
"AD-A259 53511111 III lI ii i I In lii l (\

Technical Report 1281

-MIT Scheme
Reference Manual

DTIC
SELECTE IS JA 93

C

Chris Hanso

MIT Artificial Intelligence Laboratory

Appioved tar pr.,.c rsiec

#t'!93-01048
-h 98 1 21 036

Form Approved
REPORT DOCUMENTATION PAGE 0MB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response. Including the time for reviewing Instructions. searching existinq data sources.
gathering and maintaining the data needed. and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this
collection of Information. including suggestions for reducing this burden, to Washington Headquarters Services. Oirectorate for infori•ation Operations and Reports,. 121I Jefferson
Davis tighway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Sludget. Paperwork Reduction Prolect (0104.018t). Washington. OC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1991 technical report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

MIT Scheme Reference Manual NO0014-85-K-0124
N00014-86-K-0180

6. AUTHOR(S)

Chris Hanson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Artificial Intelligence Laboratory REPORT NUMBER

545 Technology Square AI-TR 1281
Cambridge, Massachusetts 02139

9. SPONSORINGI MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Office of Naval Research AGENCY REPORT NUMBER

Information Systems
Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words)

MIT Scheme is an implementation of the Scheme programming language
that runs on many popular workstations. The MIT Scheme Reference
Manual describes the special forms, procedures, and datatypes provided
by the implementation for use by application programmers.

14. SUBJECT TERMS (key words) IS. NUMBER OF PAGES

248
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-SS00 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Sid 1391•-
291.102

MIT Scheme. Reference Manual
Edition 1.1

for Scheme Release 7.1.3
November 1991

ITIC QUjALITY 114VEMTED 5

Acaas.1@ t ot -

W e! 0• • 13

Distrib'mtionf
Availability 096&g

!Dist Special

by Chris Hanson
the MIT Scheme Team
and a cast of thousands

Copyright @ 1988, 1989, 1990, 1991 Massachusetts Institute of Technology

This material was developed by .the Scheme project at the Massachusetts Institute of Technology,
Departhent oqf Eleqrical Engineering and Computer Science. Permission to copy this document,
to redtstribufL, and. to use it for any purpose is granted, subject to the following restrictions and
understandings. ,

.1.* Any copy made of this document must include this copyright notice in full.
. 2. Users of this document agree to make their best efforts (a) to return to the MIT Scheme

project any, improvements or extensions that they make, so that these may be included in
future releases; and (b) to inform MIT of noteworthy uses of this document.

3. All materia1h developed as a consequence of the use of this document shall duly acknowledge
such use, in accordance with the usual standards of acknowledging credit in academic research.

,. MIT has made no warrantee or representation that the contents of this document will be error-
free, and MIT is under no obligation to provide any services, by way of maintenance, update,
or otherwise.

5. In conjunction with products arising from the use of this material, there shall be no use of
the name of the Massachusetts Institute of Technology nor of any adaptation thereof in any
advertising, promotional, or sales literature without prior written consent from MIT in each
case.

Short Contents

Acknowledgements .. 1
1 Overview ... 3
2 Special Forms .. 19
3 Equivalence Predicates 39

4 Num bers .. 45

5 Characters ... 65
6 Strings .. 75
7 Lists .. 87
8 Vectors ... 103
9 Bit Strings .. 107
10 Miscellaneous Datatypes 113
11 Associations .. 129
12 Procedures ... 141
13 Environments ... 149
14 Input/Output .. 153
15 File-System Interface 175
16 Error System ... 187
17 Graphics ... 199
Index of Procedures, Special Forms, and Variables 213
Index of Concepts ... 227

iiMIT Scheme Reference

Table of Contents

Acknowledgements .. 1

1 Overview ... 3
1.1 Notational Conventions .. 4

1.1.1 Errors .. 4
1.1.2 Exam ples ... 5
1.1.3 Entry Format .. 5

1.2 Scheme Concepts .. 7
1.2.1 Variable Bindings ... 7
1.2.2 Environment Concepts 8
1.2.3 Initial and Current Environments 8
1.2.4 Static Scoping .. 9
1.2.5 True and False ... 10
1.2.6 External Representations 10
1.2.7 Disjointness of Types 11
1.2.8 Storage Model ... 11

1.3 Lexical Conventions ... 12
1.3.1 W hitespace .. 12
1.3.2 Delimiters ... 12
1.3.3 Identifiers ... 13
1.3.4 Uppercase and Lowercase 14
1.3.5 Naming Conventions 14

1.3.6 Comments ... 14
1.3.7 Additional Notations 15

1.4 Expressions ... 16
1.4.1 Literal Expressions 16
1.4.2 Variable References 16
1.4.3 Special Form Syntax 17
1.4.4 Procedure Call Syntax 17

2 Special Forms .. 19
2.1 Lambda Expressions ... 19
2.2 Lexical Binding ... 21
2.3 Fluid Binding ... 24
2.4 Definitions .. 26

2.4.1 Top-Level Definitions 26
2.4.2 Internal Definitions 27

iv MIT Scheme Reference

2.5 Assignments .. 28
2.6 Quoting .. 28
2.7 Conditionals .. 31

2.8 Sequencing ... 34
2.9 Iteration .. 35

3 Equivalence Predicates 39

4 Numbers .. 45
4.1 Numerical types .. 45

4.2 Exactness ... 46
4.3 Implementation restrictions 47

4.4 Syntax of numerical constants 48
4.5 Numerical operations ... 49
4.6 Numerical input and output 59
4.7 Fixnum and Flonum Operations 60

4.7.1 Fixnum Operations 60
4.7.2 Flonum Operations 63

5 Characters .. 65
5.1 External Representation of Characters 65
5.2 Comparison of Characters ... 67
5.3 Miscellaneous Character Operations 68
5.4 Internal Representation of Characters 69
5.5 ASCII Characters ... 71
5.6 Character Sets .. 72

6 Strings .. 75
6.1 Construction of Strings ... 76
6.2 Selecting String Components 77
6.3 Comparison of Strings .. 77
6.4 Alphabetic Case in Strings .. 79
6.5 Cutting and Pasting Strings 80

6.6 Searching Strings ... 81
6.7 M atching Strings ... 82
6.8 Modification of Strings .. 83
6.9 Variable-Length Strings ... 84

6.10 Byte Vectors ... 85

V

7 Lists ... 87
7.1 Pairs ... 88

7.2 Construction of Lists .. 91
7.3 Selecting List Components .. 93
7.4 Cutting and Pasting Lists ... 94
7.5 Filtering Lists .. 96
7.6 Searching Lists .. 98
7.7 M apping of Lists ... 98
7.8 Reduction of Lists ... 100
7.9 Miscellaneous List Operations 101

8 Vectors .. 103
8.1 Construction of Vectors .. 103

8.2 Selecting Vector Components 104

8.3 Cutting Vectors .. 105

8.4 Modifying Vectors ... 106

9 Bit Strings .. 107
9.1 Construction of Bit Strings 107

9.2 Selecting Bit String Components 108

9.3 Cutting and Pasting Bit Strings 108

9.4 Bitwise Operations on Bit Strings 109

9.5 Modification of Bit Strings 110

9.6 Integer Conversions of Bit Strings 111

10 Miscellaneous Datatypes 113
10.1 Booleans ... 113

10.2 Sym bols .. 114

10.3 Cells ... 118

10.4 Records .. 119

10.5 Promises ... 121

10.6 Stream s .. 123

10.7 W eak Pairs ... 125

11 Associations .. 129

11.1 Association Lists ... 129

11.2 1D Tables .. 132

11.3 The Association Table .. 133

11.4 Hash Tables .. 134

11.5 Hashing .. 138

vi MIT Scheme Reference

12 Procedures ... 141
12.1 Procedure Operations ... 141
12.2 Primitive Procedures ... 143
12.3 Continuations .. 143
12.4 Application Hooks .. 146

13 Environments 149
13.1 Environment Operations .. 149
13.2 Environment Variables .. 150
13.3 REPL Environment ... 151
13.4 Interpreter Environments 151

14 Input/Output 153
14.1 Ports ... 153
14.2 File Ports .. 155
14.3 String Ports .. 157
14.4 Input Procedures ... 158
14.5 Output Procedures ... 161
14.6 Form at ... 162
14.7 Custom Output ... 165
14.8 Port Primitives ... 167

14.8.1 Input Port Primitives 168
14.8.2 Output Port Primitives 170

15 File-System Interface 175
15.1 Pathnam es ... 175

15.1.1 Filenames and Pathnames 176
15.1.2 Components of Pathnames 177
15.1.3 Operations on Pathnames 181

15.2 W orking Directory .. 183
15.3 File M anipulation .. 184
15.4 Directory Reader ... 186

16 Error System 1.87
16.1 Sim ple Errors ... 188
16.2 Error Handler .. 190
16.3 Error M essages ... 190
16.4 Condition Types .. 192

16.5 Condition Instances ... 193
16.6 Condition Signalling .. 195
16.7 Condition Handling ... 196

vii

16.8 Predefined Errors ... 197

17 Graphics ... 199
17.1 Opening and Closing of Graphics Devices 199
17.2 Coordinates for Graphics 200
17.3 Drawing Graphics .. 201
17.4 Characteristics of Graphics Output 202
17.5 Buffering of Graphics Output 204
17.6 Clipping of Graphics Output 205
17.7 Custom Graphics Operations 205
17.8 X Graphics ... 206

17.8.1 X Graphics Type 206
17.8.2 Utilities for X Graphics 207
17.8.3 Custom Operations on X Graphics Devices 208

17.9 Starbase Graphics .. 210

Index of Procedures, Special Forms, and Variables.. 213

Index of Concepts 227

viii MIT Scheme Reference

Acknowledgements

Acknowledgements

While "a cast of thousands" may be an overstatement, it is certainly the case that this document
represents the work of many people. First and foremost, thanks go to the authors of the Revised-4
Report on the Algorithmic Language Scheme, from which much of this document is derived. Thanks
also to BBN Advanced Computers Inc. for the use of parts of their Butterfly Scheme Reference,
and to Margaret O'Connell for translating it from BBN's text-formatting language to ours.

Special thanks to Richard Stallman, Bob Chassell, and Brian Fox, all of the Free Software
Foundation, for creating and maintaining the Texinfo formatting language in which this document
is written.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory's artificial intelligence research is provided in
part by the Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contracts N00014-85-K-0124 and N00014-86-K-0180.

MIT Scheme Reference

Chapter 1: Overview 3

1 Overview

This manual is a detailed description of the MIT Scheme runtime system. It is intended to be
a reference document for programmers. It does not describe how to run Scheme or how to interact
with it - that is the subject of the MIT Scheme User's Manual.

This chapter summarizes the semantics of Scheme, briefly describes the MIT Scheme program-
ming environment, and explains the syntactic and lexical conventions of the language. Subsequent
chapters describe special forms, numerous data abstractions, and facilities for input and output.

Throughout this manual, we will make frequent references to standard Scheme, which is the lan-
guage defined by the document Revised'4 Report on the Algorithmic Language Scheme, by William
Clinger, Jonathan Rees, et al., or by IEEE Std. 1178-1990, IEEE Standard for the Scheme Pro-
gramming Language (in fact, several parts of this document are copied from the Revised Report).
MIT Scheme is an extension of standard Scheme.

These are the significant semantic characteristics of the Scheme language:

Variables are statically scoped

Scheme is a statically scoped programming language, which means that each use of
a variable is associated with a lexically apparent binding of that variable. Algol is
another statically scoped language.

Types are latent
Scheme has latent types as opposed to manifest types, which means that Scheme asso-
ciates types with values (or objects) rather than with variables. Other languages with
latent types (also referred to as weakly typed or dynamically typed languages) include
APL, Snobol, and other dialects of Lisp. Languages with manifest types (sometimes
referred to as strongly typed or statically typed languages) include Algol 60, Pascal,
and C.

Objects have unlimited extent
All objects created during a Scheme computation, including procedures and continua-
tions, have unlimited extent; no Scheme object is ever destroyed. The system doesn't
run out of memory because the garbage collector reclaims the storage occupied by an
object when the object cannot possibly be needed by a future computation. Other
languages in which most objects have unlimited extent include APL and other Lisp
dialects.

Proper tail recursion
Scheme is properly tail-recursive, which means that iterative computation can occur

4 MIT Scheme Reference

in constant space, even if the iterative computation is described by a syntactically
recursive procedure. With a tail-recursive implementation, you can express iteration
using the ordinary procedure-call mechanics; special iteration expressions are provided
only for syntactic convenience.

Procedures axe objects
Scheme procedures are objects, which means that you can create them dynamically,
store them in data structures, return them as the results of other procedures, and so
on. Other languages with such procedure objects include Common Lisp and ML.

Continuations are explicit
In most other languages, continuations operate behind the scenes. In Scheme, contin-
uations are objects; you can use continuations for implementing a variety of advanced
control constructs, including non-local exits, backtracking, and coroutines.

Arguments are passed by value
Arguments to Scheme procedures are passed by value, which means that Scheme e-
valuates the argument expressions before the procedure gains control, whether or not
the procedure needs the result of the evaluations. ML, C, and APL are three other
languages that pass arguments by value. In languages such as SASL and Algol 60,
argument expressions are not evaluated unless the values are needed by the procedure.

Scheme uses a parenthesized-list Polish notation to describe programs and (other) data. The
syntax of Scheme, like that of most Lisp dialects, provides for great expressive power, largely due to
its simplicity. An important consequence of this simplicity is the susceptibility of Scheme programs
and data to uniform treatment by other Scheme programs. As with other Lisp dialects, the read
primitive parses its input; that is, it performs syntactic as well as lexical decomposition of what it
reads.

1.1 Notational Conventions

This section details the notational conventions used throughout the rest of this document.

1.1.1 Errors

When this manual uses the phrase "an error will be signalled," it means that Scheme will call
signal-error, which normally halts execution of the program and prints an error message.

When this manual uses the phrase "it is an error," it means that the specified action is not valid

Chapter 1: Overview 5

in Scheme, but the system may or may not signal the error. When this manual says that something
"must be," it means that violating the requirement is an error.

1.1.2 Examples

This manual gives many examples showing the evaluation of expressions. The examples have a
common format that shows the expression being evaluated on the left hand side, an "arrow" in the

middle, and the value of the expression written on the right. For example:

(+ 1 2) 4, 3

Sometimes the arrow and value will be moved under the expression, due to lack of space.
Occasionally we will not care what the value is, in which case both the arrow and the value are
omitted.

If an example shows an evaluation that results in an error, the error message is shown, prefaced
by 'err-r :

(+ 1 'foo) erro-r Illegal datum

An example that shows printed output marks it with ' -':

(begin (write 'foo) 'bar)
A ftoo

=:) bar

When this manual indicates that the value returned by some expression is unspecified, it means

that the expression will evaluate to some object without signalling an error, but that programs

should not depend on the value in any way.

1.1.3 Entry Format

Each description of an MIT Scheme variable, special form, or procedure begins with one or more
header lines in this format:

template category

6 MIT Scheme Reference

where category specifies the kind of item ("variable", "special form", or "procedure"), and how the
item conforms to standard Scheme, as follows:

category Category, with no extra marking, indicates that the item is described in the Revised-4
Report on the Algorithmic Language Scheme.

category+ A plus sign after category indicates that the item is an MIT Scheme extension.

The form of template is interpreted depending on category.

Variable Template consists of the variable's name.

Special Form
Template starts with the syntactic keyword of the special form, followed by a de-
scription of the special form's syntax. The description is written using the following
conventions.

Named components are italicized in the printed manual, and uppercase in the Info
file. "Noise" keywords, such as the else keyword in the cond special form, are set in
a fixed width font in the printed manual; in the Info file they are not distinguished.
Parentheses indicate themselves.

A horizontal ellipsis (...) is describes repeated components. Specifically,

thing ...

indicates zero or more occurrences of thing, while

thing thing ...

indicates one or more occurrences of thing.

Brackets, [1, enclose optional components.

Several special forms (e.g. lambda) have an internal component consisting of a series
of expressions; usually these expressions are evaluated sequentially under conditions
that are specified in the description of the special form. This sequence of expressions
is commonly referred to as the body of the special form.

Procedure Template starts with the name of the variable to which the procedure is bound, followed
by a description of the procedure's arguments. The arguments are described using
"lambda list" notation (see Section 2.1 (Lambda Expressions], page 19), except that
brackets are used to denote optional arguments, and ellipses are used to denote "rest"
arguments.

The names of the procedure's arguments are italicized in the printed manual, and
uppercase in the Info file.

When an argument names a Scheme data type, it indicates that the argument must be
that type of data object. For example,

Chapter 1: Overview 7

cdr pair procedure

indicates that the standard Scheme procedure cdr takes one argument, which must be
a pair.

In addition to the standard data-type names (pair, list, boolean, string, etc.), the
following names as arguments also imply type restrictions:

object any object

thunk a procedure of no arguments

x
y a real number

q
n an integer

k an exact non-negative integer

Some examples:

list object ... procedure

indicates that the standard Scheme procedure list takes zero or more arguments, each of which
may be any Scheme object.

write-char char [output-port] procedure

indicates that the standard Scheme procedure write-char must be called with a character, char,
and may also be called with a character and an output port.

1.2 Scheme Concepts

1.2.1 Variable Bindings

Any identifier that is not a syntactic keyword may be used as a variable (see Section 1.3.3
[Identifiers], page 13). A variable may name a location where a value can be stored. A variable
that does so is said to be bound to the location. The value stored in the location to which a variable

is bound is called the variable's value. (The variable is sometimes said to name the value or to be
bound to the value.)

8 MIT Scheme Reference

A variable may be bound but still not have a value; such a variable is said to be unassigned.
Referencing an unassigned variable signals an "Unassigned Variable" error. Unassigned variables
are useful only in combination with side effects (see Section 2.5 [Assignments], page 28).

1.2.2 Environment Concepts

An environment is a set of variable bindings. If an environment has no binding for a variable,
that variable is said to be unbound in that environment. Referencing an unbound variable signals
an "Unbound Variable" error.

A new environment can be created by extending an existing environment with a set of new
bindings. Note that "extending an environment" does not modify the environment; rather, it
creates a new environment that contains the new bindings and the old ones. The new bindings
shadow the old ones; that is, if an environment that contains a binding for x is extended with a new
binding for x, then only the new binding is seen when x is looked up in the extended environment.
Sometimes we say that the original environment is the parent of the new one, or that the new
environment is a child of the old one, or that the new environment inherits the bindings in the old
one.

Procedure calls extend an environment, as do lot, let*, letrec, and do expressions. Internal
definitions (see Section 2.4.2 [Internal Definitions], page 27) also extend an environment. (Actually,
all the constructs that extend environments can be expressed in terms of procedure calls, so there
is really just one fundamental mechanism for environment extension.) A top-level definition (see
Section 2.4.1 (Top-Level Definitions], page 26) may add a binding to an existing environment.

1.2.3 Initial and Current Environments

MIT Scheme provides an initial environment that contains all of the variable bindings described
in this manual. Most environments are ultimately extensions of this initial environment. In Scheme,
the environment in which your programs execute is actually a child (extension) of the environment
containing the system's bindings. Thus, system names are visible to your programs, but your names
do not interfere with system programs.

The environment in effect at some point in a program is called the current environment at that
point. In particular, every REP loop has a current environment. (REP stands for "read-eval-print";
the REP loop is the Scheme program that reads your input, evaluates it, and prints the result.)
The environment of the top-level REP loop (the one you are in when Scheme starts up) starts as

Chapter 1: Overview 9

user-initial-onviromaent, although it can be changed by the ge procedure. When a new REP

loop is created, its environment is determined by the program that creates it. RtEP loops that are

created by the error handler use the environment in which the error occurred, if possible, or failing
that they use the previous REP loop's environment.

1 In> z error Unbound variable

2 Error-> (define z 3)

2 Error-> z =0 3

2 Error-> <Control-G> interrupt typed

1 In> z =0 3

1.2.4 Static Scoping

Scheme is a statically scoped language with block structure. In this respect, it is like Algol and
Pascal, and unlike most other dialects of Lisp except for Common Lisp.

The fact that Scheme is statically scoped (rather than dynamically bound) means that the
environment that is extended (and becomes current) when a procedure is called is the environment
in which the procedure was created (i.e., in which the procedure's defining lambda expression was
evaluated), not the environment in which the procedure is called. Because all the other Scheme
binding expressions can be expressed in terms of procedures, this determines how all bindings
behave.

Consider the following definitions, made at the top-level REP loop (in the initial environment):

(define x 1)
(define (f %) (g 2))
(define (g y) (+ x y))
(f 5) 3 ;not 7

Here f and g are bound to procedures created in the initial environment. Because Scheme

is statically scoped, the call to g from f extends the initial environment (the one in which g was
created) with a binding of y to 2. In this extended environment, y is 2 and x is 1. (In a dynamically

bound Lisp, the call to g would extend the environment in effect during the call to f, in which x is
bound to 5 by the call to f, and the answer would be 7.)

10 MIT Scheme Reference

Note that with static scoping, you can tell what binding a variable reference refers to just from
looking at the text of the program; the referenced binding cannot depend on how the program
is used. That is, the nesting of environments (their parent-child relationship) corresponds to the
nesting of binding expressions in program text. (Because of this connection to the text of the
program, static scoping is also called lexical scoping.) For each place where a variable is bound in a
program there is a corresponding region of the program text within which the binding is effective.
For example, the region of a binding established by a lambda expression is the entire body of the
lambda expression. The documentation of each binding expression explains what the region of the
bindings it makes is. A use of a variable (that is, a reference to or assignment of a variable) refers
to the innermost binding of that variable whose region contains the variable use. If there is no
such region, the use refers to the binding of the variable in the global environment (which is an
ancestor of all other environments, and can be thought of as a region in which all your programs
are contained).

1.2.5 True and False

In Scheme, the boolean values true and false are denoted by #t and ft. However, any Scheme
value can be treated as a boolean for the purpose of a conditional test. This manual uses the word
true to refer to any Scheme value that counts as true, and the word false to refer to any Scheme
value that counts as false. In conditional tests, all values count as true except for If, which counts
as false (see Section 2.7 [Conditionals], page 31).

Implementation note: In MIT Scheme, If and the empty list are the same object, and the
printed representation of #f is always '0'. As this contradicts the Scheme standard, MIT Scheme
will soon be changed to make #f and the empty list different objects.

1.2.6 External Representations

An important concept in Scheme is that of the external representation of an object as a sequence
of characters. For example, an external representation of the integer 28 is the sequence of characters
'28', and an external representation of a list consisting of the integers 8 and 13 is the sequence of
characters '(8 13)'.

The external representation of an object is not necessarily unique. The integer 28 also has repre-
sentations 8$e28. 000' and '#xic', and the list in the previous paragraph also has the representations
'C 08 13)' and '(8 . (13 . C))).

Chapter 1: Overview 11

Many objects have standard external representations, but some, such as procedures and circular
data structures, do not have standard representations (although particular implementations may
defined representations for them).

An external representation may be written in a program to obtain the corresponding object (see
Section 2.6 [Quoting], page 28).

External representations can also be used for input and output. The procedure read parses
external representations, and the procedure write generates them. Together, they provide an
elegant and powerful input/output facility.

Note that the sequence of characters '(+ 2 6)' is not an external representation of the integer 8,
even though it is an expression that evaluates to the integer 8; rather, it is an external representation
of a three-element list, the elements of which are the symbol + and the integers 2 and 6. Scheme's
syntax has the property that any sequence of characters that is an expression is also the external
representation of some object. This can lead to confusion, since it may not be obvious out of
context whether a given sequence of characters is intended to denote data or program, but it is
also a source of power, since it facilitates writing programs such as interpreters and compilers that
treat programs as data or data as programs.

1.2.7 Disjointness of Types

Every object satisfies at most one of the following predicates (but see Section 1.2.5 [True and
False], page 10, for an exception):

bit-string? null? string?
boolean? number? symbol?
cell? pair? vector?
char? procedure? weak-pair?
environment? promise?

1.2.8 Storage Model

This section describes a model that can be used to understand Scheme's use of storage.

Variables and objects such as pairs, vectors, and strings implicitly denote locations or sequences
of locations. A string, for example, denotes as many locations as there are characters in the string.

12 MIT Scheme Reference

(These locations need not correspond to a full machine word.) A new value may be stored into one

of these locations using the string-set! procedure, but the string continues to denote the same

locations as before.

An object fetched from a location, by a variable reference or by a procedure such as car, vector-

ref, or string-ref, is equivalent in the sense of eqv? to the object last stored in the location before
the fetch.

Every location is marked to show whether it is in use. No variable or object ever refers to

a location that is not in use. Whenever this document speaks of storage being allocated for a
variable or object, what is meant is that an appropriate number of locations are chosen from the

set of locations that are not in use, and the chosen locations are marked to indicate that they are
now in use before the variable or object is made to denote them.

In many systems it is desirable for constants (i.e. the values of literal expressions) to reside in

read-only memory. To express this, it is convenient to imagine that every object that denotes

locations is associated with a flag telling whether that object is mutable or immutable. The
constants and the strings returned by symbol->string are then the immutable objects, while

all objects created by other procedures are mutable. It is an error to attempt to store a new value
into a location that is denoted by an immutable object.

1.3 Lexical Conventions

This section describes Scheme's lexical conventions.

1.3.1 Whitespace

Whitespace characters are spaces, newlines, tabs, and page breaks. Whitespace is used to

improve the readability of your programs and to separate tokens from each other, when necessary.

(A token is an indivisible lexical unit such as an identifier or number.) Whitespace is otherwise

insiguificvt. Whitespace may occur between any two tokens, but not within a token. Whitespace

may also occur insit' a string, where it is significant.

1.3.2 Delimiters

All whitespace characters are delimiters. In addition, the following characters act as delimiters:

Chapter 1: Overview 13

() ; " ' ' I

Finally, these next characters act as delimiters, despite the fact that Scheme does not define any

special meaning for them:

For example, if the value of the variable name is "max":

(list"Hi"name(+ 1 2)) * ("Hi" "max" 3)

1.3.3 Identifiers

An identifier is a sequence of one or more non-delimiter characters. Identifiers are used in several
ways in Scheme programs:

"* Certain identifiers are reserved for use as syntactic keywords; they should not be used as
variables (for a list of the initial syntactic keywords, see Section 1.4.3 [Special Form Syntax],
page 17).

"* Any identifier that is not a syntactic keyword can be used as a variable.

"* When an identifier appears as a literal or within a literal, it denotes a symbol.

Scheme accepts most of the identifiers that other programming languages allow. MIT Scheme
allows all of the identifiers that standard Scheme does, plus many more.

MIT Scheme defines a potential identifier to be a sequence of non-delimiter characters that
does not begin with either of the characters '#' or ','. Any such sequence of characters, that is
not a syntactically valid number (see Chapter 4 [Numbers], page 45), is considered to be a valid
identifier. Note that, although it is legal for 'S' and ',' to appear in an identifier (other than in the
first character position), it is poor programming practice.

Here are some examples of identifiers:

lambda q
list->vector soup
+ V17a
<=? a34kTMNs
the-word-recurs ion-has-many-meanings

14 MIT Scheme Reference

1.3.4 Uppercase and Lowercase

Scheme doesn't distinguish uppercase and lowercase forms of a letter except within character

and string constants; in other words, Scheme is case-insensitive. For example, 'Foo' is the same

identifier as 700', and '*xlAB' is the same number as '#Xlab'. But '#\a' and '*\A' are different

characters.

1.3.5 Naming Conventions

A predicate is a procedure that always returns a boolean value (#t or #f). By convention,
predicates usually have names that end in '?'.

A mutation procedure is a procedure that alters a data structure. By convention, mutation
procedures usually have names that end in '!'.

1.3.6 Comments

The beginning of a comment is indicated with a semicolon (;). Scheme ignores everything on a
line in which a semicolon appears, from the semicolon until the end of the line. The entire comment,
including the newline character that terminates it, is treated as whitespace.

An alternative form of comment (sometimes called an extended comment) begins with the
characters ' I' and ends with the characters' I ''. This alternative form is an MIT Scheme extension.
As with ordinary comments, all of the characters in an extended comment, including the leading

"*I' and trailing 'I S', are treated as whitespace. Comments of this form may extend over multiple
lines, and additionally may be nested (unlike the comments of the programming language C, which
have a similar syntax).

;; This is a comment about the FACT procedure. Scheme
;;; ignores all of this comment. The FACT procedure computes

;; the factorial of a non-negative integer.

8I

This is an extended comment.
Such comments are useful for commenting out code fragments.
I,

Chapter 1: Overview 15

(define fact
(lambda (n)

(if (a n 0) ;This is another comment:
1 ;Base case: return 1
(* n (fact (- n 1))))))

1.1.7 Additional Notations

The following list describes additional notations used in Scheme. See Chapter 4 [Numbers],
page 45 for a description of the notations used for numbers.

+ - . The plus sign, minus sign, and period are used in numbers, and may also occur in an

identifier. A delimited period (not occurring within a number or identifier) is used in
the notation for pairs and to indicate a "rest" parameter in a formal parameter list
(see Section 2.1 [Lambda Expressions], page 19).

C) Parentheses are used for grouping and to notate lists (see Chapter 7 [Lists], page 87).

"The double quote delimits strings (see Chapter 6 [Strings], page 75).

The backslash is used in the syntax for character constants (see Chapter 5 [Characters],
page 65) and as an escape character within string constants (see Chapter 6 [Strings],
page 75).

The semicolon starts a comment.

The single quote indicates literal data; it suppresses evaluation (see Section 2.6 [Quot-

ing], page 28).

The backquote indicates almost-constant data (see Section 2.6 (Quoting], page 28).

, The comma is used in conjunction with the backquote (see Section 2.6 [Quoting],
page 28).

o A comma followed by an at-sign is used in conjunction with the backquote (see Sec-
tion 2.6 [Quoting], page 28).

The sharp (or pound) sign has different uses, depending on the character that imme-
diately follows it:

#t #f These character sequences denote the boolean constants (see Section 10.1 [Booleans],

page 113).

This character sequence introduces a character constant (see Chapter 5 (Characters],
page 65).

This character sequence introduces a vector constant (see Chapter 8 [Vectors], page 103).

A close parenthesis, 'T, terminates a vector constant.

#e 0i #b *o Sd ft

These character sequences are used in the notation for numbers (see Chapter 4 (Num-
bers], page 45).

16 MIT Scheme Reference

i This character sequence introduces an extended comment. The comment is terminated

by the sequence 'I#'. This notation is an MIT Scheme extension.

V! This character sequence is used to denote a small set of named constants. Currently
there are only two of these, #!optional and #!rest, both of which are used in the
lambda special form to mark certain parameters as being "optional" or "rest" param--
eters. This notation is an MIT Scheme extension.

*, This character sequence introduces a bit string (see Chapter 9 [Bit Strings), page 107).

This notation is an MIT Scheme extension.

1.4 Expressions

A Scheme expression is a construct that returns a value. An expression may be a literal, a
variable reference, a special form, or a procedure call.

1.4.1 Literal Expressions

Literal constants may be written by using an external representation of the data. In general,
the external representation must be quoted (see Section 2.6 [Quoting], page 28); but some external

representations can be used without quotation.

"abc" 4. "abc"
145932 4, 145932
*t # t
*\a * S\a

The external representation of numeric constants, string constants, character constants, and
boolean constants evaluate to the constants themselves. Symbols, pairs, lists, and vectors require

quoting.

1.4.2 Variable References

An expression consisting of an identifier (see Section 1.3.3 [Identifiers], page 13) is a variable
reference; the identifier is the name of the variable being referenced. The value of the variable
reference is the value stored in the location to which the variable is bound. An error is signalled if
the referenced variable is unbound or unassigned.

Chapter 1: Overview 17

(define x 28)
x =0 28

1.4.3 Special Form Syntax

(keyword component

A parenthesized expression that starts with a syntactic keyword is a special form. Each special

form has its own syntax, which is described later in the manual. The following list contains all of
the syntactic keywords that are defined when MIT Scheme is initialized:

access define-syntax macro
and delay make-environment
begin do named-lambda
bkpt error or
case fluid-let quasiquote
cond if quote
cons-stream in-package scode--,iote
declare lambda sequence
default-object? let sot!
define let* the-environment
define-integrable let-syntax unassigned?
define-macro letrec using-syntax
define-structure local-declare

1.4.4 Procedure Call Syntax

(operator operand ...)

A procedure call is written by simply enclosing in parentheses expressions for the procedure to
be called (the operator) and the arguments to be passed to it (the operands). The operator and
operand expressions are evaluated and the resulting procedure is passed the resulting arguments.
See Section 2.1 [Lambda Expressions], page 19, for a more complete description of this.

Another name for the procedure call expression is combination. This word is more specific in
that it always refers to the expression; "procedure call" sometimes refers to the process of calling

a procedure.

Unlike some other dialects of Lisp, Scheme always evaluates the operator expression and the

18 MIT Scheme Reference

operand expressions with the same evaluation rules, and the order of evaluation is unspecified.

(+ 3 4) * 7
((if Sf) 3 4) = 12

A number of procedures are available as the values of variables in the initial environment; for

example, the addition and multiplication procedures in the above examples are the values of the
variables + and *. New procedures are created by evaluating lambda expressions.

If the operator is a syntactic keyword, then the expression is not treated as a procedure call:
it is a special form. Thus you should not use syntactic keywords as procedure names. If you were

to bind one of these keywords to a procedure, you would have to use apply to call the procedure.
MIT Scheme signals an error when such a binding is attempted.

Chapter 2: Special Forms 19

2 Special Forms

A special form is an expression that follows special evaluation rules. This chapter describes the
basic Scheme special forms.

2.1 Lambda Expressions

lambda formals expression expression ... special form
A lambda expression evaluates to a procedure. The environment in effect when the
lambda expression is evaluated is remembered as part of the procedure; it is called the
closing environment. When the procedure is later called with some arguments, the
closing environment is extended by binding the variables in the formal parameter list
to fresh locations, and the locations are filled with the arguments according to rules
about to be given. The new environment created by this process is referred to as the
invocation environment.

Once the invocation environment has been constructed, the expressions in the body

of the lambda expression are evaluated sequentially in it. This means that the region
of the variables bound by the lambda expression is all of the expressions in the body.
The result of evaluating the last expression in the body is returned as the result of the
procedure call.

Formals, the formal parameter list, is often referred to as a lambda list.

The process of matching up formal parameters with arguments is somewhat involved.
There are three types of parameters, and the matching treats each in sequence:

Required All of the required parameters are matched against the arguments first. If
there are fewer arguments than required parameters, a "Wrong Number of
Arguments" error is signalled; this error is also signalled if there are more
arguments than required parameters and there are no further parameters.

Optional Once the required parameters have all been matched, the optional parame-

ters are matched against the remaining arguments. If there are fewer argu-
ments than optional parameters, the unmatched parameters are bound to
special objects called default objects. If there are more arguments than op-

20 MIT Scheme Reference

tional parameters, and there are no further parameters, a "Wrong Number

of Arguments" error is signalled.

The predicate default-object?, which is true only of default objects, can

be used to determine which optional parameters were supplied, and which
were defaulted.

Rest Finally, if there is a rest parameter (there can only be one), any remaining
arguments are made into a list, and the list is bound to the rest parameter.

(If there are no remaining arguments, the rest parameter is bound to the
empty list.)

In Scheme, unlike some other Lisp implementations, the list to which a rest

parameter is bound is always freshly allocated. It has infinite extent and

may be modified without affecting the procedure's caller.

Specially recognized keywords divide the formals parameters into these three classes.

The keywords used here are 'floptional','.', and 'C'rest'. Note that only '.' is de-
fined by standard Scheme - the other keywords are MIT Scheme extensions. '8':rest'
has the same meaning as '.' in formals.

The use of these keywords is best explained by means of examples. The following

are typical lambda lists, followed by descriptions of which parameters are required,

optional, and rest. We will use 'V!rest' in these examples, but anywhere it appears
. could be used instead.

(a b c) a, b, and c are all required. The procedure must be passed exactly three

arguments.

(a b floptional c)

a and b are required, c is optional. The procedure may be passed either

two or three arguments.

(8'optional a b c)

a, b, and c are all optional. The procedure may be passed any number of

arguments between zero and three, inclusive.

a
(W:root a)

These two examples are equivalent, a is a rest parameter. The procedure
may be passed any number of arguments.

(a b f!optional c d !rest e)
a and b are required, c and d are optional, and e is rest. The procedure

may be passed two or more arguments.

Chapter 2: Special Forms 21

Some examples of lambda expressions:

(lambda Wx) (+ x 4)) = #[coampound-procedure 53J

((lambda Wx) (C x x)) 4) = 8

(define reverse-subtract
(lambda Ux y)

(- y x)))
(reverse-subtract 7 10) 4- 3

(define foo
(let ((x 4))

(lambda (y) (÷ x y))))
(foo 6) 4* 10

named-lambda formals expression expression ... special form+
The named-lambda special form is similar to lambda, except that the first "required
parameter" in formals is not a parameter but the name of the resulting procedure;
thus formals must have at least one required parameter. This name has no semantic
meaning, but is included in the external representation of the procedure, making it
useful for debugging. In MIT Scheme, lambda is implemented as named-lambda, with
a special name that means "unnamed".

(named-lambda (f x) (÷ x x)) 4- [compound-procedure 53 f]
((named-lambda (f x) (+ • x)) 4) =0 8

2.2 Lexical Binding

The three binding constructs let, let*, and letrec, give Scheme block structure. The syntax
of the three constructs is identical, but they differ in the regions they establish for their variable
bindings. In a let expression, the initial values are computed before any of the variables become
bound. In a let* expression, the evaluations and bindings are sequentially interleaved. And in a
letrec expression, all the bindings are in effect while the initial values are being computed (thus
allowing mutually recursive definitions).

let ((variable init) ...) expression expression ... special form
The inits are evaluated in the current environment (in some unspecified order), the
variables are bound to fresh locations holding the results, the expressions are evalu-

22 MIT Scheme Reference

ated sequentially in the extended environment, and the value of the last expression is
returned. Each binding of a variable has the expressions as its region.

MIT Scheme allows any of the inits to be omitted, in which case the corresponding
variables are unassigned.

Note that the following are equivalent:

(lot ((variable init) ...) expression expression ...)

((lambda (variable ...) expression expression ...) init ...)

Some examples:

(let ((x 2) (y 3))
(* X y)) =6

(let ((x 2) (y 3))
(let ((foo (lambda (z) (+ x y z)))

(x 7))
(foo 4))) =9

See Section 2.9 [Iteration], page 35, for information on "named let".

let* ((variable init) ...) expression expression ... special form
let* is similar to let, but the bindings are performed sequentially from left to right,
and the region of a binding is that part of the let* expression to the right of the
binding. Thus the second binding is done in an environment in which the first binding
is visible, and so on.

Note that the following are equivalent:

(let* ((variablel initl)
(variable2 init2)

(variableN initN))
expression
expression ...)

Chapter 2: Special Forms 23

(let ((variablel initl))
(let ((variable2 init2))

(let ((variableN initN))
expression
expression ...)

An example:

(let (Cx 2) (y 3))
(let* ((x 7)

(z (+ x y)))
C* z x))) 0 70

letrec ((variable init) ...) expression expression ... special form
The variables are bound to fresh locations holding unassigned values, the inits are
evaluated in the extended environment (in some unspecified order), each variable is
assigned to the result of the corresponding Jiot, the expressions are evaluated sequen-
tially in the extended environment, and the value of the last expression is returned.

Each binding of a variable has the entire letrec expression as its region, making it
possible to define mutually recursive procedures.

MIT Scheme allows any of the inits to be omitted, in which case the corresponding
variables are unassigned.

(letrec ((even?
(lambda (n)

(if (zero? n)
st
(odd? (- n 1)))))

(odd?
(lambda Wn)

(if (zero? n)
Sf
(even? (- n 1))))))

(even? 88)) f St

One restriction on letrec is very important: it shall be possible to evaluated each init
without assigning or referring to the value of any variable. If this restriction is violated,

then it is an error. The restriction is necessary because Scheme passes arguments by

value rather than by name. In the most common uses of letrec, all the inits are
lambda or delay expressions and the restriction is satisfied automatically.

24 MIT Scheme Reference

2.3 Fluid Binding

fluid-let ((variable init) ...) expression expression ... special form+

The inits are evaluated in the current environment (in some unspecified order), the
current values of the variables are saved, the results are assigned to the variables, the
expressions are evaluated sequentially in the current environment, the variables are
restored to their original values, and the value of the last expression is returned.

The syntax of this special form is similar to that of lot, but fluid-lot temporarily
rebinds existing variables. Unlike let, fluid-let creates no new bindings; instead it
assigns the values of each init to the binding (determined by the rules of lexical scoping)
of its corresponding variable.

MIT Scheme allows any of the inits to be omitted, in which case the corresponding
variables are temporarily unassigned.

An error is signalled if any of the variables are unbound. However, because fluid-let
operates by means of side effects, it is valid for any variable to be unassigned when the
form is entered.

Here is an example showing the difference between fluid-let and let. First see how
lot affects the binding of a variable:

(define variable St)
(define (access-variable) variable)
variable = St
(lot ((variablo Sf))

(access-variable)) f it
variable * It

access-variable returns #t in this case because it is defined in an environment with
variable bound to #t. fluid-let, on the other hand, temporarily reuses an existing
variable:

variable ft
(fluid-let ((variable Of)) ;reuses old binding

(access-variable)) 40. Of
variable =* #it

The extent of a dynamic binding is defined to be the time period during which the

Chapter 2: Special Forms 25

variable contains the new value. Normally this time period begins when the body is
entered and ends when it is exited; on a sequential machine it is normally a contiguous
time period. However, because Scheme has first-class continuations, it is possible to
leave the body and then reenter it, as many times as desired. In this situation, the
extent becomes non-contiguous.

When the body is exited by invoking a continuation, the new value is saved, and
the variable is set to the old value. Then, if the body is reentered by invoking a
continuation, the old value is saved, and the variable is set to the new value. In
addition, side effects to the variable that occur both inside and outside of body are
preserved, even if continuations are used to jump in and out of body repeatedly.

Here is a complicated example that shows the interaction between dynamic binding
and continuations:

(define (complicated-fluid-binding)
(let ((variable 1)

(inside-continuation))
(write-line variable)
(call-with-current-continuation

(lambda (outside-continuation)
(fluid-let ((variable 2))

(write-line variable)
(set! variable 3)
(call-with-current-continuation

(lambda (k)
(set! inside-continuation k)
(outside-continuation #i)))

(write-line variable)
(set! inside-continuation #f))))

(write-line variable)
(if inside-continuation

(begin
(set! variable 4)
(inside-continuation #f)))))

Evaluating '(complicated-fluid-binding)' writes the following on the console:

1
2
1
3
4

26 MIT Scheme Reference

Commentary: the first two values written are the initial binding of variable and

its new binding after the fluid-let's body is entered. Immediately after they are
written, variable is .set to '3', and then outside-continuation is invoked, causing

us to exit the body. At this point, '1' is written, demonstrating that the original value
of variable has been restored, because we have left the body. Then we set variable
to '4' and reenter the body by invoking inside-continuation. At this point, '3' is
written, indicating that the side effect that previously occurred within the body has

been preserved. Finally, we exit body normally, and write '4', demonstrating that the
side effect that occurred outside of the body was also preserved.

2.4 Definitions

define variable [expression] special form

define formals expression expression ... special form
Definitions are valid in some but not all contexts where expressions are allowed. Defi-
nitions may only occur at the top level of a program and at the beginning of a lambda
body (that is, the body of a lambda, let, let*, letrec, fluid-let, or "procedure
define" expression). A definition that occurs at the top level of a program is called
a top-level definition, and a definition that occurs at the beginning of a body is called

an internal definition.

In the second form of define (called "procedure define"), the component formals is
identical to the component of the same name in a named-lambda expression. In fact,
these two expressions are equivalent:

(define (namel name2 ...)
expression
expression ...)

(define namel
(named-lambda (namel name2 ...)

expression
expression ...))

2.4.1 Top-Level Definitions

A top-level definition,

Chapter 2: Special Forms 27

(define variable expression)

has essentially the same effect as this assignment expression, if variable is bound:

(set! variable expression)

If variable is not bound, however, define binds variable to a new location in the current
environment before performing ýhe assignment (it is an error to perform a set! on an unbound
variable). If you omit expression, the variable is unassigned; an attempt to reference such a variable
signals an "Unassigned Variable" error.

(define add3
(lambda (W) (+ x 3))) M unspecified

(add3 3) *6

(define first car) = unspecified
(first '(1 2)) 40 1

(define bar) =* unspecified
bar error Unassigned variable

2.4.2 Internal Definitions

An internal definition is a definition that occurs at the beginning of a body (that is, the body of
a lambda, let, let*, letrec, fluid-let, or "procedure define" expression), rather than at the
top level of a program. The variable defined by an internal definition is local to the body. That
is, variable is bound rather than assigned, and the region of the binding is the entire body. For
example,

(let ((x 5))
(define foo (lambda (y) (bar x y)))
(define bar (lambda (a b) (÷ (* a b) a)))
(foo (+ X 3))) M 45

A body containing internal definitions can always be converted into a completely equivalent
letrec expression. For example, the let expression in the above example is equivalent to

28 MIT Scheme Reference

(let ((x 5))
(letrec ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))
(foo (+ x 3))))

2.5 Assignments

set! variable [expression] special form
If expression is specified, evaluates expression, and stores the resulting value in the
location to which variable is bound. If expression is omitted, variable is altered to be
unassigned; subsequent references to such variable are "Unassigned Variable" errors.
In either case, the value of the set! expression is unspecified.

Variable must be bound either in some region enclosing the set! expression, or at
the top level. However, variable is permitted to be unassigned when the set! form is
entered.

(define x 2) * unspecified
(+ X 1) * 3
(set! x 4) = unspecified
(+ X 1) = 5

Variable may be an access expression (see Chapter 13 [Environments], page 149). This
allows you to assign variables in an arbitrary environment. For example,

(define x (let ((y 0)) (the-environment)))
(define y 'a)
y = a
(access y x) * 0
(set! (access y x) 1) = unspecified
y = a
(access y x) * 1

2.6 Quoting

This section describes the expressions that are used to modify or prevent the evaluation of
objects.

quote datum special form
(quote datum) evaluates to datum. Datum may be any external representation of a

Chapter 2: Special Forms 29

Scheme object (see Section 1.2.6 [External Representations], page 10). Use quote to

include literal constants in Scheme code.

(quote a) = a
(quote *(a b c)) * *(a b c)
(quote (+ 1 2)) ((+ 2)

(quote datum) may be abbreviated as ' datum. The two notations are equivalent in
all respects.

)a * a
',(a b c) # (ab c)
'(+ 1 2) (+ 1 2)
'(quote a) a 'a
")a * 'a

Numeric constants, string constants, character constants, and boolean constants eval-
uate to themselves, so they don't need to be quoted.

""abc" = "abc"
"abc" = "abc"
'145932 = 145932
145932 * 145932
'SI =0 . t
st * St
'A\a * S\a
A\a * S\a

quasiquote template special form
"Backquote" or "quasiquote" expressions are useful for constructing a list or vector
structure when most but not all of the desired structure is known in advance. If no

commas appear within the template, the result of evaluating 'template is equivalent (in
the sense of equal?) to the result of evaluating ' template. If a comma appears within
the template, however, the expression following the comma is evaluated ("unquoted")
and its result is inserted into the structure instead of the comma and the expression. If
a comma appears followed immediately by an at-sign (a), then the following expression

shall evaluate to a list; the opening and closing parentheses of the list are then "stripped
away" and the elements of the list are inserted in place of the comma at-sign expression

sequence.

'(list ,(+ 1 2) 4) => (list 3 4)

30 MIT Scheme Reference

(let ((name 'a)) '(list ,name ',name)) * (list a 'a)

'(a ,(+ 1 2) ,A(map abs '(4 -5 6)) b) : (a 3 4 5 6 b)

'((foo ,(- 10 3)) ,G(cdr '(c)) .,(car '(cons)))
C((foo 7) . cons)

'#(10 5 ,(sqrt 4) ,*(map sqrt '(16 9)) 8)
S (105 2 4 3 8)

',(+ 2 3) S5

Quasiquote forms may be nested. Substitutions are made only for unquoted compo-
nents appearing at the same nesting level as the outermost backquote. The nesting
level increases by one inside each successive quasiquotation, and decreases by one inside

each unquotation.

'(a '(b ,(÷ 1 2) ,(foo ,(+ 1 3) 4) e) f)
4- (a '(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((namel 'x)
(name2 'y))

'(a '(b ,,namel ,',name2 d) a))
=* (a '(b ,x ,'y d) e)

The notations 'template and (quasiquote template) are identical in all respect-
s. ,expression is identical to (unquote expression) and ,4expression is identical to

(unquote-splicing expression).

(quasiquote (list (unquote (+ 1 2)) 4))
: (list 3 4)

'(quasiquote (list (unquote (+ 1 2)) 4))
=0* '(list ,(+ 1 2) 4)
i.e., (quasiquote (list (unquote (+ 1 2)) 4))

Unpredictable behavior can result if any of the symbols quasiquote, unquote, or
unquote-splicing appear in a template in ways otherwise than as described above.

Chapter 2: Special Forms 31

2.7 Conditionals

The behavior of the conditional expressions is determined by whether objects are true or false.

The conditional expressions count only #f as false. They count everything else, including St, pairs,
symbols, numbers, strings, vectors, and procedures as true (but see Section 1.2.5 [True and False],
page 10).

In the descriptions that follow, we say that an object has "a true value" or "is true" when the

conditional expressions treat it as true, and we say that an object has "a false value" or "is false"
when the conditional expressions treat it as false.

if predicate consequent [alternative] special form
Predicate, consequent, and alternative are expressions. An if expression is evaluated
as follows: first, predicate is evaluated. If it yields a true value, then consequent is
evaluated and its value is returned. Otherwise alternative is evaluated and its value
is returned. If predicate yields a false value and no alternative is specified, then the
result of the expression is unspecified.

An if expression evaluates either consequent or alternative, never both. Programs
should not depend on the value of an if expression that has no alternative.

(it (> 3 2) 'yes 'no) =: yes
(if 0 2 3) 'yes 'no) 4 no
(if (> 3 2)

(- 3 2)
(+ 3 2)) *1

cond clause clause ... special form
Each clause has this form:

(predicate expression ...)

where predicate is any expression. The last clause may be an elso clause, which has
the form:

(else expression expression ...)

A cond expression does the following:

32 MIT Scheme Reference

1. Evaluates the predicate expressions of successive clauses in order, until one of the
predicates evaluates to a true value.

2. When a predicate evaluates to a true value, cond evaluates the expressions in the
associated clause in left to right order, and returns the result of evaluating the last
expression in the clause as the result of the entire cond expression.

If the selected clause contains only the predicate and no expressions, cond returns
the value of the predicate as the result.

3. If all predicates evaluate to false values, and there is no else clause, the result of
the conditional expression is unspecified; if there is an else clause, cond evaluates
its expressions (left to right) and returns the value of the last one.

(cond ((> 3 2) 'greater)
((< 3 2) 'less)) g greater

(cond ((> 3 3) 'greater)
((< 3 3) 'less)
(else 'equal)) * equal

Normally, programs should not depend on the value of a cond expression that has no
else clause. However, some Scheme programmers prefer to write cond expressions in
which at least one of the predicates is always true. In this style, the final clause is
equivalent to an else clause.

Scheme supports an alternative clause syntax:

(predicate -> recipient)

where recipient is an expression. If predicate evaluates to a true value, then recipient
is evaluated. Its value must be a procedure of one argument; this procedure is then
invoked on the value of the predicate.

(cond ((assv 'b '((a 1) (b 2))) => cadr)
(else If)) 4 2

case key clause clause ... special form
Key may be any expression. Each clause has this form:

((object ...) expression expression ...)

Chapter 2: Special Forms 33

No object is evaluated, and all the objects must be distinct. The last clause may be
an else clause, which has the form:

(else expression expression ...)

A case expression does the following:

1. Evaluates key and compares the result with each object.

2. If the result of evaluating key is equivalent (in the sense of eqv?; see Chapter 3
[Equivalence Predicates], page 39) to an object, case evaluates the expressions in
the corresponding clause from left to right and returns the result of evaluating the
last expression in the clause as the result of the case expression.

3. If the result of evaluating key is different from every object, and if there's an else
clause, case evaluates its expressions and returns the result of the last one as the
result of the case expression. If there's no else clause, case returns an unspecified
result. Programs should not depend on the value of a case expression that has no
else clause.

For example,

(case (* 2 3)
((2 3 5 7) 'prime)
((1 4 6 8 9) 'composite)) : composite

(case (car '(c d))
((a) 'a)
((b) 'b)) = unspecified

(case (car ' (c d))
((a e i o u) 'vowel)
((w y) 'semivowel)
(else 'consonant)) 4 consonant

and expression ... special form
The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a false value is returned. Any remaining expressions are not evaluated.
If all the expressions evaluate to true values, the value of the last expression is returned.
If there are no expressions then #t is returned.

34 MIT Scheme Reference

(and (=22) (>21)) M St
(and (a 2 2) (<21)) 2 Mf
(and 1 2 'c '(f g)) (f g)
(and) => #t

or expression ... special form
The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a true value is returned. Any remaining expressions are not evaluated.
If all expressions evaluate to false values, the value of the last expression is returned.
If there are no expressions then #f is returned.

(or(2 2) (> 21)) M #t
(or (2 2) (< 21)) M= ft
(or Of #f Sf) 4. #f
(or (memq 'b '(a b c)) (1 3 0)) * (b c)

2.8 Sequencing

begin expression expression ... special form

The expressions are evaluated sequentially from left to right, and the value of the last
expression is returned. This expression type is used to sequence side effects such as
input and output.

(define x 0)
(begin (set! x 5)

(+.z)) X 6

(begin (display "4 plus I equals ")
(display (+ 4 1)))

- 4 plus I equals 5
=- unspecified

Often the use of begin is unnecessary, because many special forms already support
sequences of expressions (that is, they have an implicit begin). Some of these special
forms are:

Chapter 2: Special Forms 35

case
cond
define ;"procedure define" only
do
fluid-let
lambda
lot
let*
letrec
named-lambda

The obsolete special form sequence is identical to begin. It should not be used in new
code.

2.9 Iteration

The iteration expressions are: "named let" and do. They are also binding expressions, but are
more commonly referred to as iteration expressions. Because Scheme is properly tail-recursive, you
don't need to use these special forms to express iteration; you can simply use appropriately written
"recursive" procedure calls.

let name ((variable init) ...) expression expression ... special form
MIT Scheme permits a variant on the syntax of let called "named let" which provides
a more general looping construct than do, and may also be used to express recursions.

Named let has the same syntax and semantics as ordinary lot except that name is
bound within the expressions to a procedure whose formal arguments are the variables

and whose body is the expressions. Thus the execution of the expressions may be
repeated by invoking the procedure named by name.

MIT Scheme allows any of the inits to be omitted, in which case the corresponding
variables are unassigned.

Note: the following expressions are equivalent:

36 MIT Scheme Reference

(let name ((variable init) ...)
expression
expression ...)

((letrec ((name
(named-lambda (name variable ...)

expression
expression ...)))

name)
init ...)

Here is an example:

(let loop
((numbers '(3 -2 1 6 -5))

(nonneg '10)
(nag '0))

(cond ((null? numbers)
(list nonneg nag))

((>- (car numbers) 0)
(loop (cdr numbers)

(cons (car numbers) nonneg)
neg))

(loop (cdr numbers)
nonneg
(cons (car numbers) neg)))))

• ((6 1 3) (-5 -2))

do ((variable init step) ...) (test expression ...) command ... special form
do is an iteration construct. It specifies a set of variables to be bound, how they are
to be initialized at the start, and how they are to be updated on each iteration. When
a termination condition is met, the loop exits with a specified result value.

do expressions are evaluated as follows: The init expressions are evaluated (in some
unspecified order), the variables are bound to fresh locations, the results of the init
expressions are stored in the bindings of the variables, and then the iteration phase
begins.

Each iteration begins by evaluating test; if the result is false, then the command ex-
pressions are evaluated in order for effect, the step expressions are evaluated in some
unspecified order, the variables are bound to fresh locations, the results of the steps
are stored in the bindings of the variables, and the next iteration begins.

If test evaluates to a true value, then the expressions are evaluated from left to right

Chapter 2: Special Forms 37

and the value of the last expression is returned as the value of the do expression. If no
expressions are present, then the value of the do expression is unspecified in standard
Scheme; in MIT Scheme, the value of test is returned.

The region of the binding of a variable consists of the entire do expression except for the
inits. It is an error for a variable to appear more than once in the list of do variables.

A step may be omitted, in which case the effect is the same as if (variable init variable)
had been written instead of (variable init).

(do ((vec (make-vector 5))
(i 0 C+ i 1)))

((= 1 5) vec)
(vector-set! vec i i)) # 8(0 1 2 3 4)

(lot (Cx '(1 3 5 7 9)))
(do ((x x (cdr x))

(sum 0 C(sum (car x))))
((null? x) sum))) = 25

38 MIT Scheme Reference

Chapter 3: Equivalence Predicates 39

3 Equivalence Predicates

A predicate is a procedure that always returns a boolean value (St or ft). An equivalence
predicate is the computational analogue of a mathematical equivalence relation (it is symmetric,

reflexive, and transitive). Of the equivalence predicates described in this section, oq? is the finest

or most discriminating, and equal? is the coarsest. eqv? is slightly less discriminating than eq?.

eqv? objl obj2 procedure
The eqv? procedure defines a useful equivalence relation on objects. Briefly, it returns
St if objI and obj2 should normally be regarded as the same object.

The .qv? procedure returns #t if:

* objl and obj2 are both St or both #f.
. objl and obj2 are both interned symbols and

(string-? (symbol->string objl)
(symbol->string obj2))

= #t

"* objl and obj2 are both numbers, are numerically equal according to the - proce-

dure, and are either both exact or both inexact (see Chapter 4 [Numbers], page 45).

"• objl and obj2 are both characters and are the same character according to the

char-? procedure (see Chapter 5 (Characters], page 65).

"* both objl and obj2 are the empty list.

"* objl and obj2 are procedures whose location tags are equal.

"* objl and obj2 are pairs, vectors, strings, bit strings, records, cells, or weak pairs
that denote the same locations in the store.

The eqv? procedure returns ft if:

"* objl and obj2 are of different types.

"* one of objl and obj2 is St but the other is #f.

"* objI and obj2 are symbols but

(string-? (symbol->string objl)
(symbol->string obj2))

*fS

"* one of objI and obj2 is an exact number but the other is an inexact number.

40 MIT Scheme Reference

"* objl and obj2 are numbers for which the a procedure returns #f.

"* objl and obj2 are characters for which the char=? procedure returns #f.

"* one of obji and. obj2 is the empty list but the other is not.

"* obji and obj2 are procedures that would behave differently (return a different
value or have different side effects) for some arguments.

"• objil and obj2 are pairs, vectors, strings, bit strings, records, cells, or weak pairs
that denote distinct locations.

Some examples:

(eqv? 'a 'a) *
(eqv? 'a 'b) f t8
(eqv? 2 2) 4. #t
(eqv? '() '0) = It
(eqv? 100000000 100000000) = It
(eqv? (cons 1 2) (cons 1 2)) f t1
(eqv? (lambda 0 1)

(lambda 0) 2)) 4- #f
(eqv? #f 'nil) =0 ft
(let ((p (lambda (W) x)))

(eqv? p p)) 40 st

The following ex.amples illustrate cases in which the above rules do not fully specify
the behavior of eqv?. All that can be said about such cases is that the value returned
by eqv? must be a boolean.

(eqv? "f f"i) * unspecified
(eqv? '#0 '#0) * unspecified
(eqv? (lambda Wx) x)

(lambda Wx) x)) * unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) =* unspecified

The next set of examples shows the use of eqv? with procedures that have local state.
gen-counter must return a distinct procedure every time, since each procedure has its
own internal counter. gen-loser, however, returns equivalent procedures each time,
since the local state does not affect the value or side effects of the procedures.

Chapter 3: Equivalence Predicates 41

(define gen-counter
(lambda 0)

(let ((n 0))
(lambda 0) (set! n (+ n 1)) n))))

(let ((g (gen-counter)))
(eqv? g g)) * #t

(eqv? (gen-counter) (gen-counter))

(define gen-loser
(lambda ()

(let ((n 0))
(lambda 0) (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))
(eqv? g g)) * #t

(eqv? (gen-loser) (gen-loser))
=* unspecified

(letrec ((f (lambda 0) (if (eqv? f g) 'both 'f)))
(g (lambda 0) (if (eqv? f g) 'both 'g)))

(eqv? f g))
4- unspecified

(letrec ((f (lambda () (if (eqv? f g) 'f 'both)))
(g (lambda 0) (if (eqv? f g) 'g 'both)))

(eqv? f g))
* f

Objects of distinct types must never be regarded as the same object.

Since it is an error to modify constant objects (those returned by literal expressions),
the implementation may share structure between constants where appropriate. Thus
the value of eqv? on constants is sometimes unspecified.

(let ((x '(a)))
(eqv? x x)) 4* *t

(eqv? '(a) 'W(a)) unspecified
(eqv? "a" "a") * unspecified
(eqv? '(b) (cdr '(a b))) * unspecified

Rationale: The above definition of eqv? allows implementations latitude in their treat-
ment of procedures and literals: implementations are free either to detect or to fail to
detect that two procedures or two literals are equivalent to each other, and can decide
whether or not to merge representations of equivalent objects by using the same pointer
or bit pattern to represent both.

42 MIT Scheme Reference

eq? objl obj2 procedure
eq? is similar to eqv? except that in some cases it is capable of discerning distinctions
finer than those detectable by eqv?.

eq? and eqv? are guaranteed to have the same behavior on symbols, booleans, the
empty list, pairs, and non-empty strings and vectors. eq?'s behavior on numbers and
characters is implementation-dependent, but it will always return either true or false,
and will return true only when eqv? would also return true. eq? may also behave
differently from eqv? on empty vectors and empty strings.

(eq? 'a 'a) =0 #t
(eq? ' (a) '(a)) =f unspecified
(eq? (list 'a) (list 'a)) #1 #f
(eq? "ga' a") * unspecified
(eq? "" l ")fil unspecified
(eq? '0) '0) => It
(eq? 2 2) * unspecified
(eq? *\A A\A) = unspecified
(eq? car car) => It
(let ((n (4 2 3)))

(eq? n n)) = unspecifiA
Clot ((x 'Ca)))

(eq? x x)) * #t
(let ((x '1#0))

(eq? x x)) =0 It
(let ((p (lambda (x) x)))

(eq? p p)) 4. *t

Rationale: It will usually be possible to implement eq? much more efficiently than
eqv?, for example, as a simple pointer comparison instead of as some more complicated
operation. One reason is that it may not be possible to compute eqv? of two numbers
in constant time, whereas eq? implemented as pointer comparison will always finish in
constant time. eq? may be used like eqv? in applications using procedures to implement
objects with state since it obeys the same constraints as eqv?.

equal? objl obj2 procedure
equal? recursively compares the contents of pairs, vectors, and strings, applying eqv?
on other objects such as numbers, symbols, and records. A rule of thumb is that
objects are generally equal? if they print the same. equal? may fail to terminate if
its arguments are circular data structures.

Chapter 3: Equivalence Predicates 43

(equal? 'a 'a) *t
(equal? '(a) '(a)) 4 St
(equal? 'Ca (b) c)

'(a (b) c)) * at
(equal? "abc" "abc") =0 St
(equal? 2 2) 4 at
(equal? (make-vector 5 'a)

(make-vector 5 'a)) f #t
(equal? (lambda Wx) x)

(lambda (y) y)) = unspecified

44 MIT Scheme Reference

Chapter 4: Numbers 45

4 Numbers

(This section is largely taken from the Revised-4 Report on the Algorithmic L.%guage Scheme.)

Numerical computation has traditionally been neglected by the Lisp community. Until Common
Lisp there was no carefully thought out strategy for organizing numerical computation, and with
the exception of the MacLisp system little effort was made to execute numerical code efficiently.
This report recognizes the excellent work of the Common Lisp committee and accepts many of their
recommendations. In some ways this report simplifies and generalizes their proposals in a manner
consistent with the purposes of Scheme.

It is important to distinguish between the mathematical numbers, the Scheme numbers that
attempt to model them, the machine representations used to implement the Scheme numbers, and
notations used to write numbers. This report uses the types number, complex, real, rational, and
integer to refer to both mathematical numbers and Scheme numbers. Machine representations such
as fixed point and floating point are referred to by names such as fixnum and lionum.

4.1 Numerical types

Mathematically, numbers may be arranged into a tower of subtypes in which each level is a
subset of the level above it:

number
complex
real
rational
integer

For example, 3 is an integer. Therefore 3 is also a rational, a real, and a complex. The same
is true of the Scheme numbers that model 3. For Scheme numbers, these types are defined by the
predicates number?, complex?, real?, rational?, and integer?.

There is no simple relationship between a number's type and its representation inside a computer.
Although most implementations of Scheme will offer at least two different representations of 3, these
different representations denote the same integer.

Scheme's numerical operations treat numbers as abstract data, as independent of their represen-
tation as possible. Although an implementation of Scheme may use fixnum, flonum, and perhaps

46 MIT Scheme Reference

other representations for numbers, this should not be apparent to a casual programmer writing
simple programs.

It is necessary, however, to distinguish between numbers that are represented exactly and those
that may not be. For example, indexes into data structures must be known exactly, as must
some polynomial coefficients in a symbolic algebra system. On the other hand, the results of
measurements are inherently inexact, and irrational numbers may be approximated by rational
and therefore inexact approximations. In order to catch uses of inexact numbers where exact
numbers are required, Scheme explicitly distinguishes exact from inexact numbers. This distinction
is orthogonal to the dimension of type.

4.2 Exactness

Scheme numbers are either exact or inexact. A number is exact if it was written as an exact
constant or was derived from exact numbers using only exact operations. A number is inexact if it
was written as an inexact constant, if it was derived using inexact ingredients, or if it was derived

using inexact operations. Thus inexactness is a contagious property of a number.

If two implementations produce exact results for a computation that did not involve inexact
intermediate results, the two ultimate results will be mathematically equivalent. This is generally
not true of computations involving inexact numbers since approximate methods such as floating
point arithmetic may be used, but it is the duty of each implementation to make the result as dose
as practical to the mathematically ideal result.

Rational operations such as + should always produce exact results when given exact arguments.
If the operation is unable to produce an exact result, then it may either report the violation of an
implementation restriction or it may silently coerce its result to an inexact value. See Section 4.3
[Implementation restrictions), page 47.

With the exception of inexact->exact, the operations described in this section must generally
return inexact results when given any inexact arguments. An operation may, however, return an
exact result if it can prove that the value of the result is unaffected by the inexactness of its
arguments. For example, multiplication of any number by an exact zero may produce an exact zero
result, even if the other argument is inexact.

Chapter 4: Numbers 47

4.3 Implementation restrictions

Implementations of Scheme are not required to implement the whole tower of subtypes (see
Section 4.1 [Numerical types], page 45), but they must implement a coherent subset consistent
with both the purposes of the implementation and the spirit of the Scheme language. For example,

an implementation in which all numbers are real may still be quite useful.'

Implementations may also support only a limited range of numbers of any type, subject to the

requirements of this section. The supported range for exact numbers of any type may be different
from the supported range for inexact numbers of that type. For example, an implementation that
uses flonums to represent all its inexact real numbers may support a practically unbounded range

of exact integers and rationals while limiting the range of inexact reals (and therefore the range

of inexact integers and rationals) to the dynamic range of the flonum format. Furthermore the
gaps between the representable inexact integers and rationals are likely to be very large in such an
implementation as the limits of this range are approached.

An implementation of Scheme must support exact integers throughout the range of numbers
that may be used for indexes of lists, vectors, and strings or that may result from computing the

length of a list, vector, or string. The length, vector-length, and string-length procedures

must return an exact integer, and it is an error to use anything but an exact integer as an index.

Furthermore any integer constant within the index range, if expressed by an exact integer syntax,

will indeed be read. as an exact integer, regardless of any implementation restrictions that may

apply outside this range. Finally, the procedures listed below will always return an exact integer

result provided all their arguments are exact integers and the mathematically expected result is

representable as an exact integer within the implementation:

* gcd modulo
+ imag-part numerator

inexact->exact quotient
abs lcm rationalize
angle magnitude real-part
ceiling make-polar remainder
denominator make-rectangular round
expt max truncate
floor min

1 MIT Scheme implements the whole tower of numerical types. It has unlimited-precision exact

integers and exact rationals. Flonums are used to implement all inexact reals; on machines that

support IEEE floating-point arithmetic these are double-precision floating-point numbers.

48 MIT Scheme Reference

Implementations are encouraged, but not required, to support exact integers and exact rationals
of practically unlimited size and precision, and to implement the above procedures and the /

procedure in such a way that they always return exact results when given exact arguments. If one
of these procedures is unable to deliver an exact result when given exact arguments, then it may
either report a violation of an implementation restriction or it may silently coerce its result to an
inexact number. Such a coercion may cause an error later.

An implementation may use floating point and other approximate representation strategies for

inexact numbers. This report recommends, but does not require, that the IEEE 32-bit and 64-bit
floating point standards be followed by implementations that use flonum representations, and that
implementations using other representations should match or exceed the precision achievable using
these floating point standards.

In particular, implementations that use flonum representations must follow these rules: A flonum
result must be represented with at least as much precision as is used to express any of the inexact
arguments to that operation. It is desirable (but not required) for potentially inexact operations

such as sqrt, when applied to exact arguments, to produce exact answers whenever possible (for
example the square root of an exact 4 ought to be an exact 2). If, however, an exact number is

operated upon so as to produce an inexact result (as by sqrt), and if the result is represented as a
flonum, then the most precise flonum format available must be used; but if the result is represented

in some other way then the representation must have at least as much precision as the most precise
flonum format available.

Although Scheme allows a variety of written notations for numbers, any particular implemen-
tation may support only some of them.2 For example, an implementation in which all numbers are
real need not support the rectangular and polar notations for complex numbers. If an implemen-
tation encounters an exact numerical constant that it cannot represent as an exact number, then

it may either report a violation of an implementation restriction or it may silently represent the

constant by an inexact number.

4.4 Syntax of numerical constants

A number may be written in binary, octal, decimal, or hexadecimal by the use of a radix prefix.

The radix prefixes are #b (binary), Oo (octal), #d (decimal), and Ox (hexadecimal). With no radix
prefix, a number is assumed to be expressed in decimal.

"2 MIT Scheme implements all of the written notations for numbers.

Chapter 4: Numbers 49

A numerical constant may be specified to be either exact or inexact by a prefix. The prefixes
are Se for exact, and fi for inexact. An exactness prefix may appear before or after any radix
prefix that is used. If the written representation of a number has no exactness prefix, the constant
may be either inexact or exact. It is inexact if it contains a decimal point, an exponent, or a 8
character in the place of a digit, otherwise it is exact.

In systems with inexact numbers of varying precisions it may be useful to specify the precision
of a constant. For this purpose, numerical constants may be written with an exponent marker that
indicates the desired precision of the inexact representation. The letters s, f, d, and 1 specify the
use of short, single, double, and long precision, respectively. (When fewer than four internal inexact
representations exist, the four size specifications are mapped onto those available. For example, an
implementation with two internal representations may map short and single together and long and
double together.) In addition, the exponent marker e specifies the default precision for the imple-
mentation. The default precision has at least as much precision as double, but implementations
may wish to allow this default to be set by the user.

3. 14159265358979F0
Round to single - 3.141593

0.6LO
Extend to long - .600000000000000

4.5 Numerical operations

See Section 1.1.3 [Entry Format), page 5 for a summary of the naming conventions used to
specify restrictions on the types of arguments to numerical routines. The examples used in this
section assume that any numerical constant written using an exact notation is indeed represented
as an exact number. Some examples also assume that certain numerical constants written using an
inexact notation can be represented without loss of accuracy; the inexact constants were chosen so
that this is likely to be true in implementations that use flonums to represent inexact numbers.

number? object procedure
complex? object procedure

real? object procedure
rational? object procedure

integer? object procedure
These numerical type predicates can be applied to any kind of argument, including

non-numbers. They return ft if the object is of the named type, and otherwise they

return 8f. In general, if a type predicate is true of a number then all higher type

50 MIT Scheme Reference

predicates are also true of that number. Consequently, if a type predicate is false of a
number, then all lower type predicates are also false of that number.'

If z is an inexact complex number, then (real? z) is true if and only if (zero? (imag-
part z)) is true. If x is an inexact real number, then (integer? x) is true if and only
if (= x (round x)).

(complex? 3+4i) s St
(complex? 3) * St
(real? 3) :* st
(real? -2.5+0.01) :* #t
(real? .eletO) s St
(rational? 6/10) * St
(rational? 6/3) =0 st
(integer? 3+01) * St
(integer? 3.0) # St
(integer? 8/4) * t

Note: The behavior of these type predicates on inexact numbers is unreliable, since
any inaccuracy may affect the result.

exact? z procedure
inexact? z procedure

These numerical predicates provide tests for the exactness of a quantity. For any
Scheme number, precisely one of these predicates is true.

exact-integer? object procedure+
exact- nonnegative-int eger? object procedure+
exact-rational? object procedure+

These procedures test for some very common types of numbers. These tests could be
written in terms of simpler predicates, but are more efficient.

3 In MIT Scheme the rational? procedure is the same as real?, and the complex? procedure is
the same as number?.

Chapter 4: Numbers 51

" zlz2 z3 ... procedure
< xl x2 x3... procedure
> xl x2 x3 ... procedure
<= xl x2 x3 ... procedure
>= xl x2 x3... procedure

These procedures return ft if their arguments are (respectively): equal, monotonically
increasing, monotonically decreasing, monotonically nondecreasing, or monotonically
nonincreasing.

These predicates are transitive. Note that the traditional implementations of these
predicates in Lisp-like languages are not transitive.

Note: While it is not an error to compare inexact numbers using these predicates,
the results may be unreliable because a small inaccuracy may affect the result; this is
especially true of = and zero?. When in doubt, consult a numerical analyst.

zero? z procedure
positive? x procedure
negative? x procedure
odd? x procedure
even? x procedure

These numerical predicates test a number for a particular property, returning ft or #f.
See note above regarding inexact numbers.

max xl x2 ... procedure
min xl x2 ... procedure

These procedures return the maximum or minimum of their arguments.

(max 3 4) =0 4 ;exact
(max 3.9 4) = 4.0 ;inexact

Note: If any argument is inexact, then the result will also be inexact (unless the
procedure can prove that the inaccuracy is not large enough to afect the result, which
is possible only in unusual implementations). If mi or max is used to compare numbers
of mixed exactness, and the numerical value of the result cannot be represented as an
inexact number without loss of accuracy, then the procedure may report a violation of
an implementation restriction.4

52 MIT Scheme Reference

+ zI... procedure
* z ... procedure

These procedures return the sum or product of their arguments.

(+ 3 4) = 7
(+ 3) * 3
(:) 1 0
(*4) * 4
(*) * 1

- zA z2... procedure
/ z1 z2 ... procedure

With two or more arguments, these procedures return the difference or quotient of
their arguments, associating to the left. With one argument, however, they return the

additive or multiplicative inverse of their argument.

(-3 4) 40 -1
-3 4 5) = -6

(-3) * -3
(3 4 5) * 3/20
(3) * 1/3

1+ z procedure+
-1+ z procedure+

(1+ z) is equivalent to (+ z 1); (-1+ z) is equivalent to (- z 1).

abs x procedure
abs returns the magnitude of its argument.

(abs -7) 4 7

quotient nl n2 procedure
remainder nl n2 procedure
modulo n1 n2 procedure

These procedures implement number-theoretic (integer) division: for positive integers

n1 and n2, if n3 and n4 are integers such that

nj = n 2n 3 + n4

4 MIT Scheme signals an error in this case.

Chapter 4: Numbers 53

0 _< n4 < n2

then

(quotient n1 n2) * n3
(remainder nI n2) = n4
(modulo ni n2) 4* n4

For integers nI and n2 with n2 not equal to 0,

(= nI
(+ (* n2 (quotient ni n2))

(remainder n1 n2)))

provided all numbers involved in that computation are exact.

The value returned by quotient always has the sign of the product of its arguments.
remainder and modulo differ on negative arguments - the remainder always has the
sign of the dividend, the modulo always has the sign of the divisor:

(modulo 13 4) =0. 1
(remainder 13 4) 4. 1

(modulo -13 4) 4- 3
(remainder -13 4) *• -1

(modulo 13 -4) = -3
(remainder 13 -4) Ap 1

(modulo -13 -4) * -1
(remainder -13 -4) = -1

(remainder -13 -4.0) = -1.0 ;inexact

Note that quotient is the same as integer-truncate.

integer-floor nI n2 procedure+
integer-ceiling ni n2 procedure+
integer-truncate n1 n2 procedure+
integer-round nI n2 procedure+

These procedures combine integer division with rounding. For example, the following

54 MIT Scheme Reference

are equivalent:

(integer-floor nl n2)
(floor (U n1 n2))

However, the former is faster and does not produce an intermediate result.

Note that integer-truncate is the same as quotient.

integer-divide ni n2 procedure+
integer-divide-quotient qr procedure+
integer-divide-remainder qr procedure+

integer-divide is equivalent to performing both quotient and remainder at once.
The result of integer-divide is an object with two components; the procedures
integer-divide-quotient and integer-divide-remainder select those components.
These procedures axe useful when both the quotient and remainder are needed; often
computing both of these numbers simultaneously is much faster than computing them

separately.

For example, the following are equivalent:

(lambda (n d)
(cons (quotient n d)

(remainder n d)))

(lambda (n d)
(let ((qr (integer-divide n d)))

(cons (integer-divide-quotient qr)
(integer-divide-remainder qr))))

gcd ni ... procedure

1cm nI ... procedure

These procedures return the greatest common divisor or least common multiple of their
arguments. The result is always non-negative.

Chapter 4: Numbers 55

(gcd 32 -36) =0. 4
(gcd) 4)* 0

(1cm. 32 -36) 4* 288
(1cm 32.0 -36) =* 288.0 ; inexact
(1cm) 40. 1

numerator q procedure
denominator q procedure

These procedures return the numerator or denominator of their argument; the result
is computed as if the argument was represented as a fraction in lowest terms. The
denominator is always positive. The denominator of 0 is defined to be 1.

(numerator (/ 6 4)) * 3
(denominator (U 6 4)) * 2
(denominator (exact->inexact (U 6 4))) =* 2.0

floor x procedure
ceiling x procedure
truncate x procedure
round x procedure

These procedures return integers, floor returns the largest integer not larger than
x. ceiling returns the smallest integer not smaller than x. truncate returns the
integer closest to x whose absolute value is not larger than the absolute value of x.
round returns the closest integer to x, rounding to even when x is halfway between two
integers.

Rationale: round rounds to even for consistency with the rounding modes required by
the IEEE floating point standard.

Note: If the argument to one of these procedures is inexact, then the result will also be
inexact. If an exact value is needed, the result should be passed to the inexact->exact
procedure (or use one of the procedures below).

56 MIT Scheme Reference

(floor -4.3) 4 -5.0
(ceiling -4.3) : -4.0
(truncate -4.3) * -4.0
(round -4.3) = -4.0

(floor 3.5) = 3.0
(ceiling 3.5) = 4.0
(truncate 3.5) * 3.0
(round 3.5) * 4.0 ; inexact

(round 7/2) = 4 ; exact
(round 7) * 7

floor->exact x procedure+
ceiling->exact x procedure+
truncate->exact x procedure+
round->exact x procedure+

These procedures are similar to the preceding procedures except that they always return
an exact result. For example, the following are equivalent

(floor->exact x)
(inexact->exact (floor x))

except that the former is faster and has fewer range restrictions.

rationalize x y procedure
rationalize->exact x y procedure+

rationalize returns the simplest rational number differing from x by no more than
y. A rational number rl is simpler than another rational number r2 if rlpl/ql
and r2-p2/q2 (both in lowest terms) and Ipl I<-Ip21 and Iql I<-1q21. Thus 3/5 is
simpler than 4/7. Although not all rationals are comparable in this ordering (consider
2/7 and 3/5) any interval contains a rational number that is simpler than every other
rational number in that interval (the simpler 2/5 lies between 2/7 and 3/5). Note that
0-0/1 is the simplest rational of all.

(rationalize (inexact->exact .3) 1/10) * 1/3 ;exact
(rationalize .3 1/10) * #ii/3 ;inexact

rationalize->exact is similar to rationalize except that it always returns an exact
result.

Chapter 4: Numbers 57

simplest-rational x y procedure+
simplest-exact-rational x y procedure+

simplest-rational returns the simplest rational number between x and y inclusive;
simplest-exact-rational is similar except that it always returns an exact result.

These procedures implement the same functionality as rationalize and rationalize-
>exact, except that they specify the input range by its endpoints; rationalize spec-
ifies the range by its center point and its (half-) width.

exp z procedure
log z procedure
sin z procedure
cos z procedure
tan z procedure
asin z procedure
acos z procedure
atan z procedure
atan y x procedure

These procedures compute the usual transcendental functions. log computes the natu-
ral logarithm of z (not the base teL logarithm). asin, acos, and atan compute arcsine,
arccosine, and arctangent, respectively. The two-argument variant of atan computes
(angle (make-rectangular x y)) (see below).

In general, the mathematical functions log, arcsine, arccosine, and arctangent are mul-
tiply defined. For nonzero real x, the value of log x is defined to be the one whose
imaginary part lies in the range minus pi (exclusive) to pi (inclusive). log 0 is unde-
fined. The value of log z when z is complex is defined according to the formula

log z = log magnitude(z) + iangle(z)

With log defined this way, the values of arcsine, arccosine, and arctangent are according
to the following formulae:

sin- 1 z= -ilog(iz + v/- 7 z2)

cos- 1 z = r/2 - sin-1 z

tan-' z = (log(l + iz) - log(l - iz))/(2i)

The above specification follows Common Lisp: the Language, which in turn cites Prin-
cipal Values and Branch Cuts in Complex APL; refer to these sources for more detailed
discussion of branch cuts, boundary conditions, and implementation of these functions.
When it is possible these procedures produce a real result from a real argument.

58 MIT Scheme Reference

sqrt z procedure

Returns the principal square root of z. The result will have either positive real part,
or zero real part and non-negative imaginary part.

expt z1 z2 procedure
Returns zA raised to the power z2:

00 is defined to be equal to 1.

make-rectangular xl x2 procedure
make-polar xl x2 procedure
real-part z procedure
imag-part z procedure
magnitude z procedure
angle z procedure
conjugate z procedure+

Suppose xl, x2, x3, and x4 are real numbers and z is a complex number such that

z = x1 +Xzi = X 3 •eiX4

Then make-rectangular and make-polar return z, real-part returns xl, imag-part
returns x2, magnitude returns x3, and angle returns x4. In the case of angle, whose
value is not uniquely determined by the preceding rule, the value returned will be the
one in the range minus pi (exclusive) to pi (inclusive).

conjugate returns the complex conjugate of z.

exact->inexact z procedure
inexact->exact z procedure

exact->inexact returns an inexact representation of z. The value returned is the
inexact number that is numerically closest to the argument. If an exact argument has
no reasonably close inexact equivalent, then a violation of an implementation restriction
may be reported; MIT Scheme signals an error in this case.

inexact->exact returns an exact representation of z. The value returned is the exact
number that is numerically closest to the argument. If an inexact argument has no
reasonably close exact equivalent, then a violation of an implementation restriction
may be reported; MIT Scheme signals an error in this case.

Chapter 4: Numbers 59

These procedures implement the natural one-to-one correspondence between exact and
inexact integers throughout an implementation-dependent range. See Section 4.3 [Im-
plementation restrictions], page 47.

4.6 Numerical input and output

number->string number [radix] procedure
Radix must be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to 10.
The procedure number->string takes a number and a radix and returns as a string an
external representation of the given number in the given radix such that

(let ((number number)
(radix radix))

(eqv? number
(string->number (number->string number radix)

radix)))

is true. It is an error if no possible result makes this expression true.

If number is inexact, the radix is 10, and the above expression can be satisfied by
a result that contains a decimal point, then the result contains a decimal point and
is expressed using the minimum number of digits (exclusive of exponent and trailing
zeroes) needed to make the above expression true; otherwise the format of the result is
unspecified.

The result returned by number->string never contains an explicit radix prefix.

Note: The error case can occur only when number is not a complex number or is a
complex number with an non-rational real or imaginary part.

Rationale: If number is an inexact number represented using flonums, and the radix
is 10, then the above expression is normally satisfied by a result containing a decimal
point. The unspecified case allows for infinities, NaNs, and non-flonum representations.

string->number string [radix] procedure

Returns a number orthe maximally precise representation expressed by the given string.

Radix must be an exact integer, either 2, 8, 10, or 16. If supplied, radix is a default

60 MIT Scheme Reference

radix that may be overridden by an explicit radix prefix in string (e.g. "#o1771). If

radix is not supplied, then the default radix is 10. If string is not a syntactically valid

notation for a number, then string->number returns #f.

(string->number "100") 1 100
(string->number "100" 16) * 256
(string->number "le2") 0 100.0
(string->number "15##") * 1500.0

4.7 Fixnum and Flonum Operations

This section describes numerical operations that are restricted forms of the operations described

above. These operations are useful because they compile very efficiently. However, care should be
exercised: if used improperly, these operations can return incorrect answers, or even malformed

objects that confuse the garbage collector.

4.7.1 Fixnum Operations

A fixnum is an exact integer that is small enough to fit in a machine word. In MIT Scheme,

fixnums are typically 24 or 26 bits, depending on the machine; it is reasonable to assume that
fixnums are at least 24 bits. Fixnums are signed; they are encoded using 2's complement.

All exact integers that are small enough to be encoded as fixnums are always encoded as fixnums

- in other words, any exact integer that is not a fixnum is too big to be encoded as such. For this
reason, small constants such as 0 or 1 are guaranteed to be fixnums.

flx:flxnum? object procedure+

Returns #t if object is a fixnum; otherwise returns #f.

Here is an expression that determines the largest fixnum:

(let loop ((n 0))
(let ((, (+ n 1)))

(if (fix:fixnum? m)
(loop n)
n)))

Chapter 4: Numbers 61

A similar expression determines the smallest fixnum.

fix:= fixnum fixnum procedure+
fix:< fixnum fixnum procedure+
fix:> fixnum fixnum procedure+
fix:<= fixnum fixnum procedure+
fix:>- fixnum fixnum procedure+

These are the standard order and equality predicates on fixnums. When compiled, they
do not check the types of their arguments.

fix:zero? fixnum procedure+
fix:positive? fixnum procedure+
fix:negative? fixnum procedure+

These procedures compare their argument to zero. When compiled, they do not check
the type of their argument. The code produced by the following expressions is identical:

(fix:zero? fixnum)
(fix:a fixnum 0)

Similarly, fix:positive? and fix:negative? produce code identical to equivalent
expressions using fix: > and fix: <.

fix:+ fixnum fixnum procedure+
fix:- fixnum fixnum procedure+
fix:* fixnum fixnum procedure+
fix:quotient fixnum fixnum procedure+
fix:remainder fixnum fixnum procedure+
fix:gcd fixnum fixnum procedure+
fix:1+ fixnum procedure+
fix:-l+ fixnum procedure+

These procedures are the standard arithmetic operations on fixnums. When compiled,
they do not check the types of their arguments. Furthermore, they do not check to
see if the result can be encoded as a fixnum. If the result is too large to be encoded
as a fixnum, a malformed object is returned, with potentially disastrous effect on the

garbage collector.

fix:divide fixnum fixnum procedure+
This procedure is like integer-divide, except that its arguments and its results must

62 MIT Scheme Reference

be fixnums. It should be used in conjunction with integer-divide-quotient and
integer-divide-remainder.

The following are bitwise-logical operations on fixnums.

fix:not fixnum procedure+
This returns the bitwise-logical inverse of its argument. When compiled, it does not
check the type of its argument.

(fix:not 0) * -i
(fix:not -1) 0
(fix:not 1) = -2
(fix:not -34) * 33

fix:and fixnum fixnum procedure+

This returns the bitwise-logical "and" of its arguments. When compiled, it does not
check the types of its arguments.

(fix:and #x43 *xOf) = 3
(fix:and *x43 #xfO) * #x40

flx:andc fixnum fixnum procedure+

Returns the bitwise-logical "and" of the first argument with the bitwise-logical inverse
of the second argument. When compiled, it does not check the types of its arguments.

(fix:andc #x43 Sx0f) *> *x40
(fix:andc #x43 #xf0) * 3

fix:or fixnum fixnum procedure+

This returns the bitwise-logical "inclusive or" of its arguments. When compiled, it does
not check the types of its arguments.

(fix:or #x40 3) * *x43
(fix:or #x41 3) * #x43

fix:xor fixnum fixnum procedure+

This returns the bitwise-logical "exclusive or" of its arguments. When compiled, it

Chapter 4: Numbers 63

does not check the types of its arguments.

(fix:xor *x40 3) * #x43
(fix:xor #x41 3) * #x42

fix:Ish fixnuml fixnum2 procedure+

This procedure returns the result of logically shifting fixnuml by fixnum2 bits. If
fixnum2 is positive, fixnuml is shifted left; if negative, it is shifted right. When com-
piled, it does not check the types of its arguments, nor the validity of its result.

(fix:lsh 1 10) * #x400
(fix:lsh #432 -10) 1 1
(fix:lsh -1 3) * -8
(fix:lsh -128 -4) * -8

4.7.2 Flonum Operations

A fionum is -n inexact real number that is implemented as a floating-point number. In MIT

Scheme, all inexact real numbers are flonums. For this reason, constants such as 0. and 2.3 are
guaranteed to be flonums.

flo:flonum? object procedure+

Returns #t if object is a flonum; otherwise returns #U.

flo:- fionuml flonum2 procedure+

flo:< fionuml fionum2 procedure+
flo:> fionuml flonum2 procedure+

These procedures are the standard order and equality predicates on flonums. When
compiled, they do not check the types of their arguments.

flo:zero? fionum procedure+

flo:positive? flonum procedure+

flo:negative? fionum procedure+
Each of these procedures compares its argument to zero. When compiled, they do not
check the type of their argument.

64 MIT Scheme Reference

flo:+ flonuml flionum2 procedure+
fio:- fionuml flonum2 procedure+
flo:* fionurnl flonum2 procedure+
flo:/ flonuml fionum2 procedure+

These procedures are the standard arithmetic operations on flonums. When compiled,
they do not check the types of their arguments.

fio:negate flonum procedure+
This procedure returns the negation of its argument. When compiled, it does not check
the type of its argument. Equivalent to (f lo: - 0 flonum).

fio:abs flonum procedure+
flo:exp flionum procedure+
flo:Iog flionum procedure+
fio:sin fionum procedure+
flo:cos flonum procedure+
fio:tan lionum procedure+
fio:asin flonum procedure+
flo:acos flionum procedure+
flo:atan flonum procedure+
flo:sqrt flionum procedure+
flo:expt fionuml flionum2 procedure+
flo:floor flonum procedure+
flo:ceiling flonum procedure+
fio:truncate flionum procedure+
fio:round flonum procedure+
fio:floor->exact flionum procedure+
flo:ceiling->exact fionum procedure+
fio:truncate->exact flonum procedure+
fio:round->exact flonum procedure+

These procedures are flonum versions of the corresponding procedures. When compiled,
they do not check the types of their arguments.

fio:atan2 fionuml flionum2 procedure+
This is the flonum version of atan with two arguments. When compiled, it does not
check the types of its arguments.

Chapter 5: Characters 65

5 Characters

Characters are objects that represent printed characters, such as letters and digits.'

5.1 External Representation of Characters

Characters are written using the notation #\character or #\character-name. For example:

\a ;lowercase letter
AA ;uppercase letter

W\ (; left parenthesis
A\space ; the space character
#\newline ; the newline character

Case is significant in *\character, but not in A\character-name. If character in #\character is a
letter, character must be followed by a delimiter character such as a space or parenthesis. Characters
written in the A\ notation are self-evaluating; you don't need to quote them.

A character name may include one or more bucky bit prefixes to indicate that the character
includes one or more of the keyboard shift keys Control, Meta, Super, Hyper, or Top (note that
the Control bucky bit prefix is not the same as the ASCII control key). The bucky bit prefixes and
their meanings are as follows (case is not significant):

Key Bucky bit prefix Bucky bit

Meta M- or Meta- I
Control C- or Control- 2
Super S- or Super- 4
Hyper H- or Hyper- 8
Top T- or Top- 16

For example,

1Some of the details in this section depend on the fact that the underlying operating system

uses the ASCII character set. This may change when someone ports MIT Scheme to a non-AscII

operating system.

66 MIT Scheme Reference

#\c-a ;Control-a
8\meta-b ; Meta-b
#\c-s-m-h-a ; Control-Met a-Super-Hyper-A

The following character-names are supported, shown here with their ASCII equivalents:

Character Name ASCII Name

altmode ESC
backnext US
backspace BS
call SUB
linefeed LF
page FF
return CR
rubout DEL
space
tab HT

In addition, #\newline is either #\linefeed or #\return, depending on the operating system

that Scheme is running under. All of the standard ASCH names for non-printing characters are
supported:

NUL SOH STX ETX EOT ENQ ACK BEL
BS HT LF VT FF CR SO SI
DLE DC1 DC2 DC3 DC4 NAK SYN ETB
CAN EN SUB ESC FS GS RS US
DEL

char->name char (slashify.1 procedure+

Returns a string corresponding to the printed representation of char. This is the char-
acter or character-name component of the external representation, combined with the

appropriate bucky bit prefixes.

(char->name A\a) * "a"
(char->name #\space) =4 "Space"
(char->name A\c-a) =0 "C-a"
(char->name A\control-a) =0 "C-a"

Slahify?, if specified and true, says to insert the necessary backslash characters in the
result so that read will parse it correctly. In other words, the following generates the
external representation of char:

Chapter 5: Characters 67

(string-append "#\\" (char->name char St))

If slashify? is not specified, it defaults to If.

name->char string procedure+
Converts a string that names a character into the character specified. If string does
not name any character, signals an error.

(name->char "a") = I\a
(name->char "space") * I\Space
(name->char "c-a") * I\C-a
(name->char "control-a") * I\C-a

5.2 Comparison of Characters

char=? charl char2 procedure
char<? char! char2 procedure
char>? chari char2 procedure
char<=? charl char2 procedure

char>=? chari char2 procedure
char-ci=? char) char2 procedure

char-ci<? chari char2 procedure
char-ci>? charl char2 procedure
char-ci<=? char/ char2 procedure
char-ci>=? char) char2 procedure

Returns st if the specified characters are have the appropriate order relationship to
one another; otherwise returns If. The -ci procedures don't distinguish uppercase
and lowercase letters.

Character ordering follows these rules:

"* The digits are in order; for example, (char<? #\O A\9) returns #t.

"* The uppercase characters are in order; for example, (char,:? #\A A\B) returns It.

"• The lowercase characters are in order; for example, (char.<? *\a #\b) returns #t.

In addition, MIT Scheme orders those characters that satisfy char-standard? the same
way that ASCII does. Specifically, all the digits precede all the uppercase letters, and

all the upper-case letters precede all the lowercase letters.

68 MIT Scheme Reference

Characters are ordered by first comparing their bucky bits part and then their code
part. In particular, characters without bucky bits come before characters with bucky

bits.

5.3 Miscellaneous Character Operations

char? object procedure

Returns #t if object is a character; otherwise returns #f.

char-upcase char procedure
char-downcase char procedure

Returns the uppercase or lowercase equivalent of char if char is a letter; otherwise

returns char. These procedures return a character char2 such that (char-ci=? char
char2).

char->digit char [radix] procedure+

If char is a character representing a digit in the given radix, returns the corresponding

integer value. If you specify radix (which must be an exact integer between 2 and 36
inclusive), the conversion is done in that base, otherwise it is done in base 10. If char
doesn't represent a digit in base radix, char->digit returns #f.

Note that this procedure is insensitive to the alphabetic case of char.

(char->digit *\8) => 8
(char->digit #\e 16) • 14
(char->digit #\e) • #f

digit->char digit [radix] procedure+
Returns a character that represents digit in the radix given by radix. Radix must be
an exact integer between 2 and 36 (inclusive), and defaults to 10. Digit, which must

be an exact non-negative integer, should be less than radix; if digit is greater than or
equal to radix, digit->char returns #f.

(digit->char 8) # #\8
(digit->char 14 16) * I\E

Chapter 5: Characters 69

5.4 Internal Representation of Characters

An MIT Scheme character consists of a code part and a bucky bits part. The MIT Scheme

set of characters can represent more characters than ASCII can; it includes characters with Super,

Hyper, and Top bucky bits, as well as Control and Meta. Every ASCII character corresponds to

some MIT Scheme character, but not vice versa. 2

MIT Scheme uses a 7-bit ASCII character code with 5 bucky bits. The least significant bucky

bit, Meta, is stored adjacent to the MSB of the character code, allowing the least significant 8 bits

of a character object to be interpreted as ordinary ASCII with a meta bit. This is compatible with

standard practice for 8-bit characters when meta bits are employed.

make-char code bucky-bits procedure+

Builds a character from code and bucky-bits. Both code and bucky-bits must be exact

non-negative integers in the appropriate range. Use char-code and char-bits to

extract the code and bucky bits from the character. If 0 is specified for bucky-bits,

make-char produces an ordinary character; otherwise, the appropriate bits are turned

on as follows:

1 Meta
2 Control
4 Super
8 Hyper
16 Top

For example,

(make-char 97 0) * #\a
(make-char 97 1) * t\M-a
(make-char 97 2) =* *\C-a
(make-char 97 3) = #\C-M-a

char-bits char procedure+

Returns the exact integer representation of char's bucky bits. For example,

2 Note that the Control bucky bit is different from the ASCII control key. This means that #\SOH

(ASCII ctrl-A) is different from #\C-A. In fact, the Control bucky bit is completely orthogonal

to the ASCII control key, making possible such characters as #\C-SOH.

70 MIT Scheme Reference

(char-bits #\a) * 0
(char-bits #\m-a) 40 1
(char-bits #\c-a) * 2
(char-bits #\c-m-a) * 3

char-code char procedure+

Returns the character code of char, an exact integer. For example,

(char-code #\a) * 97
(char-code #\c-a) * 97

char-code-limit variable+

char-bits-limit variable+
These variables define the (exclusive) upper limits for the character code and bucky
bits (respectively). The character code and bucky bits are always exact non-negative

integers, and are strictly less than the value of their respective limit variable.

char->integer char procedure
integer->char k procedure

char->integer returns the character code representation for char. integer->char
returns the character whose character code representation is k.

In MIT Scheme, if (char-ascii? char) is true, then

(eqv? (char->ascii char) (char->integer char))

However, this behavior is not required by the Scheme standard, and code that depends
on it is not portable to other implementations.

These procedures implement order isomorphisms between the set of characters urder

the char<-? ordering and some subset of the integers under the <- ordering. That is,
if

(char<? a b) =:; ft and (<= X y) * St

and x and y are in the range of char->integer, then

Chapter 5: Characters 71

(<= (char->integer a)
(char->integer b)) I at

(char<=? (integer->char x)
(integer->char y)) t #t

char-integer-limit variable+
The range of char->integer is defined to be the exact non-negative integers that are

less than the value of this variable (exclusive).

5.5 ASCII Characters

MIT Scheme internally uses ASCII codes for I/o, and stores character objects in a fashion that
makes it convenient to convert between ASCII codes and characters. Also, character strings are
implemented as byte vectors whose elements are ASCII codes; these codes are converted to character

objects when accessed. For these reasons it is sometimes desirable to be able to convert between

ASCII codes and characters.

Not all characters can be represented as ASCII codes. A character that has an equivalent ASCII

representation is called an ASCII character.

char-ascii? char. procedure+

Returns the ASCII code for char if char has an ASCII representation; otherwise returns
#f.

In the current implementation, the characters that satisfy this predicate are those in
which the Control, Super, Hyper, and Top bucky bits are turned off. All characters for
which the char-bits procedure returns 0 or I (i.e. no bucky bits, or just Meta) count

as legal ASCII characters.

char->ascii char pro,.edure+

Returns the ASCII code for char. An error is signalled if char doesn't have an ASCII
representation.

ascii->char code procedure+

Code must be the exact integer representation of an ASCII code. This procedure returns

the character corresp,-,ding to code.

72 MIT Scheme Reference

5.6 Character Sets

MIT Scheme's character-set abstraction is used to represent groups of characters, such as the
letters or digits. Character sets may contain only ASCII characters; in the future this may be
changed to allow the full range of characters.

There is no meaningful external representation for character sets; use char-set-members to
examine their contents. There is (at present) no specific equivalence predicate for character sets;
use equal? for this purpose.

char-set? object procedure+
Returns *t if object is a character set; otherwise returns #f. 3

char-set:upper-case variable+
char-set:lower-case variable+
char- set:alphabetic variable+
char-set:numeric variable+
char-set:alphanumeric variable+
char-set:whitespace variable+
char- set: not-whitespace variable+
char-set:graphic variable+
char- set: not-graphic variable+
char-set :standard variable+

These variables contain predefined character sets. To see the contents of one of these
sets, use char-set-members.

Alphabetic characters are the 52 upper and lower case letters. Numeric characters are
the 10 decimal digits. Alphanumeric characters are those in the union of these two
sets. Whitespace characters are #\space, #\tab, #\page, #\linefeed, and #\return.

Graphic characters are the printing characters and #\space. Standard characters are
the printing characters, #\space, and #\newline. These are the printing characters:

3 Because character sets are implemented as strings, string? returns ft for character set objects.
However, string operations aren't meaningful with character sets.

Chapter 5: Characters 73

0123456789

: ; <-> ?a
A B CD E F G H IJK L MN OP Q R S TUV V X Y Z

a b cde f g hi j k 1 mn op q r st u v vx y z
f I})-

char-upper-case? char procedure
char-lower-case? char procedure
char-alphabetic? char procedure
char-numeric? char procedure
char-alphanumeric? char procedure+
char-whitespace? char procedure
char-graphic? char procedure+
char-standard? object procedure+

These predicates are defined in terms of the respective character sets defined above.

char-set-members char-set procedure+

Returns a newly allocated list of the characters in char-set.

char-set-member? char-set char procedure+
Returns st if the char is in char-set; otherwise returns Uf.

char-set char ... procedure+
Returns a character set consisting of the specified ASCII characters. With no arguments,
char-set returns an empty character set.

chars->char-set chars procedure+
Returns a character set consisting of chars, which must be a list of ASCII characters.
This is equivalent to (apply char-set chars).

ascii-range->char-set lower upper procedure+
Lower and upper must be exact non-negative integers representing ASCII character
codes, and lower must be less than or equal to upper. This procedure creates and
returns a new character set consisting of the characters whose ASCII codes are between
lower (inclusive) and upper (exclusive).

predicate->char-set predicate procedure+

Predicate must be a procedure of one argument. predicate->char-set creates and
returns a character set consisting of the ASCII characters for which predicate is true.

'4 iMIT Scheme Reference

char-set-difference char-set l char-set2 procedure+
Returns a character set consisting of the characters that are in char-setl but aren't in
char-set2.

char-set-intersection char-set1 char-set2 procedure+

Returns a character set consisting of the characters that are in both char-setl and
char-set2.

char-set-union char-set) char-set2 procedure+
Returns a character set consisting of the characters that are in one or both of char-setl
and char-set2.

char-set-invert char-set procedure+
Returns a character set consisting of the ASCII characters that are not in char-set.

Chapter 6: Strings -5

6 Strings

A string is a mutable sequence of characters. In the current implementation of MIT Scheme,

the elements of a string must all satisfy the predicate char-ascii?; if someone ports MIT Scheme

to a non-ASCII operating system this requirement will change.

A string is written as a sequence of characters enclosed within double quotes " ". To include a

double quote inside a string, precede the double quote with a backslash \ (escape it), as in

"The word \"recursion\" has many meanings."

The printed representation of this string is

The word "recursion" has many meanings.

To include a backslash inside a string, precede it with another backslash; for example,

"Use #\\Control-q to quit."

The printed representation of this string is

Use #\Control-q to quit.

The effect of a backslash that doesn't precede a double quote or backslash is unspecified in

standard Scheme, but MIT Scheme specifies the effect for three other characters: \t, \n, and \f.

These escape sequences are respectively translated into the following characters: #\tab, #\newline,
and #\page. Finally, a backslash followed by exactly three octal digits is translated into the

character whose ASCII code is those digits.

If a string literal is continued from one line to another, the string will contain the newline

character (#\newline) at the line break.

The length of a string is the number of characters that it contains. This number is an exact non-

negative integer that is established when the string is created (but see Section 6.9 [Variable-Length

Strings], page 84). Each character in a string has an index, which is a number that indicates the

character's position in the string. The index of the first (leftmost) character in a string is 0, and

the index of the last character is one less than the length of the string. The valid indexes of a string
are the exact non-negative integers less than the length of the string.

76 MIT Scheme Reference

A number of the string procedures operate on substrings. A substring is a segment of a string,
which is specified by two integers start and end satisfying these relationships:

0 <= start <= end <= (string-length string)

Start is the index of the first character in the substring, and end ii one greater than the index of the
last character in the substring. Thus if start and end are equal, they refer to an empty substring,
and if start is zero and end is the length of string, they refer to all of string.

Some of the procedures that operate on strings ignore the difference between uppercase and
lowercase. The versions that ignore case include '-ci' (for "case insensitive") in their names.

6.1 Construction of Strings

make-string k [char] procedure
Returns a newly allocated string of length k. If you specify char, all elements of the
string are initialized to char, otherwise the contents of the string are unspecified. Char

must satisfy the predicate char-ascii?.

string char... procedure+
Returns a newly allocated string consisting of the specified characters. The arguments
must all satisfy char-ascii?.

(string A\a) * "a"
(string #\a \b A\c) * "abc"
(string A\a #\space A\b A\space #\c) =0 "a b c"
(string) =0 l"

For compatibility with old code, char->string is a synonym for this procedure.

list->string char-list procedure
Char-list must be a list of ASCII characters. list->string returns a newly allocated
string formed from the elements of char-list. This is equivalent to (apply string
char-list). The inverse of this operation is string->list.

string-copy string procedure
Returns a newly allocated copy of string.

Chapter 6: Strings 77

Note regarding variable-length strings: the maximum length of the result depends only

on the length of string, not its maximum length. If you wish to copy a string and
preserve its maximum length, do the following:

(define (string-copy-preserving-max-length string)
(let ((length))

(dynamic-wind
(lambda 0)

(set! length (string-length string))
(set-string-length! string (string-maximum-length string)))

(lambda 0)
(string-copy string))

(lambda 0)
(set-string-length! string length)))))

6.2 Selecting String Components

string? object procedure
Returns *t if object is a string; otherwise returns #f.

string-length string procedure
Returns the length of string as an exact non-negative integer.

string-null? string procedure
Returns #t if string has zero length; otherwise returns #f.

string-ref string k procedure
Returns character k of string. K must be a valid index of string.

string-set! string k char procedure
Stores char in element k of string and returns an unspecified value. K must be a valid
index of string, and char must satisfy the predicate char-ascii?.

6.3 Comparison of Strings

78 MIT Scheme Reference

string=? stringi string2 procedure

substring-? stringi start end string2 start end procedure+

string-ci-? stringi string2 procedure

substring-ci-? stringi start end string2 start end procedure+

Returns #t if the two strings (substrings) are the same length and contain the same

characters in the same (relative) positions; otherwise returns It. string-cis? and

substring-ci=? don't distinguish uppercase and lowercase letters, but string=? and

substringf? do.

string<? string1 string2 procedure
substring<? stringi starti end) string2 start2 end2 procedure+

string>? stringi string2 procedure
string<=? stringl string2 procedure

string>=? stringl string2 procedure
string-ci<? stringl string2 procedure

substring-ci<? stringl startl end1 string2 start2 end2 procedure+

string-ci>? string) string2 procedure
string-ci<=? stringi string2 procedure
string-ci>=? stringi string2 procedure

These procedures compare strings (substrings) according to the order of the characters
they contain (also see Section 5.2 (Comparison of Characters], page 67). The arguments

are compared using a lexicographic (or dictionary) order. If two strings differ in length

but are the same up to the length of the shorter string, the shorter string is considered
to be less than the longer string.

string-compare stringi string2 if-eq if-It if-gt procedure+
string-compare-ci stringl string2 if-eq if-It if-gt procedure+

If-eq, if-It, and if-gt are procedures of no arguments (thunks). The two strings are

compared; if they are equal, if-eq is applied, if string1 is less than string2, if-It is applied,
else if stringi is greater than string2, if-gt is applied. The value of the procedure is the

value of the thunk that is applied.

string-compare distinguishes uppercase and lowercase letters; string-compare-ci

does not.

string-hash string procedure+

string-hash-mod string k procedure+

string-hash returns an exact non-negative integer that can be used for storing the

specified string in a hash table. Equal strings (in the sense of strings?) return equal

| | IIIIIIIIIllmmm m m ~ mn mmM

Chapter 6: Strings 79

(=) hash codes, and non-equal but similar strings are usually mapped to distinct hash
codes.

string-hash-mod is like string-hash, except that it limits the result to a particular
range based on the exact non-negative integer k. The following are equivalent:

(string-hash-mod string k)
(modulo (string-hash string) k)

6.4 Alphabetic Case in Strings

string-capitalized? string procedure+
substring-capitalized? string start end procedure+

These procedures st if the first character in the string (substring) is an uppercase letter
and none of the remaining characters are uppercase letters. If the first character is not
an uppercase letter or if any of the remaining characters are uppercase letters, they
return Of. If the string (substring) contains less than two letters, they return Of.

string-upper-case? string procedure+
substring-upper-case? string start end procedure+
string-lower-case? string procedure+
substring-lower-case? string start end procedure+

These procedures return #t if all the letters in the string (substring) are of the correct
case, otherwise they return If. The string (substring) must contain at least one letter
or the procedures return Of.

string-capitalize string procedure+
string-capitalize! string procedure+

string-capitaliz, returns a newly ai~ucated copy of string in which the first character
is uppercase and the remaining letters are lowercase. For example, "abcDEF" becomes
"Abcdef". string-capitalize! is the destructive version of string-capit alize: it
alters string and returns an unspecified value.

string-downcase string procedure+
string-downcase! string procedure+
substring-downcase! string start end procedure+

string-doimcas. returns a newly allocated copy of string in which all uppercase letters

80 MIT Scheme Reference

are changed to lowercase. string-downcase! is the destructive version of string-
douncase: it alters string and returns an unspecified value. substring-doincase!
destructively changes the case of the specified part of string.

string-upcase string procedure+
string-upcase! string procedure+
substring- upcase! string start end procedure+

string-upcase returns a newly allocated copy of string in which all lowercase let-
ters are changed to uppercase. string-upcase! is the destructive version of string-
upcase: it alters string and returns an unspecified value. substring-upcase! destruc-
tively changes the case of the specified part of string.

6.5 Cutting and Pasting Strings

string-append string.., procedure
Returns a newly allocated string made from the concatenation of the given strings.
With no arguments, string-append returns the empty string ("").

substring string start end procedure
Returns a newly allocated string formed from the characters of string beginning with
index start (inclusive) and ending with end (exclusive).

string-head string end procedure+
Returns a newly allocated copy of the initial substring of string, up to but excluding
end. It could have been defined by:

(define (string-head string end)
(substring string 0 end))

string-tail string start procedure+
Returns a newly allocated copy of the final substring of string, starting at index start
and going to the end of string. It could have been defined by:

(define (string-tail string start)
(substring string start (string-length string)))

Chapter 6: Strings 81

string-pad-left string k [char] procedure+

string-pad-right string k [char] procedure+
These procedures return a newly allocated string created by padding string out to
length k, using char. If char is not given, it defaults to #*pace. If k is less than the

length of string, these procedures a:e equivalent to string-head, string-pad-left
adds padding characters or truncates from the beginning of the string (lowest indices),
while string-pad-right does so at the end of the string (highest indices).

string-trim string [char-set] procedure+
string-trim-left string [char-set] procedure+
string-trim-right string (char-set] procedure+

Returns a newly allocated string created by removing all characters that are not in
char-set from: (string-trim) both ends of string; (string-trim-left) the begin-

ning of string; or (string-trim-right) the end of string. Char-set defaults to char-
set :vhitespace.

6.6 Searching Strings

string-find-next-char string char procedure+
substring-find-next-char string start end char procedure+
string-flnd-next-char-ci string char procedure+
substring-find-next-char-ci string start end char procedure+

Returns the index of the first occurrence of char in the string (substring); returns
If if char does not appear in the string. For the substring procedures, the index
returned is relative to the entire string, not just the substring. The -ci procedures
don't distinguish uppercase and lowercase letters.

string-find-next-char-in-set string char-set procedure+
substring-flnd-next-char-in-set string start end char-set procedure+

Returns the index of the first character in the string (substring) that is also in char-set.
For the substring procedure, the index returned is relative to the entire string, not just
the substring.

82 MIT Scheme Reference

string-find-previous-char string char procedure+
substring-find-previous-char string start end char procedure+
string-find-previous-char-ci string char procedure+
substring-find-previous-char-ci string start end char procedure+

Returns the index of the last occurrence of char in the string (substring); returns #f if

char doesn't appear in the string. For the substring procedures, the index returned is
relative to the entire string, not just the substring. The -ci procedures don't distin-

guish uppercase and lowercase letters.

string-find-previous-char-in-set string char-set procedure+
substring-find-previous-char-in-set string start end char-set procedure+

Returns the index of the last character in the string (substring) that is also in char-set.
For the substring procedure, the index returned is relative to the entire string, not just
the substring.

6.7 Matching Strings

string-match-forward stringi string2 procedure+
substring-match-forward stringl start end string2 start end procedure+
string-match- forward-ci stringi string2 procedure+
substring-match-forward-ci stringi start end string2 start end procedure+

Compares the two strings (substrings), starting from the beginning, and returns the
number of characters that are the same. If the two strings (substrings) start differently,
returns 0. The -ci procedures don't distinguish uppercase and lowercase letters.

string-match-backward stringl string2 procedure+
substring-match-backward stringl start end string2 start end procedure+
string-match-backward-ci stringi string2 procedure+
substring-match-backward-ci stringi start end string2 start end procedure+

Compares the two strings (substrings), starting from the end and matching toward
the front, returning the number of characters that are the same. If the two strings
(substrings) end differently, returns 0. The -ci procedures don't distinguish uppercase
and lowercase letters.

Chapter 6: Strings 83

string-prefix? stringi s; ring2 procedure+

substring-prefix? stringl starti end) string2 start2 end2 procedure+
string-prefix-ci? stringl string2 procedure+

substring-prefix-ci? string1 startl endl string2 start2 end2 procedure+

These procedures return *t if the first string (substring) forms the prefix of the second;

otherwise returns *f. The -ci procedures don't distinguish uppercase and lowercase

letters.

(string-prefix? "abc" "abcdef") * St

string-suffix? stringl string2 procedure+
substring-suffix? stringi start) endl string2 start2 end2 procedure+
string-suffix-ci? stringl string2 procedure+

substring-suffix-ci? string) starti endi string2 start2 end2 procedure+
These procedures return St if the first string (substring) forms the suffix of the second;
otherwise returns #f. The -ci procedures don't distinguish uppercase and lowercase

letters.

(string-suffix? "dot" "abcdef") =0 1 t

6.8 Modification of Strings

string-replace string char) char2 procedure+
substring-replace string start end char) char2 procedure+
string-replace! string chari char2 procedure+

substring-replace! string start end char1 char2 procedure+
These procedures replace all occurrences of char) with :har2 in the original string
(substring). string-replace and substring-replace return a newly allocated string

containing the result. string-replace! and substring-replace! destructively mod-

ify string and return an unspecified value.

string-fill! string char procedure

Stores char in every element of string and returns an unspecified value.

substring-fill! string start end char procedure+

Stores char in elements start (inclusive) to end (exclusive) of string and returns an

unspecified value.

84 MIT Scheme Reference

substring- move-left! stringi startl endi string2 start2 procedure+
substring-mo,' -- right! stringi start) endi string2 start2 procedure+

Copies th, characters from start) to end) of string) into string2 at the start2-th
position. The characters are copied as follows (note that this is only important when
string) and string2 are eqv?):

substring-move-left!
The copy starts at the left end and moves toward the right (from smaller
indices to larger). Thus if string) and string2 are the same, this procedure
moves the cha-racters toward the left inside the string.

substring-move-right!
The copy starts at •he right end and moves toward the left (from larger
indices to smaller). Thus if stringl and string2 are the same, this procedure
moves the characters toward the right inside the string.

6.9 Variable-Length Strings

MIT Scheme allows the length of a string to be dynamically adjusted in a limited way. This
feature works as follows. When a new string is allocated, by whatever metl'od, it has a specific
length. At the time of allocation, it is also given a maximum length, which is guaranteed to be at
least as large as the string's length. (Sometimes the maximum length will be slightly largrr than
the length, but it is a bad idea to count on this. Programs should assume that the maximum length
is the same as the length at the time of the string's allocation.) After the string is allocated, the
operation set-string-length! can be used to alter the string's length to any value between 0 and
the string's maximum length, inclusive.

string-maximum-length string procedure+
Returns the maximum length of string. The following is guaranteed:

(<u (string-length string)
(string-maximum-length string)) #I #t

The maximum length of a string never changes.

set-string-length! string k procedure+
Alters the length of string to be k, and returns an unspecified value. K must be less
than or equal to the maximum length of string, set-string-length! does not change

Chapter 6: Strings 85

the maximum length of string.

6.10 Byte Vectors

MIT Scheme implements strings as packed vectors of 8-bit ASCII bytes. Most of the string
operations, such as string-ref, coerce these 8-bit codes into character objects. However, some

lower-level operations are made available for use.

vector-8b-ref string k procedure+

Returns character k of string as an ASCII code. K must be a valid index of string.

vector-Sb-set! string k ascii procedure+

Stores ascii in element k of string and returns an unspecified value. K must be a valid
index of string, and ascii must be a valid ASCII code.

vector-Sb-fill! string start end procedure+

Stores ascii in elements start (inclusive) to end (exclusive) of string and returns an

unspecified value. Ascii must be a valid ASCII code.

vector-8b-flnd-next-char string start end ascii procedure+

vector-8b-find-next-char-ci string start end ascii procedure+

Returns the index of the first occurrence of ascii in the given substring; returns #f if
ascii does not appear. The index returned is relative to the entire string, not just the

substring. Ascii must be a valid ASCII code.

vector-8b-f ind-next-char-ci doesn't distinguish uppercase and lowercase letters.

vector-8b-flnd-previous-char string start end ascii procedure+
vector-8b-flnd-previous-char-ci string start end ascii procedure+

Returns the index of the last occurrence of ascii in the given substring; returns #f if

ascii does not appear. The index returned is relative to the entire string, not just the
substring. Ascii must be a valid ASCII code.

vector-8b-f ina-previous- char- ci doesn't distinguish uppercase and lowercase let-
ters.

86 MIT Scheme Reference

Chapter 7: Lists 87

7 Lists

A pair (sometimes called a dotted pair) is a record structure with two fields called the car and

cdr fields (for historical reasons). Pairs are created by the procedure cons. The car and cdr fields

are accessed by the procedures car and cdr. The car and cdr fields are assigned by the procedures

set-car! and set-cdr!.

Pairs are used primarily to represent lists. A list can be defined recursively as either the empty

list or a pair whose cdr is a list. More precisely, the set of lists is defined as the smallest set X such

that

"* The empty list is in X.

"* If list is in X, then any pair whose cdr field contains list is also in X.

The objects in the car fields of successive pairs of a list are the elements of the list. For example,

a two-element list is a pair whose car is the first element and whose cdr is a pair whose car is the

second element and whose cdr is the empty list. The length of a list is the number of elements,

which is the same as the number of pairs. The empty list is a special object of its own type (it is

not a pair); it has no elements and its length is zero.1

The most general notation (external representation) for Scheme pairs is the "dotted" notation

(ci . c2) where ci is the value of the car field and c2 is the value of the cdr field. For example, (4

• 5) is a pair whose car is 4 and whose cdr is 5. Note that (4 . 5) is the external representation

of a pair, not an expression that evaluates to a pair.

A more streamlined notation can be used for lists: the elements of the list are simply enclosed

in parentheses and separated by spaces. The empty list is written 0. For example, the following

are equivalent notations for a list of symbols:

(a b c d o)
(a . (b . (c . (d . (e . ()))))

Whether a given pair is a list depends upon what is stored in the cdr field. When the sbt-cdr!

procedure is used, an object can be a list one moment and not the next:

The above definitions imply that all lists have finite length and are terminated by the empty

list.

88 MIT Scheme Reference

(define x (list 'a 'b 'c))
(define y x)
y * (a b c)
(list? y) => *t
(set-cdr! x 4) =0 unspecified
x => (a. 4)
(eqv? x y) => 9t
y * (a .4)
(list? y) => #1
(set-cdr! x x) => unspecified
(list? y) =* if

A chain of pairs that doesn't end in the empty list is called an improper list. Note that an
improper list is not a list. The list and dotted notations can be combined to represent improper
lists, as the following equivalent notations show:

(a b c d)
(a . (b (c . d)))

Within literal expressions and representations of objects read by the read procedure, the forms

'datum, 'datum, datum, and ,Qdatum denote two-element lists whose first elements are the
symbols quote, quasiquote, unquote, and unquote-splicing, respectively. The second element
in each case is datum. This convention is supported so that arbitrary Scheme programs may be
represented as lists. Among other things, this permits the use of the read procedure to parse

Scheme programs.

7.1 Pairs

This section describes the simple operations that are available for constructing and manipulating
arbitrary graphs constructed from pairs.

pair? object procedure
Returns it if object is a pair; otherwise returns #f.

(pair? '(a . b)) => it
(pair? '(a b c)) = > it
(pair? '0) =* #f
(pair? '#(a b)) 4. #f

cons obj] obj2 procedure

Returns a newly allocated pair whose car is obji and whose cdr is obj2. The pair is
guaranteed to be different (in the sense of eqv?) from every previously existing object.

Chapter 7: Lists 89

(cons 'a '() * (a)
(cons '(a) '(b c d)) =0 ((a) b c d)
(cons "a" '(b c)) * ("a" b c)
(cons 'a 3) * (a . 3)
(cons '(a b) 'c) : ((a b) . c)

car pair procedure
Returns the contents of the car field of pair. Note that it is an error to take the car of
the empty list.

(car '(a b c)) * a
(car '((a) b c d)) * (a)
(car '(1 . 2)) * 1
(car '0) Illegal datum

cdr pair procedure
Returns the contents of the cdr field of pair. Note that it is an error to take the cdr of
the empty list.

(cdr '((a) b c d)) z* (b c d)
(cdr '(1 . 2)) * 2
(cdr •) ero Illegal datum

set-car! pair object procedure
Stores object in the car field of pair. The value returned by set-car! is unspecified.

(define (f) (list 'not-a-constant-list))
(define (g) '(constant-list))
(set-car! (f) 3) * unspecified
(set-car! (g) 3) e Illegal datum

set-cdr! pair object procedure
Stores object in the cdr field of pair. The value returned by set-cdr! is unspecified.

90 MIT Scheme Reference

caar pair procedure
cadr pair procedure
cdar pair procedure
cddr pair procedure
caaar pair procedure
caadr pair procedure
cadar pair procedure
caddr pair procedure
cdaar -pair procedure
cdadr pair procedure
cddar pair procedure
cdddr pair procedure
caaaar pair procedure
caaadr pair procedure
caadar pair procedure
caaddr pair procedure
cadaar pair procedure
cadadr pair procedure
caddar pair procedure
cadddr pair procedure
cdaaar pair procedure
cdaadr pair procedure
cdadar pair procedure
cdaddr pair procedure
cddaar pair procedure
cddadr pair procedure
cdddar pair procedure
cddddr pair procedure

These procedures are compositions of car and cdr; for example, caddr could be defined
by

(define caddr (lUmbda Wx) (car (cdr (cdr x)))))

general-car-cdr object path procedure+
This procedure is a generalization of car and cdr. Path encodes a particular sequence
of car and cdr operations, which general-car-cdr executes on object. Path is an
exact non-negative integer that encodes the operations in a bitwise fashion: a zero bit
represents a cdi operation, and a one bit represents a car. The bits are executed LSB
to MSB, and the most significant one bit, rather than being interpreted as an operation,

Chapter 7: Lists 91

signals the end of the sequence. 2

For example, the following are equivalent:

(general-car-cdr object #b1011)
(cdr (car (car object)))

Here is a partial table of path/operation equivalents:

#blO cdr
#bll car
#blO0 cddr
*b101 cdar
SbllO cadr
#b111 caar
#b1OOO cdddr

tree-copy tree procedure+
This copies an arbitrary tree constructed from pairs, copying both the car and cdr
elements of every pair. This could have been defined by

(define (tree-copy tree)
(let loop ((tree tree))

(if (pair? tree)
(cons (loop (car tree)) (loop (cdr tree)))
tree)))

7.2 Construction of Lists

list object ... procedure
Returns a list of its arguments.

2 Note that path is restricted to a machine-dependent range, usually the size of a machine word.

On many machines, this means that the maximum length of path will be 30 operations (32 bits,

less the sign bit and the "end-of-sequence" bit).

92 MIT Scheme Reference

(list 'a (+ 3 4) 'c) = (a 7 c)
(list) => 0

These expressions are equivalent:

(list objil obj2 ... objN)
(cons obji (cons obj2 ... (cons objN '0) ...))

make-list k [element] procedure+
This procedure returns a newly allocated list of length k, whose elements are all element.
If element is not supplied, it defaults to the empty list.

cons* object object ... procedure+
cons* is similar to list, except that cons* conses together the last two arguments
rather than consing the last argument with the empty list. If the last argument is not
a list the result is an improper list. If the last argument is a list, the result is a list
consisting of the initial arguments and all of the items in the final argument. If there
is only one argument, the result is the argument.

(cons* 'a 'b 'c) : (a b . c)
(cons* 'a 'b '(c d)) * (a b c d)
(cons* 'a) * a

These expressions are equivalent:

(cons* objl obj2 ... objN-1 objN)
(cons obji (cons obj2 ... (cons objN-1 objN) ...))

list-copy list procedure+
Returns a newly allocated copy of list. This copies each of the pairs comprising list.
This could have been defined by

(define (list-copy list)
(if (null? list)

'0
(cons (car list)

(list-copy (cdr list)))))

Chapter 7: Lists 93

vector->list vector procedure

subvector->list vector start end procedure+
vector->list returns a newly allocated list of the elements of vector. subvector-
>list returns a newly allocated list of the elements of the given subvector. The inverse
of vector->list is list->vector.

(vector->list '#(dah dah didah)) =0 (dab dah didah)

string->list string procedure

substring->Iist string start end procedure

string->list returns a newly allocated list of the character elements of string.
substring->list returns a newly allocated list of the character elements of the given
substring. The inverse of string->list is list->string.

(string->list "abcd") * (#\a A\b #\c #\d)
(substring->list "abcdef" 1 3) : (#\b #\c)

7.3 Selecting List Components

list? object procedure+
Returns #t if object is a list, otherwise returns Sf. By definition, all lists have finite

length and are terminated by the empty list. This procedure returns an answer even
for circular structures.

Any object satisfying this predicate will also satisfy exactly one of pair? or null?.

(list? '(a b c)) * #t
(list? '0) #t
(list? '(a Wb)) * f
(let ((x (list 'a)))

(set-cdr! x x)
(list? X)) # Sf

length list procedure
Returns the length of list.

94 MIT Scheme Reference

(length '(a b c)) * 3
(length '(a (b) (c d e))) M 3
(length '0) *0

null? object procedure

Returns tt if object is the empty list; otherwise returns *f (but see Section 1.2.5 [True

and False], page 10).

(null? '(a . b)) * #f
(null? '(a b c)) * if
(null? '0) * It

list-ref list k procedure

Returns the kth element of list, using zero-origin indexing. The valid indexes of a list
are the exact non-negative integers less than the length of the list. The first element

of a list has index 0, the second has index 1, and so on.

(list-ref '(a b c d) 2) c c
(list-ref '(a b c d)

(inexact->exact (round 1.8)))
=> C

(list-ref list k) is equivalent to (car (list-tail list k)).

first list procedure+

second list procedure+

third list procedure+

fourth list procedure+

fifth list procedure+

sixth list procedure+

seventh list procedure+

eighth list procedure+

ninth list procedure+

tenth list procedure+

Returns the specified element of list, signalling an error if list is not long enough to
contain the specified element (for example, if the argument to seventh is a list that

contains only six elements).

7.4 Cutting and Pasting Lists

Chapter 7: Lists 95

sublist list start end procedure+
Start and end must be exact integers satisfying

0 <= start <= end <, (length list)

Returns a newly allocated list formed from the elements of list beginning at index start
(inclusive) and ending at end (exclusive).

list-head list k procedure+
Returns a newly allocated list consisting of the first k elements of list. K must not be
greater than the length of list.

We could have defined list-head this way:

(define (list-head list k)
(sublist list 0 k))

list-tail list k procedure
Returns the sublist of list obtained by omitting the first k elements. The result, if it is
not the empty list, shares structure with list. K must not be greater than the length
of list.

append list ... procedure

Returns a list consisting of the elements of the first list followed by the elements of the
other lists.

(apperA '(x) '(y)) ((x y)
(append '(a) '(b c d)) * (a b c d)
(append '(a (b)) '((c))) = ((a (b) (c))
(append)

The resulting list is alvays newly allocated, except that it shares structure with the
last list argument. The last argument may actually be any object; an improper list
results if the last argument is not a proper list.

(append '(a b) '(c . d)) = (a b c . d)
(append 'C) 'a) 4P a

96 MIT Scheme Reference

append! list ... procedure+

Returns a list that is the argument lists concatenated together. The arguments are
changed rather than copied. (Compare this with append, which copies arguments

rather than destroying them.) For example:

(define x '(a b c))
(define y '(d e f))
(define z '(g h))
(append! x y z) * (a b c d e f g h)
x * (a b c d e f g h)
y * (de f g h)
z => (g h)

7.5 Filtering Lists

list-transform-positive list predicate procedure+
list-transform-negative list predicate procedure+

These procedures return a newly allocated copy of list containing only the elements for
which predicate is (respectively) true or false. Predicate must be a procedure of one

argument.

delq element list procedure+

delv element list procedure+
delete element list procedure+

Returns a newly allocated copy of list with all entries equal to element removed. delq
uses eq? to compare element with the entries in list, delv uses eqv?, and delete uses
equal?.

delq! element list procedure+
delv! element list procedure+

delete! element list procedure+

Returns a list consisting of the top-level elements of list with all entries equal to el-
ement removed. These procedures are like delq, delv, and delete except that they

destructively modify list. delq! uses eq? to compare element with the entries in list,
delv! uses eqv?, and delete! uses equal?. Because the result may not be eq? to list,

it is desirable to do something like (set! x (delete! x)).

Chapter 7: Lists 97

(define x '(a b c b))
(delete 'b x) => (a c)
x => (a b c b)

(define x '(a b c b))
(delete! 'b x) *> (a c)
x *> (a c)
;; Returns correct result:
(delete! 'a x) => (c)

;; Didn't modify what x points to:
x =* (a c)

delete-member-procedure deletor predicate procedure+

Returns a deletion procedure similar to delv or delete!. Deletor should be one of

the procedures list-deletor or list-deletor!. Predicate must be an equivalence
predicate. The returned procedure accepts exactly two arguments: first, an object to

be deleted, and second, a list of objects from which it is to be deleted. If deletor is

list-deletor, the procedure returns a newly allocated copy of the given list in which

all entries equal to the given object have been removed. If deletor is list-deletor!,

the procedure returns a list consisting of the top-level elements of the given list with

all entries equal to the given object removed; the given list is destructively modified to

produce the result. In either case predicate is used to compare the given object to the

elements of the given list.

Here are some examples that demonstrate how delete-member-procedure could have
been used to implement delv and delete!:

(define delv (delete-member-procedure list-deletor eqv?))
(define delete! (delete-member-procedure list-deletor! equal?))

list-deletor predicate procedure+

list-deletor! predicate procedure+

These procedures each return a procedure that deletes elements from lists. Predicate

must bc a procedure of one argument. The returned procedure accepts exactly one

argument, which must be a proper list, and applies predicate to each of the elements

of the argument, deleting those for which it is true.

The procedure returned by list-deletor deletes elements non-destructively, by re-

turning a newly allocated copy of the argument with the appropriate elements removed.

The procedure returned by list-deletor! performs a destructive deletion.

98 MIT Scheme Reference

7.6 Searching Lists

list-search-positive list predicate procedure+
list-search-negative list predicate procedure+

Returns the first element in list for which predicate is (respectively) true or false;
returns #f if it doesn't find such an element. (This means that if predicate is true (false)
for #f, it may be impossible to distinguish a successful result from an unsuccessful one.)
Predicate must be a procedure of one argument.

memq object list procedure
memv object list procedure
member object list procedure

These procedures return the first pair of list whose car is object; the returned pair is
always one from which list is composed. If object does not occur in list, of (n.b.: not
the empty list) is returned. memq uses eq? to compare object with the elements of list,
while memv uses eqv? and member uses equal?.3

(memq 'a '(a b .c)) => (a b c)
(memq 'b '(a b c)) => (b c)
(memq 'a '(b c d)) = Sf
(memq (list 'a) '(b (a) c)) O Sf
(member (list 'a) '(b (a) c)) *> ((a) c)
(memq 101 '(100 101 102)) * unspecified
(memv 101 '(100 101 102)) * (101 102)

member-procedure predicate procedure+
Returns a procedure similar to memq, except that predicate, which must be an equiva-
lence predicate, is used Instead of eq?. This could be used to define memv as follows:

(define memv (member-procedure eqv?))

7.7 Mapping of Lists

3 Although they are often used as predicates, memq, memv, and member do not have question marks

in their names because they return useful values rather than just St or Of.

Chapter 7: Lists 99

map procedure list list ... procedure

Procedure must be a procedure taking as many arguments as there are lists. If more
than one list is given, then they must all be the same length. map applies procedure

element-wise to the elements of the lists and returns a list of the results, in order from
left to right. The dynamic order in which procedure is applied to the elements of the
lists is unspecified; use for-each to sequence side effects.

(map cadr '((a b) (d e) (g h))) (Cb e h)
(map (lambda (n) (expt n n)) '(C 2 3 4)) (C1 4 27 256)
(map + '(1 2 3) '(4 5 6)) = (5 7 9)
(let ((count 0))

(map (lambda (ignored)
(set! count (+ count 1))
count)

'(a b c))) * unspecified

map* initial-value procedure list1 list2 ... procedure+
Similar to map, except that the resulting list is terminated by initial-value rather than
the empty list. The following are equivalent:

(map procedure list list ...)
(map* ') procedure list list ...)

append-map procedure list list ... procedure+
append-map* initial-value procedure list list ... procedure+

Similar to map and map*, respectively, except that the results of applying procedure to

the elements of lists are concatenated together by append rather than by cons. The
following are equivalent, except that the former is more efficient:

(append-map procedure list list ...)

(apply append (map procedure list list ...))

append-map! procedure list list ... procedure+
append-map*! initial-value procedure list list ... procedure.

Similar to map and map*, respectively, except that the results of applying procedure to
the elements of lists are concatenated together by append! rather than by cons. The
following are equivalent, except that the former is more efficient:

100 MIT Scheme Reference

(append-map! procedure list list ...)

(apply append! (map procedure list list ...))

for-each procedure list list ... procedure

The arguments to for-each are like the arguments to map, but for-each calls proce-

dure for its side effects rather than for its values. Unlike map, for-each is guaranteed

to call procedure on the elements of the lists in order from the first element to the last,
and the value returned by for-each is unspecified.

(let ((v (make-vector 5)))
(for-each (lambda (i)

(vector-set! v i (* i i)))
'(0 1 2 3 4))

v) # 8(0 1 4 9 16)

7.8 Reduction of Lists

reduce procedure initial list procedure+
Combines all the elements of list using the binary operation procedure. For example,
using + one can add up all the elements:

(reduce + 0 list-of-numbers)

The argument initial is used only if list is empty; in this case initial is the result of the

call to reduce. If list has a single argument, it is returned. Otherwise, the arguments

are reduced in a left-associative fashion. For example:

(reduce + 0 '(1 2 3 4)) 4 10
(reduce + 0 '(1 2)) = 3
(reduce + 0 '(1)) 1 1
(reduce + 0 '0) 40 0
(reduce list '() '(1 2 3 4)) I (((1 2) 3) 4)

reduce-right procedure initial list procedure+
Like reduce except that it is right-associative.

(reduce-right list '() '(1 2 3 4)) = (1 (2 (3 4)))

Chapter 7: Lists 101

there-exists? list predicate procedure+
Predicate must be a procedure of one argument. Applies predicate to each element of
list, in order from left to right. If predicate is true for any element of list, that value
is immediately returned as the value of there-exists?; predicate will not be applied
to the remaining elements of list. If predicate returns #f for all of the elements of list,

then #f is returned.

for-all? list predicate procedure+
Predicate must be a procedure of one argument. Applies predicate to each element of
list, in order from left to right. If predicate returns If for any element of list, *f is
immediately returned as the value of for-all?; predicate will not be applied to the
remaining elements of list. If predicate is true for all of the elements of list, then #t is
returned.

7.9 Miscellaneous List Operations

circular-list object ... procedure+
make-circular-list k [element] procedure+

These procedures are like list and make-list, respectively, except that the returned
lists are circular. circular-list could have been defined like this:

(define (circular-list . objects)
(append! objects objects))

reverse list procedure
Returns a newly allocated list consisting of the top-level elements of list in reverse
order.

(reverse '(a b c)) :0- (c b a)
(reverse '(a (b c) d e (f)))) MM (4 e (f)) d (b c) a)

reverse! list procedure+
Returns a list consisting of the top-level elements of list in reverse order. reverse! is
like reverse, except that it destructively modifies list. Because the result may not be
eqv? to list, it is desirable to do something like (set! x (reverse! x)).

102 MIT Scheme Reference

last-pair list procedure+
Returns the last pair in list, which may be an improper list. last-pair could have
been defined this way:

(define last-pair
(lambda (x)

(if (pair? (cdr x))
(last-pair (cdr x))
x)))

except-last-pair list procedure+
except-last-pair! list procedure+

These procedures remove the last pair from list. List may be an improper list, except
that it must consist of at least one pair. except-last-pair returns a newly allocated
copy of list that omits the last pair. except-last-pair! destructively removes the

last pair from list and returns list. If the cdr of list is not a pair, the empty list is
returned by either procedure.

sort List procedure procedure+
Procedure must be a procedure of two arguments that defines a total ordering on the
elements of list. In other words, if x and y are two distinct elements of list, then it

must be the case that

(and (procedure x y)
(procedure y x))
=* of

sort returns a newly allocated list whose elements are the elements of list, except that
the elements are rearranged so that they are sorted in the order defined by procedure.

So, for example, if the elements of list are numbers, and procedure is <, then the
resulting list is sorted in monotonically nondecreasing order. Likewise, if procedure is
>, the resulting list is sorted in monotonically nonincreasing order. To be precise, if x
and y are any two adjacent elements in the resulting list, where x precedes y, it is the

case that

(procedure y x)
0. oif

Chapter 8: Vectors 103

8 Vectors

Vectors are heterogenous structures whose elements are indexed by exact non-negative integers.
A vector typically occupies less space than a list of the same length, and the average time required
to access a randomly chosen element is typically less for the vector than for the list.

The length of a vector is the number of elements that it contains. This number is an exact
non-negative integer that is fixed when the vector is created. The valid indexes of a vector are
the exact non-negative integers less than the length of the vector. The first element in a vector is
indexed by zero, and the last element is indexed by one less than the length J.f the vector.

Vectors are written using the notation *(object ...). For example, a vector of length 3 containing
the number zero in element 0, the list (2 2 2 2) in element 1, and the string "Anna" in element 2
can be written as

8(0 (2 2 2 2) "Anna")

Note that this is the external representation of a vector, not an expression evaluating to a vector.
Like list constants, vector constants must be quoted:

'1(0 (2 2 2 2) "Anna") 4, #(0 (2 2 2 2) "Anna")

A number of the vector procedures operate on subvectors. A subvector is a segment of a vector,
which is specified by two exact non-negative integers, start and end. Start is the index of the first
element that is included in the subvector, and end is one greater than the index of the last element
that is included in the subvector. Thus if start and end are the same, they refer to a null subvector.
and if start is zero and end is the length of the vector, they refer to the entire vector.

8.1 Construction of Vectors

make-vector k [object] procedure
Returns a newly allocated vector of k elements. If object is specified, make-vector
initializes each element of the vector to object. Otherwise the initial elements of the
result are unspecified.

104 MIT Scheme Reference

vector object ... procedure

Returns a newly allocated vector whose elements are the given arguments. vector is
analogous to list.

(vector 'a 'b 'c) * *(a b c)

vector-copy vector procedure+
Returns a newly allocated vector that is a copy of vector.

list->vector list procedure

Returns a newly allocated vector initialized to the elements of list. The inverse of

liut->vector is vector->list.

(list->vector '(dididit dah)) * *(dididit dah)

make-initialized-vector k initialization procedure+

Similar to make-vector, except that the elements of the result are determined by
calling the procedure initialization on the indices. For example:

(make-initialized-vector 5 (lambda (W) (* x x)))
* #(O 4 9 16)

vector-grow vector k procedure+

K must be greater than or equal to the length of vector. Returns a newly allocated
vector of length k. The first (vector-length vector) elements of the result are initial-

ized from the corresponding elements of vector. The remaining elements of the result

are unspecified.

8.2 Selecting Vector Components

vector? object procedure

Returns #t if object is a vector; otherwise returns ff.

vector-length vector procedure

Returns the number of elements in vector.

Chapter 8: Vectors 105

vector-ref vector k procedure
Returns the contents of element k of vector. K must be a valid index of vector.

(vector-ref '8(1 1 2 3 5 8 13 21) 5) = 8

vector-set! vector k object procedure
Stores object in element k of vector and returns an unspecified value. K must be a
valid index of vector.

(let ((vec (vector 0 '(2 2 2 2) "Anna")))
(vector-set! vec 1 '("Sue" "Sue"))
vec)

* S(0 ("Sue" "Sue") "Anna")

vector-first vector procedure+
vector-second vector procedure+
vector-third vector procedure+
vector-fourth vector procedure+
vector-fifth vector procedure+
vector-sixth vector procedure+
vector-seventh vector procedure+
vector-eighth vector procedure+

These procedures access the first several elements of vector in the obvious way. It is
an error if vector's length is too small.

8.3 Cutting Vectors

subvector vector start end procedure+
Returns a newly allocated vector that contains the elements of vector between index
start (inclusive) and end (exclusive).

vector-head vector end procedure+

Equivalent to

(subvector vector 0 end)

106 MIT Scheme Reference

vector-tail vector start procedure+
Equivalent to

(subvector vector start (vector-length vector))

8.4 Modifying Vectors

vector-fill! vector object procedure
subvector-fill! vector start end object procedure+

Stores object in every element of the vector (subvector) and returns an unspecified
value.

subvector-move-left! vectorl start1 endi vector2 start2 procedure+
subvector-move-right! vectori startl endl vector2 ,rart2 procedure+

Destructively copies the elements of vectori, starting with index startl (inclusive) and
ending with endl (exclusive), into vector2 starting at index start2 (inclusive). Vectorl,
start1, and endi must be valid subvector, and start2 must be a valid index for vector2.
The length of the source subvector must not exceed the length of vector2 minus the
index start2.

The elements are copied as follows (note that this is only important when vectori and
vector2 are eqv?):

subvector-move-left!
The copy starts at the left end and moves toward the right (from smaller
indices to larger). Thus if vectori and vector2 are the same, this procedure
moves the elements toward the left inside the vector.

subvector-move-right!
The copy starts at the right end and moves toward the left (from larger in-
dices to smaller). Thus if vectorl and vector2 are the same, this procedure
moves the elements toward the right inside the vector.

Chapter 9: Bit Strings 107

9 Bit Strings

A bit string is a sequence of bits. Bit strings can be used to represent sets or to manipulate
binary data. The elements of a bit string axe numbered from zero up to the number of bits in the
string less one, in right to left order, (the rightmost bit is numbered zero). When you convert from
a bit string to an integer, the zero-th bit is associated with the zero-th power of two, the first bit
is associated with the first power, and so on.

The length of a bit string is the number of bits that it contains. This number is an exact
non-negative integer that is fixed when the bit string is created. The valid indexes of a bit string
are the exact non-negative integers less than the length of the bit string.

Bit strings may contain zero or more bits. They are not limited by the length of a machine
word. In the printed representation of a bit string, the contents of the bit string are preceded by
'**'. The contents are printed starting with the most significant bit (highest index).

Note that the external representation of bit strings uses a bit ordering that is the reverse of the
representation for bit strings in Common Lisp. It is likely that MIT Scheme's representation will be
changed in the future, to be compatible with Common Lisp. For the time being this representation
should be considered a convenience for viewing bit strings rather than a means of entering them as
data.

8*11111

8*1010
8*00000000
8*

All of the bit-string procedures are MIT Scheme extensions.

9.1 Construction of Bit Strings

make-bit-string k initialization procedure+
Returns a newly allocated bit string of length k. If initialization is #f, the bit string is
filled with 0 bits; otherwise, the bit string is filled with 1 bits.

(make-bit-string 7 #f) =* #*0000000

108 MIT Scheme Reference

bit-string-allocate k procedure+
Returns a newly allocated bit string of length k, but does not initialize it.

bit-string-copy bit-string procedure+
Returns a newly allocated copy of bit-string.

9.2 Selecting Bit String Components

bit-string? object procedure+
Returns st if object is a bit string; otherwise returns #f.

bit-string-length bit-string procedure+

Returns the length of bit-string.

bit-string-ref bit-string k procedure+
Returns ft if the kth bit is 1; otherwise returns #f. K must be a valid index of
bit-string.

bit-string-set! bit-string k procedure+
Sets the kth bit in bit-string to 1 and returns an unspecified value. K must be a valid
index of bit-string.

bit-string-clear! bit-string k procedure+
Sets the kth bit in bit-string to 0 and returns an unspecified value. K must be a valid

index of bit-string.

9.3 Cutting and Pasting Bit Strings

bit-string-append bit-string-1 bit-string-2 procedure+
Appends the two bit string arguments, returning a newly allocated bit string as its
result. In the result, the bits copied from bit-string-i are less significant (smaller
indices) than those copied from bit-string-2.

Chapter 9: Bit Strings 109

bit-substring bit-string start end procedure+

Returns a newly allocated bit string whose bits are copied from bit-string, starting at

index start (inclusive) and ending at end (exclusive).

9.4 Bitwise Operations on Bit Strings

bit-string-zero? bit-string procedure+
Returns ft if bit-string contains only 0 bit,; otherwise returns #f.

bit-string=? bit-string-1 bit-string-2 procedure+
Compares the two bit string arguments and returns *t if they are the same length and
contain the same bits; otherwise returns #f.

bit-string-not bit-string procedure+
Returns a newly allocated bit string that is the bitwise-logical negation of bit-string.

bit-string- movec! target- bit-string bit-string procedure+
The destructive version of bit-string-not. The arguments target-bit-string and bit-

string must be bit strings of the same length. The bitwise-logical negation of bit-string
is computed and the result placed in target-bit-string. The value of this procedure is
unspecified.

bit-string-and bit-string-1 bit-string-2 procedure+
Returns a newly allocated bit string that is the bitwise-logical "and" of the arguments.
The arguments must be bit strings of identical length.

bit-string-andc bit-string-I bit-string-2 procedure+
Returns a newly allocated bit string that is the bitwise-logical "and" of bit-string-1
with the bitwise-logical negation of bit-string-2. The arguments must be bit strings of
identical length.

bit-string-or bit-string-i bit-string-2 procedure+

Returns a newly allocated bit string that is the bitwise-logical "inclusive or" of the
arguments. The arguments must be bit strings of identical length.

110 MIT Scheme Reference

bit-string-xor bit-string-1 bit-string-2 procedure+

Returns a newly allocated bit string that is the bitwise-logical "exclusive or" of the
arguments. The arguments must be bit strings of identical length.

bit-string-and! target-bit-string bit-string procedure+
bit-string-or! target-bit-string bit-string procedure+
bit-string-xor! target-bit-string bit-string procedure+
bit-string-andc! target-bit-string bit-string procedure+

These are destructive versions of the above operations. The arguments target-bit-
string and bit-string must be bit strings of the same length. Each of these procedures
performs the corresponding bitwise-logical operation on its arguments, places the result
into target-bit-string, and returns an unspecified result.

9.5 Modification of Bit Strings

bit-string-fill! bit-string initialization procedure+
Fills bit-string with zeroes if initialization is #f; otherwise fills bit-string with ones.

Returns an unspecified value.

bit-string- move! target- bit-string bit-string procedure+
Moves the contents of bit-string into target-bit-string. Both arguments must be bit
strings of the same length. The results of the operation are undefined if the arguments
are the same bit string,

bit-s ubstring- move-right! bit-string-1 startl endl bit-string-2 start2 procedure+
Destructively copies the bits of bit-string-i, starting at index startl (inclusive) and
ending at endi (exclusive), into bit-string-2 starting at index start2 (inclusive). Start1
and endi must be valid substring indices for bit-string-i, and start2 must be a valid
index for bit-string-2. The length of the source substring must not exceed the length
of bit-string-2 minus the index start2.

The bits are copied starting from the MSB and working towards the LSB; the direction
of copying only matters when bit-string-i and bit-string-2 are eqv?.

Chapter 9: Bit Strings 111

9.6 Integer Conversions of Bit Strings

unsigned-integer-> bit-string length integer procedure+
Both length and integer must be exact non-negative integers. Converts integer into a
newly allocated bit string of length bits. Signals an error if integer is too large to be
represented in length bits.

signed-integer->bit-string length integer procedure+
Length must be an exact non-negative integer, and integer may be any exact integer.
Converts integer into a newly allocated bit string of length bits, using two's complement
encoding for negative numbers. Signals an error if integer is too large to be represented
in length bits.

bit-string->unsigned-integer bit-string procedure+
bit-string->signed-integer bit-string procedure+

Converts bit-string into an exact integer. bit-string->signed-integer regards bit-
string as a two's complement representation of a signed integer, and produces an integer
of like sign and absolute value. bit-string->unsigned-integer regards bit-string as
an unsigned quantity and converts to an integer accordingly.

112 MIT Scheme Reference

Chapter 10: Miscellaneous Datatypes 113

10 Miscellaneous Datatypes

10.1 Booleans

The boolean objects are true and false. The boolean constant true is written as '#t', and the

boolean constant false is written as '#f'.

The primary use for boolean objects is in the conditional expressions if, cond, and, and or; the
behavior of these expressions is determined by whether objects are true or false. These expressions
count only #f as false. They count everything else, including #t, pairs, symbols, numbers, strings,
vectors, and procedures as true (but see Section 1.2.5 [True and False], page 10).

Programmers accustomed to other dialects of Lisp should note that Scheme distinguishes #f
and the empty list from the symbol nil. Similarly, *t is distinguished from the symbol t. In fact,
the boolean objects (and the empty list) aic not symbols at all.

Boolean constants evaluate to themselves, so you don't need to quote them.

*t := #t
Of => If
'If => If
t e Unbound variable

false variable+
true variable+

These variables are bound to the objects If and #t respectively. The compiler, given
some standard declarations, replaces references to these variables with their respective

values.

Note that the symbol true is not equivalent to #t, and the symbol false is not
equivalent to If.

boolean? object procedure
Returns It if object is either It or If; otherwise returns If.

(boolean? Of) > #t
(boolean? 0) => If

114 MIT Scheme Reference

not object procedure

false? object procedure+
These procedures returns It if object is false; otherwise they return Mf. In other words

they invert boolean values. These two procedures have identical semantics; their names
are different to give different connotations to the test.

(not #t) S ef
(not 3) * #f
(not (list 3)) 8 Cf
(not *f) *t

boolean=? obji obj2 procedure+

This predicate is true if" obji and obj2 are either both true or both false.

boolean/and object ... procedure+
This procedure returns st if none of its arguments are #f. Otherwise it returns Sf.

boolean/or object ... procedure+
This procedure returns of if all of its arguments are #f. Otherwise it returns #t.

10.2 Symbols

MIT Scheme provides two types of symbols: interned and uninterned. Interned symbols are far

more common than uninterned symbols, and there are more ways to create them. Interned symbols
have an external representation that is recognized by the procedure read; uninterned symbols do
not.1

In older dialects of Lisp, uninterned symbols were fairly important. This was true because

symbols were complicated data structures: in addition to having value cells (and sometimes,
function cells), these structures contained property lists. Because of this, uninterned symbols
were often used merely for their property lists - sometimes an uninterned symbol used this way

was referred to as a disembodied property list. In MIT Scheme, symbols do not have property

lists, or any other components besides their names. There is a different data structure similar
to disembodied property lists: one-dimensional tables (see Section 11.2 [lID Tables], page 132).

For these reasons, uninterned symbols are not very useful in MIT Scheme. In fact, their primary
purpose is to simplify the generation of unique variable names in programs that generate Scheme

Chapter 10: Miscellaneous Datatypes 115

Interned symbols have an extremely useful property: any two interned symbols whose names

are the same, in the sense of string=?, are the same object (i.e. they are eqv? to one another).

The term interned refers to the process of interning by which this is accomplished. Uninterned

symbols do not share this property.

The names of interned symbols are not distinguished by their alphabetic case. Because of this,

MIT Scheme converts all alphabetic characters in the name of an interned symbol to a specific case
(lower case) when the symbol is created. When the name of an interned symbol is referenced (using
symbol->string) or written (using write) it appears in this case. It is a bad idea to depend on
the name being lower case. In fact, it is preferable to take this one step further: don't depend on

the name of a symbol being in a uniform case.

The rules for writing an interned symbol are the same as the rules for writing an identifier

(see Section 1.3.3 [Identifiers], page 13). Any interned symbol that has been returned as part of a
literal expression, or read using the read procedure and subsequently written out using the write
procedure, will read back in as the identical symbol (in the sense of eqv?).

Usually it is also true that reading in an interned symbol that was previously written out
produces the same symbol. An exception are symbols created by the procedures string->symbol
and intern; they can create symbols for which this write/read invariance may not hold because

the symbols' names contain special characters or letters in the non-standard case.2

The external representation for uninterned symbols is special, to distinguish them from interned
symbols and prevent them from being recognized by the read procedure:

(string->uninterned-symbol "foo")
* #[uninterned-symbol 30 fool

In this section, the procedures that return symbols as values will either always return interned
symbols, or always return uninterned symbols. The procedures that accept symbols as arguments

code.

2MIT Scheme reserves a specific set of interned symbols for its own use. If you use these reserved

symbols it is possible that you could break specific pieces of software that depend on them.
The reserved symbols all have names beginning with the characters 'WE' and ending with the

character T'; thus none of these symbols can be read by the procedure read and hence are not

likely to be used by accident. For example, (intern "#[unnamed-procedure]") produces a

reserved symbol.

116 MIT Scheme Reference

will always accept either interned or uninterned symbols, and do not distinguish the two.

symbol? object procedure
Returns #t if object is a symbol, otherwise returns Sf.

(symbol? 'foo) => It
(symbol? (car '(a b))) =* #t
(symbol? "bar") => If

symbol->string symbol procedure
Returns the name of symbol as a string. If symbol was returned by string->symbol,
the value of this procedure will be identical (in the sense of string=?) to the string
that was passed to string->symbol. It is an error to apply mutation procedures such
as string-set! to strings returned by this procedure.

(symbol->string 'flying-fish) "flying-fish"
(symbol->string 'Martin) * "martin"
(symbol->string (string->symbol "Malvina"))

=> "Malvina"

Note that two distinct uninterned symbols can have the same name.

intern string procedure+
Returns the interned symbol whose name is string. Converts string to the standard al-
phabetic case before generating the symbol. This is the preferred way to create interned
symbols, as it guarantees the following independent of which case the implementation
uses for symbols' names:

(eq? 'bitBIt (intern "bitBlt")) =* It

The user should take care that string obeys the rules for identifiers (see Section 1.3.3

[Identifiers], page 13), otherwise the resulting symbol cannot be read as itself.

string->symbol string procedure

Returns the interned symbol whose name is string. Although you can use this procedure
to create symbols with names containing special characters or lowercase letters, it's
usually a bad idea to create such symbols because they cannot be read as themselves.
See symbol->string.

Chapter 10: Miscellaneous Datatypes 117

(eq? 'mISSISSIppi 'mississippi) s St
(string->symbol "mISSISSIppi")

= the symbol with the name "mISSISSIppi"
(eq? 'bitBlt (string->symbol "bitBlt")) 4 *f
(eq? 'JollyWog

(string->symbol
(symbol->string 'JollyWog))) 4 #t

(string=? "K. Harper, M.D."
(symbol->string

(string->symbol
"K. Harper, M.D."))) * st

string-> uninterned-symbol string procedure+
Returns a newly allocated uninterned symbol whose name is string. It is unimportant
what case or characters are used in string.

Note: this is the fastest way to make a symbol.

generate- uninterned-symbol [object] procedure+
Returns a newly allocated uninterned symbol that is guaranteed not to be eqv? to any
other object in the Scheme system. The symbol's name consists of a string (initially
"G") followed by an integer that is incremented on every call (the integer is initially
0). The optional object can be an integer or a symbol. If object is a symbol, the
string prefix of all subsequently generated symbol names will be that symbol's name.

If object is an integer, the integer suffix of all subsequently generated symbol names
will start counting from that value.

(generate-uninterned-symbol)
=* S[uninterned-symbol 31 gO)

(generate-uninterned-symbol)
=* S[uninterned-symbol 32 gi)

(generate-uninterned-symbol 'this)
P S[uninterned-symbol 33 this2]

(generat e-uninterned-symbol)
* #Euninterned-symbol 34 this3]

(generate-uninterned-symbol 100)
#, 0 uninterned-symbol 35 this1O00

(generate-uninterned-symbol)
=* #Suninterned-symbol 36 thislOl]

symbol-append symbol ... procedure+

Returns the interned symbol whose name is formed by concatenating the names of the
given symbols. This procedure preserves the case of the names of its arguments, so if
one or more of the arguments' names has non-standard case, the result will also have
non-standard case.

118 MIT Scheme Reference

(symbol-append 'foo- 'bar) Z loo-bar
;; the arguments may be uninterned:
(symbol-append 'foo- (string->uninterned-symbol "baz"))

=,- foo-baz
;; the result has the same case as the arguments:
(symbol-append 'foo- (string->symbol "BAZV))) foo-BAZ

symbol-hash symbol procedure+
Returns a hash number for symbol, which is computed by calling string-hash on
symbol's name.

10.3 Cells

Cells are data structures similar to pairs except that they have only one element. They are
useful for managing state.

cell? object procedure+

Returns #t if object is a cell; otherwise returns #f.

make-cell object procedure+
Returns a newly allocated cell whose contents is object.

cell-contents cell procedure+
Returns the current contents of cell.

set-cell-contents! cell object procedure+
Alters the contents of cell to be object. Returns an unspecified value.

bind-cell-contents! cell object thunk procedure+
Alters the contents of cell to be object, calls thunk with no arguments, then restores
the original contents of cell and returns the value returned by thunk. This is completely
equivalent to fluid binding of a variable, including the behavior when continuations are
used (see Section 2.3 [Fluid Binding), page 24).

Chapter 10: Miscellaneous Datatypes 119

10.4 Records

MIT Scheme provides a record abstraction, which is a simple and flexible mechanism for building

structures with named components. This abstraction will very likely be a part of the next edition

of the Scheme standard. The procedures defined in this section that are expected to be in the

standard are not marked with '+'.

make-record-type type-name field-names procedure

Returns a record-type descriptor, a value representing a new data type, disjoint from

all others. The type-name argument must be a string, but is only used for debugging
purposes (such as the printed representation of a record of the new type). The field-
names argument is a list of symbols naming the fields of a record of the new type. It is

an error if the list contains any duplicates. It is unspecified how record-type descriptors
are represented.

record-constructor record-type [field-names] procedure

Returns a procedure for constructing new members of the type represented by record-
type. The returned procedure accepts exactly as many arguments as there are symbols

in the given list, field-names; these are used, in order, as the initial values of those fields

in a new record, which is returned by the constructor procedure. The values of any

fields not named in the list of field-names are unspecified. The field-names argument

defaults to the list of field-names in the call to make-record-type that created the
type represented by record-type; if the field-names argument is provided, it is an error

if it contains any duplicates or any symbols not in the default list.

record-predicate record-type procedure

Returns a procedure for testing membership in the type represented by record-type.
The returned procedure accepts exactly one argument and returns ft if the argument

is a member of the indicated record type; it returns Sf otherwise.

record-accessor record-type field-name procedure

Returns a procedure for reading the value of a particular field of a member of the type

represented by record-type. The returned procedure accepts exactly one argument

which must be a record of the appropriate type; it returns the current value of the

field named by the symbol field-name in that record. The symbol field-name must be

a member of the list of field names in the call to make-record-type that created the

type represented by record-type.

120 MIT Scheme Reference

record-updater record-type field-name procedure

Returns a procedure for writing the value of a particular field of a member of the type
represented by record-type. The returned procedure accepts exactly two arguments:

first, a record of the appropriate type, and second, an arbitrary Scheme value; it modi-
fies the field named by the symbol field-name in that record to contain the given value.
The returned value of the updater procedure is unspecified. The symbol field-name
must be a member of the list of field names in the call to make-record-type that
created the type represented by record-type.

record? object procedure
Returns st if object is a record of any type and #f otherwise.3 Note that record?
may be true of any Scheme value; of course, if it returns St for some particular value,
then record-type-descriptor is applicable to that value and returns an appropriate
descriptor.

record-type-descriptor record procedure

Returns the record-type descriptor representing the type of record. That is, for exam-
ple, if the returned descriptor were passed to record-predicate, the resulting predi-
cate would return #t when passed record. Note that it is not necessarily the case that
the returned descriptor is the one that was passed to record-constructor in the call
that created the constructor procedure that created record. 4

record-type? object procedure+

Returns st if object is a record-type descriptor; otherwise returns *f.

record-type-name record-type procedure
Returns the type name associated with the type represented by record-type. The
returned value is eqv? to the type-name argument given in the call to make-record-
type that created the type represented by record-type.

3 In the current implementation of MIT Scheme, any object that satisfies this predicate also
satisfies vector?. However, we plan to change the implementation to make records distinct
from all other data types.

' However, in MIT Scheme, the record-type descriptor representing a given record type is unique.

Chapter 10: Miscellaneous Datatypes 121

record-type-field-names record-type procedure
Returns a list of the symbols naming the fields in members of the type represented by
record-type. The returned value is equal? to the field-names argument given in the
call to make-record-type that created the type represented by record-type.5

10.5 Promises

delay expression special form
The delay construct is used together with the procedure force to implement lazy
evaluation or call by need. (delay expression) returns an object called a promise
which at some point in the future may be asked (by the force procedure) to evaluate
expression and deliver the resulting value.

force promise procedure
Forces the value of promise. If no value has been computed for the promise, then a
value is computed and returned. The value of the promise is cached (or "memoized")
so that if it is forced a second time, the previously computed value is returned without
an, recomputation.

(force (delay (+ 1 2))) M 3

(let ((p (delay (÷ 1 2))))
(list (force p) (force p))) M (3 3)

(define a-stream
(letrec ((next

(lambda (n)
(cons n (delay (next (+ n 1)))))))

(next 0)))

(define head car)

(define tail
(lambda (stream)

(force (cdr stream))))

(head (tail (tail a-stream))) M 2

• In MIT Scheme, the returned list is always newly allocated.

122 MIT Scheme Reference

promise? object procedure+
Returns #t if object is a promise; otherwise returns #f.

promise-forced? promise procedure+

Returns #t if promise has been forced and its value cached; otherwise returns #f.

promise-value promise procedure+
If promise has been forced and its value cached, this procedure returns the cached
value. Otherwise, an error is signalled.

force and delay are mainly intended for programs written in functional style. The following
examples should not be considered to illustrate good programming style, but they illustrate the
property that the value of a promise is computed at most once.

(define count 0)

(define p
(delay
(begin

(set! count (+ count 1))
(* x 3))))

(define x 5)

count *0
p * [promise 54)

(force p) s 15
p # 8 [promise 54]
count 4 1
(force p) =: 15
count 4. 1

Here is a possible implementation of delay and force. We define the expression

(delay expression)

to have the same meaning as the procedure call

(make-promise (lambda () expression))

where make-promise is defined as follows:

Chapter 10: Miscellaneous Datatypes 123

(define make-promise
(lambda (proc)

(let ((already-run? #f)
(result If))

(lambda 0
(cond ((not alruady-run?)

(set! result (proc))
(set! already-run? It)))

result))))

Promises are implemented here as procedures of no arguments, and force simply calls its
argument.

(define force
(lambda (promise)

(promise)))

Various extensions to this semantics of delay and force are supported in some implementations
(none of these are currently supported in MIT Scheme):

"* Calling force on an object that is not a promise may simply return the object.

"* It may be the case that there is no means by which a promise can be operationally distinguished
from its forced value. That is, expressions like the following may evaluate to either #t or #f,
depending on the implementation:

(eqv? (delay 1) 1) = unspecified

(pair? (delay (cons 1 2))) M unspecified

" Some implementations will implement "implicit forcing", where the value of a promise is forced
by primitive procedures like car and +:

(+ (delay (* 3 7)) 13) => 34

10.6 Streams

In addition to promises, MIT Scheme supports a higher-level abstraction called streams. Streams
are similar to lists, except that the tail of a stream is not computed until it is referred to. This
allows streams to be used to represent infinitely long lists.

stream object ... procedure+
Returns a newly allocated stream whose elements are the arguments. Note that the
expression (stream) returns the empty stream, or end-of-stream marker.6

124 MIT Scheme Reference

list->stream list procedure+
Returns a newly allocated stream whose elements are the elements of list. Equivalent
to (apply stream list).

stream->ist stream procedure+
Returns a newly allocated list whose elements are the elements of stream. If stream
has infinite length this procedure will not terminate. This could have been defined by

(define (stream->list stream)
(if (stream-null? stream)

'()
(cons (stream-car stream)

(stream->list (stream-cdr stream)))))

cons-stream object expression special form+

Returns a newly allocated stream pair. Equivalent to (cons object (delay expres-
sion)).

stream-pair? object procedure+

Returns #t if object is a pair whose cdr contains a promise. Otherwise returns #f.
This could have been defined by

(define (stream-pair? object)
(and (pair? object)

(promise? (cdr object))))

stream-car stream procedure+
Returns the first element in stream. stream-car is equivalent to car. 7

stream-cdr stream procedure+

Returns the first tail of stream. Equivalent to (force (cdr stream)). 8

6 The variable the-empty-stream, which is bound to the end-of-stream marker, is proviaed for
compatibility with old code; use (stream) in new code.

head, a synonym for stream-car, is provided for compatibility with old code; use stream-car
in new code.

Chapter 10: Miscellaneous Datatypes 125

stream-null? stream procedure+

Returns #t if stream is the end-of-stream marker; otherwise returns #f. This is equiv-

alent to null?, but should be used whenever testing for the end of a stream. 9

stream-length stream procedure+

Returns the number of elements in stream. If stream has an infinite number of elements
this procedure will not terminate. Note that this procedure forces all of the promises
that comprise stream.

stream-ref stream k procedure+
Returns the element of stream that is indexed by k; that is, the kth element. K must
be an exact non-negative integer strictly less than the length of stream.

stream-tail stream k procedure+
Returns the tail of stream that is indexed by k; that is, the kth tail. This is equivalent
to performing stream-cdr k times. K must be an exact non-negative integer strictly
less than the length of stream.

stream-map stream procedure procedure+
Returns a newly allocated stream, each element being the result of invoking proce-
dure with the corresponding element of stream as its argument. Procedure must be a
procedure of'one argument.

10.7 Weak Pairs

Weak pairs are a mechanism for building data structures that point at objects without protecting
them from garbage collection. The car of a weak pair holds its pointer weakly, while the cdr holds
its pointer in the normal way. If the object in the car of a weak pair is not held normally by any
other data structure, it will be garbage-collected.

Note: weak pairs are not pairs; that is, they do not satisfy the predicate pair?.

8 tail, a synonym for stream-cdr, is provided for compatibility with old code; use stream-cdr

in new code.

9 empty-stream?, a synonym for stream-null?, is provided for compatibility with old code; use
stream-null? in new code.

126 MIT Scheme Reference

weak-pair? object procedure+

Returns #t if object is a weak pair; otherwise returns If.

weak-cons car cdr procedure+

Allocates and returns a new weak pair, with components car and cdr. The car com-

ponent is held weakly.

weak-pair/car? weak-pair procedure+
This predicate returns #f if the car of weak-pair has been garbage-collected; otherwise

returns #t. In other words, it is true if weak-pair has a valid car component.

weak-car weak-pair procedure+

Returns the car component of weak-pair. If the car component has been garbage-

collected, this operation returns Si, but it can also return #f if that is the value that

was stored in the car.

Normally, weak-pair/car? is used to determine if weak-car would return a valid value. An

obvious way of doing this would be:

(if (weak-pair/car? x)
(weak-car x)

However, since a garbage collection could occur between the call to weak-pair/car? and weak-car,

this would not always work correctly. Instead, the following should be used, which always works:

(or (weak-car x)
(and (not (weak-pair/car? x))

The reason that the latter expression works is that weak-car returns #f in just two instances:

when the car component is #f, and when the car component has been garbage-collected. In the

former case, if a garbage collection happens between the two calls, it won't matter, because #f will

never be garbage-collected. And in the latter case, it also won't matter, because the car component

no longer exists and cannot be affected by the garbage collector.

weak-set-car! weak-pair object procedure+

Sets the car component of weak-pair tj object and returns an unspecified result.

Chapter 10: Miscellaneous Datatypes 127

weak-cdr weak-pair procedure+

Returns the cdr component of weak-cdr.

weak-set-cdr! weak-pair object procedure+

Sets the cdr component of weak-pair to object and returns an unspecified result.

128 MIT Scheme Reference

Chapter 11: Associations 129

11 Associations

MIT Scheme provides several mechanisms for associating objects with one another. Each of
these mechanisms creates a link between one or more objects, called keys, and some other object,
called a datum. Beyond this common idea, however, each of the mechanisms has various different
properties that make it appropriate in different situations:

"* Association lists are one of Lisp's oldest association mechanisms. Because they are made from
ordinary pairs, they are easy to build and manipulate, and very flexible in use. However, the
average lookup time for an association list is linear in the number of associations.

"* 1D tables have a very simple interface, making them easy to use, and offer the feature that
they do not prevent their keys from being reclaimed by the garbage collector. Like association
lists, their average lookup time is linear in the number of associations; but 1D tables aren't as
flexible.

"* The association table is MIT Scheme's equivalent to the property lists of Lisp. It has the
advantages that the keys may be any type of object and that it does not prevent the keys
from being reclaimed by the garbage collector. However, two linear-time lookups must be
performed, one for each key, whereas for traditional property lists only one is lookup required
for both keys.

"* Hash tables are a powerful mechanism with nearly constant-time access to large amounts of
data. However, the overhead for hash tables is somewhat high, both in time and space, making
them unsuitable for small tables. And hash tables are not as flexible as association lists.

11.1 Association Lists

An association list, or alist, is a data structure used very frequently in Scheme. An alist is a list
of pairs, each of which is called an association. The car of an association is called the key.

An advantage of the alist representation is that an alist can be incrementally augmented simply
by adding new entries to the front. Moreover, because the searching procedures asuv et al. search
the alist in order, new entries can "shadow" old entries. If an alist is viewed as a mapping from
keys to data, then the mapping can be not only augmented but also altered in a non-destructive
manner by adding new entries to the front of the alist. 1

This introduction is taken from Common Lisp, The Language, second edition, p. 431.

130 MIT Scheme Reference

alist? object procedure+

Returns #t if object is an association list (including the empty list); otherwise returns

*1. Any object satisfying this predicate also satisfies list?.

assq object alist procedure
assv object alist procedure
assoc object alist procedure

These procedures find the first pair in alist whose car field is object, and return that
pair; the returned pair is always an element of alist, not one of the pairs from which

alist is composed. If no pair in alist has object as its car, *f (n.b.: not the empty list)

is returned. assq uses eq? to compare object with the car fields of the pairs in alist,
while assv uses eqv? and assoc uses equal?. 2

(define e '((a 1) (b 2) (c 3)))
(assq 'a e) (a 1)
(assq 'b e) 4- (b 2)
(aasq 'd e) =* #f
(assq (list 'a) '(((a)) ((b)) ((c)))) = Sif
(assoc (list 'a) '(((a)) ((b)) ((c)))) * ((a))
(assq 5 '((2 3) (5 7) (11 13))) M unspecified
(assv 5 '((2 3) (5 7) (11 £3))) WD (5 7)

association-procedure predicate selector procedure+
Returns an association procedure that is similar to assv, except that selector (a pro-
cedure of one argument) is used to select the key from the association, and predicate
(an equivalence predicate) is used to compare the key to the given item. This can be
used to make association lists whose elements are, say, vectors instead of pairs (also

see Section 7.6 [Searching Lists], page 98).

For example, here is how aasv could be implemented:

(define assv (association-procedure eqv? car))

Another example is a "reverse association" procedure:

2 Although they are often used as predicates, assq, asuv, and assoc do not have question marks

in their names because they return useful values rather than just #t or #f.

Chapter 11: Associations 131

(define ransv (association-procedure eqv? cdr))

del-assq object alist procedure+
del-assv object alist procedure+
del-assoc object alist procedure+

These procedures return a newly allocated copy of a./st in which all associations with
keys equal to object have been removed, del-asuq uses eq? to compare object with
the keys, while del-asav uses eqv? and del-assoc uses equal?.

(define a
'((butcher . "231 e22nd St.")

(baker . "515 w23rd St.")
(hardware . "988 Lexington Ave.")))

(del-assq 'baker a)

((butcher . "231 e22nd St.")
(hardware . "988 Lexington Ave."))

del-assq! object alist procedure+
del-assv! object alist procedure+
del-assoc! object alist procedure+

These procedures remove from alist all associations with keys equal to object. They
return the resulting list. del-asuq! uses eq? to compare object with the keys, while
del-asev! uses eqv? and del-asuoc! uses equal?. These procedures are like del-
assq, del-assv, and del-asuoc, respectively, except that they destructively modify
alist.

delete-association-procedure deletor predicate selector procedure+
This returns a deletion procedure similar to del-assv or del-aasq!. The predicate
and selector arguments are the same as those for association-procedure, while the
deletor argument should be either the procedure list-deletor (for non-destructive
deletions), or the procedure list-daletor! (for destructive deletions).

For example, here is a possible implementation of del-assv:

(define del-asuv
(delete-association-procedure list-delotor eqv? car))

132 MIT Scheme Reference

alist-copy alist procedure+

Returns a newly allocated copy of alist. This is similar to list-copy except that the
"association" pairs, i.e. the elements of the list alist, are also copied. alist-copy could

have been implemented like this:

(define (alist-copy alist)
(if (null? alist)

'0
(cons (cons (car (car alist)) (cdr (car alist)))

(alist-copy (cdr alist)))))

11.2 1D Tables

ID tables ("one-dimensional" tables) are similar to association lists. In a ID table, unlike an

association list, the keys of the table are held weakly: if a key is garbage-collected, its associated
value in the table is removed.

1D tables can often be used as a higher-performance alternative to the two-dimensional associa-

tion table (see Section 11.3 [The Association Table], page 133). If one of the keys being associated

is a compound object such as a vector, a 1D table can be stored in one of the vector's slots. Under

these circumstances, accessing items in a ID table will be comparable in performance to using a

property list in a conventional Lisp.

make-id-table procedure+

Returns a newly allocated empty 1D table.

id-table? object procedure+

Returns #t if object is a 1D table, otherwise returns Sf. Any object that satisfies this
predicate also satisfies list?.

id-table/put! id-table key datum procedure+

Creates an association between key and.datum in id-table. Returns an unspecified

value.

id-table/remove! Id-table key procedure+

Removes any association for key in id-table and returns an unspecified value.

Chapter 11: Associations 133

id-table/get id-table key default procedure+
Returns the datum associated with key in id-table. If there is no association for key,
default is returned.

id-table/lookup id-table key if-found if-not-found procedure+
If-found must be a procedure of one argument, and if-not-found must be a procedure
of no arguments. If id-table contains an association for key, if-found is invoked on
the datum of the association. Otherwise, if-not-found is invoked with no arguments.
In either case, the result of the invoked procedure is returned as the result of ld-
table/lookup.

id-table/alist id-table procedure+
Returns a newly allocated association list that contains the same information as id-
table.

11.3 The Association Table

MIT Scheme provides a generalization of the property-list mechanism found in most other
implementations of Lisp: a global two-dimensional association table. This table is indexed by two
keys, called x-key and yokey in the following procedure descriptions. These keys and the datum
associated with them can be arbitrary objects. oq? is used to discriminate keys.

Think of the association table as a matrix: a single datum can be accessed using both keys, a
column using x-key only, and a row using y-key only.

2d-put! x-key y-key datum procedure+
Makes an entry in the association table that associates datum with x-key and y-key.

Returns an unspecified result.

2d-remove! x-key y-key procedure+
If the association table has an entry for x-key and y-key, it is removed and St is
returned. Otherwise #f is returned.

2d-get x-key y-key procedure+
Returns the datum associated with x-key and y-key. Returns Cf if no such association
exists.

134 MIT Scheme Reference

2d-get-alist-x x-key procedure+

Returns an association list of all entries in the association table that are associated

with x-key. The result is a list of (y-key . datum) pairs. Returns the empty list if no

entries for x-key exist.

(2d-put! 'foo 'bar 5)
(2d-put! 'foo 'baz 6)
(2d-get-alist-x 'too) : ((baz 6) (bar . 5))

2d-get-alist-y y-key procedure+

Returns an association list of all entries in the association table that are associated

with y-key. The result is a list of (x-key . datum) pairs. Returns the empty list if no

entries for y-key exist.

(2d-put! 'bar 'too 5)
(2d-put' 'baz 'too 6)
(2d-get-alist-y 'too) : ((baz . 6) (bar . 5))

11.4 Hash Tables

Hash tables are a fast, powerful mechanism for storing large numbers of associations. MIT

Scheme's hash tables feature automatic growth, customizable growth parameters, and customizable

hash functions.

The hash-table implementation is a run-time-loadable option. To use hash tables, execute

(load-option 'hash-table)

once before calling any of the procedures defined here.

make-object-hash-table [k] procedure+

Returns a newly allocated hash table that accepts arbitrary objects as keys, and uses

eq? to compare the keys. The keys are weakly held, i.e. the hash table does not protect

them from being reclaimed by the garbage collector. K specifies the initial usable size

of the hash table, and defaults to 10 if not specified. The entries of the hash table are

weak pairs whose car field is the key and whose cdr field is the datum.

Chapter 11: Associations 135

make-string-hash-table [k] procedure+

Returns a newly allocated hash table that accepts strings as keys, and compares them
with string-?. The keys are strongly held, i.e. while in the hash table they will not

be reclaimed by the garbage collector. K specifies the initial usable size of the hash
table, and defaults to 10 if not specified. The entries of the hash table are ordinary
pairs whose car field is the key and whose cdr field is the datum.

make-symbol-hash-table [k] procedure+
Returns a newly allocated hash table that accepts symbols as keys, and compares
them with eq?. The keys are strongly held, i.e. while in the hash table they will not
be reclaimed by the garbage collector. K specifies the initial usable size of the hash
table, and defaults to 10 if not specified. The entries of the hash table are ordinary
pairs whose car field is the key and whose cdr field is the datum.

hash-table? object procedure+

Returns #t if object is a hash table, otherwise returns #f.

hash-table/put! hash-table key datum procedure+
Associates datum with key in hash-table and returns an unspecified result.

hash-table/remove! hash-table key procedure+

If hash-table has an association for key, removes it. Returns an unspecified result.

hash-table/clear! hash-table procedure+
Removes all associations in hash-table and returns an unspecified result.

hash-table/get hash-table key default procedure+
Returns the datum associated with key in hash-table. If there is no association for key,
default is returned.

hash-table/lookup hash-table key if-found if-not-found procedure+
If-found must be a procedure of one argument, and if-not-found must be a procedure
of no arguments. If hash-table contains an association for key, if-found is invoked on
the datum of the association. Otherwise, if-not-found is invoked with no arguments.
In either case, the result yielded by the invoked procedure is returned as the result of
hash-table/lookup.

136 MIT Scheme Reference

hash-table/for-each hash-table procedure procedure+
Procedure must be a procedure of two arguments. Invokes procedure once for each
association in hash-table, passing the association's key and datum as arguments, in
that order. Returns an unspecified result. Procedure must not modify hash-table,
with one exception: it is permitted to call hash-table/remove! to remove the entry
being processed.

hash-table/e ntries-list hash-table procedure+
Returns a newly allocated list of the entries in hash-table. The elements of the list are
usually either pairs or weak pairs, depending on the type of hash table.

hash-table/entries-vector hash-table procedure+
Returns a newly allocated vector of the entries in hash-table. Equivalent to

(list->vector (hash-table/entries-list hash-table))

hash-table/clean! hash-table procedure+
If hash-table is a type of hash table that holds its keys weakly, this procedure recov-
ers any space that was being used to record associations for objects that have been
reclaimed by the garbage collector. Otherwise, this procedure does nothing. In either
case, it returns an unspecified result.

hash-table/constructor key-hash key=? make-entry entry-valid? procedure+
entry-key entry-value set-entry-value!

Returns a constructor procedure for a hash table. The returned procedure accepts one
optional argument k, which specifies the initial usable size of the table, and returns
a newly allocated hash table; k defaults to 10 if not supplied. The arguments to
hash-table/constructor define the characteristics of the hash table as follows:

key-hash The hashing function. A procedure that accepts two arguments, a key
and an exact positive integer (the hash modulus), and returns an exact
non-negative integer that is less than the second argument. Examples:
string-hash-mod, symbol-hash-mod.

key=? A equivalence predicate that accepts two key arguments and is true if they
are the same key. Examples: eq?, string-?.

make-entry
A procedure that accepts a key and a datum as arguments and returns an
entry. Typically cons or veak-cons.

Chapter 11: Associations 137

entry-valid?

A procedure that accepts an entry and returns #f only if the entry's key
has been reclaimed by the garbage collector. For example, if entries are
weak pairs, this should be weak-pair/car?. Instead of a procedure, this

may be #t, which is equivalent to (lambda (entry) #t).

entry-key A procedure that accepts an entry as an argument and returns the entry's
key. Typically car or weak-car.

entry-value
A procedure that accepts an entry as an argument and returns the entry's
datum. Typically cdr or weak-cdr.

set-entry- value!
A procedure that accepts an entry and an object as arguments, modifies the
entry's datum to be the object, and returns an unspecified result. Typically
set-cdr! or weak-set-cdr!.

hash-table/key-hash hash-table procedure+
hash-table/key=? hash-table procedure+
hash-table/make-entry hash-table procedure+
hash-table/entry-valid? hash-table procedure+
hash-table/entry-key hash-table procedure+
hash-table/entry-value hash-table procedure+
hash-table/set-entry-value! hash-table procedure+

Each of these procedures corresponds to the respective argument of hash-table/constructor.
When called, these procedures return the value of the argument that was used to con-

struct hash-table.

Two parameters control the growth of a hash table, the rehash threshold and the rehash size.

The rehash threshold is a real number, between zero exclusive and one inclusive, that specifies
how full the hash table can get before it must grow. In other words it is the ratio between a hash
table's usable size and its physical size. if the number of entries in the table exceeds this fraction of
the table's physical size, the table is grown to a larger size. The default rehash threshold of a newly

constructed hash table is 1, but this can be changed with set-hash-table/rehash-threshold!.

hash-table/rehash-threshold hash-table procedure+
Returns the rehash threshold of hash-table.

138 MIT Scheme Reference

set-hash-table/rehash-threshold! hash-table x procedure+
X must be a real number between zero exclusive and one inclusive. Sets the rehash
threshold of hash-table to x and returns an unspecified result.

The rehash size specifies how much to increase the usable size of the hash table when it becomes
full. It is either an exact positive integer, or a real number greater than one. If it is an integer,
the new size is the sum of the old size and the rehash size. Otherwise, it is a real number, and
the new size is the product of the old size and the rehash size. The default rehash size of a newly
constructed hash table is 2.0, but this can be changed with set-hash-table/rehash-size!.

hash-table/rehash-size hash-table procedure+
Returns the rehash size of hash-table.

set-hash-table/rehash-size! hash-table x procedure+
X must be either an exact positive integer, or a real number that is greater than one.
Sets the rehash size of hash-table to x and returns an unspecified result.

hash-table/size hash-table procedure+
Returns the usable size of hash-table as an exact positive integer. This is the number
of entries that hash-table can hold before it must grow.

hash-table/count hash-table procedure+
Returns the number of entries in hash-table as an exact non-negative integer. This is
always less than or equal to the usable size of hash-table.

11.5 Hashing

The MIT Scheme object-hashing facility provides a mechanism for generating a unique hash
number for an arbitrary object. This hash number, unlike an object's address, is unchanged by
garbage collection. The object-hashing facility is useful in conjunction with hash tables, but it
may be used for other things as well. In particular, it is used in the generation of the written
representation for some objects (see Section 14.7 [Custom Output], page 165).

object-hash object procedure.
object-unhash k procedure+

object-hash associates an exact non-negative integer with object and returns that

Chapter 11: Associations 139

integer. If obj ect-hash was previously called with object as its argument, the integer

returned is the same as was returned by the previous call. obj ect-hash guarantees
that distinct objects (in the sense of eq?) are associated with distinct integers.

obj ect-unhash takes an exact non-negative integer k and returns the object associated
with that integer. If there is no object associated with k, #f is returned. In other words,
if obj ect-hash previously returned k for some object, that object is the value of the

caJl to object-unhash.

An object that is passed to object-hash as an argument is not protected from being
garbage-collected. If all other references to that object are eliminated, the object will
be garbage-collected. Subsequently :ailing object-unhash with the hash number of
the (garbage-collected) object will return #f.

(define x (cons 0 0)) • unspecified
(object-hash x) * 77
(eqv? (object-hash x) (object-hash x)) * St
(define x 0) * unspecified
(gc-flip) ;force a garbage collection
(object-unhash 77) =0 #f

Note: hash is a synonym for object-hash and unhash is a synonym for object-

unhash. These synonyms are obsolete and should not be used.

140 MIT Scheme Reference

Chapter 12: Procedures 141

12 Procedures

Procedures are created by evaluating lambda expressions (see Section 2.1 [Lambda Expressions],
page 19); the lambda may either be explicit or may be implicit as in a "procedure define" (see
Section 2.4 [Definitions], page 26). Also there are special built-in procedures, called primitive
procedures, such as car; these procedures are not written in Scheme but in the language used to
implement the Scheme system. MIT Scheme also provides application hooks, which support the
construction of data structures that act like procedures.

In MIT Scheme, the written representation of a procedure tells you the type of the procedure
(compiled, interpreted, or primitive):

pp
=* #[compiled-procedure 56 ("pp" #x2) #xlO #x307578]

(lambda Wx) x)
=;, #[compound-procedure 57)

(define (foo z) x)
foo

=* # [compound-procedure 58 fooa
car

= # [primitive-procedure car]
(call-with-current-continuation (lambda Wx) x))

=* # [continuation 59)

Note that interpreted procedures are called "compound" procedures (strictly speaking, compiled
procedures are also compound procedures). The written representation makes this distinction for
historical reasons, and may eventually change.

12.1 Procedure Operations

apply procedure object object ... procedure
Calls procedure with the elements of the following list as arguments:

(cons* object object ...)

The initial objects may be any objects, but the last object (there must be at least one
object) must be a list.

142 MIT Scheme Reference

(apply + (list 3 4 S 6)) * 18
(apply + 3 4 '(5 6)) * 18

(define compose
(lambda (f g)

(lambda args
(f (apply g args)))))

((compose sqrt *) 12 75) * 30

procedure? object procedure+
Returns *t if object is a procedure; otherwise returns #f. If ft is returned, exactly one

of the following predicates is satisfied by object: compiled-procedure?, compound-
procedure?, or primitive-procedure?.

compiled-procedure? object procedure+
Returns ft if object is a compiled procedure; otherwise returns *f.

compound-procedure? object procedure+

Returns Ct if object is a compound (i.e. interpreted) procedure; otherwise returns #f.

primitive-procedure? object procedure+

Returns at if object is a primitive procedure; otherwise returns *f.

procedure-arity-valid? procedure k procedure+

Returns #t if procedure accepts k arguments; otherwise returns #f.

procedure-arity procedure procedure+

Returns a description of the number of arguments that procedure accepts. The result
is a newly allocated pair whose car field is the minimum number of arguments, and
whose cdr field is the maximum number of arguments. The minimum is an exact non-

negative integer. The maximum is either an exact non-negative integer, or if meaning
that the procedure has no maximum number of arguments.

(procedure-arity (lambda C) 3)) 0 (0 0)
(procedure-arity (lambda Wx) x)) 0 (. 1)
(procedure-arity car) U (. 1)
(procedure-arity (lambda x x)) * (0 . *f)
(procedure-arity (lambda (x-. y) x)) * (1 . af)
(procedure-arity (lambda Cx f!optional y) x))

U (1 2)

Chapter 12: Procedures 143

procedure-environment procedure procedure+
Returns the closing environment of procedure. Signals an error if procedure is a prim-
itive procedure, or if procedure is a compiled procedure for which the debugging infor-

mation is unavailable.

12.2 Primitive Procedures

make-primitive-procedure name [arity] procedure+
Name must be a symbol. Arity must be an exact non-negative integer, -1, #f, or #t;
if not supplied it defaults to #f. Returns the primitive procedure called name. May
perform further actions depending on arity:

ft If the primitive procedure is not implemented, signals an error.

#t If the primitive procedure is not implemented, returns ff.

integer If the primitive procedure is implemented, signals an error if its arity is not
equal to arity. If the primitive procedure is not implemented, returns an

unimplemented primitive procedure object that accepts arity arguments.
An arity of -1 means it accepts any number of arguments.

primitive-procedure-name primitive-procedure procedure+

Returns the name of primitive-procedure, a symbol.

(primitive-procedure-name car) = car

implemented-primitive-procedure? primitive-procedure procedure+

Returns ft if primitive-procedure is implemented; otherwise returns #f. Useful because
the code that implements a particular primitive procedure is not necessarily linked into
the executable Scheme program.

12.3 Continuations

call-with-current-continuation procedure procedure

Procedure must be a procedure of one argument. Packages up the current continuation
(see below) as an escape procedure and passes it as an argument to procedure. The

144 MIT Scheme Reference

escape procedure is a Scheme procedure of one argument that, if it is later passed a
value, will ignore whatever continuation is in effect at that later time and will give
the value instead to the continuation that was in effect when the escape procedure
was created. The escape procedure created by call-with-current-continuation
has unlimited extent just like any other procedure in Scheme. It may be stored in
variables or data structures and may be called as many times as desired.

The following examples show only the most common uses of this procedure. If all real
programs were as simple as these examples, there would be no need for a procedure
with the power of call-with-current-continuation.

(call-with-current-continuation
(lambda (exit)

(for-each (lambda Wx)

(if (negative? x)
(exit x)))

'(54 0 37 -3 245 19))
#t)) * -3

(define list-length
(lambda (obj)

(call-with-current-continuation
(lambda (return)

(letrec ((r
(lambda (obP)

(cond ((null? obj) 0)
((pair? obj) (+ (r (cdr obj)) 1))
(else (return tf))))))

(r obj))))))
(list-length '(1 2 3 4)) * 4
(list-length '(a b . c)) = #f

A common use of call-with-current-continuation is for structured, non-local exits
from loops or procedure bodies, but in fact call-with-current-continuation is quite
useful for implementing a wide variety of advanced control structures.

Whenever a Scheme expression is evaluated a continuation exists that wants the re-
sult of the expression. The continuation represents an entire (default) future for the
computation. If the expression is evaluated at top level, for example, the continuation
will take the result, print it on the screen, prompt for the next input, evaluate it, and
so on forever. Most of the time the continuation includes actions specified by user
code, as in a continuation that will take the result, multiply it by the value stored in
a local variable, add seven, and give the answer to the top-level continuation to be

Chapter 12: Procedures 145

printed. Normally these ubiquitous continuations are hidden behind the scenes and
programmers don't think much about them. On the rare occasions that you may need
to deal explicitly with continuations, call-with-current-continuation lets you do
so by creating a procedure that acts just like the current continuation.

continuation? object procedure+
Returns #t if object is a continuation; otherwise returns #f.

within-continuation continuation thunk procedure+
Continuation must be a continuation produced by call-with-current-cont inuat ion.
Thunk must be a procedure of no arguments. Conceptually, within-continuation
invokes continuation on the result of invoking thunk, but thunk is executed in the
dynamic context of continuation. In other words, the "current" continuation is a-
bandoned before thunk is invoked.

dynamic-wind before-thunk action-thunk after-thunk procedure+
This facility is a generalization of Common Lisp unwind-protect, designed to take into
account the fact that continuations produced by call-with-current-continuation
may be reentered. The arguments before-thunk, action-thunk, and after-thunk must
all be procedures of no arguments (thunks).

dynamic-wind behaves as follows. First before-thunk is called. Then action-thunk is
called. Finally, after-thunk is called. The value returned by action-thunk is returned
as the result of dynamic-wind. After-thunk is also called if action-thunk escapes from
its continuation. If action-thunk captures its continuation as an escape procedure,
escapes from it, then escapes back to it, after-thunk is invoked when escaping away,
and before-thunk is invoked when escaping back.

dynamic-wind is useful, for example, for ensuring the proper maintenance of locks:
locking would occur in the before-thunk, protected code would appear in the action-
thunk, and unlocking would occur-in the after-thunk.

The following two procedures support multiple values. A future revision of the Scheme standard
will support a facility similar to, but almost certainly different from, this one.

with-values thunk procedure procedure+
Thunk must be a procedure of no arguments, and procedure must be a procedure.
Thunk is invoked with a continuation that expects to receive multiple values; specif-

146 MIT Scheme Reference

ically, the continuation expects to receive the same number of values that procedure
accepts as arguments. Thunk must return multiple values using the values procedure.
Then procedure is called with the multiple values as its arguments. The result yielded
by procedure is returned as the result of with-values.

values object ... procedure+
Returns multiple values. The continuation in effect when this procedure is called must
be a multiple-value continuation that was created by with-values. Furthermore it
must accept as many values as there are objects.

12.4 Application Hooks

Application hooks are objects that can be applied like procedures. Each application hook has
two parts: a procedure that specifies what to do when the application hook is applied, and an
arbitrary object, called extra. Often the procedure uses the extra object to determine what to do.

There are two kinds of application hooks, which differ in what arguments are passed to the
procedure. When an apply hook is applied, the procedure is passed exactly the same arguments
that were passed to the apply hook. When an entity is applied, the entity itself is passed as the
first argument, followed by the other arguments that were passed to the entity.

Both apply hooks and entities satisfy the predicate procedure?. Each satisfies either compiled-
procedure?, compound-procedure?, or primitive-procedure?, depending on its procedure com-
ponent. An apply hook is considered to accept the same number of arguments as its procedure,
while an entity is considered to accept one less argument than its procedure.

make-apply-hook procedure object procedure+
Returns a newly allocated apply hook with a procedure component of procedure and
an extra component of object.

apply-hook? object procedure+
Returns #t if object is an apply hook; otherwise returns Sf.

apply- hook-procedure apply-hook procedure+

Returns the procedure component of apply-hook.

Chapter 12: Procedures 147

set-apply-hook-procedure! apply-hook procedure procedure+

Changes the procedure component of apply-hook to be procedure. Returns an unspec-

ified value.

apply-hook-extra apply-hook procedure+

Returns the extra component of apply-hook.

set-apply-hook-extra! apply-hook object procedure+
Changes the extra component of apply-hook to be object. Returns an unspecified
value.

make-entity procedure object procedure+

Returns a newly allocated entity with a procedure component of procedure and an
extra component of object.

entity? object procedure+

Returns ft if object is an entity; otherwise returns #f.

entity-procedure entity procedure+

Returns the procedure component of entity.

set-entity-procedure! entity procedure procedure+

Changes the procedure component of entity to be procedure. Returns an unspecified
value.

entity-extra entity procedure+

Returns the extra component of entity.

set-entity-extra! entity object procedure+

Changes the extra component of entity to be object. Returns an unspecified value.

148 MIT Scheme Reference

Chapter 13: Environments 149

13 Environments

13.1 Environment Operations

Environments are first-class objects in MIT Scheme. An environment consists of some bindings

and possibly a parent environment, from which other bindings are inherited. The operations in this

section reveal the frame-like structure of environments by permitting you to examine the bindings
of a particular environment separately from those of its parent.

environment? object procedure+

Returns *t if object is an environment; otherwise returns #f.

environment-has-parent? environment procedure+

Returns ft if environment has a parent environment; otherwise returns ff.

environment-parent environment procedure+

Returns the parent environment of environment. It is an error if environment has no
parent.

environment-bound-names environment procedure+

Returns a newly allocated list of the names (symbols) that are bound by environmen-

t. This does not include the names that are bound by the parent environment of
environment.

environment-bindings environment procedure+

Returns a newly allocated list of the bindings of environment; does not include the
bindings of the parent environment. Each element of this list takes one of two forms:

(name) indicates that name is bound but unassigned, while (name object) indicates
that name is bound, and its value is object.

environment-bound? environment symbol procedure+

Returns St if symbol is bound in environment or one of its ancestor environments;

otherwise returns ff.

150 MIT Scheme Reference

environment-lookup environment symbol procedure+

Symboi must be bound in environment or one of its ancestor environments. Returns

the value to which it is bound. Signals an error if symbol is unassigned.

environment-assignable? environment symbol procedure+

Symbol must be bound in environment or one of its ancestor environments. Returns

*t if the binding may be modified by side effect.

environment-assign! environment symbol object procedure+

Symbol must be bound in environment or one of its ancestor environments, and must be

assignable. Modifies the binding to have object as its value, and returns an unspecified

result.

eval expression environment procedure+

Evaluates expression, a list-structure representation (sometimes called s-expression rep-

resentation) of a Scheme expression, in environment. You rarely need eval in ordinary

programs; it is useful mostly for evaluating expressions that have been created "on the
fly" by a program. eval is relatively expensive because it must convert expression to

an internal form before it is executed.

(define foo (list '+ 1 2))
(eval. foo (the-environment)) = 3

13.2 Environment Variables

The user-initial-environment is where the top-level read-eval-print (REP) loop evaluates

expressions and stores definitions. It is a child of the system-global-environment, which is where

all of the Scheme system definitions are stored. All of the bindings in system-global-environment

are available when the current environment is user-initial-environment. However, any new

bindings that you create in the REP loop (with define forms or by loading files containing define

forms) occur in user-initial-environment.

system-global-environment variable+

The variable system-global-environment is bound to the environment that's the par-

ent of the user-initial-environment. Primitives and system procedures are bound

(and sometimes closed) in this environment.

Chapter 13: Environments 151

user-initial-environment variable+

The variable user-initial-environment is bound to the default environment in which

typed expressions are evaluated by the top-level REP loop.

Although all bindings in system-global-environment are visible to the REP loop,

definitions that are typed at, or loaded by, the REP loop occur in the user-initial-

environment. This is partly a safety measure: if you enter a definition that happens

to have the same name as a critical system procedure, your definition wil be visible

only to the procedures you define in the user-initial-environment; the MIT Scheme

system procedures, which are defined ("closed") in the system-global-environment,

will continue to see the original definition.

13.3 REPL Environment

nearest-repl/environment procedure+

Returns the current REP loop environment (i.e. the current environment of the closest

enclosing REP loop). When Scheme first starts up, this is the same as user-initial-
environment.

ge environment procedure+

Changes the current REP loop environment to environment. Environment can be either
an environment or a procedure object. If it's a procedure, the environment in which
that procedure was closed is the new environment.

13.4 Interpreter Environments

The operations in this section return environments that are constructed by the interpreter.

These operations should not be used lightly, as they will significantly degrade the performance of

compiled code. In particular, they force the current environment to represented in a form suitable
for use by the interpreter. This prevents the compiler from performing many useful optimizations

on such environments, and forces the use of the interpreter for variable references in them. However,

because all top-level environments (such as user-initial-environment) are already interpreter

environments, it does no harm to use such operations on them.

make-environment expression ... special form+

Produces a new environment that is a child of the environment in which it is executed,

152 MIT Scheme Reference

evaluates the expressions sequentially in the new environment, and returns the new
environment. Note that

(make-environment expression ...)

is equivalent to:

(let 0)
expression ...
(the-environment))

the-environment special form+
Returns the current environment.

interpreter-environment? object procedure+
Returns #t if object is an interpreter environment; otherwise returns #f.

Chapter 14: Input/Output 153

14 Input/Output

This chapter describes the procedures that are used for input and output (i/o). The chapter

first describes ports and how they are manipulated, then describes the I/o operations. Finally,

some low-level procedures are described that permit the implementation of custom ports and high-

performance i/o.

14.1 Ports

Scheme uses ports for I/O. A port, which can be treated like any other Scheme object, serves
as a source or sink for data. A port must be open before it can be read from or written to. The
standard I/O ports, the keyboard and the terminal screen, are opened automatically when you start

Scheme. When you use a file for input or output, you need to explicitly open and close a port to

the file (with procedures described in this chapter). Additional procedures let you open ports to
strings.

Many input procedures, such as read-char and read, read data from the current input port

by default, or from a port that you specify. The current input port is initially the keyboard, but

Scheme provides procedures that let you change the current input port to be a file or string.

Similarly, many output procedures, such as write-char and display, write data to the current

output port by default, or to a port that you specify. The current output port is initially the
terminal screen, but Scheme provides procedures that let you change the current output port to be
a file or string.

Most ports read or write only ASCII characters. However, it is possible to create ports that will

read and write arbitrary characters. The limitation to ASCII characters is imposed entirely by the
port, not by the I/o operations.

input-port? object procedure
output-port? object procedure

Returns #t if object is an input port or output port respectively, otherwise returns #f.
Any object satisfying one of these predicates also satisfies vector?.

guarantee-input-port object procedure+

guarantee-output-port object procedure+
These procedures check the type of object, signalling an error if it is not an input port

154 MIT Scheme Reference

or output port, respectively. Otherwise they return object.

current-input-port procedure
Returns the current input port. Initially, current-input-port returns the value of

console-input-port.

current-output-port procedure
Returns the current output port. Initially, current-output-port returns the value of
console-output-port..

with-input-from-port input-port thunk procedure+
Thunk must be a procedure of no arguments. with-input-from-port binds the current
input port to input-port, calls thunk with no arguments, restores the current input port
to its original value, and returns the result that was returned by thunk. This temporary
binding is performed the same way as fluid binding of a variable, including the behavior
in the presence of continuations (see Section 2.3 [Fluid Binding], page 24).

with-output-to-port output-port thunk procedure+

Thunk must be a procedure of no arguments. with-output-to-port binds the current
output port to output-port, calls thunk with no arguments, restores the current output

port to its original value, and returns the result that was returned by thunk. This
temporary binding is performed the same way as fluid binding of a variable, including
the behavior in the presence of continuations (see Section 2.3 [Fluid Binding], page 24).

console-input-port variable+
console-input-port is an input port that reads from the terminal keyboard (in unix,
standard input).

console-output-port variable+
console-output-port is an output port that writes to the terminal screen (in unix,
standard output).

close-input-port input-port procedure

Closes input-port and returns an unspecified value. If input-port is a file port, the file
is closed.

Chapter 14: Input/Output 155

close-output-port output-port procedure

Closes output-port and returns an unspecified value. If output-port is a file port, the

file is closed.

14.2 File Ports

Before Scheme can access a file for reading or writing, it is necessary to open a port to the file.

This section describes procedures used to open ports to files. Such ports are closed (like any other

port) by close-input-port or close-output-port, depending on their type.

Before opening an input file, by whatever method, the filename argument is converted to canon-
ical form by the procedure canonicalize-input-filename. Similarly, the filename argument used

to open an output file is converted using canonicalize-output-filename. See those procedures'
definitions for details on the canonicalization process. For naive purposes, the following guidelines

can be used: filename is a character string that is the name of the fie; relative filenames (on unix,

those not beginning with 'T') are interpreted relative to the directory in which MIT Scheme was

started.

Implementation notes:

"* On unix systems, opening an output fie that already exists causes the existing file to be

removed and a new one opened in its place. However, if the user does not have permission to

write in the file's directory, the file is truncated to zero length and overwritten.

"* File input ports always deliver ASCII characters, and file output ports only accept ASCII char-

acters. This will change if someone ports MIT Scheme to a non-ASCII operating system.

Here are the specific operations for file ports:

open-input-file filename procedure
Takes a filename referring to an existing file and returns an input port capable of

delivering characters from the file. If the file cannot be opened, an error is signalled.

Use the procedure close-input-port to close the port opened by this procedure. If

an input port returned by this procedure is reclaimed by the garbage collector, it is

automatically closed.

156 MIT Scheme Reference

open-output-file filename procedure

Takes a filename referring to an output file to be created and returns an output port

capable of writing characters to a new file by that name. If the file cannot be opened,

an error is signalled. If a file with the given name already exists, if possible it will

be deleted and a new file opened in its place, or failing that the existing file will be

truncated and overwritten.

Use the procedure close-output-port to close the port opened by this procedure. If
an output port returned by this procedure is reclaimed by the garbage collector, it is
automatically closed.

close-all-open-files procedure+
This procedure doses all file ports (input and output) that are open at the time that
it is called.

call-with-input-file filename procedure procedure

call-with-output-file filename procedure procedure
Procedure must be a procedure of one argument. For call-with-input-f ile the file
specified by filename must already exist; for call-with-output-file, if the file exists,

if possible it will be deleted and a new file opened in its place, or failing that the
existing file will be truncated and overwritten.

These procedures call procedure with one argument: the port obtained by opening

the named file for input or output. If the file cannot be opened, an error is signalled.

If procedure returns, then the port is closed automatically and the value yielded by
procedure is returned. If procedure does not return, then the port will not be closed
automatically unless it is reclaimed by the garbage collector.'

with-input-from-file filename thunk procedure

with-output-to-file filename thunk procedure
Thunk must be a procedure of no arguments. For with-input-from-file the file

1Because Scheme's escape procedures have unlimited extent, it is possible to escape from the

current continuation but later to escape back in. If implementations were permitted to close
the port on any escape from the current continuation, then it would be impossible to write

portable code using both call-with-current - cont inuat ion and call-with-input-file or
call-with-output-file.

Chapter 14: Input/Output 157

specified by filename must already exist; for with-output-to-file, if the file exists, if
possible it will be deleted and a new fie opened in its place, or failing that the existing
file will be truncated and overwritten.

The file is opened for input or output, an input or output port connected to it is made
the default value returned by current-input-port or current-output-port, and the

thunk is called with no arguments. When the thunk returns, the port is closed and
the previous default is restored. with-input-from-file and with-output-to-file
return the value yielded by thunk. If an escape procedure is used to escape from the
continuation of these procedures, their behavior is implementation-dependent; in that
situation MIT Scheme doses the port.

14.3 String Ports

This section describes the simplest kinds of ports: input ports that read their input from given
strings, and output ports that accumulate their output and return it as a string. It also describes
"truncating" output ports, that can limit the length of the resulting string to a given value.

String input ports always deliver ASCII characters, and string output ports only accept ASCII
characters. This will change if someone ports MIT Scheme to a non-ASCII operating system.

with-input-from-string string thunk procedure+

Creates a new input port that reads from string, makes that port the current input
port, and calls thunk. When thunk returns, with-input-from-string restores the
previous current input port and returns the result returned by thunk.

(with-input-from-string "(a b c) (d e f)" read) * (a b c)

Note: this procedure is equivalent to:

(with- input-from-port (string->input-port string) thunk)

string->input-port string procedure+
Returns a new string port that delivers characters from string.

with-output-to-string thunk procedure+
Thunk must be a procedure of no arguments. Creates a new output port that accu-

158 MIT Scheme Reference

mulates output, makes that port the default value returned by current-output-port,
and calls thunk with no arguments. When thunk returns, with-output-to-string
restores the previous default and returns the accumulated output as a newly allocated
string.

(with-output -to-string
(lambda 0)

(write 'abc))) = "abc"

with-output-to-truncated-string k thunk procedure+
Similar to with-output-to-string, except that the output is limited to k characters.
If thunk attempts to write more than k characters, it will be aborted by invoking an
escape procedure that returns from with-output-to-truncated-string.

The value of this procedure is a pair; the car of the pair is *t if thunk attempted to
write more than k characters, and #f otherwise. The cdr of the pair is a newly allocated
string containing the accumulated output.

This procedure is helpful for displaying circular lists, as shown in this example:

(define inf (list 'inf))
(with-output-to-truncated-string 40

(lambda ()
(write inf))) 4, (#f . "(inf)")

(set-cd:r! inf inf)
(with-output-to-truncated-string 40

(lambda 0)
(write inf)))

* (#t "(inf inf in! inf inf inf inf inf inf inf")

write-to-string object [k] procedure+
Writes object to a string output port, and returns the resulting newly allocated string.
If k is supplied and not #f, the output is truncated after k characters. Unlike with-
output-to-truncated-string, if k is specified, this procedure always returns a string.
There is no sure way to find out whether or not the returned string was truncated.

14.4 Input Procedures

This section describes the procedures that read input. Input procedures can read either from

Chapter 14: Input/Output 159

the current input port or from a particular port. Remember that to read from a file, you must first

open a port to the file.2

All optional arguments called input-port, if not supplied, default to the current input port.

read-char [input-port] procedure
Returns the next character available from input-port, updating input-port to point to
the following character. If no more characters are available, an end-of-file object is
returned.

In MIT Scheme, if input-port is an interactive input port and no characters are imme-
diately available, read-char will hang waiting for input.

peek-char [input-port] procedure

Returns the next character available from input-port, without updating input-port to
point to the following character. If no more characters are available, an end-of-file
object is returned."

In MIT Scheme, if input-port is an interactive input port and no characters are imme-
diately available, peek-char will hang waiting for input.

char-ready? [input-port] procedure
R-turns st if a character is ready on input-port and returns Hi otherwise. If char-
ready? returns ft then the next read-char operation on input-port is guaranteed not

Prev'ous implementations of MIT Scheme treated interactive ports specially: when certain of

these procedures were called, the input editor was temporarily enabled or disabled or the port
was temporarily switched between blocking and non-blocking modes. In the current implemen-

tation, these procedures have no effect on the input editor or the blocking mode.

The value returned by a call to peek-char is the same as the value that would have been
returned by a call to read-char on the same port. The only difference is that the very next call
to read-char or peek-char on that input-port will return the value returned by the preceding
call to peek-char. In particular, a call to peek-char on an interactive port will hang waiting
for input whenever a call to read-char would have hung.

160 MIT Scheme Reference

to hang. If input-port is a file port at end of file then char-ready? returns #t.4

read [input-port] procedure

Converts external representations of Scheme objects into the objects themselves, read

returns the next object parsable from input-port, updating input-port to point to the

first character past the end of the written representation of the object. If an end of file

is encountered in the input before any characters are found that can begin an object,

read returns an end-of-file object. The input-port remains open, and further attempts

to read will also return an end-of-file object. If an end of file is encountered after

the beginning of an object's written representation, but the written representation is

incomplete and therefore not parsable, an error is signalled.

eof-object? object procedure

Returns #t if object is an end-of-file object; otherwise returns #f.

read-char-no-hang [input-port] procedure+

If input-port can deliver a character without blocking, this procedure acts exactly like

read-char, immediately returning that character. Otherwise, ft is returned, unless

input-port is a file port at end of file, in which case an end-of-file object is returned.
In no case will this procedure block waiting for input.

read-string char-set [input-port] procedure+

Reads characters from input-port until it finds a terminating character that is a mem-

ber of char-set (see Section 5.6 [Character Sets], page 72) or encounters end of file. The

port is updated to point to the terminating character, or to end of file if no terminating

character was found. read-string returns the characters, up to but excluding the ter-

minating character, as a newly allocated string. However, if end of file was encountered

before any characters were read, read-string returns an end-of-file object.

On many input ports, this operation is significantly faster than the following equivalent
code using peek-char and read-char:

4 char-ready? exists to make it possible for a program to accept characters from interactive ports
without getting stuck waiting for input. Any input editors associated with such ports must make

sure that characters whose existence has been asserted by char-ready? cannot be rubbed out.

If char-ready? were to return #f at end of file, a port at end of file would be indistinguishable

from an interactive port that has no ready characters.

Chapter 14: Input/Output 161

(define (read-string char-set input-port)
(let ((char (peek-char input-port)))

(if (sof-object? char)
char
(list->string
(let loop ((char char))

(if (or (oaf-object? char)
(char-set-member? char-set char))

(begin
(read-char input-port)
(cons char (loop (peek-char input-port))))))))))

14.5 Output Procedures

All optional arguments called output-port, if not supplied, default to the current output port.

write-char char [output-port] procedure

Writes char (the character itself, not a written representation of the character) to
output-port, and returns an unspecified value.

display object [output-port] procedure

Writes a representation of object to output-port. Strings that appear in the written

representation are not enclosed in doublequotes, and no characters are escaped within

those strings. Character objects appear in the representation as if written by write-

char instead of by write, display returns an unspecified value.5

write object [output-port) procedure

Writes a written representation of object to output-port, and returns an unspecified

value. If object has a standard external representation, then the written representation

generated by write shall be parsable by read into an equivalent object. Thus strings

that appear in the written representation are enclosed in doublequotes, and within

those strings backslash and doublequote are escaped by backslashes. write returns an

unspecified value.

vrite is intended for producing machine-readable output and display is for producing human-

readable output.

162 MIT Scheme Reference

newline [output-port] procedure
Writes an end of line to output-port and returns an unspecified value. Equivalent to
(write-char #\newline output-port).

write-line object [output-port] procedure+
Like write, except that it writes an end of line to output-port before writing object's
representation. Returns an unspecified value.

write-string string [output-port] procedure+
Writes string to output-port and returns an unspecified value. This is equivalent to
writing the contents of string, one character at a time using write-char, except that
it is usually much faster.

(write-string string) is the same as (display string) except that it is faster. Use
write-string when you know the argument is a string, and display when you don't.

beep [output-port] procedure+
Performs a "beep" operation on output-port and returns an unspecified value. On the
console output port, this usually causes the terminal bell to beep, but more sophisti-
cated interactive ports may take other actions, such as flashing the screen. On most
output ports, e.g. file and string output ports, this does nothing.

clear [output-port] procedure+

"Clears the screen" of output-port and returns an unspecified value. On a terminal
or window, this has a well-defined effect. On other output ports, e.g. file and string
output ports, this is equivalent to (write-char #\page output-port).

pp object [output-port [as-code?]] procedure.
pp prints object in a visually appealing and structurally revealing manner on output-
port. If object is a procedure, pp attempts to print the source text. If the optional
argument as-code? is true, pp prints lists as Scheme code, providing appropriate in-
dentation; by default this argument is false. pp returns an unspecified value.

14.6 Format

The procedure format is very useful for producing nicely formatted text, producing good-looking

Chapter 14: Input/Output 163

messages, and so on. MIT Scheme's implementation of format is similar to that of Common Lisp,

except that Common Lisp defines many more directives.6

format is a run-time-loadable option. To use it, execute

(load-option 'format)

once before calling it.

format destination control-string argument ... procedure+
Writes the characters of control-string to destination, except that a tilde (') introduces

a format directive. The character after the tilde, possibly preceded by prefix parameters

and modifiers, specifies what kind of formatting is desired. Most directives use one or

more arguments to create their output; the typical directive puts the next argument

into the output, formatted in some special way. It is an error if no argument remains

for a directive requiring an argument, but it is not an error if one or more arguments

remain unprocessed by'a directive.

The output is sent to destination. If destination is Mf, a string is created that contains
the output; this string is returned as the value of the call to format. In all other cases

format returns an unspecified value. If destination is #t, the output is sent to the

current output port. Otherwise, destination must be an output port, and the output

is sent there.

A format directive consists of a tilde (-), optional prefix parameters separated by

commas, optional colon (:) and at-sign (a) modifiers, and a single character indicating
what kind of directive this is. The alphabetic case of the directive character is ignored.

The prefix parameters are generally integers, notated as optionally signed decimal

numbers. If both the colon and at-sign modifiers are given, they may appear in either
order.

In place of a prefix parameter to a directive, you can put the letter 'VY (or 'v'), which
takes an argument for use as a parameter to the directive. Normally this should be

an exact integer. This feature allows variable-width fields and the like. You can also

6 This description of format is adapted from Common Lisp, The Language, second edition, section

22.3.3.

164 MIT Scheme Reference

use the character 'W' in place of a parameter; it represents the number of arguments

remaining to be processed.

It is an error to give a format directive more parameters than it is described here as

accepting. It is also an error to give colon or at-sign modifiers to a directive in a

combination not specifically described here as being meaningful.

"-A The next argument, which may be any object, is printed as if by display.
"minco)A inserts spaces on the right, if necessary, to make the width at
least mincol columns. The @ modifier causes the spaces to be inserted on
the left rather than the right.

"_S The next argument, which may be any object, is printed as if by write.
"mincolS inserts spaces on the right, if necessary, to make the width at

least mincol columns. The 6 modifier causes the spaces to be inserted on
the left rather than the right.

"This outputs a #\newline character. -n% outputs n newlines. No argument
is used. Simply putting a newline in control-string would work, but -% is
often used because it make the control string look nicer in the middle of a
program.

"" - This outputs a tilde. -n- outputs n tildes.

"newline Tilde immediately followed by a newline ignores the newline and any fol-
lowing non-newline whitespace characters. With an 6, the newline is left
in place, but any following whitespace is ignored. This directive is typi-
cally used when control-string is too long to fit nicely into one line of the
program:

(define (type-clash-error procedure arg spec actual)

(format St

"i•Procedure "SlXrequires its UA argument -

to be of type "S,-%but it was called with -

an argument of type "S. %"
procedure arg spec actual))

(type-clash-error ' vector-ref "first" ' integer ' vector) prints:

Procedure vector-ref
requires its first argument to be of type integer,
but it was called with an argument of type vector.

Note that in this example newlines appear in the output only as specified

by the -% directives; the actual newline characters in the control string are
suppressed because each is preceded by a tilde.

Chapter 14: Input/Output 165

14.7 Custom Output

MIT Scheme provides hooks for specifying that certain kinds of objects have special written

representations. There are no restrictions on the written representations, but only a few kinds of
objects may have custom representation specified for them, specifically: records (see Section 10.4

[Records], page 119), vectors that have special tags in their zero-th elements (see Chapter 8 [Vec-
tors], page 103), and pairs that have special tags in their car fields (see Chapter 7 [Lists], page 87).
There is a different procedure for specifying the written representation of each of these types.

set-record-type-unparser-method! record-type unparser-method procedure+
Changes the unparser method of the type represented by record-type to be unparser-
method, and returns an unspecified value. Subsequently, when the unparser encounters
a record of this type, it will invoke unparser-method to generate the written represen-
tation.

unparser/set-tagged-vector-method! tag unparser-method procedure+
Changes the unparser method of the vector type represented by tag to be unparser-
method, and returns an unspecified value. Subsequently, when the unparser encounters
a vector with tag as its zero-th element, it will invoke unparser-method to generate the
written representation.

unparser/set-tagged-pair-method! tag unparser-method procedure+
Changes the unparser method of the pair type represented by tag to be unparser-
method, and returns an unspecified value. Subsequently, when the unparser encounters
a pair with tag in its car field, it will invoke unparser-method to generate the written

representation.

An unparser method is a procedure that is invoked with two arguments: first, an unparser
state, and second, an object. An unparser method generates a written representation for the
object, writing it to the output port specified by the unparser state. The value yielded by an
unparser method is ignored. Note that an unparser state is not an output port, rather it is an
object that contains an output port as one of its components. Application programs generally do
not construct or examine unparser state objects, but just pass them along.

There are two ways to create an unparser method (which is then registered by one of the above
procedures). The first, and easiest, is to use unparser/standard-method. The second is to define
your own method using the procedures unparse-char, unparse-string, and unparse-obj ect. We
encourage the use of the first method, as it results in a more uniform appearance for objects. Many

166 MIT Scheme Reference

predefined datatypes, for example procedures and environments, already have this appearance.

unparser/standard-method name [procedure] procedure+

Returns a standard unparser method. Name may be any object, and is used as the

name of the type with which the unparser method is associated; name is usually a

symbol. Procedure, if supplied, must be Of or a procedure of two arguments.

If procedure is not supplied, or is Of, the returned method generates an external rep-

resentation of this form:

[name hash]

Here name is the external representation of the argument name, as generated by

display, and hash is the external representation of an exact non-negative integer u-

nique to the object being printed (specifically, it is the result of calling obj ect-hash

on the object). Subsequently, the expression

#Whash

is notation for the object.

If procedure is supplied, the returned method generates a slightly different external

representation:

*[name hash output]

Here name and hash are as above, and output is the output generated by procedure.

The representation is constructed in three stages:

1. The first part of the format (up to output) is written to the output port specified
by the unparser state. This includes the space between hash and output.

2. Procedure is invoked on two arguments: the unparser state and the object.

3. The closing bracket is written to the output port.

The following three procedures are useful when writing unparser methods.

Chapter 14: Input/Output 167

unparse-char unparser-state char procedure+

Writes char to the output-port component of unparser-state, and returns an unspecified
value. Similar to write-char.

unparse-string unparser-state string procedure+

Writes string to the output-port component of unparser-state, and returns an unspec-

ified value. Similar to write-string.

unparse-object unparser-state object procedure+

Writes object to the output-port component of unparser-state, and returns an unspec-
ified value. Object is generated either as if by display or as if by write, depending
on other components of unparser-state.

14.8 Port Primitives

This section describes the low-level operations that can be used to build and manipulate i/o
ports.

The purpose of these operations is twofold: to allow programmers to construct new kinds of
i/o ports, and to provide faster i/o operations than those supplied by the standard high level

procedures. The latter is useful because the standard i/o operations provide defaulting and error

checking, and sometimes other features, which are often unnecessary. This interface provides the

means to bypass such features, thus improving performance.

The abstract model of an I/o port, as implemented here, is a combination of a set of named
operations and a state. The state is an arbitrary object, the meaning of which is determined by

the operations. The operations are defined by a mapping from names to procedures. Typically the

names are symbols, but any object that can be discriminated by eq? may be used.

The operations are divided into two classes:

Standard operations

There is a specific set of standard operations for input ports, and a different set for

output ports. Applications can assume that the appropriate set of operations is imple-

mented for every port.

Custom operations
Some ports support additional operations. For example, ports that implement output

168 MIT Scheme Reference

to terminals (or windows) may define an operation named y-size that returns the

height of the terminal in characters. Because only some ports will implement these

operations, programs that use custom operations must test each port for their existence,

and be prepared to deal with ports that do not implement them.

14.8.1 Input Port Primitives

make-input-port operations object procedure+

Operations must be a list; each element is a list of two elements, the name of the

operation and the procedure that implements it. A new input port is returned with

the given operations and a state component of object. Operations need not contain

definitions for all of the standard operations. make-input-port will provide defaults

for any standard operations that are not defined. At a minimum, the operations read-

char, peek-char, and char-ready? must be defined.

input-port/copy input-port object procedure+

Returns a new copy of input-port, identical to the original except that its state com-

ponent is object. Input-port is not modified.

input-port/copy is normally used to speed up creation of input ports. This is done

by creating a template using make-input-port; a dummy state component is supplied

for the template. Then input-port/copy is used to make a copy of the template,

supplying the copy with the correct state. This is useful because make-input-port
is somewhat slow, as it must parse the operations list, provide defaulting for missing

operations, etc.

input-port/state input-port procedure+

Returns the state component of input-port.

set-input-port/state! input-port object procedure+

Changes the state component of input-port to be object. Returns an unspecified value.

input-port/operation input-port name procedure+

Returns the procedure that implements the operation called name, or #f if input-port
has no such operation.

Chapter 14: Input/Output 169

input-port/custom-operation input-port name procedure+

Returns the procedure that implements the custom operation called name. If name

names a standard operation, or if input-port has no such custom operation, #f is

returned. This is faster than input-port/operation if name is known to be the name

of a custom operation.

make-eof-object input-port procedure+

Returns an object that satisfies the predicate eot-object?. This is sometimes useful
when building input ports.

The following are the standard operations on input ports.

read-char input-port operation+ on input-port

Removes the next character available from input-port and returns it. If input-port
has no more characters and will never have any (e.g. at the end of an input file), this

operation returns an end-of-file object. If input-port has no more characters but will
eventually have some more (e.g. a terminal where nothing has been typed recently),
and it is in non-blocking mode, #f is returned; otherwise the operation hangs until
input is available.

peek-char input-port operation+ on input-port
Reads the next character available from input-port and returns it. The character is
not removed from input-port, and a subsequent attempt to read from the port will get
that character again. In other respects this operation behaves like read-char.

discard-char input-port operation+ on input-port
Discards the next character available from input-port and returns an unspecified value.

In other respects this operation behaves like read-char.

char-ready? input-port k operation+ on input-port
char-ready? returns #t if at least one character is available to be read from input-port.

If no characters are available, the operation waits up to k milliseconds before returning
#f, returning immediately if any characters become available while it is waiting.

read-string input-port char-set operation+ on input-port
discard-chars input-port char-set operation+ on input-port

These operations are like read-char and discard-char, except that they read or

170 MIT Scheme Reference

discard multiple characters at once. This can have a marked performance improvement

on buffered input ports. All characters up to, but excluding, the first character in char-

set (or end of file) are read from input-port, read-string returns these characters as a

newly allocated string, while discard-chars discards them and returns an unspecified

value. These operations hang until sufficient input is available, even if input-port is

in non-blocking mode. If end of file is encountered before any input characters, read-
string returns an end-of-file object.

input-port/operation/read-char input-port procedure+
input-port/operation/peek-char input-port procedure+
input-port/operation/discard-char input-port procedure+

input-port/operation/char-ready? input-port procedure+
input-port/operation/read-string input-port procedure+
input-port/operation/discard-chars input-port procedure+

Each of these procedures returns the procedure that implements the respective opera-
tion for input-port. Each is equivalent to, but faster than, input-port/operation on
the respective operation name:

(input-port/operat ion/read-char input-port)
(input-port/operation input-port 'read-char)

input-port/read-char input-port procedure+

input-port/peek-char input-port procedure+
input-port/discard-char input-port procedure+
input-port/char-ready? input-port k procedure+
input-port/read-string input-port char-set procedure+
input-port/discard-chars input-port char-set procedure+

Each of these procedures invokes the respective operation on input-port. For example,

the following are equivalent:

(input-port/read-string input-port char-set)
((input-port/operation/read-string input-port) input-port char-set)

14.8.2 Output Port Primitives

make-output-port operations object procedure+

Operations must be a list; each element is a list of two elements, the name of the

operation and the procedure that implements it. A new output port is returned with

Chapter 14: Input/Output 171

the given operations and a state component of object. Operations need not contain
definitions for all of the standard operations. make-output-port will provide defaults

for any standard operations that are not defined. At a minimum, the operation write-

char must be defined.

output-port/copy output-port object procedure+
Returns a new copy of output-port, identical to the original except that its state com-
ponent is object. Output-port is not modified.

output-port/copy is normally used to speed up creation of output ports. This is done
by creating a template using make-output-port; a dummy state component is supplied
for the template. Then output-port/copy is used to make a copy of the template,
supplying the copy with the correct state. This is useful because make-output-port
is somewhat slow, as it must parse the operations list, provide defaulting for missing

operations, etc.

output-port/state output-port procedure+
Returns the state component of output-port.

set-output-port/state! output-port object procedure+

Changes the state component of output-port to be object. Returns an unspecified
value.

output-port/operation output-port name procedure+
Returns the procedure that implements the operation called name, or #f if output-port
has no such operation.

output-port/custom-operation output-port name procedure+

Returns the procedure that implements the custom operation called name. If name
names a standard operation, or if output-port has no such custom operation, 8f is
returned. This is faster than output-port/operation if name is known to be the
name of a custom operation.

The following are the standard operations on output ports.

write-char output-port char operation+ on output-port
Writes char to output-port and returns an unspecified value.

172 MIT Scheme Reference

write-string output-port string operation+ on output-port
Writes string to output-port and returns an unspecified value. Equivalent to writing
the characters of string, one by one, to output-port, but is often implemented more
efficiently.

flush-output output-port operation+ on output-port
If output-port is buffered, this causes its buffer to be written out. Otherwise it has no
effect. Returns an unspecified value.

output-port/operation/write-char output-port procedure+
output-port/operation/write-string output-port procedure.
output-port/operation/flush-output output-port procedure+

Each of these procedures returns the procedure that implements the respective opera-
tion for output-port. Each is equivalent to, but faster than, output-port/operation
on the respective operation name:

(output-port/operat ion/write-char output-port)
(output-port/operation output-port 'write-char)

output-port/write-char output-port char procedure+
output-port/write-string output-port string procedure.
output-port/flush-output output-port procedure.

Each of these procedures invokes the respective operation on output-port. For example,
the following are equivalent:

(output-port//write-char output-port char)
((output -port /operat ion/writ1e-char output-port) output-port char)

The custom operation x-size is so useful that we provide a procedure to call it:

output-port/x-size output-port procedure+
This procedure invokes the custom operation whose name is the symbol x-size, if it
exists. If the x-size operation is both defined and returns a value other than #f,
that value is returned as the result of this procedure. Otherwise, output-port/x-size

returns a default value (currently 79).

output -port /x-s ize is useful for programs that tailor their output to the width of the

Chapter 14: Input/Output 173

display (a fairly common practice). If the output device is not a display, such programs

normally want some reasonable default width to work with, and this procedure provides

exactly that.

x-size output-port operation+ on output-port

Returns an exact positive integer that is the width of output-port in characters. If
output-port has no natural width, e.g. if it is a file port, If is returned.

174 MIT Scheme Reference

Chapter 15: File-System Interface 175

15 File-System Interface

The Scheme standard provides a simple mechanism for reading and writing files: file ports. MIT

Scheme provides additional tools for dealing with other aspects of the file system:

"* Pathnames are a reasonably operating system independent tool for manipulating the compo-

nent parts of fie names. This can be useful for implementing defaulting of file name compo-

nents.

"* Control over the current working directory: the place in the fie system from which relative

file names are interpreted.

"* Procedures that rename, copy, delete, and test for the existence of files. Also, procedures that

return detailed information about a particular file, such as its type (directory, link, etc.) or

length.

"* A facility for reading the contents of a directory.

15.1 Pathnames

MIT Scheme programs need to use names to designate files. The main difficulty in dealing with

names of files is that different file systems have different naming formats for files. For example,

here is a table of several file systems (actually, operating systems that provide file systems) and

what equivalent file names might look like for each one:

System File Name

TOPS-20 <LISPIO>FORMAT.FASL. 13
TOPS-10 FORMAT.FAS[1,4]
ITS TISPIO;FORMAT FASL
MULTICS >udd)LispIO>format. fasl
TENEX <LISPIO>FORNAT. FASL; 13
VAX/VMS [LISPIO] FORMAT. FAS; 13
UNIX /usr/lispio/format. fasl

It would be impossible for each program that deals with file names to know about each different

file name format that exists; a new operating system to which Scheme was ported might use a format

different from any of its predecessors. Therefore, MIT Scheme provides two ways to represent

file names: filenames, which are strings in the implementation-dependent form customary for the

file system, and pathnames, which are special abstract data objects that represent file names

in an implementation-independent way. Procedures are provided to convert between these two

176 MIT Scheme Reference

representations, and all manipulations of files can be expressed in machine-independent terms by

using pathnames.

In order to allow MIT Scheme programs to operate in a network environment that may have

more than one kind of file system, the pathname facility allows a file name to specify which file

system is to be used. In this context, each file system is called a host, in keeping with the usual

networking terminology.1

Note that the examples given in this section are specific to unix pathnames. Pathnames for

other operating systems have different external representations.

15.1.1 Filenames and Pathnames

Pathname objects are-usually created by parsing filenames (character strings) into component

parts. MIT Scheme provides operations that convert filenames into pathnames and vice versa. In

addition, ->pathname will convert other objects, such as symbols, into pathnames.

->pathname object procedure+

Returns a pathname that is the equivalent of object. Object must be a pathname,
a string, or a symbol. If object is a pathname, it is returned. If object is a string,

this procedure acts like string->pathname. If object is a symbol, it is converted to a

string, passed to string->pathnaae, and the result returned.

(->pathname "too") 4- #[pathname 65 "foo"]
(->pathname '/usr/morris) * S[pathname 66 "/usr/morris"J

string->pathname string procedure+

Returns the pathname that corresponds tu the filename string. This operation is the

inverse of pathname- >string.

pathname->string pathname procedure+

Returns a newly allocated string that is the filename corresponding to pathname. This

operation is the inverse of string->pachnmae.

This introduction is adapted from Common Lisp, The Language, second edition, section 23.1.

Chapter 15: File-System Interface 177

(pathnamu->string (string->pathnaue "l/usr/morris/foo"))
= "/usr/morris/foo"

15.1.2 Components of PathLames

A pathname object always has six components, described below. These components are the
common interface that allows programs to work the same way with different file systems; the
mapping of the pathname components into the concepts peculiar to each file system is taken care
of by the Scheme implementation.

host The name of the file system on which the file resides. In the current implementation
of MIT Scheme, this component is not used and should always be ff.

device Corresponds to the "device" or "file structure" concept in many host file systems: the
name of a (logical or physical) device containing files. In the current implementation
of MIT Scheme, this component is not used and should always be #E.

directory Corresponds to the "directory" concept in many host file systems: the name of a group
of related files (typically those belonging to a single user or project).

name The name of a group of files that can be thought of as conceptually the "same" file.

type Corresponds to the "filetype" or "extension" concept in many host file systems. This
says what kind of file this is. Files with the same name but different type are usually
related in some specific way, such as one being a source file, another the compiled form
of that source, and a third the listing of error messages from the compiler.

version Corresponds to the "version number" concept in many host file systems. Typically
this is a number that is incremented every time the file is modified. In the current
implementation of MIT Scheme, this component is not used and should always be ff.

Note that a pathname is not necessarily the name of a specific file. Rather, it is a specification
(possibly only a partial specification) of how to access a file. A pathname need not correspond to
any file that actually exists, and more than one pathname can refer to the same file. For example,
the pathname with a version of newest may refer to the same fie as a pathname with the same
components except a certain number as the version. Indeed, a pathname with version newest may
refer to different files as time passes, because the meaning of such a pathname depends on the state
of the file system. In file systems with such facilities as "links", multiple file names, logical devices,
and so on, two pathnames that look quite different may turn out to address the same file. To access
a file given a pathname, one must do a file-system operation such as open-input-file.2

- This description is adapted from Common Lisp, The Language, second edition, section 23.1.1.

178 MIT Scheme Reference

Each component in a pathname is typically one of the following (with some exceptions that will

be described below):

a string This is a literal component. It is considered to be fully specified.

*f This is a missing component. It is considered to be unspecified.

wild This is a wildcard component. It is useful only when the pathname is being used with

the directory reader, where it means that the pathname component matches anything.

unspecific
This is an unspecifiable component. It is treated the same as a missing component
except that it is not considered to be missing for purposes of merging or defaulting

components.

The directory and version pathname components axe exceptions to these rules in that they

may never be strings, although the values #f, wild, and unspecific axe allowed with their usual
meanings. Here are the other values allowed for these components:

A directory, if it is not one of the above values, must be a non-empty list, which represents a
directory path: a sequence of directories, each of which has a name in the previous directory,

the last of which is the directory specified by the entire path. Each element in such a path
specifies the name of the directory relative to the directory specified by the elements to its
left. If the first element in the list is the symbol root, then the directory component (and

subsequently the pathname) is absolute; the first component in the sequence is to be found

at the "root" of the file system. Otherwise, the directory is relative, meaning that the first

component is to be found in some as yet unspecified directory; typically this is later specified
to be the current working directory.

Aside from the special case of root, which may only appear as the first element of the list

(if it appears at all), each element in the list is either a string or the symbol wild (each with
the same meaning as described above), or one of these symbols: self, which means the next

directory in the sequence is the same as the previous one, or up, which means the next directory
is the "parent" of the previous one. self and up correspond to the files '.' and '. in unix

file systems.

In file systems that do not have "heirarchical" structure, a specified directory component will

always be a list whose first element is root. If the system does not support directories other
than a single global directory, the list will have no other elements. If the system supports "flat"

directories, i.e. a global set of directories with no subdirectories, then the list will contain a

second element, whiich is either a string or wild. In other words, a non-heirarchical file system

is treated as if it were heirarchical, but the heirarchical features are unused. This representation

is somewhat inconvenient for such file systems, but it discourages programmers from making

Chapter 15: File-System Interface 179

code depend on the lack of a file heirarchy. Fortunately few such file systems are in common
use today.

A version component may take the following values: an exact positive integer, which is a literal
component; the symbol newest, which means to choose the largest available version number
for that file; or the symbol oldest, which means to choose the smallest version number. In
the future some other possible values may be added, e.g. installed. Note that in the current
implementation this component is not used and should be *f.

make-pathname host device directory name type version procedure+
Returns a pathname object whose components are the respective arguments. Each
argument must satisfy the restrictions for the corresponding component, which were
outlined above.

(make-pathname Sf *f '(root "usr" "morris") "foo" "san" #f)
S#[pathname 67 "/usr/morris/foo.scm"]

pathname-host pathname procedure+
pat hname-device pathname procedure+
pathname-directory pathname procedure+
pathname-name pathname procedure+
pathname-type pathname procedure+
pathname-version pathname procedure+

Returns a particular component of pathname.

(define x (->pathname "/usr/morris/foo.scm"))
(pathname-host x) =* *f
(pathname-device x) 40 .f
(pathname-directory x) * (root "usr"' "morris")
(pathname-name x) 'I "too"
(pathname-type x) 1 "cm"
(pathname-version x) * #f

pathname-components pathname receiver procedure+
Calls receiver with the six components of pathname, and returns the result yielded by
receiver.

(pathname-components (->pathname "/usr/morris/foo.scm") list)
* (tf Sf (root "usr" "morris") "fool" "scm" Sf)

180 MIT Scheme Reference

pathname-new-host pathname host procedure+

pathname-new-device pathname device procedure+

pat hname- new-directory pathname directory procedure+

pathname-new-name. pathname name procedure+
pathname-new-type pathname type procedure+
pathname-new-version pathname version procedure+

Returns a new copy of pathname with the respective component replaced by the second
argument. Pathname is unchanged.

(define p (->pathname "/usr/blisp/rel1S"))
p

#-#Epathname 71 "/usr/blisp/rell5l
(pathname-ne.w-name p "rellOO")

* *[pathname 72 "l/usr/blisp/rellOO"]
(pathname-new-directory p '("test" "morris"))

) t[pathname 73 "test/morris/rells"]
p

* Epathname 71 "/usr/blisp/re115"]3

pathname-name-path pathname procedure+
Extracts the name, type, and version components of pathname and returns a pathname
with just these components. For example,

(pathname-name-path (->pathname "/usr/blisp/relS"))
*E#pathname 69 "rel5"]

patlhname-directory-path pathname procedure+
Extracts the host, device, and directory components of pathname and returns a path-
name with just these components.

(pathname-directory-path (->pathname "/usr/blisp/relS"))
#- *[pathname 70 "/usr/blisp/"]

pathname-as-directory pathname procedure+
Returns a pathname that is equivalent to pathname, but in which any file components
have been converted to a directory component. If pathname does not have name, type,
or version components, it is returned. Otherwise, these file components are converted

into a string, and the string is added to the end of the list of directory components.
Note the difference between this procedure and pathname-directory-path.

Chapter 15: File-System Interface 181

(pathname-as-directory (->pathname "/usr/blisp/re15"))
= 0 Epathname "/usr/blisp/relS/"I

pathname-name-string pathname procedure+
Extracts the name, type, and version components of pathname and returns a newly
allocated filename (string) with just these components. For example,

(pathname-name-string (->pathname "/usr/blisp/relS'9)
1 "rel5"

pathname-name-string could have been defined as follows:

(define (pathname-name-string pathname)
(pathname->string (pathname-name-path pathname)))

pat hname-directory-string pathname procedure+
Extracts the host, device, and directory components of pathname and returns a newly
allocated filename (string) with just these components.

(pathname-directory-string (->pathname "/usr/blisp/r.15"))
"* "/usr/blisp/"

pathname-directory-string could have been defined as follows:

(define (pathname-directory-string pathname)
(pathname->string (pathname-directory-path pathname)))

15.1.3 Operations on Pathnames

pathname? object procedure+
Returns #t if object is a pathname; otherwise returns #f.

merge-pathnames pathnamel pathname2 procedure+
Returns a pathname whose components are obtained by combining those of pathnamel
and pathname2. The pathnames are combined by components: if pathnamel has a
non-missing comp ment, that is the resulting component, otherwise the component

182 MIT Scheme Reference

from pathname2 is used. The directory component is handled specially: if both path-
names have directory components that are lists, and the directory component from
pathnamel is relative (i.e. does not start with root), the the resulting directory com-
ponent is formed by appending pathnamel's component to pathname2's component.
For example:

(define pathi (->pathname "scheme/foo.scm"))
(define path2 (->pathname "/usr/morris"))
pathl

* #[pathname 74 "scheme/foo.scm"]
path2

* #[pathname 75 "/usr/morris"]
(merge-pathnames pathl path2)

* S [pathname 76 "/usr/scheme/foo. scm"]
(merge-pathnames path2 pathl)

* [pathname 77 "/usr/morris.scm"]

pathname-default-host pathname host procedure+
pathname-default-device pathname device procedure+
pathname-default-directory pathname directory procedure+
pathname-default-name pathname name procedure+
pat hname-default-type pathname type procedure+
pathname-default-version pathname version procedure+

These operations are similar to the pathname-new-component operations, except that
they only change the specified component if it has the value #f in pathname.

pathname-default pathname host device directory name type version procedure+
This procedure defaults all of the components of pathname simultaneously. It could
have been defined by:

(define (pathname-default pathname
host device directory
name type version)

(make-pathname (or (pathname-host pathname) host)
(or (pathname-device pathname) device)
(or (pathname-directory pathname) directory)
(or (pathname-name pathname) name)
(or (pathname-type pathname) type)
(or (pathname-version pathname) version)))

Chapter 15: File-System Interface 183

15.2 Working Directory

A pathname may be absolute or relative. An absolute pathname is a complete path from the

top level of the file system to the destination resource (under unix, a filename corresponding to

an absolute pathname begins with the slash character, 'T'). A relative pathname is a partial

path that's interpreted relative to the current working directory. When MIT Scheme is started,

the current working directory (or simply, working directory) is initialized in an operating-system

dependent manner; usually, it is the directory in which Scheme was invoked. The working directory
can be determined from within Scheme by calling the pwd procedure, and changed by calling the

cd procedure.

working-directory-pathname procedure+
pwd procedure+

Returns the current working directory as a pathname that has no name, type, or version
components, just host, device, and directory components. pwd is an alias for working-
directory-pathname. The long name is intended for programs and the short name for

interactive use.

set-working-directory-pathname! filename procedure+
cd filename procedure+

Makes filename the current working directory and returns the new current working di-
rectory as a pathname. Filename is coerced using ->pathname, pathname->absolute-

pathname, and pathname-as-directory. cd is an alias for set-working-directory-
pathname!. The long name is intended for programs and the short name for interactive
use.

(set-working-directory-pathname! "/usr/morris/blisp")
=>- # pathname "/ur/morris/blisp/")

(set-working-directory-pathname! 11-")
=* 8 [pathname "/usr/morrisa/1

This procedure signals an error if filename does not refer to an actual directory in the

file system.

If filename describes a relative rather than absolute pathname, this procedure interprets
it as relative to the current working directory, before changing the working directory.

184 MIT Scheme Reference

(vorking-directory-pathname)
= #Cpathname "/usr/lorris/"J

(set-working-directory-pathname! "foo")
=o, *[pathname "/usr/morris/foo/")

with-working-directory-pathname filename thunk procedure+

This procedure temporarily rebinds the current working directory to filename, invokes

thunk (a procedure of no arguments), then restores the previous working directory

and returns the value yielded by thunk. Filename is canonicalized in exactly as does

set -working-directory-pathname!. The binding is performed in exactly the same

way as fluid binding of a variable (see Section 2.3 [Fluid Binding], page 24).

pathname->absolute-pathname pathname procedure+

Converts pathname into an absolute pathname. If pathname is relative, it is converted

to absolute form starting at the current working directory. If pathname is already an

absolute pathname, it is returned.

pathname-absolute? pathname procedure+

Returns #t if pathname is an absolute rather than relative pathname object; otherwise

returns #f. All pathnames are either absolute or relative, so if this procedure returns
#f, the argument is a relative pathname.

15.3 File Manipulation

file-exists? filename procedure+

Returns #t if filename is an existing file or directory; otherwise returns ft. If the file

is a symbolic link, this procedure tests the existence of the file linked to, not the link

itself.

copy-file source-filename target-filename procedure+

Makes a copy of the file named by source-filename. The copy is performed by creating
a new file called target-filename, and filling it with the same data as source-filename. If

target-filename exists prior to this procedure's invocation, it is deleted before the new
output file is created.

rename-file source-filename target-filename procedure+

Changes the name of source-filename to be target-filename. In the unix implementation,
this will not rename across file systems.

Chapter 15: File-System Interface 185

delete-file filename procedure+

Deletes the file named filename.

canonicalize-input-filename filename procedure+

If filename refers to an existing file or directory, returns as a string the absolute path-
name of the file (or directory). If filename doesn't refer to an existing file or directory,
an error is signalled.

canonicalize-output-filename filename procedure+
Returns as a string the absolute pathname of filename, whether or not the file or
directory that filename refers to exists.

(pud)
* 8 [pathname "/usr/morris/"]

(canonicalize-output-filename "foo")
- "/usr/morris/foo0"

pathname->input-truename pathname procedure+
Converts pathname into the corresponding absolute pathname. If pathname doesn't
exist, returns #f.

pathname->output-truename pathname procedure+
Converts pathname into the corresponding absolute pathname.

file-modification-time filename procedure+
Returns the modification time of filename as an exact integer. The result may be
compared to other modification times using ordinary integer arithmetic. If filename
names a file that does not exist, returns #f. If filename names a symbolic link this
returns the modification time of the file linked to, not the link itself.

file-directory? filename procedure+
Returns St if the file named filename exists and is a directory. Otherwise returns #f.
If filename names a symbolic link, this examines the file linked to, not the link itself.

file-symbolic-link? filename procedure+
If the file named filename exists and is a symbolic link, this procedure returns the
contents of the symbolic link as a newly allocated string. The returned value is the

186 MIT Scheme Reference

name of the file that the symbolic link points to and must be interpreted relative to

the directory of filename. If filename either does not exist or is not a symbolic link,
this procedure returns *f.

file-attributes filename procedure+

This procedure determines if the file named filename exists, and returns information
about it if so; if the file does not exist, it returns #f. The information returned is a
vector of 10 items:

1. The file type: ft if the file is a diirectory, a character string (the name linked to)
if a symbolic link, or ME for all other types of file.

2. The number of links to the file.

3. The user id of the file's owner, an exact non-negative integer.

4. The group id of the file's group, an exact non-negative integer.

5. The last access time of the file, an exact non-negative integer.

6. The last modification time of the file, an exact non-negative integer.

7. The last change time of the file, an exact non-negative integer.

8. The size of the file in bytes.

9. The mode string of the file. This is a newly allocated string showing the file's

mode bits.

10. The inode number of the file, an exact non-negative integer.

15.4 Directory Reader

directory-read directory [sort I procedure+

Directory must be an object that can be converted into a pathname by ->pathname.
The directory specified by directory is read, and the contents of the directory is returned

as a newly allocated list of absolute pathnames. The result is sorted according to the
usual sorting conventions for directories, unless sort? is specified as #f. If directory has
name, type, or version components, the returned list contains only those pathnames
whose name, type, and version components match those of directory; wild or #S as
one of these components means "match anything".

Chapter 16: Error System 187

16 Error System

The Scheme error system provides a uniform mechanism for the signalling of errors and other
exceptional conditions. For most purposes, the only part of the error system that is needed is the
special form error, which is used to signal simple errors, specifying a message and some irritant
objects (see Section 16.1 [Simple Errors], page 188). In addition, an option to error permits users
to do simple formatting of their error messages (see Section 16.3 [Error Messages], page 190).

More demanding applications require more powerful facilities. To give a concrete example,
suppose you want floating-point division to return a very large number whenever the denominator
is zero. This behavior can be implemented using the error system.

The Scheme arithmetic system can signal many different kinds of errors, including floating-point
divide by zero. In our example, we would like to handle this particular condition specially, allowing
the system to handle other arithmetic errors in its usual way.

The error system supports this kind of application by providing mechanisms for distinguishing
different types of error conditions and for the specification of where control should be transferred
should a given condition arise. In this example, there is a specific object that represents the
"floating-point divide by zero" condition type, and it is possible to dynamically specify an arbitrary
Scheme procedure to be executed when a condition of that type is signalled. This procedure then
finds the stack frame containing the call to the division operator, and returns the appropriate value
from that frame.

Another kind of behavior that is useful is the ability to specify uniform handling for related
classes of conditions. For example, it might be desirable, when opening a file for input, to gracefully
handle a variety of different conditions associated with the file system. One such condition might be
that the file does not exist, in which case the program will try some other action, perhaps opening
a different file instead. Another related condition is that the file exists, but is read protected, so it
cannot be opened for input. If these or any other related conditions occur, the program would like
to skip this operation and move on to something else.

At the same time, errors unrelated to the file system should be treated in their usual way. For
example, calling car on the argument 3 should signal an error. Or perhaps the name given for the
file is syntactically incorrect, a condition that probably wants to be handled differently from the
case of the file not existing.

To facilitate the handling of classes of conditions, the error system taxonomically organizes all
condition types. The types are related to one another by taxonomical links, which specify that

188 MIT Scheme Reference

one type is a "kind of" another type. If two types are linked this way, one is considered to be a

specialization of the other; or vice-versa, the second is a generalization of the first. In our example,

all of the errors associated with opening an input file would be specializations of the condition type
"cannot open input file".

The taxonomy of condition types imposes a partial order on the types, because each type

is allowed to have multiple generalizations. This is allowed because some condition types can

be generalized in several different ways. An example of this is "floating-point divide by zero",
which can be generalized to either a "floating-point overflow" or a "divide by zero". The latter

generalization, "divide by zero", cannot be a specialization of the former, because it can also be

signalled by arithmetic on numbers other than floating-point.

To summarize, the error system provides facilities for the following tasks. The sections that

follow will describe these facilities in more detail.

Signalling conditions

Conditions may be signalled in a number of different ways. Simple errors may be

signalled, without explicitly defining a condition type, using error. The signal-

condition procedure provides the most general signalling mechanism.

Handling conditions
The programmer can dynamically specify handlers for particular condition types or

for classes of condition types, by means of the bind-condition-handler procedure.

Individual handlers have complete control over the handling of a condition, and addi-

tionally may decide not to handle a particular condition, passing it on to previously

bound handlers.

Classification of conditions
Each condition has a type, which is represented by a condition-type object. Each

condition type may be a specialization of some other condition types. A group of types

that share a common generalization can be handled uniformly by specifying a handler

for the generalization.

Packaging condition state

Each condition is represented by an explicit object. Condition objects contain informa-

tion about the nature of the condition as well as information that describes the state

of the computation from which the condition arose.

16.1 Simple Errors

The simplest error-signalling mechanism is the special form error. It allows the programmer

Chapter 16: Error System 189

to signal errors by specifying an error message and providing a list of some objects (irritants) that
are relevant to the error.

error message irritant ... special form+
Signal3 an error. This special form expands into the following code:

(error-procedure message (list irritant ...) (the-environment))

The use of the-environment would normally force the environment in which it appears
to be an interpreter environment. However, the compiler treats error expressions
specially so that errors signalled from compiled code do not supply the environment
argument to error-procedure.

error-procedure message irritants environment procedure+
Signals an error. Message is normally a short string that summarizes the error, and
irritants is a list of objects that contain interesting information about the error. Envi-
ronment is the environment in which the error occurred.

Normally, the message and irritants are used to build a condition whose type is error-
type:vanilla, environment is attached to that condition, and then the condition is
signalled. However, if message is a condition-type object, then that object is used
(instead of error-type : vanilla) to build the condition.

The argument environment is used by the standard error handler. Currently there is
no mechanism to retrieve this information.

error-type:vanilla condition type+
This is the error type used by error-procedure when it signals anonymous errors. Do
not use this type for signalling new errors, as some of the system code expects to find
the message in a special place for errors of this type. This object is made public solely
so that condition handlers can be bound to it.

warn message irritant ... procedure+
This procedure takes arguments just like error, formats and prints a message in the
usual way, but does not signal an exception. The output goes to the output-port of
the nearest cmdl object. In the future this may be made customizable in some ways,
such as allowing conditional error signalling based on a flag.

190 MIT Scheme Reference

16.2 Error Handler

In the absence of more specific handling, errors invoke the standard error handier. This handler

normally prints an error message and enters a new REP loop.

standard-error-handler condition procedure+

This procedure is used to handle error conditions that are not otherwise taken care of.

It can be useful when building custom error handlers.

While the standard error handler is executing, the following procedures provide useful informa-

tion.

error-condition procedure+

This procedure returns the condition that was passed to the standard error handler as

its argument. If the standard error handler is not executing, this procedure returns #f.

error- message procedure+
error-irritants procedure+

error-continuation procedure+

These procedures extract standard components from (error-condition). error-

continuation returns #f if error-condition does.

16.3 Error Messages

The error system provides a simple formatting language that allows the programmer to have

sorie control over the printing of error messages. The basic idea is as follows.

Error messages typically consist of a string describing the error, followed by some irritant objects.
The string is printed using display, and the irritants are printea using write, typically with a space

between each irritant. To allow simple formatting, we introduce a noise object, which is printed

using display. The irritant list may contain ordinary objects interspersed with noise objects. Each
noise object is printed using display, with no extra whitespace, while each normal object is printed

using write, prefixed by a single space character.

Here is an example:

Chapter 16: Error System 191

(define (error-within-procedure message irritant procedure)
(error message

irritant
(error-irritant/noise #\newline)
(error-irritant/noise "within procedure")
procedure))

This would format as follows:

(error-within-procedure "bad widget" 'widget-32 'invert-widget)

bad widget widget-32
within procedure invert-widget

Note the use of a separate noise object for the newline. In general, for characters such as

newline or formfeed (i.e. non-graphic characters), this is desirable since it makes it easier for the

formatter to notice formatting characters with special meanings and handle them specially should

it be necessary.

Here are the operations supporting error messages:

format-error-message message irritants port procedure+

Message must be a string, irritants a list of irritant objects, and port an output port.

Formats message and irritants to port in the standard way. Note that, during the

formatting process, the depth and breadth to which lists are printed are each limited

to small numbers, to guarantee that the output from each irritant is not arbitrarily

large.

error-irritant/noise value procedure+

Creates and returns a noise object whose value is value.

error-irritant/noise? object procedure+

Returns ft if object wa:, created by error-irritant/noise; otherwise returns #f.

error-irritant/noise-value noise procedure+

Returns the value of the noise object noise. This is the object that was passed to
error-irritant/noise as an argument when noise was created.

error-irritants/sans-noise procedure+

This returns the value of error-irritants with the noise objects removed. It could

have been written:

192 MIT Scheme Reference

(define (error-irritants/sans-noise)
(list-transform-negative (error-irritants)

error-irritant/noise?))

16.4 Condition Types

Fach condition has a condition type object associated with it. These objects are used as a means

of iocusing on related classes of conditions, first by concentrating all of the information about a

specific class of condition in a single place, and second by specifying inheritance relationships

between types.

Condition types are defined by the following operations. Any argument called condition-type is

assumed to be a condition type object.

make-condition-type generalizations reporter procedure+

This procedure creates and returns a new condition type. Generalizations must be a

list of condition types; the resulting condition type will be a specialization of each of
these types. Reporter is a procedure of two arguments, a condition instance and an

output port, which will write a concise description of the condition on the output port.

As a special option, reporter may be a string, in which case a standard error message
will be printed using that string.

condition-type? object procedure+

Returns St if object is a condition type; otherwise returns #f.

guarantee-condition-type object procedure+

Signals an error if object is not a condition type. Returns object as its value otherwise.

condition-type/generalizations condition-type procedure+

Returns the generalizations of condition-type. This is the reflexive and transi' " la-
sure of the generalizations argument to make-condition-type, i.e. all of the members

of generalizations plus all of their generalizations as well. This list always contains
condition- type.

condition-type/reporter condition-type procedure+

Returns the report procedure for condition-type.

Chapter 16: Error System 193

condition-type/properties condition-type procedure+
Each condition type contains a 1D table for associating arbitrary properties with the
condition type. This operation returns the table associated with condition-type.

condition-type/error? condition-type procedure+
This predicate is true only of condition types that are considered to be errors. Condition
types satisfying this predicate are treated specially under certain cirumstances, and are
sometimes referred to as error types.

The following two expressions are equivalent (as predicates):

(condition-type/error? x)
(memq condition-type:error (condition-type/generalizations x))

condition-type:error condition type+
The value of this variable a condition type with no generalizations that is used to mark
condition types as being errors.

make-error-type generalizations reporter procedure+
This operation is like make-condition-type, except that if none of generalizations
satisfies condition-type/error?, it adds condition-type: error to the set of gener-
alizations.

error-type? object procedure+
Returns #t if object is a condition type that satisfies condition-type/error?; other-
wise returns #f.

16.5 Condition Instances

A condition, in addition to the information associated with its type, usually contains other
information that is not shared with other conditions of the same type. For example, the condi-
tion type associated with unbound variable errors does not specify the name of the variable that
was unbound. The additional information is captured in condition objects, also called condition

instances.

In addition to information that is specific to a given type of condition (such as the variable

194 MIT Scheme Reference

name for "unbound variable" conditions), every condition instance also contains a continuation

that encapsulates the state of the computation in which the condition occurred. This continuation

is used when condition handlers want to restart the computation in some way, or sometimes for

analyzing the computation to learn more about the context in which the condition occurred.

The following operations define the condition datatype. Any argument called condition is as-

sumed to be a condition object.

make-condition condition-type irritants continuation procedure+
Makes a new condition instance, with a type of condition-type. Irritants is a list of
arbitrary objects, and continuation must be a continuation, normally the continuation
of the computation which caused the condition.

condition? object procedure+

Returns true iff object is a condition instance.

error? object procedure+

Returns *t if object is a condition instance that satisfies condition/error?; otherwise

returns Sf.

guarantee-condition object procedure+

Signals an error if object is not a condition instance. Returns object otherwise.

condition/type condition procedure+
Returns the condition type associated with condition.

condition/irritants condition procedure+

Returns the irritants associated with condition.

condition/continuation condition procedure+
Returns the continuation associated with condition.

condition/write-report condition [output-po! J procedure+

Writes a concise description of conditio:i to output-port, which defaults to the current

output port.

Chapter 16: Error System 195

condition/report-string condition procedure+

Returns a newly allocated string that is a concise description of condition.

condition/properties condition procedure+

Each condition instance contains a 1D table for associating arbitrary properties with
the condition. This procedure returns the table associated with condition.

condition/internal? condition procedure+
This predicate is true of certain -conditions that normally should not be handled by user

code. Condition handlers that handle "all" conditions should ignore conditions satis-
fying this predicate, unless the handler's writer has a good understanding of internal
conditions.

condition/generalizations condition procedure+
condition/error? condition procedure+
condition/reporter condition procedure+

These operations access the corresponding components in the type of condition. For
example, the following expressions are equivalent:

(condition/generalizations condition)
(condition-type/generalizations (condition/type condition))

Note that condition instances satisfying the predicate condition/error? are some-
times referred to as error conditions, or even errors.

16.6 Condition Signalling

Once a condition instance has been created using make-condition, it can be signalled. The act
of signalling a condition is separated from the act of creating the condition to allow more flexibility
in how conditions are handled. For example, a condition instance could be returned as the value of
a procedure, indicating that something unusual has happened, to allow the caller to clean up some
state. The caller could then signal the condition once it is ready.

A more important reason for having a separate condition signalling mechanism is that it allows
resignalling. When a signalled condition has been caught by a particular handler, and the handler
decides that it doesn't want to process that particular condition, it can signal the condition again.

This is one way to allow other handlers to get a chance to see the condition.

196 MIT Scheme Reference

There is a single procedure responsible for signalling conditions. All other signalling mechanisms

go through this procedure:

signal-condition condition [default-handler] procedure+

Signals condition. Default-handler, if given, must be a procedure of one argument. The

signalling procedure attempts to find a handler for the condition, using the following

rules:

"* The set of condition handlers is searched, until it finds one that will handle any

of the condition types specified by the generalizations of condition. Each handler

specifies, at the time it is bound, a set of condition types it will handle; if the

intersection of that set and condition's generalizations is not empty, the handler is
selected.

If a handler is found, it is invoked on condition. If it returns #f, that means the

handler has declined to handle the condition and the search continues. Otherwise
the handler's value is returned as the value of signal-condition.

"* If no condition handler is found, and the argument default-handler is supplied, it
is invoked on condition; its value is returned as the value of signal-condition.

"* Otherwise, tf is returned, indicating that no handler could be found.

signal-error condition procedure+

Signals condition, which must be a condition instance. If this condition is not otherwise
handled, the standard error handler is invoked. Equivalent to (signal-condition
condition standard-error-handler).

16.7 Condition Handling

Condition handling refers to the act of defining the behavior of a signalled condition. This is
controlled by the binding of condition handlers.

A condition handler is a procedure of one argument. When a handler is invoked by signal-
condition, a condition is supplied to the handler as its argument. The handler may return a

value: if the value is #f, this indicates that the handler has decided not to handle this particular

condition. In that case, signal-condition continues its search for another handler. Otherwise

the value returned by the handler is returned as the value of sipnal-condition.

Often, though, the handler will not return a value. Usually a condition handler will exit by

Chapter 16: Error System 197

invoking some continuation. Sometimes it will signal a different condition instead, or signal the

same condition again. This latter action, resignalling the same condition, is equivalent to returning

#f from the handler. This is because when the handler is invoked, the set of condition-handler

bindings is unwound to the point at which the handier was bound. In other words, when a condition

handler is bound, the set of condition handlers that is in effect at the time of binding is the set

that will be in effect when the handler is invoked.

A condition handler is bound by specifying that it will handle a condition whose generalizations

intersect a given set of condition types. Condition handlers are bound using a mechanism very

similar to fluid binding of variables. A condition handler binding has a dynamic extent rather than

a lexical scope, that is, it is effective for a specified time segment rather than for a specified code

segment.

The order in which the bindings are searched (by signal-condition) is the opposite from the

order in which they are bound. Thus, more recently bound handlers appear earlier in the search

order.

bind-condition- handler condition-types handler thunk procedure+

Executes thunk, handling any condition whose generalizations intersect condition-types

by passing it to handler. Condition-types must be a list of condition-type objects.

If condition-types is the empty list, it means handler should handle all conditions,

regardless of their type; such handlers should ignore conditions satisfying the predicate

condition/internal?.

16.8 Predefined Errors

error-type:wrong-type-argument condition type+

Signalled when the argument to a procedure is determined to have an incorrect type.

For example, this error is signalled by car if its argument is not a pair. This is a

specialization of error-type: illegal-argument.

error:illegal-datum object [procedure-name] procedure+

Signals error-type :vrong-type-argument. Object is the argument in question, and

procedure-name, if supplied, is the name of the procedure that determined the argu-

ment's incorrectness.

198 MIT Scheme Reference

error-type:bad-range-argument condition type+
Signalled when the argument to a procedure is determined to have the correct type
but is not in the acceptable range. For example, this error is signalled by vector-
ref if its second argument is an exact negative integer. This is a specialization of
error-type: illegal-argument.

error:datum-out-of-range object [procedure-name] procedure+
Signals error-type:bad-range-argument. Object is the argument in question, and
procedure-name, if supplied, is the name of the procedure that determined the argu-
ment's incorrectness.

error-type:illegal-argument condition type+
This type is not signalled - one of its specializations is signalled when the argument to
a procedure is determined to be incorrect in some fashion.

error-type:open-file condition type+
Signalled if an error occurs while trying to open a file for input or output.

error-type:flle condition type+
This type is not signalled - one of its specializations is signalled when any i/o error
occurs. The name of this type is a misnomer; it can be signalled by any i/o operation,
whether or not it involves files.

Chapter 17: Graphics 199

17 Graphics

MIT Scheme has a simple two-dimensional line-graphics interface that is suitable for many
graphics applications. In particular it is often used for plotting data points from experiments. The
interface is generic in that it can support different types of graphics devices in a uniform manner.
At the present time only two types of graphics device are implemented.

Procedures are available for drawing points, lines, and text; defining the coordinate system;
clipping graphics output; controlling some of the drawing characteristics; and controlling the output
buffer (for devices that perform buffering). Additionally, devices may support custom operations,
such as control of colors.

17.1 Opening and Closing of Graphics Devices

graphics-type-available? graphics-device-type procedure+
This predicate returns *t if graphics-device-type is implemented by the Scheme system.
Otherwise it returns #U, in which case it is an error to attempt to make a graphics
device using graphics-device-type. This is useful because a given graphics device type
may exist as an object in the Scheme runtime environment even though the primitive
procedures required to support that type do not. This predicate determines when full
support is available.

make-graphics-device graphics-device-type object ... procedure+
This operation creates a graphics device object. The first argument is a graphics device
type, and both the number and the meaning of the remaining arguments is determined
by that type (see the description of each device type for details). This procedure opens
and initializes the device, which remains valid until explicitly dosed by the procedure
graphics-close. In the current implementation of MIT Scheme, if this object is
garbage-collected, the graphics device remains open, and any resources it is using are
not released. In the future the garbage collector may be changed to automatically dose
such devices.

graphics-close graphics-device procedure+
Closes graphics-device, releasing its resources. Subsequently it is an error to use
graphics-device.

200 MIT Scheme Reference

17.2 Coordinates for Graphics

Each graphics device has two different coordinate systems associated with it: device coordinates

and virtual coordinates. Device coordinates are generally defined by low-level characteristics of the

device itself, and often cannot be changed. Most device coordinate systems are defined in terms

of pixels, and usually the upper-left-hand corner is the origin of the coordinate system, with x

coordinates increasing to the right and y coordinates increasing downwards.

In contrast, virtual coordinates are more flexible in the units employed, the position of the origin,

and even the direction in which the coordinates increase. A virtual coordinate system is defined by

assigning coordinates to the edges of a device. Because these edge coordinates are arbitrary real

numbers, any Cartesian coordinate system can be defined.

All graphics procedures that use coordinates are defined on virtual coordinates. Thus, to draw
a line at a particular place on a device, the virtual coordinates for the endpoints of that line are

given.

When a graphics device is initialized, its virtual coordinate system is reset so that the left

edge corresponds to an x-coordinate of -1, the right edge to x-coordinate 1, the bottom edge to

y-coordinate -1, and the top edge to y-coordinate 1.

graphics-device-coordinate-limits graphics-device procedure+

Returns (as multiple values) the device coordinate limits for graphics-device. The

values, which are exact non-negative integers, are: x-eft, y-bottom, x-right, and y-top.

graphics-coordinate-limits graphics-device procedure+

Returns (as multiple values) the virtual coordinate limits for graphics-device. The

values, which are real numbers, are: x-left, y-bottom, x-right, and y-top.

graphics-set-coordinate-limits graphics-device x-left y-bottom procedure+
x-right y-top

Changes the virtual coordinate limits of graphics-device to the given arguments. X-left,
y-bottom. x-right, and y-top must be real numbers. Subsequent calls to graphics-

coordinate-limits will return the new limits. This operation has no effect on the

device's displayed contents.

Note: This operation usually resets the clip rectangle, although it is not guaranteed to

do so. If a clip rectangle is in effect when this procedure is called, it is necessary to

Chapter 17: Graphics 201

redefine the clip rectangle afterwards.

17.3 Drawing Graphics

The procedures in this section provide the basic drawing capabilities of Scheme's graphics sys-
tem.

graphics-clear graphics-device procedure+
Clears the display of graphics-device. It is unaffected by the current drawing mode.

graphics-draw-point graphics-device x y procedure+
Draws a single point on graphics-device at the virtual coordinates given by x and y,
using the current drawing mode.

graphics-erase-point graphics-device x y procedure+
Erases a single point on graphics-device at the virtual coordinates given by x and y.
It is unaffected by the current drawing mode.

This is equivalent to

(lambda (device x y)
(graphics-bind-drawing-mode device 0

(lambda ()
(graphics-draw-point device x y))))

graphics-draw-line graphics-device x-start y-start x-end y-end procedure+

X-start, y-start, x-end, and y-end must be real numbers. Draws a line on graphics-
device that connects the points (x-start, y-start) and (x-end, y-end). The line is drawn
using the current drawing mode and line style.

graphics-draw-text graphics-device x y string procedure+
Draws the characters of string at the point (x, y) on graphics-device, using the current
drawing mode. The characteristics of the characters drawn are device-dependent, but
all devices are initialized so that the characters are drawn upright, from left to right,
with the leftmost edge of the leftmost character at x, and the baseline of the characters

at y.

202 MIT Scheme Reference

The following two procedures provide an alternate mechanism for drawing lines, which is more

akin to using a plotter. They maintain a cursor, which can be positioned to a particular point
and then dragged to another point, producing a line. Sequences of connected line segments can be

drawn by dragging the cursor from point to point.

Many graphics operations have an unspecified effect on the cursor. The following exceptions are
guaranteed to leave the cursor unaffected:

graphics-device-coordinate-limits
graphics-coordinate-limits
graphics-enable-buffering
graphics-disable-buffering
graphics-flush
graphics-bind-drawing-mode
graphics-set-drawing-mode
graphics-bind-line-style
graphics-set-line-style

The initial state of the cursor is unspecified.

graphics-move-cursor graphics-device x y procedure+

Moves the cursor for graphics-device to the point (x, y). The contents of the device's

display axe unchanged.

graphics-drag-cursor graphics-device x y procedure+
Draws a line from graphics-device's cursor to the point (x, y), simultaneously moving
the cursor to that point. The line is drawn using the current drawing mode and line

style.

17.4 Characteristics of Graphics Output

Two characteristics of graphics output are so useful that they are supported uniformly by all
graphics devices: drawing mode and line style. A third characteristic, color, is equally useful (if
not more so), but implementation restrictions prohibit a uniform interface.

The drawing mode, an exact integer in the range 0 to 15 inclusive, determines how the figure
being drawn is combined with the background over which it is drawn to generate the final result.
Initially the drawing mode is set to "source", so that the new output overwrites whatever appears

Chapter 17: Graphics 203

in that place. Useful alternative drawing modes can, for example, erase what was already there, or

invert it.

Altogether 16 boolean operations are available for combining the source (what is being drawn)
and the destination (what is being drawn over). The source and destination are combined by the

device on a pixel-by-pixel basis as follows:

Mode Meaning

0 ZERO [erase; use background color]
1 source AND destination
2 source AND (NOT destination)
3 source
4 (NOT source) AND destination
5 destination
6 source XOR destination
7 source OR destination
8 NOT (source OR destination)
9 NOT (source XOR destination)
10 NOT destination
11 source OR (NOT destination)
12 NOT source
13 (NOT source) OR destination
14 (NOT source) OR (NOT destination)
15 ONE [use foreground color]

The line style, an exact integer in the range 0 to 7 inclusive, determines which parts of a line are
drawn in the foreground color, and which in the background color. The default line style, "solid",
draws the entire line in the foreground color. Alternatively, the "dash" style alternates between
foreground and background colors to generate a dashed line. This capability is useful for plotting

several things on the same graph.

Here is a table showing the name and approximate pattern of the different styles. A '1' in the
pattern represents a foreground pixel, while a '-' represents a background pixel. Note that the
precise output for each style will vary from device to device. The only style that is guaranteed to
be the same for every device is "solid".

204 MIT Scheme Reference

Style Name Pattern

0 solid 1111111111111111
1 dash 11111111-------
2 dot 1-1-1-1-1-1-1-1-
3 dash dot 1111111111111-1-
4 dash dot dot 11111111111-1-1-
S long dash 11111111111-
6 center dash 111111111111-11-
7 center dash dash 111111111-11-11-

graphics-bind-drawing-mode graphics-device drawing-mode thunk procedure+
graphics-bind-line-style graphics-device line-style thunk procedure+

These procedures bind the drawing mode or line style, respectively, of graphics-device,
invoke the procedure thunk with no arguments, then undo the binding when thunk
returns. The value of each procedure is the value returned by thunk. Graphics opera-
tions performed during thunk's dynamic extent will see the newly bound mode or style
as current.

graphics-set-drawing-mode graphics-device drawing-mode procedure+
graphics-set-line-style graphics-device line-style procedure+

These procedures change the drawing mode or line style, respectively, of graphics-
device. The mode or style will remain in effect until subsequent changes or bindings.

17.5 Buffering of Graphics Output

To improve performance of graphics output, most graphics devices provide some form of buffer-

ing. By default, Scheme's graphics procedures flush this buffer after every drawing operation. The
procedures in this section allow the user to control the flushing of the output buffer.

graphics-enable-buffering graphics-device procedure+
Enables buffering for graphics-device. In other words, after this procedure is called,
graphics operations are permitted to buffer their drawing requests. This usually means
that the drawing is delayed until the buffer is flushed explicitly by the user, or until it

fills up and is flushed by the system.

graphics-disable-buffering graphics-device procedure+
Disables buffering for graphics-device. By default, all graphics devices are initialized
with buffering disabled. After this procedure is called, all drawing operations perform
their output immediately, before returning.

Chapter 17: Graphics 205

Note: graphics-disable-buffering flushes the output buffer if necessary.

graphics-flush graphics-device procedure+
Flushes the graphics output buffer for graphics-device. It has no effect for devices that
do not support buffering, or if buffering is disabled for the device.

17.6 Clipping of Graphics Output

Scheme provides a rudimentary mechanism for restricting graphics output to a given rectangular
subsection of a graphics device. By default, graphics output that is drawn anywhere within the
device's virtual coordinate limits will appear on the device. When a clip rectangle is specified,
however, output that would have appeared outside the clip rectangle is not drawn.

Note that changing the virtual coordinate limits for a device will usually reset the clip rectangle
for that device, as will any operation that affects the size of the device (such as a window resizing
operation). However, programs should not depend on this.

graphics-set-clip-rectangle graphics-device x-left y-bottom x-right procedure+
y-top

Specifies the clip rectangle for graphics-device in virtual coordinates. X-left, y-bottom,
x-right, and y-top must be real numbers. Subsequent graphics output is clipped to the
intersection of this rectangle and the device's virtual coordinate limits.

graphics-reset-clip-rectangle graphics-device procedure+
Eliminates the clip rectangle for graphics-device. Subsequent graphics output is clipped
to the virtual coordinate limits of the device.

17.7 Custom Graphics Operations

In addition to the standard operations, a graphics device may support custom operations. For
example, most devices have custom operations to control color. graphics-operation is used to
invoke custom operations.

graphics-operation graphics-device name object ... procedure+
Invokes the graphics operation on graphics-device whose name is the symbol name,

206 MIT Scheme Reference

passing it the remaining arguments. This procedure can be used to invoke the standard

operations, as well as custom operations that are specific to a particular graphics device

type. The names of the standard graphics operations are formed by removing the

graphica- prefix from the corresponding procedure. For example, the following are

equivalent:

(graphics-draw-point device x y)
(graphics-operation device 'draw-point x y)

For information on the custom operations for a particular device, see the documentation

for its type.

17.8 X Graphics

Scheme supports graphics in the X window system (version 11). Arbitrary numbers of displays
may be opened, and arbitrary numbers of graphics windows may be created for each display. A
variety of operations is available to manipulate various aspects of the windows, to control their size,

position, colors, and mapping.

17.8.1 X Graphics Type

x-graphics-device-type variable+

This is the graphics device type for X windows. X windows are opened as follows:

(make-graphics-device x-graphics-device-type
display
geometry
l! optional suppress-map?)

where display is either a display object, #f, or string; geometry is either #f or a

string; and suppress-map? is a boolean. A new window is created on the appropriate
display, and a graphics device representing that window is returned.

Display specifies which X display the window is to be opened on; if it is #f or a

string, it is passed as an argument to x-open-display, and the value returned by

that procedure is used in place of the original argument. Geometry is an X geometry

string, or Uf which means to use the default geometry (which is specified as a resource).

Chapter 17: Graphics 207

Suppress-map?, if given and not #f, prevents the window from being mapped after it
is created.

The window is initialized using the resource name "scheme-graphics", and is sensitive
to the following resource properties:

Property Class Default

geometry Geometry [none]
font Font 9x15
borderWidth BorderWidth 2
internalBorder BorderWidth [border width]
background Background white
foreground Foreground black
borderColor BorderColor [foreground color]
pointerColor Foreground [foreground color]

The window is created with a backing-store attribute of Always. The window's name
and icon name are initialized to "scheme-graphics".

17.8.2 Utilities for X Graphics

x-open-display display-name procedure+
Opens a connection to the display whose name is display-name, returning a display
object. If unable to open a connection, #f is returned. Display-name is normally a
string, which is the usual X display name; however, ff is also allowed, meaning to use
the value of the unix environment variable DISPLAY.

x-close-display display procedure+
Closes display; after calling this procedure, it is an error to use display for any purpose.
Any windows that were previously opened on display are destroyed and their resources
returned to the operating system.

x-close-all-displays procedure+
Closes all open connections to X displays. Equivalent to calling x-close-display on
all open displays.

208 MIT Scheme Reference

x-geometry-string x y width height procedure+

This procedure creates and returns a standard X geometry string from the given argu-

ments. X and y must be either exact integers or #f, while width and height must be

either exact non-negative integers or #f. Usually either x and y are both specified or

both #f; similarly for width and height. If only one of the elements of such a pair is

specified, it is ignored.

Examples:

(x-geometry-string #f #f 100 200) =P "100x200"
(x-geometry-string 2 -3 100 200) =* "100x200+2-3"
(x-geometry-string 2 -3 *f #f) =€P "+2-3"

Note that the x and y arguments cannot distinguish between +0 and -0, even though
those have different meanings in X. If either of those arguments is 0, it means +0 in
X terminology. If you need to distinguish these two cases you must create your own
geometry string using Scheme's string and number primitives.

17.8.3 Custom Operations on X Graphics Devices

Custom operations are invoked using the procedure graphics-operation. For example,

(graphics-operation device 'set-foreground-color "blue")

set-background-color color-name operation+ on x-graphics-device

set-foreground-color color-name operation+ on x-graphics-device

set-border-color color-name operation+ on x-graphics-device
set-mouse-color color-name operation+ on x-graphics-device

These operations change the colors associated with a window. Color-name must be
a string, which is the X server's name for the desired color, set-border-color

and set-mouse-color immediately change the border and mouse-cursor colors, set-

background-color and set-foreground-color change the colors to be used when

drawing, but have no effect on anything drawn prior to their invocation. Because chang-

ing the background color affects the entire window, we recommend calling graphics-
clear on the window's device afterwards.

Chapter 17: Graphics 209

set-border-width width operation+ on x-graphics-device

set-internal-border-width width operation+ on x-graphics-device

These operations change the external and internal border widths of a window. Width

must be an exact non-negative integer. The change takes place immediately. Note

that changing the internal border width can cause displayed graphics to be garbled; we

recommend calling graphics-clear on the window's device after doing so.

set-font font-name operation+ on x-graphics-device

Changes the font used when drawing text in a window. Font-name must be a string

that is a font name known to the X server. This operation does not affect text drawn

prior to its invocation.

set-mouse-shape shape-number operation+ on x-graphics-device

Changes the shape of the mouse cursor. Shape-number is an exact non-negative integer
that is used as an index into the mouse-shape font; when multiplied by 2.this number

corresponds to an index in the file '/usr/include/Xll/cursorfontl.h'.

map-window operation+ on x-graphics-device

unmap-window operation+ on x-graphics-device

These operations control the mapping of windows. They correspond directly to the

Xlib procedures XMapWindov and XUnrapWindov.

resize-window width height operation+ on x-graphics-device

Changes the size of a window. Width and height must be exact non-negative integers.
The operation corresponds directly to the Xlib procedure XResizeWindov.

This operation resets the virtual coordinate system and the clip rectangle.

move-window x y operation+ on x-graphics-device

Changes the position of a window on the display. X and y must be exact integers.

The operation corresponds directly to the Xlib procedure XMoveWindow. Note that the
coordinates x and y do not take the external border into account, and therefore will

not position the window as you might like. The only reliable way to position a window

is to ask a window manager to do it for you.

get-default resource property operation+ on x-graphics-device

This operation corresponds directly to the Xlib procedure XGetDefault. Resource and

210 MIT Scheme Reference

property must be strings. The operation returns the character string corresponding to

the association of resource and property; if no such association exists, #f is returned.

starbase-filename operation+ on x-graphics-device

On Hewlett-Packard computers that support Starbase graphics, this operation returns
a character string that can be used to open the device's window as a Starbase graphics

device using the "sox11" driver. Note that the default distribution of Scheme for HP
computers does not include support for Starbase - you must rebuild the microcode to

get this support.

17.9 Starbase Graphics

On Hewlett-Packard computers under the HP-UX operating system, Scheme supports graph-
ics through the Starbase graphics library. Note that the default distribution of Scheme for HP
computers does not include support for Starbase - you must rebuild the microcode to get this
support.

starbase-graphics-device-type variable+
This is the device type for Starbase graphics devices. A Starbase device is opened as
follows:

(make-graphics-device starbase-graphics-device-type
device-name
driver-name)

where device-name and driver-name are strings that are used as the device and driver

arguments to the Starbase gopen call. The device is opened with kind OUTDEV and
mode 0. The device is initialized to have a mapping mode of DISTORT, and a line color
index of 1.

write-image-file filename invert? operation+ on starbase-graphics-device
This operation writes an image of the Starbase device's display in the file specified by

filename. The image is formatted to print on an HP Laserjet printer. Normally pixels
with a color index of 0 are not drawn by the printer, and all other pixels are; this

results in the background being white and the foreground being black in the printed

image. If invert? is not #f, this is reversed: the background is printed as black and
the foreground is not printed.

Chapter 17: Graphics 211

color-map-size operation+ on starbase-graphics-device

Returns, as an exact non-negative integer, the number of entries in the color map for
the device.

define-color color-index red green blue operation+ on starbase-graphics-device
Defines the color associated with the color-map index color-index. Color-index must
be an exact non-negative integer strictly less than the number of entries in the color
map. Red, green, and blue must be real numbers in the range 0 to 1 inclusive, which
define the color to be put in the map.

set-line-color color-index operation+ on starbase-graphics-device

Changes the foreground color used in graphics operations for this device. Color-index
must be an exact non-negative integer strictly less than the number of entries in the
color map. Graphics drawn after this operation is invoked will appear in this new color.

The text drawn by a Starbase device is controlled by the following characteristics:

Aspect The aspect of a character is its height-to-width ratio, a real number. By default, this
has the value 1.

Height The height of a character in virtual device coordinates, a real number. This is measured
along the "up vector", which is defined by the slant of the character. By default, the
height is . 1.

Rotation The rotation of a character defines the direction in which the characters are drawn. It
is specified as a real number in degrees, but only 4 values have any meaning: 0, 90, 180,
and 270. 0 draws left-to-right with upright characters; 90 draws top-to-bottom with
characters on their right side; 180 draws right-to-left with upside-down characters; 270
draws bottom-to-top with characters on their left side. The default rotation is 0.

Slant The slant of a character defines the "up vector"; it is a real number which is the tangent
of the angle between the character's "vertical" (defined by the rotation), and the "up
vector", measured clockwise. The default slant is 0.

text-aspect operation+ on starbase-graphics-device

text-height operation+ on starbase-graphics-device

text-rotation operation+ on starbase-graphics-device

text-slant operation+ on starbase-graphics-device
These operations return the current values of the text characteristics.

212 MIT Scheme Reference

set-text-aspect aspect operation+ on starbase-graphics-device
set-text-height height operation+ on starbase-graphics-device
set-text-rotation rotation operation+ on starbase-graphics-device
set-text-slant slant operation+ on starbase-graphics-device

These operations alter the current values of the text characteristics. They have no
effect on text drawn prior to their invocation.

Index of Procedures, Special Forms, and Variables 213

Index of Procedures, Special Forms, and Variables

. 48 .. 30, 88

loptional............................ .. 30, 88

SIreat ... 16,20

V .. 103

A .. 65 -... . 52

A\altnode .. 66 ->pathniae 176, 183

A\backnext .. 66 -1+ .. 52

S\backspace 66

S\call ... 66

A\linefeed 66, 72

A\newline 65, 66, 72, 75 ..87

A\page 66, 72, 75 /
*\return 66, 72

A\rubout ... 66 ... 47,52

A\space 65, 66, 72, 81

*\tab 66,72,75

Sb .. 48 -... 39, 40, 50, 78

M .. 48 > .. 32

So .. 48

Sif ... 10, 31, 113 6

Si ... 48... 30,88

So... 48

st...................................... 10, 31, 113 11
S 48

...375
... 2 , 8

+

..29, 88

.. . .. 18, 46, 52

(8
(... 87

.) . 8 7 .7

V .. 51

o 87

\A .. 75

. \ .. 75
................. .. 75

• ... 18, 52 \t.. 75

214 MIT Scheme Reference

< assq .. 130

< ... 51 " AT .. 130

<= .. 51, 70 &tan .. 57,64

1 B
I+ .. 52 beep .. 162

id-table/alist 133 begin .. 34

Id-table/get 133 bind-cell-contents' 118

id-table/lookup 133 bind-condition-handler 197

id-table/put' 132 bit-string->sipod-integer 111

Id-table/remove' 132 bit-string->unsigned-integer III

id-table? .. 132 bit-string-allocate 108

bit-string-and 109

2 bit-string-and' 110

2d-get .. 133 bit-string-m ndc 109

2d-get-alist-x 134 bit-string-andc' 110

2d-get-alist-y 134 bit-string-append 108

2d-put! ... 133 bit-string-clear' 108

2d-removel 133 bit-string-copy 108
bit-string-fill: 110

A bit-string-length 108

abs .. 52 bit-string-move' 110

access ... 28 bit-string-movec 109

acos ... 57 bit-string-not 109

alist-copy 131 bit-string-or 109

alist? .. 130 bit-string-or' 110

and .. 33, 113 bit-string-ref 108

angle ... 57, 58 bit-string-se t' 108

append ... 95, 99 bit-string-xor 110

append' .. 95, 99 bit-string-xor' 110

append-map .. 99 bit-string-zero? 109

append-map! 99 bit-string=?.109

append-map* 99 bit-string? 108

append-map*! 99 bit-substring 109

apply ... 18, 141 bit-substring-move-right '....................... 110

apply-hook-extra147 boolean/and 114

apply-hook-procdure 146 boolean/or................................ 114

apply-hook?146 boolean-r 114

ascii->char 71 boolean. 113

ascii-rangh-.char-set 73

asin57 C
assoc ... 130 caaaar 90

association-procedure 130 caaadr ... 90

Index of Procedures, Special Forms, and Variables 215

casar .. 90 char->string 76

caadar ... 90 char-alphabetic? 73

caaddr ... 90 char-alphanumeric? 73

caadr .. 90 char-ascii? 70, 71, 75

caar ... 89 char-bits 69, 71

cadaar ... 90 char-bits-linit 70

cadadr ... 90 char-ci '? 67, 68

cadar .. 90 char-ci> '? .. 67

caddar ... 90 char-ci>? .. 67

cadddr ... 90 chax-ci<-? .. 67

caddr .. 90 char-ci<? .. 67

cadr ... 90 char-code .. 70

call-with-current-continuation 143 char-code-limit 70

call-with-input-file 156 char-downcase.... 68

call-with-output-file 156 char-graphic? 73

canonicalize-input-filenme 155, 185 char-integer-limit 71

canonicalize-output-filename 155, 185 char-lover-case? 73

car 12, 89, 124, 137 char-numeric? 73

case .. 32, 35 char-ready? 159

cd .. 183 on input-port 169

cdaaar ... 90 char-set ... 73

cdaadr ... 90 char-set-difference 74

cdaar .. 90 char-set-intersection 74

cdadar ... 90 char-set-invert 74

cdaddr ... 90 char-set-member? 73

cdadr .. 90 char-set-m embers 73

cdar ... 90 char-set-union 74

cddaar ... 90 char-set:alphabetic 72

cddadr ... 90 char-set: alphanumeric 72

cddar .. 90 char-set:graphic 72

cdddar ... 90 char-set: lower-case 72

cddddr ... 90 char-set: not-graphic 72

cdddr .. 90 char-set:not-whitespace 72

cddr ... 90 char-setv:n meric 72

cdr 89, 124, 137 char-set:standard 72

ceiling .. 55 char-set:upper-case 72

ceiling->exact 56 char-set:vhitespace 72, 81

cell-contents 118 char-set? .. 72

cell? ... 118 char-standard? 67, 73

char->ascii 70, 71 char-u a se 68

char->digit 68 char-upper-case? 73

char->integer 70 char-whitespace? 73

char->name .. 66 char-? 39, 40, 67

216 MIT Scheme Reference

char? .. 68 current-input-port 154, 157

char>-? .. 67 current-output-port 154, 157

char>? ... 67

char<-? .. 67, 70 D
char<? 67 default-object?............................ 20

chars->char-st..................................3 defi.........................8, 26, 27, 35, 150
circular-list 101 define-color

clear162 on stabs-grap.ics-device................... 211

closi-all-open-fi 156 del-assoc................................. 131

close-input-port 154, 155 del-assoc'............. 131

close-output-port-......................154, 155, 156 del-assq 131

color-map-size del-asaqo .. 131

on starbas-graphics-device 211 del-a 131

copild-procedure?.142 del-aso'! 131

complex?-.. delay 23,121

compound-procedured 142 delete................ 96

cond 6, 31, 35, 113 delete'.................. 96,97

conditonn-type/errorpi......................193, 194 delete-association-procedure...............131

condition-type/generalizations 192 delete-file 185

condition-type/properties 193 delete-member-procedure..................... 97

condition-type/reporter....................192 delq 96

condition-typ:error 193 delq....................................... 96

condition-type? 192 del. 96, 97

condition/continuation 194 del'...................................... 96

condition/error' 195 denominator 55

condition/genralizations195 digit->char................................ 68

condition/internal' 195,197 directory-read 186

condition/irritants. 194 discard-char

condition/propertis195............. 1

condition/report-string 195 discard-chars

condition/rporter 195i 1

conditonn-tput-prrt....e........................169

condition/type 194 display 153, 161, 166, 167, 190

condition/write-report .r...................... 194 do 8, 35, 36

condition ? 194 dynamic-wind.............................. 145

conjugate r......................... 58

cons88,136 9

cons* n....-.... ?.................................. 92

cons-stream 124 eighth 94

console-input-port 154 ls 6, 31, 32

console-output-port 154 empty-stream' 125

continuation'..? 145 entity-extra 147

copy-file 184 entity-procedure 147

cos. 57 entity6...................................147
onvironment-assign' 150

Index of Procedures, Special Forms, and Variables 217

environment-assignable? 150 expt ... 58

environment-bindings 149

environment-bound-names 149

environment-bound? 149

environment-has-parent? 149 false ... 113

environment-lookup 150 false? 114

environment-parent 149 fifth .. 94

environment? 149 file-attributes 186

eof-object? 160, 169 file-directory? 185

eq? 39, 41, 96, 98, file-exists? 184

130, 131, 133, 134, 135, 136, 138, 167 file-modification-time 185

equal? 29, 39, 42, 96, 98, 130, 131 file-symbolic-link? 185

eqv? 12, 33, 39, 84, 88, 96, 98, 114, 117, 130, 131 first .. 94

error .. 187, 189 fix:* .. 61

error-condition 190 fix:- 61

error-continuation 190 fix:-1+ .. 61

error-irritant/noise 191 fix:- 61

error-irritant/noise-value 191 fix: ... 61

error-irritant/noise? 191 fix:> .. 61

error-irritants 190, 191 fix:>- ... 61

error-irritants/sans-noise 191 fix:< .. 61

error-message 190 fix:< .. 61

error-procedure 189 fix:1+ ... 61

error-type:bad-range-argument 197 fix:and .. 62

error-type:file 198 fix:andc ... 62

error-type:illegal-argument 198 fix:divide .. 61

error-type:open-file 198 fix:fixnum? 60

error-type:vanilla 189 fix:gcd .. 61

error-type:wrong-type-argument 197 fix:lah .. 63

error-type? 193 fix:negative? 61

error:datum-out-of-range 198 fix:not .. 62

error:illegal-datum 197 fix:or ... 62

error? .. 194 fix:positive? 61

eval .. 150 fix:quotient 61

even? .. 51 fix:remainder 61

exact->inexact 58 fix:xor .. 62

exact-integer? 50 fix:zero? .. 61

exact-nonnegative-integer? 50 flo:e .. 64

exact-rational? 50 flo: 64

exact? ... 50 flo:/ .. 64

except-last-pair 102 flo: .. 63

except-last-pair! 102 flo:÷ .. 63

exp .. 5 l o:>...................................... 63

flo:< .. 63

218 MIT Scheme Reference

flo: abs .. 64 on x-graphics-device 209

flo: acos ... 64 graphics-bind-drawing-mode 204

flo:asin ... 64 graphics-bind-line-style 204

flo:atan ... 64 graphics-clear 201, 208, 209

flo:atan2 .. 64 graphics-close 199

flo: coiling 64 graphics-coordinate-limits 200

flo: coil ing->exact 64 graphics-dovice-coordinate-limuits 200

flo:cos .. 64 graphics-disable-buffering 204

flo:oxp .. 64 graphics-drag-cursor 202

flo:expt ... 64 graphics-draw-line 201

flo:flonum? 63 graphics-draw-point 201

flo:floor .. 64 graphics-draw-text 201

flo:floor->exact 64 graphics-enable-buffering 204

flo:log .. 64 graphics-erase-point 201

tlo:negate .. 64 graphics-flush 205

flo:negative? 63 graphics-move-cursor 202

flo:positive? 63 graphics-operation 205

flo: round .. 64 graphics-reset-clip-rectangle 205

flo:round->exact 64 graphics-set-clip-rectangle 205

flo:sin .. 64 graphics-set-coordinate-limits 200

flo:sqrt ... 64 graphics-set-drawing-mode 204

flo:tan .. 64 graphics-set-line-style 204

flo: truncate 64 graphics-type-available? 199

flo:truncate->exact 64 guarantee-condition 194

flo:zero? .. 63 guarantee-condition-type 192

floor .. 55 guarantee-input-port 153

floor->exact 56 guarantee-output-port 153

fluid-let 24, 26, 27, 35

flush-output H
on output-port 172

for-all? .. 101 hash .. 139

for-each .. 100 hash-table/clean ! 136

force .. 121, 124 hash-table/clear! 135

format .. 163 hash-table/constructor 136

format-error-message 191 hash-table/count 138

fourth ... 94 hash-table/entries-list 136
hash-table/entries-vector 136
hash-table/entry-key.............................. 137

G hash-table/entry-valid? 137

gcd .. 54 hash-table/entry -value 137

go .. 8, 151 hash-table/for-each 136

general-car-cdr 90 hash-table/get 135

generate-uninternod-symbol 117 hash-table/key-hash 137

get-default hash-table/key-? 137

Index of Procedures, Special Forms, and Variables 219

hash-table/lookup 135 intern .. 116

hash-table/make-entry 137 interpreter-environment? 152

hash-table/put! 135

hash-table/rehash-size '38 L
hash-table/rehash-threshold 137 lambda...........6, 9,16, 18, 19, 23, 26, 27, 35, 141

hash-table/remove! 135 last-pair................................. 101

hash-table/set-entry-value.................137 Ica.. 54

hash-table/size 138 length.................................. 47,93

hash-table? 135 let..h.........................8, 21, 24, 26, 27, 35
headh-..b......................................124 let............................8, 22, 26, 27,35

letrec 8, 23, 26, 27, 35

a list.. 91, 92, 101, 104

it.............................31,113 list->stream.............................. 124

imag-part .. 58 list->string 6, 93

implesented-primitive-procedure 143 list-)wector........................... 93, 104

inexact-exact...........................46, 58 list-copy.................... 92, 132

inexact 50 list-deletor........................... 97,131

input-port/char-ready' 170 list-deletor 97, 131

input-port/copy 168 list-head. 95

input-port/custom-operation 169 list-ref94

input-port/discard-char 170 list-search-negative 98

input-port/discard-chars 170 list-search-positive........................ 98

in t 94 95

input-drt/optor:o 16813

input-port/operation/char-ready? 170 list-transform-negative.....................96

input-port/operation/discard-char 170 list-transform-Positive......................... 96

input-port/operation/discard-chars 170 list..............................93, 130, 132

input-port/opration/pek-char.............170 load-option 134 163

input-port/operation/read-char............... 170 log .. 57

input-port/operation/read-string 170

input-port/peek-char 170 M
input-port/read-char 170 magnitudeh........... 58

input-port/read-string 170 make-Id-table 132

input-port/state........................... 168 make-apply-hook 146

input-port' 153 make-bit-stringo.............................. 107

integer->chart.................... 70 make-cell 118

integer-ceiling53 make-char.................................. 69

integer-divide54,61 make-circular-list 101

integer-divide-quotientp......................54, 61 make-condition 194, 195

integer-divide-remaindero..................... 54,61 make-condition-type.....................192,193

integer-floort 53 make-entity 147

int ger-round 53 make-environment 151

integer-truncate 53 make-oh .-object....... 169

integer-f... r...................................... 49 make-error-type 193

220 MIT Scheme Reference

make-graphics-device 199 0

make-initialized-vector 104 object-hash 138, 166

make-input-port 168 object-unhash 138

make-list 92, 101 odd? ... 51

make-object-hash-table 134 open-input-file 155

make-output-port 170 open-output-file 155

make-pathname 179 or ... 34, 113

make-polar .. 58 output-port/copy I I

make-primitive-procedure 143 output-port/custom-operation 171

make-record-type 119 output-port/flush-output 172

sake-rectangular 57, 58 output-port/operation 171

make-string 76 output-port/operation/flush-output 172

make-string-hash-table 135 output-port/operation/write-char 172

make-symbol-hash-table 135 output-port/operation/write-sitring 172

make-vector 103 output-port/state 171

map .. 99 output-port/write-char 172

map* ... 99 output-port/write-string 172

map-uindow output-port/x-size 172

on x-graphics-device 209 output-port? 153

Sax .. 51

member ... 98

member-procedure 98

meaq ... 98 pair? 88, 93, 125

emv ... 98 pathname->absolute-pathname 183, 184

merge-pathnames 181 pathnaue->input-truenaue 185

min .. 51 pathname->output-truenam e 185

modulo ... 52 pathname->string 176

move-window pathname-absolute? 184

on x-graphics-device 209 pathname-as-directory 180, 183
pathname-components 179

pathname-default 182

N pathname-default-device 182

name->char .. 67 pathnaue-default-directory 182

named-lambda 21, 26, 35 pathname-default-host 182

nearest-repl/environment 151 pathname-default-name 182

negative? 51 pathname-default-type 182

newline ... 161 pathname-def ault-version 182

nil ... 113 pathname-device 179

ninth .. 94 pathname-directory 179

not ... 114 pathname-directory-path 180

null? 93, 94, 125 pathname-directory-string 181

number->string 59 pathname-hoat 179

number? .. 49 pathname-name 179

numerator .. 55 pathname-name-path 180

Index of Procedures, Special Forms, and Variables 221

pathname-name-string 181 record-accesor 119

pathname-new-device 180 record-constructor 119

pathname-nev-directory 180 record-predicate 119

pathname-new-host 179 record-type-descriptor 120

pathname-nsw-name 180 record-type-field-names 121

pathname-new-type 180 record-type-name 120

pathname-new-version 180 record-type? 120

pathname-type 179 record-updater 119

pathname-version 179 record? 120

pathname? 181 reduce .. 100

peek-char .. 159 reduce-right 100

on input-port 169 remainder 52, 54

positive? .. 51 rename-file 184

pp .. 162 resize-window

predicate->char-eet 73 on x-graphics-device 209

primitive-procedure-name 143 reverse ... 101

primitive-procedure? 142 reverse' .. 101

procedure-arity 142 round .. 55

procedure-arity-valid? 142 round->exact 56

procedure-environment 142

procedure? 142

promise-forced? 122

promise-value 122 second ... 94

promise? 122 sequence ... 35

pwd ... 183 set! .. 27,28

set-apply-hook-extra' 147
Q set-apply-hook-procedure' 147

set -background-color
quasiquote

29, 88
on x-graphics-device 208

quote ... 28, 88 set-border-color

quotient 52, 54 on x-graphics-device......................... 208

set-border-width
R on x-graphics-device 208

rational? 49 set-car' ... 89

rationalize 56 set-cdr' 87, 89, 137

rationalize->exact 56 set-cell-contents! 118

read 4, 11, 66, 88, 114, 115, 153, 160 set-entity-extra! 147

read-char 153, 159, 160 set-entity-procedure! 147

on input-port 169 set-font

read-char-no-hang 160 on x-graphics-device 209

read-string 160 set-foreground-color

on input-port 169 on x-graphics-device 208

real-part .. 58 set-hash-table/rehash-size! 138

real? 49 set-hash-table/rehash-threshold! 137

222 MIT Scheme Reference

set-input-port/state! 168 stream-ref 125

set-internal-border-width stream-tail 125

on x-graphics-device 209 string ... 76

set-line-color string->input-port 157

on starbase-graphics-device 211 string->list 76, 93

set-mouse-color string->number 59

on x-graphics-device 208 string->pathname 176

set-mouse-shape string->symbol 116

on x-graphics-device 209 string->uninterned-symbol 117

set-output-port/state' 171 string-append 80

set-record-type-unparser-nethod' 165 string-capitalize 79

set-string-length' 84 string-capitalize' 79

set-text-aspect string-capitalized? 79

on starbase-graphics-device 211 string-ci=? 78

set-text-height string-ci>=? 78

on starbase-graphics-device 212 string-ci>? 78

set-text-rotation string-ci<-? 78

on starbase-graphics-device 212 string-ci<? 78

set-text-slant string-compare 78

on starbase-graphics-device 212 string-compare-ci 78

set-working-directory-pathname! 183 string-copy 76

seventh .. 94 string-domncase 79

signal-condition 196 string-douncase: 79

signal-error 4, 196 string-fill' 83

signed-integer->bit-string 111 string-find-next-char 81

simplest-exact-rational 57 string-find-next-char-ci 81

simplest-rational 56 string-find-next-char-in-set 81

sin .. 57 string-find-previous-char 81

sixth .. 94 string-f ind-previous-char-ci 82

sort .. 102 string-find-previous-char-in-set 82

sqrt .. 48, 58 string-hash 78, 118

standard-error-handler 190, 196 string-hash-mod 78, 136

starbase-f ilename string-head 80

on x-graphics-device 210 string-length 47, 77, 84

starbase-graphics-device-type 210 string-lower-case? 79

stream .. 123 string-match-backward 82

stream->list 124 string-match-backward-ci 82

stream-car 124 string-match-forward 82

stream-cdr 124 string-match-f orward-ci 82

stream-length 125 string-maximum-length 84

stream -map 125 string-null? 77

stream-null? 125 string-pad-left 81

stream-pair? 124 string-pad-right 81

Index of Procedures, Special Forms, and Variables 223

string-prefix-ci? 83 substring-prefix? 83

string-prefix? 82 substring-replace 83

string-ref 12, 77, 85 substring-replace! 83

string-replace 83 substring-suffix-ci? 83

string-replace! 83 substring-suf ix? 83

string-set! 11, 77, 116 substring-upcase! 80

string-suffix-ci? 83 substring-upper-case? 79

string-suffix? 83 substring-? 78

string-tail 80 substring<? 78

string-trim 81 subvector .. 105

string-trim-left 81 subvector->list 93

string-trim-right 81 subvector-fill! 106

string-upcase 80 subvector-move-left! 106

string-upcase: 80 subvector-move-right! 106

string-upper-case? 79 symbol->string 12, 39, 116

string-? 39, 78, 114, 116, 135, 136 symbol-append 117

string? .. 77 symbol-hash 118

string>-? .. 78 symbol-hash-mod 136

string>? ... 78 symbol? ... 116

string<-? .. 78 system-global-environment 150

string<? ... 78

sublist .. 95

substring .. 80 T
substring->list 93

substring-capitalized? 79 t .. 113

substring-ci '? 78 tail .. 124

substring-ci<? 78 tan .. 57

substring-downcases! 79 tenth .. 94

substring-fill' 83 text-aspect

substring-find-next-char 81 on staxrbae-graphics-device 211

substring-find-next-char-ci 81 text-height

substring-find-next-char-in-set 81 on starbaae-graphics-device 211

substring-f ind-previous-char 82 text-rotation

substring-find-previous-char-ci 82 on starbase-graphics-device 211

substring-f ind-previous-char- in-set 82 text-slant

substring-lower-cas'? 79 on starbase-graphice-device 211

substring-match-backward 82 the-empty-stream 123

substring-match-backward-ci 82 the-environment 152, 189

subst ring-match-forward 82 there-exists? 100

substring-match-forward-ci 82 third ... 94

substring-move-left: 84 tree-copy .. 91

substring-sove-right! 84 true .. 113

substring-prefix-ci? 83 truncate ... 55

truncate->exact 56

224 MIT Scheme Reference

U vector? ... 104

unha h .. 139

unmap-window W

on x-graphics-device 209 warn .. 189

unparse-char 166 weak-car 126, 137

unparse-object 167 weak-cdr 127, 137

unparse-string 167 weak-cons 126, 136

unparser/set-tagged-pair-method! 165 weak-pair/car? 126, 137

unparser/set-tagged-vector-method! 165 weak-pair? 126

unparser/standard-method 166 weak-set-car! 126

unquote .. 30, 88 weak-set-cda ! 127, 137

unquote-splicing 30, 88 with-input-from-file 156

unsigned-integer->bit-string III with-input-fron-port 154

unwind-protect 145 with-input-from-string 157

user-initial-environment 8, 151 with-output-to-file 156

with-output-to-port 154

V with-output-to-string 157

values146 with-output-to-truncated-string 158
with-values145

vector .. 103 with-working-direct ory-pat hname 184
vector->list 92, 104

within-continuiat ion 145
vector-8b-fill! 85

vector-Sb-find-nxt-char..................... 85 working-directory-pathname 183

write 11, 115, 161, 167, 190vect or-8b-f ind-next -char-ci 85

vetor-b-find-ios-ch...................85 write-char 153, 161, 167

vector-Sb-f ind-previous-char-ci 85 onoutputort........................... 171

vector-b-rf 85 write-image-filevect on-starbasd-graphocs-dearce.................210

vector-8b-set 85
write-line-................ 162vector-copy !..................................104

vector-eight 105 write-string 162,163,167
vector- 10output-port 172
vector-fifth 105

vector-fill! 106 write-to-string........................... 158

vector-first 105 X
vector-fourth 105

vector-grow 104 x-close-all-displays 207

vector-head 105 x-close-display........................... 207

vector-lngth 47,104 i-geometry-string....................... 207

vector-refo.................... 12,105 i-graphics-device-type.....................206

vector-seco 105 x-open-display 16, 207

vector-set! 105 x-size

vector-seventh 105 on output-port 173

vector-sixth 105

vector-tail 105 Y

vector-third 105 y-size .. 168

Index of Procedures, Special Forms, and Variables 225

Z
zero? ... 50, 51

226 MIT Scheme Reference

Index of Concepts 227

Index of Concepts

in mutation procedure names 14 . as external representation 87

in entries .. 6

as format parameter......................... 163# in eernat reparaetetai of....numbe...........8 16 ; as external representation 14
in external representation of number 48

#(as external representation 103
#* as external representation 107

as external representation 166 => in cond clause 32

#1 as external representation 14 => notational convention..................... 5

#\-as external representation 65

as external representation 48

#d as external representation 48 ? in predicate names 14

#e as external representation 48

as external representation113

#d as pathname componentation..................178 in entries 6

#i as external representation 48

#o as external representation 481

#t as external representation 113 in entries ... 6

#x as external representation 48

' neas external representation 30

as external representation 29 13

Sas external representation 75

as external representation 87 +

+ in entries 6

"eas external representation S
an escape character in string 75

as external representation... 30 ID table (defa).......................... 132

,G as external representation 30

A
" absolute pathname (defn) 183

- I notational convention 5 absolute value, of number 52

-ci, in string procedure name 76 access, used with set! 28

228 MIT Scheme Reference

addition, of numbers 52 bound variable (defn) 7

alist (defn) .. 129 bracket, in entries 6

alphabetic cae, of interned symbol 115 bucky bit, of character (defn) 69

alphabetic case, of string 79 bucky bit, prefix (defn) 65

alphabetic case-insensitivity of programs (defn) 14 buffering, of graphics output 204

alphabetic character (defn) 72 built-in procedure 141

alphanumeric character (defn) 72 byte vector ... 85

apostrophe, as external representation 29

appending, of bit strings 108

appending, of lists 95 C

appending, of strings 80 call by need evaluation (defn) 121

appending, of symbols 117 canonicalization, of filename 185

application hook (defn) 141, 146 capitalization, of string 79

application, of procedure 141 car field, of pair (defn) 87

apply hook (defn) 146 case clause ... 32

argument evaluation order 17 cae conversion, of character 68

ASCII character 69 cae sensitivity, of string operations 76

ASCII character (defn) 71 case, of interned symbol 115

aspect, of graphics character (defn) 211 case, of string 79

assignment ... 28 case-insensitivity of programs (defn) 14

association list (defn) 129 cdr field, of pair (defn) 87

association table (defn) 133 cell (defn) ... 118

asterisk, as external representation 107 character (defn) 65

attribute, of file 186 character bits (defn) 69

character code (defn) 69

character set 72
B character, alphabetic (defn) 72

backquote, as external representation 30 character, alphanumeric (defn) 72

backslash, as escape character in string 75 character, ASCII (defn) 71

bell, ringing on console 162 character, graphic (defa) 72

binding expression (defn) 9 character, input from port 159, 169

binding expression, fluid (or dynamic) 24 character, named (defa) 66

binding expression, lexical 21 character, numeric (defn) 72

binding, of condition handler (defn) 197 character, output to port 161, 171

binding, of variable 7 character, searching string for 81

bit string (defn) 107 character, standard 67

bit string index (defn) 107 character, standard (defn) 72

bit string length (defn) 107 character, whitespace (defn) 72

bitwise-logical operations, on fixnums 62 characters, special, in programs 15

block structure 21 child, of environment (defn) 8

body, of special form (defn) 6 circular list 93, 101

boolean object 10 circular structure 42

boolean object (defn) 113 clause, of case expression 32

boolean object, equivalence predicate 114 clause, of cond expression 31

Index of Concepts 229

clearing the console screen 162 conditional expression (defn) 31

clip rectangle, graphics (defn) 205 console, clearing 162

clipping, of graphics 205 console, input port 154

closing environment, of procedure (defn) 19 console, output port 154

closing, of file port 156 console, ringing the bell 162

closing, of port 154 constant .. 12

code, of character (defn) 69 constant expression (defn) 16

combination (defn) 17 constant, and quasiquote 29

comma, as external representation 30 constant, and quote 28

comment, extended, in programs (defn) 14 construction, of bit string 107

comment, in programs (defn) 14 construction, of cell 118

comparison, for equivalence 39 construction, of character 69

comparison, of bit strings 109 construction, of character set 73

comparison, of boolean objects 114 construction, of circular list 101

comparison, of characters 67 construction, of continuation 143

comparison, of numbers 51 construction, of environment 151

comparison, of strings 77 construction, of EOF object 169

compiled, procedure type 141 construction, of file input port 155

component selection, of bit string 108 construction, of file output port 156

component selection, of cell 118 construction, of input port 168

component selection, of character 69 construction, of list 91

component selection, of list 93 construction, of output port 170

component selection, of pair 89 construction, of pair 88

component selection, of stream 125 construction, of pathname 176, 179

component selection, of string 77 construction, of procedure 19

component selection, of vector 104 construction, of promise 121

component selection, of weak pair 126 construction, of stream 123

component, of pathname, literal 178 construction, of string 76

component, of pathname, missing 178 construction, of string input port 157

component, of pathname, unspecific 178 construction, of string output port 157

component, of pathname, wildcard 178 construction, of symbols 116

components, of pathname 177 construction, of vector 103

compound procedure 141 construction, of weak pair 126

cond clause ... 31 continuation 143

condition (defn) 193 continuation, alternate invocation 145

condition handler 196 continuation, and dynamic binding 25

condition handler (defn) 196 control, bucky bit prefix (defn) 65

condition handler, binding (defn) 197 conventions, lexical 12

condition handling (defn) 196 conventions, naming 14

condition instance (defn) 193 conventions, notational 4

condition signalling (defn) 195 coordinates, graphics 200

condition type 192 copying, of alist 132

condition, error (defn) 195 copying, of bit string 108

230 MIT Scheme Reference

copying, of file 184 directory, predicate for 185

copying, of input port 168 directory, reading 186

copying, of output port 171 disembodied property list 114

copying, of string 76 display, clearing 162

copying, of tree 91 display, X graphics 207

copying, of vector 104 division, of integers 52

current environment (defn) 8 division, of numbers 52

current input port (defn) 153 dot, as external representation 87

current input port, rebinding 156, 157 dotted notation, for pair (defn) 87

current output port (defn) 153 dotted pair (see pair) 87

current output port, rebinding 156, 157 double precision, of inexact number 49

current working directory 175 double quote, as external representation 75

current working directory (defn) 183 drawing mode, graphics (defn) 202

cursor, graphics (defn) 202 dynamic binding 24

custom operations, on graphics device 205 dynamic binding, and continuations 25

custom operations, on port 168 dynamic binding, versus static scoping 9

cutting, of bit string 108 dynamic types (defn) 3

cutting, of list 94

cutting, of string 80

cutting, of vector 105
e, as exponent marker in number 49

element, of list (defn) 87
D ellipsis, in entries 6

d, as exponent marker in number 49 else clause, of case expression (defn) 32

default object (defn) 20 else clause, of cond expression (defn) 31

defaulting, of pathname 181 empty list (defn) 87

define, procedure (defn) 26 empty list, external representation 87

definition ... 26 empty list, predicate for 94

definition, internal 27 empty stream, predicate for 125

definition, internal (defn) 26 empty string, predicate for 77

definition, top-level 26 end of file object (see EOF object) 160

definition, top-level (defn) 26 end, of substring (defn) 75

deletion, of alist element 131 end, of subvector (defn) 103

deletion, of file 185 entity (defn) 146

deletion, of list element 96 entry format ... 5

delimiter, in programs (defn) 12 environment (defn) 8

device coordinates, graphics (defn) 200 environment, current (defn) 8

device, pathname component 177 environment, extension (defn) 8

difference, of numbers 52 environment, initial (defn) 8

directive, format (defn) 163 environment, of procedure 19

directory path (defn) 178 environment, procedure closing (defn) 19

directory, converting pathname to 180 environment, procedure invocation (defn) 19

directory, current working (defn) 183 EOF object, construction 169

directory, pathname component 177 EOF object, predicate for 160

Index of Concepts 231

equivalence predicate (defn) 39 extent, of dynamic binding (defn) 24

equivalence predicate, for bit strings 109 extent, of objects 3

equivalence predicate, for boolean objects 114 external representation (defn) 10

equivalence predicate, for characters 67 external representation, and quasiquote 29

equivalence predicate, for fixnums 61 external representation, and quote 28

equivalence predicate, for flonums 63 external representation, for bit string 107

equivalence predicate, for numbers 51 external representation, for character 65

equivalence predicate, for strings 78 external representation, for empty list 87

equivalence predicates, for characters 67 external representation, for list 87

error condition (defn) 195 external representation, for number 48

error handler, standard 190 external representation, for pair 87

error type (defn) 193 external representation, for procedure 141

error, in examples 5 external representation, for string 75

error, unassigned variable 7 external representation, for symbol 115

error, unbound variable (defn) 8 external representation, for vector 103

error-> notational convention 5 external representation, generating 161

errors, notational conventions 4 external representation, parsing 160

escape character, for string 75 extra object, of application hook 146

escape procedure (defn) 143

escape procedure, alternate invocation 145

evaluation order, of arguments 17 F
evaluation, call by need (defn) 121

evaluation, in examples 5 f, as exponent marker in number 49

evaluation, lazy (defn) 121 false, boolean object 10

evaluation, of s-expression 150 false, boolean object (defn) 113

even number 51 false, in conditional expression (defn) 31

exactness ... 46 false, predicate for 114

exam ples .. 5 file nam e .. 175

existence, testing of file 184 file, end-of-file marker (see EOF object) 160

exit, non-local 144 file, input and output ports 155

exponent marker (defn) 49 file-system interface 175

expression (defn) 16 filenam e (defn) 175

expression, binding (defn) 9 filling, of bit string 110

expression, conditional (defn) 31 filling, of string 83

expression, constant (defn) 16 filling, of vector 106

expression, input from port 160 filtering, of list 96

expression, iteration (defn) 35 fixnum (defn) uO

expression, literal (defn) 16 flonum (defn) 63

expression, output to port 161 fluid binding 24

expression, procedure call (defn) 17 forcing, of promise 121

expression, special form (defn) 17 form, special (defn) 17

extended comment, in programs (defn) 14 formal parameter list, of lambda (defn) 19

extension, of environment (defn) 8 format directive (defn) 163
form at, entry .. 5

232 MIT Scheme Reference

G implementation restriction 47

generalization, of condition types (defn) 187 implicit begin 34

generating, external representation 161 improper list (defn) 88

gensym (see uninterned symbol) 117 index, of bit string (defn) 107

geometry string, X graphics 208 index, of list (defn) 94

graphic character (defn) 72 index, of string (defn) 75

graphics ... 199 index, of vector (defn) 103

graphics, buffering of output 204 inheritance, of environment bindings (defn) 8

graphics, clipping 205 initial environment (defn) 8

graphics, coordinate systems 200 input .. 153

graphics, cursor (defn) 202 input operations 158

graphics, custom operations 205 ilput port primitives 168

graphics, device coordinates (defn) 200 input port, console 154

graphics, drawing 201 input port, current (defn) 153

graphics, drawing mode (defn) 202 input port, file 155

graphics, line style (defn) 203 input port, string 157

graphics, opening and closing devices 199 insensitivity, to case in programs (defn) 14

graphics, output characteristics 202 installed, as pathname component 179

graphics, virtual coordinates (defn) 200 instance, of condition (defn) 193

greatest common divisor, of numbers 54 integer division 52

growing, of vector 104 integer, converting to bit string 111
internal definition 27

H internal definition (defn) 26
internal representation, for character 69handler, of condition............................ 196
internal representation, for inexact number 49

handler, of condition (defn)....................196 interned symbol (defn)....................... 114
handling, of condition (defn) 196

hash table 134 interning, of symbols 116

hashn, of object. 138 interpreted, procedure type 141
hashing, of string 138 in es ,a dtv ,o nu b r. 5

inverse, additive, of number 52hashing, of string......................... 78 ivre utpiaie fnme................528

hashing, of symbol 118 inverse, of bit string.......................... 109

height, of graphics character (defn) 211 inverse, of boolean object.....................114

hook, application (defn) 141 invocation environment, of procedure (defn)....... 19

host, in filenam e 176

host, pathname component....................177 irritants, of error (defn) 188

hyper, bucky bit prefix (defn) 65 iteration expression (defn)..................... 35

I K

/0, to files. 155 key, of association list element (defn) 129

/0, to strings. 157 keyword, of special form (defn) 17

identifier (defn) 13

identity, additive 52 L

identity, multiplicative 52 1, as exponent marker in number 49

immutable ... 12 lambda expression (defn) 19

Index of Concepts 233

lambda list (defn) 19 manifest types (defn) 3

lambda, implicit in define 26 mapping, of list 98

lambda, implicit in let 22 mapping, of stream 125

latent types (defn) 3 matching, of strings 82

lazy evaluation (defn) 121 maximum length, of string (defn) 84

least common multiple, of numbers 54 maximum, of numbers 51

length, of bit string 108 memoization, of promise 121

length, of bit string (defn) 107 merging, of pathnames 181

length, of list (defn) 87 meta, bucky bit prefix (defn) 65

length, of stream 125 method, unparser (defn) 165

length, of string 84 minimum, of numbers 51

length, of string (defn) 75 missing component, of pathname 178

length, of vectoi (defn) 103 modification time, of file 185

letrec, implicit in define 27 modification, of bit string 110

lexical binding expression 21 modification, of string 83

lexical conventions 12 modification, of vector 106

lexical scoping (defn) 9 modulus, of integers 52

line style, graphics (defn) 203 moving, of bit string elements 110

list (defn) .. 87 moving, of string elements 83

list index (defn) 94 moving, of vector elements 106

list, association (defn) 129 multiple values, from procedure 145

list, converting to stream 124 multiplication, of numbers 52

list, converting to string 76 must be, notational convention 4

list, converting to vector 104 mutable .. 12

list, external representation 87 mutation procedure (defn) 14

list, improper (defn) 88

literal component, of pathname 178

literal expression (defn) 16 N
literal, and quasiquote 29 name, of character 66

literal, and quote 28 nam e, of file 184

literal, identifier as 13 nam e, of symbol 116

location .. 11 nam e, of value (defn) 7

location, of variable 7 name, pathname component 177

locks, and dynamic-wind 145 named lambda (defn) 21

logical operations, on fixnums 62 named let (defn) 35

long precision, of inexact number 49 naming conventions 14

looping (see iteration expressions) 35 negative number 51

lowercase ... 14 nesting, of quasiquote expressions 30

lowercase, character conversion 68 newest, as pathname component 179

lowercase, in ctring 79 newline character (defn) 66

newline character, output to port 162

non-local exit 144

M notation, dotted (defn) 87

magnitude, of real number 52 notational conventions 4

234 MIT Scheme Reference

null string, predicate for 77 parsing, of external representation 160

num ber .. 45 pasting, of bit strings 108

number, external representation 48 pasting, of lists 94

numeric character (defn) 72 pasting, of strings 80

numeric precision, inexact 49 pasting, of symbols j17

numerical input and output 59 path, directory (defn) 178

numerical operations 49 pathnam e ... 175

numerical types 45 pathnam e (defn) 175
pathname component, literal 178

O pathname component, missing 178

object hashing 138 pathname component, wildcard................ 178

odd number .. 51 pathname components 177

oldest, as pathname component 179 pathname, absolute (defn) 183

one-dimensional table (defn) 132 pathname, relative (defn) 183

operand, of procedure call (defn) 17 period, as external representation 87

operator, of procedure call (defn) 17 physical size, of hash table (defn)..............137

option, run-time-loadable 134, 163 plus sign, in entries 6

optional component, in entries 6 port ... 153

optional param eter (defn) 20 port (defn) .. 153

order, of argument evaluation 17 port primitives 167

ordering, of characters 67 port, console 154

ordering, of numbers 51 port, current 153

ordering, of strings 7 port, file .. 155

output .. 153 port, string .. 157

output port primitives 170 positive number 51

output port, console 154 precision, of inexact number 49

output port, current (defn) 153 predicate (defn) 14, 39

output port, file 155 predicate, equivalence (defn) 39

output port, string 157 prefix, of string............................. 83

output procedures 161 pretty printer 162

primitive procedure (defn) 141
p primitive, procedure type 141

print name, of symbol 116
padding, of string 81 printed output, in exam ples 5
pair (defn) ... 87 procedure ... 141
pair, external representation 87 •rocedure call (defn) 17

pair, weak (defn) 125 procedure define (defn) 26

parameter list, of lambda (defn) 19 procedure, closing environment (defn) 19

parameter, optional (defn) 20 procedure, compiled 141

parameter, required (defn) 19 procedure, compound 141

parameter, rest (defn) 20 procedure, construction 19

parent, of directory 178 procedure, entry format 6
parent, of environment (defn) 8 procedure, escape (defn) 143

parenthesis, as external representation 87, 103

Index of Concepts 235

procedure, interpreted 141 resignalling, of condition (defn) 196

procedure, invocation environment (defn) 19 resources, X graphics 207

procedure, of application hook 146 rest parameter (defn) 20

procedure, primitive 141 result of evaluation, in examples 5

procedure, type 141 result, unspecified (defn) 5

product, of numbers 52 reversal, of list 101

promise (defn) 121 ringing the console bell 162

promise, construction 121 root, as pathname component 178

promise, forcing 121 rotation, of graphics character (defn) 211

proper tail recursion (defn) 3 run-time-loadable option 134, 163

property list 132, 133

property list, of symbol 114

Q a, as exponent marker in number 49
s-expression.................................... 150

quote, as external representation 29 sceme concepts.............................. 79
scheme concepts 7

quotient, of integers 52 Scheme standard.............................. 3

quotient, of numberssta..rd.........................52 scope (see region) 3

quoting .. 28 scoping lexical (defn) 9

scoping, staticon...................................... 9
R screen, clearing.. 162

R4RS ... 3 searching, of alist 130

rational, simplest (defn) 56 searching, of list 98

record-type descriptor (defn) 119 searching, of string 81

recursion (see tail recursion) 3 selecting, of stream component 125

reduction, of list 100 selection, of bit string component 108

reference, variable (defn) 16 selection, of cell component 118

region of variable binding, do 37 selection, of character component 69

region of variable binding, internal definition 27 selection, of list component 93

region of variable binding, lambda 19 selection, of pair component 89

region of variable binding, let 21 selection, of string component 77

region of variable binding, let* 22 selection, of vector component 104

region of variable binding, letrec 23 selection, of weak pair component 126

region, of variable binding (defn) 9 self, as pathname component 178

rehash size, of hash table (defn) 138 semicolon, as external representation 14

rehash threshold, of hash table (defn) 137 sensitivity, to case in programs (defn) 14

relative pathname (defn) 183 sequencing expressions 34

remainder, of integers 52 set, of characters 72

renaming, of file 184 shadowing, of variable binding (defn) 8

REP loop (defn) 8 short precision, of inexact number 49

REP loop, environment of 8 signal an error (defn) 4

replacement, of string component 83 signalling, of condition (defn) 195

representation, external (defn) 10 simplest rational (defn) 56

required parameter (defn) 19 single precision, of inexact number 49

236 MIT Scheme Reference

size, of hash table (defn) 137 syntactic keyword (defn) 17

slant, of graphics character (defn) 211 syntactic keyword, identifier as 13

special characters, in programs 15

special form .. 19 T
special form (defn) 17

special form, entry category 6 table, association (defn) 133

specialization, of condition types (defn) 187 table, one-dimensional (defn) 132

specified result, in examples 5 tail recursion (defn) 3

standard character 67 tail recursion, vs. iteration expression 35

standard character (defn) 72 taxonomical link, of condition type (defn) 187

standard error handler 190 terminal screen, clearing 162

standard operations, on port 167 token, in programs (defn) 12

standard Scheme (defn) 3 top, bucky bit prefix (defn) 65

starbase graphics 210 top-level definition 26

start, of substring (defn) 75 top-level definition (defn) 26

start, of subvector (defn) 103 total ordering (defn) 102

static scoping .. 9 tree, copying 91

static scoping (defn) 3 trimming, of string 81

static types (defn) 3 true, boolean object 10

stream (defn) 123 true, boolean object (defn) 113

stream, converting to list 124 true, in conditional expression (defn) 31

string index (defn) 75 truenam e, of input file 185

string length (defn) 75 truenam e, of output file 185

string, character (defn) 75 type predicate, for 1D table 132

string, converting to input port 157 type predicate, for alist 130

string, converting to list 93 type predicate, for apply hook 146

string, converting to pathname 176 type predicate, for bit string 108

string, input and output ports 157 type predicate, for boolean 113

string, input from port 160, 169 type predicate, for cell 118

string, interning as symbol 116 type predicate, for character 68

string, of bits (defn) 107 type predicate, for character set 72

string, output to port 162, 172 type predicate, for compiled procedure 142

strong types (defn) 3 type predicate, for compound procedure 142

substring (defn) 75 type predicate, for condition instance 194

substring, of bit string 109 type predicate, for condition type 192

subtraction, of numbers 52 type predicate, for continuation 145

subvector (defn) 103 type predicate, for empty list 94

suffix, of string 83 type predicate, for entity 147

sum, of numbers 52 type predicate, for environment 149

super, bucky bit prefix (defn) 65 type predicate, for EOF object 160

symbol (defn) 114 type predicate, for error instance 194

symbolic link, predicate for 185 type predicate, for error type 193

syntactic keyword 18 type predicate, for fixnum 60

type predicate, for flonum 63

Index of Concepts 237

type predicate, for hash table 135 uppercase, in string 79

type predicate, for input port 153 usable size, of hash table (defn) 137

type predicate, for interpreter environment 152

type predicate, for list 93 V

type predicate, for number V as format parameter.......................163

type predicate, for output port.................... valid index, of bit string (defn.................... 107

type predicate, for pair 88 valid index, of list (defn)........................394

type predicate, for pathname..................181 valid index, of string (defn) 75

type predicate, for primitive procedure.............142 valid index, of vector (defn)...................103

type predicate, for procedure..................142 value, of variable (defn) 7

type predicate, for promise 122 values, multiple 145

type predicate, for record.....................120 varibl binding 7

type predicate, for record type 120 variable binding, do 37

type predicate, for stream pair.................124 variable binding, fluid-let 24. 2

type predicate, for stringo...........................variable binding, internal definition..............27

type predicate, for symbol..................... 116 variable binding, lambda 19

type predicate, for vectoro.....................104 variable binding, let 21

type predicate, for weak pairmu.....................126 variable binding, let* 22

type, of condition 192 variable binding, letrec........................ 23

type, of error (defn)..........................193 variable binding, top-level definition................ 26

type, of procedure 141 variable reference (den)0.......................16

type, pathname componentb........................177 variable, adding to environment 26

types, latent (defn) variable, assigning values to....................28

types, manifest (defn)............................... variable, binding region (defn) 9

variable, entry category 6..... 6

U variable, identifier as 13

unassigned variable 16 vector (defn) 103

unassigned variable (defn)...................... 7 vector index (defn).......................... 103

unassigned variable, and assignment 28 vector length (defn).......................... 103

unassigned variable, and definition...............27 vector, byte................................. 85

unassigned variable, and dynamic bindings..........24 vector, converting to list........................ .93

unassigned variable, and named let. 3 version, pathname component 177

unbound variable 16 virtual coordinates, graphics (defn)............. 200

unbound variable (def). 8

uninterned symbol (defn) 114

unparser method (defn).......................165 weak pair (defn) 125

unspecifiuble component, of pathnar e 178 weak pair, and ID table...................... 132

unspecific, as pathname component.............178 weak types (defn)c...................................3

unspecified result (defn) 5 whitespace character (defn)....................72

unwind protect 145 whitespace, in programs (defn)..................12

up, as pathname component 178 wild, as pathname component.................. 178

uppercase 14 wildcard component, of pathname................. 178

uppercase, character conversion......................68 working directory (see current working directory) 183

238 MIT Scheme Reference

X X resources, graphics 207

"X display, graphics 207 X window system 206

"X geometry string, graphics 208

"X graphics .. 206
zero .. 51

