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Abstract— Cloud SQL Server is a relational database system 
designed to scale-out to cloud computing workloads. It uses 
Microsoft SQL Server as its core. To scale out, it uses a 
partitioned database on a shared-nothing system architecture. 
Transactions are constrained to execute on one partition, to 
avoid the need for two-phase commit. The database is replicated 
for high availability using a custom primary-copy replication 
scheme. It currently serves as the storage engine for Microsoft’s 
Exchange Hosted Archive and SQL Azure. 

I. INTRODUCTION 

Large-scale web applications generate classical database 
workloads consisting of transactions and queries. Although 
the required functionality is classical, the system-level 
requirements can be quite daunting. To handle heavy 
workloads, they need to scale out to thousands of servers. For 
low-cost data center operation, they need to run on 
inexpensive unreliable commodity hardware, yet they still 
need to be highly available. Since labor is a major cost, they 
need to automate system management functions, such as 
machine and disk failover, load balancing, and dynamic 
repartitioning of data. Moreover, they need to offer 
predictable, fast response time. 

These requirements on web applications imply the same set 
of requirements on the database system used by the 
applications. To meet these requirements, many providers of 
large-scale web services have developed custom record-
oriented storage systems to support their applications [6][7][8]. 
Given this research literature, one may be left with the 
impression that a custom record-oriented storage system is the 
only practical way to satisfy these requirements. 

Microsoft has taken a different approach to these 
requirements, namely to build its distributed storage system 
using its relational database system product, Microsoft SQL 
Server, as its core. It is the first commercial system we know 
of that takes this approach. The resulting system, which we 
call Cloud SQL Server, exposes much of SQL Server’s 
functionality. This includes aggregation, full-text queries, and 
referential constraints, views, and stored procedures—most of 
which are not supported by custom record stores. Thus, users 
of SQL Server can learn to use the system with only modest 
effort. Depending on how it is used, there are some 

functionality restrictions to satisfy the cloud requirements, 
which are described in Section II-A. 

One important capability of Cloud SQL Server is its 
support of ACID transactions. Although this is a standard and 
popular feature of relational database system products, it is not 
universally supported by record managers for web 
applications, such as Amazon’s Dynamo and Yahoo’s PNUTS. 
It is often argued that web-application developers do not need 
transactions and that a system that supports transactions will 
not scale, primarily due to the need for two-phase commit. 
Our experience is the opposite. Our users asked for 
transactions. To get transactions, they were willing to accept a 
constraint on schema structure that ensures transactions are 
non-distributed and hence do not need two-phase commit. We 
explain the constraint in the next section. 

To attain high availability on unreliable commodity 
hardware, the system replicates data. The transaction 
commitment protocol requires that only a quorum of the 
replicas be up. A Paxos-like consensus algorithm is used to 
maintain a set of replicas to deal with replica failures and 
recoveries. Dynamic quorums are used to improve availability 
in the face of multiple failures. Replication protocols are 
described in Section IV.  

We designed Cloud SQL Server in early 2006, and it was 
first deployed in mid-2009. It is currently used as the storage 
system for two large-scale web services: Exchange Hosted 
Archive [15], an e-mail and instant messaging repository that 
helps organizations manage retention, compliance, e-
discovery, and regulatory requirements; and SQL Azure [14], 
a relational database system offered as a service, as part of the 
Windows AzureTM computing platform.  

A high level view of Cloud SQL Server appeared in [5]. 
This paper extends [5] with details of the data model, replica-
tion and recovery protocols, applications, and performance 
measurements. To the best of our knowledge, it is the first de-
scription of a cloud-oriented scaleout version of a widely-used 
relational database product that supports ACID transactions.  

The paper is organized as follows. Section II describes the 
data model, including the constraints that ensure transactions 
are not distributed. Section III presents the overall system 
architecture. Section IV explains the approach to replication. 
Section V discusses applications. Section VI presents some 
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relationship could be created that is keyed on MovieID and is 
refreshed only periodically. 

B. Physical Data Model 

At the physical level, a keyed table group is split into 
partitions based on ranges of its partitioning key. The ranges 
must cover all values of the partitioning key and must not 
overlap. This ensures that each row group resides in exactly 
one partition and hence that each row of a table has a well-
defined home partition.  

In the rest of this paper, unless otherwise noted, we use the 
term partition to refer either to a partition of a keyed table 
group or to an entire keyless table group. 

Partitions are replicated for high availability. We therefore 
say that a partition is the failover unit. Each replica is stored 
on one server. Since a row group is wholly contained in one 
partition, this implies that the size of a row group cannot 
exceed the maximum allowable partition size, which is at 
most the capacity of a single server.  

Replicas of each partition are scattered across servers such 
that no two copies reside in the same “failure domain,” e.g., 
under the same network switch or in the same rack. Replicas 
of each partition are assigned to servers independently of the 
assignment of other partitions to servers, even if the partitions 
are from the same table group. That is, the fact that replicas of 
two partitions are stored on the same server does not imply 
that other replicas of those partitions are co-located on other 
servers. 

For each partition, at each point in time one replica is 
designated to be the primary. A transaction executes using the 
primary replica of the partition (or simply, the primary 
partition) that contains its row group and thus is non-
distributed. The primary replica processes all query, update, 
and data definition language operations. It ships its updates 
and data definition language operations to the secondaries 
using the replication mechanisms described in Section IV. The 
system currently does not allow (potentially stale) reads of 
secondary replicas, though it would be a simple change if 
additional read bandwidth is required. 

Since a transaction executes all of its reads and writes using 
the primary partition that contains its row group, the server 
that directly accesses the primary partition does all the work 
against the data. It sends update records to the partition’s 
secondary replicas, each of which applies the updates. Since 
secondaries do not process reads, each primary has more work 
to do than its secondaries. To balance the load, each server 
hosts a mix of primary and secondary partitions.   

On average, with n-way replication, each server hosts one 
primary partition for each n-1 secondary partitions. Obviously, 
two replicas of a partition are never co-located. Figure 2 
illustrates a possible deployment of four logical partitions PA, 
PB, PC, and PD of table P, each of which has a primary, e.g. 
PAP, and two secondaries, e.g., PAs1, and PAs2. Each server 
hosts one primary and two different secondary partitions. 

 

 
Another benefit of having each server host a mix of 

primary and secondary partitions is that it allows the system to 
spread the load of a failed server across many live servers. For 
example, suppose a server S hosts three primary partitions PE, 
PF, and PG. If S fails and secondaries for PE, PF, and PG are 
spread across different servers, then the new primary partition 
for PE, PF, and PG can be assigned to three different servers.  

Since some partitions may experience higher load than 
others, the simple technique of balancing the number of pri-
mary and secondary partitions per node might not balance the 
load. The system can rebalance dynamically using the failover 
mechanism to tell a secondary on a lightly loaded server to 
become primary and either demoting the former primary to 
secondary or moving the former primary to another server. 

A keyed table group can be partitioned dynamically. If a 
partition exceeds the maximum allowable partition size (either 
in bytes or the amount of operational load it receives), it is 
split into two partitions. To do this quickly, the design allows 
for the possibility of splitting partitions dynamically using 
existing replicas. For example, suppose partition A’s primary 
replica is on server X, and its secondaries are on servers Y and 
Z. Then to split A into two partitions A1 and A2, each replica 
is split. For good load balancing, the replicas can take on 
different roles. For example, A1 on X may be designated the 
primary with Y and Z holding secondaries, and A2 on Y is 
designated the primary with X and Z holding secondaries, all 
without moving any data between servers. 

Given that update rates may vary between partitions, 
dynamic reassignment of the primary and secondary roles may 
be needed. Like partition splitting described above, the design 
allows for this to be done without any data movement.  One 
simply tells the global partition manager that a primary replica 
at the busy server is now a secondary, while a secondary for 
this partition at another server is now the primary. This 
transition needs to be made “between transactions,” which 
means that transactions executing on the primary in the 
original deployment need to commit or abort before one of the 
secondaries takes on the role of primary. Additional replicas 
of partitions can be built at less-busy servers at leisure to aid 
in this process. 

III. SYSTEM ARCHITECTURE 

A SQL Server instance is a process running SQL Server. A 
SQL Server instance can manage many independent databases. 
However, in Cloud SQL Server, all of the user databases 
managed by a SQL Server instance are stored in one database. 
Each user database U is a sub-database of the instance’s 
database and is isolated from all other user databases. The 

PBs1

PCs1

PAp

PAs1

PDs1

PBp

PAs2 

PCs2 

PDp 

PBs2 

PDs2 

PCp 

Server Server Server Server

Figure 2 Load balancing primary and secondary replicas
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sub-database contains the partition replicas of U that are 
stored at that instance, plus U’s schema information. 
Supporting multiple virtual databases in a single SQL Server 
instance saves on memory for internal database structures in 
the server and enables the databases to share a common 
transaction log, which improves performance. 

To attain high availability, a large-scale distributed system 
needs a highly-reliable system management layer that, among 
other things, maintains up/down status of servers, detects 
server failures and recoveries, and performs leadership 
election for various roles in a cluster. The layer used by Cloud 
SQL Server, called the distributed fabric, implements these 
capabilities using a distributed hash table (see Figure 3). The 
distributed fabric runs as a process on every server that runs a 
SQL Server instance. It is a distinct component that is 
currently being used for other services at Microsoft. It is a 
major system in its own right, many of whose details are 
outside the scope of this paper. 

 

Figure 3 Cloud SQL Server layers  

There is a highly-available global partition manager that 
maintains a directory of information about partitions. For each 
partition P, it knows the key range that defines P. And for 
each replica R of P, it knows R’s location and its state, such as 
whether it is the primary, a secondary, a former primary or 
secondary (in a past life), becoming primary, being copied, or 
being caught up. The set of operational replicas of a partition 
is called a configuration. 

When a server fails, the distributed fabric reliably detects 
the server failure and notifies the global partition manager. 
The global partition manager reconfigures the assignment of 
primary and secondary partitions that were present on the 
failed server.  When a server recovers, it announces its 
presence to the global partition manager along with a 
summary of the state of its replicas. Using this information, 
the global partition manager can decide whether to refresh, 
replace, or discard them.  Section IV explains the handling of 
replica failures and recoveries, including those of the global 
partition manager.  

Some failures are planned, notably upgrades of Cloud SQL 
Server or an application that uses it. The infrastructure and 
deployment services layer is responsible for upgrades and 
other activities of the physical machines within a cluster. It 
loads the initial software image onto a machine based upon its 
specific role in the cluster. The roles include: front end 
machines, which handle protocol activity; database nodes, 
which manage the cluster data; and cluster infrastructure roles, 
which perform global state management, operational data 
gathering and processing, and other cluster-specific tasks. The 
infrastructure and deployment services also run various 
workflows in response to requests from the distributed fabric 
such as node restart, shutdown, and software reimage. 

Upgrades are performed on an upgrade domain, which is a 
subset of the servers in a failure domain. The upgrade process 
begins by sending a request to the global partition manager to 
determine whether taking down each server in the domain will 
make a partition unavailable, because the partition will have 
too few replicas. For example, suppose a partition normally 
has three replicas but currently only two are active. Since 
taking down one of the two replicas would cause a quorum 
loss, an upgrade of the replica’s server is delayed. If the server 
does not contain a partition whose loss would degrade the 
partition’s availability, then the global partition manager 
allows the server to be upgraded. For all upgradable servers in 
the upgrade domain, the system management layer is invoked 
to take down the server, install the upgraded software, and 
activate it.  

A well-designed upgrade should, of course, allow existing 
applications to run without modification. That is, it should be 
backward compatible. In addition, the upgraded software must 
be able to interoperate with its previous version, so it can run 
correctly during the upgrade process, when the system has a 
mix of upgraded and non-upgraded servers.  

Typically, users are prevented from using the new features 
of the upgraded version until all servers have been upgraded. 
Thus, upgrades have two-phases:  the first phase rolls out the 
code that understands the new protocols and features and the 
second phase actually enables them. 

An instance of Cloud SQL Server typically manages 
multiple disks, each of which is private to that instance. If one 
of the instance’s disks fails, the instance is regarded as having 
failed. Currently, each server runs one instance, but the system 
is designed to allow multiple instances per server and multiple 
databases per instance. 

The system is accessed using a protocol gateway that 
enables client applications to connect to Cloud SQL Server. 
The protocol gateway supports the native wire protocol of 
SQL Server. It is responsible for accepting inbound database 
connection requests from clients and binding to the node that 
currently manages the primary replica. It coordinates with the 
distributed fabric to locate the primary and renegotiates that 
choice in case a failure or system-initiated reconfiguration 
causes the election of a new primary. It also masks some 
failure and reconfiguration events from external clients by 
renegotiating internal sessions while maintaining the protocol 
session state between the client and protocol gateway. 

Infrastructure and Deployment Services

Distributed Fabric 

Database Engine (a SQL Server Instance) 

Protocol Gateway 

Client 
Application 

Cloud SQL Server 

Global Partition 
Manager 
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IV. LOGGING AND REPLICATION 

A. Replica Algorithm 

In this section, we describe the processing of updates to 
replicas during normal operation. Section IV.B covers some 
design details, and Section IV.C covers failure handling. 

The propagation of updates from primary to secondary is 
shown in Figure 4. A transaction T’s primary partition 
generates a record containing the after-image of each update 
by T. Such update records serve as logical redo records, 
identified by table key but not by page ID [13]. These update 
records are streamed to the secondaries as they occur. If T 
aborts, the primary sends an ABORT message to each 
secondary, which deletes the updates it received for T. If T 
issues a COMMIT operation, then the primary assigns to T the 
next commit sequence number (CSN), which tags the 
COMMIT message that is sent to secondaries. Each secondary 
applies T’s updates to its database in commit-sequence-
number order within the context of an independent local 
transaction that corresponds to T and sends an 
acknowledgment (ACK) back to the primary. After the 
primary receives an ACK from a quorum of replicas 
(including itself), it writes a persistent COMMIT record 
locally and returns “success” to T’s COMMIT operation. 

 
A secondary can send an ACK in response to a transaction T’s 
COMMIT message immediately, before T’s corresponding 
commit record and update records that precede it are forced to 
the log. Thus, before T commits, a quorum of servers has a 
copy of the commit. If servers are unlikely to experience 
correlated failures (e.g., because they are in different data 
centers), then this provides a satisfactory degree of fault 
tolerance. If tolerance of correlated server failures is needed, 

then each secondary could also be required to flush T’s 
commit record to disk before sending an ACK. Currently, 
SQL Azure takes the latter approach. 

Updated records are eventually flushed to disk by primaries 
and secondaries. Their purpose is to reduce the amount of 
catching up that a server needs to do should it fail and recover.   

Updates for committed transactions that are lost by a 
secondary (e.g., due to a crash) can be acquired from the 
primary replica. The recovering replica sends to the primary 
the commit sequence number of the last transaction it 
committed. The primary replies by either sending the queue of 
updates that the recovering replica needs or telling the 
recovering replica that it is too far behind to be caught up. In 
the latter case, the recovering replica can ask the primary to 
transfer a fresh copy. 

A secondary promptly applies updates it receives from the 
primary server, so it is always nearly up-to-date.  Thus, if it 
needs to become the primary due to a configuration change 
(e.g., due to load balancing or a primary failure), such re-
assignment is almost instantaneous. That is, secondaries are 
hot standbys and can provide very high availability. 
Secondaries can also be used as read-only copies (i.e., not 
within update transactions). Although their isolation level is 
only read-committed, the schema information for sub-
databases on secondaries is transactionally consistent. 

B. Replication Design Details 

In the beginning of Section IV-A, we said that the primary 
sends after-images, rather than redo log records that refer to 
physical offsets on pages. The benefit of this approach is that 
partition replicas do not need to be physically identical. This 
avoids the need to align the disk allocation of replicas of a 
partition between servers. It also enables certain optimizations. 
For example, in the partition-splitting strategy of Section II-B, 
a partition can be logically split without being physically split. 
In this case, a page with keys at the boundary of the two 
partitions might have records from both partitions. Two 
different replicas might serve as primary for those two 
partitions. If updates referred to physical addresses on the 
page, then updates generated for different logical partitions 
might collide on the same physical address, which would 
corrupt the page; for example, the updates might both insert a 
record into the same empty page slot. 

After-images of both clustered and non-clustered indices 
are logged and sent. This speeds up processing at the 
secondaries in two ways. First, it avoids having to push each 
update on a secondary through the upper layers of the 
relational engine, which determines which non-clustered 
indices are affected by an update to a clustered index. And 
second, it avoids having to perform a read at a secondary 
before applying each update. 

Much effort was invested in identifying hardware failure 
modes and working around them. For example, after 
discovering faulty behavior of some network interface cards, 
it was decided to improve error detection by signing all 
messages. Similarly, after observing some bit-flips on disks, 
we enabled checksums. A third example is SATA drives that 
acknowledge a write-through as soon as the data is in the 

Primary 
 

Secondary 

T1: update(x) 

T0: update(y) 

T1: update(z) 

T1: commit(CSN=1) 

T0: update(w) 

T1: Start transaction; 
        update(x); 
        update(z); 
      Commit; 

T1: ack-commit 

T0: commit(CSN=2) 

T0: Start transaction; 
 

T0: ack-commit 

Figure 4 Primary-to-secondary replication
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drive’s cache. Additional work was needed to guarantee that 
log handshakes are honored, such as flushing the cache at 
critical points in the execution. 

In Section II-B we said the same replication model is used 
for both data manipulation and data definition operations. This 
simplifies the handling of schema changes. For example, it 
avoids the need for special logic to synchronize updates with 
schema changes that the updates depend on.  

As another example, a job service is used to deploy schema 
changes to all partitions in a keyed table group. This service 
applies the schema change to each partition’s primary. The 
replication mechanism ensures that the schema change is 
eventually applied to all replicas. Since some primaries may 
be temporarily unreachable, the job service tracks which 
partitions have processed the schema change and periodically 
retries changes to partitions that have not yet been updated. 
Each partition stores its current schema version, so the schema 
change script is made idempotent by checking the schema 
version before applying the changes. 

C. Coping with Replica Failures 

We describe the basic approach to failure handling by 
walking through some of the major scenarios. The protocol 
details are quite complicated and are not covered here. 

Since only a quorum of replicas needs to send an ACK in 
response to a commit request, availability is unaffected by a 
single secondary failure. In the background, the system simply 
creates a new replica to replace the failed one. With a large 
enough replica set, multiple secondaries can fail concurrently 
without affecting availability. 

Cloud SQL Server is designed for a deployment that has 
enough bandwidth and computing power to accommodate the 
complete rebuild of a replica.  The global partition manager 
chooses a lightly-loaded server that will host the new replica, 
tells it to copy the primary replica to that server, and updates 
its directory to reflect this change. 

If a replica fails for only a short time and then recovers, it 
can be caught up.  Its server asks an operational replica to 
send it the tail of the update queue that the replica missed 
while it was down. This saves on both bandwidth and 
computation, and usually shortens the replica’s recovery time. 

If a primary replica fails, then a secondary must be 
designated as the new primary and all of the operational 
replicas must be reconfigured according to that decision. The 
first step in this process relies on the global partition manager 
described in Section III. It chooses a leader to rebuild the 
partition’s configuration (i.e., operational replica set). The 
leader attempts to contact the members of the entire replica set. 
If the leader cannot contact a quorum of the pre-failure replica 
set, the system declares a “permanent quorum loss” and 
requires an intervention to proceed. Otherwise, since it can 
contact a quorum of them, the recovery protocol can ensure 
that there are no lost updates. The leader determines which 
secondary has the latest state. That most up-to-date secondary 
propagates updates that are required by the secondaries that 
are less up-to-date.  

Suppose that before the primary failed, a transaction’s 
updates reached at least one secondary but less than a quorum. 

Therefore, the transaction did not commit before the failure 
and the client did not receive a notification of the transaction’s 
outcome. Suppose a secondary that received those updates 
survives in the new configuration. Then as described above, 
during recovery the transaction’s updates are propagated to all 
the secondaries in the new configuration. Thus, the transaction 
is committed before the service is open to the public, albeit 
with a different quorum than the one that existed while it was 
executing. However, the client still does not receive a notifica-
tion of completion, because the client is not communicating 
with the new primary. This is a normal behavior that occurs in 
transaction mechanisms when a communication failure is 
encountered during the processing of a commit request. The 
problem can be avoided by adding a persistent, transactional 
queuing system on top, which guarantees the delivery of 
transaction outcomes ([4], Chapter 4).  

Suppose a configuration has N replicas. After a replica 
failure is detected, and before another replica is ready to 
replace it, the global partition manager “downshifts” the 
replica set for the partition to be N-1. This improves the fault 
tolerance of the partition while it is operating with fewer 
replicas than normal. For example, suppose N=3 and a replica 
fails. Then the global partition manager downshifts to N=2, 
with a write-quorum of 2 and read-quorum of 1. Thus, if 
another replica fails before the third replica recovers or is 
replaced, then the system knows the remaining replica is 
consistent and up-to-date (something it would not have known 
if N were still 3). It can therefore rebuild replicas from the 
remaining replica without declaring a quorum loss. 

The preceding discussion assumes there is a unique “most 
up-to-date” secondary. The global partition manager ensures it 
can identify such a secondary by totally ordering the quorums 
of each partition, P. It assigns an epoch number to each 
configuration of P that is one greater than the epoch number 
of the previous configuration of P. Commit records in the log 
are identified by both a commit sequence number and an 
epoch number. Among the replicas in a replica set with the 
highest epoch number, the one with the highest commit 
sequence number has the latest state. This is the replica 
chosen as most-up-to-date after a replica set is reconfigured. 

The global partition manager’s database replicas are treated 
just like other replicated partitions, with one exception. If the 
primary replica of the global partition manager fails, the 
distributed fabric chooses a new primary from the set of 
global partition manager replicas. It uses an implementation of 
Paxos [11], thereby ensuring the instances of the global parti-
tion manager itself are totally ordered into epochs. Current 
deployments have seven replicas of the global partition 
manager’s partitions, five replicas of some critical application 
metadata, and three replicas of user table-group partitions. 

V. APPLICATIONS 

Cloud SQL Server is currently used as the database system for 
Exchange Hosted Archive (EHA) and SQL Azure.   

A typical customer of EHA is an organization, which uses 
EHA for archiving messages and ensuring compliance, for 
example, by implementing retention policies. EHA takes an 
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RAM, to eliminate the disks as a source of delay except for 
handshakes with the log. 

With two secondaries (i.e., three replicas in Figure 5), 
throughput dropped by 25.8% compared to a system with a 
primary and no secondaries (i.e., one replica in Figure 5). This 
drop in throughput was due to delays introduced by the net-
work, by waits for worker threads, and by handshaking with 
the logs on the secondaries. The addition of a third secondary 
had a negligible impact; it reduced throughput by only an 
additional 0.4% beyond the reduction using two secondaries. 

We ran a third experiment to show the effect of balancing 
the load of primary and secondary partitions.  In the first 
configuration (Configuration 1 in Figure 6), we ran three 
primary partitions on one machine. Two other machines ran 
secondaries for each of the partitions. In the second 
configuration, each machine ran one of the primaries and two 
of the secondaries (Configuration 2 in Figure 6). Each 
machine had two 4-core 2.1 GHz processors and 30GB of 
RAM running Windows Server 2008, with separate 10,000 
rpm 300GB SATA drives to store the database and log.  

 
Configuration 1 - Concentrated  Configuration 2 - Balanced 

Machine 
1 

Machine 
2 

Machine 
3 

 Machine 
1 

Machine 
2

Machin
e 3

P1 S1 S1  P1 P2 P3 
P2 S2 S2  S2 S1 S1 
P3 S3 S3  S3 S3 S2 

Figure 6 Test configurations  

To compare these configurations, we ran TPC-C with a 5 
GB database per partition. The three partitions comfortably fit 
in RAM, so the vast majority of I/O on the database disks was 
for writes (about 97%). In this case, the throughput of 
configuration 2 was 7.2% higher than that of configuration 1. 
As expected, resource utilization in configuration 2 is more 
balanced than in configuration 1. Per-node processor 
utilization in configuration 2 is 29%, whereas in configuration 
1, machine 1’s utilization is 35% vs. 20% for machines 2 and 
3. Configuration 2 shows a small improvement in disk I/O 
balance as well.  

In a final set of tests, we manually killed a primary copy 
and measured the elapsed time until the first transaction was 
able to execute on the newly elected primary. In 95% of the 
runs, failover time was less than 30 seconds. In the remaining 
5% of the runs, the failover time was less than 60 seconds. 

A performance study of transaction processing services in 
the cloud was published in [11]. The paper reports 
measurements of the TPC-W benchmark [18] for a variety of 
cloud-based services, including SQL Azure, in February 2010. 
SQL Azure was tied for the highest throughput reported, and 
had the lowest cost for medium to large workloads. 

VII. RELATED WORK 

At its core, Cloud SQL Server is a parallel database system 
that uses data partitioning on a shared-nothing architecture. 
The benefits of this architecture were demonstrated in the 
1980s in many such systems, such as Bubba, Gamma, Tandem, 

and Teradata. DeWitt and Gray [10] provide an excellent 
summary of that work. 

We focus here on recent papers describing commercial 
systems with similar goals to Cloud SQL Server: 
Bigtable/Megastore, Dynamo, and PNUTS. All of these 
systems are intended to scale out to a large number of servers 
with very high availability.  

Google’s Bigtable offers atomic read and rite operations on 
rows of a single table [6]. A table is partitioned into tablets, 
which is the unit of distribution and load balancing. Rows, 
tables and tablets in Bigtable are analogous to row groups, 
table groups, and partitions in Cloud SQL Server. In Bigtable, 
tablets and update logs are stored in the Google File System 
and hence are replicated.  It uses the Chubby lock manager for 
a similar role to the global partition manager in Cloud SQL 
Server, although the underlying mechanisms of Chubby and 
the global partition manager are rather different. Column 
values in Bigtable are timestamped, to capture version history. 
Although SQL Server, and hence Cloud SQL Server, does not 
currently offer multiversion databases, it does support snap-
shot isolation. Hence, a query within a partition can return a 
consistent result and be unaffected by concurrent updates. 

Google’s Megastore adds transactions to Bigtable [1][2]. In 
Megastore, a transaction can read and write entities in an 
entity group, which is a set of records, possibly in different 
Bigtable instances, that have a common prefix of their primary 
key. An entity group corresponds to a row group in Cloud 
SQL Server. Megastore uses optimistic concurrency control, 
whereas Cloud SQL Server uses locking. Megastore uses a 
per-entity-group replicated transaction log to ensure atomicity 
and durability and a Paxos protocol to handle recovery from 
failures. By contrast, Cloud SQL Server’s log is shared by all 
table groups managed by a server instance. Megastore also 
offers declarative schema and non-clustered indices. 

Amazon’s Dynamo offers atomic read and write operations 
on key-value pairs [9]. The value is an unstructured payload. 
So there is no schema or table abstraction. It uses a multi-
master replication algorithm based on vector clocks, rather 
than log-based replication as in Cloud SQL Server. This leads 
to a weaker consistency model, where an application can read 
different values from different copies. This choice offers high 
write-availability by allowing a write to update less than the 
whole replica set and hence requires a read quorum greater 
than one. But there is a cost to application programmers, who 
need to cope with value skew between replicas. 

Like Bigtable, Yahoo!’s PNUTS offers atomic read and 
write operations on rows of a single table [7]. For update 
durability, it uses the Yahoo! Message Broker to send update 
log records to a replicated log. It partitions the table by key 
value. For each key value, it uses a master row to totally order 
updates to that row. This is similar to the storage system for 
Microsoft Live services [3], but is unlike Bigtable or Cloud 
SQL Server. Although PNUTS does not support multi-record 
transactions, it has an option where a write operation can 
depend on a particular earlier version of the row. This enables 
the implementation of an ACID transaction that reads and 
later writes the same row. 
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A new research project at Stanford, called RAMClouds, 
proposes a partitioned main memory database for large-scale 
web services [16]. Although the design is a work-in-progress, 
the paper describes mechanisms that are similar to Cloud SQL 
Server’s, such as replicating the update log and waiting till 
replicas respond before reporting completion of the update. 

VIII. CONCLUSION 

We have described Cloud SQL Server, a distributed storage 
system for web-scale applications based on Microsoft SQL 
Server. It requires that a table group (i.e., a user database) is 
either keyless, meaning that its tables are co-located, or it is 
keyed, meaning that its tables have a common partitioning key 
and that every update transaction reads and writes records 
with a single value of that partitioning key. This ensures that 
every transaction can be executed on one server. A keyed 
table group is partitioned by value ranges of the partitioning 
key and each partition is made highly available by primary-
copy replication. The system is currently being used as the 
storage engine for Microsoft’s Exchange Hosted Archive and 
SQL Azure. 

Previous approaches have built custom storage systems for 
web applications and have gained some advantages from non-
ACID execution models.  Cloud SQL Server demonstrates 
that a scalable and highly-available storage system for web 
applications can be built by extending a classical relational 
database system, thereby offering users a familiar 
programming model and the functionality of a powerful SQL 
engine.  It is the first such commercial system that we know of. 

There is much room for future research in this area. The 
design of Cloud SQL Server was heavily influenced by that of 
SQL Server, on which it is built. Other mechanisms might be 
preferable when building on different database infrastructure, 
including storage systems that do not support transactions [13]. 
Another direction is to develop techniques to analyze 
applications to (semi-)automatically partition them, such as 
the one proposed in [8]. Even better would be an architecture 
that drops the partitioning requirement yet still obtains 
satisfactory performance with a sufficiently low probability of 
blocking due to two-phase commit. With or without 
partitioning, the system needs to be self-monitoring and self-
managing. For example, it should be able to monitor 
fragmentation and opportunistically defragment. Support for 
distributed queries is yet another challenge, especially, 
balancing the load so that queries and updates meet a given 
service level agreement. In a multi-tenant environment, users 
need to get the resources they paid for, while the system needs 
to load balance users across servers. Part of the solution may 
be defining the parameters of a service level agreement in a 
way that can be supported with high probability. And of 
course, energy efficiency is a growing concern. No doubt, as 
more web-scale distributed storage systems are deployed, 
many more research problems will emerge. 
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