

Adapting Microsoft SQL Server
for Cloud Computing

Philip A. Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan, Gopal Kakivaya,
David B. Lomet, Ramesh Manne, Lev Novik, Tomas Talius

Microsoft Corporation
One Microsoft Way, Redmond, WA, 98052-6399, U.S.A.

{philbe, istvanc}@microsoft.com
nishant_dani@hotmail.com

{nigele, ajayk, gopalk, lomet, rmanne, levn, tomtal}@microsoft.com

Abstract— Cloud SQL Server is a relational database system
designed to scale-out to cloud computing workloads. It uses
Microsoft SQL Server as its core. To scale out, it uses a
partitioned database on a shared-nothing system architecture.
Transactions are constrained to execute on one partition, to
avoid the need for two-phase commit. The database is replicated
for high availability using a custom primary-copy replication
scheme. It currently serves as the storage engine for Microsoft’s
Exchange Hosted Archive and SQL Azure.

I. INTRODUCTION

Large-scale web applications generate classical database
workloads consisting of transactions and queries. Although
the required functionality is classical, the system-level
requirements can be quite daunting. To handle heavy
workloads, they need to scale out to thousands of servers. For
low-cost data center operation, they need to run on
inexpensive unreliable commodity hardware, yet they still
need to be highly available. Since labor is a major cost, they
need to automate system management functions, such as
machine and disk failover, load balancing, and dynamic
repartitioning of data. Moreover, they need to offer
predictable, fast response time.

These requirements on web applications imply the same set
of requirements on the database system used by the
applications. To meet these requirements, many providers of
large-scale web services have developed custom record-
oriented storage systems to support their applications [6][7][8].
Given this research literature, one may be left with the
impression that a custom record-oriented storage system is the
only practical way to satisfy these requirements.

Microsoft has taken a different approach to these
requirements, namely to build its distributed storage system
using its relational database system product, Microsoft SQL
Server, as its core. It is the first commercial system we know
of that takes this approach. The resulting system, which we
call Cloud SQL Server, exposes much of SQL Server’s
functionality. This includes aggregation, full-text queries, and
referential constraints, views, and stored procedures—most of
which are not supported by custom record stores. Thus, users
of SQL Server can learn to use the system with only modest
effort. Depending on how it is used, there are some

functionality restrictions to satisfy the cloud requirements,
which are described in Section II-A.

One important capability of Cloud SQL Server is its
support of ACID transactions. Although this is a standard and
popular feature of relational database system products, it is not
universally supported by record managers for web
applications, such as Amazon’s Dynamo and Yahoo’s PNUTS.
It is often argued that web-application developers do not need
transactions and that a system that supports transactions will
not scale, primarily due to the need for two-phase commit.
Our experience is the opposite. Our users asked for
transactions. To get transactions, they were willing to accept a
constraint on schema structure that ensures transactions are
non-distributed and hence do not need two-phase commit. We
explain the constraint in the next section.

To attain high availability on unreliable commodity
hardware, the system replicates data. The transaction
commitment protocol requires that only a quorum of the
replicas be up. A Paxos-like consensus algorithm is used to
maintain a set of replicas to deal with replica failures and
recoveries. Dynamic quorums are used to improve availability
in the face of multiple failures. Replication protocols are
described in Section IV.

We designed Cloud SQL Server in early 2006, and it was
first deployed in mid-2009. It is currently used as the storage
system for two large-scale web services: Exchange Hosted
Archive [15], an e-mail and instant messaging repository that
helps organizations manage retention, compliance, e-
discovery, and regulatory requirements; and SQL Azure [14],
a relational database system offered as a service, as part of the
Windows AzureTM computing platform.

A high level view of Cloud SQL Server appeared in [5].
This paper extends [5] with details of the data model, replica-
tion and recovery protocols, applications, and performance
measurements. To the best of our knowledge, it is the first de-
scription of a cloud-oriented scaleout version of a widely-used
relational database product that supports ACID transactions.

The paper is organized as follows. Section II describes the
data model, including the constraints that ensure transactions
are not distributed. Section III presents the overall system
architecture. Section IV explains the approach to replication.
Section V discusses applications. Section VI presents some

978-1-4244-8960-2/11/$26.00 © 2011 IEEE ICDE Conference 20111255

pe
an

A.

lar
ma
ea
th
op
To
tra

gr
gr
ar
co
ha
ex
Cu

rel
Cu
Si
ter
th

th
fir
co
tra
key
on

a t
th

erformance me
nd Section VIII

 Logical Data

Cloud SQL S
rge datasets. T
achines. To ge

ach transaction
e data that ea

pposed to repli
o ensure this
ansaction beha
In Cloud SQL

roup. A table g
roup is an ordin
e no restrictio

ontrast, if a tab
ave a commo
xample, Figure
ustomers and O

Figur

The partition
lation. For exa
ustomers table
imilarly, the pa
red index that
e cluster key o
A row group

e same partiti
rst row of Cu
omprise a row
ansaction exec
eyed, then the
ne row group.

Given these re
transactional a
e application s

easurements. S
I is the conclus

II. DAT

a Model

Server needs to
This requires sc
et fast and pre
to be non-dist

ach transaction
icated writes)
holds, we res
vior as follows
L Server, a lo

group may be k
nary SQL Serv

ons on the cho
ble group is ke
n column cal
 1 shows a key

Orders. The par

re 1 Cloud SQL

ing key need
ample, Id happ
, but it is not a
artitioning key
is used to store

of the Orders ta
is the set of all
on key value.
ustomers plus
group. Cloud

cutes on one ta
transaction ca

equirements, th
application that
store its data i

ection VII cov
sion.

A MODEL

o offer relation
caling out to at
edictable perfo
tributed. That
n directly read
to be stored o

strict the datab
s.
gical database

keyless or keyed
ver database. In
oice of keys f
eyed, then all
lled the parti
yed table group
rtitioning key i

L Server's data

not be a uni
pens to be a u

a unique key of
need not be th

e rows of the ta
able is a compo
l rows in a tabl
For example,
the first two
SQL Server r

able group. If t
an read and w

here are two w
t scales out. On
in multiple tab

vers related wo

nal access to v
least hundreds

ormance, we w
is, we want all

ds and writes
n a single serv
base schema a

e is called a ta
d. A keyless ta
n particular, th
for its tables.
of its tables m
itioning key.
p with two tab
is (Customer) I

model

ique key of e
unique key of
f the Orders tab
he key of the cl
able. For exam
osite key [Id, O
le group that h
, in Figure 1,
 rows of Ord

requires that ea
the table group

write rows of o

ways one can bu
ne way is to h

ble groups, wh

ork,

very
s of

want
l of
(as

ver.
and

able
able
here

By
must

For
les,
Id.

ach
the

ble.
lus-

mple,
Oid].
ave
the

ders
ach
p is
only

uild
ave

here

each tab
effect, t
partition
referring
second w
so that C

We s
data tha
Given th
table gr
group is
unit is
Server r
for two-

Our d
phase c
perform
blocked
uncertai
acknow
notified
the tran
decision
are una
grow to
indepen
introduc
random
This ov
predicta

A que
group w
that the
executio
reads be

Durin
the requ
supporti
found k
with th
example
reviews
schema
MovieID
key. If U
write a t
one tha
transact
found tr
only on
reviews)
movie’s
need no
execute
query co
many d

ble group can
the application
ning data into
g to the table
way is to desi
Cloud SQL Se
say that the co
at can be read
he above requ
roup is the row
s the whole ta
always fully c
running on one
-phase commit
decision to cre
commit was

mance. First,
d if the coor
inty period,
ledged having

d that the transa
nsaction, the sy
n (i.e., a guess
attractive, espe
o a large sc

ndent applica
ces a large num
distribution p

verhead can b
able performan
ery can execut

with an isolatio
query reads f

on of different
eyond a consist
ng the initial de
uirements of
ing or develop

keyed table gro
his restriction
e, a movie re
, which is a m

could repre
D, review) wi
UserID is the p
transaction tha

at updates all
tion cannot spa
ransactional ac
ne direction (
). In the oth

s reviews), only
ot execute as A

with loose c
ould be decom

different row g

fit comfortabl
n takes respon
o separate tab
e groups in th
ign the databas
erver performs
onsistency unit
d and written
irement, the co
w group, whi
able group. Ea
contained in a
e machine. He
t.
eate an executio
driven by tw
a participant

rdinator fails
that is, a

prepared the t
action committ
ystem may ne
s) or operator i
ecially in a sy
cale and to h
ations. Secon
mber of messag
pattern and hen
be significant,
nce.
te on multiple
on level of re
from different
transactions.

tency unit are n
esign of Cloud
numerous Mi

ping web-based
oups to be acce

is many-to-
eview applicat
many-to-many
esent this by
ith UserID-M

partitioning key
at accesses all o
of the review

an different Us
ccess to the rel
(e.g., from u

her direction (
y queries need
ACID transacti
consistency gu
mposed to exec
groups, or a

ly on a single
sibility for sca

ble groups an
he application
se as a keyed
the scaleout au

t of an object i
by an ACID

onsistency uni
le that of a k

ach copy of a
a single instan
ence, there is n

on model that
wo factors, bl

in two-phas
during the t

after the in
transaction and
ted or aborted.
ed to resort to
intervention. B
ystem that is
host a large
nd, two-phas
ges that follow
nce are not eas

making it ha

partitions of a
ead-committed.

partitions may
Transactionall
not supported.

d SQL Server,
icrosoft group
d applications.
eptable. The m
-many relation
tion relates us

relationship. A
y MovieRevi
ovieID as the
y of the table, t
of a user’s revi

ws of a movie
serID’s). In suc
ationship to be
ser to the us
(i.e., from mo

d to be supporte
ions. That is,

uarantees. For
cute independe
materialized v

machine. In
aling out by

nd explicitly
n code. The
table group,
utomatically.
is the set of
transaction.

t of a keyed
keyless table

consistency
nce of SQL
never a need

avoids two-
locking and
se becomes
transaction’s
stance has
d before it is
 To unblock

o a heuristic
Both choices

intended to
number of

se commit
w a relatively
sily batched.
ard to offer

keyed table
. Thus, data
y reflect the
ly consistent

we gathered
s that were
All of them

main problem
nships. For
sers to their
A relational
iew(UserID,
e compound
then one can
iews, but not

(because a
ch cases, we
e required in
ser’s movie
ovie to the
ed, and they
a query can
example, a

ently against
view of the

1256

relationship could be created that is keyed on MovieID and is
refreshed only periodically.

B. Physical Data Model

At the physical level, a keyed table group is split into
partitions based on ranges of its partitioning key. The ranges
must cover all values of the partitioning key and must not
overlap. This ensures that each row group resides in exactly
one partition and hence that each row of a table has a well-
defined home partition.

In the rest of this paper, unless otherwise noted, we use the
term partition to refer either to a partition of a keyed table
group or to an entire keyless table group.

Partitions are replicated for high availability. We therefore
say that a partition is the failover unit. Each replica is stored
on one server. Since a row group is wholly contained in one
partition, this implies that the size of a row group cannot
exceed the maximum allowable partition size, which is at
most the capacity of a single server.

Replicas of each partition are scattered across servers such
that no two copies reside in the same “failure domain,” e.g.,
under the same network switch or in the same rack. Replicas
of each partition are assigned to servers independently of the
assignment of other partitions to servers, even if the partitions
are from the same table group. That is, the fact that replicas of
two partitions are stored on the same server does not imply
that other replicas of those partitions are co-located on other
servers.

For each partition, at each point in time one replica is
designated to be the primary. A transaction executes using the
primary replica of the partition (or simply, the primary
partition) that contains its row group and thus is non-
distributed. The primary replica processes all query, update,
and data definition language operations. It ships its updates
and data definition language operations to the secondaries
using the replication mechanisms described in Section IV. The
system currently does not allow (potentially stale) reads of
secondary replicas, though it would be a simple change if
additional read bandwidth is required.

Since a transaction executes all of its reads and writes using
the primary partition that contains its row group, the server
that directly accesses the primary partition does all the work
against the data. It sends update records to the partition’s
secondary replicas, each of which applies the updates. Since
secondaries do not process reads, each primary has more work
to do than its secondaries. To balance the load, each server
hosts a mix of primary and secondary partitions.

On average, with n-way replication, each server hosts one
primary partition for each n-1 secondary partitions. Obviously,
two replicas of a partition are never co-located. Figure 2
illustrates a possible deployment of four logical partitions PA,
PB, PC, and PD of table P, each of which has a primary, e.g.
PAP, and two secondaries, e.g., PAs1, and PAs2. Each server
hosts one primary and two different secondary partitions.

Another benefit of having each server host a mix of

primary and secondary partitions is that it allows the system to
spread the load of a failed server across many live servers. For
example, suppose a server S hosts three primary partitions PE,
PF, and PG. If S fails and secondaries for PE, PF, and PG are
spread across different servers, then the new primary partition
for PE, PF, and PG can be assigned to three different servers.

Since some partitions may experience higher load than
others, the simple technique of balancing the number of pri-
mary and secondary partitions per node might not balance the
load. The system can rebalance dynamically using the failover
mechanism to tell a secondary on a lightly loaded server to
become primary and either demoting the former primary to
secondary or moving the former primary to another server.

A keyed table group can be partitioned dynamically. If a
partition exceeds the maximum allowable partition size (either
in bytes or the amount of operational load it receives), it is
split into two partitions. To do this quickly, the design allows
for the possibility of splitting partitions dynamically using
existing replicas. For example, suppose partition A’s primary
replica is on server X, and its secondaries are on servers Y and
Z. Then to split A into two partitions A1 and A2, each replica
is split. For good load balancing, the replicas can take on
different roles. For example, A1 on X may be designated the
primary with Y and Z holding secondaries, and A2 on Y is
designated the primary with X and Z holding secondaries, all
without moving any data between servers.

Given that update rates may vary between partitions,
dynamic reassignment of the primary and secondary roles may
be needed. Like partition splitting described above, the design
allows for this to be done without any data movement. One
simply tells the global partition manager that a primary replica
at the busy server is now a secondary, while a secondary for
this partition at another server is now the primary. This
transition needs to be made “between transactions,” which
means that transactions executing on the primary in the
original deployment need to commit or abort before one of the
secondaries takes on the role of primary. Additional replicas
of partitions can be built at less-busy servers at leisure to aid
in this process.

III. SYSTEM ARCHITECTURE

A SQL Server instance is a process running SQL Server. A
SQL Server instance can manage many independent databases.
However, in Cloud SQL Server, all of the user databases
managed by a SQL Server instance are stored in one database.
Each user database U is a sub-database of the instance’s
database and is isolated from all other user databases. The

PBs1

PCs1

PAp

PAs1

PDs1

PBp

PAs2

PCs2

PDp

PBs2

PDs2

PCp

Server Server Server Server

Figure 2 Load balancing primary and secondary replicas

1257

sub-database contains the partition replicas of U that are
stored at that instance, plus U’s schema information.
Supporting multiple virtual databases in a single SQL Server
instance saves on memory for internal database structures in
the server and enables the databases to share a common
transaction log, which improves performance.

To attain high availability, a large-scale distributed system
needs a highly-reliable system management layer that, among
other things, maintains up/down status of servers, detects
server failures and recoveries, and performs leadership
election for various roles in a cluster. The layer used by Cloud
SQL Server, called the distributed fabric, implements these
capabilities using a distributed hash table (see Figure 3). The
distributed fabric runs as a process on every server that runs a
SQL Server instance. It is a distinct component that is
currently being used for other services at Microsoft. It is a
major system in its own right, many of whose details are
outside the scope of this paper.

Figure 3 Cloud SQL Server layers

There is a highly-available global partition manager that
maintains a directory of information about partitions. For each
partition P, it knows the key range that defines P. And for
each replica R of P, it knows R’s location and its state, such as
whether it is the primary, a secondary, a former primary or
secondary (in a past life), becoming primary, being copied, or
being caught up. The set of operational replicas of a partition
is called a configuration.

When a server fails, the distributed fabric reliably detects
the server failure and notifies the global partition manager.
The global partition manager reconfigures the assignment of
primary and secondary partitions that were present on the
failed server. When a server recovers, it announces its
presence to the global partition manager along with a
summary of the state of its replicas. Using this information,
the global partition manager can decide whether to refresh,
replace, or discard them. Section IV explains the handling of
replica failures and recoveries, including those of the global
partition manager.

Some failures are planned, notably upgrades of Cloud SQL
Server or an application that uses it. The infrastructure and
deployment services layer is responsible for upgrades and
other activities of the physical machines within a cluster. It
loads the initial software image onto a machine based upon its
specific role in the cluster. The roles include: front end
machines, which handle protocol activity; database nodes,
which manage the cluster data; and cluster infrastructure roles,
which perform global state management, operational data
gathering and processing, and other cluster-specific tasks. The
infrastructure and deployment services also run various
workflows in response to requests from the distributed fabric
such as node restart, shutdown, and software reimage.

Upgrades are performed on an upgrade domain, which is a
subset of the servers in a failure domain. The upgrade process
begins by sending a request to the global partition manager to
determine whether taking down each server in the domain will
make a partition unavailable, because the partition will have
too few replicas. For example, suppose a partition normally
has three replicas but currently only two are active. Since
taking down one of the two replicas would cause a quorum
loss, an upgrade of the replica’s server is delayed. If the server
does not contain a partition whose loss would degrade the
partition’s availability, then the global partition manager
allows the server to be upgraded. For all upgradable servers in
the upgrade domain, the system management layer is invoked
to take down the server, install the upgraded software, and
activate it.

A well-designed upgrade should, of course, allow existing
applications to run without modification. That is, it should be
backward compatible. In addition, the upgraded software must
be able to interoperate with its previous version, so it can run
correctly during the upgrade process, when the system has a
mix of upgraded and non-upgraded servers.

Typically, users are prevented from using the new features
of the upgraded version until all servers have been upgraded.
Thus, upgrades have two-phases: the first phase rolls out the
code that understands the new protocols and features and the
second phase actually enables them.

An instance of Cloud SQL Server typically manages
multiple disks, each of which is private to that instance. If one
of the instance’s disks fails, the instance is regarded as having
failed. Currently, each server runs one instance, but the system
is designed to allow multiple instances per server and multiple
databases per instance.

The system is accessed using a protocol gateway that
enables client applications to connect to Cloud SQL Server.
The protocol gateway supports the native wire protocol of
SQL Server. It is responsible for accepting inbound database
connection requests from clients and binding to the node that
currently manages the primary replica. It coordinates with the
distributed fabric to locate the primary and renegotiates that
choice in case a failure or system-initiated reconfiguration
causes the election of a new primary. It also masks some
failure and reconfiguration events from external clients by
renegotiating internal sessions while maintaining the protocol
session state between the client and protocol gateway.

Infrastructure and Deployment Services

Distributed Fabric

Database Engine (a SQL Server Instance)

Protocol Gateway

Client
Application

Cloud SQL Server

Global Partition
Manager

1258

IV. LOGGING AND REPLICATION

A. Replica Algorithm

In this section, we describe the processing of updates to
replicas during normal operation. Section IV.B covers some
design details, and Section IV.C covers failure handling.

The propagation of updates from primary to secondary is
shown in Figure 4. A transaction T’s primary partition
generates a record containing the after-image of each update
by T. Such update records serve as logical redo records,
identified by table key but not by page ID [13]. These update
records are streamed to the secondaries as they occur. If T
aborts, the primary sends an ABORT message to each
secondary, which deletes the updates it received for T. If T
issues a COMMIT operation, then the primary assigns to T the
next commit sequence number (CSN), which tags the
COMMIT message that is sent to secondaries. Each secondary
applies T’s updates to its database in commit-sequence-
number order within the context of an independent local
transaction that corresponds to T and sends an
acknowledgment (ACK) back to the primary. After the
primary receives an ACK from a quorum of replicas
(including itself), it writes a persistent COMMIT record
locally and returns “success” to T’s COMMIT operation.

A secondary can send an ACK in response to a transaction T’s
COMMIT message immediately, before T’s corresponding
commit record and update records that precede it are forced to
the log. Thus, before T commits, a quorum of servers has a
copy of the commit. If servers are unlikely to experience
correlated failures (e.g., because they are in different data
centers), then this provides a satisfactory degree of fault
tolerance. If tolerance of correlated server failures is needed,

then each secondary could also be required to flush T’s
commit record to disk before sending an ACK. Currently,
SQL Azure takes the latter approach.

Updated records are eventually flushed to disk by primaries
and secondaries. Their purpose is to reduce the amount of
catching up that a server needs to do should it fail and recover.

Updates for committed transactions that are lost by a
secondary (e.g., due to a crash) can be acquired from the
primary replica. The recovering replica sends to the primary
the commit sequence number of the last transaction it
committed. The primary replies by either sending the queue of
updates that the recovering replica needs or telling the
recovering replica that it is too far behind to be caught up. In
the latter case, the recovering replica can ask the primary to
transfer a fresh copy.

A secondary promptly applies updates it receives from the
primary server, so it is always nearly up-to-date. Thus, if it
needs to become the primary due to a configuration change
(e.g., due to load balancing or a primary failure), such re-
assignment is almost instantaneous. That is, secondaries are
hot standbys and can provide very high availability.
Secondaries can also be used as read-only copies (i.e., not
within update transactions). Although their isolation level is
only read-committed, the schema information for sub-
databases on secondaries is transactionally consistent.

B. Replication Design Details

In the beginning of Section IV-A, we said that the primary
sends after-images, rather than redo log records that refer to
physical offsets on pages. The benefit of this approach is that
partition replicas do not need to be physically identical. This
avoids the need to align the disk allocation of replicas of a
partition between servers. It also enables certain optimizations.
For example, in the partition-splitting strategy of Section II-B,
a partition can be logically split without being physically split.
In this case, a page with keys at the boundary of the two
partitions might have records from both partitions. Two
different replicas might serve as primary for those two
partitions. If updates referred to physical addresses on the
page, then updates generated for different logical partitions
might collide on the same physical address, which would
corrupt the page; for example, the updates might both insert a
record into the same empty page slot.

After-images of both clustered and non-clustered indices
are logged and sent. This speeds up processing at the
secondaries in two ways. First, it avoids having to push each
update on a secondary through the upper layers of the
relational engine, which determines which non-clustered
indices are affected by an update to a clustered index. And
second, it avoids having to perform a read at a secondary
before applying each update.

Much effort was invested in identifying hardware failure
modes and working around them. For example, after
discovering faulty behavior of some network interface cards,
it was decided to improve error detection by signing all
messages. Similarly, after observing some bit-flips on disks,
we enabled checksums. A third example is SATA drives that
acknowledge a write-through as soon as the data is in the

Primary

Secondary

T1: update(x)

T0: update(y)

T1: update(z)

T1: commit(CSN=1)

T0: update(w)

T1: Start transaction;
 update(x);
 update(z);
 Commit;

T1: ack-commit

T0: commit(CSN=2)

T0: Start transaction;

T0: ack-commit

Figure 4 Primary-to-secondary replication

1259

drive’s cache. Additional work was needed to guarantee that
log handshakes are honored, such as flushing the cache at
critical points in the execution.

In Section II-B we said the same replication model is used
for both data manipulation and data definition operations. This
simplifies the handling of schema changes. For example, it
avoids the need for special logic to synchronize updates with
schema changes that the updates depend on.

As another example, a job service is used to deploy schema
changes to all partitions in a keyed table group. This service
applies the schema change to each partition’s primary. The
replication mechanism ensures that the schema change is
eventually applied to all replicas. Since some primaries may
be temporarily unreachable, the job service tracks which
partitions have processed the schema change and periodically
retries changes to partitions that have not yet been updated.
Each partition stores its current schema version, so the schema
change script is made idempotent by checking the schema
version before applying the changes.

C. Coping with Replica Failures

We describe the basic approach to failure handling by
walking through some of the major scenarios. The protocol
details are quite complicated and are not covered here.

Since only a quorum of replicas needs to send an ACK in
response to a commit request, availability is unaffected by a
single secondary failure. In the background, the system simply
creates a new replica to replace the failed one. With a large
enough replica set, multiple secondaries can fail concurrently
without affecting availability.

Cloud SQL Server is designed for a deployment that has
enough bandwidth and computing power to accommodate the
complete rebuild of a replica. The global partition manager
chooses a lightly-loaded server that will host the new replica,
tells it to copy the primary replica to that server, and updates
its directory to reflect this change.

If a replica fails for only a short time and then recovers, it
can be caught up. Its server asks an operational replica to
send it the tail of the update queue that the replica missed
while it was down. This saves on both bandwidth and
computation, and usually shortens the replica’s recovery time.

If a primary replica fails, then a secondary must be
designated as the new primary and all of the operational
replicas must be reconfigured according to that decision. The
first step in this process relies on the global partition manager
described in Section III. It chooses a leader to rebuild the
partition’s configuration (i.e., operational replica set). The
leader attempts to contact the members of the entire replica set.
If the leader cannot contact a quorum of the pre-failure replica
set, the system declares a “permanent quorum loss” and
requires an intervention to proceed. Otherwise, since it can
contact a quorum of them, the recovery protocol can ensure
that there are no lost updates. The leader determines which
secondary has the latest state. That most up-to-date secondary
propagates updates that are required by the secondaries that
are less up-to-date.

Suppose that before the primary failed, a transaction’s
updates reached at least one secondary but less than a quorum.

Therefore, the transaction did not commit before the failure
and the client did not receive a notification of the transaction’s
outcome. Suppose a secondary that received those updates
survives in the new configuration. Then as described above,
during recovery the transaction’s updates are propagated to all
the secondaries in the new configuration. Thus, the transaction
is committed before the service is open to the public, albeit
with a different quorum than the one that existed while it was
executing. However, the client still does not receive a notifica-
tion of completion, because the client is not communicating
with the new primary. This is a normal behavior that occurs in
transaction mechanisms when a communication failure is
encountered during the processing of a commit request. The
problem can be avoided by adding a persistent, transactional
queuing system on top, which guarantees the delivery of
transaction outcomes ([4], Chapter 4).

Suppose a configuration has N replicas. After a replica
failure is detected, and before another replica is ready to
replace it, the global partition manager “downshifts” the
replica set for the partition to be N-1. This improves the fault
tolerance of the partition while it is operating with fewer
replicas than normal. For example, suppose N=3 and a replica
fails. Then the global partition manager downshifts to N=2,
with a write-quorum of 2 and read-quorum of 1. Thus, if
another replica fails before the third replica recovers or is
replaced, then the system knows the remaining replica is
consistent and up-to-date (something it would not have known
if N were still 3). It can therefore rebuild replicas from the
remaining replica without declaring a quorum loss.

The preceding discussion assumes there is a unique “most
up-to-date” secondary. The global partition manager ensures it
can identify such a secondary by totally ordering the quorums
of each partition, P. It assigns an epoch number to each
configuration of P that is one greater than the epoch number
of the previous configuration of P. Commit records in the log
are identified by both a commit sequence number and an
epoch number. Among the replicas in a replica set with the
highest epoch number, the one with the highest commit
sequence number has the latest state. This is the replica
chosen as most-up-to-date after a replica set is reconfigured.

The global partition manager’s database replicas are treated
just like other replicated partitions, with one exception. If the
primary replica of the global partition manager fails, the
distributed fabric chooses a new primary from the set of
global partition manager replicas. It uses an implementation of
Paxos [11], thereby ensuring the instances of the global parti-
tion manager itself are totally ordered into epochs. Current
deployments have seven replicas of the global partition
manager’s partitions, five replicas of some critical application
metadata, and three replicas of user table-group partitions.

V. APPLICATIONS

Cloud SQL Server is currently used as the database system for
Exchange Hosted Archive (EHA) and SQL Azure.

A typical customer of EHA is an organization, which uses
EHA for archiving messages and ensuring compliance, for
example, by implementing retention policies. EHA takes an

1260

em
Sp
co
em
M
SQ
cu
tho
ow

pa
pa
co
kn
me

do
co
wh
va
Fo
se
co
If
wo

av
SQ
tab
Th
if
an
up
th
us
th
ex

M
en
pe

de
OL
tes
sta
ru
tha
op
ha
CP
pe
pu

ru

mail stream
pecifically, th
onfigured to fo
mail, instant m

Microsoft email
QL Server and
urrently stores
ousand servers

wn cluster of m
To attain this

artitioning. Som
artitions. The p
ontent hash of t
nows in which
essage stream
EHA makes

ocument disco
ompanies are s
hen the corpor
alue of building
or example, it
lection, aggre

onstraints. It al
EHA were bu

ould have to be
SQL Azure

vailable on the
QL Server for
ble groups, so
his enables the
keyed table gr

n ordinary set
pgrades, since
e one-and-onl

sing the job ser
e implementat

xtended to mak

The Cloud SQ
Microsoft SQL
ngines are ne
erformance to b

To test this,
efined by the
LTP performan
sts to require
andard benchm

un in data cent
an configuratio

ptimal perform
ave ten times
PU. Our resu
erformance co
ublished TPC-C

We compared
unning on the

from any m
he customer’s
rward a copy o
essage, voicem
 address. EHA
offers extensiv

s hundreds o
s. The system

machines.
s degree of sc
me customer d
partitioning ke
the email mess
partition it wil
by partition fo
heavy use of

overy during l
sued daily) an
rate email serv
g web-scale da
creates many

egation, full-
lso makes exte
uilt on a key-va
e implemented

is a multi-t
 Windows Az

r storage. In it
 each user dat

e system to offe
roups were use
t of SQL tab
data definitio

ly primary rep
rvice. To suppo
tion of many S
ke partitions tra

VI. PERF

QL Server eng
Server pack

early the sam
be very similar
we used a va
Transaction P

nce [17]. The b
much less m

mark, to more c
ters for cloud
ons used for o

mance or price
as much RAM
ults shown he
omparisons, b
C results.
d the performan

same hardwar

messaging sy
s message tr
of each incom

mail, etc.) to a
A stores the m
ve query functi
f terabytes o

m supports each

cale-out, EHA
databases have
ey includes ten
sage. So given
ll land. Therefo
r faster bulk lo

f SQL Server
legal proceedi

nd for emergen
ver is down. T
atabase storage
y non-clustered
text queries,

ensive use of s
alue store, all o

d by the applica
tenant SQL
ure platform.
ts first release
tabase must fit
er richer SQL
ed, since a part
les. It also s
n operations c
plica of a tab
ort multiple ke
SQL operation
ansparent.

ORMANCE

ine is a modifi
aged product.
me, we wou
r too.
ariant of TPC
Processing Co
benchmark wa

memory and d
closely match t
computing. It

official TPC-C
e-performance,
M and 100-500
ere provide me
but are not

nce of the two
re: a server m

ystem as inp
ransfer agent

ming message (i
customer-spec

messages in Clo
ionality on top
on more than
h customer on

uses table-gro
e over a thousa
nant, time, an

n a message, EH
ore, it can sort
oading.
functionality,

ings (many la
ncy email serv

This highlights
e on a SQL eng
d indexes. It u

and referen
stored procedur
of these functi
ation.
database serv
It too uses Clo
e, it uses keyl
t in one partiti
functionality th

tition behaves l
implifies sche
can be applied
le group with

eyed table grou
ns will need to

fied version of
 Since the c

uld expect th

-C, a benchm
uncil to meas

as modified in
disk I/O than
the configurati
t is very differ

C results tuned
, which typica
0 disk drives
eaningful relat

comparable

software syste
machine with t

put.
is

i.e.,
cific
oud
. It

n a
n its

oup
and

nd a
HA
the

for
arge
vice
the

gine.
uses
ntial
res.
ons

vice
oud
less
ion.
han
like
ema
d to
hout
ups,
o be

the
core
heir

mark
sure
our
the
ons
rent
for

ally
per
tive

to

ems
two

dual-cor
drives, r
typical o
cloud co

In all
database
throughp
was run
average

We ra
to factor
case, th
than tha
perform
source
outside
monitor
minutes
normal
product
code op
engine b

Figure 5

User
throughp
time for
the mai
threads
consequ
nearly d
Server, w

We r
overall t
as above
where e
were on
from th
power a
and seco
two top-
We aga

re 2.33 GHz
running Wind
of the kinds of
omputing.
l tests that we
e and one sto

hput was reach
n for about two
 performance d
an a TPC-C wo
r out the effec

he throughput
at of the SQL

mance differenc
is the activit
of the databas

rs, watchdogs,
s, all of which
service, and n
during the ben

ptimizations th
but not yet to th

5 Relative throu Server

connections
hput. When too
r a connection
in bottleneck.

for its bac
uence, the SQ
double the num
with each syste

ran a second te
throughput. W
e, first with ju

each replica ra
n different rac

he failure of a
and networking
ondary had to
-of-rack switch

ain ran TPC-C

processors, 8G
dows Server 20
f machines that

e report here,
ores the log. I
hed in 5-10 min
o hours. We rep
during the stea
orkload with a

ct of the small
of Cloud SQL
L Server prod
ce comes from
ties performed
se engine itsel
 and traces, p

h Cloud SQL
none of which
nchmark. The
at have been a
he Cloud SQL

ughput of SQL

are a scarce
o many connec

to acquire a w
Cloud SQL S

ckground proc
QL Server prod
mber of user con

em executing a
est to quantify

We used the sam
ust a primary, a
an on a separat
cks, a configu

a rack (whose
g). Thus, a me
pass through

hes and a switc
using a small

GB of RAM,
008. This conf
t are run in data

one hard driv
In each test,
nutes, after wh
port on behavi

ady-state period
a database that
disk configura

L Server was
duct (see Figu
m two main so
d by Cloud S
f. These activi
plus a backup
Server runs as
h run on the
second source
applied to the

L Server code.

L Server and C

resource tha
ctions are prese
worker thread
Server uses m
cessing activi
duct was able
nnections than
at its peak thro

y the impact of
me hardware co
and then with
te machine. Th
uration that is

machines sha
essage betwee
three network
ch that connec
l database size

and 4 hard
figuration is
a centers for

ve stores the
steady state
hich the test
ior based on
d.
fits in RAM,

ation. In this
8.4% lower

ure 5). This
ources. One
SQL Server
ities include

p every five
s part of its
SQL Server
is low-level
SQL Server

Cloud SQL

at can limit
ent, the wait
can become

many worker
ities. As a
e to support
n Cloud SQL
oughput.
f replicas on
onfiguration
secondaries,
he machines
solates them
are common
en a primary
k switches—
cts the racks.
e that fits in

1261

RAM, to eliminate the disks as a source of delay except for
handshakes with the log.

With two secondaries (i.e., three replicas in Figure 5),
throughput dropped by 25.8% compared to a system with a
primary and no secondaries (i.e., one replica in Figure 5). This
drop in throughput was due to delays introduced by the net-
work, by waits for worker threads, and by handshaking with
the logs on the secondaries. The addition of a third secondary
had a negligible impact; it reduced throughput by only an
additional 0.4% beyond the reduction using two secondaries.

We ran a third experiment to show the effect of balancing
the load of primary and secondary partitions. In the first
configuration (Configuration 1 in Figure 6), we ran three
primary partitions on one machine. Two other machines ran
secondaries for each of the partitions. In the second
configuration, each machine ran one of the primaries and two
of the secondaries (Configuration 2 in Figure 6). Each
machine had two 4-core 2.1 GHz processors and 30GB of
RAM running Windows Server 2008, with separate 10,000
rpm 300GB SATA drives to store the database and log.

Configuration 1 - Concentrated Configuration 2 - Balanced

Machine
1

Machine
2

Machine
3

 Machine
1

Machine
2

Machin
e 3

P1 S1 S1 P1 P2 P3
P2 S2 S2 S2 S1 S1
P3 S3 S3 S3 S3 S2

Figure 6 Test configurations

To compare these configurations, we ran TPC-C with a 5
GB database per partition. The three partitions comfortably fit
in RAM, so the vast majority of I/O on the database disks was
for writes (about 97%). In this case, the throughput of
configuration 2 was 7.2% higher than that of configuration 1.
As expected, resource utilization in configuration 2 is more
balanced than in configuration 1. Per-node processor
utilization in configuration 2 is 29%, whereas in configuration
1, machine 1’s utilization is 35% vs. 20% for machines 2 and
3. Configuration 2 shows a small improvement in disk I/O
balance as well.

In a final set of tests, we manually killed a primary copy
and measured the elapsed time until the first transaction was
able to execute on the newly elected primary. In 95% of the
runs, failover time was less than 30 seconds. In the remaining
5% of the runs, the failover time was less than 60 seconds.

A performance study of transaction processing services in
the cloud was published in [11]. The paper reports
measurements of the TPC-W benchmark [18] for a variety of
cloud-based services, including SQL Azure, in February 2010.
SQL Azure was tied for the highest throughput reported, and
had the lowest cost for medium to large workloads.

VII. RELATED WORK

At its core, Cloud SQL Server is a parallel database system
that uses data partitioning on a shared-nothing architecture.
The benefits of this architecture were demonstrated in the
1980s in many such systems, such as Bubba, Gamma, Tandem,

and Teradata. DeWitt and Gray [10] provide an excellent
summary of that work.

We focus here on recent papers describing commercial
systems with similar goals to Cloud SQL Server:
Bigtable/Megastore, Dynamo, and PNUTS. All of these
systems are intended to scale out to a large number of servers
with very high availability.

Google’s Bigtable offers atomic read and rite operations on
rows of a single table [6]. A table is partitioned into tablets,
which is the unit of distribution and load balancing. Rows,
tables and tablets in Bigtable are analogous to row groups,
table groups, and partitions in Cloud SQL Server. In Bigtable,
tablets and update logs are stored in the Google File System
and hence are replicated. It uses the Chubby lock manager for
a similar role to the global partition manager in Cloud SQL
Server, although the underlying mechanisms of Chubby and
the global partition manager are rather different. Column
values in Bigtable are timestamped, to capture version history.
Although SQL Server, and hence Cloud SQL Server, does not
currently offer multiversion databases, it does support snap-
shot isolation. Hence, a query within a partition can return a
consistent result and be unaffected by concurrent updates.

Google’s Megastore adds transactions to Bigtable [1][2]. In
Megastore, a transaction can read and write entities in an
entity group, which is a set of records, possibly in different
Bigtable instances, that have a common prefix of their primary
key. An entity group corresponds to a row group in Cloud
SQL Server. Megastore uses optimistic concurrency control,
whereas Cloud SQL Server uses locking. Megastore uses a
per-entity-group replicated transaction log to ensure atomicity
and durability and a Paxos protocol to handle recovery from
failures. By contrast, Cloud SQL Server’s log is shared by all
table groups managed by a server instance. Megastore also
offers declarative schema and non-clustered indices.

Amazon’s Dynamo offers atomic read and write operations
on key-value pairs [9]. The value is an unstructured payload.
So there is no schema or table abstraction. It uses a multi-
master replication algorithm based on vector clocks, rather
than log-based replication as in Cloud SQL Server. This leads
to a weaker consistency model, where an application can read
different values from different copies. This choice offers high
write-availability by allowing a write to update less than the
whole replica set and hence requires a read quorum greater
than one. But there is a cost to application programmers, who
need to cope with value skew between replicas.

Like Bigtable, Yahoo!’s PNUTS offers atomic read and
write operations on rows of a single table [7]. For update
durability, it uses the Yahoo! Message Broker to send update
log records to a replicated log. It partitions the table by key
value. For each key value, it uses a master row to totally order
updates to that row. This is similar to the storage system for
Microsoft Live services [3], but is unlike Bigtable or Cloud
SQL Server. Although PNUTS does not support multi-record
transactions, it has an option where a write operation can
depend on a particular earlier version of the row. This enables
the implementation of an ACID transaction that reads and
later writes the same row.

1262

A new research project at Stanford, called RAMClouds,
proposes a partitioned main memory database for large-scale
web services [16]. Although the design is a work-in-progress,
the paper describes mechanisms that are similar to Cloud SQL
Server’s, such as replicating the update log and waiting till
replicas respond before reporting completion of the update.

VIII. CONCLUSION

We have described Cloud SQL Server, a distributed storage
system for web-scale applications based on Microsoft SQL
Server. It requires that a table group (i.e., a user database) is
either keyless, meaning that its tables are co-located, or it is
keyed, meaning that its tables have a common partitioning key
and that every update transaction reads and writes records
with a single value of that partitioning key. This ensures that
every transaction can be executed on one server. A keyed
table group is partitioned by value ranges of the partitioning
key and each partition is made highly available by primary-
copy replication. The system is currently being used as the
storage engine for Microsoft’s Exchange Hosted Archive and
SQL Azure.

Previous approaches have built custom storage systems for
web applications and have gained some advantages from non-
ACID execution models. Cloud SQL Server demonstrates
that a scalable and highly-available storage system for web
applications can be built by extending a classical relational
database system, thereby offering users a familiar
programming model and the functionality of a powerful SQL
engine. It is the first such commercial system that we know of.

There is much room for future research in this area. The
design of Cloud SQL Server was heavily influenced by that of
SQL Server, on which it is built. Other mechanisms might be
preferable when building on different database infrastructure,
including storage systems that do not support transactions [13].
Another direction is to develop techniques to analyze
applications to (semi-)automatically partition them, such as
the one proposed in [8]. Even better would be an architecture
that drops the partitioning requirement yet still obtains
satisfactory performance with a sufficiently low probability of
blocking due to two-phase commit. With or without
partitioning, the system needs to be self-monitoring and self-
managing. For example, it should be able to monitor
fragmentation and opportunistically defragment. Support for
distributed queries is yet another challenge, especially,
balancing the load so that queries and updates meet a given
service level agreement. In a multi-tenant environment, users
need to get the resources they paid for, while the system needs
to load balance users across servers. Part of the solution may
be defining the parameters of a service level agreement in a
way that can be supported with high probability. And of
course, energy efficiency is a growing concern. No doubt, as
more web-scale distributed storage systems are deployed,
many more research problems will emerge.

ACKNOWLEDGMENTS

We gratefully acknowledge the hard work of the entire
Cloud SQL Server, EHA, and SQL Azure teams who built
these systems and continue to improve upon them. In
particular, we thank Erik Cai and Henry Zhang for the
performance measurements included in Section VI.

REFERENCES
[1] R. Barrett, “Migration to a Better Datastore,”

http://googleappengine.blogspot.com/search?q=megastore

[2] P.A. Bernstein, Guest posting on James Hamilton’s blog, Perspectives,
about Google’s Megastore
http://perspectives.mvdirona.com/2008/07/10/GoogleMegastore.aspx

[3] P.A. Bernstein, N. Dani, B. Khessib, R. Manne, D. Shutt, “Data
Management Issues in Supporting Large-Scale Web Services,” IEEE
Data Eng. Bull. 29(4): 3-9 (2006)

[4] P.A. Bernstein, E. Newcomer, Principles of Transaction Processing,
Second Edition, Morgan Kaufmann, 2009.

[5] D. G. Campbell, G. Kakivaya, N. Ellis, “Extreme Scale with Full SQL
Language Support in Microsoft SQL Azure,” Proc. SIGMOD 2010, pp.
1021-1023.

[6] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M.
Burrows, T. Chandra, A. Fikes, R.E. Gruber, “Bigtable: A Distributed
Storage System for Structured Data”, ACM Transactions on Computer
Systems, 26(2): 4:1 - 4:26, 2008.

[7] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A.Silberstein, P.
Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, R. Yerneni, “PNUTS:
Yahoo!'s Hosted Data Serving Platform,” PVLDB 1(2): 1277-1288
(2008)

[8] C. Curino, Y. Zhang, E.P.C. Jones, S. Madden: Schism, “A Workload-
Driven Approach to Database Replication and Partitioning,” PVLDB
3(1): 48-57 (2010)

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati , A. Lakshman ,
A. Pilchin , S. Sivasubramanian , P. Vosshall , W. Vogels, “Dynamo:
Amazon's Highly Available Key-value Store”, Proc. 21st SOSP,
October 2007, pp. 205-220.

[10] D.J. DeWitt and J. Gray: Parallel Database Systems, “The Future of
High Performance Database Systems,” CACM 35(6): 85-98 (1992)

[11] D. Kossmann, T. Kraska, S. Loesing, “An Evaluation of Alternative
Architectures for Transaction Processing in the Cloud,” Proc. SIGMOD
2010, pp 579-590.

[12] L. Lamport, “The Part-time Parliament,” ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[13] D. B. Lomet, A. Fekete, G. Weikum, and M.J. Zwilling, “Unbundling
Transaction Services in the Cloud,” CIDR 2009.

[14] Microsoft Corp.: Microsoft SQL Azure.
http://www.microsoft.com/windowsazure/sqlazure/, and
http://msdn.microsoft.com/en-us/library/ee336279.aspx

[15] Microsoft Corp.: Microsoft Exchange Hosted Archive.
http://www.microsoft.com/online/exchange-hosted-services.mspx

[16] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D.
Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S.M.
Rumble, E. Stratmann, and R. Stutsman.:” The Case for RAMClouds:
Scalable High-Performance Storage Entirely in DRAM,” Stanford tech
report. http://www.stanford.edu/~ouster/cgi-bin/papers/ ramcloud.pdf

[17] TPC-C Benchmark, Transaction Processing Performance Council,
www.tpc.org.

[18] TPC-W 1.8 Benchmark, Transaction Processing Performance Council,
www.tpc.org, 2002

1263

