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Abstract

Scattering theory provides a convenient framework for the solution of a variety of

problems� In this thesis we focus on the combination of boundary conditions and scattering

potentials and the combination of non�overlapping scattering potentials within the context

of scattering theory� Using a scattering t�matrix approach� we derive a useful relationship

between the scattering t�matrix of the scattering potential and the Green function of the

boundary� and the t�matrix of the combined system� e�ectively renormalizing the scatter�

ing t�matrix to account for the boundaries� In the case of the combination of scattering

potentials� the combination of t�matrix operators is achieved via multiple scattering the�

ory� We also derive methods� primarily for numerical use� for �nding the Green function of

arbitrarily shaped boundaries of various sorts�

These methods can be applied to both open and closed systems� In this thesis� we

consider single and multiple scatterers in two dimensional strips �regions which are in�nite

in one direction and bounded in the other	 as well as two dimensional rectangles� In 
D

strips� both the renormalization of the single scatterer strength and the conductance of

disordered many�scatterer systems are studied� For the case of the single scatterer we see

non�trivial renormalization e�ects in the narrow wire limit� In the many scatterer case�

we numerically observe suppression of the conductance beyond that which is explained by

weak localization�

In closed systems� we focus primarily on the eigenstates of disordered many�

scatterer systems� There has been substantial investigation and calculation of properties of

the eigenstate intensities of these systems� We have� for the �rst time� been able to inves�

tigate these questions numerically� Since there is little experimental work in this regime�

these numerics provide the �rst test of various theoretical models� Our observations indicate

that the probability of large �uctuations of the intensity of the wavefunction are explained

qualitatively by various �eld�theoretic models� However� quantitatively� no existing theory

accurately predicts the probability of these �uctuations�
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Chapter �

Introduction and Outline of the

Thesis

��� Introduction

�Scattering� evokes a simple image� We begin with separate objects which are far

apart and moving towards each other� After some time they collide and then travel away

from each other and� eventually� are far apart again� We dont necessarily care about the

details of the collision except insofar as we can predict from it where and how the objects

will end up� This picture of scattering is the �rst one we physicists learn and it is a beautiful

example of the power of conservation laws �
���

In many cases the laws of conservation of momentum and energy alone can be
used to obtain important results concerning the properties of various mechanical
processes� It should be noted that these properties are independent of of the
particular type of interaction between the particles involved�

L�D� Landau� Mechanics �����	

Quantum scattering is a more subtle a�air� Even elastic scattering� which does

not change the internal state of the colliding particles� is more complicated than its classical

counterpart �
���

In classical mechanics� collisions of two particles are entirely determined by
their velocities and impact parameter �the distance at which they would pass if
they did not interact	� In quantum mechanics� the very wording of the problem
must be changed� since in motion with de�nite velocities the concept of the path

��



Chapter �� Introduction and Outline of the Thesis ��

is meaningless� and therefore so is the impact parameter� The purpose of the
theory is here only to calculate the probability that� as a result of the collision�
the particles will deviate �or� as we say� be scattered	 through any given angle�

L�D� Landau� Quantum Mechanics �����	

This so�called �di�erential cross�section�� the probability that a particle is scat�

tered through a given angle� is the very beginning of any treatment of scattering� whether

classical or quantum mechanical�

However� the cross�section is not the part of scattering theory upon which we

intend to build� It is instead the separation between free propagation �motion without

interaction	 and collision� That this idea should lead to so much useful physics is at �rst

surprising� However the Schr�odinger equation� like any other wave equation does not make

this split particularly obvious� It is indeed some work to recover the bene�ts of this division

from the complications of wave mechanics�

In fact� the idea of considering separately the free or unperturbed motion of par�

ticles and their interaction is usually considered in the context of perturbation theory�

Unsurprisingly then� the very �rst quantum mechanical scattering theory was Borns per�

turbative treatment of scattering ��� which he developed not to solve scattering problems

but to address the completeness of the new quantum theory�

Heisenbergs quantum mechanics has so far been applied exclusively to the calcu�
lation of stationary states and vibration amplitudes associated with transitions���

Bohr has already directed attention to the fact that all di�culties of principle
associated with the quantum approach���occur in the interactions of atoms at
short distances and consequently in collision processes��� I therefore attack the
problem of investigating more closely the interaction of the free particle ���ray
or electron	 and an arbitrary atom and of determining whether a description of
a collision is not possible within the framework of existing theory�

M� Born� On The Quantum Mechanics of Collisions ���
�	

Later in the same note� the connection to perturbation theory is made clear� �One can then

show with the help of a simple perturbation calculation that there is a uniquely determined

solution of the Schr�odinger equation with a potential V ����

Scattering theory has developed substantially since Borns note appeared� Still�

we will take great advantage of one common feature of perturbations and scattering� The
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division between perturbation and unperturbed motion is one of de�nition� not of physics�

Much of the art in using perturbation theory comes from recognizing just what division of

the problem will give a solvable unperturbed motion and a convergent perturbation series�

In scattering� the division between free motion and collision seems much more

natural and less �exible� However� many of the methods developed in this thesis take

advantage of what little �exibility there is in order to solve some problems not traditionally

in the purview of scattering theory as well as attack some which are practically intractable

by other means�

��� Outline of the Thesis

In chapter 
 we begin with a nearly traditional development of scattering theory�

The development deviates from the traditional only in that it generalizes the usual de��

nitions and calculations to arbitrary spatial dimension� This is done mostly because the

applications in the thesis require two dimensional scattering theory but most readers will be

familiar with the three dimensional version� A generalized derivation allows the reader to

assume d � � and check that the results are what they expect and then use the d � 
 version

when necessary� I have as much as possible followed standard textbook treatments of each

piece of scattering theory� I am con�dent that the d�dimensional generalizations presented

here exist elsewhere in the literature� For instance� work using so�called �hyper�spherical

coordinates� to solve few�body problems certainly contains much of the same information�

though perhaps not in the same form�

The �nal two sections of chapter 
 are a bit more speci�c� The �rst� section 
���

deals with zero range interactions� a tool which will be used almost constantly throughout

the remainder of the thesis� It is our hope that the treatment of the zero range interaction

in this section is considerably simpler than the various formalisms which are typically used�

After this section follows a short section explicitly covering some details of scattering in two

dimensions�

After this introductory material� we move on to the central theoretical work in

scattering theory� Chapter � covers two extensions of ordinary scattering theory� The �rst

is multiple scattering theory� A system with two or more distinct scatterers can be handled

by solving the problem one scatterer at a time and then combining those results� This

is a nice example of the usefulness of the split between propagation and collision made
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above� Multiple scattering theory takes this split and some very clever book�keeping and

solves a very complex problem� Our treatment di�ers somewhat from Fadeevs in order to

emphasize similarities with the techniques introduced in section ��
�

A separation between free propagation and collision and its attendant book�keeping

have more applications than multiple scattering� In section ��
 we develop the central new

theoretic tool of this work� the renormalized t�matrix� In multiple scattering theory� we

used the separation between propagation and collision to piece together the scattering from

multiple targets� in essence complicating the collision phase� With appropriate renormal�

ization� we can also change what we mean by propagation� We derive the relevant equations

and spend some time exploring the consequences of the transformation of propagation� The

sort of change we have in mind will become clearer as we discuss the applications�

Both of the methods explained in chapter � involve combining solved problems

and thus solving a more complicated problem� The techniques discussed in chapter � are

used to solve some problems from scratch� In their simplest form they have been applied

to mesoscopic devices and it is hoped that the more complex versions might be applied to

look at dirty and clean superconductor normal metal junctions�

We begin working on applications in chapter � where we explore our �rst non�trivial

example of scatterer renormalization� the change in scatterer strength of a scatterer placed in

a wire� We begin with a �xed two�dimensional zero range interaction of known scattering

amplitude� We place this scatterer in an in�nite straight wire �channel of �nite width	�

Both the scatterer in free space and the wire without scatterer are solved problems� Their

combination is more subtle and brings to bear the techniques developed in ��
� Much of the

chapter is spent on necessary applied mathematics� but it concludes with the interesting

case of a wire which is narrower than the cross�section of the scatterer �which has zero�range

so can �t in any �nite width wire	� This calculation could be applied to a variety of systems�

hydrogen con�ned on the surface of liquid helium for one�

Next� in chapter � we treat the case of the same scatterer placed in a completely

closed box� While a wire is still open and so a scattering problem� it is at �rst hard to imagine

how a closed system could be� After all� the di�erential cross�section makes no sense in a

closed system� Wonderfully� the equations developed for scattering in open systems are still

valid in a closed one and give� in some cases� very useful methods for examining properties

of the closed system� As with the previous chapter� much of the work in this chapter is

preliminary but necessary applied mathematics� Here� we �rst confront the oddity of using
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the equations of scattering theory to �nd the energies of discrete stationary states� With

only one scatterer and renormalization� this turns out to be mathematically straightforward�

Still� this idea is important enough to the sequel that we do numerical computations on

the case of ground state energies of a single scatterer in a rectangle with perfectly re�ective

walls� Using the methods presented here� this is simply a question of solving one non�linear

equation� We compare the energies so calculated to numerically calculated ground state

energies of hard disks in rectangles computed with a standard numerical technique� This

is intended both as con�rmation that we can extract discrete energies from these methods

and as an illustration of the similarity between isolated zero range interactions and hard

disks�

Having spent a substantial amount of time on examples of renormalization� we

return multiple scattering to the picture as well� We will consider in particular disordered

sets of �xed scatterers� motivated� for example� by quenched impurities in a metal� Before

we apply these techniques to disordered systems� we consider disordered systems themselves

in chapter �� Here we de�ne and explain some important concepts which are relevant to

disordered systems as well as discuss some theoretical predictions about various properties

of disordered systems�

We return to scattering in a wire in chapter �� Instead of the single scatterer of

chapter � we now place many scatterers in the same wire and consider the conductance of

the disordered region of the wire� We use this to examine weak localization� a quantum

e�ect present only in the presence of time�reversal symmetry� In the �nal chapter we use

the calculations of this chapter as evidence that our disorder potential has the properties we

would predict from a hard disk model� as we explored for the one scatterer case in chapters �

and ��

Our �nal application is presented in chapter �� Here we examine some very speci�c

properties of disordered scatterers in a rectangle� These calculations were in some sense the

original inspiration for this work and are its most unique achievement� Here calculations

are performed which are� apparently� out of reach of other numerical methods� These

calculations both con�rm some theoretical expectations and confound others leaving a rich

set of new questions� At the same time� it is also the most specialized application we

consider� and not one with the broad applicability of the previous applications�

In chapter �� we present some conclusions and ideas for future extensions of the

ideas in this work� This is followed �after the bibliography	 by a variety of technical appen�
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dices which are referred to throughout the body of the thesis�



Chapter �

Quantum Scattering Theory in

d�Dimensions

The methods of progress in theoretical physics have undergone a vast change
during the present century� The classical tradition has been to consider the
world to be an association of observable objects �particles� �uids� �elds� etc�	
moving about according to de�nite laws of force� so that one could form a mental
picture in space and time of the whole scheme� This led to a physics whose aim
was to make assumptions about the mechanism and forces connecting these
observable objects� to account for their behavior in the simplest possible way� It
has become increasingly evident in recent times� however� that nature works on
a di�erent plan� Her fundamental laws do not govern the world as it appears in
our mental picture in any very direct way� but instead they control a substratum
of which we cannot form a mental picture without introducing irrelevancies�

P�A�M� Dirac� Quantum Mechanics �����	

Nearly all physics experiments measure the outcome of scattering events� This

ubiquity has made scattering theory a crucial part of any standard quantum text� Not

surprisingly� all the attention given to scattering processes has led to the invention of very

powerful theoretical tools� many of which can be applied to problems which are not tradi�

tional scattering problems�

After this chapter� our use of scattering theory will involve mostly non�traditional

uses of the tools of scattering theory� However� those tools are so important to what follows

that we must provide at least a summary of the basic theory�

There are nearly as many approaches to scattering as authors of quantum me�

chanics textbooks� As is typical� we begin by de�ning the problem and the idea of the

��
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scattering cross�section� We then make the somewhat lengthy calculation which relates the

di�erential cross�section to the potential of the scatterer� We perform this calculation for

arbitrary spatial dimension�

At �rst� this may seem like more work than necessary to review scattering theory�

However� in what follows we will frequently use two dimensional scattering theory� While

we could have derived everything in two dimensions� we would then have lost the reassuring

feeling of seeing familiar three dimensional results� The arbitrary dimension derivation gives

us both�

We proceed to consider the consequences of particle conservation� or unitarity� and

derive the d�dimensional optical theorem� It is interesting to note that for both this calcula�

tion and the previous one� the dimensional dependence enters only through the asymptotic

expansion of the plane wave�

Once we have this machinery in hand� we proceed to discuss point scatterers or

�zero range interactions� as they will play a large role in various applications which follow�

In the �nal section we focus brie�y on two dimensions since two dimensional scattering

theory is the stage on which all the applications play out�

��� Cross�Sections

At �rst� we will generalize to arbitrary spatial dimension a calculation from �
��

�pp� �����	 relating the scattering cross�section to matrix elements of the potential� V �

We consider a domain in which the stationary solutions of the Schr�odinger equation

are known� and we label these by �k� For example� in free space�

�k�r	 � eik�r� �
��	

In the presence of a potential there will be new stationary solutions� labeled by

�
���
k where superscript plus and minus labels the asymptotic behavior of � in terms of

d�dimensional spherical waves� In particular

H
�����k E � E

�����k E � �
�
	

and

��k �r	
r��� �k�r	 � f�k ��	

e�ikr

r
d��
�

� �
��	
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We assume the plane wave� �k�r	 is wide but �nite so we may always go far enough away

that scattering at any angle but � � � involves only the scattered part of the wave� Since

the �ux of the scattered wave is j � Imf��scattr�scattg � �rjf�k ��	j��rd��� the probability

per unit time of a scattered particle to cross a surface element da is

v

���f�k ��	
����

rd��
da � v

���f�k ��	
���� d�� �
��	

But the current density ��ux per unit area	 in the incident wave is v so

d	a�b

d�
� jf�ka ��b	 j� �
��	

If unambiguous� we will replace ka and kb by a and b respectively�

We proceed to develop a relationship between the scattering function f and matrix

elements of the potential� �V � This will lead us to the de�nition of the so�called scattering

t�matrix�

Consider two potentials� U�r	 and  U�r	 �both of which fall o� faster ��r	� We will

show �
 ��b

����
�
�U � � U

�������
a

�
�

Z
 ��b �r	

h
U�r	�  U�r	

i
��
a �r	 dr �
��	

�
!h�

m
i
d��
� �

	

d��
� k

��d
�

h
f�a ��b	�  f�b ��a	

�i � �
��	

We begin with the Schr�odinger equation for the �s��
� !h�


m
r� � � U

�
 ��b � E  ��b �
��	

�
� !h�


m
r� � �U

�
��
a � E��

a � �
��	

We multiply �
��	 by
�
 ��b
��

and the complex conjugate of �
��	 by ��
a and then subtract

the latter equation from the former� Since U�r	 and  U�r	 are real� we have �dropping the

as and bs when unambiguous	

� !h�


m

n�
 ��
��r��� �

h
r�
�
 ��
��i

����
o
� �
�
 ��
�� �

U � � U

�
���� � �� �
���	

We integrate over a sphere of radius R centered at the origin to get�
 ��
����
�
�U � � U

�������
�
�

!h�


m
lim
R��

Z
r�R

n�
 ��
��r��� �

h
r�
�
 ��
��i

��
o
dr� �
���	
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For two functions of r� �� and �� we de�ne

W ���� ��� � ��
���
�r

� ��
���
�r

� �
��
	

and its integral over the d�dimensional sphere

f��� ��gR �
Z

W ���� ���jr�RRd�� d�

�

Z
���r�� � ��r��� � da

Greens Theorem implies

f��� ��gR �

Z
r�R

h
���r���	� �r���	��

i
dr� �
���	

and thus equation �
���	 may be written

�
 ��
����
�
�U � � U

�������
�
�

!h�


m
lim
R��

n�
 ��
��

� ��
o
R
� �
���	

To evaluate the surface integral� we substitute the asymptotic form of the �s�

lim
R��

n�
 ��
��

� ��
o
R
�

�z 	
 �
lim
R��

n
e�ikb�r� eika�r

o
R
�

�z 	
 �
lim
R��

�
e�ikb�r� f�

eikr

r
d��
�


R

�

lim
R��

��
f�
�� eikr

r
d��
�

� eika�r

R
 �z 	

�

� lim
R��

��
f�
�� eikr

r
d��
�

� f�
eikr

r
d��
�


R
 �z 	

�

� �
���	

Since we are performing these integrals at large r� we require only the asymptotic

form of the plane wave and only in a form suitable for integration� We �nd this form by

doing a stationary phase integral ���� of an arbitrary function of solid angle against a plane

wave at large r� That is�

I � lim
r��

Z
eik�rf��r	 d�r �
���	

We �nd the points where the exponential varies most slowly as a function of the integration

variables� in this case the angles in �r� Since k � r � kr cos �kr	 the stationary phase points

will occur at kr � �� 
� We expand the exponential around each of these points to yield

I �
Z

exp

�
ikr"d��

i��

�
�� �




�

�i�
k � �i�r

����
f��r	 d�r �Z

exp

�
ikr"d��

i��

�
�� � �




�

�i�
k � �i�r

����
f��r	 d�r�
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We perform all the integrals using complex Gaussian integration to yield an asymptotic

form for the plane wave �to be used only in an integral	�

eik�r � � �

�




ikr

� d��
�
h
� ��r � �k	 e

ikr � id��� ��r ��k	 e
�ikri � �
���	

where �r ��k � � �enforced by the second ��function	 means that �r � ��k�

Well attack the integrals in equation �
���	 one at a time� beginning with

lim
R��

n
e�ikb�r� eika�r

o
R
�

Z
iRd �ka � kb	 � �r eiR�ka�kb���r d�� �
���	

Since ka and kb have the same length� ka�kb is orthogonal to ka�kb� Thus� we can always

choose our angular integrals such that our innermost integral is exactly zero�

n
e�ikb�r� eika�r

o
R
�
Z ��

	
cos eia sin � d �

�

ia

Z ��

	

�

�

�
eia sin �

�
d �

�

ia
eia sin �

�����
	

� ��

�
���	

Thus limR��
n
e�ikb�r� eika�r

o
R
� ��

We can do the second integral using the asymptotic form of the plane wave� The

only contribution comes from the incoming part of the plane wave�

lim
R��

�
e�ikb�r� f�

eikr

r�d�����


R

� 

d��
� k

��d
� �
i	

d��
� f� ��b	 � �
�
�	

We can do the third integral exactly the same way� Again� only the incoming part of the

plane wave contributes�

lim
R��

��
f�
�� eikr

r
d��
�

� eika�r

R

� �
 d��
� k

��d
� �
i	

d��
� f� ���a	

� � �
�
�	

The fourth integral is zero since both waves are purely outgoing� Thus

lim
R��

n�
���
��

� ����
o
R
� �
i	

d��
� 


d��
� k

��d
�

�
f� ��b	� f� ���a	

�� � �
�

	

which� when substituted into equation 
��� gives the desired result�

Lets apply the result �
��	 to the case �U � �V � � U � �� We have

D
�b
����V �����

a

E
�

!h�

m
�

	

d��
� k

��d
� i

d��
� f�a ��b	 � �
�
�	

We also apply it to the case �U � �� � U � �V � yielding

D
��b
��� �V ����aE �

!h�

m
�

	

d��
� k

��d
� i

d��
� f�b ���a	

� � �
�
�	
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Finally� we apply �
��	 to the case �U � �V � � U � �V � yielding

f�a ��b	 � f�b ���a	
� � �
�
�	

We now have

d	a�b

d�
�
��f�a ��b	

��� � m�

!h�
�

	��dkd��

���D�b ����V �����
a

E���� � �
�
�	

Since the d�dimensional density of states per unit energy is

�d�E	 �
�

�

!h	d
pd��

dp

dE
�

�

�
!h	d
�!hk	d��

m

!hk
�

m

�

!h	d
�!hk	d�� �
�
�	

and the initial velocity is !hk�m� we can write our �nal result for cross�section in a more

useful form�
d	a�b

d�
�





!hv

���D�b ��� �V �����
a

E���� �d�E	� �
�
�	

where all of the dimensional dependence is in the density of states and the matrix element�

For purposes which will become clear later� it is useful to de�ne the so�called

�t�matrix� operator� �t��E	 such that

�t��E	 j�ai � �V
����a � � �
�
�	

and our result may be re�written as

d	a�b

d�
�





!hv

���D�b ����t��E	
����aE���� �d�E	� �
���	

��� Unitarity and the Optical Theorem

The fact that particles are neither created nor destroyed in the scattering process

forces a speci�c relationship between the total cross�section� 	 �
R
�d	�d�	d� and f�� � �	�

It is to this relationship that we now turn� This section closely follows a calculation from �
��

�pp� �������	 but� as in the previous section� generalizes it to arbitrary spatial dimension�

Suppose the incoming wave is a linear combination of plane waves� as in

�incoming �

Z
F ���	eik�r

�

d�� �
���	

So the asymptotic outgoing form of � is �where f��a��b	 � f
���
a ��b	 is simply a more

symmetric notation than used in the previous section	

� �
Z
F ���	eik�r

�

�
eikr

r
d��
�

Z
F ���	f

�
����

�
d�� �
��
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For large r we can use the asymptotic for of the plane wave �
���	 to perform the �rst

integral� We then get

� �
�




ikr

� d��
�
h
F ��	eikr � id��F ���	e�ikr

i
�

eikr

r
d��
�

Z
F ���	f ���

�
����

�
d�� �
���	

We can write this more simply �without the common factor �

�ik	�d�����	

e�ikr

r
d��
�

F ���	 � i��d
eikr

r
d��
�

�
�SF
�
��	 �
���	

where

�S � � �

�
ik





� d��
�

�f �
���	

and �f is an integral operator de�ned by

�
�fF
�
��	 �

Z
F ���	f�����	 d�� �
���	

�S is called the �scattering operator� or �S�matrix�� Since the scattering process

is elastic� we must have as many particles going into the center as there are going out of

the center� and the normalization of these two waves must be the same� So �S is unitary�

�S �Sy � �� �
���	

Substituting �
���	 we get

i
d��
� �f � i

��d
� �f y � �

�
k





� d��
�

�f y �f� �
���	

then divide through by i�

i
d��
� �f � i

��d
� �f y � i

�
k





� d��
�

�f y �f� �
���	

We apply the de�nition �
���	 and have

i
d��
� f�����	

h
�i d��� f�����	

i�
� i

�
k





� d��
�
Z
f������	f��������	d��� � �
���	

the unitarity condition for scattering�

For � � �� we have

Im
n
i
d��
� f����	

o
�

�




�
k





� d��
�
Z
jf����	j�d� �

�




�
k





� d��
�

	 �
���	
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which is the optical theorem�

Invariance under time reversal �interchanging initial and �nal states and the di�

rection of motion of each wave	 implies

S�����	 � S�������	
f�����	 � f�������	

which is called the �reciprocity theorem��

��� Green Functions

The cross�section is frequently the end result of a scattering calculation� However�

for most of the applications considered here� we are concerned with more general properties

of scattering solutions� For these applications� the machinery of Green functions is invalu�

able and is introduced in this section� Much of the material in this section is covered in

greater detail in ����� A more formal development� some examples and some useful Green

function identities are given in appendix A�

The idea of a Green function operator is both simple and beautiful� Suppose a

quantum system is initially �at t � �	 in state j�i� What is the amplitude that the system

will be found in state j��i a time � later# This information is contained in the time�domain

Green function� We can take the Fourier transform of this function with respect to � and

get the energy�domain Green function� It is the energy domain Green function which we

explore in some detail below�

We de�ne an energy�domain Green function operator for the Hamiltonian H via

�z � �H 	 i�	 �G����z	 � �� �
��
	

where ���� is the identity operator� The 	i� is used to avoid di�culties when z is equal to

an eigenvalue of �H� � is always taken to zero at the end of a calculation� We frequently use

the Green function operator� �G�
o �z	 corresponding to �H � �Ho � � 
h�

�mr��

Consider the Hamiltonian �H � �Ho� �V � As in the previous section� we denote the

eigenstates of �Ho by j�ai and the eigenstates of �H by j��a i� These satisfy

�Ho j�ai � Ea j�ai �
���	

�H
����a � � Ea

����a � � �
���	
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We claim ����a � � j�ai� �G�
o �Ea	 �V

����a � � �
���	

The claim is easily proved by applying the operator �Ea � �Ho 	 i�	 to the left of both

sides of the equation since �Ea � �Ho 	 i�	 j��a i � �V j��a i� �Ea � �Ho 	 i�	 j�ai � � and

�Ea � �Ho 	 i�	G�
o �Ea	 � ��� Using the t�matrix� we can re�write this as

����a � � j�ai� �G�
o �Ea	�t

��Ea	 j�ai � �
���	

but we can also re�write �
���	 by iterating it �inserting the right hand side into itself as

j��a i	 to give ����a � � j�ai� �G�
o �Ea	 �V

h
j�ai� �G�

o
�V j�ai� � � �

i
� �
���	

From �
���� 
���	 we get a useful expression for the t�matrix�

�t��z	 � �V � �V �G�
o �z	 �V � �V �G�

o �z	 �V �G�
o �z	 �V � � � � � �
���	

We factor out the �rst �V in each term and sum the geometric series to yield

�t��z	 � �V
h
�� �V �G�

o �z	
i��

� �V

�
�G�
o �z	

�n
�G�
o

o��
�z	� �V

��

� �V
�
z � �Ho � �V 	 i�

��� n
�G�
o

o��
�z	

� �V G��z	
�
z � �Ho 	 i�

�
� �
���	

where �
���	 is frequently used as the de�nition of �t��z	�

We now proceed to develop an equation for the Green function itself�

G��z	 �
�
z � �Ho � �V 	 i�

���
�
���	

�

��
z � �Ho 	 i�

� �
��

�
z � �Ho 	 i�

���
�V

����
�
���	

�

�
��

�
z � �Ho 	 i�

���
�V

���
�z �Ho 	 i�	�� �
��
	

�
h
�� �G�

o �z	 �V
i��

�G�
o �z	� �
���	

We expand
h
�� �G�

o �z	 �V
i��

in a power series to get

�G��z	 � �G�
o �z	 � �G�

o �z	 �V �G�
o �z	 � �G�

o �z	 �V �G�
o �z	 �V �G�

o �z	 � � � � � �
���	
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which we can re�write as

�G��z	 � �G�
o �z	 � �G�

o �z	 �V
h
�G�
o �z	 � �G�

o �z	 �V �G�
o �z	 � � � �

i
�
���	

� �G�
o �z	 �

�G�
o �z	

�V �G��z	� �
���	

and� using �
���	 and the de�nition of �G
���
o �z	� we get a t�matrix version of this equation�

namely

�G��z	 � �G�
o �z	 �

�G�
o �z	�t

��z	 �G�
o �z	� �
���	

����� Green functions in the position representation

So far we have looked at Green functions only as operators rather than functions

in a particular basis� Quite a few of the speci�c calculations which follow are performed in

position representation and it is useful to identify some general properties of d�dimensional

Green functions� We begin from the de�ning equation �
��
	� re�written in position space��
z �

!h�


m
r�
r � V �r		 i�

�
G��r� r�$ z	 � �

�
r� r�

�
� �
���	

We begin by considering an arbitrary point ro and a small ball around it� B�ro� �	�

We can move the origin to ro and then integrate both sides of �
���	 over this volume�Z
B���

�
z �

!h�


m
r�
r � V �ro � r		 i�

�
G��ro � r��$ z	 dr �

Z
B���

� �r	 dr� �
���	

We now consider the � � � limit of this equation� We assume that the potential is �nite

and continuous at r � ro so V �ro � r	 can be replaced by V �ro	 in the integrand� We can

safely assume that

lim
��	

Z
B�ro���

G��ro � r��$ z	 dr � � �
���	

since� if it werent� the integral of the r�G term would be in�nite� We are left with

lim
��	

Z
B�����

r�G��ro � r��$ z	 dr �

m

!h�
� �
���	

We can apply Gausss theorem to the integral and get

lim
��	

Z
�B�����

�

�r
G��ro � r��$ z	�d��d� �


m

!h�
� �
��
	

So we have a �rst order di�erential equation for G��r� r�$ z	 for small � � jr� roj�
�

��
G���$ z	 �


m

!h�
���d

Sd
� �
���	
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where

Sd �


d��

%�d�
	
�
���	

is the surface area of the unit sphere in d�dimensions �this is easily derived by taking the

product of d Gaussian integrals and then performing the integral in radial coordinates� see

e�g�� ��
�� pp� ����
	�

In particular� in two dimensions the Green function has a logarithmic singularity

�on the diagonal� where r� r�� In d � 
 dimensions� the diagonal singularity goes as r��d�

It is worth noting that in one dimension there is no diagonal singularity in G�

As a consequence of our derivation of the form of the singularity in G� we have

proved that� as long as V �r	 is �nite and continuous in the neighborhood of r
� then

lim
r�r�G

��r� r
$ z	 �G�
o �r� r
$ z	 �� �
���	

This will prove useful in what follows�

��� Zero Range Interactions

For the sake of generality� up to now we have not mentioned a speci�c potential�

However� in what follows we will frequently be concerned with potentials which interact

with the particle only at one point� Such interactions are frequently called �zero range

interactions� or �zero range potentials��

There is a wealth of literature about zero range interactions in two and three

dimensions� including ��� ��� 
�� their application to chaotic systems� for example ��� ���

and their applications in statistical mechanics� including ���� 

��

In one dimension� the Dirac delta function is just such a point interaction� How�

ever� in two or more dimensions� the Dirac delta function does not scatter incoming particles

at all� This is shown for two dimensions in ���� In more than one dimension� the wavefunction

can be set to � at a single point without perturbing the wavefunction since an in�nitesimal

part of the singular solution to the Schr�odinger equation can force � to be zero at a single

point� Since there are no singular solutions to the Schr�odinger equation in one dimension�

the one dimensional Dirac ��function does scatter� as is well known�

Trying to construct a potential corresponding to a zero�range interaction can be

quite challenging� The formal construction of these interactions leads one to consider the

Hamiltonian in a reduced space where some condition must be satis�ed at the point of
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interaction� Choosing the wave function to be zero at the interaction point leads to the

mathematical formalism of �self�adjoint extension theory� so named because the restriction

of the Hamiltonian operator to the space of functions which are zero at a point leaves

a non self�adjoint Hamiltonian� The family of possible extensions which would make the

Hamiltonian self�adjoint correspond to various scattering strengths �
��

Much of this complication arises because of an attempt to write the Hamiltonian

explicitly or to make sure that every possible zero range interaction is included in the

formalism� To avoid these details� we consider a very limited class of zero�range interactions�

namely zero�range s�wave scatterers�

Consider a scatterer placed at the origin in two dimensions� We assume the physi�

cal scatterer being modeled is small compared to the wavelength� lambda � 

�
p
E and thus

scatters only s�waves� So we can write the t�matrix �for a general discussion of t�matrices

see� e� g�� ����	�

�t��z	 � j�i s��z	 h�j � �
���	

If� at energy E� j�i is incident on the scatterer� we write the full wave �incident

plus scattered	 as ����� � j�i� �G�
o �E	�t��E	 j�i � �
���	

which may be written more clearly in position space

���r	 � ��r	 �G�
o �r��$E	s��E	���	� �
���	

At this point the scatterer strength� s��z	� is simply a complex constant� We can

consider s��E	 as it relates to the cross�section� From equation �
�
�	 with V j��a i replaced
by t� j�ai we have �since

D
�b
����t��z	����aE � s��z		

	�E	 � Sd
m�

!h�
�

	��dkd��js��E	j� �
���	

where Sd� the surface area of the unit sphere in d dimensions is given by �
���	�

We also consider another length scale� akin to the three�dimensional scattering

length� Instead of looking at the asymptotic form of the wave function� we look at the s�

wave component of the wave function by using Ro�r	� the regular part of the s�wave solution

to the Schr�odinger equation� as an incident wave� We then have

���r	 � Ro�r	 �G�
o �r$E	s�E	Ro��	 �
���	
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We de�ne an e�ective radius� ae� as the smallest positive real number solution of

Ro�x	 � s��E	G�
o �x�E	 � �� �
���	

We can reverse this line of argument and �nd s��E	 for a particular ae

s�E	 � � Ro�ae	

G�
o �ae$E	

�
��
	

The point interaction accounts for the s�wave part of the scattering from a hard disk of

radius ae� From equation 
��� the cross section of a point interaction with e�ective radius

ae is

	�E	 � Sd
m�

!h�
�

	��dkd��

����� Ro�aa	

G�
o �ae$E	

�����
�

�
���	

but this is exactly the s�wave part of the cross�section of a hard disk in d�dimensions�

Though zero range interactions have the cross�section of hard disks� depending on the

dimension and the value of s��E	� the point interaction can be attractive or repulsive�

In three dimensions� the E � � limit of ae exists and is the scattering length as

de�ned in the modern sense ����� It is interesting to note that other authors� e�g�� Landau

and Lifshitz in their classic quantum mechanics text �
�� de�ne the scattering length as

we have de�ned the e�ective radius� namely as the �rst node in the s�wave part of the

wave function� These de�nitions are equivalent in three dimensions but quite di�erent in

two where the modern scattering length is not well de�ned but� for any �nite energy� the

e�ective radius is�

��� Scattering in two dimensions

While many of the techniques discussed in the following chapters are quite general�

just as we will frequently use point interactions in applications due to their simplicity� we

will usually work in two dimensions either because of intrinsic interest �as in chapter �	 or

because numerical work is easier in two dimensions than three�

Since most people are familiar with scattering in three dimensions� some of the

features of two dimensional scattering theory are� at �rst� surprising� For example

d	a�b

d�
�
��f�a ��b	

��� � m�

!h�
�



k

����b jV j��
a

���� � �
���	
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implying that as E � �� 	�E	 � ��� which is very di�erent from three dimensions� Also�

the optical theorem in two dimensions is di�erent than its three�dimensional counterpart�

Im
n
e�

i�
� f����	

o
�

s
k

�

	� �
���	

We have already mentioned the di�erence in the diagonal behavior of the two and

three dimensional Green functions� The logarithmic singularity in G prevents a simple idea

of scattering length from making sense in two dimensions� This singularity comes from

the form of the free�scattering solutions in two dimensions �the equivalent of the three�

dimensional spherical harmonics	� In two dimensions the free scattering solutions are Bessel

and Neumann functions of integer order� The small argument and asymptotic properties of

these functions are summarized in appendix E�

In two dimensions� we can write the speci�c form of the causal t�matrix for a zero

range interaction with e�ective radius ae located at rs� �t
��E	 � jrsi s��E	 hrsj with

s��E	 � �i �Jo�
p
Ea	

H
���
o �

p
Ea	

� �
���	

where Jo�x	 is the Bessel function of zeroth order and H
���
o �x	 is the Hankel function of

zeroth order�



Chapter �

Scattering in the Presence of Other

Potentials

In chapter 
 we presented scattering theory in its traditional form� We computed

cross�sections and scattering wave functions� In this chapter� we focus more on the tools of

scattering theory and broaden their applicability� Here we begin to see the great usefulness

of the book�keeping associated with t�matrices� We will also begin to use scattering theory

for closed systems� an idea which is confusing at the outset� but quite natural after some

practice�

��� Multiple Scattering

Multiple scattering theory has been applied to many problems� from neutron scat�

tering by atoms in a lattice to the scattering of electrons on surfaces �
��� In most applica�

tions� the individual scatterers are treated in the s�wave limit� i�e�� they can be replaced by

zero range interactions of appropriate strength� We begin our discussion of multiple scat�

tering theory with this special case before moving on to the general case in the following

section� This is done for pedagogical reasons� The general case involves some machinery

which gets in the way of understanding important physical concepts�

��
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����� Multiple Scattering of Zero Range Interactions

Consider a domain� with given boundary conditions and potential� in which the

Green function operator� �G�
B�z	 for the Schr�odinger equation is known� Into this domain we

place N zero range interactions located at the positions frig and with t�matrices f�t�i �z	g
given by �t�i �z	 � s�i �z	 jrii hrij� At energy E� ��r	 is incident on the set of scatterers and

we want to �nd the outgoing solutions of the Schr�odinger equation� ���r	� in the presence

of the scatterers�

We de�ne the functions ��i �r	 via

��i �r	 � ��r	 �
X
j ��i

G�
B�r� rj $E	s�j �E	��j �rj	� ����	

The number �i�ri	 represents the amplitude of the wave that hits scatterer i last� That

is� ��i �r	 is determined by all the other ��j �r	 �j �� i	� The full solution can be written in

terms of the ��i �ri	�

���r	 � ��r	 �
X
i

G�
B�r� ri$E	s�i �E	��i �ri	� ���
	

The expression ����	 gives a set of linear equations for the �i�ri	� This can be seen more

simply from the following substitution and rearrangement�

��i �ri	�
X
j ��i

G�
B�ri� rj $E	s�j �E	��j �rj	 � ��ri	� ����	

We de�ne the N �vectors a and b via ai � ��i �ri	 and bi � ��ri	 and rewrite ����	

as a matrix equation h
�� t��E	 !GB

�
�E	
i
a � b� ����	

where � is the N �N identity matrix� t�E	 is a diagonal N �N matrix de�ned by �t	ii �

si�E	 and !G�
B�E	 is an o��diagonal propagation matrix given by

�
!G�
B�E	

�
ij
�

��
� G�

B�ri� rj $E	 for i �� j

� for i � j�
����	

More explicitly� �� t��E	 !G�
B�E	 is given by �suppressing the �E� and ���	�

�� t !GB �

�
BBBBBB�

� �s�GB�r�� r�	 � � � �s�GB�r�� rN 	

�s�G�r�� r�	 � � � � �s�GB�r�� rN 	
���

���
� � �

���

�sNGB�rN � r�	 �sNGB�rN � r�	 � � � �

�
CCCCCCA � ����	
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The o��diagonal propagator is required since the individual t�matrices account for the di�

agonal propagation� That is� the scattering events where the incident wave hits scatterer i�

propagates freely and then hits scatterer i again are already counted in �ti�

We can look at this diagrammatically� We use a solid line to indicate causal

propagation and a dashed line ending with an ��i� to indicate scattering from the ith

scatterer� With this �dictionary�� we can write the in�nite series form of �ti as

�ti � �
�i

��
�i �i

��
�i �i �i

� � � � � ����	

so �Go � �Go�ti �Go has the following terms�

� ��
�i

��
�i �i

� � � � � ����	

Now we consider multiple scattering from two scatterers� The Green function has the direct

term� terms from just scatterer �� terms from just scatterer 
 and terms involving both� i�e��

� ��
��

��
��

�	
����

�

����

��
����

��
����

� � � � � ����	

The o� diagonal propagator appearing in multiple scattering theory allows to add only the

terms involving more than one scatterer� since the one scatterer terms are already accounted

for in each �t�i �

If� at energy E� �� t� !GB is invertible� we can solve the matrix equation ����	 for

a�

a �
�
�� t !GB

���
b� �����	

where the inverse is here is just ordinary matrix inversion� We substitute �����	 into ���
	

to get

���r	 � ��r	 �
X
ij

G�
B�r� ri$E	s�i �E	

�h
�� t��E	 !G�

B�E	
i���

ij
��rj	� �����	

We can de�ne a multiple scattering t�matrix

�t��E	 �
X
ij

jrii �t��E		ii

�h
�� t�E	 !G�

B�E	
i���

ij
hrj j � ����
	

and write the full solution in a familiar form

����� � j�i� �G�
B�E	�t��E	 j�i � �����	
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An analogous solution can be constructed for j��i by replacing all the outgoing solutions

in the above with incoming solutions �superscript ��� goes to superscript ���	�

We have shown that scattering from N zero range interactions is solved by the

inversion of an N �N matrix� As we will see below� generalized multiple scattering theory

is not so simple� It does� however� rely on the inversion of an operator on a smaller space

than that in which the problem is posed�

����� Generalized Multiple Scattering Theory

We now consider placing N scatterers �not necessarily zero range	� with t�matrices

�t�i �z	� in a background domain with Green function operator �G�
B�z	� In what follows� the

argument z is suppressed�

We assume that each t�matrix is identically zero outside some domain Ci and we

further assume that the Ci do not overlap� that is Ci � Cj �  for all i �� j� We de�ne the

scattering space� S �
S
i Ci� In the case of N zero range scatterers� the scattering space is

just N discrete points� The de�nition of the scattering space allows a separation between

propagation and scattering events�

As in the point scatterer case� we consider the function� �i�r	 � hr j�i i� represent�
ing the amplitude which hits the ith scatterer last� We can write a set of linear equations

for the �i� �����i E � j�i� �G�
B

X
j ��i

�t�j
�����j E � �����	

where ��r	 is the incident wave� As in the simpler case above� the full solution can be

written in terms of the ��i via

����� � j�i� �G�
B

X
i

�t�i
�����i E � �����	

The derivation begins to get complicated here� Since the scattering space is not

necessarily discrete� we cannot map our problem onto a �nite matrix� We now begin to

create a framework in which the results of the previous section can be generalized�

We de�ne the projection operators� �Pi� which are projectors onto the ith scatterer�

that is D
r
��� �Pi��� fE �

��
� f�r	 if r � Ci

� if r �� Ci
� �����	

Also we de�ne a projection operator for the whole scattering space� �P �
PN

i��
�Pi�
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We can project our equations for the ��i �r	 onto each scatterer in order to get

equations analogous to the matrix equation we had for �i�ri	 in the previous section�

�Pi
�����i E � �Pi j�i� �Pi �G

�
B

X
j ��i

�t�j
�����j E � �����	

and� fur purely formal reasons� we de�ne a quantity analogous to the vector a in the zero

range scatterer case� ��&�� �X
i

�Pi
�����i E � �����	

We note that &�r	 is non�zero on the scattering space only�

With these de�nitions� we can develop a linear equation for j&�i� We begin by

summing �����	 over the N scatterers�

��&�� � �P j�i�
X
i

�Pi �G
�
B

X
j ��i

�t�j
�����j E � �����	

Since �t�i is una�ected by multiplication by �Pi� we have �t�i � �Pi�t
�
i and �t�i j&�i � �t�i

�����i E�
Thus we can re�write �����	 as

��&�� � �P j�i�
X
i

�Pi �G
�
B

X
j ��i

�Pj�t
�
j

��&�� � ���
�	

or ��&�� � �P j�i�
X
i

X
j ��i

�Pi �G
�
B
�Pj�t

�
j j&i � ���
�	

We can simplify this equation if� as in the zero range scatterer case� we de�ne an

o��diagonal background Green function operator�

!G�
B �

X
i

X
j ��i

�Pi �G
�
B
�Pj � �P �G�

B
�P�

NX
i��

�Pi �G
�
B
�Pi� ���

	

and a diagonal t�matrix operator�

�t� �
X
m

�t�m� ���
�	

and note that

!G�
B
�t� �

X
i

X
j ��i

�Pi �G
�
B
�Pj�t

�
j ���
�	

We can now re�write �����	 as

��&�� � �P j�i� !G�
B
�t�
��&�� � ���
�	



Chapter �� Scattering in the Presence of Other Potentials ��

which we may formally solve for j&�i�
��&�� � h�P� !G�

B
�t�
i��

�P j�i � ���
�	

The operator
h
�P� !G�

B
�t�
i
is an operator on functions on the scattering space� S� and the

boldface �� superscript indicates inversion with respect to the scattering space only� In the

case of zero range interactions the scattering space is a discrete set and the inverse is just

ordinary matrix inversion� In general� �nding this inverse involves solving a set of coupled

linear integral equations�

We note that the projector� �P� is just the identity operator on the scattering space

so h
�P� !G�

B
�t�
i��

�
h
��� !G�

B
�t�
i��

� ���
�	

We can re�write �����	� yielding

����� � j�i� �G�
B
�t�
��&�� � ���
�	

Substituting ���
�	 into ���
�	 gives

����� � j�i� �G�
B
�t�
h
��� !G�

B
�t�
i��

�P j�i � ���
�	

The identity

�A��� �B �A	�� � ��� �A �B	�� �A� �����	

implies ����� � j�i� �G�
B

h
��� �t !GB

i��
�t j�i � �����	

We now de�ne a multiple scattering t�matrix

�t� �
h
��� �t� !G�

B

i��
�t�� ����
	

which is zero outside the scattering space� Our wavefunction can now be written

����� � j�i� �G�
B
�t� j�i � �����	

This derivation seems much more complicated than the special case presented �rst�

While this is true� the underlying concepts are exactly the same� The complications arise

from the more complicated nature of the individual scatterers� Each scatterer now leads

to a linear integral equation� rather than a linear algebraic equation$ what was simply a
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set of linear equations easily solved by matrix techniques� becomes a set of linear integral

equations which are di�cult to solve except in special cases�

The techniques in this section are also useful formally� We will use them later in

this chapter to e�ect an alternate proof of the scatterer renormalization discussed in the

next section�

��� Renormalized t�matrices

In the previous section we used the t�matrix formalism and some complicated

book�keeping to combine many scatterers into one t�matrix� In this section wed like to

work with the propagation step� Well start with a potential with known t�matrix in free

space� We then imagine changing free space by adding boundaries for example� We then

�nd the correct t�matrix� for the same physical potential� for use with this new propagator�

To begin we consider the scatterer in free space� It has known t�matrix �t��z	

which satis�es

G�
s �z	 �

�G�
o �z	 �

�G�
o �z	�t

��z	 �G�
o �z	� �����	

where the subscript �s� is used to denote that this Green function is for the scatterer in free

space� Now� rather than free space� we suppose we have a more complicated background but

one with a known Green function operator� �G�
B�z	� We note that there exists a t�matrix�

�t�B�z	� such that�

�G�
B�z	 �

�G�
o �z	 � �G�

o �z	�t
�
B�z	

�G�
o �z	� �����	

We will use the �t�B�z	 operator in the algebra which follows� but only as a formal tool�

Frequently� the division between scatterer and background is arbitrary$ we can often treat

the background as a scatterer or a scatterer as part of the background�

As an example� we begin with a zero range scatterer� with e�ective radius ae� in

two dimensions� In section 
��� we computed �t��z	 for this scatterer in free space� We

place this scatterer into an in�nite wire with periodic transverse boundary conditions� The

causal Green function operator� �G�
B�r� r

�$ z	� can be written as an in�nite sum and can be

calculated quite accurately using numerical techniques �see chapter �	�

Computing a t�matrix for the scatterer and boundary together is quite di�cult�

Also� such a t�matrix would be non�zero not only on the scatterer but on the entire in�nite

length boundary� This lacks the simplicity of a zero�range scatterer t�matrix� Instead� wed
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like to �nd a t�matrix� �T��z	� for the scatterer such that the full Green function� �G��z	�

may be written

�G��z	 � �G�
B�z	 �

�G�
B�z	

�T��z	 �G�
B�z	� �����	

Well call �T��z	 the �renormalized� t�matrix� This name will become clearer below�

Lets start with a guess� What can happen in our rectangle that couldnt happen

in free�space# The answer is simple� amplitude may scatter o� of the scatterer� hit the walls

and return to the scatterer again� That is� there are multiple scattering events between the

background and the scatterer� Diagrammatically� this is just like the two scatterer multiple

scattering theory considered in the previous section where scatterer �� instead of being

another scatterer� is the background �see equation ���	�

Naively we would expect to add up all the scattering events �dropping the zs	�

�T� � �t� � �t� �G�
B
�t� � �t� �G�

B
�t� �G�

B
�t� � � � � �

� �X
n�	

�
�t� �G�

B

�n�
�t� �����	

This is perhaps clearer if we consider the position representation�

T��r� r�	 � t��r� r�	 �
Z

dr�� dr���t��r� r��	G�
B�r

��� r���	t�r���� r�	 � � � � � �����	

and� since our scatterer is zero�range�

t��r� r�	 � s���r � rs	��r
� � rs	� �����	

which simpli�es �����	�

T��r� r�	 � s���r� rs	��r
� � rs	 � s�G�

B�rs� rs	��r � rs	��r
� � rs	 � � � � � �����	

Summing the geometric series yields�

T��r� r�	 � ��r� rs	��r
� � rs	

s�

�� s�G�
B�rs� rs	

� �����	

as an operator equation�

�T� �
�

�� �t� �G�
B

�t�� ����
	

This is not quite right� With multiple scattering we had to de�ne an o��diagonal Green

function since the diagonal part was already accounted for by the individual t�matrices�

Something similar is needed here or we will be double counting terms which scatter� prop�

agate without hitting the boundary� and then scatter again�
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We can correct this by subtracting �G�
o from �G�

B in the previous derivation�

�T� � �t� � �t�� �G�
B � �G�

o 	�t
� � �t�� �G�

B � �G�
o 	�t

�� �G�
B � �G�

o 	�t
� � � � � � �

�� �t�� �G�
B � �G�

o 	
�t��

�����	

For future reference� well state the �nal result�

�T��z	 �
�

�� �t��z	
h
�G�
B�z	� �G�

o �z	
i�t��z	� �����	

We havent proven this but we can derive the same result more rigorously in at least two

ways� both of which are shown below� The �rst proof follows from the expression �
���	

for the t�matrix derived in section 
��� This is a purely formal derivation but it has the

advantage of being relatively compact� Our second derivation uses the generalized multiple

scattering theory of section ����
� While this derivation is algebraically quite tedious� it

emphasizes the arbitrariness of the split between scatterer and background by treating

them on a completely equal footing�

We note that the free�space Green function operator� �G�
o �z	� could be replaced by

any Green function for which the t�matrix of the scatterer is known� That should be clear

from the derivations below�

����� Derivation

Formal Derivation

Suppose we have �H � �Ho � �HB � �Hs where �HB is the Hamiltonian of the �back�

ground�� and �Hs is the �scatterer� Hamiltonian which may be any reasonable potential�

There is a t�matrix for the scatterer without the background�

�t��z	 � �Hs
�G�
s �z	�z � �Ho 	 i�	� �����	

and for the scatterer in the presence of the background where the background is treated as

part of the propagator�

�T��z	 � �Hs
�G��z	�z � �Ho � �HB 	 i�	� �����	

This yields an expression for the full Green function� �G��z	 operator�

�G��z	 � �G�
B�z	 �

�G�
B�z	

�T��z	 �G�
B�z	� �����	
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where G�
B�z	 solves

�z � �Ho � �HB 	 i�	 �G�
B�z	 �

��� �����	

We wish to �nd �T��z	 in terms of �t��z	� �G�
o �z	� and

�G�
B�z	� Formally� we can use

�����	 to solve for �Hs�

�Hs � �t��z	�z � �Ho 	 i�	��
h
�G�
s �z	

i��
� �t��z	 �G�

o �z	�z � �Ho � �Hs 	 i�	� �����	

We substitute this into �����	

�T��z	 � �t��z	 �G�
o �z	

h
�G�
s �z	

i��
�G��z	�z � �Ho � �HB 	 i�	� �����	

which we can re�write

�T��z	 � �t��z	 �G�
o �z	

h
�G�
o �z	 �

�G�
o �z	�t

��z	 �G�
o �z	

i��
h
�G�
B�z	 �

�G�
B�z	

�T��z	 �G�
B�z	

i h
�G�
B�z	

i��
� �����	

and� canceling a few inverses� we have

�T��z	 � �t��z	
h
� � �G�

o �z	�t
��z	

i�� h
� � �G�

B�z	
�T��z	

i
� ����
	

We re�write this as�
�� �t��z	

h
� � �G�

o �z	�t
��z	

i��
�G�
B�z	

�
�T��z	 � �t��z	

h
� � �G�

o �z	�t
��z	

i��
� �����	

which we solve for �T��z	�

�T��z	 �
�
�� �t��z	

h
� � �G�

o �z	�t
��z	

i��
�G�
B�z	

���
�t��z	

h
� � �G�

o �z	�t
��z	

i��
� �����	

To proceed well need the operator identity

��� �A �B	�� �A � �A��� �B �A	��� �����	

Which we apply to yield

�T��z	 �

�
��

h
� � �t��z	 �G�

o �z	
i��

�t��z	 �G�
B�z	

��� h
� � �t��z	 �G�

o �z	
i��

�t��z	

�

�h
� � �t��z	 �G�

o �z	
i �

��
h
� � �t��z	 �G�

o �z	
i��

�t��z	 �G�
B�z	

����
�t��z	

�
n
� � �t��z	 �G�

o �z	 � �t��z	 �G�
B�z	

o��
�t��z	

�
�

�� �t��z	
h
�G�
B�z	� �G�

o �z	
i�t��z	� �����	
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Thus we have veri�ed our guess� albeit in an exceedingly formal way�

Derivation Using Generalized Multiple Scattering Theory

Consider a situation with two scatterers in free space� One� the background� with

a scattering t�matrix �t�� which is identically zero outside the domain C� and the other

a scattering t�matrix �t�� which is zero outside the domain C�� They may each be point

scatterers or extended scatterers� We assume that the scatterers do not overlap� i�e�� C� �
C� � � The scattering space� S� is simply the union of C� and C�� S � C� � C�� From

this point on in the derivation� we drop the superscript �	� since we carried it through

the previous derivation and it should be clear here that there is a superscript �	� on every

t�matrix and every Green function� We also drop the argument �z��

Now we apply the generalized multiple scattering theory of section ����
 where the

background Green function operator is just �Go� We have an explicit form for �t�

h
�t
i
ij
� �ti�ij � �����	

and !Go� �
Go

�
ij �

��
� � i � j

�GB i �� j
�����	

According to our derivation of section ����
� the t�matrix may be written

�t �
h
��� �t !Go

i��
�t� �����	

Painful as it is� lets write out all of the terms in the above expression for �t� We

drop the �hats� on all the operators since everything in sight is an operator� First we have

to invert ���t !Go and we have to do it carefully because none of these operators necessarily

commute�

�� �t !Go �

�
� � �t�Go

�t�Go �

�
A � �����	

so �
�� �t !Go

���
�

�
� ��� t�Got�Go	

�� t�Go��� t�Got�Go	
��

t�Go��� t�Got�Go	
�� ��� t�Got�Go	

��

�
A � �����	

and thus

�
�� �t !Go

���
�t �

�
� ��� t�Got�Go	

��t� t�Go��� t�Got�Go	
��t�

t�Go��� t�Got�Go	
��t� ��� t�Got�Go	

��t�

�
A � ����
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So� in detail�

G � Go

�Go��� t�Got�Go	
��t�Go �Go��� t�Got�Go	

��t�Go

�Got�Go��� t�Got�Go	
��t�Go �Got�Go��� t�Got�Go	

��t�Go

� �����	

We want to rewrite this in the form

G � G� �G�T�G�� �����	

where T� is the renormalized t�matrix operator for scatterer 
 in the presence of scatterer

��

First we add and subtract Got�Go�

G � Go �Got�Go

�Got�Go �Go��� t�Got�Go	
��t�Go �Go��� t�Got�Go	

��t�Go

�Got�Go��� t�Got�Go	
��t�Go �Got�Go��� t�Got�Go	

��t�Go�

�����	

or

G � Go �Got�Go �Go
�
��� t�Got�Go	

�� � �
�
t�Go

�Go��� t�Got�Go	
��t�Go

�Got�Go��� t�Got�Go	
��t�Go �Got�Go��� t�Got�Go	

��t�Go�

�����	

but h
��� t�Got�Go	

�� � �
i
� ��� t�Got�Go	

��t�Got�Go� �����	

So

G � Go �Got�Go �Go��� t�Got�Go	
��t�Got�Got�Go

�Go��� t�Got�Go	
��t�Go

�Got�Go��� t�Got�Go	
��t�Go �Got�Go��� t�Got�Go	

��t�Go

� �����	

We use the operator identity �����	 to rewrite G�

G � Go �Got�Go �Got�Go��� t�Got�Go	
��t�Got�Go

�Go��� t�Got�Go	
��t�Go

�Got�Go��� t�Got�Go	
��t�Go �Go��� t�Got�Go	

��t�Got�Go�

�����	

Several terms now have the common factor� �� � t�Got�Go	� This allows us to collapse

several terms�

G � �Go �Got�Go	 � �Go �Got�	
�

�� t�Got�Go
t��Go �Got�Go	� �����	
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but Go � Got�Go � G� is the Green function for scatterer � alone� Also� t��Got�Go	 �

t��G� �Go	� so we have

G � G� �G�
�

�� t� �G� �Go	
t�G�� �����	

Now we see that equation ���� has exactly the same form as equation 
���� So we

have derived �restoring the �	� and the �z�	

�T�� �z	 �
�

�� �t�� �z	
h
�G�
� �z	� �G�

o �z	
i�t�� �z	� ����
	

which is identical to equation ���� as was to be shown� In the notation of the previous

derivation� T��z	 � T �z	� t��z	 � t�z	 and G��z	 � GB�z	�

����� Consequences

Free Space Background

What happens if �G�
B�z	 �

�G�
o �z	# Our formula should reduce to �T��z	 � �t��z	�

And it does�

�T��z	 �
�

�� �t��z	� �G��z	B � �G�
o �z	�

�t��z	 � �t��z	� �����	

Closed Systems

Suppose GB comes from a �nite domain� e�g�� a rectangular domain in two dimen�

sions� Then we have

�T �
�

�� �t�� �GB � �G�
o 	

�t� �
�

�� �t�� �G�
o �tB �G�

o 	
�t�� �����	

It is not obvious from this that �T doesnt depend on the choice if incoming or outgoing

solutions in the above equation� However� it is clear from physical considerations that a

closed system only has one class of solutions� In fact� the above equation is independent of

the choice of incoming or outgoing solutions for the free space quantities� We can show this

in a non�rigorous way by observing that

�T �
��

�t�
��� � h �GB � �G�

o

i � �����	

and that �
�t�
���

� �H��
s � �G�

o � �����	
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so

�T�� � �H��
s � �GB� �����	

To show this rigorously would require a careful de�nition of what these various inverses

mean since many of the operators can be singular� We need to properly de�ne the space on

which these operators act� This would be similar to the de�nition of the scattering space

used in section ����
�

The Green function operator of a closed system has poles at the eigenenergies�

That is� �tB�z	 and �GB�z	 have poles at z � Eo
n for n � f� � � ��g� For z near Eo

n

�tB�z	 �
�R�
n

z �En
� �����	

and

�GB�z	 �
�G�
o �z	 �R

�
n
�G�
o �z	

z �En
� �����	

�G�
o �z	 has no poles �though it may have other sorts of singularities	� So we de�ne

�Rn � �G�
o �E

n
o 	

�R�
n
�G�
o �E

n
o 	� �����	

Since we have added a scatterer� in general none of the poles of �GB�z	 should

be poles of �G�z	� This is something we can check explicitly� Suppose z � Eo
n � � where

j�j �� �� Then

�G�z	 � �G�E	
n � �	 �

�Rn

�
�

�Rn

�

�

�� �t��z� �Rn

�

�t��z	
�Rn

�
� �����	

which is easily simpli�ed�

�G�z	 �
�Rn

�

�
��� �

�� �
�t��z� �Rn

�
A � ����
	

We assume that �t��Eo
n	 �� � and we know that �Rn �� � because En is a simple pole of

GB�z	� So there exists � such that

�

�t��z	 �Rn

�� �� �����	

So we have
�

�� �
�t��z� �Rn

� � �
�

�t��z	 �Rn

� �����	

and thus

�G�z	 �
�

�t��z	
�O��	� �����	

Therefore� the poles of �GB�z	 are not poles of �G�z	 unless �t�E	
n	 � ��
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So Where are the Poles in �G�z	�

As we expect� the analytic structure of �G�z	 and �T �z	 coincide �at least for the

most part� see ����� p� �
	� More simply� since the poles of �GB�z	 are not poles of �G�z	�

only poles of �T �z	 will contribute poles to �G�z	�

Recall

�T �z	 �
�

�� �t��z	
h
�GB�z	 � �G�

o �z	
i�t��z	� �����	

so poles of �T �z	 occur at En� �� Eo
n	 satisfying

�t��En	
h
�GB�En	� �G�

o �En	
i
� �� �����	

or

�t��En	 �
h
�GB�En	� �G�

o �En	
i��

�
�

�G�
o �En	�t

�
B�En	 �G

�
o �En	

� �����	

This is a simple equation to use when �GB comes from scatterers added to free space so �t�B is

known� When �GB is a Green function given a�priori� e�g�� the Green function of an in�nite

wire in 
 dimensions� the above equation becomes somewhat more di�cult to evaluate�

Well address this issue in a later chapter ��	 about scattering in 
�dimensional wires�

Perturbatively small scatterers

For small �t�z	 the only way to satisfy equation ���� is for �GB�z	 to be very large�

But �GB�z	 is large only near a pole� Eo
n of �GB�z	� This is a nice result� It implies that for

small �t�z	� i�e�� a small scatterer� the poles� En of �G�z	 are close to the poles Eo
n of �GB�z	 as

we might expect� This idea has been used �see ����	 to explore the possibility that an atomic

force microscope� used as a small scatterer� can probe the structure of the wavefunction of

a quantum dot�

Renormalization of a zero range t�matrix

A zero range t�matrix provides a simple but subtle challenge for the application

of this renormalization� Since

�t��z	 � s��z	 jrsi hrsj � �����	

we have�

�T��z	 �
�

�
s��z� �

h
GB�rs� rs$ z	�G�

o �rs� rs$ z	
i jrsi hrsj � �����	
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But� as we have already discussed in section 
��� in more than one dimension� the Green

function� G �r� r�$ z	 for the Schr�odinger equation is singular in the r � r� limit� So� we

have to de�ne T �z	 a bit more formally�

�T��z	 � lim
r��rs

�
�

s��z� �
h
GB�rs� r�$ z	�G�

o �rs� r�$ z	
i jrsi hrsj � �����	

This limit can be quite di�cult to evaluate� Four particular cases are dealt with in chap�

ters � and ��



Chapter �

Scattering From Arbitrarily

Shaped Boundaries

��� Introduction

In the previous chapter we developed some powerful tools for solving complicated

scattering problems� All of them were built upon one or more Green functions� In this chap�

ter we consider a variety of techniques for computing Green functions in various geometries�

The techniques discussed in this chapter are useful when we have a problem which involves

scattering on a surface of co�dimension one �one dimension less than the dimension of the

system	� for example scattering from a set of one dimensional curves in two dimensions�

We begin by computing the Green function of an arbitrary number of arbitrarily

shaped smooth Dirichlet �� � �	 boundaries placed in free�space� The method is con�

structed by �nding a potential which forces � to satisfy the Dirichlet boundary condition�

The technique is somewhat more general� It can enforce an arbitrary linear combination

of Dirichlet and Neumann boundary conditions� The more general case is dealt with in

appendix B�

We then re�derive the fundamental results by considering certain expansions of �

rather than a potential� This lends itself nicely to the generalizations which follow in the

next two sections� We can use expansions of � to simply match boundary conditions� The

�rst generalization is a small but useful step from Dirichlet boundary conditions to periodic

boundary conditions�

��
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We next consider scattering from a boundary between two regions with di�erent

known Green functions� This cannot be handled as a boundary condition but� nonetheless�

all the scattering takes place at the interface� This method could be used to scatter from

a potential barrier of �xed height$ that was the original motivation for its development� It

could also be used to scatter from a superconductor embedded in a normal metal or vice�

versa since each has its own known Green function �see A��	� This idea is being actively

pursued�

��� Boundary Wall Method I

Consider

V �r	 �

Z
C
ds ��s	 � �r� r�s		 ����	

where the integral runs over the surface C� Here we will assume a pragmatic point of view

by supposing that our mathematical problem is well posed� i�e�� there does exist a solution

for the Schr�odinger equation satisfying the boundary conditions considered� Obviously� the

method has no meaning when this is not so�	 The boundary condition

��r�s		 � � ���
	

emerges as the limit of the potentials parameters �� � �	� For �nite �� the potential

has the e�ect of a penetrable or �leaky� wall� A similar idea has been used to incorporate

Dirichlet boundary conditions into certain classes of solvable potentials in the context of

the path integral formalism ����� Here we use the delta wall more generally� resulting

in a widely applicable and accurate procedure to solve boundary condition problems for

arbitrary shapes�

Consider the Schr�odinger equation for a d�dimensional system� H�r	��r	 � E��r	�

with H � H	 � V � As is well known� the solution for ��r	 is given by

��r	 � ��r	 �

Z
dr�GE

	 �r� r
�	V �r�	��r�	� ����	

where ��r	 solves H	�r	��r	 � E��r	 and GE
	 �r� r

�	 is the Green function for H	� Hereafter�

for notational simplicity� we will suppress the superscript E in GE
	 �

Now� we introduce a ��type potential

V �r	 � �

Z
C
ds � �r� r�s		 � ����	
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where the integral is over C� a connected or disconnected surface� r�s	 is the vector position

of the point s on C �we will call the set of all such vectors S	� and � is the potentials

strength� Clearly� V �r	 � � for r �� S�
In the limit � � �� the wavefunction will satisfy ���
	 �with ��s	 � �	 as shown

below� For �nite �� a wave function subject to the potential ����	 will satisfy a �leaky� form

of the boundary condition�

Inserting the potential ����	 into ����	� the volume integral is trivially performed

with the delta function� yielding

��r	 � ��r	 � �

Z
C
ds�G	�r� r�s

�		��r�s�		 � ��r	 �

Z
C
ds�G	�r� r�s

�		T��r�s�		� ����	

Thus� if ���r�s		 � T��r�s		 is known for all s� the wave function everywhere is obtained

from ����	 by a single de�nite integral� For r � r�s��	 some point of S

��r�s��		 � ��r�s��		 � �

Z
C
ds�G	�r�s

��	� r�s�		��r�s�		� ����	

which may be abbreviated unambiguously as

��s��	 � ��s��	 � �

Z
ds�G	�s

��� s�	��s�	� ����	

We can formally solve this equation� getting

 � �
h
 I� �  G	

i��
 �� ����	

where  ��  � stand for the vectors of ��s	s and ��s	s on the boundary� and  I for the identity

operator� The tildes remind us that the free Green function operator and the wave�vectors

are evaluated only on the boundary�

We de�ne

T � �
h
 I� �  G	

i��
� ����	

and then it is easy to see that T� in ����	 is given from ����	�����	 by

T��r�s
�		 �

Z
ds T �s�� s	��s	� �����	

In order to make contact with the standard t�matrix formalism in scattering the�

ory ����� we note that a T operator for the whole space may be written as

t�rf � ri	 �

Z
ds�� ds� ��rf � r�s��		T �s��� s�	 ��ri � r�s�		� �����	
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Finally� we observe that ����	 can be written as

 � �
h
 I �  G	 T

i
 �� ����
	

For ���� the operator T converges to �
h
 G	

i��
� Inserting this into ����
	� we have

 � �

�
 I�  G	

h
 G	

i���
 � � �� �����	

So� � satis�es a Dirichlet boundary condition on the surface C for � ���

��� Boundary Wall Method II

We can simplify the previous derivation considerably if we assume that there exists

an operator

�t�E	 �

Z
ds ds� jr�s	i T �s� s�$E	

�
r�s�	

�� � �����	

such that the solution of our scattering problem� j�i� may be written

j�i � j�i� �Go�E	�t�E	 j�i � �����	

or� in position space�

��r	 � ��r	 �

Z
dr� dr��Go�r� r

�$E	t�r�� r��$E	��r��	� �����	

which we can simplify to

��r	 � ��r	 �

Z
ds� ds��Go�r� r�s

�	$E	T �s�� s��$E	��r�s��		� �����	

The solution is a bit simpler if we make a notational switch�

t����s	 �

Z
ds� T �s� s�$E	��r�s�		 �����	

Now we enforce the dirichlet boundary condition ��r�s		 � �� That gives us a Fredholm

integral equation of the �rst kind�Z
ds�Go�r� r�s

�	$E	t����s�	 � ���r�s		 �����	

which we may solve for t����s	 �e�g�� using standard numerical methods�	 Formally� we can

solve this with

t����s	 � �
Z

ds�G��
o �s� s�$E	��s�	 ���
�	

where the new notation reminds us that the inverse is calculated only on the boundary�

That is G��
o �s� s�	 satis�esZ

ds��Go�r�s	� r�s
��	$E	G��

o �s��� s�$E	 � ��s� s�	� ���
�	
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��� Periodic Boundary Conditions

We can generalize this for other sorts of boundary conditions� In this section� well

deal with periodic boundary conditions� As with Dirichlet�Neumann boundary conditions

we may write the solution in terms of an expansion in free�space solutions to the wave�

equation� However� �rst we should properly characterize our periodic boundaries� Well

consider a kind of generalized periodic boundaries�

Consider two surfaces� C� and C� both parameterized by functions of a generalized

parameter s� We insist that the surfaces are parameterized such that both parameter

functions have the same domain� We de�ne �periodic boundary conditions� as any set of

conditions of the form

��r��s		 � ��r��s		 ���

	

�n�r��s����r��s		 � �n�r��s����r��s		� ���
�	

where �n�r�s�� denotes the partial derivative in the direction normal to the curve r�s	� We

note that di�erent parameterizations of the surfaces may yield di�erent solutions�

For example� consider the unit square in two�dimensions� Standard periodic

boundary conditions specify that

���� y	 � ���� y	 �y � ��� ��

�

�x
���� y	 �

�

�x
���� y	 �y � ��� ��

��x� �	 � ��x� �	 �x � ��� ��

�

�y
��x� �	 �

�

�y
��x� �	 �x � ��� ��� ���
�	

We choose the surface C� as the left side and top of the square and C� as the right side and

bottom of the box� We may choose a real parameter� s � ��� 
�� where s � ��� �� parameterizes

the sides of the box from top to bottom and s � ��� 
� parameterizes the top and bottom

from right to left� However� twisted periodic boundaries may also be considered�

���� y	 � ���� � � y	 �y � ��� ��

�

�x
���� y	 �

�

�x
���� � � y	 �y � ��� ��

��x� �	 � ���� x� �	 �x � ��� ��

�

�y
��x� �	 �

�

�y
���� x� �	 �x � ��� ��� ���
�	
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In our language� this simply means choosing a di�erent parameterization of the two pieces

of the box�

To solve this problem� we now expand � in terms of the free�space Green function

on the boundary�

��r	 � ��r	 �

Z
�G�r� r��s	$E	f��s	 �G�r� r��s	$E	f��s	� ds ���
�	

We insert the expansion ���
�	 into equations ���

���
�	�

��r��s		 �

Z �
G�r��s	� r��s

�	$E	f��s
�	 �G�r��s	� r��s

�	$E	f��s
�	
�
ds� �

��r��s		 �

Z �
G�r��s	� r��s

�	$E	f��s
�	 �G�r��s	� r��s

�	$E	f��s
�	
�
ds�

�n�r��s����r��s		� ���
�	Z h
�n�r��s��G�r��s	� r��s

�	$E	f��s
�	 � �n�r��s��G�r��s	� r��s

�	$E	f��s
�	
i
ds� �

�n�r��s����r��s		� ���
�	Z h
�n�r��s��G�r��s	� r��s

�	$E	f��s
�	 � �n�r��s��G�r��s	� r��s

�	$E	f��s
�	
i
ds� ���
�	

This is a set of coupled Fredholm equations of the �rst type� To make this clearer

we de�ne�

a�s	 � ��r��s		� ��r��s		

a��s	 � �n�r��s����r��s		� �n�r��s����r��s		� �����	

G��s� s
�$E	 � Go�r��s	� r��s

�	$E	 �Go�r��s	� r��s
�	$E	

G��s� s
�$E	 � Go�r��s	� r��s

�	$E	 �Go�r��s	� r��s
�	$E	

G�
��s� s

�$E	 � �n�r��s��Go�r��s	� r��s
�	$E	 � �n�r��s��Go�r��s	� r��s

�	$E	

G�
��s� s

�$E	 � �n�r��s��Go�r��s	� r��s
�	$E	 � �n�r��s��Go�r��s	� r��s

�	$E	� �����	

and then re�write the equations at the boundary�Z �
G��s� s

�	f��s�	 �G��s� s
�	f��s�	

�
ds� � a�s	Z �

G�
��s� s

�	f��s�	 �G�
��s� s

�	f��s�	
�
ds� � a��s	 ����
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which we can write� at least schematically� as a matrix equation�
� G� G�
G�� G��

�
A
�
� f�

f�

�
A �

�
� a

a�

�
A �����	

where the Gs are linear integral operators in the space of functions on the boundary and

the f s and as are vectors �functions	 in that space�

Formally� we can solve this equation��
� f�

f�

�
A �

�
� G� G�
G�� G��

�
A���� a

a�

�
A �����	

While we cannot usually invert this operator analytically� we can sample our

boundary at a discrete set of points� We then construct and invert this operator in this

�nite dimensional space and� using this �nite basis� construct an approximate solution to

our scattering problem�

��� Green Function Interfaces

In this section well deal with scattering from an arbitrarily shaped potential step�

Though this is not purely a boundary condition� the problem is solved� as in the previous

two cases� if sums of solutions to �free�space� equations satisfy certain conditions on a

boundary�

We consider an object with potenial Vo embedded in free�space �we could consider

an object with one Green function embedded in a space with another Green function as

long as the asymptotic solutions of the wave equation are known in both regions but well

be a bit more speci�c	 where the boundary between the two regions is parameterized by s

via r�s	 as the Dirichlet boundary was in section ����

It is immediately clear that an expansion of the form �����	 cannot work for the

wavefunction inside the dielectric �though it may work for the wavefunction outside	 since

the Green function used in the expansion does not solve the wave equation inside� We need

a separate expansion for the inside wavefunction� This is no surprise since at a potential

step boundary we have twice as many boundary conditions� continuity of � and its �rst

derivative� We expand the inside and outside solutions separately to get

�out�r	 � �out�r	 �

Z
Gout�r� r�s	$E	 tout��in� �out��s	 ds� �����	
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�in�r	 � �in�r	 �

Z
Gin�r� r�s	$E	 tin��in� �out��s	 ds� �����	

where ��r	 � �out�r	� �in�r	�

The incoming wave inside the potential step is puzzling at �rst� Because the basis

in which we are expanding the solutions is not orthogonal� we have some freedom in choosing

�in�r	 � ��

i	 We can choose �in�r	 � � which corresponds to the entire inside wavefunction

being produced at the boundary sources� This is mathematically correct but a little awk�

ward when the potential step is small compared to the incident energy�� When the step is

small� the wavefunction inside and outside will be much like the incoming wave which leads

us to

ii	 A more physical but harder to de�ne choice is to choose �in�r	 to be a solution

to the wave equation inside the step and which has the property

lim
Vo�	

�in�r�s		 � �out�r�s		� �����	

Though this seems ad hoc� it is mathematically as valid as choice �i	 and has the nice

property that

lim
Vo�	

tin�out����s	 � �� �����	

which is appealing�

Now we write our boundary conditions�

�out�r�s		 � �in�r�s		

�n�s��out�r�s		 � �n�s��in�r�s		� �����	

or

�out�r�s		 �

Z
Gout�r�s	� r�s

�	$E	 tout����s
�	 ds� � �����	

�in�r�s		 �

Z
Gin�r�s	� r�s

�	$E	 tin����s
�	 ds�

�n�s��out�r�s		 �

Z
�n�s�Gout�r�s	� r�s

�	$E	 tout����s
�	 ds� �

�n�s��in�r�s		 �

Z
�n�s�Gin�r�s	� r�s

�	$E	 tin����s
�	 ds�� �����	

where �n�s� is the normal derivative at the boundary point r�s	�
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The above is a set of coupled Fredholm equations of the �rst type� To make this

clearer we de�ne�

a�s	 � �in�r�s		� �out�r�s		

a��s	 � �n�s��in�r�s		� �n�s��out�r�s		

v�s	 � tout����s	

w�s	 � tin����s	

Go�s� s
�$E	 � Gout�r�s	� r�s

�	$E	

Gi�s� s
�$E	 � Gin�r�s	� r�s

�	$E	

G�
o�s� s

�$E	 � �n�s�Gout�r�s	� r�s
�	$E	

G�
i�s� s

�$E	 � �n�s�Gin�r�s	� r�s
�	$E	� ����
	

Now we have the following system of integral equationsZ �
Go�s� s

�$E	v�s�	�Gi�s� s
�$E	w�s�	

�
ds� � a�s	Z �

G�
o�s� s

�$E	v�s�	�G�
i�s� s

�$E	w�s�	
�
ds� � a��s	� �����	

with all the Gs and �s given�

We may schematically represent this as a matrix equation��
� Go �Gi
G�o �G�i

�
A
�
� v

w

�
A �

�
� a

a�

�
A �����	

which we may formally solve�

�
� v

w

�
A �

�
� Go �Gi
G�o �G�i

�
A���� a

a�

�
A �����	

This formal solution is not much use except perhaps in a special geometry� However� it does

lead directly to a numerical scheme� Simply discretize the boundary by breaking it into N

pieces fCig of length '� Label the center of each piece by si and change all the integrals in

the integral equations to sums over i� Now the schematic matrix equation actually becomes
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a 
N � 
N matrix problem which can be solved by LU decomposition techniques or the

like�

We might also worry about mutliple step edges or di�erent steps inside each other�

All this will work as well but we will get a set of equations for each interface so the problem

may get quite costly� This would not be a sensible way to handle a smoothly varying

potential� However� as noted at the beginning� the formalism here works for any known

Gin and Gout and so certain smooth potentials may be handled if their Green functions

are known�

��� Numerical Considerations and Analysis

����� Discretizing The Boundary Wall Equations

As discussed in Section ��
� the key idea in our method is to calculate T and�or T�

on C� and then to perform the integral ����	� Unfortunately� in the great majority of cases

the analytical treatment is too hard to be applied� In such cases we consider the problem

numerically�

We divide the region C into N parts� fCjgj��			N � Then� we approximate

��r	 � ��r	 �
NX
j��

Z
Cj
ds �G	�r� r�s		��r�s		

� ��r	 �
NX
j��

��r�sj		

Z
Cj
ds �G	�r� r�s		� �����	

with sj the middle point of Cj and rj � r�sj	� Now� considering r � ri we write ��ri	 �

��ri	 �
PN

j�� �Mij��rj	 �for M � see discussion below	� If & � ���r�	� � � � � ��rN 		� and

( � ���r�	� � � � � ��rN 		� we have & � (��M&� and thus �& � T(� with T � ��I��M	���

which is the discrete T matrix� So

�&i � �T(	i � �
NX
j��

h
�I� �M	��

i
ij
(j� �����	

and

��r	 � ��r	 �
NX
j��

G	�r� rj	'j �T(	j � �����	

where we have used a mean value approximation to the last integral in �����	 and de�ned

'j the volume of Cj�
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It follows from �����	 that

Mij �

Z
Cj
dsG	�ri� r�s		� �����	

We can approximate

Mij � G	�ri� rj	'j� �����	

However� G	�ri� rj	 may diverge for i � j �e�g�� the free particle Green functions in two or

more dimensions	� We discuss these approximations in detail in Section ������

If we consider ���� it is easy to show from the above results that

��r	 � ��r	�
NX
j��

G	�r� rj	'j �M
��(	j � �����	

Equation �����	 is then the approximated wave function of a particle under H	 interacting

with an impenetrable region C�

����� The Many Scatterer Limit

The boundary wall method is a sort of multiple scattering approach to building

boundaries� In the many scatterer limit� we can make this connection explicit�

Recall that the inverse of the multiple scattering t�matrix for point scatterers has

the form

�Mms	ij �

��
� ��Ti�E	 if i � j�

Go�ri� rj $E	 if i �� j�
����
	

We assume that the discretization of the boundary wall method is uniform with spacing

�i � l �i� If� for the boundary wall M �matrix� we de�ne B � ����l	M� we get a simpler

version of the discretized equation�

��r	 � ��r	 �
NX
j��

G	�r� rj	 �B
��(	j � �����	

we notice that B has the same o��diagonal elements as Mms� The diagonal elements of B

have the form �where k �
p
E	

Bii �
�

l

Z l��

�l��
G �ri� r�si � x	$E	 dx � �




Z l��

	
ln�kx	 dx �

�





�
ln
kl



� �

�
�

�




ln

kl


e
�

�����	
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If we want to identify this with a multiple scattering problem we must have ��Ti�E	 �

�
�� ln kl

�e which is the low energy form of the point interaction t�matrix discussed in section 
��

for a scatterer of scattering length l�
e�

Thus� in the many scatterer limit �kl �� �	� the Dirichlet boundary wall method

becomes the multiple scattering of many pointlike scatterers along the boundaries where

each scatterer has scattering length l�
e�

����� Quality of the Numerical Method

The numerical solution �����	 approaches the solution ����	 as N � �� In prac�

tice� we choose N to be some �nite but large number� In this section we explain how to

choose N for a given problem and how the approximation �����	 a�ects this choice�

In order to analyze the performance of the numerical solution� we must de�ne

some measure of the quality of the solution� We measure how well a Dirichlet boundary

blocks the �ow of current directed at it� Thus we measure the current�

j � �f���r	r��r	g� �����	

behind a straight wall of length l� To simplify the analysis we integrate j�n over a �detector�

located on one side of a wall with a normally incident plane wave on the other side� We

divide this integrated current by the current which would have been incident on the detector

without the wall present� We call this ratio� T � the transmission coe�cient of the wall�

Instead of T as a function of N � we consider T vs� �� where � � 

N��lk	 is the number of

boundary pieces per wavelength�

We consider three methods of constructing the matrix M for each value of �� The

�rst is the simplest approximation�

Mij �

�   �
   �

R
Ci dsG	�ri� r�s		 i � j

'G	�ri� rj	 i �� j�

�����	

which we call the �fully�approximated�M� The next is a more sophisticated approximation

with

Mij �

�   �
   �

R
Cj dsG	�ri� r�s		 jsi � sjj � 


k

'G	�ri� rj	 jsi � sjj � 

k �

�����	
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which we call the �band�integrated�M because we perform the integrals only inside a band

of ���

	 wavelengths� Finally� we consider

Mij �

Z
Cj
dsG	�ri� r�s		 �ij� �����	

which we call the �integrated� M�

Numerically� the �band�integrated� and �integrated� M require far more compu�

tational work than the �fully�approximated� M which requires the fewest integrals� All

methods of calculating M scale as O �N�
�
� The calculation of T or T( from M scales as

O �N�
�
and the calculation of ��r	 for a particular r from a given T( scales as O �N	�

Which of these various calculations dominates the computation time depends on what sort

of computation is being performed� When computing wavefunctions� computation time is

typically dominated by the large number of O �N	 vector multiplications� However� when

calculating ��r	 in only a small number of places� e�g�� when performing a �ux calculation�

computation time is often dominated by the O �N�
�
construction of T(�

In Figure ��� we plot log�	 T vs� � for the three methods above and 
 � � � ���

We see that all three methods block more than ��) of the current for � � �� However� it is

clear from the Figure that the �integrated� M and to a lesser extent the �band�integrated�

M strongly outperform the �fully�approximated� M for all � plotted�

��� From Wavefunctions to Green Functions

We pause in the development of these various boundary conditions to explain how

to get Green functions �which well need to use these boundary conditions in more complex

scattering problems	 from the wavefunctions weve been computing�

All the above methods compute wavefunctions from given boundary conditions

and incoming waves� In several cases� the idea of an incoming wave is somewhat strange�

For example� what is an incoming wave on a periodic boundary# However� we include

the incoming wave only to allow the computation of Green functions as we outline below�

When we have an eigenstate of the boundary condition� the incoming wave must be become

unimportant and we will show that below�

One simple way to form a Green function from a general solution for wavefunctions

is to recall that G�r� r�$E	 is the wavefunction at r given that the incoming wave is a free�

space point�source at r�� ��r	 � Go�r� r
�$E	� This yields an expression for the Green function
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method�
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everywhere as a linear function of Go�

����� Example I� Dirichlet Boundaries

For Dirichlet boundaries we had

��r	 � ��r	 �

Z
Go�r� r�s	$E	T �s� s�	��r�s�		 ds ds�

where T �s� s�	 � �Go�s� s
�	���� So

G�r� r�$E	 � Go�r� r
�$E	 �

Z
Go�r� r�s	$E	T �s� s�	Go�r�s

�	� r�$E	 ds ds�

����� Example II� Periodic Boundaries

For periodic boundaries we had

��r	 � ��r	 �

Z
�Go�r� r��s	$E	f��s	 �Go�r� r��s	$E	f��s	� ds ds

�

where f� and f� are determined from

�
� f�

f�

�
A �

�
� G� G�
G�� G��

�
A���� a

a�

�
A

If we de�ne

F��s� r
�	 � f��s	 given ��r	 � Go�r� r

�$E	

F��s� r
�	 � f��s	 given ��r	 � Go�r� r

�$E	

we have

G�r� r�$E	 � Go�r� r
�$E	 �

Z �
Go�r� r��s	$E	F��s� r

�	 �Go�r� r��s	$E	F��s� r
�	
�
ds

Though this looks like we have to solve many more equations than just to get the wavefunc�

tion� we note that the operator inverse which we need to get the wavefunction is su�cient to

get the Green function� just as in the Dirichlet case� We simply apply that inverse to more

vectors� Thus for all boundary conditions� the Green function requires extra matrix�vector

multiplication work but the same amount of matrix inversion work�
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��	 Eigenstates

It is also useful to be able to use the above methods to identify eigenenergies

and eigenstates �if they exist	 of the above boundary conditions� This is actually quite

simple� All of the various cases involved inverting some sort of generalized Green function

operator on the boundary� This inverse is a generalized t�matrix and its poles correspond

to eigenstates� Poles of t correspond to linear zeroes of G and so we may use standard

techniques to check for a singular operator� If the operator we are inverting is singular� its

nullspace holds the coe�cients required to form the eigenstate� A more concrete explanation

of this can be found in section ����
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Scattering in Wires I� One

Scatterer

In this section we consider the renormalization of the scatterer strength due to

the presence of in�nite length boundaries� The picture we have in mind is that of two

dimensional wire �one dimensional free motion	 with periodic boundary conditions in the

transverse direction and a single scattering center� This will be our �rst example of scatterer

renormalization by an external boundary�

��� One Scatterer in a Wide Wire

It seems intuitively clear that the scattering o� a small object in the middle of a

big wire should be much like scattering in free space� After all� if the con�ning walls are

further away than any other length scale in the problem� they ought to play a small role�

In this section we attempt to make this similarity explicit by computing the transmission

coe�cient for a wide wire with one small scatterer in its center� We will simply be making

the connection between cross�section and transmission in the ballistic limit�

��
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Figure ���� A Periodic wire with one scatterer and an incident particle�

We begin with a simple classical argument� Suppose a particle in the wire is

incident with angle  with respect to the walls� as in �gure ���� What is the probability

that such a particle scatters# For a small scatterer� the probability is approximately P �	 �

�
W � �

cos � � Of course� this must break down before P �	 � � but for 	 �� W this will a

small range of �

We now need to know how the various incident angles are populated in a particular

scattering process� For this� we must think more carefully about the physical system we

have in mind� In our case� this is a �two probe� conductance measurement on our wire�

as pictured in �gure ��
� Our physical system involves connecting our wire to contacts

which serve as reservoirs of scattering particles �e�g�� electrons	� running a �xed current�

I� through the system and then measuring the voltage� V � Theoretically� it is the ratio

of current to voltage which is interesting� thus we de�ne the unitless conductance of this

system�g � �h�e�	I�V �
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Figure ��
� �Experimental� setup for a conductance measurement� The wire is connected
to ideal contacts and the voltage drop at �xed current is measured�

In such a setup all of the transverse quantum channels are populated with equal

probability� Since the quantum channels are uniformly distributed in momentum we have for

the probability density of �nding a particular transverse wavenumber� ��ky	dky � �
�
p
E
dky�

We also know that ky �
p
E sin  and together these give the density of incoming angles in

the plane of the scatterer� ��	d � �
� cos � Well also assume the scattering is isotropic$

half of the scattered wave scatters backward� So� we have

R �
�




Z ���

����
P �	��	 d �


	

�W
� ����	

The maximum cross section of a zero range interaction in two dimensions is ��
p
E

�see 
��	 and corresponds to scattering all incoming s�waves� If we put this into ����	� we get

R � �p
EW

� Interestingly� this is exactly one quantized channel of re�ection� The wire has

as many channels as half wavelengths �t across it� Nc �
p
EW
� and the re�ection coe�cient

is simply ��Nc� indicating that one channel of re�ection in free space �the s�wave channel	

is also one channel of re�ection in the wire� though no longer one speci�c channel�

We can check this conclusion numerically �the numerical techniques will be dis�

cussed later in the chapter	 as a check on the renormalization technique and the numerical

method� In �gure ��� we plot the numerically computed re�ection coe�cient and the the�

oretical value of ��Nc for wires of varying widths� from �� half wavelengths to ��� half

wavelengths� The expected behavior is nicely con�rmed� although there is a noticeable
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discrete jump at a couple of widths where new channels have just opened�
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Figure ���� Re�ection coe�cient of a single scatterer in a wide periodic wire�

As the wire becomes narrower �at the left of the �gure	 we see that the agreement

between the measured value and the quasi�classical theory is poorer� This is no surprise

since our quasi�classical argument is bound to break down as the height of the wire becomes

comparable to the wavelength and scatterer size� This is a hint of what we will see in

section ��� where the limit of the narrow wire is considered� Before we consider that

problem� we develop some necessary machinery� First we compute the Green function of

the empty periodic wire� we then consider the renormalization of the scattering amplitude

in a wire and the connection between Green functions and transmission coe�cients�

It is interesting to watch the transition from wide to narrow in terms of scattering

channels� Above� we saw that the scattering from one scatterer in a wide wire can be

understood classically� As we will see later in the chapter� scattering in the narrow wire

�W � a � �	 is much more complex� If we shrink the wire from wide to narrow we can

watch this transition occur� This is shown in �gure ����
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Figure ���� Number of scattering channels blocked by one scatterer in a periodic wire of
varying width�

��� The Green function of an empty periodic wire

We now proceed to do some tedious but necessary mathematical work necessary to

apply the methods of chapter � to this system� We begin by computing the Green function

of the wire without the scatterer�

The state jk� ai de�ned by

hx� y jk� ai � eikx�a�y	� ���
	

where �a�y	 satis�es

� d�

dy�
�a�y	 � �a�a�y	� ����	

�a��	 � �a�W 	� ����	

d�a
dy

����
y�	

�
d�a
dy

����
y�W

����	

Z W

	
��a�y	 dy � �� ����	
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is an eigenstate of the in�nite ordered periodic wire� We can write the Green function of

the in�nite ordered wire as �see� e�g������� or appendix A	

�G�
B�z	 �

X
a

Z �

��
jk� ai hk� aj

z � �a � k� � i�
dk� ����	

In order to perform the diagonal subtraction required to renormalize the single scatterer t�

matrices �see section ��
	 we need to compute the Green function in position representation�

Equations ������� are satis�ed by

�	�y	 �
q

�
h with �	 � �

�
�	�
a �y	 �

q
�
W sin

�
��a
W y

�
with �a �

�
��a
W

��
�
���
a �y	 �

q
�
W cos

�
��a
W y

�
with �a �

�
��a
W

��
�

����	

where the cos and sin solutions are degenerate for each a�

Since the eigenbasis of the wire is a product basis �the system is separable	 we can

apply the result of appendix A� section A�� and we have�

�G�
B�z	 �

X
a

jai haj � �g���o �E � �a	 ����	

or� in the position representation �we will switch between the vector r and the pair x� y

frequently in what follows	�

G�
B�r� r

�$E	 � G�
B�x� y� x

�� y�$ z	 �
X
a

�a�y	�a�y
�	g�o �x� x

�$E � �a	� �����	

where the one dimensional free Green function is

g�o �x� x
�$ z	 �

Z �

��
eik�x�x��

z � k� � i�
dk

�

� �
 �

�i
�
p
z
exp �i

p
z jx� x�j	 if Imfpzg � ��Refzg � �

��
�
p
j�j exp

�
�pj�j jx� x�j

�
if z � �j�j �

When doing the Green function sum� we have to sum over all of the degenerate

states at each energy� Thus� for all but the lowest energy mode �which is non�degenerate	�

the y�part of the sum looks like�

sin


a

W
y sin



a

W
y� � cos



a

W
y cos



a

W
y� � cos



a�y � y�	
W

� �����	
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which is sensible since the Green function of the periodic wire can depend only on y � y��

So� at this point� we have

G�
B�x� y� x

�� y�$ z	 �
�

W
g���o �x� x�$ z	 �




W

�X
a��

cos


a�y � y�	

W
g�o

�
x� x�$ z � �
�a�

W �

�
� ����
	

As nice as this form for GB is� we need to do some more work� To renormalize

free space scattering matrices we need to perform the diagonal subtraction discussed in sec�

tion ��
�
� In order for that subtraction to yield a �nite result� GB must have a logarithmic

diagonal singularity� The next bit of work is to make this singularity explicit�

It is easy to see where the singularity will come from� Since g�o �x� x$�j�j	 � �p
�

for E real there exists an M such that�

G�
B�x� y� x� y$E	 � const� �

�





�X
a�M

�

a
� �����	

which diverges� We now proceed to extract the singularity more systematically�

We begin by substituting the de�nition of go and explicitly splitting the sum into

two parts� The �rst part is a �nite sum and includes energetically allowed transverse modes

�open channels	� For these modes the energy argument to go is positive and waves can

propagate down the wire� The rest of the sum is over energetically forbidden transverse

modes �closed channels	� For these modes� waves in the x direction are evanescent� We

de�ne N � the greatest integer such that E � �
�N��W � �� ka �
p
E � �
�a��W � and

�a �
p
�
�a��W � �E and have

G�
B�x� y� x

�� y�$E	 �
�iei

p
Ejx�x�j


W
p
E

� i

W

NX
a��

cos


a�y � y�	

W
� eikajx�x�j

ka

� �

W

�X
aN

cos


a�y � y�	

W
� e�
ajx�x

�j

�a
� �����	

In order to extract the singularity� we add and subtract a simpler in�nite sum

�see D��	�

�





�X
a��

cos


a�y � y�	

W
�

exp
�
���a

W jx� x�j
�

a

�
�

�

ln

�
exp�

�x � x�	�W �


 cosh�

�x� x�	�h� � 
 cos�

�y � y�	�W �

�
� �����	
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to GB� This gives

G�
B�x� y� x

�� y�$E	 �
�iei

p
Ejx�x�j


W
p
E

� i

W

NX
a��

cos


a�y � y�	

W

�
!
"eikajx�x�j

ka
�
W exp

�
���a

W jx� x�j
�


i
a

#
$

� �

W

X
aN

cos


a�y � y�	

W
�
!
"e�
ajx�x�j

�a
�
W exp

�
���a

W jx� x�j
�



a

#
$

� �

�

ln

�
exp�

�x� x�	�W �


 cosh�

�x� x�	�W �� 
 cos�

�y � y�	�W �

�
� �����	

This is an extremely useful form for numerical work� For x �� x� or y �� y� we have

transformed a slowly converging sum into a much more quickly converging sum� This is

dealt with in detail in D�
�
�

In this form� the singular part of the sum is in the logarithm term and the rest

of the expression is convergent for all x � x�� y � y�� In fact� the remaining in�nite sum is

uniformly convergent for all x� x�� as shown in �D�
�
	� We can now perform the diagonal

subtraction of Go� We begin by considering the x� x�� y � y� limit of G�

lim
x�x��y�y�

G��x� y� x�� y�$E	 �
�i


W
p
E
� i

W

NX
a��

�
�

ka
� W


i
a

�

� �

W

X
aN

�
�

�a
� W



a

�

� �

�

lim

x�x��y�y�
ln

�
exp�

�x� x�	�W �


 cosh�

�x� x�	�W �� 
 cos�

�y � y�	�W �

�
� �����	

We can use equation D�� to simplify the limit of the logarithm�

�

�

lim

x�x��y�y�
ln

�
exp�

�x� x�	�W �


 cosh�

�x� x�	�W �� 
 cos�

�y � y�	�W �

�

�
�

�

lim

x�x��y�y�
ln

��




W

�� h
�x� x�	� � �y � y�	�

i

�
�

�

ln

��




W

���
�

�




lim
r�r�

ln
�jr� r�j� � �����	

Since �from A����	

lim
r�r�

Go�r� r
�$ z	 �

�i
�

�
�

�
Y �R�
o ��	 �

�




ln�
p
E	 �

�




ln
�jr� r�j� � �����	
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we have

!G�
B�x� y$E	 � lim

r�r�
G�
B�x� y� x

�� y�$E	�G���
o �r� r�$E	

�
�i


W
p
E
� i

W

NX
a��

�
�

ka
� W


i
a

�

� �

W

X
aN

�
�

�a
� W



a

�
�

�




ln

�




W
p
E

�
�

i

�
� �

�
Y �R�
o ��	� ���
�	

which is independent of x and y as it must be for a translationally invariant system and

�nite� as proved in section 
�����

The case of a Dirichlet bounded wire is very similar and so theres no need to

repeat the calculation� For the sake of later calculations� we state the results here� We have

G�
B�x� y� x

�� y�$E	 �

� i

W

NX
a��

sin

�

a

W
y

�
sin

�

a

W
y�
��

eikajx�x
�j

ka
� e�

��
W
ajx�x�j


i
a

�

� �

W

X
aN

sin

�

a

W
y

�
sin

�

a

W
y�
��

e�
ajx�x�j

�a
� e�

��
W
ajx�x�j



a

�

� �

�

ln

!
" sin� ��y�y��

�W � sinh� ��x�x��
�W

sin� ��y�y��
�W � sinh� ��x�x��

�W

#
$ � ���
�	

and

!G�
B�x� y$E	 �

� i

W

NX
a��

sin�
�

a

W
y

��
�

ka
� �


i
a

�
� �

W

X
aN

sin�
�

a

W
y

��
�

�a
� �



a

�

� �

�

ln

�
sin�


y

W

�
�

�




ln

�




W
p
E

�
�

i

�
� �

�
Y �R�
o ��	� ���

	

��� Renormalization of the ZRI Scattering Strength

Recall that the full Green function may be written

G��E	 � G�
B�E	 �G�

B�E	T��E	G�
B�E	 ���
�	

where T��E	 is computed via the techniques in chapter �� namely renormalization of the

free space t�matrices�
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We begin with a single scatterer in free space at x � y � �� The t�matrix of that

scatterer is �see section 
��	

t��E	 � s��E	 j�i h�j ���
�	

which is renormalized by scattering from the boundaries of the wire�

T��E	 � S��E	 j�i h�j ���
�	

where

S��E	 � s��E	
h
�� s��E	 !G�

B��� �$E	
i��

�
h
��s��E	 � !G�

B��� �$E	
i��

� ���
�	

Thus� for a periodic wire�

��S��E	 � ��s��E	 �
i


W
p
E

�
i

W

NX
a��

�
�

ka
� W


i
a

�

�
�

W

X
aN

�
�

�a
� W



a

�
� �




ln

�




W
p
E

�
�

�

�
Y �R�
o ��	� ���
�	

and in the Dirichlet bounded wire�

��S��E	 � ��s��E	 �
i


W
p
E

�
i

W

NX
a��

sin�
�

a

y

��
�

ka
� W


i
a

�

�
�

W

X
aN

sin�
�

a

y

��
�

�a
� W



a

�

�
�

�

ln

�
sin�


y

W

�
� �




ln

�



h
p
E

�
�

�

�
Y �R�
o ��	� ���
�	

So we have

G��x� y� x�� y�$E	 � G�
B�x� y� x

�� y�$E	 �G�
B�x� y� �� �$E	S��E	G�

B��� �� x
�� y�$E	� ���
�	

with S��E	 de�ned above�

��� From the Green function to Conductance

Since we now have the full Green function in the position representation� we can

compute it between any two points in the wire� We can use this to compute the unitless

conductance� g� of the wire via the Fisher�Lee relation ���� ����

g � Tr�T yT 	 �����	
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where T is the transmission matrix� i� e�� �T 	ab is the amplitude for transmitting from

channel a in the left lead to channel b in the right lead� T is constructed from G��r� r�$E	

via

�T 	ab � �iva
s
kb
ka
G�
ab�x� x

�$E	 exp��i�kbx� kax
�	�� �����	

where

G�
ab�x� x

�$E	 �
D
x� a

��� �G��E	
��� x�� bE �

Z
��a�y	G

��x� y� x�� y�$E	�b�y
�	 dy dy�� ����
	

is the Green function projected onto the channels of the leads� Since the choice of x

and x� are arbitrary� we can choose them large enough that all the evanescent modes are

arbitrarily small and thus we can ignore the closed channels� So there are only a �nite

number of propagating modes and the trace in the Fisher�Lee relation is a �nite sum� We

note that the prefactor va
p
ka�kb is there simply because we have normalized our channels

via
R h
	 j�a�y	j dy � � rather than to unit �ux� More detail on this is presented in ���� and

even more in the review �����

��� Computing the channel�to�channel Green function

We write the Green function of the in�nite ordered wire as �see� e�g������	

�G�
B�z	 �

X
a

Z �

��
jk� ai hk� aj

z � �a � k� � i�
dk� �����	

so D
x� a

��� �G�
B�z	

��� x�� bE � �ab

Z �

��
eik�x�x��

z � �a � k� � i�
dk� �����	

Since

�G��z	 � �G�
B�z	 �

�G�
B�z	

�T��z	 �G�
B�z	� �����	

and T �z	 � S�z	 jrsi hrsj we have

G�
ab�x� x

�$ z	 � �ab g
�
o

�
x� x�$ z

�
�g�o �x� xs$ z � �a	�a �ys	S

��z	�b �ys	 g
�
o

�
xs� x

�$ z � �b
�
�

If the t�matrix comes from the multiple scattering of many zero range interactions

the t�matrix can be written�

�t�z	 �
X
ij

jrii �t�z		ij hrjj � �����	
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In that case we will have a slightly more complicated expression for the channel�to�channel

Green function�

G�
ab�x� x

�$ z	 � �ab g
�
o

�
x� x�$ z

�
�
X
ij

g�o �x� xi$ z � �a	�a �yi	 �t�z		ij �b �yj	 g
�
o

�
xj � x

�$ z � �b
�
������	

��� One Scatterer in a Narrow Wire

Whereas the wide wire can be modeled classically� the narrow wire is essentially

quantum mechanical� In fact� what we mean by a narrow wire is a wire with fewer than

one half�wavelength across it�

When the wire becomes narrow� the renormalization of the scattering amplitude

due to the presence of the wire walls becomes signi�cant� This is immediately apparent when

we consider the case of a wire which is narrower than the scattering length of the scatterer�

In essence� we consider reducing a two�dimensional scattering problem to a one�dimensional

one by shrinking the width of the wire�

Wed like to consider the case where the wavelength� �� is much larger than the

width of the wire� This cannot be done for a wire with Dirichlet boundary conditions since

there the lowest energy with one open channel gives a half wavelength across the wire� We

will instead use a wire with periodic boundary conditions to consider this case� If the wide

wire result remains valid� we would expect the transmission coe�cient to be zero when

there is only one open channel since� in the wide wire� our scatterer re�ected exactly one

channel� However� as we already saw in �gure ��� this is not the case� As we see in more

detail in �gure ���� the transmission coe�cient has a surprisingly non�trivial behavior when

the width of the wire shrinks below a wavelength�
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Figure ���� Transmission coe�cient of a single scatterer in a narrow periodic wire�

It is possible to de�ne a sort of cross�section in one dimension� for instance via

the d � � optical theorem from section 
�
� In �gure ���� we plot the cross�section of the

scatterer rather than the transmission coe�cient�
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Figure ���� Cross�Section of a single scatterer in a narrow periodic wire�

There are various unexpected features of this transmission� In particular� why

should the transmission go to � at some �nite wire width# Also� why should the transmission

go to � for a zero width wire# A less obvious feature� but one which is perhaps more

interesting� is that for very small widths the behavior of the transmission coe�cient is

independent of the original scattering strength�

These features are consequences of the renormalization of the scattering amplitude�

To see how this transmission occurs� we compute the full channel�to channel Green function

for one scatterer in the center �x � �	 of a narrow �h� �	 periodic wire� Since the wire is

narrow� there is only one open channel so the channel to channel Green function has only

one term�

lim
W�	

G�
		�x� y� x

�� y�$E	 � g�o �x� x
�$E	

�g�o �x� �$E	
�p
W

�
lim
W�	

S��E	

�
�p
W

g�o ��� x
�$E	�
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The small W limit of S��E	 is straightforward� Using the result ���
�	� we have

S��E	 �

�
i


W
p
E
� �




ln

�


a

W

�
�

�

W

�X
a��

�
�

�a
� W



a

���
� �����	

For small W �

���a � W



a

�
� �

EW �

�
�a�

�
� �����	

and so the closed�channel sum may be approximated

�





�X
a��

�

a

�
EW �

�
�a�

�
�

EW �

��
�

�X
a��

�

a�
�

EW �

��
�
���	 � ��


EW �

��
�
� �����	

So

S��E	
W����

p
E

�

�
i


W
p
E
� �




ln

�


a

W

�
� ��


EW �

��
�

���
� �����	

Using the de�nition of go and factoring out the large i�
W
p
E in S� we have

lim
W�	

G�
		�x� y� x

�� y�$E	 � �i


p
E
ei
p
Ejx�x�j

�
�i


p
E
ei
p
Ejxj �p

W

�
W
p
E

i

�
� �

W
p
E

i

ln

�


a

W

�
� ��


E���W �

�i
�

�

� �p
W

�i


p
E
ei
p
Ejx�j ����
	

which� after the dust settles� can be re�written as

lim
W�	

G
���
		 �x� y� x�� y�$E	 � �i



p
E
ei
p
Ejx�x�j

�
i



p
E
ei
p
E�jxj�jx�j�

�
� �

W
p
E

i

ln

�


a

W

�
� ��


E���W �

�i
�

�
������	

Since we are interested only in transmission� we can assume x � � and x� � � so jx� x�j �
jxj� jx�j� With this caveat� we have

lim
W�	

G�
		�x� y� x

�� y�$E	 � ei
p
E�jxj�jx�j�

�
h




ln

�


a

W

�
� ��


EW �

��
�

�
� �����	

Finally� from �����	� we have

�T 			 � �i
�
W
p
E



ln

�


a

W

�
� ��


E���W �

�
�

�
� �����	
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since� in units where !h��
m � �� v � 

p
E� We have plotted this small W approximation

j�T 			j� in �gure ���� We see that there is good quantitative agreement for widths of fewer

than ��� wavelength� What is perhaps more surprising is the reasonably good qualitative

agreement for the entire range of one wavelength�
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Scattering in Rectangles I� One

Scatterer

In this section we begin the discussion of closed systems and eigenstates� As with

the scatterer in a wire problem� we have quite a bit of preliminary work to do� We �rst

compute the Background Green function� GB and the diagonal di�erence hr jGB �Goj ri
for the Dirichlet rectangle�

We then perform a simple numerical check on this result by using it to compute

the ground state energy of a �� � square with a single zero range interaction at the center�

We compare these energies with those computed by successive�over�relaxation �a standard

lattice technique ����	 for a hard disk of the same e�ective radius as speci�ed for the scat�

terer� This provides the simplest illustration of the somewhat subtle process of extracting

discrete spectra from scattering theory�

We then compute the background Green function and diagonal di�erence for the

periodic rectangle �a torus	� as we will need that in ��

��� Dirichlet boundaries

����� The Background Green Function

We consider a rectangular domain� D� in R� de�ned by

D � ��� l�� ���W � � f�x� y	j� � x � l� � � y � Wg� ����	

��
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We wish to solve Schr�odingers equation�
!h�


m
r� �E

�
���r	 � �� ���
	

in the domain D subject to the boundary condition

�r � �D� ���r	 � �� ����	

where �D is the boundary of D�

As in the previous chapter we set 
h�

�m � �� Our equation reads�
��

�x�
�

��

�y�
�E

�
��x� y	 � �� ����	

The eigen�functions of L � �
�
��

�x� �
��

�y�

�
in the above domain with given boundary con�

dition are

�nm�x� y	 �

p
lW

sin

�
n
x

l

�
sin

�
m
y

W

�
� ����	

which satisfy

�
�
��

�x�
�

��

�y�

�
�nm�x� y	 �

�
n�
�

l�
�
m�
�

W �

�
�nm�x� y	� ����	

We can thus write down a box Green function in the position representation

GB�x� y� x
�� y�$E	 �

�

lW

�X
n�m��

sin
�n�x

l

�
sin
�
n�x�

l

�
sin
�m�y

W

�
sin
�
m�y�

W

�
E � n���

l� � m���

W �

� ����	

which satis�es �
z �

��

�x�
�

��

�y�

�
GB�x� y� x

�� y�$ z	 � ��x� x�	��y � y�	� ����	

����� Re�summing the Dirichlet Green Function

As in the previous chapter� wed like to rewrite this double sum as a single sum� We

can do this by rearranging the sum and recognizing a Fourier series� First we re�arrange ���

as follows�

GB�x� y� x
�� y�$E	 �




l

�X
n��

sin

�
n
x

l

�
sin

�
n
x�

l

�



W

�X
m��

sin
�m�y

h

�
sin
�
m�y�

W

�
�
E � n���

l�

�
� m���

W �

� ����	
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We de�ne

kn �

s
E � n�
�

l�
�����	

N �

�
l




p
E

�
�����	

�n �

s
n�
�

l�
�E� ����
	

where �x� is the greatest integer less than equal or equal to x� and then apply a standard

trigonometric identity to the product of sines in the inner sum to yield

GB�x� y� x
�� y�$E	 �




l

�X
n��

sin

�
n
x

l

�
sin

�
n
x�

l

�
W


�

�X
m��

cos
�
m��y�y��

W

�
� cos

�
m��y�y��

W

�
W �

�� k
�
n �m�

�

�����	

We now need the Fourier series �see� e�g������	

�X
n��

cosnx

a� � n�
�







cos �a�
 � x	�

a sin
a
� �


a�
� �����	

for � � x � 

� So we have

GB�x� y� x
�� y�$E	 �




l

�X
n��

sin

�
n
x

l

�
sin

�
n
x�

l

�

��




cos �kn �W � �y � y�		�� cos �kn �W � �y � y�		�
kn sinhkn

�

and� after applying trigonometric identities� we have

GB�x� y� x
�� y�$E	 � �


l

�X
n��

sin

�
n
x

l

�
sin

�
n
x�

l

�

�sin �kn �W � y		� sin �kny
��

kn sinknW
�

We now re�write our expression for GB yet again�

GB�x� y� x
�� y�$E	 �




l

NX
n��

sin
�
n�x
l

�
sin
�
n�x�

l

�
sin�kny

�	 sin �kn �y �W 	�

kn sin �knW 	

�



l

�X
n�N��

sin
�n�x

l

�
sin
�
n�x�

l

�
sinh��ny

�	 sinh ��n �y �W 	�

�n sinh ��nW 	
�����	
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����� Properties of the Re�summed GB

As we will show below� the sum in �����	 is not uniformly convergent as y � y��

However� this limit is essential for calculation of renormalized t�matrices� We can� however�

add and subtract something from each term so that we are left with convergent sums and

singular sums with limits we understand�

Since the sum is symmetric under y � y� �this is obvious from the physical sym�

metry as well as the original double sum� equation ���	� we may choose y � y�� We de�ne

� � y� � y � �� and re�write the sum �����	 as follows�

GB�x� y� x
�� y�$ k�	 �




l

NX
n��

sin
�n�x

l

�
sin
�
n�x�

l

�
sin�kny

�	 sin �kn �y �W 	�

kn sin �knW 	

�
�

l

�X
n�N��

un� �����	

where

un � 
 sin

�
n
x

l

�
sin

�
n
x�

l

�
sinh ��ny	 sinh ��n�W � y � �	�

�n sinh ��nW 	
� �����	

We rewrite un to simplify the following analysis�

un � � sin

�
n
x

l

�
sin

�
n
x�

l

� ��� e��
nW
���

�n
�h

e�
n� � e�
n��y��� � e�
n��W��� � e�
n��W��y���
i
� �����	

We de�ne

gn��	 � sin

�
n
x

l

�
sin

�
n
x�

l

� ��� e��
nW
���

�n
e�
n�� �����	

We observe that for M � n

jgn��	j � ��� exp��
�nW 	���

�n
exp ���n�	

� ��� exp��
�MW 	���

�M
exp ���n�	

�
��� exp��
�MW 	���

�M
exp

�
�
n

l
�

�
exp

�
El


n

�

�

�
��� exp��
�MW 	���

�M
exp

�
El


M

�

�
exp

�
�
n

l
�

�
� ���
�	



Chapter �� Scattering in Rectangles I� One Scatterer ��

and therefore

�X
n�M

gn��	 �
��� exp ��
�MW 	���

�M
exp

�
El


M

�

�
exp

��M
�

l

�
�

�� exp
����

l

� � ���
�	

which converges for � � � but not uniformly� Thus we cannot take the � � � limit inside

the sum� However� if we can subtract o� the diverging part� we may be able to �nd a

uniformly converging sum as a remainder� With that in mind� we de�ne

hn��	 � sin

�
n
x

l

�
sin

�
n
x�

l

�
l

n

exp

�
�n


l
�

�
���

	

We �rst note that the sum
P�

n�� hn��	 may be performed exactly �see appendix D	 yielding�

�X
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hn��	 �
l

�
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� sinh�
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�
%&
' � ���
�	

We now subtract hn��	 from gn��	 to get

gn��	� hn��	 �
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�
n
x

l
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l
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As we show in appendix D� we can place a rigorous upper bound on

P�
n�M �gn��	� hn��	�

for su�ciently large M �

More precisely� given

M � max

��
� l




p

E�
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s
E �
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W
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�
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�

���%&
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then �X
n�M
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�M�

�
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�l
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�
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�
�M



l
�

�
� ���
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and
P�

n�M �gn��	� hn��	� is uniformly convergent in � � ���W ��

We now have

GB�x� y� x
�� y�$E	 �
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The in�nite sums of hs can be performed �see appendix D	 so we have
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When using these expressions we truncate the in�nite sums at some �nite M � The analysis

in appendix D allows us to bound the truncation error� With this in mind we de�ne a
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quantity which contains the non�singular part of GB truncated at the Mth term�
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We now have an approximate form for GB which involves only �nite sums and straightfor�

ward function evaluations� This will be analytically useful when we subtract Go from GB�

It will also prove numerically useful in computing GB�

����� Explicit Expression for �GB�r� k
��

Within the dressed�t formalism� we often need to calculate GB�r� r$ z	�Go�r� r$ z	�

This quantity deserves special attention because it involves a very sensitive cancellation of

in�nities� Recall that

lim
r�r�

Go�r� r
�$ k�	 � lim

r�r�

�




ln
�
kjr� r�j�� �

�
Y �R�
o ��	� i

�
� ����
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where Y
�R�
o is the regular part of Yo as de�ned in equation A��� of section A�����

If GB � Go is to be �nite� we need a canceling logarithmic singularity in GB�

Equation ���� makes it apparent that just such a singularity is also present in GB� The

logarithm term in that equation has a denominator which goes to � as r� r�� We carefully

manipulate the logarithms and write an explicitly �nite expression for GB �Go

!GB�r$E	 �

SM �x� y� x� y$E	 � �
�

PM
n��

sin� n�x
l

n

� �
�� lnkl � Y

�R�
o ��	 � �

�� ln
��
�

�� �
�� ln

�
sin �x

l

�
� i

�

�����	

����	 Ground State Energies

One nice consequence of equation ���� is that it predicts a simple formula for the

ground state energy of one scatterer with a known Green function background� Speci�cally�

�����	 implies that poles of T �E	 occur when

�

s�E	
� !GB�rs$E	 �����	

From section 
�� we have

�

s�E	
�

�

�

�
i� Yo�ka	

Jo�ka	

�
�����	

for ka � � we have

�

s�E	
�

i

�
� �




ln ���	� �

�
Y �R�
o ���	 �

i

�
� �




lnkl � �




ln�� �����	

We de�ne F �E	 � �
s�E� � !GB�r$E	 so

F �E	 � � Yo�ka	

�Jo�ka	
�

�




lnkl �

�

�
Y �R�
o ��	

�SM�X�Y�X� Y 	� �




�X
n��

sin� n�x
l

n

� �




ln





�

�

�

ln sin
X

We can use the ka � � expansion of the Neumann function to simplify F a bit�

F �E	 � � �




lna�l � �

�

h
Y �R�
o �ka	 � Y �R�

o ��	
i
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�SM �x� y� x� y	� �




�X
n��

sin� n�x
l

n

� �




ln





�

�

�

ln sin


x

l

In �gure ��� we compare the numerical solution of the equation F �E	 � � with a

numerical simulation performed with a standard method �Successive Over Relaxation ����	�

��� Periodic boundaries

����� The Background Green Function

We consider a rectangular domain� �� in R� de�ned by

� � ��� l� � ���W � � f�x� y	j� � x � l� � � y � Wg� �����	

We wish to solve Schr�odingers equation�
!h�


m
r� �E

�
���r	 � � �����	

in the domain � subject to the boundary conditions

���� y	 � ��l� y	�

�

�x
��x� y	

����
x�	

�
�

�x
��x� y	

����
x�l

�

��x� �	 � ��x�W 	�

�

�y
��x� y	

����
y�	

�
�

�y
��x� y	

����
y�W

�

We set 
h�

�m � �� Our equation reads�
��

�x�
�

��

�y�
�E

�
��x� y	 � �� �����	

The eigen�functions of L � �
�
��

�x� �
��

�y�

�
in the above domain with given boundary con�

dition are

����nm�x� y	 �

p
lW

sin

�

n
x

l

�
sin

�

m
y

W

�
� �����	

����nm�x� y	 �

p
lW

cos

�

n
x

l

�
cos

�

m
y

W

�
� �����	
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Scattering Length �radius	� �

��

��

��

��

	��

	��

� �
�� �
	 �
	� �
� �
��

E

Succesive Over�Relaxation and Dressed�t�Matrix Ground State Energies

SOR
Dressed�t Matrix

�

��� ���� �


�


�






�


�


�

� ����
 ����� ����� ����� ����

E

Scattering Length ��	

Numerical Simulation and Dressed�t Theory for Ground State Energy Shifts �small �	

Simulation �

�

����
�
��
��
�
�

�

�

�

�

Full Theory
Eg

Figure ���� Comparison of Dressed�t Theory with Numerical Simulation
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����nm�x� y	 �

p
lW

sin

�

n
x

l

�
cos

�

m
y

W

�
� ����
	

����nm�x� y	 �

p
lW

cos

�

n
x

l

�
sin

�

m
y

W

�
� �����	

�����	

all of which satisfy

�
�
��

�x�
�

��

�y�

�
�nm�x� y	 �

�
n�
�

l�
�
m�
�

W �

�
�nm�x� y	� �����	

Note that the m � � and n � � is permissible but only the cosine state survives so there is

no degeneracy� We can thus write down a box Green function in the position representation

GB�x� y� x
�� y�$E	 �




lWE
�

�

lW

�X
n�m��

cos
�
n�jx�x�j

l

�
cos
�
m�jy�y�j

W

�
E � n���

l� � m���

W �

� �����	

where trigonometric identities have been applied to collapse the sines and cosines into just

two cosines� We note that this Green function depends only on jx � x�j and jy � y�j as it

must�

����� Re�summing GB

As with the Dirichlet case� wed like to re�sum this Green function to make it a

single sum and to create an easier form for numerical use and the Go �GB subtraction�

We begin by reorganizing GB as follows�

GB�x� y� x
�� y�$E	 �




lWE
�

�

lW

�X
n��

cos

�
n
jy � y�j

W

� �X
m��

cos
�
m�jx�x�j

l

�
E � n���

l� � m���

W �

� �����	

and then apply the following Fourier series identity �see� e�g������	 to the inner sum�

�X
k��

cos kx

a� � k�
�







cos �a�
 � x	�

a sina

� �


a�
� �����	

for � � x � 

�

We de�ne

N �

�
W





p
E

�
�����	

kn �

s
E � �
�n�

W �
�����	
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�n �

s
�
�n�

W �
�E �����	

X � jx� x�j ����
	

Y � jy � y�j �����	

where �x� is the greatest integer equal to or less than x� We now have

GB�X�Y $E	 �
cos
hp

E
�
l
� �X

�i

h
p
E sin

�p
E l

�

� �
�

W

NX
n��

cos
�
��
W nY

�
cos
h
kn
�
l
� �X

�i
kn sin

�
kn

l
�

�

� �

W

�X
n�N��

cos
�
��
W nY

�
cosh

h
�n
�
l
� �X

�i
�n sinh

�
�n

l
�

� � �����	

We now follow a similar derivation to the one for Dirichlet boundaries� We choose

an M � N such that we may approximate �n � ��n
l � We can then approximate GB by a

�nite sum plus a logarithm term arising from the highest energy terms in the sum� That

sum looks like

�





�X
n�M��

cos
�
��
l nY

�
e�

��
l
n 
X

n
� �����	

where !X � X
�
mod l

�

�
� We can sum this using �see e�g������	

�X
k��

xk

k
� ln

�
�

�� x

�
� �����	

We de�ne

S�M�
p �X�Y�E	 �

cos
hp

E
�
l
� �X

�i

h
p
E sin

�p
E l

�

� �
�

W

NX
n��

cos
�
��
W nY

�
cos
h
kn
�
l
� �X

�i
kn sin

�
kn

l
�

�

� �

W

MX
n�N��

cos
�
��
W nY

�
cosh

h
�n
�
l
� �X

�i
�n sinh

�
�n

l
�

� � �����	

and write our approximate GB as

GB�X�Y $E	 � S�M�
p �X�Y�E	 �

�

�

ln

�
�� 
e�

��
W


X cos




W
Y � e�

��
W


X
�

�
�





MX
n��

cos
�
��
W nY

�
e�

��
W


X

n
�����	
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����� Explicit Expression for �GB�r�E�

With this re�summed version of GB we can write an explicitly �nite expression for

!GB�r$E	 � GB�r� r$E	 �Go�r� r$E	� �����	

though both GB�r� r$E	 and Go�r� r$E	 are �logarithmically	 in�nite�

As with the Dirichlet case� all we need to do is carefully manipulate the logarithm

in GB in the X�Y � � limit� Our answer is

!GB�r$E	 � S�M�
p ��� �$E	 � �




ln
kW




�

�





MX
n��

�

n
� Y �R�

o ��	 �
i

�
X �����	
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Disordered Systems

��� Disorder Averages

����� Averaging

When working with disordered systems we are rarely interested a particular real�

ization of the disorder but instead in average properties� The art in calculating quantities

in such systems is cleverly approximating these averages in ways which are appropriate for

speci�c questions� In this section we will consider only the average Green function of a dis�

ordered system� hGi �rather than� for instance� higher moments of G	� Good treatments of

these approximations and more powerful approximation schemes may be found in ���� ��� ���

Suppose� at �xed energy� we have N ZRIs with individual t�matrices �ti�E	 �

si jrii hrj j� Any property of the system depends� at least in principle� on all the variables

si� ri� We imagine that there are no correlations between di�erent scatterers �location or

strength	 and that each has the same distribution of locations and strengths� Thus we can

de�ne the ensemble average of the Green function operator G�E	�

hGi �
�
NY
i��

Z
dri dsi �r �ri	 �s�si	

�
G ����	

We will typically use uniformly distributed scatterers and �xed scattering strengths�

In this case �r �ri	 �
�
V where V is the volume of the system and �s�si	 � so� �si � so	 where

so is the �xed scatterer strength�

We can write G as Go �GoTGo and� since Go is independent of the disorder�

hGi � Go �Go hT iGo� ���
	

��
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Thus we must compute hT i� This is such a useful quantity� there is quite a bit of machinery

developed just for this computation�

����� Self�Energy

The self�energy� *� is a sort of average potential �though it is not hV i	 de�ned via

hGi � Go �Go* hGi � ����	

and thus

hGi�� � G��
o � *� ����	

This last equation explains why we call *�E	 the self�energy�

G��
o � * � �E � *��Ho� ����	

Within the �rst two approximations we discuss� the self�energy is just proportional to the

identity operator so it can be thought of as just shifting the energy�

We can also use ����	 to �nd * in terms of hT i�

* � hT i �� �Go hT i	�� � ����	

or for hT i in terms of *�

hT i � *���*Go	
�� � ����	

Thus knowledge of either hT i or * is equivalent�

Recall that G � Go �GoTGo � Go �GoV Go �GoV GoV Go � � � � means that the

amplitude for a particle to propagate from one point to another is the sum of the amplitude

for it to propagate from the initial point to the �nal point without interacting with the

potential and the amplitude for it to propagate from the initial point to the potential�

interact with the potential one or more times and then propagate to the �nal point� We

can illustrate this diagrammatically�

G � ��
�

��
� �

��
�

��
� � �

��
� �

��
� �

� � � � � ����	

where solid lines represent free propagation �Go	 and a dashed line ending in an ��� in�

dicates an interaction with the impurity potential �V 	� Each di�erent ��� represents an

interaction with the impurity potential at a di�erent impurity� When multiple lines connect
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to the same interaction vertex� the particle has interacted with the same impurity multiple

times�

An irreducible diagram is one which cannot be divided into two sub�diagrams just

by cutting a solid line �a free propagator	� The self�energy� *� is equivalent to a sum over

only irreducible diagrams �with the incoming and outgoing free propagators removed	�

* ��
�

��
�

��
�

��
� �

� � � � � ����	

which is enough to evaluate G since we can build all the diagrams from the irreducible ones

by adding free propagators�

hGi � Go �Go*Go �Go*Go*Go � � � � � Go ��� *Go	
�� �����	

There are a variety of standard techniques for evaluating the self�energy� The

simplest approximation used is known as the �Virtual Crystal Approximation� �VCA	�

This is equivalent to replacing the sum over irreducible diagrams by the �rst diagram in the

sum� i�e�� * � hV i� Since we dont use the potential itself� this approximation is actually

more complicated to apply then the more accurate �average t�matrix approximation �ATA	�

We note that� in a system where the impurity potential is known� hV i is just a real number

and so the VCA just shifts the energy by the average value of the potential�

The ATA is a more sophisticated approximation that replaces the sum ����	 by a

sum of terms that involve a single impurity�

* ��
�

��
�

��
�

��
�

� � � � � �����	

but this is� up to averaging� the same as the single scatterer t�matrix� ti� Thus the ATA is

equivalent to * � hPi tii� This approximation neglects diagrams like

�
� �

which involve scattering from two or more impurities� We note that scattering from two

or more impurities is included in G� just not in *� Of course while scattering from several

impurities is accounted for in G� interference between scattering from various impurities is
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neglected since diagrams which scatter from one impurity than other impurities and then

the �rst impurity again are neglected� That is�

�
� �

is included but

�
� �

is not� At low concentrations� such terms are quite small� However� as the concentration

increases� these diagrams contribute important corrections to G� One such correction comes

from coherent backscattering which well discuss in greater detail in section ����

We will use the ATA below to show that the classical limit of the quantum mean

free path is equal to the classical mean free path� For N uniformly distributed �xed strength

scatterers� the average is straightforward�(
NX
i��

�ti

)
�

�
NY
i��

�

V
Z
dri dsi ��si � so	

�X
i

si� �ri � r	 � ����
	

For each term in the sum� the r delta function will do one of the volume integrals and the

rest will simply integrate to �� canceling the factors of ��V out front� The s delta functions

will do all of the s integrals� leaving

* �
(

NX
i��

�ti

)
�

N

V so � nso� �����	

Thus the self energy is simply proportional to the scattering strength multiplied by the

concentration� We note that so is in general complex and this will make the poles of the

Green function complex� implying an exponential decay of amplitude as a wave propagates�

We will interpret this decay as the wave�mechanical mean free time�

��� Mean Free Path

����� Classical Mechanics

Consider a domain of volume V in d�dimensions with re�ective walls� V has units

of �length�d� Suppose we place N scattering centers in this domain at random �uniformly

distributed	� each with classical cross section 	� 	 has units of �length�d��� Now suppose
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we have a point particle that has just scattered o� of one of the scattering centers� It now

points in a random direction� What is the probability that it can travel a distance � without

scattering again#

If the particle travels a distance x without scattering� then there must be a tube

of volume x	 which is empty of scattering centers� The probability of that is given by the

product of the chances that each of the N scatterers �without the re�ective walls this would

be N � � but since we will take N large and we do have re�ective walls� well leave it as N	

is not in the volume x	� That chance is �� x�
V so

P �N�
� �x	 �

�
�� x	

V

�N
�����	

More precisely ��P
�N�
� �x	 is the probability that the free path�length is less than or equal

to x� We de�ne n � N�V � the concentration� So

P �N�
� �x	 �

�
�� x	n

N

�N
�����	

We take the N �� while n � const� limit which is valid for in�nite systems and

a good approximation when the mean free path is smaller than the system size� We have

P��x	 � lim
N��

P �N�
� �x	 � e�n�x� �����	

and thus the quasi�classical mean free path is

�qc � hxi �
Z �

	
x
�

�x
��� P��x		 dl �

Z �

	
P��x	 dl �

�

n	
� �����	

Quasi�classical �indicated by the subscript �qc�	 here means that the transport between

scattering events is classical but the cross�section of each scatterer is computed from quan�

tum mechanics�

����� Quantum Mechanics

The mean free path is not so simple to de�ne for a quantum mechanical system�

After all� a particle no longer has a trajectory or a well de�ned distribution of path lengths�

What then do we mean by the mean free path in a quantum mechanical system#

One possibility is simply to replace the classical cross�section in the expression �����	

with the quantum mechanical cross�section� 	 �well refer to this as the �quasi�classical�
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mean free path	� In what follows well show that this is equivalent to the low�density

weak�scattering approximation to the self�energy discussed above�

We begin by noting that the free Green function takes a particularly simple form

in the momentum representation�

Go�p�p
�$E	 �

��p� p�	
E �Ep

� �����	

From this and the low�density weak�scattering approximation to * we have

�
G�p�p�$E	

�
�

��p � p�	
E � *�Ep

� �����	

If we write * � '� i% we have

�
G�p�p�$E	

�
�

��p � p�	
E �'� i%�Ep

� ���
�	

Now we consider the Fourier transform of this Green function with respect to energy which

gives us the time�domain Green function in the momentum representation �we are ignoring

the energy dependence of * only for simplicity	�

�
G�p�p�$ t	

�
�

Z �

��
dE e�iEt

�
G�p�p�$E	

�
�

Z �

��
dE e�iEt

��p� p�	
E �'� i%�Ep

� �i��p � p�	e�i�Ep���te��t�

which implies an exponential attenuation of the wave if �% � Imf*g is negative�

For the ATA� we have * � nso which� for a two dimensional ZRI with scattering

length a� is n��iJo�
p
Ea�

Ho�
p
Ea�

and thus

�% � ��n J�o �
p
Ea	���Ho�

p
Ea	

���� ���
�	

which is manifestly negative�

We can associate the damping with a mean free time� � via % � ��
� � Since� at

�xed energy� the velocity �in units where !h��
m � � is v � 

p
E	 we have for the mean

free path� �

� � v� �

p
E

�n

���Ho�
p
Ea	

����
J�o �

p
Ea	

�
�

n	
� ���

	

reproducing the quasi�classical result�



Chapter 	� Disordered Systems ���

��� Properties of Randomly Placed ZRI
s as a Disordered

Potential

In this section we will be concerned with averages of T in the momentum rep�

resentation� As in ��
�
 we will assume the validity of the low�density weak�scattering

approximation to T �

T �
NX
i��

si jrii hrij � ���
�	

In momentum space� this can be written

�
k jT jk�� � T �k�k�	 �

NX
i��

sie
�i�k�k���ri � ���
�	

Using the average ����	� we have

�
T �k�k�	

� � N hsi f�k� k�	� ���
�	

where

f�q	 �
�

�

Z

e�i�q��rdr� ���
�	

The function f � has a two important properties� Firstly� f��	 � � which implies� as we saw

in ������ that hT i � N hsi� Also� when the bounding region� �� is all of space we have

f�q	 �
�

�
��q	 � �q� ���
�	

Together� these properties imply that the average ATA t�matrix cannot change the momen�

tum of a scattered particle except insofar as the system is �nite� A �nite system will give a

region of low momentum where momentum transfer can occur but for momenta larger than

��Lo� momentum transfer will still be suppressed�

We now consider the second moment of T or� more speci�cally�D��T �k�k�	��� � ���T �k�k�	����E � ���
�	

Since ��T �k�k�	��� � NX
i�j��

sis
�
je
�i�k�k���riei�k�k

���rj � ���
�	

we have D��T �k�k�	���E �
NX
i��

D
jsj�
E
�

NX
i��j

jhsij� ��f�k� k�	
���

� N
D
jsj�
E
�
�
N� �N

�
jhsij� ��f�k� k�	

��� � �����	
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Thus D��T �k�k�	��� � ���T �k�k�	����E � N
hD
jsj�
E
� jhsij� ��f�k� k�	

���i �����	

We note that if si � so �i we have

D��T �k�k�	��� � ���T �k�k�	����E � N jsoj�
h
�� ��f�k� k�	

���i � ����
	

In this case� D
jT �k�k	j� � jhT �k�k	ij�

E
� � �����	

At this point it is worth considering our geometry and computing f explicitly�

Well assume we are placing scatterers in a rectangle with length �x�direction	 a and width

�y�direction	 b� Then we have� up to an arbitrary phase�

f�q	 � sinc
qxx


a
sinc

qyy


b
� �����	

where

sincx �
sinx

x
� �����	

Thus �� jf�k� k�	j� is zero for k � k� and then grows to � for larger momentum transfer�

The zero momentum transfer �hole� in the second moment of T is an artifact of a potential

made up of a �xed number of �xed size scatterers� To make contact with the standard

condensed matter theory of disordered potentials� we should allow those �xed numbers to

vary� thus making a more nearly constant second moment of T � We can do this easily enough

by allowing the size of the scatterers to vary as well� Then � jsj� � �j � s � j� �� �� In fact

we should choose a distribution of scatterer sizes such that � jsj� � �j � s � j� �� jsj� ��

Of course� the scatterer strength� s� is not directly proportional to the scattering

length� For example� if the scattering length varies uniformly over a small range �a� It is

straightforward to show that� for small �a�

� jsj� � �j � s � j� � �k�a	�

�


���� ds

d�ka	

����� � �����	

��� Eigenstate Intensities and the Porter�Thomas Distribu�

tion

One interesting quantity in a bounded quantum system with discrete spectrum

�e�g�� a Dirichlet square with random scatterers inside	 is the distribution of wavefunction
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intensities� t� at �xed energy E�

P �t	 � '

(X
�

�
�
t� j��ro	j�

�
� �E �E�	

)
�����	

where ' is the mean level spacing and ro is a speci�c point in the system� Since P �t	 is a

probability distribution� we have
R�
	 P �t	 dt � � and since the integrated square wavefunc�

tion is normalized to �� we also have
R�
	 tP �t	 dt � ����

Though computing this quantity in general is quite hard� we can� as a baseline�

compute it in one special case� As a naive guess at the form of the wavefunction in a

disordered system� we conjecture that the wavefunction is a Gaussian random variable at

each point in the system� That is� we assume that the distribution of values of �� ���	 is

���	 � ae�bj�j
�

� �����	

where a and b are constants to be determined� We note that in a bounded system� we can

make all the wavefunctions real� We proceed to determine the constants a and b� First� we

use the fact that � is a probability distribution so
R�
�� ��x	 dx � � which gives

� � a

Z �

��
e�bx

�

dx � a

r



b
�����	

implying b � a�
� We also know that the normalization of � implies
R�
�� x���x	 dx � ���

which implies
�

�
� a

Z �

��
x�e�a

��x� dx �
�



a�
� �����	

implying a �
p
��

� So we have

���	 �

s
�




e�j�j

���� �����	

From this� we can compute P �t	 via

P �t	 �

Z �

��
�
�
t� x�

�
��x	 dx �

Z �

��
��x�pt	 � ��x �

p
t	


jxj ��x	 dx� ����
	

We use the delta functions to do the integral and have

P �t	 �
��
p
t	p
t
� �����	

After substituting our previous result for �� we have

P �t	 �

s
�



t
e�t��� �����	
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which is known as the �Porter�Thomas� distribution�

If time�reversal symmetry is broken� e�g�� by a magnetic �eld� the wavefunction

will� in general� be complex� In that case we can use the same argument where the real part

and imaginary part of � are each Gaussian random variables� In that case we get

P �t	 � e�t� �����	

This di�erence between time�reversal symmetric systems and their non�symmetric counter�

parts is a recurring motif in disordered quantum systems�

A derivation of the above results from Random Matrix Theory �using the as�

sumption that the Hamiltonian is a random matrix with the symmetries of the system	 is

available many places� for example ����� In this language� the Hamiltonian of time�reversal

invariant systems are part of the �Gaussian Orthogonal Ensemble� �GOE	 whereas Hamil�

tonians for systems without time�reversal symmetry are part of the �Gaussian Unitary

Ensemble� �GUE	� We will adopt this bit of terminology in what follows�

Of course� most systems do not behave exactly as the appropriate random matrix

ensemble would indicate� These di�erences manifest themselves in a variety of properties

of the system� In the numerical simulations which follow in chapters � and � we will see

these departures quite clearly�

For disordered systems� GOE behavior is expected when there are many weak

scattering events in every path which traverses the disordered region� guaranteeing di�usive

transport without signi�cant quantum e�ects from scattering phases� More precisely� to see

GOE behavior� we expect to need a mean free path which is much smaller than the system

size �� �� L	 but much larger than the wavelength �� �� �	� We will see this limit emerge

in wavefunction statistics in chapter ��

��� Weak Localization

In the previous section� we discussed one consequence of the assumption of a

random wavefunction� Of course� the wavefunction is not random� it shows the consequences

of the underlying classical dynamics� In the next few sections we explore some consequences

of the underlying dynamics for the quantum properties�

Weak localization is a generic name for enhanced probability of �nding a particle

in a given region due to short time classical return probability� In quantized classically
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chaotic �but not disordered	 systems� wavefunction scarring �
�� is the best known form

of weak localization� In disordered systems� the most important consequence of of weak

localization is the reduction of conductance due to coherent back�scattering�

It is not di�cult to estimate the coherent back�scattering correction to the con�

ductance� We begin by noting the conductance we expect for a wire with no coherent

backscattering� Speci�cally� when L �� � �� � we expect the DC conductivity of a

disordered wire to satisfy the Einstein relation

% � e��dD� �����	

where % is the conductivity� e is the charge of the electron� �d is the d�dimensional density

of states per unit volume and D is the classical di�usion constant�

The DC conductivity� % is proportional to P �r�� r�	� the probability that a particle

starting at point r� on one side of the system reaches r� on the other side� Quantum

mechanically� this quantity can be evaluated semiclassically by a sum over classical paths�

p�

P �r�� r�	 �

�����X
p

Ap

�����
�

� �����	

where Ap � jApj eiSp and Sp is the integral of the classical action over the path� The

quantum probability di�ers from the classical in the interference terms�

P �r�� r�	 � P �r�� r�	classical �
X
p��p�

ApA
�
p� � �����	

Typically� disorder averaging washes out the interference term� However� when

r� � r�� the terms arising from paths which are time�reversed partners will have strong

interference even after averaging since they will always have canceling phases� Since every

path has a time reversed partner� we have

hP �r� r	i � 

�
P �r� r	classical

�
� �����	

But this enhanced return probability implies a suppressed conductance since
R
P �r� r�	dr� �

� by conservation of probability� Thus ��
� must be smaller by a factor of � �P �r� r	classical

�
due to this interference e�ect�

But
�
P �r� r	classical

�
is something we can compute straightforwardly� If we de�ne

R�t	 to be the probability that a particle which left the point r at time t � � returns at
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time t� we have �
P �r� r	classical

�
�

Z tc

�
R�t	dt� �����	

The lower cuto�� � � v�� is there since our particle must scatter at least once to return and

that takes a time of order the mean free time� The upper cuto� is present since we have

only a �nite disordered region and so� after a time tc � L�
o�D the particle has di�used out

and will not return� For a square sample� Lo is ambiguous up to a factor of
p

� The upper

cuto� can also be provided by a phase coherence time ��� If particles lose phase coherence�

for instance by interaction with a �nite temperature heat bath� only paths which take less

time than �� will interfere� In this case the expression for the classical return probability is

slightly modi�ed� �
P �r� r	classical

�
�

Z �

�
e�t���R�t	dt� �����	

The return probability� R�t	dt� can be estimated for a di�usive system� Of all the

trajectories that scatter� only those that pass within a volume 	v dt of the origin contribute�

The probability that a scattered particle falls within that volume is just the ratio of it

to the total volume of di�using trajectories� �Dt	d��Vd where d is the e�ective number of

dimensions �the number of dimensions of the disordered sample �� �	 and Vd � 
d����d�
	+

is the volume of the unit sphere in d�dimensions �this is easily calculated using products of

Gaussian integrals� see e�g�� ��
� pp� ����
	 and D � v��d� So

R�t	dt �
	v dt

�Dt	d��Vd
� ����
	

With this expression for R�t	dt in hand� we can do the integral �����	 and get

�
P �r� r	classical

�
�

	v

Dd��Vd

�   �
   �



�p

tc �
p
�
�

d � ��

ln�tc��	 d � 
��
�� d

�

���
t��

d
� d � 
�

�����	

For future reference we state the speci�c results for one and two dimensions�

Rather than state the result of the estimation above� we give the correct leading order

results �computed by diagrammatic perturbation theory� see� e�g�� ��� �
�	� These results

have the same dependence on � and Lo but slightly di�erent prefactors than our estimate�

�!% � �e�

h

��
�

�
�

�p

Lo � �

�
d � �

�
� ln

p
�Lo
� d � 


�����	
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��� Strong Localization

Strong localization� characterized by the exponential decay of the wavefunction

around some localization site� has dramatic consequences for both transport and wavefunc�

tion statistics� Strong enough disorder can always exponentially localize the wavefunction�

Weak disorder can sometimes localize the wavefunction but this depends on the strength

of the disorder and the dimensionality of the system� Below� we sketch out an argument�

originally due to Thouless� which clari�es how strong localization occurs as well as its di�

mensional dependence�

The idea is simple� As a wavepacket di�uses we consider� at each instant of time�

a d�dimensional box of volume � � Crd � �Dt	
d
� which surrounds it� At each moment

we can project the wavepacket onto the eigenstates of the surrounding box� The average

energy level spacing in that box is

�E �
�

��d
� �Dt	�

d
�E�� d

� � �����	

However� the wavepacket has been di�using for a time t and so we can use its autocorrelation

function� A�t	� de�ned by

A�t	 � h���	 j��t	 i	 �
X
n

h���	 jni e�iEnt� �����	

to look at the spectrum of the wavepacket� If we can completely resolve the spectrum� no

more dynamics occurs except the phase evolution of the eigenstates of the box� Thus the

wavepacket has localized� After a time t� we can resolve levels with spacing 'E � h
t � We

de�ne the �Thouless Conductance� g via

g �
'E

�E
� hDd��E

d
�
��t

d
�
��� �����	

If g � � we can resolve the levels of the wavepacket and it localizes� Conversely� if g � ��

we cannot resolve the eigenstates making up the wavepacket and di�usion continues�

The �rst conclusion we can draw from this argument is the dimensional dependence

of the t � � limit of g� In one dimension� it is apparent that limt�� g � � and thus all

states in a weakly disordered one dimensional system localize� In two dimensions� this

argument is inconclusive and seems to depend on the strength of the disorder� In fact� it is

believed that all states in weakly disordered two dimensional systems localize as well but
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with exponentially large localization lengths� For d � 
� limt�� g �� and we expect the

states to be extended�

When measuring conductance� the di�erence between localized and extended states

in the disordered region is dramatic� If the state is exponentially localized in the disordered

region� it will not couple well to the leads and the conductance will be suppressed� We can

look for this e�ect by looking at the conductance of a disordered wire as a function of the

length of the disordered region� If the states are extended� we expect the conductance to

vary as ��L whereas if the states are localized we expect the conductance to vary as e�L��

where � is the localization length�

The e�ect of exponential localization on wavefuntion statistics is equally dramatic�

For instance� in two dimensions� since we know that

��r	 �

s




��
e�jr�roj��� �����	

we can compute

P �t	 �




�

Z
r dr�

�
t� �j��r	j�

�
�





�

Z
r dr�

�
t� 
�


��
e��r��

�
�


��


�

ln �
���t

t
� �����	

In �gure ��� we plot the Porter�Thomas distribution and the exponential localization dis�

tribution for a localization length � �
p
���� and � �

p
����� so we can see just how stark

this e�ect is�

��� Anomalous Wavefunctions in Two Dimensions

The description above does not explain much about how strong localization oc�

curs� either in the time�domain or as a function of disorder� This transition is particularly

interesting in two dimensions since even the existence of strongly localized states in weakly

disordered systems is subtle�

While it is not at all obvious that large �uctuations in wavefunction intensity in

extended states is related to strong localization� it seems an interesting place to look� While

this was perhaps the original reason these large �uctuations were studied� they have spawned

an independent set of questions� The simplest of those questions is the one answered by

P �t	� namely� how often do these large �uctuations occur#

Various �eld�theoretic techniques have been brought to bear on this problem ����

��� 
��� All predict the same qualitative behavior of P �t	� Namely� that for large values of
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t� P �t	 has a log�normal form�

P �t	 � e�C� ln
� t� �����	

Various workers have argued for di�erent forms for C� which depends on the energy E� the

mean free path� �� the system size� Lo and the symmetry class of the system �existence of

time�reversal symmetry	� The log�normal distribution looks strikingly di�erent from either

the Porter�Thomas distribution or the strong localization distribution� In �gure ��
 we plot

all of these distributions for an example choice of � for t � 
�� We only consider large

values of t because for small values of t� P �t	 will have a di�erent form� For small enough

values of t these calculations predict that P �t	 has the Porter�Thomas form� This allows

them to be trivially distinguished from the strong�localization form which is very di�erent

from Porter�Thomas for small t�

We will focus in particular on two di�erent calculations� The �rst� appearing

in ����� uses the direct optimal �uctuation method �DOFM	 and predicts

C
���
� �


k�

� ln�F�kLo	
�����	

where D� is an O��	 constant� Another calculation� appearing in ���� and using the super�

symmetric sigma model �SSSM	 predicts

C
���
� �

�
k�

� ln�F�Lo��	
����
	

where � � � for time�reversal invariant systems and � � 
 for systems without time�reversal

symmetry and D� is an O��	 constant�

In order to see the di�erences between C
�����
� � in �gure ��� we plot both of these

coe�cients versus both wavelength and mean free path for various values of D� and D��

��	 Conclusions

In this chapter we reviewed material on quenched disorder in open and closed

metallic systems� In the chapters that follow we will often compare to these results or try

to verify them with numerical calculations�
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Quenched Disorder in �D Wires

We consider an in�nite wire of width W with a disordered segment of length L as

in Fig� ���� This wire will be taken to have periodic boundary conditions in the transverse

�y	 direction�

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�������������������������

��������������������

����������������������

����������������������

����
����
����
����

����
����
����
����

����������������������������������������������������������������������������������������������������

L

Disordered RegionLeads

W

Figure ���� The wire used in open system scattering calculations�

To connect with the language of mesoscopic systems� we may think of the dis�

ordered region as a mesoscopic sample and the semi�in�nite ordered regions on each side

as perfectly conducting leads� For example� one can imagine realizing this system with an

AlGaAs �quantum dot�� �
���

We can measure many properties of this system� For instance� we have used renor�

malized scattering techniques to model a particular quantum dot �
��� Typical quantum

��
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dot experiments involve measuring the conductance of the quantum dot as a function of

various system parameters �e�g�� magnetic �eld� dot shape or temperature	� Thus we should

consider how to extract conductance from a Green function�

In this section we discuss numerically computed transport coe�cients� This allows

us to verify that our disorder potential has the properties that we expect classically� Since

we are interested in intensity statistics and how they depend on transport properties� it is

important to compute these properties in the same model we use to gather statistics� For

instance� as discussed in the previous chapter� the ATA breaks down when coherent back�

scattering contributes a signi�cant weak localization correction to the di�usion coe�cient�

In this regime it is useful to verify that the corrections to the transport are still small enough

to use an expansion in ���� When the disorder is strong enough� strong localization occurs

and a di�erent approximation is appropriate�

Of course� transport in disordered systems is interesting in its own right� Our

method allows a direct exploration of the theory of weak localization in a disordered two

dimensional systems�

	�� Transport in Disordered Systems


���� Di�usion from Conductance

Computing the conductance of a disordered wire is not much di�erent than com�

puting the conductance of the one scatterer system� We use �����	 to compute the channel�

to�channel Green function� Gab� from the multiple scattering t�matrix� �nd the transmission

matrix Tab from �����	 and compute the conductance� % � �e��h	� using the Fisher�Lee

relation �����	�

In chapter �� we assumed the �classical	 transport to and from the scatterer was

ballistic and derived an expression which related the intensity re�ection coe�cient �which

can be trivially related to the observed conductance	 to the scattering cross section of an

obstacle in the wire� When many scatterers are placed randomly in the wire� this assumption

is no longer valid� Most scattering events occur after other scattering events and thus the

probability of various incident angles is uniform rather than determined by the channels

of the wire� Also� there will typically be many scattering events� So� when we have many

randomly placed scatterers� we will assume that the transport is di�usive� This will give
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us a di�erent relationship between the re�ection coe�cient and the cross�section of each

obstacle�

It is instructive to compute the expected re�ection coe�cient as a function of the

concentration and cross�section under the di�usion assumption and compare that result�

RD� to RB � ��
�W computed under the ballistic assumption�

We begin from the relation between the intensity transmission coe�cient� TD� %

and the number of open channels� Nc�

TD �
�h�e�	%

Nc
� ����	

i�e�� the transmission coe�cient is just the unitless conductance per channel� From this we

see that % does not go to � for an empty wire as we might expect� Only a �nite amount of

�ux can be carried in a wire with a �nite number of open channels and this gives rise to a

so�called �contact resistance� ���� We thus split the unitless conductance into a disordered

region dependent part �%s	 and a contact part�

h

e�
% �

�
e��h

%s
�

�

Nc

���
� ���
	

where the contact part is chosen so that limT�� %s ���

At this point we invoke the assumption of di�usive transport� This allows us to

use the Einstein relation ��� to relate the conductivity of the sample L
W %s to the di�usion

constant via
L

W
%s � e��D� ����	

where � is the density of states per unit volume$ � � ����
	 in two dimensions� The L�W

in front of %s relates conductivity to conductance in two dimensions�

We now have

h

e�
% �

�
L

hW�D
�

�

Nc

���
�

hW�DNc

LNc � hW�D
� ����	

If we substitute this into ����	 we have

TD �
hW�D

LNc � hW�D
� ����	

As in the previous chapters� we choose units where !h � � and m � ��
� so !h���
m	 � ��

We also choose units where the electron charge� e � �� We now use D � v��d � k� ���� and

Nc � kW�
 and get

TD �
��
�

L� ��
�

� ����	
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and

RD � �� TD �
L

L� ��
�

� ����	

Finally� we use l � LW��N		 to get

RD �
�

� � �W
�N�

� ����	

For very few scatterers we usually have N	 �� 
W�
 and thus

RD � N

	

W

� ����	

Compare this to the ballistic result and we see that they are related by RB�RD � 
���� This

factor arises from the di�erent distributions of the incoming angles� In practice� there can

be a large crossover region between these two behaviors� when the non�uniform distribution

of the incoming angles can make a signi�cant di�erence in the observed conductance�

We note that ����	 can be rearranged to yield�

� �

L




�
�

RD
� �

�
� L







�
TD
RD

�
� �����	

which we will use as a way to compare numerical results with the assumption of quasi�

classical di�usion�


���� Numerical Results

As our �rst numerical calculation we look at the mean free path as a function of

scatterer concentration at �xed energy� In �gure ��
 we plot � vs� n for a periodic wire of

width � with a length � disordered region� There are about �� wavelengths across the wire

is and thus the wire has �� open channels� We use scatterers with maximum s�wave cross

section of �
��� We consider concentrations from �� to ��� scatterers per unit area� At each

concentration we compute the conductance of 
� realizations of the scatterers and average

them� This range of concentrations corresponds to a range of quasi�classical mean free path

from ��� to ����� We plot both the quasi�classical mean free path and the numerical result

computed via �����	�

From the �gure� we see that the numerical result is noticeably smaller than the

quasi�classical result� though it di�ers by at most 
�) over the range of concentrations

studied� This di�erence is partially explained by two things� At low concentrations� the

numerically observed mean free path is smaller than the quasi�classical because the transport
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� Numerically observed mean free path and the classical expectation�
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correction and the classical expectation�



Chapter 
� Quenched Disorder in �D Wires ���

is not completely di�usive� As we saw at the beginning of this chapter� ballistic scattering

leads to a larger re�ection coe�cient than di�usive ones� This leads to an apparently smaller

mean free path� More interestingly� there is coherent back�scattering at all concentrations

�see section ���	� though its e�ect is larger at higher concentration since the change in

conductance due to weak localization is proportional to ���� We correct the conductance�

via �����	� to �rst order in ��� and then plot the corrected mean free path and the classical

expectation in �gure ���� The agreement is clearly better� though there is clearly some

other source of reduced conductance� At the lowest concentrations there is still a ballistic

correction as noted above but this cannot account for the lower than expected conductance

at thigher concentrations where the motion is clearly di�usive�

As ��� increases� the di�erence between the classical and quantum behavior does

as well� For large enough ��� this will lead to localization� In order to verify that the

transport is still not localized� we compute the transmission coe�cient vs� the length of

the disordered region for �xed concentration� If the transport is di�usive� T will satisfy

����	 which predicts T � ��L for large L� If instead the wavefunctions in the disordered

region are exponentially localized� T will fall exponentially with distance� i�e�� T � e�L�� �

In �gure ��� we plot T versus L for two di�erent concentrations and energies� In both plots�

� realizations of the disorder potential are averaged at each point� In �gure ���a there are

�� wavelengths across the width of the wire� as in the previous plot� and the concentration

is 
�� scatterers per unit area� T is clearly more consistent with the di�usive expectation

than the strong localization prediction�

We compare this to �gure ���b where the wavelength and mean free path are

comparable and the wire is only a few wavelengths wide� What we see is probably quasi�

one dimensional strong localization� Consequently� T does not satisfy ����	 but rather has

an exponential form� We note that the data in �gure ���b is rather erratic but still much

more strongly consistent with strong localization than di�usion� Numerical observation of

exponential localization in a true two dimensional system would be very di�cult since the

two dimensional localization length is exponentially long in the mean free path�


���� Numerical Considerations

Numerical computation using the techniques outlined in chapters � and � is quite

simple� For each set of parameters computation proceeds as follows�
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�� Compute the random locations of N scatterers�


� Compute the renormalized t�matrix of each scatterer�

�� Compute the scatterer�scatterer Green functions for all pairs of scatterers�

�� Construct the inverse multiple scattering matrix� T���

�� Invert T��� giving T � using the Singular Value Decomposition�

�� Use formula �����	 to compute the channel�to�channel Green function�

�� Use �����	 and the Fisher�Lee formula to �nd the conductance %�

�� Repeat for as many realizations as required to get h%i�

The bottleneck in this computation can be either the O�N�	 SVD or the O�N�N�
c 	

application of �����	 depending the concentration and the energy� The computations ap�

pearing above were done in one to four hours on a fast desktop workstation �DEC Alpha

�������	�

There are faster matrix inversion techniques than the SVD but few are as stable

when operating on near�singular matrices� Though that is crucial for the �nite system

eigenstate calculations of the next chapter� it is non�essential here� If one were to switch

to an LU decomposition or a QR decomposition �see appendix C	 we could speed up the

inversion stage by a factor of four or two respectively� For most of the calculations we

performed� the computation of the channel�to�channel Green function computation was

more time consuming and so such a switch was never warranted�
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Quenched Disorder in �D

Rectangles

While analytic approaches to disordered quantum systems abound� certain types

of experimental or numerical data is di�cult to come by� There is a particular dearth of

wavefunction intensity statistics for 
D disordered systems�

Experimentally� wavefunctions are di�cult quantities to measure� The application

of atomic force microscopy to quantum dot systems is a promising technique ����� An

atomic force microscope �AFM	 can be capacitively coupled to a quantum dot in such a

way that the at the point in the two�dimensional electron gas below the tip� electrons are

e�ectively excluded� The size of the excluded region depends on a variety of factors but is

typically of the order of one wavelength square� One scenario for measuring the wavefunction

involves moving the tip around and measuring the shift in conductance of the dot due to

the location of the tip� For a small enough excluded region� this conductance shift should

be proportional to the square of the wavefunction� Even for a wavelength sized excluded

region� this technique should be capable of resolving most of the nodal structure of the

wavefunction from which the wavefunction could be reconstructed� Preliminary numerical

calculations suggest that this technique could work and at least one experimental group is

working on this scheme or a near variant�

One successful experimental approach has been using microwave cavities as an

analog computer to solve the Helmholtz equation in disordered and chaotic geometries �
���

This technique has led to some of the only data available on disordered 
D systems� How�

�
�
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ever� experimental limitations make it di�cult to consider enough ensembles to do proper

averaging� Instead� the statistics are gathered from states at several di�erent energies�

Since the mean free path and wavelength both depend on the energy� the mixing of di�er�

ent distributions makes analysis of the data di�cult� Still� the data does suggest that large

�uctuations in wavefunction intensities are possible in two dimensional weakly disordered

systems�

Numerical methods� which would seem a natural way to do rapid ensemble av�

eraging� have not been applied or� at least� not been successful at reaching the necessary

parameter regimes and speed requirements to consider the tails of the intensity distribution�

There are some results for the tight�binding Anderson model ����� However� the nature of

the computations required for the Anderson model makes it similarly di�cult to gather

su�cient intensity statistics to �t the tails of the distribution� It is the purpose of the

section to illustrate how the techniques discussed in this thesis can provide the data which

is so sorely needed to move the theory �see section ���	 forward�

We begin with an abstract treatment of the extraction of discrete eigen�energies

and corresponding eigenstates from t�matrices� This is a topic worth considering carefully

since it is the basis for all the calculations which follow� The t�matrix has a pole at the

eigenenergies so the inverse of the t�matrix is nearly singular�

Once the preliminaries are out of the way� we discuss the di�culties of studying

intensity statistics in the parameter regime and with the methods of �
��� In particular�

we consider the impact of Dirichlet boundaries on systems of this size� We consider the

possibility that dynamics in the sides and corners of a Dirichlet rectangle can have a strong

e�ect on the intensity statistics and perhaps mask the e�ects predicted by the Field�Theory�

We also discuss eigenstate intensity statistics for a periodic rectangle �a torus	

with various choices of disorder potential �i�e� various � and �	� Well brie�y discuss the

�tting procedure used to show that the distributions are well described by a log�normal

form and extract coe�cients� Well then compare these coe�cients to the predictions of

�eld theory� The computation of intensity statistics in the di�usive weak disorder regime is

the most di�cult numerical work in this thesis� It also produces results which are at odds

with existing theory� Thus we spend some time exploring the stability of the numerics and

possible explanations for the di�erences between the results and existing theory�

Finally� as in the last chapter� well discuss the numerical techniques more speci��

cally and outline the algorithm� Here� some less than obvious ideas are necessary to gather



Chapter �� Quenched Disorder in �D Rectangles �
�

statistics at the highest possible speed�

��� Extracting eigenstates from t�matrices

We want to apply the results of Chapter � to �nite systems� i� e�� systems with

discrete spectrum� In some sense this is very similar to section ����� but in this case we

have many scatterers instead of one$ what was simply root �nding becomes linear algebra�

Suppose �t���z	 has a non�trivial null�space when z � En� De�ne �PN and �PR as

projectors onto the null�space and range of �t���En	 respectively� Since we know that En is

a pole of �T �z	� we know that� for � � j�j �� � and �v � S we have

�T���En � �	 jvi � �T���En	 �PR jvi� �

C
�PN jvi ����	

We de�ne a pseudo�inverse �on the range of T��	 �BR� via

�t���En	 �BR
�PR jvi � �PR jvi � ���
	

which exists since �t���En	 is explicitly non�null on �PR jvi� We can now invert �t���z	 in the

neighborhood of z � En�

�t�En � �	 jvi � �BR
�PR jvi� C

�
�PN jvi � ����	

Thus� the residue of �t�z	 at z � En projects any vector onto the null�space of �t���En	�

Recall that the full wavefunction is written

j�i j�i� �GB�t j�i � � lim
��	

�GB
C

�
�PN j�i ����	

Since the t�matrix term has a pole� the incident wave term is irrelevant and the wavefunction

is �up to a constant	 �GB
�PN j�i�

When the state at En is non�degenerate �which is generic in disordered systems	�

there exists a vector j�i the projector may be written �PN � j�i h�j and thus

j�ni � N �GB�En	 j�i � ����	

where N is a normalization constant� In position representation�

�n�r	 � N
Z
S
GB�r� r

�$En	��r
�	 dr�� ����	
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If the state is m�fold degenerate� �PN �
Pm

j�� j�ji h�j j and we have the solutions
�����j�

n

E
�

Nj
�GB j�ji

Thus� the task of �nding eigenenergies of a multiple scattering system is equivalent

to �nding En such that �t���En	 has a non�trivial null space� Finding the corresponding

eigenstates is done by �nding a basis for that null space�

Suppose that our t�matrix is generated by the multiple scattering of N zero range

scatterers �see ���	� In this case� the procedure outlined above can be done numerically

using the Singular Value Decomposition �SVD	� We have

�t�� �
X
ij

jrii �A	ij hrj j ����	

We can decompose A via A � U�VT where U and V are orthogonal and � is diagonal�

The elements of � are called the �singular values� of A� We can detect rank de�ciency

�the existence of a null�space	 in A by looking for zero singular values� Far more detail on

numerical detection of rank�de�ciency is available in �����

Once zero singular values are found� the vector� � �where jalphai �Pi � �i jrii	�
needed to apply ����	� sits in the corresponding column of V� It is important to note

that we have extracted the eigenstate without ever actually inverting A which would incur

tremendous numerical error� Thus our wavefunction is written

��r	 � N
X
i

GB�r� ri$En	�i� ����	

We normalize the wavefunction by sampling at many points and determiningN numerically�

In practice� we may use this procedure in a variety of ways� Perhaps the simplest

is looking at parts of the spectra of speci�c con�gurations of scatterers� We de�ne SN �E	

as the smallest singular value of �t���E	 �standard numerical techniques for computing the

SVD give the smallest singular value as ��	NN 	� Computing SN �E	 is O�N�	� Then we

use standard numerical techniques �e�g�� Brents method� see ����	 to minimize S�
N �E	� We

then check that minimum found is actually zero �within our numerical tolerance of zero�

to be precise	� These standard numerical techniques are more e�cient when the minima

are quadratic which is why we square the smallest singular value� We have to be careful to

consider SN �E	 at many energies per average level spacing so we catch all the levels in the

spectrum� Since we know the average level spacing �see 
�
�	 is

�

V���E	
�

!h�


m
� �
V � ����	
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we know approximately how densely to search in energy� The generic level repulsion in

disordered systems ���� helps here� since the possibility of nearby levels is smaller�

��� Intensity Statistics in Small Disordered Dirichlet Bounded

Rectangles

Our �rst attempt to gather intensity statistics will be performed on systems with

relatively few scatterers ��
	 and thus large mean free paths� This regime is chosen for

comparison with the experimental results of �
���

When gathering intensity statistics we need to �nd eigenstates near a particular

energy� This is most simply done by choosing an energy and then hunting for a zero

singular value in some window about that energy� For windows smaller than the average

level spacing� we will frequently get no eigenstate at all� This method works but is very

ine�cient since we frequently perform the time�consuming SVD on matrices which will not

yield a state� However� for this number of scatterers� this ine�ciency is tolerable� In the

next section we will consider improvements on this technique�

In �gure ��� we plot j�j� on a gray�scale �black for high intensity and white for

low	 in a �
 scatterer system along with the scatterers plotted as black dots for a set of

typical low energy wavefunctions in order to give the reader a picture of the sort of scatterer

density and wavelength of the system we are considering�

In the experiments of �
��� higher energies than those depicted in �gure ��� are

used� Some sample wavefunctions in the relevant energy range are shown in �gure ��
� In

the original work� this energy range was chosen because � must be signi�cantly smaller than

the system size for various �eld�theoretic techniques to be applicable� Unfortunately� there

are not enough scatterers in the system to make the motion di�usive� This is clear from the

large mean free paths in the states in ��
� where ��Lo varies from ��� to ��
� This problem

was overlooked in the original work due to a confusion about the relevant mean free path�

So� rather than � � � � Lo� we have � � � � Lo� This means that we expect

the boundaries to play a large role in the dynamics of the system� In �gure ��� we plot the

intensity statistics for a � � � square with Dirichlet boundaries� � � ��� and � � ���� In

these and subsequent intensity statistics plots� we �nd P �t	 by computing wavefunctions�

accumulating a histogram of values of j�j� and then dividing the number of counts in each
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Figure ���� Typical low energy wavefunctions �j�j� is plotted	 for �
 scatterers in a � � �
Dirichlet bounded square� Black is high intensity� white is low� The scatterers are shown as
black dots�For the top left wavefunction � � ��
� � � ��� whereas � � �
�� � � ��� for the
bottom wavefunction� � increases from left to right and top to bottom whereas � decreases
in the same order�
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Figure ��
� Typical medium energy wavefunctions �j�j� is plotted	 for �
 scatterers in a ���
Dirichlet bounded square� Black is high intensity� white is low� The scatterers are shown as
black dots� For the top left wavefunction � � �
�� � � ��� whereas � � ���� � � ���� for the
bottom wavefunction� � increases from left to right and top to bottom whereas � decreases
in the same order�
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Figure ���� Intensity statistics gathered in various parts of a Dirichlet bounded square�
Clearly� larger �uctuations are more likely in at the sides and corners than in the center�
The �statistical	 error bars are di�erent sizes because four times as much data was gathered
in the sides and corners than in the center�
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bin by the total number of counts and the width of each bin�

As is clear from the �gure� anomalous peaks are more likely near the sides and

most likely near the corners� This large boundary e�ect makes it unlikely that existing

theory can be �t to data which is� e�ectively� an average over all regions of the rectangle�

��� Intensity Statistics in Disordered Periodic Rectangle

In order to minimize the e�ect of boundary conditions� we change to periodic

boundary conditions and decrease ��Lo while holding ��Lo constant� While periodic bound�

ary conditions wont eliminate �nite size system e�ects they do remove the enhanced local�

ization near the Dirichlet boundary�

Decreasing ��Lo at constant ��Lo comes at a cost� Since the number of scatterers

required to hold the concentration constant scales as the volume of the system� a larger

system means more scatterers and a larger multiple scattering matrix� The method used in

the previous section will not work quickly enough to be of practical use here �at least not

on a workstation	� This leads us to some very speci�c numerical considerations which we

address below�

����� Numerical Considerations

The most serious ine�ciency in computing wavefunctions are all the wasted SVDs

which do not result in a state� However� we can overcome this bottleneck by looking more

closely at the small singular values� We will see that small singular values correspond to

states of a system with slightly di�erent size scatterers�

First� we recall that the renormalized scattering strength of a ZRI in a periodic

rectangle is independent of position and thus the scattering strengths of all the scatterers are

the same� just as they were in free�space� This means that the denominator of the multiple

scattering t�matrix� � � S�E	GB � is symmetric since S�E	� the real scalar renormalized

scattering strength� is the same for all scatterers�

If there is an eigenstate at energy E� there exists some vector� w� such that

�
�� S�E	GB

�
w � �� �����	

If we have no zero eigenvalue but instead a small one� � � �� then there exists
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vector w such that

��� S�E	GB	w � �w� �����	

which implies

GBw �
�� �

S�E	
w� ����
	

and so �
�� S�E	

�� �
GB

�
w � �� �����	

Thus there exists a nearby  S�E	 � S�E	��� � �	 such that we do have an eigenstate at E�

Since S�E	 parameterizes the renormalized scatterer strength�  S�E	 corresponds to a nearby

scatterer strength� Thus� in order to include states corresponding to small eigenvalues � we

must choose an initial scattering strength such that S�E	�����	 is still a possible scattering

strength�

As discussed in section C��� for a symmetric matrix� the singular values are� up to

a sign� the eigenvalues� Thus we may use the columns of V corresponding to small singular

values to compute eigenstates�

This provides a huge gain in e�ciency� We pick a particular energy� choose a

realization of the potential� �nd the SVD of the t�matrix and then compute a state from

every vector corresponding to a small singular value� Small here means small enough that

the resultant scatterer strength is in some speci�ed range� We frequently get more than one

state per realization�

With this technique in place� there is little we can do to further optimize each use

of the SVD� The other bottleneck in state production is the computation of the background

Green function� Each Green function requires performing a large sum of trigonometric

and hyperbolic trigonometric functions� Thus for moderate size systems �e�g�� ��� scatter�

ers	� �lling the inverse multiple scattering matrix takes far longer than inverting it� Green

function computation time is also a bottleneck when computing the wavefunction from the

multiple scattering t�matrix�

We could try to improve the convergence of the sums and thus require fewer terms

per Green function� That would bring a marginal improvement in performance� Of course�

when function computation time is a bottleneck a frequent approach is to tabulate function

values and then use lookups into the table to get function values later� A naive application

of this is of no use here since our scatterers move in every realization and thus tabulated

Green functions for one realization are useless for the next� There is a simple way to get
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the advantages of tabulated functions and changing realizations� Instead of tabulating the

Green functions for one realization of scatterers� we tabulate them for a larger number of

scatterers and then choose realizations from the large number of precomputed locations�

For example� if we need ��� scatterers per realization� we pre�compute the Green functions

for ���� scatterers and choose ��� of them at a time for each realization�

In order to check that this doesnt lead to any signi�cant probability of getting

physically similar ensembles� we sketch here an argument from ���� Consider a random

potential of size L with mean free path �� A particle di�using through this system typically

undergoes L���� collisions� The probability that a particular scatterer is involved in one

of these collisions is roughly this number divided by the total number of scatterers� nLd�

where n is the concentration and d is the dimension of the system� Thus a shift of one

scatterer can� e�g�� shift an energy level by about a level spacing when

�E

'
�

�
L

�

�� �

nLd
�

�

n��Ld��
� �����	

is of order one� That is� we must move n��Ld�� scatterers� In particular� in two dimensions

we must move no � n�� scatterers to completely change a level�

There are

�
� M

N

�
A ways to choose N scatterers from M possible locations and

�
� M

N

�
A�

ways to independently choose two sets� Of those pairs of sets

�
� M

N � no

�
A
�
� M �N � no

no

�
A�

� �����	

have N�no or more scatterers in common� The �rst factor is the number of ways to choose

the common N � no scatterers and the second is the number of ways to choose the rest

independently� Thus the probability� p�� that two independently chosen sets of scatterers

have N � no or more in common is

p� �

�
� M

N � no

�
A
�
� M �N � no

no

�
A�

�
� M

N

�
A� � �����	
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We will be looking at thousands or millions of realizations� The probability that no pair

among R realizations shares as many as no scatterers is

pR � �� ��� p�	
R�R���� �����	

For large M and N � this probability is extremely small� For example� the fewest scatterers

we use will be ��� which well choose from ���� possible locations� Our simulations are in

a � � � square and the mean free path is ��� implying that no � �� The chance that all

but � scatterers are common between any of one million realizations ��� scatterers chosen

from a pool of ���� is less than ������� Thus we need not really concern ourselves with the

possibility of oversampling a particular con�guration of the disorder potential�

The combination of getting one or more states from nearly very realization and

pre�computing the Green functions� leads to an improvement of more than three orders of

magnitude over the method used for the smaller systems of ��
� This allows us to consider

systems with more scatterers and thus get closer to the limit �� �� Lo�

With this improvement we can proceed to look at the distribution of scatterer

intensities for various values of � and � in a Lo � � square�

����� Observed Intensity Statistics

In �gure ��� we plot the numerically observed P �t	 for various � with � � ���� in

a �� � square �Lo � �	� It is clear that large values of j�j� are more likely at larger ����

In order to compare these distributions with theoretical calculations we must �t

them to various functional forms� Since we are counting independent events� the expected

distribution of events in each bin is Poisson� This needs to be taken into account when

�tting the numerically computed P �t	 to various analytic forms�

While there may be many forms of P �t	 which the data could �t� among the

various ones motivated by existing theory only some product of log�normal and power�law

�t reasonably well� That is� we will �t P �t	 to

e�Co�C� ln t�C� ln
� t� �����	

where Co is just a normalization constant� C� is the power in the power�law and C� is the

log�normal coe�cient� We note that the expectation is that log�normal behavior will occur

in the tail of the distribution� In order to account for this we �t each numerically computed
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Figure ���� Intensity statistics gathered in various parts of a Periodic square �torus	� Larger
�uctuations are more likely for larger ���� The erratic nature of the smallest wavelength
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Figure ���� Illustrations of the �tting procedure� We look at the reduced �� as a function
of the starting value of t in the �t �top� notice the log�scale on the y�axis	 then choose the
C� with smallest con�dence interval �bottom	 and stable reduced ��� In this case we would
choose the C� from the �t starting at t � ���
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P �t	 beginning at various values of t� We then look at the reduced ��� !�� � ��� �D	�Nd

�where there are D �tting parameters and Nd data points	 for each �t� A plot of a typical

sequence of !�� values is plotted in �gure ��� �top	� Once !�� settles down to a near constant

value� we choose the �t with the smallest con�dence interval for the �tted C�� A typical

sequence of C�s and con�dence intervals for one �t is plotted in �gure ��� �bottom	� The

behavior of !�� is consistent with the assumption that P �t	 does not have the form �����	

until we reach the tail of the distribution�

As discussed in section ��� there are two �eld theoretic computations which give

two di�erent forms for C��

C
���
� �


k�

� ln�F�kLo	
� �����	

and

C
���
� �

�
k�

� ln�F�Lo��	
� ���
�	

We can attempt to �t our observed C�s to these two forms� We �nd that neither

form works very well at all� In �gure ��� we compare these �ts to the observed values of C�

as we vary k at �xed � � ���� �top	 and vary � at �xed k � 
�� �� � ����	�

Thus� while the numerically computed intensity statistics are well �tted by a log�

normal distribution as predicted by theory� the coe�cients of the log�normal do not seem

to be explained by existing theory�

����� Anomalous Wavefunctions

It is interesting to look at the anomalous wavefunctions themselves� In �gures ���

we plot two typical wavefunctions and in ��� we plot two anomalously peaked wavefunctions�

For each we show a contour plot of � and a density plot of j�j�� The scale is di�erent on each

wavefunction so that each is shown with maximum visual dynamic range� This necessarily

obscures the fact that the typical wavefunction have a maximum j��j of 
� as opposed to

�� or �� for the anomalous states�

It is di�cult to determine much information from the entire wavefunction� In

order to simplify things a bit we look at the average scaled intensity at various distances

from the peak� ro� via

R�r	 �
�

j��ro	j�
�

r

Z ��

	
j� �ro � r��x cos  � �y sin �	 j� d� ���
�	
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Figure ���� Typical wavefunctions �j�j� is plotted	 for ��� scatterers in a � � � periodic
square �torus	 with � � ����� � � ����� The density of j�j� is shown�
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Figure ���� Anomalous wavefunctions �j�j� is plotted	 for ��� scatterers in a �� � periodic
square �torus	 with � � ����� � � ����� The density of j�j� is shown� We note that the
scale here is di�erent from the typical states plotted previously�
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In �gure ��� we plot R�r	 for two typical peaks �one from each wavefunction in �gure ���	

and the two anomalous peaks from the wavefunctions in �gure ���� Here we see that each set

of peaks have a very similar behavior in their average decay and oscillation� The anomalous

peaks have a more quickly decaying envelope as they must to reach the same Gaussian

random background value� This is predicted in ����� although we have not yet con�rmed

the quantitative prediction of those authors� Again we note

����� Numerical Stability

Throughout this work we have checked the accuracy and stability of our numerics

in several ways� In chapter � we checked that the numerical procedure we use gives the

correct classical limit cross�section for one scatterer� In chapter � we checked that for an

appropriate choice of parameters� many scatterers in a wire give the classically expected

mean free path�

In chapter �� we checked that the analytic structure of renormalized t�matrices

correctly predicts ground state energies in Dirichlet bounded squares� However� we do not

have a direct way to check higher energy eigenenergies or eigenstates� Thus we do the

next best thing and check the stability of the numerical procedure which produces them�

That is� we check that small perturbations of the input to the method �scatterer locations�

scatterer strengths� Green functions� etc�	 do not result in large changes to the computed

wavefunction�

As a simple perturbation we will consider random changes in scatterer location�

We consider one realization of the scattering potential� compute the wavefunction� �� and

then proceed to move the scatterers each by some small amount in a random direction� We

then compute the new wavefunction�  �� and compare the two wavefunctions� We repeat this

for ever larger perturbations of the scatterers until we have completely de�correlated the

wavefunctions� We consider two measures for comparison� We de�ne ���r	 � ��r	 �  ��r	

and we consider both q
V hj���r	j�i� ���

	

where we average over r and s
maxf���	�g
maxfj�j�g � ���
�	

The former is a standard measure of the di�erence of functions and the latter we expect to

be more sensitive to changes in anomalously large peaks�
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In order to see if a small perturbation in scatterer locations produces a small

change in the wavefunction� we need an appropriate scale for the scatterer perturbation� If

Random Matrix Theory applies� we know that a single state can be shifted by one level �and

thus completely de�correlated	 by moving one scatterer with cross�section approximately the

wavelength by one wavelength� From that argument and that the fact that the motion of

each scatterer is uncorrelated with the motion of the others� we can see that the appropriate

parameter is approximately

� �
p
N
�x

�
� ���
�	

where �x is average distance moved by a single scatterer� That is� if the error in the

wavefunction is comparable to � we can assume it comes from physical changes in the

wavefunction not numerical error�

In �gure ���� we plot our two measures of wavefunction deviation against � �on a

log�log scale	 for several � between ��� � ���� and � for a state with an anomalously large

peak� Since our deviations are no larger then expected from Random Matrix Theory� we

can assume that the numerical stability is su�ciently high for our purposes�

Though not exactly a source of numerical error� we might worry that including

states that result from small but non�zero singular values has an in�uence on the statistics�

If this were the case� we would need to carefully choose our singular value cuto� in order to

match the �eld theory� However� the in�uence on the statistics is minimal as summarized

in table ����

Maximum Singular Value �� ���

C� �
��� 	 ��� �
�
	 ��
C� ����� 	 ���� ���� 	 ���

Table ���� Comparison of log�normal tails of P �t	 for di�erent maximum allowed singular
value�

����	 Conclusions

In contrast to the well understood phenomena observed in disordered wires� we

have observed some rather more surprising things in disordered squares� While the various

theoretical computations of the expected intensity distribution appear to correctly predict

the shape of the tail of the distribution� none of them seem to correctly predict the depen�

dence of that shape on wavelength or mean free path�
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We have considered a variety of explanations for the discrepancies between the

�eld theory and our numerical observations� There is one way in which our potential di�ers

drastically from the potential which the �eld theory assumes� We have a �nite number

of discrete scatterers whereas the �eld theory takes the concentration to in�nity while

taking the scatterer strength to zero while holding the mean free path constant� Thus it

seems possible that there are processes which can cause large �uctuations in j�j� which

depend on there being �nite size scatterers� In order to explore this possibility we consider

the dependence of P �t	 on the scatterer strength at constant wavelength and mean free

path� Speci�cally� at two di�erent wavelengths �� � ��� and � � ���	 and �xed � � ���

we double the concentration and halve the cross�section of the scatterers� The results are

summarized in table ��
� While changes in concentration and scatterer strength do in�uence

the coe�cients of the distribution� they do not do so enough to explain the discrepancy with

the �eld theory�

Strong Scatterers Weak Scatterers

� � ����
C� �
���	 ��� �����	 ���
C� ����� 	 ���� ��
� 	 ���

� � ����
C� ����	 �� ����	 ���
C� ���� 	 ��
 ���� 	 ����

Table ��
� Comparison of log�normal tails of P �t	 for strong and weak scatterers at �xed �
and ��

��� Algorithms

We have used several di�erent algorithms in di�erent parts of this chapter� We

have gathered spectral information about particular realizations of scatterers� gathered

statistics in small systems where we only used realizations with a state in a particular

energy window� gathered statistics from nearly every realization by allowing the scatterer

size to change and computed wavefunctions for particular realizations and energies� Below�

we sketch the algorithms used to perform these various tasks�

We will frequently use the smallest singular value of a particular realization at a

particular energy which we denote S
�i�
N �E	 where i labels the realization� When only one

realization is involved� the i will be suppressed� To compute S
�i�
N �E	 we do the following�
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�� Compute the renormalized t�matrix of each scatterer�


� Compute the scatterer�scatterer Green functions for all pairs of scatterers�

�� Construct the inverse multiple scattering matrix� T���

�� Find the singular value decomposition of T�� and assign S
�i�
N �E	 the smallest singular

value�

In order to �nd spectra from Ei to Ef for a particular realization of scatterers

�� Load the scatterer locations and sizes�


� choose a �E less than the average level spacing�

�� Set E � Ei

�a	 If E � Ef �nd SN �E	� SN �E � �E	 and SN �E � 
�E	� otherwise end�

�b	 If the smallest singular value at E � �E is not smaller than for E and E � 
�E�

increase E by �E and repeat from �a	�

�c	 Otherwise� apply a minimization algorithm to SN �E	 in the region near E� �E�

Typically� minimization algorithms will begin from a triplet as we have calculated

above�

�d	 If the minimum is not near zero� increment E and repeat from �a	�

�e	 If the minimum coincides with an energy where the renormalized t�matrices are

extremely small� it is probably a spurious zero brought on by a state of the empty

background� Increment E and repeat from �a	�

�f	 The energy Eo at which the minimum was found is an eigenenergy� Save it�

increment E by �E and repeat from �a	�

The bottleneck in this computation is the �lling of the inverse multiple scattering

matrix and computation of the O�N�	 SVD� Performance can be improved by a clever

choice of �E but too large a �E can lead to states being missed altogether� The optimal �E

can only be chosen by experience or by understanding the width of the minima in Sm�E	�

The origin of the width of these minima is not clear�

The simpler method for computing intensity statistics by looking for states in an

energy window of size 
�E about an energy E goes as follows�
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�� Choose a realization of scatterer locations�


� Use the method above to check if there is an eigenstate in the desired energy window

about E� If not� choose a new realization and repeat�

�� If there is an eigenstate� use the singular vector corresponding to the small singular

value to compute the eigenstate� Make a histogram of the values of j�j� sampled

on a grid in position space with spacing approximately one half�wavelength in each

direction�

�� Combine this histogram with previously collected data and repeat with a new real�

ization�

The bottlenecks in this computation are the same as the previous computation�

In this case� a clever choice of window size can improve performance�

The more complex method for computing intensity statistics by looking only at

energy E is a bit di�erent�

�� Randomly choose a number of locations �approximately twice the number of scatter�

ers	�


� Compute and store all renormalized t�matrices and the Green functions from each

scatterer to each other scatterer�

�� Choose a grid on which to compute the wavefunction�

�� Compute and store the Green function from each scatterer to each location on the

wavefunction grid�

�� Choose a subset of the precomputed locations� construct the inverse multiple scatter�

ing matrix� T�� and �nd the SVD of T���

�� For each singular value smaller than some cuto� �weve tried both �� and ���	� compute

the associated eigenstate on the grid� count the values of j�j� and combine with

previous data� Choose a new subset and repeat�

For this computation the bottlenecks are somewhat di�erent� The O�N�	 SVD is

one bottleneck as is computation of individual wavefunctions which is O�SN�	 where S is

the number of points on the wavefunction grid�
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For all of these methods� near singular matrices are either sought� frequently en�

countered or both� This requires a numerical decomposition which is stable in the presence

of small eigenvalues� The SVD is an ideal choice� The SVD is usually computed via

transformation to a symmetric form and then a symmetric eigendecomposition� Since the

matrix we are decomposing can be chosen to be symmetric� we could use the symmetric

eigendecomposition directly� We imagine some marginal improvement might result by the

substitution of such a decomposition for the SVD�
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Conclusions

Scattering theory can be applied to some unusual problems and in some unexpected

ways� Several ideas of this sort have been developed and applied in this work� All the

methods developed here are related to the fundamental idea of scattering theory� namely the

separation between propagation and collision� The applications range from the disarmingly

simple single scatterer in a wire to the obviously complex problem of intensity statistics in

weakly disordered two dimensional systems�

These ideas allow calculation of some quantities which are di�cult to compute

other ways� for example the scattering strength of a scatterer in a narrow two dimensional

wire as discussed in section ���� It also allows simpler calculation of some quantities which

have been computed other ways� e�g�� the eigen�states of one zero range interaction in a

rectangle� also known as the �,Seba billiard��

The methods developed here also lead to vast numerical improvements in calcu�

lations which are possible but di�cult other ways� for example the calculation of intensity

statistics in closed weakly disordered two dimensional systems as demonstrated in sec�

tion ����

The results of these intensity statistics calculations are themselves quite interest�

ing� They appear to contradict previous theoretical predictions about the likelihood of

large �uctuations in the wavefunctions in such systems� At the same time some qualitative

features of these theoretical predictions have been veri�ed for the �rst time�

There are a variety of foreseeable applications of these techniques� One of the

most exciting� is the possible application to superconductor normal�metal junctions� For

instance� a disordered normal metal region with a superconducting wall will have di�erent

���
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dynamics because of the Andreev re�ection from the superconductor� The superconductor

energy gap can be used to probe various features of the dynamics in the normal metal�

Also� the �eld of quantum chaos has� so far� been focused on systems with an obvious

chaotic classical limit� Systems with purely quantum features very likely have di�erent

and interesting behavior� A particle�hole system like the superconductor is only one such

example�

A di�erent sort of application is to renormalized scattering in atomic traps� The

zero range interaction is a frequently used model for atom�atom interactions in such traps�

The trap itself renormalizes the scattering strengths as does the presence of other scatterers�

Some of this can be handled� at least in an average sense� with the techniques developed

here�

We would also like to extend some of the successes with point scatterers to other

shapes� There is an obvious simplicity to the zero range interaction which will not be

shared with any extended shape� However� other shapes� e�g�� �nite length line segments�

have simple scattering properties which can be combined in much the way we have combined

single scatterers in this work�
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Appendix A

Green Functions

A�� De�nitions

Green functions are solutions to a particular class of inhomogeneous di�erential

equations of the form

�z �L�r	�G �r� r�$ z� � �
�
r� r�

�
� �A��	

G is determined by �A��	 and boundary conditions for r and r� lying on the surface S of

the domain �� Here z is a complex variable while L�r	 is a di�erential operator which is

time�independent� linear and Hermitian� L�r	 has a complete set of eigenfunctions f�n�r	g
which satisfy

L�r	�n�r	 � �n�n�r	� �A�
	

Each of the �n�r	 satisfy the same boundary conditions as G �r� r�$ z	� The functions f�n�r	g
are orthonormal� Z


�n�r	�

�
m�r	 � �nm� �A��	

and complete� X
n

�n�r	�
�
n�r

�	 � ��r� r�	� �A��	

In Dirac notation we can write

�z �L	 �G�z	 � � �A��	

�L j�ni � �n j�ni �A��	

h�n j�m i � �nm �A��	X
n

j�ni h�nj � �� �A��	

���
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In all of the above� sums over n may be integrals in continuous parts of the spectrum�

For z �� �n we can formally solve equation A�� to get

�G�z	 �
�

z � �L � �A��	

Multiplying by A�� we get

�G�z	 �
�

z � �L
X
n

j�ni h�nj �
X
n

�

z � �L j�ni h�nj �
X
n

j�ni h�nj
z � �n

� �A���	

We recover the r�representation by multiplying on the left by hrj and on the right by jr�i

G�r� r�$ z	 �
X
n

�n�r	�
�
n�r

�	
z � �n

� �A���	

In order to �nd �A���	 we had to assume that z �� �n� When z � �n we can write

a limiting form for �G�z	�

�G��z	 �
�

z � �L	 i�
� �A��
	

and its corresponding form in position space�

G��r� r�$ z	 � lim
��	

X
n

�n�r	�
�
n�r

�	
z � �n 	 i�

� �A���	

where �G��z	 is called the �retarded� or �causal� Green function and �G��z	 is called the

�advanced� Green function�

These names are re�ections of properties of the corresponding time�domain Green

functions� Consider the Fourier transform of �A���	 with respect to z�

G��r� r�$ � � t� t�	 � lim
��	

�





Z �

��

X
n

�n�r	�
�
n�r

�	
E � �n 	 i�

e�iEt�
h dE� �A���	

We switch the order of the energy sums �integrals	 and have

G��r� r�$ �	 �
�




lim
��	

X
n

�n�r	�
�
n�r

�	R �

��
E � �n 	 i�e�iE��
h dE� �A���	

We can perform the inner integral with contour integration by closing the contour in either

the upper or lower half plane� We are forced to choose the upper or lower half plane by

the sign of � � For � � � we must close the contour in the lower half�plane so that the

exponential forces the integrand to zero on the part of the contour not in the original

integral� However� if the contour is closed in the lower half plane� only poles in the lower

half plane will be picked up by the integral� Thus G��r� r�$ �	 is zero for tau � � and

therefore corresponds only to propagation forward in time� G��r� r�$ �	� on the other hand�

is zero for � � � and corresponds to propagation backwards in time� �G� is frequently useful

in formal calculations�
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A�� Scaling L

We will �nd it useful to relate the Green function of the operator � �L to the Green

function of �L where � is a complex constant�

Suppose h
z � � �L

i
�G��z	 � � �A���	

We note that �L and � �L have the same eigenfunctions but di�erent eigenvalues� i�e��

� �L j�ni � ��n j�ni �A���	

so

�G��z	 �
X
n

j�ni h�nj
z � ��n

�
�

�

X
n

j�ni h�nj
z
� � �n

�
�

�
�G�

�
z

�

�
�A���	

So we have

�G��z	 �
�

�
�G�

�
z

�

�
�A���	

A�� Integration of Energy Green functions

Claim� Z
G�r�� r$ z	G�r� r�$ z	 dr � � d

dz
G�r�� r�$ z	� �A�
�	

Proof�

I �

Z
G�r�� r$ z	G�r� r�$ z	 dr �

Z
hr�j �G�z	 jri hrj �G�z	 jr�i dr� �A�
�	

or

I � hr�j �G�z	

�Z
jri hrj dr

�
�G�z	 jr�i � �A�

	

but Z
jri hrj dr � �� �A�
�	

so

I � hr�j �G�z	 �G�z	 jr�i � �A�
�	

We expand the Green functions�

�G�z	 �
�X
n

jni hnj
z �En

� �A�
�	
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so

I � hr�j
�X
n

jni hnj
z �En

�X
m

jmi hmj
z �Em

jr�i � �A�
�	

But� since hn jmi � �nm�

I � hr�j
�X
n

jni hnj
�z �En	

� jr�i � �A�
�	

which is very like the Green function except that the denominator is squared� We can get

around this by taking a derivative�

I � hr�j
�X
n

� d

dz

jni hnj
z �En

jr�i � �A�
�	

We move the derivative outside the sum and matrix element to get

I � � d

dz
hr�j �G�z	 jr�i � � d

dz
�G�r�� r�$ z	� �A�
�	

as desired�

A�� Green functions of separable systems

Suppose we have a system which is separable� That is� the eigenstates are products

of functions in each of the domains into which the system can separated� For example� a

system in which an electron can move freely in the x�direction but is con�ned to the region

jyj � h�
 has eigenfunctions which are products of plane waves in x and quantized modes

in y� The Green function of such a system is written

�G����z	 �
X
�

X
�

j�i � j�i h�j � h�j
z � �� � �� 	 i�

� �A���	

We can move either of the sums inside to get

�G����z	 �
X
�

j�i h�j �
X
�

j�i h�j
z � �� � �� 	 i�

� �A���	

but now the inner sum is just another Green function �albeit of lower dimension	� so we

have

�G����z	 �
X
�

j�i h�j � �G
���
� �z � ��	 �

X
�

j�i h�j � �G���
� �z � ��	 �A��
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Consider the example mentioned at the beginning of this section� Well label the

eigenstates in the x�direction by their wavenumber� k and label the transverse modes by a

channel index� n� So we have

�G����z	 �
Z �

��
jki hkj � �Gn�E � ��k		 	 i�	 dk �

X
n

jni hnj � �g���o �E � �n	 �A���	

where �g
���
o �z	 is the one dimensional free Green function� In the position representation

this latter equality is rewritten as

G����x� y� x�� y�$ z	 �
X
n

�n�y	�n�y
�	g����x� x�$E � �n	� �A���	

A�� Examples

Below we examine two examples of the explicit computation of Green functions�

We begin with the mundane but useful free space Green function in two dimensions� Then

we consider the more esoteric Gorkov Green function$ the Green function of a single electron

in a superconductor�

A�	�� The Free�Space Green Function in Two Dimensions

In two�dimensions� we can derive the free�space Green function of the operator

L � �r� �corresponding to 
D free quantum mechanics with !h��
m � �	 using symmetry

and limiting properties� See� e�g�� ����� The Green function� Go satis�es

�
z �r�

�
Go�r� r

�$ z	 � �
�
r� r�

�
� �A���	

By translational symmetry of L� Go�r� r
�$ z	 is a function only of � � jr� r�j� For � �� ��

G��$ z	 satis�es the homogeneous di�erential equation

�
z �r�

�
G��$ z	 � �� �A���	

Recall that

��r� r�	 �
�



�
���	� �A���	

so we may re�write �A���	 as



z

Z �

	
Go�

� d�� �

Z �

	


��r�Go��

�$ z	 d�� � �� �A���	
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In radial polar coordinates ��� 	

r� �
�

�

�

��
�
�

��
�

�

��
��

��
� �A���	

so

�r�f��	 �
�

��

�
�
�f

��

�
� �A���	

Thus Z �

	


��r�Go��

�$ z	 d�� � 



Z �

	

�

���
�
��Go��

�$ z	
�
d�� � 

�

�Go

��
� �A���	

where the last equality follows from Gauss Theorem �in this case� the fundamental theorem

of calculus	� So we have



z

Z �

	
Go�

� d�� � 

�
�Go

��
� �� �A��
	

which� as �� �� gives



�
�Go��$ z	

��
� �� Go��$ z	� �




ln��	 � const� �A���	

Also�

lim
���Go��$ z	 � � �A���	

General solutions of �A���	 are linear combinations of Hankel functions of the �rst

and second kind of the form �See e�g�� ���	�h
AnH

���
n �

p
z�	 �BnH

���
n �

p
z�	
i
e�in�� �A���	

Since we are looking for a  independent solution we must have n � �� Since

H
���
	 �

p
z�	 blows up as ���� B	 � �� The boundary condition �A���	 �xes A	 �

�i
� � So

we have

Go�r� r
�$ z	 � � i

�
H���
o �

p
zjr� r�j	� �A���	

where H
���
o is the Hankel function of zero order of the �rst kind�

H���
o �x	 � �Jo�x	 � iYo�x	� �A���	

where Jo�x	 is the zero order Bessel function and Yo�x	 is the Neumann function of zero

order�

It will be useful to identify some properties of Yo�x	 for use elsewhere� We will

often be interested in Yo�x	 for small x� As x� �

Yo�x	 � Y �R�
o �x	 �






Jo�x	 ln�x	 �A���	
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Y
�R�
o �x	 is called the �regular� part of Yo�x	� We note that Y

�R�
o ��	 �� �� Ordinarily�

the speci�c value of this constant is irrelevant since it is overwhelmed by the logarithm�

However� we will have occasion to subtract the singular part ofGo and the constant� Y
�R�
o ��	�

will be important�

A�� The Gor
kov bulk superconductor� Green Function

In this appendix we will derive the Green Function for particles and holes in

a superconductor� We plan to use this Green function to simulate Andreev scattering

systems� We will �nd an explicit solution in the case of a uniform bulk superconductor�

Andreev scattering takes place at normal�metal superconductor boundaries �NS	�

When an electron in the normal metal hits the superconductor boundary it can scatter as

a hole with the time�reversed momentum of the electron� That is� the electron disappears

at the boundary and a hole appears which goes back along the electrons path at the

same speed as the electron came in� This type of scattering leads to a class of trajectories

which interfere strongly �even in chaotic�disordered systems	 and produce weak�localization

e�ects�

The simplest way to deal with the co�existence of particles and holes is to solve a

set of coupled Schr�odinger�like equations known as the Bogoliubov equations �see� e�g�� ���	�

i!h
�

�t
jfi �

h
�Ho � ��

i
jfi� �' jgi � �A���	

i!h
�

�t
jgi � �

h
�Ho � ��

i
jgi � �'y jfi � �A���	

�A���	

where �Ho is the single particle Hamiltonian� �� �
R jri��r	 hrj is the �possibly position

dependent	 chemical potential and �' �
R jri'�r	 hrj is the �possibly position dependent	

superconductor energy gap� In the �' � � case� we have the Schr�odinger equation for jfi
�the electron state	 and the time�reversed Schr�odinger equation for jgi �the hole state	�

If we form the spinor

j&i �
�
� jfi
jgi

�
A � �A��
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we can write the Bogoliubov equations as

i!h
�

�t
j&i �

�
�
�
�Ho � ��

�
�'

�'y �
�
�Ho � ��

�
�
A j&i � H j&i � �A���	

In order to compute the Green function operator� �G�z	� for this system we form

�G���z	 � z � �H �

�
� z �

�
�Ho � ��

�
� �'

� �'y z �
�
�Ho � ��

�
�
A � �A���	

which� at �rst� looks di�cult to invert� However� there are some nice techniques we can

apply to a matrix with this form� To understand this� we need a brief review of 
 � 


quantum mechanics�

Recall the Pauli spin matrices are de�ned

	� �

�
� � �

� �

�
A �

	� �

�
� � �i

i �

�
A �

	� �

�
� � �

� ��

�
A �

and that the set fI� 	�� 	�� 	�g is a basis for the vector space of complex 
� 
 matrices�

The Pauli matrices satisfy

�	i� 	j � � 	i	j � 	j	i � �ijk	k �A���	

f	i� 	jg � 	i	j � 	j	i � I�ij �A���	

where �ijk is the � three�symbol ��ijk is � if ijk is a cyclic permutation of �
�� �� if ijk is a

non�cyclic permutation of �
� and � otherwise	 and �ij is the Kronecker delta�

To simplify the later manipulations we rewrite �G���

�G���z	 � �g���z		� � �G�z	 � 	��� �g�z	 �A���	

where

�g���z	 �

�
� z �

�
�Ho � ��

�
�'

� �'y �z �
�
�Ho � ��

�
�
A � �A���	
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We now write

�g���z	 � �aI � i�b � 	� �A���	

where

�a � �
�
�Ho � ��

�
�

�b �
�
Im� �'	�Re� �'	��iz

�
�

	 � �	�� 	�� 	�	 �

Lets make the additional assumptions that

h
�a��bi

i
� � �i�h

�bi��bj
i

� � �i� j�

For our problem� as long as �' � I � const� we satisfy these assumptions� That is� we are

in a uniform superconductor�

So

�g���z	 �

�
� �a� i�b� i��b� � i�b�	

i��b� � i�b�	 �a� i�b�

�
A �A���	

Since all the operators commute� we can invert this like a 
� 
 matrix of scalars�

�g�z	 �
�

�a� ��b�� �
�b�� �

�b��

�
� �a� i�b� �i��b� � i�b�	

�i��b� � i�b�	 �a� i�b�

�
A �

�

�a�I � �b�

�
�aI � i�b � 	

�
�

�A���	

We clarify this by explicit multiplication

�g�z	�g���z	 �
I

�a� � �b�

�
�aI � i�b � 	

��
�aI � i�b � 	

�
�

I
�a� � �b�

�
�a�I �

�
�b � 	

���
� �A��
	

Now we use the relation �A���	 to simplify �b � 	�

�b � 	 �
�X

i�j��

�bi	i�bj	j �
�X

i� j � �

i � j

�bi�bjf	i� 	jg � �b�I� �A���	

So we have

�g�z	�g���z	 �
I

�a� � �b�

�
�a�I �

�
�b � 	

���
�

I
�a� � �b�

�
�a�I � �b�I

�
� I� �A���	
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At this point we have an expression for �g�z	 but its not obvious how we evaluate

I
�a���b�

� We use another trick� and factor �g�z	 as follows �de�ning �b � j�bj	�

�g�z	 �
I

�a� � �b�

�
�aI � i�b � 	

�
�

�




X
s���

I � s
�b��
�b

�a� is�b
� �A���	

Why does this help# Weve replaced the problem of inverting �a� � �b� with the problem of

inverting �a	 i�b� We recall that a � �� �Ho � ��	 and b �
q
b�� � b�� � b�� �

pj'j� � z�� So

�a	 i�b � �
�
�Ho � ��� i

q
j'j� � z�

�
� �A���	

which means

��a	 i�b	�� � �G�

�
	i
q
j'j� � z�

�
� �A���	

where

�G��z	 �
�

z �
�
�Ho � ��

� � �A���	

We note that if �� � Efermi � const�� �G��z	 � �Go�Efermi � z	� We de�ne

� �
q
z� � j'j�

f��z�'	 �
�




�
�	 zp

z� � j'j�
�

� �
'



p
z� � j'j�

and then write

g�z	 �

�
� �G���	f��z�'	 � �G����	f��z�'	 �y

h
�G���	� �G����	

i
�
h
�G���	 � �G����	

i
�G����	f��z�'	 � �G���	f��z�'	

�
A �

�A���	

So� �nally� we have a simple closed form expression for G�z	�

�G�z	 � 	��� �g�z	 �

�
� �G���	f��z�'	 � �G����	f��z�'	 �y

h
�G���	� �G����	

i
��
h
�G���	� �G����	

i
� �G����	f��z�'	� �G���	f��z�'	

�
A �

�A���	

Various Limits

� ' � �
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When ' � � we have

f��z�' � �	 � �

f��z�' � �	 � �

� � �

and thus

�G�z	 �

�
� �G���	 �

� � �G����	

�
A � �A���	

as we would expect for a normal metal�



Appendix B

Generalization of the Boundary

Wall Method

Handling the general boundary condition

��s	��r�s		
���C � ��� ��s	� �n�s� ��r�s		

���C � �� �B��	

requires a more complex potential�

V �r	 �

Z
C
ds ��s	 � �r� r�s		

n
��s	� ��� ��s	� �n�s�

o
� �B�
	

and thus is somewhat more di�cult than the case of Dirichlet boundary conditions con�

sidered in section ��
� First� we assume n�s	 a unit vector normal to C at each point s�

and

�n�s�f�r�s		 � n�s	 � rf�r�s		� �B��	

Second� we insert �B�
	 into ����	 to get

��r	 � ��r	 �

Z
C
ds� ��s�	G	�r� r�s

�		
n
��s�	� ��� ��s�	

�
�n�s��

o
��r�s�		� �B��	

which then we consider at a point r�s��	 on C �with the same notational abbreviation used

in Section ��
	

��s��	 � ��s��	 �
Z
ds� ��s�	G	�s

��� s�	
n
��s�	 �

�
�� ��s�	

�
�n�s��

o
��s�	� �B��	

As it stands� �B��	 is not a linear equation in �� To �x this� we multiply both sides byn
��s��	 � ��� ��s��	� �n�s���

o
and de�ne

�B�s��	 �
n
��s��	 �

�
�� ��s��	

�
�n�s���

o
��s��	

���
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�B�s��	 �
n
��s��	 �

�
�� ��s��	

�
�n�s���

o
��s��	

GB
	 �s

��� s�	 �
n
��s��	 �

�
�� ��s��	

�
�n�s���

o
G	�s

��� s�	� �B��	

This yields

�B�s��	 � �B�s��	 �
Z
ds� ��s�	GB

	 �s
��� s�	�B�s�	� �B��	

a linear equation in �B � and solved by

 �B �
h
 I�  GB

	
 0
i��

 �B � �B��	

where again the tildes emphasize that the equation is de�ned only on C� The diagonal

operator  0 is �
 0f
�
�s	 � ��s	f�s	� �B��	

We de�ne

TB �  0
h
 I�  GB

	
 0
i��

� �B���	

that solves the original problem

��r	 � ��r	 �

Z
ds�G	�r� r�s

�		TB
�B �r�s

�		� �B���	

for

TB
�B �r�s

�		 �
Z
ds TB�s�� s	�B�s	� �B��
	

As in Section ��
� in the limit ��s	 � � � �� TB converges to �
h
 GB
	

i��
which�

when inserted into �B��	� givesn
��s	 � ��� ��s	� �n�s�

o
��s	 � �B�s	 �

��
 I�  GB

	

h
 GB
	

i���
 �B
�
�s	 � �� �B���	

the desired boundary condition �B��	�

For completeness� we expand TB in a power series

TB �  0 �  0

�
� �X
j��

h
 GB
	
 0
ij�A � �B���	

so

TB�s��� s�	 � ��s��	 ��s�� � s�	 � ��s��	

�
� �X
j��

�TB��j��s��� s�	

�
A � �B���	

where

�TB��j��s��� s�	 �
Z
ds� � � � dsj G

B
	 �s

��� sj	��sj	 � � � GB
	 �s�� s�	��s�	 ��s� � s�	� �B���	

allowing one� at least in principle� to compute TB�s��� s�	� and thus the wavefunction every�

where�
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Linear Algebra and Null�Space

Hunting

In this appendix we deal with the linear algebra involved in implementing various

methods discussed above� We begin with the standard techniques for solving Ax � v type

equations when A is of full rank� We do this mostly to establish notation�

In many of the techniques above� we had a matrix which was a function of a real

parameter �usually a scaled energy	� A�t	 and we wanted to look for t such that A�t	x � �

has non�trivial solutions �x �� �	� The standard technique for handling this sort of problem

is the Singular Value Decomposition �SVD	� Well discuss this in �C��	�

There are other methods to extract null�space information from a matrix and they

are typically faster than the SVD� Well discuss one such method� the QR Decomposition

�QRD	� ���� is a wonderful reference for all that follows�

C�� Standard Linear Solvers

A system of N linear equations in N unknowns�

NX
i��

aijxi � bj for j � f����Ng �C��	

may be written as the matrix equation

Ax � b� �C�
	

���
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where �A	ij � aij� This implies that a formal solution is available if the matrix inverse A��

exists� Namely�

x � A��b� �C��	

Most techniques for solving �C�
	 do not actually invertA but rather �decompose�

A in a form where we can compute A��b e�ciently for a given b� One such form is the

LU decomposition�

A � LU� �C��	

where L is a lower triangular matrix and U is an upper�triangular matrix� Since it is simple

to solve a triangular system �see ����� section ���	 we can solve our original equations with

a two step process� We �nd a y which solves Uy � b and then �nd x which solves Lx � y�

This is an abstract picture of the familiar process of Gaussian elimination� Essentially�

there exists a product of �unit diagonal	 lower triangular matrices which will make A upper�

triangular� Each of these lower triangular matrices is a gauss transformation which zeroes all

the elements below the diagonal in A one column at a time� The LU factorization returns

the inverse of the product of the lower triangular matrices as L�and the resulting upper

triangular matrix in U� It is easy to show that the product of a lower�upper	 triangular

matrices is lower�upper	 triangular and the same for the inverse� That is� L represents a

sequence of gauss transformations andU represents the result of those transformations� For

large matrices� the LUD requires approximately 
N��
 �ops ��oating point operations	 to

compute�

The LUD has several drawbacks� The computation of the gauss transformations

involves division by aii as the ith column is zeroed� This means that if aii is zero for any i

the computation will fail� This can happen two ways� If the �leading principal submatrix�

of A is singular� i�e�� det�A�� � i� � � i		 � � then aii will be zero when the ith column is

zeroed� If A is non�singular� pivoting techniques can successfully �nd an LUD of a row�

permuted version of A� Row permutation of A is harmless in terms of �nding the solution�

However� if A is singular then we can only chase the small pivots of A down r columns

where r � rank �A	� At this point we will encounter small pivots and numerical errors will

destroy the solution� Thus we are led to look for methods which are stable even when A is

singular�
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C�� Orthogonalization and the QR Decomposition

Suppose we wanted to keep the basic idea of the LU decomposition� zeroing the

columns of A but avoid the pivot problem� We have to be careful because the inverse of the

transformation matrix �the L in LU	 has to be easy to invert or the decomposition wont be

much help� One class of transformations which might work are orthogonal transformations�

Orthogonal transformations include re�ections and rotations� Orthogonal transformations

do not re�scale �so they are stable in the presence of small pivots	 and they are easy to

invert �the inverse of an orthogonal transformation is its transpose	� The simplest such

method is the QR decomposition�

A � QR �C��	

whereQ is orthogonal andR is upper�triangular� Performing this decomposition is straight�

forward� Consider the �rst column of A� A rotation �or re�ection about a correctly chosen

plane	 will zero all but the �rst element �simply rotate a basis vector into the �rst column

of A and then invert that rotation	� Now go to the second column� To zero everything

below the diagonal it is su�cient to consider a problem of � dimension smaller and rotate

in that smaller space� This leaves the previously zeroed elements alone �since those vectors

are null in the smaller space	� We do this one column at a time and accomplish our goal�

A wonderful consequence of the QRD is that the eigenvalues of A are the diagonal

elements of R� Since Q is orthogonal� it does not change eigenvalues� it just rotates the

eigenvectors� This makes it ideal for null�space hunting since we can do QRDs and look for

small eigenvalues� Typically the eigenvalues in a QRD are in generated in order of their

absolute value as a side e�ect of the transformation�

If A is singular with rank N��� a typical QRD algorithm will leave the zero eigen�

value in the last row of R� That is� the last row of R is all zeroes� A modi�ed back�

substitution algorithm will immediately return a vector in the null space� Since the null

space is one dimensional� this vector spans it� A similar approach will work with multi�

dimensional null�spaces but requires a bit more work�

The QRD is not magic� It does not provide a solution where none�exists� While

the algorithm is stable� the attempt to solve the Ax � b will still fail for singular A

and non�zero b� it will simply do so in the back�substitution phase rather than during

decomposition�

There is a �x for this back�substitution problem� We can pivot the columns of
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A as we do the QRD and then� though we still cannot solve an ill�posed problem we can

extract a least squares solution from this column pivoted QRD �QRD CP	�

For large N � the QRD requires approximately �N��� �ops �twice as many as LU	

and QRD CP requires �N� �ops to compute�

C�� The Singular Value Decomposition

It is possible to further reduceR by post�multiplying it by a sequence of orthogonal

transformations� The SVD is one such �complete orthogonalization� It reduces R to a

diagonal matrix with positive entries� That is� the SVD gives

A � U�VT �C��	

whereU and V are orthogonal and � � diag�	�� � � � � 	N 	� In this formulation� zero singular

values correspond to zero eigenvalues and the corresponding vectors may be extracted from

V� Since the SVD is computed entirely with orthogonal transformations� it is stable even

when applied to singular matrices�

The SVD of a symmetric matrix is an eigendecomposition� That is� the singular

values of a symmetric matrix are the absolute values of the eigenvalues and the singular

vectors are the eigenvectors� If a symmetric matrix has two eigenvalues with the same

absolute value but opposite sign� the SVD cannot distinguish these eigenvalues and may

mix them� For non�degenerate eigenvalues� the sign information is encoded in UVT which

is a diagonal matrix made up of 	�� All of this follows from a careful treatment of the

uniqueness of the decomposition�

The SVD can be applied to computing only the singular values �SVD S	� the

singular values and the matrix V �SVD SV	 and the singular values� the matrix V� and the

matrix U �SVD USV	� The �op count is di�erent for these three versions �we include LUD

and QRD for comparison	 and we summarize this in table C���
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Algorithm �ops seconds

SVD USV 
�N� �����
SVD SV �
N� ����
SVD S �N� 
���

QRD CP �N� ����
QRD �N��� ���

LUD 
N��� N�A

Table C��� Comparison of �op counts and timing for various matrix decompositions�
The timing test was the decomposition of a ��� � ��� matrix on a DEC Alpha �������
workstation�

We include this table to point out that choice of algorithm can have a dramatic

e�ect on computation time� For instance� when looking for a t such that A�t	 is singular�

we may use either the SVD S or the QRD to examine the rank of A�t	� However� using the

QRD will be at least � times faster than using the SVD S�
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Some important in�nite sums

D�� Identites from
P

x
n

n

Recall that �X
n��

xn

n
� ln

�
�

�� x

�
for jxj � �� �D��	

Thus �X
n��

ein�e�n�

n
� ln

�
�

�� ei���

�
for �� � real� � � �� �D�
	

So

�X
n��

cos�n�	e�n�

n
� Re

�
ln

�
�

�� exp�i� � �	

��
�

�



ln

�
e�


 cosh � � 
 cos�

�
� �D��	

and

�X
n��

sin�n�	e�n�

n
� Im

�
ln

�
�

�� exp�i�� �	

��
� � arctan

�
e�� sin�

�� e�� cos�

�
� �D��	

Since

sinn� sinn�� �
�




�
cosn��� ��	� cosn��� ��	

�
� �D��	

we �nd

�X
n��

sinn� sinn��

n
e��n �

�

�

�
ln

�
e�


 cosh � � 
 cos��� ��	

�
� ln

�
e�


 cosh � � 
 cos��� ��	

�

�
�

�
ln

�
cosh� � cos��� ��	
cosh� � cos��� ��	

�

���
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�
�

�
ln

�
cosh� � � � �� cos��� ��	
cosh� � � � �� cos��� ��	

�

�
�

�
ln

�
sinh� �

� � sin� ����

�

sinh� �
� � sin� ����

�

�

We also note that for �� � �� �

ln

�
e�


 cosh� � 
 cos�

�
� � ln

�
� � e��� � ei��� � e�i���

�
� ln

�
�� � ��

�
� �D��	

since� in the small argument expansion of the exponentials� the constant and linear terms

cancel� Similarly� for �� j�� ��j �� �

ln

�
sinh� �

� � sin� ����

�

sinh� �
� � sin� ����

�

�
� ln

�
sin�

�� ��




�
� ln

�
�� � ��� ��	�

�

�
�D��	

D�� Convergence of Green Function Sums

D���� Dirichlet Boundary Green Function Sums

Consider

an��	 � sin�nx	 sin�nx�	 ��� exp ��
�nh		��
�
n�
��l� �E

�����
exp ���n�	 � �D��	

where �n �
q

n���

l �E� and

bn��	 � sin�nx	 sin�nx�	
l

n

exp

�
�n


l
�

�
� �D��	

In this case� we may perform
P�

n�� bn��	 for � � � using the identities above �section D��	�

We need to show that
P�

n�� an��	�bn��	 converges and that it converges uniformly

with respect to � for all � � �� Since j sin�nx	 sin�nx�	j � �� we have

jan��	� bn��	j �
l

n


!
"��� e��
nh

����
�� El�

n�
�

�����
exp

�
��n


l
�

s
�� El�


�n�

�
A� exp

�
�n


l
�

�#$ �
For x � �� �p

x
� �

x and exp��pxa	 � exp��xa	 so

jan��	� bn��	j �
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l

n


!
"��� e��
nh

����
�� El�

n�
�

���
exp

�
�n


l
�

�
exp

�
El


n
�

�
� exp

�
�n


l
�

�#$

�
l

n

exp

�
�n


l
�

�
�� El�

n�
�

��!"��� e��
nh
��� �

�� El�

n�
�

���
� exp

�
�El


n
�

�#$
Since

�� n � l
�

p

E implies

exp

�
�n


l
�

�
�� El�

n�
�

��
� exp

�
�n



l
�

�
� �D���	


� and� since x � �
� � �

��x � � � 
x� n � l
�

p

E implies

�
�� El�

n�
�

���
�

�
� �


El�

n�
�

�
� �D���	

�� n � l
�

r�
ln �
�h

��
�E implies

�
�� e��
nh

���
�
�
� � 
e��
nh

�
� �D��
	

�� x � �� e�x � �� x�

we have� for n � max

�
l
�

p

E� l�

r�
ln �C
�h

��
�E


�

jan��	� bn��	j � l

n

exp

�
�n



l
�

� ��
� � 
Ce��
nh

��
� �


El�

n�
�

�
�
�
�� El


n
�

��
� �D���	

Further� for n � l
�

s
E �

�
�
�h ln

�
El�

��

���
�

jan��	� bn��	j � l

n

exp

�
�n



l
�

� �
El

n

� �

�El�

n�
�

�
� �D���	

Therefore� for M � max

�
l
�

p

E� l�

s
E �

�
�
�h ln

�
El�

��

���
�

�X
n�M

an��	� bn��	 � exp

�
�M



l
�

� �

El�


�M�

�
�l�

�� exp
�� �

�l�
� � �El�

M�
�

�
� �D���	
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But x
��e�x is a monotonically increasing function of x so

�
�l
�

��exp�� �
�l
�	

�
�
�l
h

��exp�� �
�l
h	

and

thus

�X
n�M

�an��	� bn��	� � exp

�
�M



l
�

� �
El�


�M�

h

�� exp
�� �

�lh
� � �El�

�M�
�

�
� �D���	

Thus
P�

n�M �an��	� bn��	� converges for all � � ��

Further� since El
n�� exp

��n�
�l �
�
� �El�

n��� �

jan��	� bn��	j � �El�

n�
�
� fn� �D���	

and
P�

n�M fn converges� Therefore
P�

n�M �an��	� bn��	� converges uniformly with respect

to � for � � �

D���� Periodic Boundary Green Function Sums

Consider

an��	 � cos�njx� x�j	
�
n�
��l� �E

�����
exp ���n�	 � �D���	

where �n �
q

n���

l �E� and

bn��	 � cos�njx� x�j	 l

n

exp

�
�n


l
�

�
� �D���	

In this case� we may perform
P�

n�� bn��	 for � � � using the identities above �section D��	�

We need to show that
P�

n�� an��	�bn��	 converges and that it converges uniformly

with respect to � for all � � �� Since j cos�njx� x�j	j � �� we have

jan��	� bn��	j �
l

n


!
"��� El�

n�
�

�����
exp

�
��n


l
�

s
�� El�


�n�

�
A� exp

�
�n


l
�

�#$ �
For x � �� �p

x
� �

x and exp��pxa	 � exp��xa	 so

jan��	� bn��	j �
l

n


!
"��� El�

n�
�

���
exp

�
�n


l
�

�
exp

�
El


n
�

�
� exp

�
�n


l
�

�#$

�
l

n

exp

�
�n


l
�

�
�� El�

n�
�

��!"��� El�

n�
�

���
� exp

�
�El


n
�

�#$
Since
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�� n � l
�

p

E implies

exp

�
�n


l
�

�
�� El�

n�
�

��
� exp

�
�n



l
�

�
� �D�
�	


� and� since x � �
� � �

��x � � � 
x� n � l
�

p

E implies

�
�� El�

n�
�

���
�

�
� �


El�

n�
�

�
� �D�
�	

�� x � �� e�x � �� x� �proof��

we have� for n � l
�

p

E

jan��	� bn��	j � l

n

exp

�
�n



l
�

� ��
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El�

n�
�

�
�
�
�� El


n
�

��
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So

jan��	� bn��	j � l

n

exp

�
�n



l
�

� �
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n

� �


El�

n�
�

�
� �D�
�	

Therefore� for M � l
�

p

E

�X
n�M

an��	� bn��	 � exp

�
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l
�

� �

El�


�M�

�
�l�

�� exp
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�l�
� � El�
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�
� �D�
�	

But x
��e�x is a monotonically increasing function of x so

�
�l
�

��exp�� �
�l
�	

�
�
�l
h

��exp�� �
�l
h	

and

thus

�X
n�M

�an��	� bn��	� � exp

�
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l
�

� �
El�


�M�

h

�� exp
�� �

�lh
� � El�

M�
�

�
� �D�
�	

Thus
P�

n�M �an��	� bn��	� converges for all � � ��

Further� since El
n�� exp

��n�
�l �
�
� �El�

n��� �

jan��	� bn��	j � �El�

n�
�
� fn� �D�
�	

and
P�

n�M fn converges� Therefore
P�

n�M �an��	� bn��	� converges uniformly with respect

to � for � � �
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Mathematical Miscellany for Two

Dimensions

E�� Polar Coordinates

r �
�

�r
�r �

�

�
� �E��	

r� �
�

r

�

�r
r
�

�r
�

�

r�
��

��
�E�
	

E�� Bessel Expansions

eikr �
�X

l���
�i	l Jl�kr	 �E��	

eiky � eikr sin � �
�X

l���
Jl�kr	e

il� �E��	

eikx � eikr cos � �
�X

l���
�i	l Jl�kr	 cos l �E��	

sinky � sin �kr sin 	 �
�X

l���
J�l���kr	 sin ��
l � ��	 �E��	

sinkx � sin �kr cos 	 �
�X

l���
���	l J�l���kr	 cos ��
l � ��	 �E��	

�E��	

���
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E�� Asymptotics as kr��

Jn�kr	 �
r
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�
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�E��	

Yn�kr	 �
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sin

�
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e�i�kr�

n�
�
��

� 	 �E��
	

�E���	

E�� Limiting Form for Small Arguments kr� ��

Jn�kr	 �
�
�
�kr
�n

%�n	
for n �� ����
��� � � � �E���	

Yo�kr	 � �
�
	 ln kr �E���	

H���
o �kr	 � �
i�
	 ln kr �E���	

Yn�kr	 � � �



%�n	

�
kr




��n
for Refng � � �E���	
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%�n	

�
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��n
for Refng � � �E���	


