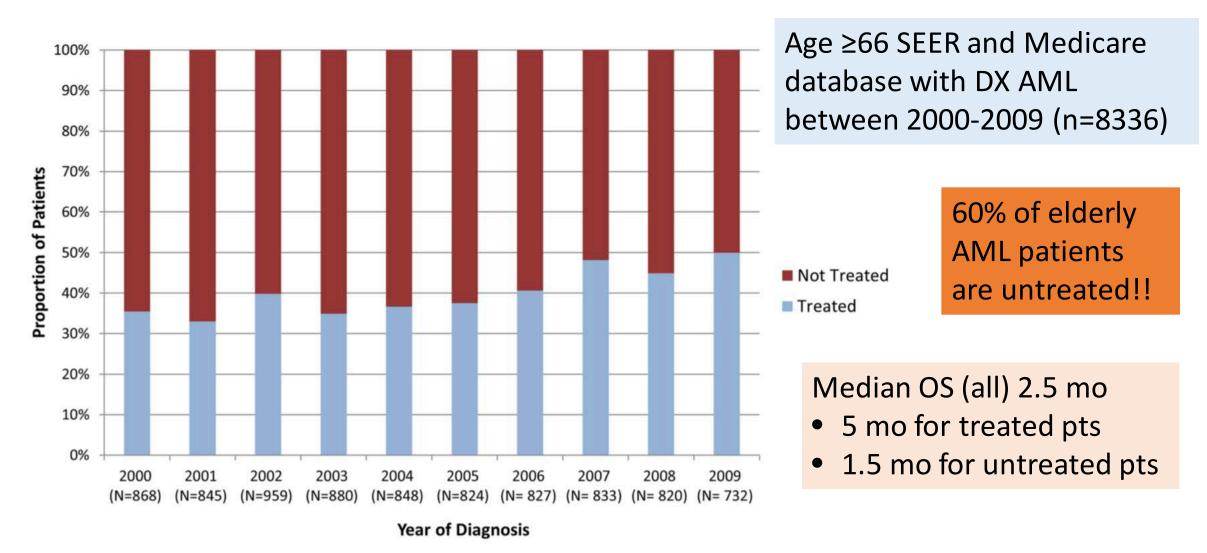
Acute Myelogenous Leukemia: New Therapies after 40 Years!


Fiona He, MD University of Minnesota

April 12, 2019

Outline

- Recent Advances for the Treatment of AML
- New agents approved for AML
 - Venetoclax
 - Glasdegib
 - Ivosidenib
 - Vyxeos
- Biomarkers in AML
 - Molecular Mutations as Biomarker of Response to Therapies
 - Minimal Residual Disease

AML Treatment Patterns over Time

Madeiros et al., Ann Hematol, 2015

Recent Advances in AML Therapy

Mutation	Treatment	Indications	FDA Approval
FLT3	Midostaurin	Upfront treatment	April 2018
	Gilterinib	Relapsed	Dec 2018
IDH1	Ivosidenib	Relapsed	Oct 2018
IDH2	Enasidenib	Relapsed	Aug 2017

Mechanism	Drug	Indications	Approval
BCL-2 inhibitor	Venetoclax	Frontline (elderly, unfit) Relapsed (off- label)	Nov 2018
Smoothen Hedgehog pathway	Glasdegib	Frontline (elderly, unfit)	Nov 2018
CD33 antibody- drug conjugate	Gemtuzumab Ogazomicin	Upfront treatment (good risk), Relapsed	Sept 2017
1:5 fixed molar ratio of 7+3 (Dauno/Cyt)	Liposomal 7+3 (Vyxeos)	Upfront Secondary AML or AML-MRC	Aug 2018

Glasdegib

- FDA-approved in combination with low-dose Ara-C in newly diagnosed AML or high-risk MDS age 75 or older ineligible for intensive chemotherapy (BRIGHT AML 1003)
- Mechanism: Small molecule Smoothened Hedgehog signaling pathway inhibitor
- Administration: Glasdegib PO 100 mg daily (28 day cycles) + LDAC 20 mg SC bid x 10 days (28 day cycles)

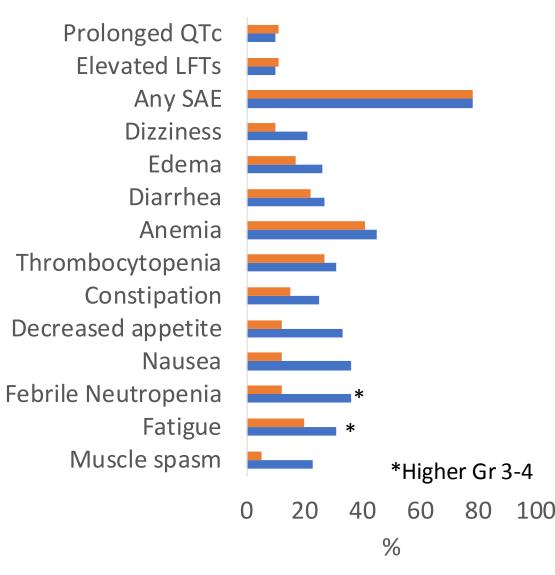
Pharmacology

- Metabolism: CYP3A4
 - Drug interactions: Strong CYP3A inhibitors increase Glasdegib concentrations, Strong CYP4A Inducers decrease Glasdegib concentrations, QTc prolonging drugs may increase risk of QTc prolongation (intermittent use likely OK)
- Steady state plasma levels at 8 days of daily dosing
- Half life 17 hours

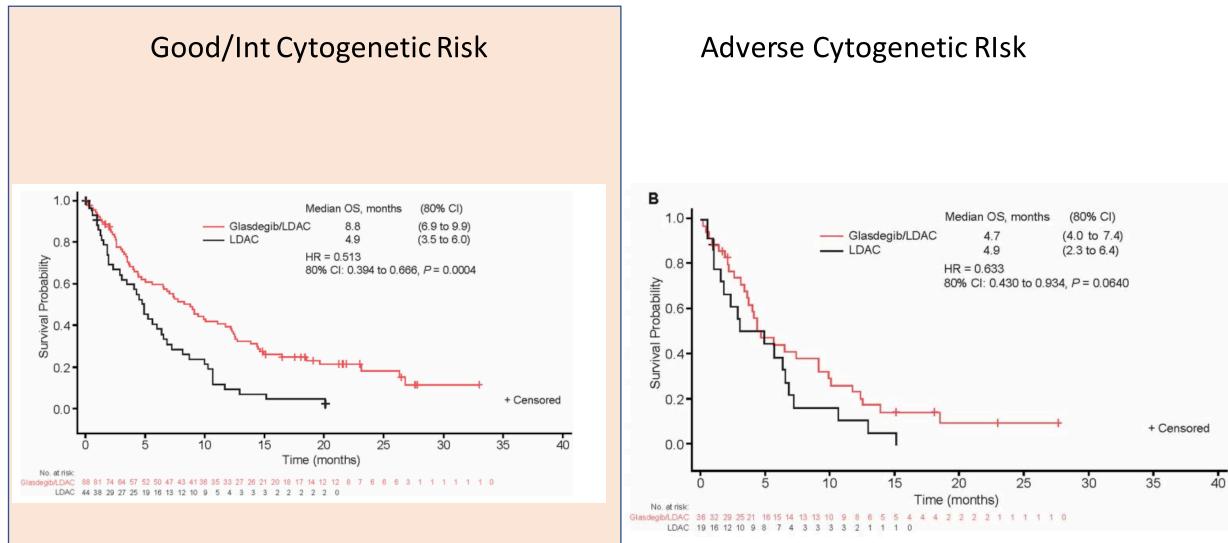
Phase II randomized trial of Glasdegib + LDAC vs LDAC alone in newly DX AML/high grade MDS

	Glasdegib + LDAC (n = 88)	LDAC (n = 44)
Age (median)	77 (63-92)	75 (58-83)
AML / MDS (%)	89/11	86/14
BM blasts (med) (AML)	41 (16-100)	46 (13-95)
ECOG 0 / 1 / 2	12/33/53	7 / 41/ 52
ELN Risk Group (AML) (%) Favorable Int I/II Adverse	6 35 / 27 32	8 28/21 42
Duration since DX (month) (median) AML MDS	0.6 (0.03-3.52) 1 (0.2-13.6)	0.5 (0.07-3.84) 2.2 (0.43–14.98)

Eligibility Criteria:


- Age ≥55
- Prevously untreated AML or high-risk MDS
- Not suitable for intensive chemotherapy
 - Age ≥75
 - SCr > 1.3 mg/dL
 - EF < 45%
 - ECOG 2
- Exclusions- APML, t(9;22), active CNS leukemia

Cortes et al., Leukemia, Feb 2019


	Glasdegib + LDAC (n = 88)	LDAC (n = 44)	Pearson Chi square
ORR <i>,</i> n (%) AML MDS	27% 20%	5% 0%	
CR <i>,</i> n (%)	15 (17%)	1 (2.3%)	P = 0.01
Median DoR CR CR/CRi/MLFS	9.9 mo. 6.5 mo.		
CG risk Good/Int Adverse	10/52 (19.2%) 5/36 (13.9%)	0/25 (0%) 1/19 (5.3%)	
Median Duration of TX	2.7 mo.	1.5 mo.	

Dose reductions in 1 of 4 patients in combination arm

AEs of Any Grade

■ LDAC ■ G+LDAC

mOS 12.2 vs 4.8 mo with Glasdegib/LDAC vs LDAC alone (p = 0.0008), 80% Cl 0.3 to 0.609

mOS 4.7 vs. 4.9 mo with Glasdegib/LDAC vs LDAC alone (p = 0.0640), 80% Cl 0.43 to 0.934)

Glasdegib Monitoring

- Monitoring:
 - Baseline CK (muscle spasms)
 - Baseline, post-1 week, then monthly EKG x 2 months for QTc
 - Renal function and Electrolytes monthly
 - Pregnancy test in WOCB potential
- Grade 3 nonhematologic toxicity → may decrease Glasdegib to 50 mg qd
 OR reduce dose of cytarabine to 10-15 mg SC bid
- QTc 480-500 ms → Adjust other QT prolonging medications, monitor EKGs, QTc > 500 ms → HOLD Glasdegib and resume at 50 mg qd when Qtc < 480 ms
- ANC < 0.5 or Plt < 10 x 42 days in absence of disease → Discontinue Glasdegib and LDAC permanently

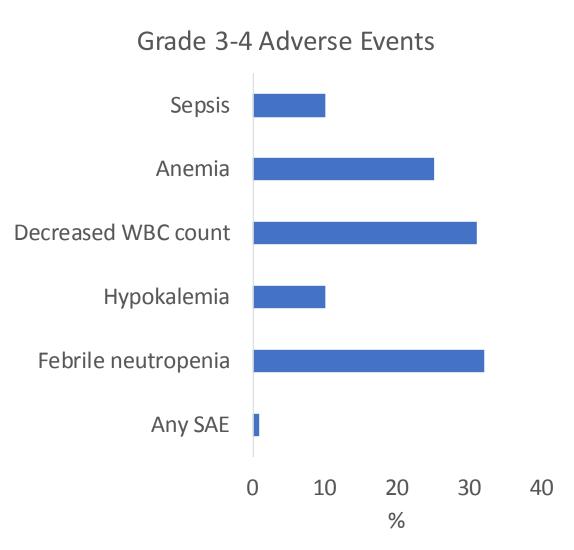
Venetoclax

- FDA-approved in combination with Azacitidine or Decitabine or lowdose Ara-C for treatment of adult patients with newly diagnosed AML ≥75 years old or with comorbidities precluding use of intensive chemotherapy
- Mechanism: Small molecule BCL-2 inhibitor
- Administration: 400 mg in combination with Azacitidine/Decitabine, 600 mg in combination with LDAC

Venetoclax Frontline Prospective Combination trials in AML

- Venetoclax + Azacitidine/Decitabine (Phase 1b dose escalation/expansion) (n=145)
- Pts ≥65 yo., previously untreated AML, ineligible for intensive induction
- ORR (CR + CRi + PR) = 68%

- Venetoclax + LDAC Phase I/II study) (n=82)
- Previously untreated AML, ineligible for intensive induction
- ORR (CR + Cri) = 54%


Venetoclax + Azacitidine/Decitabine

	Dose escalation + Expansion phase (n=145)
Median age	74 (65-86); 36% > age 75
ECOG PS 0 / 1/ 2	22% / 62% / 16%
CG (n,%)	Intermediate 51% Poor 49%
De Novo Secondary	75% 25%
Mutation (no., %) FLT3 IDH1/IDH2 NPM1 TP53	18 (12%) 35 (24%) 23 (16%) 36 (25%)
Baseline BM blast count <30% / 30-50% / ≥50%	24% / 38% / 38%
Median time on study (range), months	8.9 (0.2 to 31.7)

DiNardo et al., Blood, Jan. 2019

Safety

- 3 x 3 dose escalation (400 mg Venetoclax, n= 60; 800 mg Venetoclax, n = 74; 1200 mg venetoclax (n = 11) with Aza/Decitabine (~50% each)
- Mainly Grade I/II Gastrointestinal Aes
- 1200 mg qd Venetoclax cohort trended towards higher rate of hematologic and GI AEs compared to 400 mg and 800 mg cohorts, requiring dose reduction in 5 of 12 pts
- 400 mg Venetoclax cohort had fewer GI symptoms
- Similar AE rate between AZA/DEC

DiNardo et al., Blood, Jan. 2019

Efficacy

	CR + CRi	ORR (CR + Cri + PR)	Leukemia Response rate (CR + CRi + PR + MLFS)	Median DoR (mo.)	Median OS (95% CI)
Ven 400 mg + HMA (n=60)	73%	73%	82%	12.5 (7.8 – NR)	NR (11.0 - NR)
Ven 800 mg + HMA (n = 74)	65%	68%	85%	11.0 (6.5 to 12.9)	17.5 (10.3 – NR)
Ven 1200 mg + HMA (n=11)	45%	45%	73%	9.4 (3.1 – NR)	11.4 (0.9 – NR)
ALL	67% (37% CR)	68%	83%	11.3 (8.9 – NR)	17.5 (12.3 – NR)

MRD negativity by flow (<10⁻³)

• **29%;** Median DoR not reached in this group

Median time to first response 1.2 months (range 0.8 – 13.5)

Median time to CR 2.1 months (range 0.9 to 13.5)

DoR = Duration of Response, OS = Overall Survival

DiNardo et al., Blood, Jan. 2019

Subgroups

	CR/CRi (%)	Median DoR (mo.)	Median OS (mo.)
CG risk			
Poor	60	6.7	9.6
Intermediate	74	12.9	NR
ТР53	47	5.6	7.2
FLT3 (n = 10 ITD, n = 5 TKD, n = 3 other)	72	11	NR
IDH1/IDH2	71	NR	24.4
NPM1*	92	NR	NR

DoR = Duration of Response, OS = Overall Survival

*NPM1 significant predictor of response in multivariate analysis

Venetoclax combinations for Relapsed AML (off-label)

Regimen	Study Design	Population	Response Rates	Median OS	Ref
Venetoclax+ HMA	Prospective	N = 22, Adults with AML relapsed after HMA	41% CR	5.5 mo	Ram et al., ASH abstract 4046, 2018
Venetoclax with HMA	Retrospective	N = 33, Adults with relapsed AML (failed 1 prior therapy), 39% prior alloHCT	64% ORR (30% CR, 21% Cri, 12% MLFS)	1 yr	Aldoss et al., Haematologica, 2017
Venetoclax with HMA or LDAC	Retrospective	N = 39, Adults with relapsed AML	21% ORR (5% CR)	3 mo.	DiNardo et al., Am J Hematol, 2017

HMA = hypomethylating agent, LDAC = low dose Ara-C

Pharmacology

- Ramp-up of 100 mg on D1, 200 mg on D2, 400 mg on D3 recommended
- Concurrent CYP3A inhibitors (azoles)
 - Posaconazole- Ramp up to 70 mg, Voriconazole- ramp up to 100 mg. Moderate CYP3A inhibitors- reduce dose by 50%.
- Dose modifications: For Grade 4 neutropenia, it is not recommended to interrupt doses prior to achieving remission. After remission > 7 days, subsequent cycles may be delayed.
- Laboratory monitoring: ≥10% pts have new or worsening hyponatremia, hypocalcemia, hypokalemia, hypophosphatemia
- Half life 26 hours

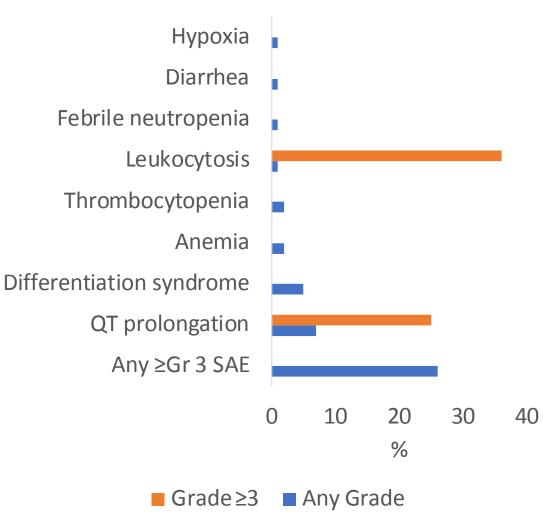
Venetoclax in AML

- Data suggests that Venetoclax more effective in up front setting and in combination with HMAs
- Tumor Lysis Syndrome has only been observed rarely in AML at initiation of Venetoclax in contrast to CLL
 - 3% incidence of laboratory TLS with Venetoclax+LDAC
 - CrCl < 80 mL/min at higher risk
 - Hydration and Allopurinol initiation prior to first Venetoclax dose
- Venetoclax appears effective across multiple molecular and cytogenetic risk groups
 - NPM1 mutation may confer higher sensitivity to Venetoclax

Ivosidenib

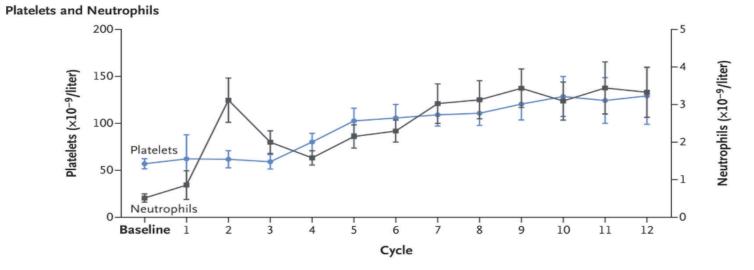
- FDA approved for treatment of adult patients with relapsed or refractory AML with IDH1 mutation
- IDH1 mutations occur in 6-10% of AML
- Mechanism: Small molecule inhibitor of mutant IDH1 enzyme
 - Susceptible mutations lead to increased 2-hydroxyglutarate (2-HG) in leukemic cells, most commonly R132H and R132C substitutions
- Administration: 500 mg PO daily

Phase 1 study of Ivosidenib for IDH-1 mutated R/R AML

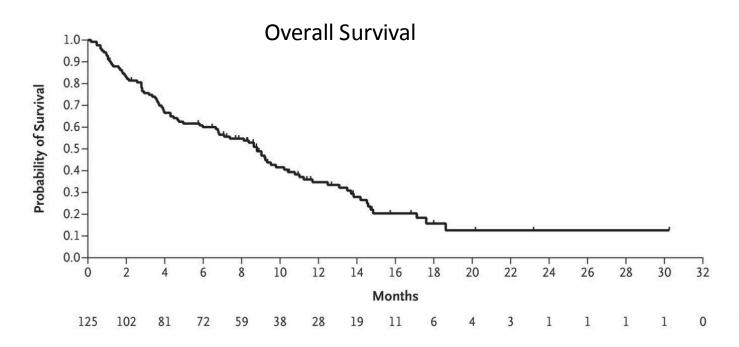

	Primary Efficacy Population (n=125)	R/R AML (n=179)
Median age (yr)	67 (18-87)	67 (18-87)
AML subtype De novo Secondary	66% 34%	67% 33%
Prior therapies (median) Prior AlloHCT	2 (1-6) 29%	2 (1-6) 24%
Cytogenetic Risk Intermediate Adverse Unknown	53% 30% 17%	59% 28% 13%
FLT3 mutation NPM1 mutation	8% 20%	6% 26%
R132C mutation R132H mutation R132G/L/S mutation	60% 24% 16%	56% 24% 17%

DiNardo et al, NEJM, June 2018

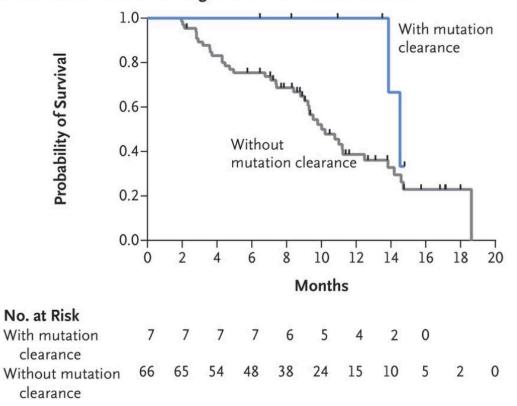
Safety


- Maximum tolerated dose not reached; 500 mg daily chosen for expansion based on maximal inhibition of 2-HG at this dose
- No treatment-related AEs leading to death in pts with starting dose of 500 mg lvosidenib
- Differentiation Syndrome: 11% rate of any grade, median onset 29 days, none fatal

Treatment-Related AEs



Efficacy


	Primary efficacy population (n=125)
CR/CRh	30%
CR	22%
Median time to CR	2.8 months (0.9-8.3)
Mediation duration of CR	9.3 months (5.6-18.3)
ORR (CR/CRh/PR/MLFS)	42%

35% of RBC-transfusion dependent patients became transfusion-independent

D Overall Survival According to Mutation-Clearance Status

Among CR/CRh pts, 7 of 34 (21%) cleared mutation (dPCR)

 Associated with prolonged duration of remission and OS

Differentiation Syndrome

- 12-19% rate in clinical trials, with ~80% rate of resolution
 - Similar rates as IDH2 inhibitors for IDH2 mutant AML
- Timing: Earliest 1 day from Ivosidenib initiation, latest up to 3 months
- SX: Dyspnea, leukocytosis, edema, fever, pleural effusion, fluid overload, elevated creatinine
- Treatment: Dexamethasone 10 mg IV q24 hours with taper after resolution of symptoms, minimum 3 days of steroids; hydroxyurea (2-3g BID or TID) or leukapheresis as clinically indicated for hyperleukocytosis
- Hold Ivosidenib for severe differentiation syndrome or persistence of symptoms > 48 hours after initiation of steroids

Monitoring

- CBC and Chemistries once weekly x 1 month, then every other week x 1 month, then once monthly for duration of therapy
- CK level weekly x 1 month
- EKG weekly x 3 weeks, then monthly
- Dose Modifications/Interruptions
 - Severe persistent differentiation syndrome >48 hrs despite steroids HOLD
 - Noninfectious leukocytosis > 25 x 10⁹/L not improving with hydroxyurea HOLD
 - QTc > 480 ms resume at 500 mg qd after QTc <480 ms
 - QTc > 500 ms resume at 250 mg qd after QTc < 480 ms or within 30 ms of baseline
 - Life threatening QTc prolongation discontinue permanently
 - Guillain Barre syndrome-discontinue permanently
 - Grade ≥3 toxicity- HOLD until toxicity resolves, resume at 250 mg daily

Pharmacology

- Metabolized by CYP3A3
 - Strong CYP4A4 inhibitors- reduce dose to 250 mg daily
- Long half life of 93 hours, steady state plasma levels in 14 days
- No PK data on GFR < 30 mL/min, moderate or severe hepatic impairment (Bilirubin >1.5 ULN)

Ivosidenib

- Activity in relapsed setting in IDH-1 mutated AML, CR rates and OS compares favorably to historical treatments for R/R AML
- Well tolerated, with manageable AEs of leukocytosis, differentiation syndrome, and QTc prolongation
- Efficacy correlated with reduction of plasma 2-HG concentrations to levels of healthy controls
- MRD negative status likely confers longer duration of response and longer OS, but larger studies are needed to confirm this

CPX-351 (Liposomal Daunorubicin and Cytarabine)

- FDA approved for adults with newly diagnosed therapy-related AML (t-AML) or AML with myelodysplasia-related changes (AML-MRC)
- Mechanism: Liposomal combination of Daunorubicin (Topoisomerase inhibitor) and Cytarabine (nucleoside antimetabolite)
 - Greater uptake in leukemic cells with more persistent 5:1 ratio C:D, may bypass drug efflux pumps
- Administration: IV infusion on D1, 3, 5 induction (44 mg/m² Dauno/100 mg/m² Ara-C) and D1 and D3 for consolidation (Dauno 29 mg/m² and Ara-C 65 mg/m²)

Phase II study of CPX-351 vs 7+3 in frontline AML

- Non-significant trend towards higher response rates (CR/CRi) compared to 7+3 (67% vs 52%, p=0.07) and similar OS (14.7 vs 12.9 mo)
- Trend towards lower 60 day mortality in CPX-351 arm (4.7 vs 14.6%, p=0.053)
- Subgroup analysis showed higher CR rates in adverse cytogenetics (77% vs 38%,p=0.03), sAML (58% vs 32%, p=0.06)

Phase III RCT of CPX-351 vs 7+3 frontline treatment of AML

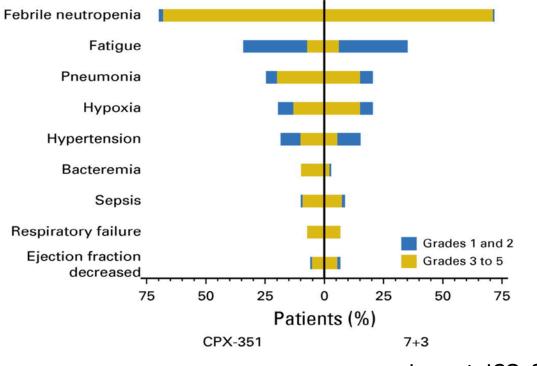
	CPX-351 (N=153)	7+3 (N=156)
Age (mean)	67	67
Male (%)	61	61
ECOG 0/ 1/ 2	24%/66%/10%	29%/57%/14%
AML subtype T-AML AML with prior MDS AML with prior CMML AML with MDS CG karyotype	20% 46% 7% 27%	21% 47% 8% 24%
Prior HMA exposure	40%	45%
CG risk Favorable / Int / Adverse	5% / 45% / 50%	3% / 40% / 57%

Eligibility

- Age 60-75, newly diagnosed therapy-related AML, AML with antecedent MDS or CMML, or de-novo AML with MDS-related cytogenetic abnormalities
- Exclusions: APL, CBF AML, active CNS leukemia, prior anthracycline exposure >368 m/m2

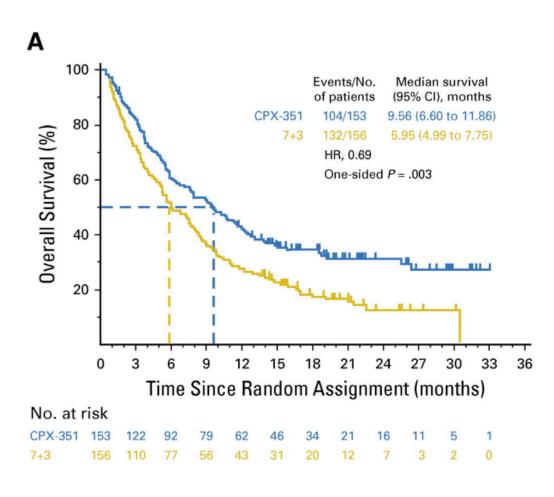
Lancet, JCO, 2018

	CPX-351	7+3	Odds Ratio (95% CI)
CR	37%	26%	1.77 (1.11 to 2.81)
CR+CRi	48%	33%	1.69 (1.03 to 2.78)
DoR (median)	6.9	6.1	
Consolidation with alloHCT in CR/CRi	34%	25%	

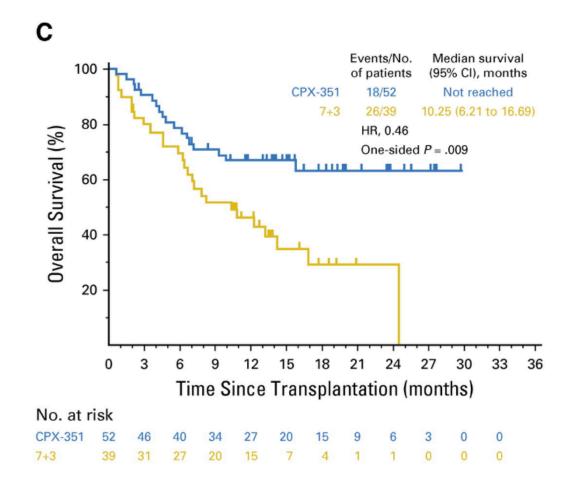

Similar benefit of CPX-351 similar across age (60-69 vs 70-75), disease subgroups, cytogenetic risk groups

Adverse Events: Similar among cohorts, but higher rates of bleeding of any grade with CPX-351 (7% vs 2.6%)

CPX-351 Longer time to recovery of neutrophils and platelets in CR/CRi


- 35 vs 29 days ANC≥500/uL
- 36 vs 29 days Plt ≥50/uL

30 Day Early mortality rate 5.9 vs 10.6% (p=0.149)



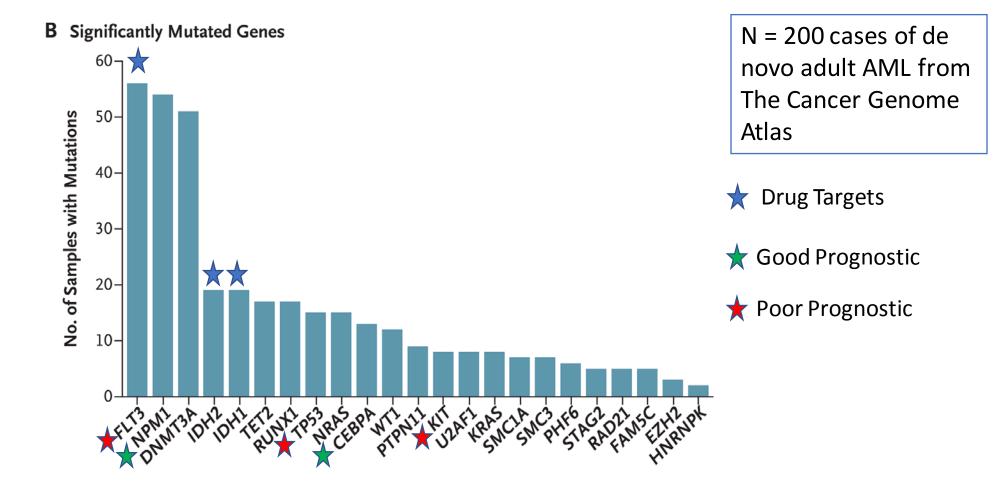
Lancet, JCO, 2018

OS landmarked at Transplant

OS

?Deeper Remissions at time of transplant

Lancet, JCO, 2018


CPX-351

- New standard of care for frontline treatment for adults with T-AML, AML with antecedent MDS or CMML, AML with MRC
 - Other groups that may benefit: adverse CG, FLT3 mutated
- Trend towards lower early mortality, but expect prolonged count recovery by about 1 week compared to 7+3
 - Less hair loss, higher rates of cytarabine rash
- 90 minute infusion → potential for outpatient infusion in select patients and care settings
- Cost:Benefit analysis remains ongoing topic of debate
 - \$40,000 vs \$4300 for 7+3

Biomarkers in AML

- Molecular Mutations
- Minimal Residual Disease

Molecular Targeting of AML

Voigt, NEJM, 2013.

BEAT AML Master Trial

- Multicenter Umbrella Trial enrolling newly diagnosed AML patients ≥60 years old to personalized frontline treatment based on mutations on next-generation sequencing (11 TX arms)
- N = 268 patients enrolled thus far (target 500), median age 72
- 95% of patients assigned to a treatment arm based on NGS results within 7 days (met feasibility goal)
- 51% pts had identified mutation, assigned to targeted therapy arm
- 48% pts marker-negative, treated with SOC, palliative care, or other

AML Subtype	Drug	
CBF	Samalizumab (CD200 Ab) + induction	
NPM1 + FLT3-ITD	Entospletinib (Syk inhibitor) + induction (fit) Entospletinib (Syk inhibitor) monotherapy (unfit)	
MLL rearranged	Entospletinib (Syk inhibitor)	
IDH2 +	Enasidenib	
IDH1 +	Ivosidenib + Aza	
TP53+	Entospletinib (Syk inhibitor) + Decitabine	
TP53 - Complex Karotype (≥ 3 abn)	Entospletinib (Syk inhibitor) + Decitabine	
TP53+	Pevonedistat (Nedd8 inhibitor) + Aza	
FLT3-ITD+ or FLT3-TKD +	Gilteritinib monotherapy or + Decitabine	
Tet2/WTI	BI 836858 (CD33 Ab) + Aza	
Marker Negative	BI 836858 (CD33 Ab) + Aza	

FLT3 mutation

- Transmembrane ligand-activated tyrosine kinase → mutation confers constitutive activity and proliferation
- ITD, TKD mutations (30% of AML)
 - ITD (25%) confers worse prognosis
 - TKD neutral prognosis
 - FLT3 mutation associated with lower survival, higher relapse rate2 approved FLT3 inhibitors
 - Midostaurin (Combination with 7+3 in FLT3 mutated previously untx AML)
 - Gilterinib (single agent for relapsed/refractory FLT3 mutated AML)
- FLT3 testing should be done in all patients with newly diagnosed AML, Midostaurin should be added to induction therapy at Day 8 in age <60
- FLT3 mutation can develop during clonal evolution
 - Re-test relapsed patients for FLT3 mutation

FLT3 mutations

	ELN 2017	NCCN
Good Risk	Mutated NPM1 with FLT—ITD ^{low}	
Poor Risk	Wild type NPM1 and FLT3-ITD ^{high}	Mutated FLT3-ITD
	FLT3-ITD high = allelic ratio ≥0.5	

FLT3-ITD low = alleleic ratio < 0.5

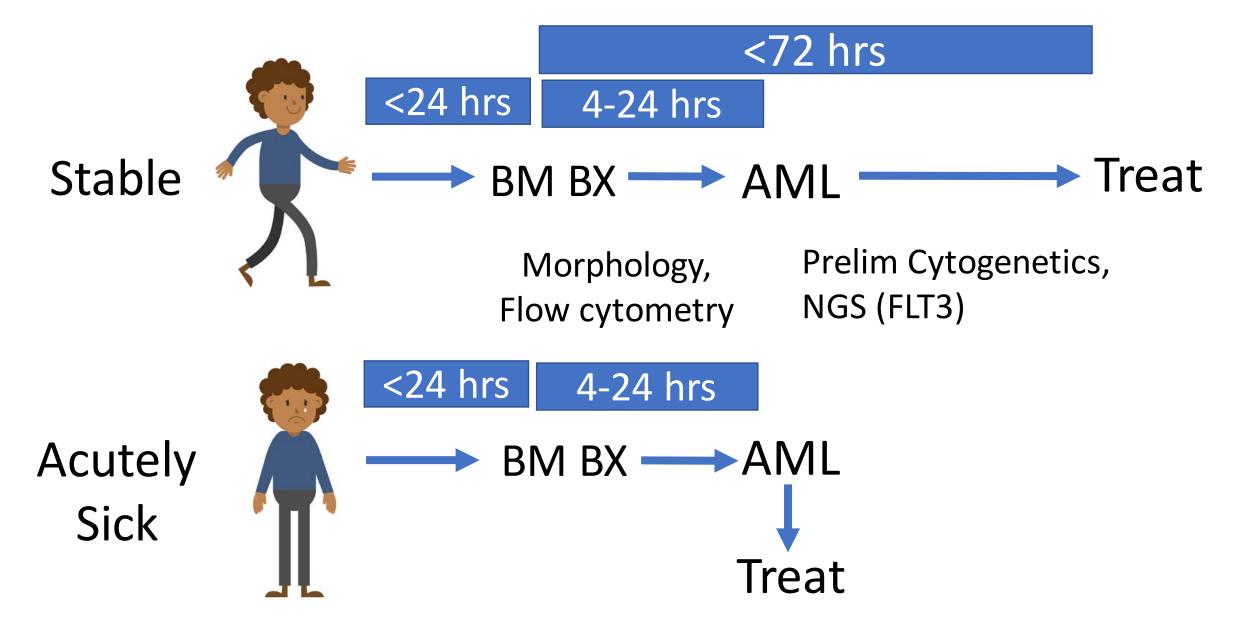
How to detect FLT3 mutation?

- PCR (highly specific, detects only amplified region)
- Sequencing
 - Targeted NGS
 - Whole genome sequencing (detects other FLT3 mutations)

Molecular Biomarkers of Prognosis

Good	Intermediate	Adverse
NPM1 mutated	NPM1 mutated and FLT3-high mutated	RUNX1 mutated
Biallelic CEBPA mutated	NPM1 WT and FLT-3 WT or FLT-3 low mutated	ASXL1 mutated
IDH2 mutated	KRAS mutated	TP53 mutated
	NRAS mutated	FLT3-high mutated
		GATA2 mutated
		WT1 mutated
		IDH1 mutated
		MLL mutated

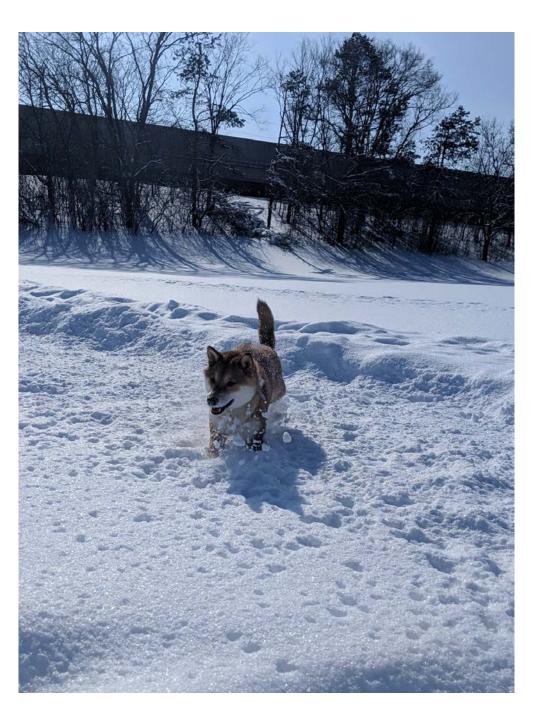
Minimal Residual Disease in AML


- Flow cytometry MRD 10⁻³ sensitivity
- Molecular MRD
 - NPM1- RQ PCR based testing, sensitivity of 10⁻⁵, highly sensitive and specific for disease relapse
 - RUNX1-RUNX1T1, CBFB-MYH11, PML-RARa
- Not validated for MRD (Use flow cytometry in these groups)
 - FLT3- most useful in combination with second MRD marker
 - DTA mutations (DNMT3A, TET2, ASXL1) persistence does not correlate with increased relapse rate, likely related to age-related clonal hematopoiesis¹
- NGS sequencing (non-DTA mutations) and Flow Cytometry for MRD during complete morphologic remission have added prognostic value to predict relapse and survival¹
- Send "1st Pull" from bone marrow biopsy for MRD testing

1. Jongen-Lacrencic et al., NEJM, 2018

PML-RARa in APL

- Most important MRD end point is PCR-negativity for PML-RARa at end of consolidation
- For low/intermediate risk APL treated with ATO and ATRA, can discontinue MRD testing after morphologic and molecular CR in bone marrow is attained
- MRD+ during APL induction should not change management
- MRD- to MRD+ indicates impending relapse


New Approaches for AML

Summary

- Multiple new approved agents for AML
 - Newly diagnosed
 - CPX-351 for tAML, AML with MRC
 - Venetoclax/Azacitidine for age≥75 or ineligible for intensive chemotherapy
 - 7+3 + Midostaurin for FLT3 mutated AML
 - Glasdegib + LDAC for age≥75 or ineligible for intensive chemotherapy
 - Relapsed
 - Ivosidinib for IDH1 mutated AML
 - Gilterinib for FLT3 mutated AML
 - Enasidenib for IDH2 mutated AML

Thank you!

