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Abstract 
Fluid-dynamic systems are inherently nonlinear 

and are subject to a combination of coherent and 
random unsteady disturbances.  As a result, accurate 
low-order dynamic models are difficult to obtain for 
real-time control of such systems.  Therefore, 
controllers implementing adaptive on-line system 
identification are ideally suited to flow control 
problems.  Adaptive linear and nonlinear filters for 
real-time system identification are presented in this 
paper.  The linear models studied are traditional FIR 
and IIR filters, and the nonlinear models include a 
2nd-order Volterra filter and the Bilinear filter.  The 
coefficients of the adaptive filter models are 
calculated and updated using two of the most popular 
recursive methods, the normalized LMS and RLS 
algorithms.  The adaptive filters are tested offline in 
software and then implemented on real-time DSP 
hardware.  The focus of this study is on model 
accuracy and viability in real-time applications.  The 
real-time performance is measured in terms of 
achievable sampling frequency.  Specific applications 
to relevant nonlinear systems, a spring-mass damper 
model and a drag-law problem, are also considered in 
detail.   

Introduction 
In many flow-control problems; measurable 

parameters such as pressure, velocity and wall shear 
stress may vary over time.  Relevant applications 
include active control of flow separation and flow-
induced cavity oscillations.  In regards to the latter, 
cavity flows exist in landing gear bays, weapon 
delivery systems, and in a variety of instrument 
installation configurations.  The control of cavity 
dynamic loads is an issue of considerable importance 
to any military aircraft employing internal weapons, 

examples of which include the B-2, B-1B, F-117, F-
22, and JTF.  Weapons bay acoustics also impacts 
stealth technology, which requires minimum radiated 
noise.  Flow-induced cavity oscillations are quite 
complex.  Previous experiments [1,2] have shown 
significant nonlinear coupling between the dominant 
modes of oscillation.  In particular, time-frequency 
analysis on unsteady pressure data has revealed time-
dependent switching between the primary Rossiter 
modes.  A controller for such oscillations must 
rapidly and effectively identify this mode-switching 
phenomenon.  Hence, an effective real-time, adaptive 
identification scheme should be incorporated into the 
control process. 

The problem of adaptive system identification is 
generally referred to as the determination of a system 
model by observing its input-output relationship.  
The input signal is the actuator signal, and the output 
signal is an appropriate sensor signal.  Systems with a 
single actuator and sensor are referred to as single-
input/single-output (SISO) systems.  We restrict our 
attention in this paper to SISO systems. 

Adaptive control systems are traditionally 
applied to systems with quasi-stationary dynamics.  
However, adaptive control of many fluid-dynamic 
systems, such as cavity oscillations, requires fast 
response time to capture non-stationary behavior.  
This means that the execution of numerical 
algorithms for control and identification must be 
completed within the sampling interval.  Our working 
definition of “real-time” computations is those that 
are completed within one sample interval.  The 
Shannon sampling theorem dictates that the sampling 
frequency must be at least twice that of the largest 
frequency component in the measured signal.  Since 
many flow-control experiments are conducted in 
scaled wind-tunnel facilities, the relevant frequency 
components increase in direct proportion to the scale 
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reduction factor.  This, in turn, increases the 
computational requirements for the real-time control 
system.  As algorithms become more complex, faster 
processors and parallel processing may be required.  
Fortunately, the sustained increase in microprocessor 
computational power and the decrease in their cost 
permit the possibility of implementing complex 
identification and control algorithms.  In this paper, 
we focus on adaptive system identification because it 
is a prerequisite for effective feedback control. 

Adaptive system identification is not new, 
having been applied successfully in diverse fields 
such as communications, geophysical exploration, 
industrial robots, vibration, and noise control.  
However, the applications to flow control have been 
few [3,4,5].  Rathnasingham and Breuer [3] 
successfully used a finite impulse response (FIR) 
filter to identify the linear system dynamics in the 
near wall region of a turbulent boundary layer.  
Mouyon et al. [4] developed a physics-based system 
model to implement a feedback control scheme to 
maintain a fixed transition location in a boundary 
layer.  Unfortunately, the model failed to capture 
sufficient information, emphasizing the practical 
need for on-line identification methods.  Finally, 
Allan et al. [5] used off-line system identification 
methods with some success to develop a linear 
discrete state-space model for closed-loop control of 
separation on an airfoil. 

In this paper, as a first step towards adaptive 
control, we critically examine adaptive system 
identification using digital filters.  Both linear and 
nonlinear filters are investigated.  The purpose here is 
to test the viability of these filters in a real-time 
environment that typifies fluid-dynamic applications.  
Recursive algorithms, namely the Least Mean Square 
(LMS) and Recursive Least Square (RLS), are used 
to update the coefficients of the filter model.  The 
paper is outlined as follows.  First, the basic theory of 
linear FIR and infinite impulse response (IIR) filters 
for system identification are reviewed.  Two 
nonlinear models, based on Volterra and Bilinear 
series, are addressed next, followed by a description 
of the LMS and RLS algorithms.  Applications to an 
analytical nonlinear spring-mass-damper model and a 
quadratic drag-law problem are also considered. 

Adaptive System Identification 
The first step in adaptive model control is to 

construct a model for the dynamic system that is used 
to determine appropriate control inputs to the system 
that will cause desired system outputs.  System 
identification deals with the problem of building 
mathematical models of dynamical systems based on 
observed data from the system.  As observed by 

Ljung [6] the construction of model from data 
involves three basic entities: 

1. Model data from experiment or simulation, 
2. Selecting a set of candidate models, and 
3. Criterion to evaluate the candidate models. 
An adaptive filter can be used to model the 

behavior of a physical dynamic system.  The adaptive 
filter can be regarded as an unknown “black box” 
having one or more inputs and one or more outputs.  
Modeling a SISO dynamic system, as proposed by 
Widrow and Stearns [7], is illustrated in Fig. 1. 

Unknown 
System 

Adaptive 
Filter ΣΣΣΣ 

_ +

Input 
u 

Filter 
Output 

y 

Desired Output 
d 

Error 
e  

Fig. 1.  Modeling of a SISO system using an 
adaptive filter. 

Both the unknown system and the adaptive filter 
are driven by the same input u .  The adaptive filter 
adjusts itself (using a recursive algorithm) such that 
its output y  matches that of the unknown system d .  
If the adaptive filter has the correct structure, a 
perfect fit is possible in a noise-free environment.  
Note that if the assumed model structure (e.g., the 
number of poles and zeros) is incorrect, then the 
resulting parameters of the model may not provide 
any realistic physical insight.  In any case, when the 
desired and actual input-output responses match, the 
adaptive filter is said to be a “good” model of the 
unknown system.  Furthermore, if the input is white 
noise (i.e., contains equal power in all frequencies) or 
its equivalent and if the structure of the adaptive filter 
enables a good match of the input-output response, 
then minimizing the mean-square error between d  
and y  will produce the desired adaptive model. 

Adaptive Filter - Models 
A model of a system is a description of its 

properties.  The most important step in system 
identification is to determine a class of models within 
which to conduct a search for a suitable system 
model.  In this section we shall discuss linear and 
nonlinear filters for this purpose. 
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Linear Filters 
There are two types of linear filters – FIR and 

IIR models.  The FIR filter is the simplest linear 
model and derives its name from the fact that the 
duration of its response to an impulse is finite in 
extent.  Its output is a moving average of the input in 
the sense that the model output is a weighted sum of 
previous inputs.  A FIR filter of length N can be 
expressed as 

 0 1 1( ) ( ) ( 1) ... ( 1)Ny n b u n b u n b u n N−= + − + + − + .(1) 

Here, y is the output, u is the input, and n is discrete 
time.  In polynomial form Eq. (1) becomes 

 ( ) ( ) ( ) ( ) ( )
1

0

N
T

i
i

y n n n b n u n i
−

=
= ⋅ = −∑B U , (2) 

where the superscript T denotes the transpose.  ( )nB  
and ( )nU  are given by 

 
( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]
0 1 1

.

, , ,

, , ,1 1

T
N

T

nn b b n b n

n u n u n u n N
−

=

=

− − +

B

U

…

…
 (3) 

( )nB  is the input weight vector, and ( )nU  is the 
input vector, both at time n.  The motivation for the 
FIR model comes from the fact that a linear system 
output can be expressed as a convolution sum 

 ( ) ( )
0i

iy n g u n i
∞

=

= −∑  (4) 

where gi is the impulse response.  The FIR model in 
Eq. (1) is an approximation to the convolution sum in 
Eq. (4).  Since, for stable systems, the coefficients gi 
decay to zero as i → ∞ , such an approximation is 
possible.  The inherent stability of a FIR model is a 
distinct advantage when the system to be identified is 
stable. 

The IIR model is an alternative to a FIR model.  
The model output is a weighted sum of previous 
inputs as well as previous outputs.  An IIR filter 
model of length N can be expressed as 

 
( ) ( ) ( )

( ) ( )
1

0 1

1

1
N

N

y n a y n a y n N

b u n b u n N−

= − + + −

+ + + − +

…

…
 (5) 

or 

 ( ) ( ) ( )
1

1 0

N N

i i
i i

y n a y n i b u n i
−

= =

= − + −∑ ∑ . (6) 

In polynomial form, this becomes 

 ( ) ( ) ( ) ( ) ( )T Ty n n n n n= ⋅ + ⋅A Y B U , (7) 

where ( )nA  and ( )nY  are given by 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )[ ]

1 2 ,

, , ,

, ,

1 2 .

T
N

T

n a n a n a n

n y n y n y n N=

=   

− − −

A

Y …

…
 (8) 

( )nA  is the output weight vector, and ( )nY  is the 
output vector, both at time n.  IIR filters use output 
feedback and have poles and zeros.  Consequently, 
stability is not guaranteed.  IIR models are often used 
to identify systems whose impulse response has a 
long duration.  There have been two fundamental 
approaches to adaptive IIR filtering that correspond 
to different formulations of the prediction error; these 
are known as the equation-error (EE) and output-
error (OE) methods.  Shynk [8] provides considerable 
insight into the advantages and disadvantages of the 
two approaches. 

Nonlinear Filters 
A simple but highly pervasive type of 

nonlinearity in fluid dynamics is polynomial in nature 
(e.g., quadratic or cubic).  Unlike the case of linear 
systems, which are completely characterized by the 
system impulse response function, it is impossible to 
find a unified framework for describing nonlinear 
systems.  Consequently researchers working on 
nonlinear systems are forced to restrict themselves to 
certain nonlinear models that are less general.  
Models based on a Volterra series and polynomial 
nonlinear models are some popular models studied.  
Two specific cases are considered in detail, a 
truncated Volterra-series representations and 
recursive bilinear difference equations, to relate the 
input-output response of a nonlinear system. 

Using the same notation as above, the truncated 
Volterra series is given by [9] 

 
( ) ( ) ( )

( ) ( ) ( )
1

1

1

1 1
0

1 1

1 1
0 0

, , .
p

N

m

N N

p p p
mm

y n h n u n m

h m m u n m u n m

−

=

− −

= =

= − +

+ − −

∑

∑ ∑

…

… … …
(9) 

In Eq. (9) ph  is known as the pth-order Volterra 
kernel of the system.  If the representation is 
truncated at 2nd-order and only a finite support for 
kernels 1 2 and h h  is provided, then the output can be 
expressed in filter form as 

 ( ) ( ) ( ) ( )
1 1

,
0 , 0

N N

i i j
i i j

y n a u n i b u n i u n j
− −

= =
= − + − −∑ ∑ (10) 

where , and i i ja b  are the time varying linear and 
quadratic coefficients of the nonlinear filter, 
respectively.  Eq. (10) is called a 2nd-order Volterra 
filter of length N and is a natural extension of a linear 
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FIR filter.  Due to their complexity, only 2nd-order 
Volterra filters are considered in this paper. 

An alternate polynomial model is a recursive 
nonlinear difference equation.  The simplest of the 
models in this category is the bilinear model [10], 
whose input-output relationship is given by 

 
( ) ( ) ( ) ( )

( )

1

,
1 0 1

1

0

N N N

i i j
i i j

N

i
i

y n a y n i c u n i y n j

b u n i

−

= = =

−

=

= − + − −

+ −

∑ ∑∑

∑
(11) 

where ,i jc  is the coefficient matrix for the nonlinear 
cross-term between u and y.  A filter based on Eq. 
(11) is known as a bilinear filter of length N and is a 
nonlinear extension of an IIR filter, as seen in Eq. (6).  
Just as linear IIR models can represent many systems 
with far fewer coefficients than their FIR 
counterparts, bilinear filters can model many 
nonlinear systems with fewer coefficients than 
Volterra series representations [11]. 

Adaptive Filters – Algorithms 
Adaptive filters operate using recursive 

algorithms.  These algorithms do not require any a 
priori information about the system to be identified.  
The algorithm automatically updates the coefficients 
of the filter from one time step to the next.  Starting 
from a predetermined set of initial conditions, it 
converges to the optimum solution in a stationary 
environment.  In a non-stationary environment, the 
algorithm tracks the system.  A wide variety of 
recursive algorithms have been developed in the 
literature for the operation of adaptive filters.  Most 
are derived using either a stochastic gradient 
approach or a least-squares estimation. 

Stochastic Gradient – LMS Algorithm 
The stochastic gradient approach is based on 

minimizing a cost function J, also referred to as an 
index of performance.  J is defined as the mean-
squared error between the desired or actual response, 
d(n), and the filter output y(n) 

 ( ) 2J E e n =    (12) 

Here [ ].E  is the expectation operator and 

( ) ( ) ( )e n d n y n= − is the error between the desired 
system output and adaptive filter output. 

Wiener and Hopf [12] formulated the theory for 
the case of a continuous-time linear filter.  Haykin 
[13] extended this theory to a discrete-time filter.  
The discrete-time equation is also known as the 
Weiner-Hopf equation.  The LMS algorithm is the 
recursive version of the Weiner-Hopf equation.  

Table 1 summarizes the algorithm for the simplest 
linear filter – the FIR filter defined in Eq. (2). 
 
Initialization 
Initialize the weight vector by setting 

(0) 0=B  
For each instant of time, compute the 
weight vector 

( ) ( ) ( )[ ]0 1 1( ) , , ,
T

Nn b n b n b n−=B …  
input vector 

( ) ( ) ( ) ( )[ ], , ,1 1 Tn u n u n u n N= − − +U …  
output and error 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

T

T

y n n n
e n d n n n

= ⋅
= − ⋅

B U
B U

 

Update the weight vector 

( ) ( ) ( ) ( )1n n e n nµ+ = +B B U  

Note:  µ  is the learning-rate parameter or the 
step-size.  For convergence, (in a stationary process) 

 2

10
rmsu

µ< < . 

Table 1.  LMS Algorithm for a FIR Filter. 

For faster convergence rates, the step-size µ can 
be normalized by the power of the input and thus 
reduce the uncertainty in choosing an appropriate 
step-size.  A robust step-size LMS adaptive algorithm 
has been proposed in [14].  Feintuch [15] first 
formulated the LMS algorithm for an IIR model.  
LMS algorithms for other filter models have been 
derived and are documented in [16].  Interested 
readers can refer to Netto et al. [17] and Shynk [8] 
for detailed discussions of IIR LMS filters.  LMS 
algorithms have also been derived for nonlinear 
models.  Coker [18] has derived the update equations 
for the 2nd-order Volterra filter, while Mathews [19] 
presents an algorithm for updating the coefficients of 
a Bilinear LMS filter. 

The LMS filter is very simple to implement and 
is computationally the least expensive adaptive 
algorithm.  The order of computational complexity 
(operations per iteration) of LMS linear filters is 
O(N), where N is the length of the filter. 

Least Squares Estimation – RLS Algorithm 
The method of least squares may be viewed as an 

alternative to Wiener filter theory [13].  The problem 
is to estimate the unknown parameters of a multiple 
linear regression model.  The computation starts with 
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known initial conditions and uses the information 
contained in new data samples to update the old 
estimates.  The cost function to be minimized is 
expressed as ( )nξ .  We follow below the notation of 
Haykin [13], 

 ( ) ( ) ( ) 2

1
;  0 1

n
n i

i
n d i y iξ λ λ−

=
= − < ≤∑ . (13) 

In general, the factor λ  ensures that data in the 
distant past are forgotten in order to afford the 
possibility of tracking the variations of new data.  By 
minimizing the cost function, we arrive at a set of 
equations called the “normal equations” of the filter.  
These complex equations are simplified by using the 
Matrix Inversion Lemma [13].  This simplified 
version forms the basis of the RLS algorithm, which 
is summarized in Table 2 for a FIR filter. 

 
Initialization 
Initialize the algorithm by setting 

 ( ) ( ) 10 0; 0P Iδ −= =B  

where δ  is a small positive constant, and I is the 
N N×  identity matrix. 
For each instant of time, compute the 
weight vector 

( ) ( ) ( )[ ]0 1 1( ) , , ,
T

Nn b n b n b n−=B …  
input vector 

( ) ( ) ( ) ( )[ ], , ,1 1 Tn u n u n u n N= − − +U …  
gain vector 

( ) ( ) ( )
( ) ( ) ( )

1

1

1
1 1T

P n n
n

n P n n
λ

λ

−

−

−
=

+ −
U

k
U U

 

Output and Error 
( ) ( ) ( )
( ) ( ) ( ) ( )

T

T

y n n n
e n d n n n

= ⋅
= − ⋅

B U
B U

 

Update 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )1 1

1

1 T

n n n e n

P n P n n n P nλ λ− −

+ = +

+ = −

B B k

k U
 

Table 2.  RLS Algorithm for a FIR filter. 

The theory of RLS algorithms has been extended 
to other filter models.  Shynk [8] presents the RLS 
algorithm for IIR filters, while Mathews [19] has 
developed RLS algorithms for polynomial filters.  
The rate of convergence of the RLS algorithm is 
faster than that of the LMS algorithm.  However, the 
number of floating point operations of the RLS 
algorithm for linear filters is O(N2), where N is the 
length of the filter. 

Choice of Adaptive Algorithm 
How does one choose an adaptive filter for the 

task at hand?  According to Haykin [13], one or more 
of the following factors determines the choice of one 
algorithm vs. another: 
1. Rate of Convergence.  This is defined as the 

number of iterations required for the algorithm to 
converge to the optimum solution.   

2. Mean-Squared Error.  This is defined as the 
value of the mean of the squared error. 

3. Stability.  For the filter to be stable, the poles of 
the filter should lie inside the unit circle in the z-
plane throughout the adaptation process. 

4. Robustness.  An adaptive filter should be robust 
to small disturbances or noise. 

5. Computational requirements.  The issues of 
concern include the number of floating-point 
operations required to complete one iteration of 
the algorithm and the memory required to store 
the data and program. 

Results and Discussion 

Real-Time Implementation 
Real-time implementation is a key requirement 

for adaptive identification of any physical system.  A 
practical implementation uses a Digital Signal 
Processor (DSP) to perform the necessary 
computations outlined above.  Either a mathematical 
model may be used in a simulation or input/output 
data from the physical system may be measured with 
analog-to-digital (A/D) and digital-to-analog (D/A) 
hardware.  This sampling process ideally requires 
that all computations for system identification and 
control be completed within one sample interval.  
Below, we define two relevant parameters used to 
evaluate the computational requirements of the 
algorithms discussed above. 
1. Sample Time sT :  This is defined as the time 

interval at which data are sampled.  To avoid 
aliasing, the Nyquist criterion states that the data 
should be sampled at least two times faster than 
the maximum frequency content in the data.   

2. Turnaround Time AT :  This is the time required 
to gather input data and compute the output for 
one iteration.  AT  determines the minimum 
sampling time (or maximum sampling 
frequency) of the model. 

Clearly, AT  should be less than sT  for real-time 
identification. 

A real-time development environment has been 
developed by dSPACE using single- and multi-
processor systems.  These systems have been 
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integrated with a MATLAB/SIMULINK 
programming environment, summarized as follows: 
1. MATLAB toolboxes are used to formulate an 

appropriate model.  Ultimately, the system is 
modeled by linear or nonlinear difference 
equations (as described earlier).   

2. The adaptive model is coded using SIMULINK, 
a graphical programming environment that runs 
under MATLAB. 

3. The application software generates compiled 
code for the target DSP from the SIMULINK 
model.  
In this paper, we describe this process for a 

single-processor dSPACE DS1003 card that employs 
a TMS320C40 DSP processor from Texas 
Instruments.  The processor runs at 60 MHz and the 
board provides a peak floating point performance of 
60 MFLOPS (FLOPS = floating point operations per 
second).   

Using the methods outlined above, the linear and 
nonlinear filters described above were benchmarked 
on the DS1003 board by determining AT  for a single 
iteration.  Fig. 2 shows AT  in microseconds as a 
function of N. 

 
Fig. 2.  TA of adaptive filters on DS1003. 

AT  is a linear function of N for the LMS-based 
linear filters.  For RLS-based filters, AT  is a 
nonlinear function of N.  Furthermore, the nonlinear 
structure of Volterra and Bilinear filters requires 
more computations than their linear counterparts.  
According to Mathews [19], the 2nd-order Volterra 
LMS algorithm has a computational complexity 
(operations count per iteration) that is proportional to 

2N , whereas the complexity of the RLS algorithm is 
proportional to 4N .  The operation count for each 
filter type and algorithm is summarized in Table 3.  
Based on these results, it is evident that implementing 

nonlinear RLS filters with N>3 may not be feasible 
with the DS1003. 
 

Filter # of 
Coeff. Algorithm Operation 

Count 

FIR N LMS 
RLS 

O(N) 
O(N2) 

IIR 2 N LMS 
RLS 

O(N) 
O(N2) 

Volterra N2+N LMS 
RLS 

O(N2) 
O(N4) 

Bilinear N2+2N LMS 
RLS 

O(N2) 
O(N4) 

Table 3.  Dependence of operation count on filter 
type, algorithm, and length N. 

AT  can be used to calculate the maximum rate at 
which data can be sampled.  Since AT  is the time 
required for the DSP to complete one iteration of the 
algorithm, it is also the minimum possible sample 
time, 
 A ST T≤ . (14) 

The sampling frequency is calculated from sT  by 

 1
S

S

f
T

= . (15) 

From Eq. (14) and Eq. (15) we obtain 

 1
S

A

f
T

≤ . (16) 

Clearly, the maximum sampling frequency is equal to 
the inverse of AT .   

 
Fig. 3.  Maximum achievable sampling frequency 
for the adaptive filters on the DS1003. 
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Fig. 3 shows the maximum sampling frequency 
that can be achieved by the adaptive filters on the 
DS1003.  Fluid-dynamic systems can contain 
oscillations at high frequencies, particularly in small-
scale experiments.  For example, previous 
experiments on active control of cavity oscillations 
[1,2] showed that the maximum significant frequency 
( maxf ) can exceed 1 kHz.  If an adaptive filter were 
used to model this system, we would require 
minimum sampling rates of approximately 2 kHz.  
This effectively eliminates from consideration RLS-
based Volterra and IIR filters of length greater than 
about 3 and 6, respectively.  Only LMS-based filters 
(both linear and nonlinear) will be able to satisfy real-
time requirements for this board.  Note that much 
faster boards are currently available.  However, keep 
in mind that a significant portion of the available 
computational resources will be required by the (as-
yet unspecified) adaptive control scheme. 

The results of this study may be generalized 
using a floating-point performance specification of an 
alternative DSP: 

 target DSP

target DSP TMS320C40
TMS320C40

s s

FLOPS
f f

FLOPS
= ⋅ . (17) 

Identification of Prototypical Systems 
As of this writing, no suitable experimental data 

were available to evaluate the candidate identification 
schemes.  We therefore opted to study two 
prototypical nonlinear systems:  (1) a spring-mass-
damper system – the Duffing Equation and (2) a 
nonlinear drag-law. 

Adaptive filters were used to identify the above 
two systems.  The effectiveness of the adaptive filter 
in identification was evaluated using the following 
criteria:  (1) accuracy, (2) convergence rate, (3) 
stability, and (4) robustness to noise. 

Duffing Equation 
The forced oscillations of a mass attached to a 

nonlinear spring under the influence of slightly 
viscous damping exhibits nonlinearities that are 
typically encountered in fluid-dynamic systems.  The 
equation of motion, known as the Duffing equation 
[20], has the form 
 3

1 3my cy k y k y u+ + + = . (18) 

Here, y is the output displacement, u is the input 
force, and m, c, and k1 are the mass, damping, and 
linear spring constants, respectively.  The nonlinear 
spring constant k3 can be either positive (spring 
hardening) or negative (spring softening).  When 

3
3 1~k y k y  or greater, nonlinearities become 

significant.  This problem is relevant for flow control 
because many actuators that undergo large 
deflections can be modeled using Eq. (18).   

Using MATLAB and SIMULINK, the Duffing 
equation described in Eq. (18) was simulated using 

1 3
1,  0.5,  1,  1m c k k= = = = .  The input to the system 

is a single frequency sine wave of amplitude 10 and a 
frequency of 1.25 rad/s (or 0.2 Hz), which is close to 
the natural frequency of 1 rad/s for the system 
linearized about 0y = .   

 
Fig. 4.  Power spectrum for Duffing system. 

Fig. 4 shows the power spectrum of the input and 
output of the system.  The input spectrum shows a 
single peak corresponding to the excitation 
frequency.  The output spectrum shows three peaks at 
0.2, 0.4, and 0.6 Hz.  The first peak corresponds to 
the primary response of the system and the other two 
are the secondary responses resulting from quadratic 
and cubic nonlinearities. 

LMS-based adaptive filters were employed to 
identify the above system.  Both linear models (FIR 
and IIR) and nonlinear models (2nd-order Volterra 
and Bilinear) were explored.  Fig. 5 through Fig. 9 
show the identified filter output compared to the true 
system output.  Clearly, the nonlinear filters are more 
accurate than the linear filters, but the linear filters 
perform surprisingly well.  Haykin notes that 
adaptive filters can be described as nonlinear systems 
with time-varying parameters [13].  This subtle but 
significant point is important because a true linear 
system cannot “generate” harmonics due to its 
frequency-preserving nature.  It appears that adaptive 
“linear” filters can capture the dynamics of nonlinear 
systems because of their time-varying nature. 

The lengths of the filters were optimized such 
that they provide the best identification for the least 
computational expense.  The normalized step size 
was chosen in the range of 0.1-0.5 for the various 
filters to maximize convergence rates. 
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Fig. 5.  Duffing ID with a FIR filter (N=9). 

 
Fig. 6.  Duffing ID with an IIR filter (N=2). 

 
Figure 7.  Duffing ID with a Volterra filter (N=3). 

 
Fig. 8.  Duffing ID with a Bilinear filter (N=3). 

As shown in Fig. 9, the IIR and bilinear filters 
exhibit better convergence properties than the FIR 
and Volterra filters.  The robustness of the filters to 
noise is also demonstrated in Fig. 9.  Uncorrelated 
white noise is added to the output of the identified 
system.  The signal-to-noise ratio is 30 dB in this 
case.  The filters converge smoothly to their 
respective optimum solutions.  However, the errors 
are larger than the noise-free case, as expected. 

 
(a) 

 
(b) 

Fig. 9.  Convergence of adaptive filters for Duffing 
ID:  (a) no noise and (b) noise added to the output. 

Nonlinear Drag Law 
Another type of nonlinearity that is commonly 

encountered in fluid dynamics is a nonlinear drag law 
(NDL) and is a consequence of the unsteady 
Bernoulli equation along a streamline.   
Rathnasingham and Breuer used this equation in their 
synthetic jet model [21].  This system is therefore 
relevant in flow-control problems. 

The governing differential equation is given by 

 0 v|v|v
2

P
L Lρ

∆
= − . (19) 
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Here, v is the velocity, P∆ is the pressure difference 
along a streamline of length L, and ρ  is the fluid 
density.   

The input-output relationship of such a system 
can thus be written as 
 y ay y bu+ = . (20) 

where y is the output of the system, and u is the input.  
The constants a and b are given by 

 1 1 and 
2

a b
L Lρ

= = . (21) 

Using MATLAB and SIMULINK, Eq. (20) was 
simulated, assuming a fluid density of 1.189 3/kg m  
and the streamline length of 2.0 mm.  The input was a 
sine wave of frequency 1479 rad/s, and the 
magnitude of the sine wave was chosen such that it 
produced a maximum velocity of approximately 10 
m/s.  These choices simulate typical experimental 
conditions [21]. 

Fig. 10 shows the input and output power 
spectrum for the above system.  The input shows a 
single peak corresponding to the excitation 
frequency, and the output shows two peaks, one at 
the excitation frequency and another at the third 
harmonic that is characteristic of a cubic nonlinearity. 

 
Fig. 10.  Spectrum of input and output of the NDL 
problem. 

Only the results for the LMS-based filters are 
presented here.  As in the previous case, N is 
optimized and the normalized step size is in the range 
of 0.1-0.5.  Fig. 11-Fig. 14 show the identified filter 
output as compared to the system output.  The IIR, 
2nd-order Volterra and Bilinear filters closely match 
the system output, while the FIR filter output is 
somewhat less accurate. 

 
Fig. 11.  NDL ID with a FIR filter (N=11). 

 
Fig. 12.  NDL ID with an IIR filter (N=2). 

 
Fig. 13.  NDL ID with a Volterra filter (N=3). 

 
Fig. 14.  NDL ID with a Bilinear filter (N=3). 
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The above examples demonstrate that both 
nonlinear filters and linear IIR filters can be effective 
in identifying a nonlinear system.  However, in real-
time control applications, the data are often 
influenced by noise, in the form of unmodeled 
dynamics, measurement noise and, in fluid flows, 
turbulence.  Fig. 15 shows the response of the NDL 
system when uncorrelated white noise is added to the 
output (SNR = 20 dB).  An IIR filter of length 2 is 
used since a filter of length 1 was apt to be unstable.  
The presence of noise can lead to biased errors in the 
identified model when an IIR EE formulation is used 
[8].  To avoid this bias error and improve robustness, 
Shynk [8] suggested the alternative OE formulation 
of the IIR filter.  The OE formulation provides 
unbiased identification but has slower convergence 
than the EE formulation.  Also the OE filter may 
converge to a local minimum, depending on initial 
conditions.   

 
Fig. 15.  NDL ID with uncorrelated white noise. 

Stability can be maintained by z-domain 
methods that geometrically enforce stability [22].  In 
the case of linear IIR filters, the stability of the filters 
can be determined by calculating the location of the 
poles.  In the discrete-time domain, the poles must lie 
within the unit circle for stability for all iterations.  
Fig. 16 shows the locus of the two poles of the 2nd-
order IIR filter used to identify the NDL system.  The 
initial poles are located at the origin since the 
coefficients of the LMS filter are initialized to zero.  
As time progresses, the poles migrate towards the 
optimum solution.  Since the filter is of length 2, the 
poles form a complex-conjugate pair.  After “steady 
state” is reached, the poles oscillate about their 
respective positions in a manner that is indicative of a 
local linearization about an operating point. 

Due to space limitations, we cannot demonstrate 
here the response of adaptive filters to various types 
of input signals.  For system identification, the 
system is usually excited by band-limited white noise 

or chirp signals.  This ensures that all the relevant 
frequencies of the system are excited and an 
appropriate dynamic model can be identified.  These 
issues are discussed in detail in  [23]. 

 
Fig. 16.  Convergence history of the two poles of 
an IIR filter for the NDL system. 

Conclusions 
Linear and nonlinear adaptive filters relevant for 

the identification of SISO fluid-dynamic systems are 
presented in this paper.  Recursive algorithms 
adaptively update the filter coefficients.  In particular, 
LMS and RLS algorithms are summarized and the 
choice of model parameters is discussed.  In the 
interest of space, only the LMS and RLS algorithms 
for a FIR model were presented in this paper.  The 
algorithms for IIR and nonlinear filters are 
summarized in [23].  The real-time viability of the 
filters was tested by implementing them on a 
dSPACE DS1003 board that employs a TI 
TMS320C40 DSP processor.  It was verified that the 
normalized LMS algorithm is significantly less 
expensive computationally than the RLS algorithm 
and also provided comparable convergence rates.  In 
addition, the sampling frequency that can be achieved 
is sufficient to resolve frequencies on the order of 
several kHz prevalent in wind-tunnel tests.  Faster 
DSP processors are available that will improve this 
performance and allow for simultaneous adaptive 
control.   

The adaptive filters were applied to identify 
relevant dynamic systems – a nonlinear spring-mass-
damper system and a nonlinear drag law.  Low-order 
filters are able to identify the systems with good 
accuracy while maintaining stability.  In addition, 
adaptive linear filters can identify nonlinear systems 
due to their time-varying nature.  The FIR filter is 
inherently stable because of its structure but may lack 
the required accuracy.  IIR filters are more accurate 
than FIR filters but additional computations are 
required to guarantee filter stability in real-time 
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applications.  Finally, the nonlinear filters explored 
here are more accurate than the linear filters but are 
more expensive computationally.  In addition, the 
design of a nonlinear controller based on a nonlinear 
adaptive identification scheme is a non-trivial task 
that needs to be addressed in real fluid-dynamic 
applications. 

Future work will concentrate on evaluating these 
schemes with experimental data.  The algorithms will 
be extended to multiple-input/multiple-output 
systems to study applications that require more than a 
single actuator and sensor.  Finally, the system 
identification algorithms will be combined with an 
adaptive controller for real-time feedback control of 
cavity oscillations and airfoil separation. 
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