
Chapter 8: Correlation & Regression

We can think of ANOVA and the two-sample t-test as applicable to
situations where there is a response variable which is quantitative, and
another variable that indicates group membership, which we might think
of a as categorical predictor variable.

In the slides on categorical data, all varaibles are categorical, and we keep
track of the counts of observation in each category or combination of
categories.

In this section, we analyze cases where we have multiple quantitative
variables.
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Chapter 8: Correlation & Regression

In the simplest case, there are two quantitative variables. Examples
include the following:

I heights of fathers and sons (this is a famous example from Galton,
Darwin’s cousin)

I ages of husbands and wifes

I systolic versus diastolic pressure for a set of patients

I high school GPA and college GPA

I college GPA and GRE scores

I MCAT scores before and after a training course

In the past, we might have analyzed pre versus post data using a
two-sample t-test to see whether there was a difference. It is also possible
to try to quantify the relationship—instead of just asking whether the two
sets of scores are different, or getting an interval for the average difference,
we can also try to predict the new score based on the old score, and the
amount of improvmenet might depend on the old score.
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Chapter 8: Correlation & Regression

Here is some example data for husbands and wives. Heights are in mm.

Couple HusbandAge HusbandHeight WifeAge WifeHeight

1 49 1809 43 1590

2 25 1841 28 1560

3 40 1659 30 1620

4 52 1779 57 1540

5 58 1616 52 1420

6 32 1695 27 1660

7 43 1730 52 1610

8 47 1740 43 1580

9 31 1685 23 1610

10 26 1735 25 1590

11 40 1713 39 1610

12 35 1736 32 1700
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Correlation: Husband and wife ages

Correlation is 0.88.
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Correlation: Husband and wife heights

Correlation is 0.18 with outlier, but -0.54 without outlier.
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Correlation: scatterplot matrix

pairs(x[,2:5]) allows you to look at all data simultaneously.
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Correlation:scatterplot matrix

library(ggplot2)

library(GGally)

p1 <- ggpairs(x[,2:5])

print(p1)
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Correlation: scatterplot matrix
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Chapter 8: Correlation & Regression

For a data set like this, you might not expect age to be significantly
correlated with height for either men or women (but you could check).
You could also check whether differences in couples ages are correlated
with differences in their heights. The correlation between two variables is
done as follows:

cor(x$WifeAge,x$HusbandAge)

Note that the correlation is looking at something different than the t test.
A t-test for this data might look at whether the husbands and wives had
the same average age. The correlation looks at whether younger wives
tend to have younger husbands and older husbands tend to have older
wives, whether or not there a difference in the ages overall. Similarly for
height. Even if husbands tend to be taller than wives, that doesn’t
necessarily mean that there is a relationship between the heights for
couples.
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Pairwise Correlations

The pairwise correlations for an entire dataset can be done as follows.
What would it mean to report the correlation between the Couple variable
and the other variables? Here I only get the correlations for variables other
than the ID variable.

options(digits=4) # done so that the output fits

#on the screen!

cor(x[,2:5])

HusbandAge HusbandHeight WifeAge WifeHeight

HusbandAge 1.0000 -0.24716 0.88003 -0.5741

HusbandHeight -0.2472 1.00000 0.02124 0.1783

WifeAge 0.8800 0.02124 1.00000 -0.5370

WifeHeight -0.5741 0.17834 -0.53699 1.0000
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Chapter 8: Correlation & Regression

The correlation measures the linear relationship between variables X and
Y as seen in a scatterplot. The sample correlation between X1, . . . ,Xn and
Y1, . . . ,Yn is denoted by r has the following properties

I −1 ≤ r ≤ 1
I if Yi tends to increase linearly with Xi , then r > 0
I if Yi tends to decrease linearly with Xi , then r < 0
I if there is a perfect linear relationship between X and Y , then r = 1

(points fall on a line with positive slope)
I if there is a perfect negative relationship between X and Y , then

r = −1 (points fall on a line with negative slope)
I the closer the points (Xi ,Yi ) are to a straight line, the closer r is to 1

or −1
I r is not affected by linear transformations (i.e., converting from inches

to centimeters, Fahrenheit to Celsius, etc.
I the correlation is symmetric: the correlation between X and Y is the

same as the correlation between Y and X
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Chapter 8: Correlation & Regression

For n observations on two variables, the sample correlation is calculated by

r =
SXY
SXSY

=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2

Here SX and SY are the sample standard deviations and

SXY =

∑n
i=1(xi − x)(yi − y)

n − 1

is the sample covariance. All the (n − 1) terms cancel out from the
numerator and denominator when calculating r .
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Chapter 8: Correlation & Regression

CIs and hypothesis tests can be done for correlations using cor.test().
The test is usually based on testing whether the population correlation ρ is
equal to 0, so

H0 : ρ = 0

and you can have either a two-sided or one-sided alternative hypothesis.
We think of r as a sample estimate of ρ, the Greek letter for r . The test is
based on a t-statistic which has the formula

tobs = r

√
n − 2

1− r2

and this is compared to a t distribution with n − 2 degrees of freedom. As
usual, you can rely on R to do the test and get the CI.
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Correlation

The t distribution derivation of the p-value and CI assume that the joint
distribution of X and Y follow what is called a bivariate normal
distribution. A sufficient condition for this is that X and Y each
individually have normal distributions, so you can do usual tests or
diagnostics for normality. Similar to the t-test, the correlation is sensitive
to outliers. For the husband and wife data, the sample sizes are small,
making it difficult to detect outliers. However, there is not clear evidence
of non-normality.
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Chapter 8: Correlation & Regression

Shairpo-Wilk’s tests for normality would all be not rejected, although the
sample sizes are quite small for detecting deviations from normality:

> shapiro.test(x$HusbandAge)$p.value

[1] 0.8934

> shapiro.test(x$WifeAge)$p.value

[1] 0.2461

> shapiro.test(x$WifeHeight)$p.value

[1] 0.1304

> shapiro.test(x$HusbandHeight)$p.value

[1] 0.986
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Correlation

Here we test whether ages are significantly correlated and also whether
heights are positively correlated.

> cor.test(x$WifeAge,x$HusbandAge)

Pearson’s product-moment correlation

data: x$WifeAge and x$HusbandAge

t = 5.9, df = 10, p-value = 2e-04

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.6185 0.9660
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Correlation

Here we test whether ages are significantly correlated and also whether
heights are positively correlated.

> cor.test(x$WifeHeight,x$HusbandHeight)

Pearson’s product-moment correlation

data: x$WifeHeight and x$HusbandHeight

t = 0.57, df = 10, p-value = 0.6

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.4407 0.6824

sample estimates:

cor

0.1783
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Correlation

We might also test the heights with the bivariate outlier removed:

> cor.test(x$WifeHeight[x$WifeHeight>1450],x$HusbandHeight[x$WifeHeight>1450])

Pearson’s product-moment correlation

data: x$WifeHeight[x$WifeHeight > 1450] and x$HusbandHeight[x$WifeHeight > 1450]

t = -1.9, df = 9, p-value = 0.1

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.8559 0.1078

sample estimates:

cor

-0.5261
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Correlation

Removing the outlier changes the direction of the correlation (from
positive to negative). The result is still not significant at the α = 0.05
level, although the p-value is 0.1, suggesting slight evidence against the
null hypothesis of no relationship between heights of husbands and wives.
Note that the negative correlation here means that, with the one outlier
couple removed, taller wives tended to be associated with shorter
husbands and vice versa.
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Correlation

A nonparametric approach for dealing with outliers or otherwise nonnormal
distributions for the variables being correlated is to rank the data within
each sample and then compute the usual correlation on the ranked data.
Note that in the Wilcoxon two-sample test, you pool the data first and
then rank the data. For the Spearman correlation, you rank each group
separately.

The idea is that large observations will have large ranks in both groups, so
that if the data is correlated, large ranks will tend to get paired with large
ranks, and small ranks will tend to get paired with small ranks if the data
is correlated. If the data are uncorrelated, then the ranks will be random
with respect to each other.
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The Spearman correlation is implemented in cor.test() using the option
method=’’spearman’’. Note that the correlation is negative using the
Spearman ranking even with the outlier, but the correlation was positive using the
usual (Pearson) correlation. The Pearson correlation was negative when the
outlier was removed. Since the results depended so much on the presence of a
single observation, I would be more comfortable with the Spearman correlation for
this example.

cor.test(x$WifeHeight,x$HusbandHeight,method="spearman")

Spearman’s rank correlation rho

data: x$WifeHeight and x$HusbandHeight

S = 370, p-value = 0.3

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

-0.3034
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Chapter 8: Correlation & Regression

A more extreme example of an outlier. Here the correlation changes from
0 to negative.
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Correlation

Something to be careful of is that if you have many variables (which often
occurs), then testing every pair of variables for a significant correlation
leads to multiple comparison problems, for which you might want to use a
Bonferroni correction, or limit yourself to only testing a small number of
pairs of variable that are interesting a priori.
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Regression

In regression, we try to make a model that predicts the average response
of one quantitative variable given one or more predictor variables. We start
with the case that there is one predictor variable, X , and one response, Y ,
which is called simple linear regression.

Unlike correlation, the model depends on which variable is the predictor
and which is the response. While the correlation of x and y is the same as
the correlation of y and x , the regression of y on x will generally lead to a
different model than regressing on x on y . In the phrase “regressing y on
x”, we mean that y is the response and x is the predictor.
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Regression

In the basic regression model, we assume that the average value of Y has
a linear relationship to X , and we write

y = β0 + β1x

Here β0 is the coefficient and β1 is the slope of the line. This is similar to
equations of lines from courses like College Algebra where you write

y = a + bx

or
y = mx + b

But we think of β0 and β1 as unknown parameters, similar to µ for the
mean of a normal distribution. One possible goal of a regression analysis is
to make good estimates of β0 and β1.
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Regression

Review of lines, slopes, and intercepts. The slope is the number of units
that y changes for a change of 1 unit in x . The intercept (or y -intercept)
is where the line intersects the y -axis.
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Regression

In real data, the points almost never fall exactly on a line, but there might
be a line that describes the overall trend. (This is sometimes even called
the trend line). Given a set of points, which line through the points is
“best”?
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Regression

Husband and wife age example.
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Regression

Husband and wife age example. Here we plot the line y = x . Note that 9 out of

12 points are above the line—for the majority of couples, the husband was older

than the wife. The points seem a little shifted up compared to the line.
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Now we’ve added the usual regression line in black. It has a smaller slope but a

higher intercept. The lines seem to make similar predictions at higher ages, but

the black line seems a better fit to the data for the lower ages. Although this

doesn’t always happen, exactly half of the points are above the black line.
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Regression

It is a little difficult to tell visually which line is best. Here is a third line,
which is based on regressing the wives’ heights on the husbands heights.
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Regression

It is difficult to tell which line is “best” or even what is meant by a best
line through the data. What to do?
One possible solution to the problem is to consider all possible lines of the
form

y = β0 + β1x

or here
Husband height = β0 + β1 × (Wife height)

In other words, consider all possible choices of β0 and β1 and pick the one
that minimizes some criterion. The most common criterion used is the
least squares criterion—here you pick β0 and β1 that minimize

n∑
i=1

[yi − (β0 + β1xi )]2
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Regression

Graphically, this means minimizing the sum of squared deviations from
each point to the line.
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Regression

Rather than testing all possible choices of β0 and β1, formulas are known
for the optimal choices to minimize the sum of squares. We think of these
optimal values as estimates of the true, unknown population parameters
β0 and β1. We use b0 or β̂0 to mean an estimate of β0 and b1 or β̂1 to
mean an estimate of β1:

b1 = β̂1 =

∑
i (xi − x)(yi − y)∑

i (xi − x)2
= r

SY
SX

b0 = β̂0 = y − b1x

Here r is the Pearson (unranked) correlation coefficient, and SX and SY
are the sample standard deviations. Note that if r is positive if, and only
if, b1 is positive. Similarly, if one is negative the other is negative. In other
words, r has the same sign as the slope of the regression line.
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Regression

The equation for the regression line is

ŷ = b0 + b1x

where x is an value (not just values that were observed), and b0 and b1
were defined on the previous slide. The notation ŷ is used to mean the
predicted or average value of y for the given x value. You can think of it
as meaning the best guess for y if a new observation will have the given x
value.

A special thing to note about the regression line is that it necessarily
passes through the point (x , y).
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Regression: scatterplot with least squares line

Options make the dots solid and a bit bigger.

plot(WifeAge,HusbandAge,xlim=c(20,60),ylim=c(20,60),xlab=

"Wife Age", ylab="Husband Age", pch=16,

cex=1.5,cex.axis=1.3,cex.lab=1.3)

abline(model1,lwd=3)
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Regression: scatterplot with least squares line

You can always customize your plot by adding to it. For example you can
add the point (x , y). You can also add reference lines, points, annotations
using text at your own specified coordinates, etc.

points(mean(WifeAge),mean(HusbandAge),pch=17,col=’’red’’)

text(40,30,’’r = 0.88’’,cex=1.5)

text(25,55,’’Hi Mom!’’,cex=2)

lines(c(20,60),c(40,40),lty=2,lwd=2)

The points statement adds a red triangle at the mean of both ages, which
is the point (37.58, 39.83). If a single coordinate is specified by the
points() function, it adds that point to the plot. To add a curve or line
to a plot, you can use points() with x and y vectors (just like the
original data). For lines(), you specify the beginning and ending x and y
coordinates, and R fills in the line.
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Regression

To fit a linear regression model in R, you can use the lm() command,
which is similar to aov().
The following assumes you have the file couple.txt in the same directory
as your R session:

x <- read.table("couples.txt",header=T)

attach(x)

model1 <- lm(HusbandAge ~ WifeAge)

summary(model1)
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Regression

Call:

lm(formula = HusbandAge ~ WifeAge)

Residuals:

Min 1Q Median 3Q Max

-8.1066 -3.2607 -0.0125 3.4311 6.8934

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.4447 5.2350 1.995 0.073980 .

WifeAge 0.7820 0.1334 5.860 0.000159 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.197 on 10 degrees of freedom

Multiple R-squared: 0.7745, Adjusted R-squared: 0.7519

F-statistic: 34.34 on 1 and 10 DF, p-value: 0.0001595
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Regression

The lm() command generates a table similar to the ANOVA table
generated by aov().

To go through some elements in the table, it first fives the formula used to
generate the output. This is useful when you have generated several
models, say model1, model2, model3, ... and you can’t remember
how you generated the model. For example, you might have one model
with an outlier removed, another model with one of the variables on a
log-transformed scale, etc.

The next couple lines deal with residuals. Residuals are the difference
between theobserved and fitted values, That is

yi − ŷi = yi − (b0 + b1xi )
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Regression

From the web:

www.shodor.org/media/M/T/l/mYzliZjY4ZDc0NjI3YWQ3YWVlM2MzZmUzN2MwOWY.jpg
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Regression

The next part gives a table similar to ANOVA. Here we get the estimates
for the coefficients, b0 and b1 in the first quantitative column. We also get
standard errors for these, corresponding t-values and p-values. The
p-values are based on testing the null hypotheses

H0 : β0 = 0

and
H0 : β1 = 0

The first null hypothesis says that the intercept is 0. For this problem, this
is not very meaningful, as it would mean that the husband of 0-yr old
woman would also be predicted to be a 0-yr old!

Often the intercept term is not very meaningful in the model. The second
null hypothesis is that the slope is 0, which would mean that the wife’s
age increasing would not be associated with the husband’s age increasing.
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Regression

For this eample, we get a significant result for the wife’s age. This means that
the wife’s age has some statistically signficant ability to predict the husband’s
age. The coefficients give the model

Mean Husband’s Age = 10.4447 + 0.7820× (Wife’s Age)

The low p-value for the Wife’s age, suggest that the coefficient 0.7820 is
statistically significantly different from 0. This means that the data show there is
evidence that the wife’s age is associated with the husband’s age. The coefficient
of 0.7820 means that for each year of increase in the wife’s age, the mean
husband’s age is predicted to increase by 0.782 years.

As an example, based on this model, a 20-yr old women who was married would
be predicted to have a husband who was

10.4447 + (0.782)(30) = 33.9

or about 34 years old. A 50 yr-old women would be predicted to have husband
who was

10.4447 + (0.782)(55) = 53.5
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Regression

The fitted values are found by plugging in the observed x values (Wife
ages) into the regression equation. This gives the expected husband ages
for each wife. They are given automatically using

model1$fitted.values

1 2 3 4 5 6 7 8

44.06894 32.33956 33.90348 55.01637 51.10658 31.55760 51.10658 44.06894

9 10 11 12

28.42976 29.99368 40.94111 35.46740

x$WifeAge

[1] 43 28 30 57 52 27 52 43 23 25 39 32

For example, if the wife is 43, the regression equation predicts
10.4447 + (0.782)(43) = 44.069 for the husband age.
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Regression

To see what is stored in model1, type

names(model1)

# [1] "coefficients" "residuals" "effects" "rank"

# [5] "fitted.values" "assign" "qr" "df.residual"

# [9] "xlevels" "call" "terms" "model"

The residuals are also stored, which are the observed husband ages minus
the fitted values.

ei = yi − ŷi
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Regression: ANOVA table

More details about the regression can be obtained using the anova()

command on the model1 object:

> anova(model1)

Analysis of Variance Table

Response: HusbandAge

Df Sum Sq Mean Sq F value Pr(>F)

WifeAge 1 927.53 927.53 34.336 0.0001595 ***

Residuals 10 270.13 27.01

Here the sum of squared residuals, sum(model1$residuals2) is 270.13.
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Regression: ANOVA table

Other components from the table are (SS means sums of squares):

Residual SS =
n∑

i=1

e2i

Total SS =
n∑

i=1

(yi − y)2

Regression SS = b1

n∑
i=1

(xi − x)(yi − y)

Regression SS = Total SS− Residual SS

R2 =
Regression SS

Total SS
= r2

The Mean Square values in the table are the SS values divided by the degrees of

freedom. The degrees of freedom is n − 2 for the residuals and 1 for the 1

predictor. The F statistic is MSR/MSE (Measn square for regression divided by

mean square error), and the p-value can be based on the F statistic.
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Regression

Note that R2 = 1 occurs when the Regression SS is equal to the Total SS.
This means that the Residual SS is 0, so all of the points fall on the line.
In this case, r = 1 and R2 = 1.

On the other hand, R2 = 0 means that the Total SS is equal to the
Residual SS, so the Regression SS is 0. We can think of the Regression SS
and Residual SS as partitioning the Total SS:

Total SS = Regression SS + Residual SS or
Regression SS

Total SS
+

Residual SS

Total SS
= 1

If a large proportion of the Total SS is from the Regression rather than
from Residuals, then R2 is high. It is common to say that R2 is a measure
of how much variation is explained by the predictor variable(s). This phrase
should be used cautiously because it doesn’t refer to a causal explanation.
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Regression

For the husband and wife and example for ages, the R2 value was 0.77.
This means that 77% of the variation in husband ages was “explained by”
variation in the wife ages. Since R2 is just the correlation squared,
regressing wife ages on husband ages would also result in R2 = 0.77, and
77% of the variation in wife ages would be “explained by” variation in
husband ages. Typically, you want the R2 value to be high, since this
means you can use one variable (or a set of variables) to predict another
variable.
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Regression

The least-squares line is mathematically well-defined and can be calculated
without thinking about the data probabilitistically. However, p-values and
tests of significance assume the data follow a probabilistic model with
some assumptions. Assumptions for regression include the following:

I each pair (xi , yi ) is independent

I The expected value of y is a linear function of x : E (y) = β0 + β1x ,
sometimes denoted µY |X

I the variability of y is the same for each fixed value of x . This is
sometimes denoted σ2y |x

I the distribuiton of y given x is normally distributed with mean
β0 + β1x and variance σ2y |x

I in the model, x is not treated as random
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Regression

Note that the assumption that the variance is the same regardless of x is
similar to the assumption of equal variance in ANOVA.
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Regression

Less formally, the assumptions in their order of importance, are:

1. Validity. Most importantly, the data you are analyzing should map to
the research question you are trying to answer. This sounds obvious
but is often overlooked or ignored because it can be inconvenient.

2. Additivity and Linearity. The most important mathematical
assumption of the regression model is that its deterministic
component is a linear function of the separate predictors.

3. Independence of errors (i.e., residuals). This assumption depends
on how the data were collected.

4. Equal variance of errors.

5. Normality of errors.

It is easy to focus on the last two (especially when teaching) because the
first assumptions depend on the scientific context and are not possible to
assess just looking at the data in a spreadsheet.
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Regression

To get back to the regression model, the parameters of the model are β0,
β1 and σ2 (which we might call σ2Y |X , but it is the same for every x).

Usually σ2 is not directly of interest but is necessary to estimate in order
to do hypothesis tests and confidence intervals for the other parameters.

σ2Y |X is estimated by

s2Y |X = Residual MS =
Residual SS

Residual df
=

∑
i (yi − ŷi )

2

n − 2

This formula is similar to the sample variance, but we subtract the
predicted values for y instead of the mean for y , y , and we divide by n− 2
instead of dividing by n − 1. We can think of this as two degrees of
freedom being lost since β0 and β1 need to be estimated. Usually, the
sample variance uses n − 1 in the denominator due to one degree of
freedom being lost for estimating µY with y .
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Regression

Recall that there are observed residuals, which are observed minus fitted
values, and unobserved residuals:

ei = yi − ŷi = yi − (b0 + b1)xi

εi = yi − E (yi ) = yi − (β0 + β1)xi

The difference in meaning here is whether the estimated versus unknown
regression coefficients are used. We can think of ei as an estimate of εi .
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Regression

Two ways of writing the regression model are

E (yi ) = β0 + β1xi

and
yi = β0 + β1xi + εi
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Regression

To get a confidence interval for β1, we can use

b1 ± tcritSE (b1)

where
SE (b1) =

sY |X√∑
i (xi − x)2

Here tcrit is based on the Residual df, which is n − 2.

To test the null hypothesis that β1 = β10 (i.e. a particular value for β1,
you can use the test statistic

tobs =
b1 − β10
SE (b1)

and then compare to a critical value (or obtain a p-value) using n − 2 df
(i.e., the Residual df).

ADA1 November 12, 2017 59 / 105



Regression

The p-value based on the R output is for testing H0 : β1 = 0, which
corresponds to a flat regression line. But the theory allows testing any
particular slope. For the couples data, you might be interested in testing
H0 : β1 = 1, which would mean that for every year older that the wife is,
the husband’s age is expected to increase by 1 year.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.4447 5.2350 1.995 0.073980 .

WifeAge 0.7820 0.1334 5.860 0.000159 ***

To test H0 : β1 = 1, tobs = (0.782− 1.0)/(.1334) = −1.634. The critical
value is qt(.975,10) = 2.22. So comparing | − 1.634| to 2.22 for a
two-sided test, we see that the observed test statistic is not as extreme as
the critical value, so we cannot conclude that the slope is significantly
different from 1. For a p-value, we can use pt(-1.634,10)*2 = 0.133.
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Instead of getting values such as the SE by hand from the R output, you
can also save the output to a variable and extract the values. This reduces
roundoff error and makes it easier to repeat the analysis in case the data
changes. For example, from the previous example, we could use

model1.values <- summary(model1)

b1 <- model1.values$coefficients[2,1]

b1

#[1] 0.781959

se.b1 <- model1.values$coefficients[2,2]

t <- (b1-1)/se.b1

t

#[1] -1.633918

The object model1.values$coefficients here is a matrix object, so the
values can be obtained from the rows and columns.
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For the CI for this example, we have

df <- model1.values$fstatistic[3] # this is hard to find

t.crit <- qt(1-0.05/2, df)

CI.lower <- b1 - t.crit * se.b1

CI.upper <- b1 + t.crit * se.b1

print(c(CI.lower,CI.upper))

#[1] 0.4846212 1.0792968

Consistent with the hypothesis test, the CI includes 1.0, suggesting we
can’t be confident that the ages of husbands increase at a different rate
from the ages of their wives.
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As mentioned earlier, the R output tests H0 : β1 = 0, so you need to
extract information to do a different test for the slope. We showed using a
t-test for testing this null hypothesis, but it is also equivalent to an F test.
Here the F statistic is t2obs when there is only 1 numerator degree of
freedom (one predictor in the regression).

t <- (b1-0)/se.b1

t

#[1] 5.859709

t^2

#[1] 34.33619

which matches the F statistic from earlier output.

In addition, the p-value matches that for the correlation using
cor.test(). Generally, the correlation will be significant if and only if the
slope is signficantly different from 0.
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Another common application of confidence intervals in regression is for the
regression line itself. This means getting a confidence interval for the
expected value of y for each value of x .
Here the CI for y given x is

b0 + b1x ± tcritsY |X

√
1

n
+

(x − x)2∑
i (xi − x)2

where the critical value is based on n − 2 degrees of freedom.
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In addition to a confidence interval for the mean, you can made
prediction intervals for a new observation. This gives a plausible interval
for a new observation. Here there are two sources of uncertainty:
uncertainty about the mean, and uncertainty about how much an
individual observation deviates from the mean. As a result, the prediction
interval is wider than the CI for the mean.

The prediction interval for y given x is

b0 + b1x ± tcritsY |X

√
1 +

1

n
+

(x − x)2∑
i (xi − x)2
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For a particular wife age, such as 40, the CIs and PIs (prediction intervals)
are done in R by

predict(model1,data.frame(WifeAge=40), interval="confidence",

level=.95)

# fit lwr upr

#1 41.72307 38.30368 45.14245

predict(model1,data.frame(WifeAge=40), interval="prediction",

level=.95)

# fit lwr upr

#1 41.72307 29.6482 53.79794

Here the predicted husband’s age for a 40-yr old wife is 41.7 years. A CI for the

mean age for the husband is (38.3,45.1), but a prediction interval is that 95% of

husbands for a wife this age would be between 29.6 and 53.8 years old. There is

quite a bit more uncertainty for an individual compared to the population

average.
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To plot the CIs at each point, here is some R code:

library(ggplot2)

p <- ggplot(x, aes(x = WifeAge, y = HusbandAge))

p <- p + geom_point()

p <- p + geom_smooth(method = lm, se = TRUE)

p <- p + theme(text = element_text(size=20))

print(p)
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Note that the confidence bands are narrow in the middle of the data. This
is how these bands usually look. There is less uncertainty near the middle
of the data than there is for more extreme values. You can also see this in
the formula for the SE, which has (x − x)2 inside the square root. This is
the only place where x occurs by itself. The further it is from x , the larger
this value is, and therefore the larger the SE is.
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There is a large literature on regression diagnostics. This involves checking
the assumptions of the regression model. Some of the most important
assumptions, such as that observations are independent observations from
a single population (e.g., the population of married couples), cannot be
checked just by looking at the data. Consequently, regression diagnostics
often focus on what can be checked by looking at the data.

To review, the model is yi = β0 + β1xi + εi where

1. the observed data are a random sample

2. the average y value is linearly related to x

3. the variation in y given x is independent of x (the variability is the
same for each level of x

4. the distribution of responses for each x is normally distributed with
mean β0 + β1x (which means that ε is normal with mean 0)

ADA1 November 12, 2017 70 / 105



Regression

The following plots show examples of what can happen in scatterplots:

(a) Model assumptions appear to be satisfied

(b) The relationship appears linear, but the variance appears nonconstant

(c) The relationship appears nonlinear, althought the variance is appears
to be constant

(d) The relationship is nonlinear and the variance is not constant
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Regression diagnostics are often based on examinging the residuals:

ei = yi − ŷi = yi − (b0 + b1xi )

Based on the model assumptions, the residuals should be normally
distributed with mean 0 and some variance σ2. To standardize the
residuals, they are often divided by their standard error. Here ri is called
the studentized residual:

ri =
ei

SE (ei )
=

ei

sY |X

√
1
n + (xi−x)2∑

i (xi−x)2
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The studentized residuals are standard normal (if the model is correct), so
most studentized residuals should be between -2 and +2, just like z-scores.
Often studentized residuals are plotted against the fitted values, ŷi .

For this plot, there is no trend, and you should observed constant variance
and no obvious patterns like U-shapes.
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Good residual plot.
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Bad residual plot (U-shape).
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Residual plot with extreme outlier.
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Typing plot(model1) (or whatever the name of your model from lm())
and then return several times, R will plot several diagnostic plots. The first
is the residuals (not studentized) against the fitted values. This help you
look for outliers, nonconstant variance and curvature in the residuals.
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Another type of residual is the externally Studentized residual (also called
Studentized deleted residual or deleted t-residual), which is based on
rerunning the analysis without the ith observation, then determining what
the difference would be between yi and b0 + b1xi , where b0 and b1 are
estimated with the pair (xi , yi ) removed from the model. This could be
done by tediously refitting the regression model n times for n pairs of data,
but this can also be done automatically in the software, and there are
computational ways to make it reasonably efficient.

The point of doing this is that if an observation is outlier, it might have a
large influence on the regression line, making its residual not as extreme as
if the regression was fit without the line. The Studentized deleted residuals
give a way of seeing which observations have the biggest impact on the
regression line. If the model assumptions are correct (without extreme
outliers), then the Studentized deleted residual has a t distribution with
n − 2 degrees of freedom.
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Something to be careful of is that if you have different numbers of
observations for different values of x , then larger sample sizes will naturally
have a larger range. Visually, this can be difficult to distinguish from
nonconstant variance. The following examples are simulated.
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Residual plot with extreme outlier.
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Residual plot with extreme outlier.
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Residual plot with extreme outlier.
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Residual plot with extreme outlier.
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The normality assumption for regression is that the responses are normally
distributed for each level of the predictor. Note that it is not assumed that
the predictor follows any particular distribution. The predictor can be
nonnormal, and can be chosen by the investigator in the case of
experimental data. In medical data, the investigator might recruit
individuals based on their predictors (for example, to get a certain age
group), and then think of the response as random.

It is difficult to tell if the responses are really normal for each level of the
predictor, especially if there is only one response for each x value (which
happens frequently). However, the model also predicts that the residuals
are normally distributed with mean 0 and constant variance. The indvidual
values yi come from different distributions (because they have different
means), but the residuals all come from the same distribution according to
the model. Consequently, you can check for normality of the residuals.
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As an example, the QQ plot is also generated by typing plot(model1) and
hitting return several times. The command plot(model1) will generate
four plots. To see them all you might type par(mfrow=c(2,2)) to put
them in a 2× 2 array first. You can also do a formal test on the residuals

par(mfrow=c(2,2))

plot(model1)

shapiro.test(model1$residual)

# Shapiro-Wilk normality test

#

#data: model1$residual

#W = 0.95602, p-value = 0.7258

ADA1 November 12, 2017 87 / 105



QQ plot

ADA1 November 12, 2017 88 / 105



Regression

Studentized residuals, i.e., residuals divided by their standard errors so that
they look like z-scores, can be obtained from R using rstudent(model1).
It helps to sort them to see which ones are most extreme.

rstudent(model1)

sort(rstudent(model1))

# 7 2 10 4 11 12

#-2.02038876 -1.65316857 -0.83992238 -0.69122350 -0.17987025 -0.09016353

# 6 9 8 1 3 5

# 0.08799631 0.54099532 0.57506585 1.00173208 1.29257824 1.61935539
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The biggest outlier based on the resiudals has a z-score of -2.02, which is
not very extreme for 12 observations from a normal distribution. This
corresponds to observation 7, which is

> x[7,]

Couple HusbandAge HusbandHeight WifeAge WifeHeight

7 7 43 1730 52 1610

The negative number is due to the husband being younger than expected
given the wife’s age.
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If there are outliers in the data, you have to be careful about how to
analyze them. If an outlier is due to an incorrect measurement or error in
the data entry, then it makes sense to remove it. For a data entry error,
you might be able to correct the entry by consulting with the investigators,
for example if a decimal is put in the wrong place. This is preferable to
simply removing the data altogether.

If an outlier corresponds to genuine data but is removed, I would typically
analyze the data both with and without the outlier to see how much of a
difference it makes. In some cases, keeping an outlier might not change
conclusions in the model. Removing the outlier will tend to decrease
variability in the data, which might make you underestimate variances and
standard errors, and therefore incorrect conclude that you have signficance
or greater evidence than you actually have.
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Removing an outlier that is a genuine observation also makes it less clear
what population your sample represents. For the husband and wife
example, if we removed a couple that appeared to be an outlier, we would
be making inferences about the population of couples that do not have
unusual ages or age combinations, rather than inferences about the more
general population, which might include unusual ages.
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A concept from regression diagnostics is that of influential observations.
These are observations that can have a large impact on the regression line
if they are removed from the data. This is a slightly different concept from
that of outliers. An influential observation might or might not be an
outlier, and might or might not have a large residual.

In the next slide, the solid line is the regression line with the influential
observation and the dotted line is the regression line with the influential
observation removed.
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Note that in the previous slide, the left plot has an observation with an
unusal y value, but that the x value for this observation is not unusual.
For the right plot, the outlier is unusual in both x and y values.

Typically, an unusual x value has more potential to greatly alter the
regression line, so a measure called influence has been developed based on
how unusual an observation is in the predictor variable(s), without taking
into account the y variable.

ADA1 November 12, 2017 95 / 105



Regression

To see measures of influence, you can type influence(model1), where
model1 is whatever you saved your lm() call to. The leverage values
themselves are obtained by influence(model1)$hat. Leverages are
between 0 and 1, where values greater than about 2p/n or 3p/n, where p
is the number of predictors, are considered large. If 3p/n is greater than 1,
you can use 0.99 as a cutoff.

> influence(model1)$hat

> influence(model1)$hat

1 2 3 4 5 6 7 8

0.1027 0.1439 0.1212 0.3319 0.2203 0.1572 0.2203 0.1027

9 10 11 12

0.2235 0.1877 0.0847 0.1039
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For the husband and wife age data, observation 4 has the highest leverage,
and this corresponds to the couple with the highest age for the wife.
Recall that for leverage, the y variable (husband’s age) is not used.
However, the value here is 0.33, which is not high for leverages. Recall
that the observation with the greatest residual was observation 7.

> x[4,]

Couple HusbandAge HusbandHeight WifeAge WifeHeight

4 4 52 1779 57 1540
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The formula for the leverage is somewhat complicated (it is usually defined
in terms of matrices), but to give some intuition, note that the z-scores for
the wife’s ages also give observation 4 as the most unusual, with a z-score
of 1.65:

> (x$WifeAge-mean(x$WifeAge))/sd(x$WifeAge)

[1] 0.461 -0.816 -0.646 1.653 1.228 -0.901 1.228

0.461 -1.242 -1.072 0.121 -0.475
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Another measure of influence is Cook’s distance or Cook’s D. An
expression for Cook’s D is

Dj ∝
∑
i

(ŷi − ŷi [−j])
2

Here ŷi [−j] is the predicted value of the ith observation when the
regression line is computed with the jth observation removed from the
data set. This statistic is based on the idea of recomputing the regression
line n times, each time removing observation j , j = 1, . . . , n to get a
statistic for how much removing the jth observation changes the
regression line for the remaining.

The symbol ∝ means that the actual value is a multiple of the value that
doesn’t depend on j . There are different interpretations for what counts as
a large value of Dj . One is values of Dj > 1. Another approach is to see if
Dj is large for some j compared to other Cook’s distances in the data.
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> cooks.distance(model1)

1 2 3 4 5 6

0.057390 0.195728 0.108014 0.125200 0.318839 0.000802

7 8 9 10 11 12

0.440936 0.020277 0.045336 0.083990 0.001656 0.000523
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Cook’s distance depend’s on an observation being unusual for both x and
y and having an influence on the regression line. In this case, observation
7 has the highest Cook’s D, but it is not alarming. In the following
example, an artificial data set with 101 observations has an outlier that is
fairly consistent with the overall trend of the data with the outlier
removed. However, Cook’s D still picks out the outlier. As before, the
solid line is with the outlier included.
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a <- lm(y ~ x)

hist(cooks.distance(a))
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Note that with one predictor we can pretty easily plot the data and
visually see unusual observations. In multiple dimensions, with multiple
predictor variables, this becomes more difficult, which makes these
diagnostic techniques more valuable when there are multiple predictors.
This will be explored more next semester.

The following is a summary for analyzing regression data.
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1. Plot the data. With multiple predictors, a scatterplot matrix is the
easiest way to do this.

2. Consider transformations of the data, such as logarithms. For count
data, square roots are often used. Different transformations will be
explored more next semester.

3. Fit the model, for example using aov() or lm()

4. Examine residual plots. Here you can look for
I curvature in the residuals or other nonrandom patterns
I nonconstant variance
I outliers
I normality of residuals
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5. Check Cook’s D values

6. If there are outliers or influential observations, consider redoing the
analysis with problematic points removed
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