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Abs t rac t  

In this paper we present stability and convergence 
results for Dynamic Programming-based reinforce- 
ment learning applied to Linear Quadratic Regulation 
(LQR). The specific algorithm we analyze is based on 
Q-learning and it is proven to converge to the opti- 
mal controller provided that the underlying system 
is controllable and a particular signal vector is per- 
sistently excited. This is the first convergence result 
for DP-based reinforcement learning algorithms €or a 
continuous problem. 

1. Introduction 

In many practical applications a stabilizing feedback 
control for the system may be known. In this pa- 
per we discuss the problem of how to improve this 
controller and, under certain circumstances, make 
it converge to the optimal. The approach we take 
can be classified as direct optimal adaptive control 
and it is motivated by recent research on reinforce- 
ment learning which uses the principles of Dynamic 
Programming (DP). DP-based reinforcement learn- 
ing algorithms include Sutton's Temporal Differences 
methods [S] , Watkins' Q-learning [7], and Werbos' 
Heuristic Dynamic Programming [9]. Our approach 
is closely related to  @learning. We apply the method 
to  the Linear Qudratic Regulator (LQR) problem and 
we show that it converges to the optimal cost if the 
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system is controllable and a particular signal vector is 
persistently excited. This is the first convergence re- 
sult for DP-based reinforcement learning algorithms 
for a continuous problem. Previous results are lim- 
ited to  finite-state systems, with either lookup-table! 
or linear function approximators [6,8]. 

The optimal control for an LQR problem is easily 
found [l] if accurate models of the system and cost 
functions are available. The problem we address is 
how to define an adaptive policy that converges to 
the optimal control without access to such models. 

Despite the paucity of theoretical results, applications 
of DP based algorithms have shown promise in ap- 
plication to continuous state problems [5]. This pa- 
per takes a first step toward providing a theoretical 
grounding for continuous problems. 

2. Problem Statement 

Consider the discrete-time, multivariable system 

at+i = f ( z t ,  ut) Aat + But (1) 

with feedback control 

Ut = U x t .  

U is chosen so that the matrix A + BU ha5 all of its 
eigenvalues strictly within the unit circle. 

Associated with this system we assign a one step cost: 

Ct = c(at, ut) = aiEz* + u p u t  (2) 
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where E is a symmetric positive semidefinite matrix 
and F is a symmetric positive definite matrix. The 
total cost of a state zt under the control policy U ,  
V,(at)? is defined as the discounted sum of all costs 
that will be incurred by using U from time t onward, 
i .e. .  VU(zt) = ~ ~ O = o y a c t + ; r  where 0 5 7 5 1 is the 
discount factor. Vu is a quadratic function [l] and 
therefore can be expressed as 

Vu(.,) = z : K U ~ t ,  (3) 

where K ,  is the symmetric cost mat?& for policy U .  
U’ denotes the policy which is optimal in the sense 
that the total dicounted cost of every state is mini- 
mized. K *  represents the cost matrix for U * .  

3. Q-functions and Policy improvement 

Watkins [7] defined the Q-function for a stable control 
policy U as 

Qu(Z ,  11) = ~ ( z c ,  21) + rVu(f(z1 U)). (4) 

The value Q,(a ,  U) is the sum of the one step cost in- 
curred by taking action U from state z, plus the total 
cost that would accrue if the fixed policy U were fol- 
lowed from the state f(z, U )  and all subsequent states. 
U need not be the action specified by the given control 
policy for the state z. Qu(a ,  U) is defined for all states 
z and d l  admissible control signals U. The function 
Qu can also be defined recursively as 

Q u ( ~ t , u t )  =  at, ut) + Y Q u ( z t + l l  uzt+l) .  (5) 

For an LQR problem the Q-function can be computed 
explicitly as 

(7) 

where [z, U] is the column vector concatenation of a 
and U, H ,  is a symmetric positive definite matrix, 
and 

ffU(ll) = E + yA‘KuA, Hupa) = rA‘KuB, 

ffU(21) = rB’KuA, Hu(aa) = F + rB’KuB. 

The submatrix Hucaa) is symmetric positive definite. 

Given the policy Uk and the value function Vu, we 
can find arr improved policy, u k + l ,  by defining u k + 1  
as 

u k + l z  = argmin [c(z, U) + ?‘vu(f(z, U))] I 

But equation (4) tells us that this can be rewritten 
as 

u k + l Z  = argmin Q,(z, U). 

U 

U 

We can find the minimizing U by taking the partial 
derivative of Q,(x, U) with respect to U, setting that 
to zero, and solving for U. This yields 

\ , -, 
Uk+l 

Since the new policy u k + l  does not depend on a ,  it is 
the minimizing policy for all a. Using (6), uk+l can 
be written as 

The feedback policy u k + l  is per definition a stabiliz- 
ing policy - it has no higher cost than U,. -4 new 
Q-function can then be assigned to this policy and 
the policy improvement procedure can be repeated 
ad infinitum. 

Earlier work by Kleinman [4] and Bertsekas :1’ 
showed that policy iteration will converge for LQK 
problems. However, their algorithms required exact 
knowledge of the system model (equation 1) and the 
one-step cost function (equation 2). The analysis pre- 
sented in this paper shows how policy iteration can 
be performed without that knowledge. Knowledge of 
the sequence of functions Q,, is sufficient. 

4. Direct Estimation of Q-functions 

We use Recursive Least Squares (RLS) to directly es- 
timate the function Qu.  It is not necessary to  identify 
either the system model or the one-step cost function 
separately. First, define the “overbar” function for 
vectors so that ?E is the vector whose elements are all 
of the quadratic basis functions over the elements of 
x, i . e . ,  

Next, define the function 0 for square matrices. 
O ( K )  is the vector whose elements are the n diag- 
onal entries of K and the n(n + 1)/2 - n distinct 
sums (Kij + Kji).  The elements of 5 and O ( K )  are 
ordered so that z’Kz = i?O(K). The original matrix 
K can be retrieved from O ( K )  if K is symmetric. If 
K is not symmetric, then we retrieve the symmetric 
matrix i ( K  + K’), which defines the same quadratic 
function as K .  We can now write 

Finally, we rearrange equation (5) to  yield 



where dt = { [ z t , ~ ]  - 7[zt+l ,ua,+l]} ,  and 8, I= 

@(Hu). 

RLS can now be used to estimate 8,. The recurrence 
relations for RLS are given by 

ek (2) = Ct - q5;ek (2  - I )  (8a) 

Pk(0) = Po. ( 8 4  
Po = PI  for some large positive constant 0. e k  = 
O(H,,) is the true parameter vector for the function 
Q,,. &(i) is the ith estimate of 6 k .  The subscript 
t and the index i are both incremented at each time 
step. The reason for the distinction between t and i 
will be made clear in the next section. 

Goodwin and Sin [3] show that this algorithm con- 
verges asymptotically to the true parameters if & is 
fixed and d t  satisfies the persistent excitation condi- 
tion 

(9) 
i=l 

for all t 2 NO and N 2 NO, where E O  5 EO, and NO is 
a positive number. 

5. Adaptive Policy Iteration for LQR 

The policy improvement process based on Q- 
functions (Section 3 )  and the ability to directly es- 
timate H ,  (Section 4) are the two key elements of 
the adaptive policy iteration algorithm that is the fo- 
cus of this paper. Figure 1 gives an outline of the 
algorithm. The index i used in equations (8) counts 
the number of time steps since the beginning of the 
estimation interval. 

Since the kth policy improvement step is based on an 
estimate of @ ( H u h ) ,  it is not clear a priori that the 
sequence Uk will converge to the optimal policy U*, 
or even that each of the u k ’ s  is guaranteed to be sta- 
bilizing. The convergence proofs of Kleinman [4] and 
Bertsekas [l] require exact knowledge of the system 
and take no account of estimation error. Theorem 
1 establishes that the adaptive policy iteration algo- 
rithm presented above does indeed converge, under 
certain conditions, to the optimal controller. 

Theorem 1: (Convergence of  adaptive policy 
iteration). Suppose that { A ,  B }  is a controllable 
pair, that U0 is a stabilizing control, and that the 
vector d ( t )  is persistently excited according to in- 
equality (9). Then there exists an estimation in- 
terval N < 00 so that the adaptive policy itera- 
tion mechanism described above generates a sequence 

~~ ~ 

Initialize parameters: 6 1  (0) .  
t = O  
for k = 0 to 00 { 

Initialize RLS: &(o) = Po. 
for z = 1 to N { 

ut = UkXt + e t ,  where et is the ’‘expb 
ration” component of the control signal. 
Apply u t ,  resulting in state ztil. 
Update &( i )  using RLS (8). 
t = t 4 1 .  

1 
Find the matrix itk corresponding to ik. 
Policy improvement: u k + l  = -fi;i2)k,+11. 
Initialize parameters: 6k+l(0) = dk. 

10 
11 
12 
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Figure 1: The Q-function based policy iteration algo- 
rithm. It starts with the system in some initial state CO 
and with some stabilizing controller UO. k is the number 
of policy iteration steps. t is the total number of  time 
steps. i is the number of time steps since the last policy 
change. 

( U k ,  k = 1,2, 3, ...} of stabilizing controls, converging 
so that 

lim IlUk - U’II = 0, 
k + m  

where U* is the optimal feedback control matrix. 

Proof: In order to prove this we need a few interme- 
diate results concerning the policy iteration scheme 
and RLS estimation. These preliminary results are 
summarized below and the proofs are given in [Z]. 
First, define the function 

u(Uk)  = trace(K,,). ( 1 0 )  

Lemma 1. If { A ,  B}  is controllable, U, is stabilizing 
with associated cost matrix K1 and U2 is the result 
of one policy improvement step from U,, i.e. U, = 
- r ( F  + yB’KIB)- lB’K~A,  then 

AllUl - U21I2 5 “.(U11 - 4 J 2 )  F SllUl - U21I2, 

where 

O < A = c r ( F ) < b =  
m 

trace ( F  + ~ B ’ K ~ B ) I I  x+a’z) (~  + ~ ~ ~ ) ~ 1 1 ~ ,  
r = O  

and a_(.) denotes the minimum singular value of a 
matrix. 

Lemma 2. If q5t is persistently excited as given by 
inequaliy (9) and N 2 NO, then we have 



where E N  = & and po is the minimum singular 
value of PO. 

Define a scalar “Lyapunov” function candidate 

sk = u(uk-1) + ( l e k - 2  -ek--211 (11) 

and suppose that 

s, < _ S O  < 00 for all O 5 i s  IC (12) 

for some upper bound 30. From this it follows that 
uk-1 is stabilizing in the sense that 

.(&-1) I so (13) 

and that the parameter estimation error is bounded 
so that 

l l4C-2 - L11 5 so- (14) 
It also follows that that the control resulting from a 
policy update using accurate parameters, U,, is sta- 
bilizing and that c.(U,’) 5 SO. From continuity of the 
optimal policy update it then follows that for every 
8 > 0 there exists €6  > 0 so that 

I4U) - .(U,’)I 5 w,’ - UII (15) 

for all IIU; - U11 5 € 6 .  This implies that control 
laws in a sufficiently small neighborhood around the 
optimal are stabilizing as well. 

w e  will show that S k f l  5 sk provided that the esti- 
mation interval N ,  is chosen to  be long enough. 

Define 
v k  = / l e k - 1  - ek-111,  

and we get from Lemma 2 that for all IC 

“Jk I f N ( v k - 1  + Il&c-l - 6k-211) ,  (16) 

where limN+m E N  = 0. Now from the inductive hy- 
pothesis (assumption (12)) we have 

vk-i 5 30 and 1lek-z  - ek-311 5 61, (17) 

where 1c1 is a constant. By application of (16) we 
then get 

It follows that Uk = I l6k - l  - f$+-lll can be made ar- 
bitrarily small be choosing the estimation interval N 
long enough. 

U; is defined to be the result from applying one step 
of policy iteration using accurate parameter values, 
i . e .  

vk 5 “ N ( S 0  + nl). (18) 

= -H[~(2a)Hk-l(21)r (19) 
whereas uk is the feedback law which results from 
applying the estimated parameters, i . e .  

(20) U, = -H-l * 
k- l (91)  Hk-l(21) * 

The matrix inverse is guaranteed to  exist when the 
estimation interval is long enough. From equations 
(19) and (20) we now have 

A 1  .. U, - U,‘ = -H-  k- 1(22) Hk-l(  21) + Hi:(22) Hk-l (21) . 

Hence 

u k  - = H;:(22)(&(21) Ak-1(21)) + 
(Hit( 22) - ‘:;(a 1 1 1 ‘k- 1 (2 1 ) 

= H i ~ ~ 2 2 ) { ( H k - i ( 2 1 :  - ~ ~ - I ( z I ) )  + 

(kk-1(22) - H k - l ( 2 a ) ) ~ ~ 1 : 2 2 ) k k - ~ ( 2 1 ) } .  

From the definition of 8 we have 

l lkk-l(22) - H~.l(zz)II i I l e k - 1 -  ek-111 and 

IIfik-l(22)Il 5 I lek- l l l .  

It follows that we have 

I lUk - GI1 L Eo(1 4- I I L I I ) .  I p k - 1  -& - I l l ,  
where it0 is a positive constant, provided that N is 
sufficiently large. Since the estimated parameters are 
bounded it follows that there exists another constant 
no so that 

Ilvk - u,’II 5 nOllek-l  -8k-111 = K O v k .  (21) 

It follows from equation (18) that we have 

Iluk -ukll 5 E N K O ( S 0  + n1). (22) 

It then follows from (15) that 

l‘(uk) - u ( u k * ) l  5 8ll’% - ukll 

for all N such that ~ ~ n O ( s 0  + 6 1 )  5 € 6 .  This implies 
that uk is stabilizing if N is large enough and that 
there exists an integer NI and an  associated constant 
8, so that 

la(~k) - ( T ( u ~ - ~ ) I  5 d l l ~ k  - Uk-111 for all N 2 N I .  

In other words, if the estimation interval is long 
enough, then the difference between two consecutive 
costs is bounded by the difference between two con- 
secutive controls. We use the definition of the param- 
eter estimation vector to write this as 

( l e k - i  - & - z l l  5 6111Uk - Uk-1112 for all N 2 NI, 

(23) 

/ l e k - ,  - &-,I1 5261(IIU,’ - uk-1112 + IIU,’ - Uk1I2). 

where 61 is a constant. We now re-write (23) as 

&om inequality (21) and the definition of vk, we then 
get 

where 
1 l e k - l  - ek-211 5 281(wi + K O v k ) ,  (24) 

W k  = Ilu; - Uk-111. 
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By combining equations (16 )  and (24 )  we then get 

V k  5 EN(vk-1 + 261(W: + K O V k ) ) ,  

which we re-write as 

where 
PN = (1 - 261K0EN)-1- 

According to the assumption we can choose N large 
enough so that 0 < p~ < 00. This gives a recursion 
for V k .  The critical point to notice is that V k  has a 
strong stability property when the estimation interval 
is long. The parameter  EN^ is then small since E N  
converges uniformly to 0 and p towards 1 .  

w e  now develop the recursion for a(uk). First we 
have 

a( uk ) - c( uk - 1 )  .(U;) - a( uk - 1) +U(  uk ) - U (  U; ) a  

(26 )  
From equation (26 )  and Lemma 1 ,  using (15 )  again, 
it follows that we can choose the update interval so 
that we have a constant 62 so that 

a( uk ) - c( uk - 1 )  5 -AI I U; - uk - 1 I I + 62 I I - uk I I 
Using equation (21 )  we then get 

a(Uk) - a(Uk-1 )  

5 -Al/u; - Uk-11l2 + 6 2 K O l l e k - 1  - e^k-l l l  

- < - A W ;  + 62KOVk. 

By using equation (25 )  and the recursion for U k  we 
then have 

a( uk) -a( uk - 1 )  5 -AW: $61 Ko€NpN(Uk- 1 + 262wi). 
(27 )  

Equations ( 2 5 )  and ( 2 7 )  together define the system 

] w:. 2cNpNJ2 
-A -k 262KocNpN 

In order to study this system we defined the function 

s k  = a(uk-1) + vk-1. 

From the above we then have 

We then get 

s k + l  = sk - E 1 V k - l  - 62,; 5 s k .  

From this we conclude that s k + l  5 S k  and using in- 
duction we finally have 

k=l k = l  

The result now follows since U0 is stabilizing. 

6. Conclusions 

In this paper we take a first step toward extending the 
theory of DP-based reinforcement learning to contin- 
uous domains. We concentrate on the problem of 
Linear Quadratic Regulation. We describe a policy 
iteration algorithm for LQR problems that is proven 
to converge to the optimal policy. In contrast to stan- 
dard methods of policy iteration, it does not require 
a system model. It only requires a suitably accurate 
estimate of Ifuk. This is the first theoretical result 
of which we are aware that proves convergence of a 
DP-based reinforcement learning algorithm in a con- 
tinuous domain. 
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