.647 0.172
Ba 0.008 0.053 0.348 5.524 75.751 7.220 0.576 0.073  9.387 1.059

B 0.009 0.028 0.113 0321 4.580 73.526 5.816 0.594 11.159 3.853
Caa  0.000 0.017 0.017 0.116 0.384 8.696 61.708 3.723 12.000 13.339
Ca-C  0.000 0.000 0.000 0.000 0.397 2.034 9.377 35.458 14.797 37.937

Table B.1: Long-term credit migration matrix, estimated by Service in their Annual Default Study of
2014.

Number of Disappearing Bonds from Dataset
by Factor Portfolio
Low_Risk Value High_Volatiity Low_Volaiity Momentum Hiquidity

Number of disappearing bonds

fikatul MWMMMM Wkl il

Figure B.1: Number of bonds in each of the factor portfolios that disappear from the
dataset alltogether, but have not matured.
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Figure B.2: Number of bonds in each of the factor portfolios that mature in any given

month.
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Figure B.3: Number of bonds in each of the factor portfolios fall outside the factor exposure
criteria, using a tolerance level of A\ = 40%.
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Figure B.4: Sample autocorrelations for the
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North America UK  Western Europe World | Total
AeroAuto 9.30 0.30 0.70 1.40 | 11.70
Construction 4.90 0.10 0.50 0.90 6.40
ConsumerService 11.00 0.40 0.50 1.20 13.10
Energy 4.50 0.10 0.20 0.70 5.50
Financelnsurance 15.30 1.00 4.00 5.50 25.80
Health 4.60 0.20 0.40 0.40 5.60
Leisure 6.50 0.30 0.20 0.60 7.60
Tech 3.40 0.00 0.20 0.40 4.00
Telecommunications 3.40 0.20 0.40 0.90 4.90
Transportation 3.50 0.20 0.30 0.80 4.80
Utility 7.60 0.70 0.60 1.70 | 10.60
Total 74.00 3.50 8.00 14.50 | 100.00

Table C.1: Sector and geographic areas of firms included in the dataset (%).
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