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Abstract: Nonlinear Programming provides a practical, reduced-complexity solution for the realization of Model
Predictive Controllers in which a cost function representing contradictory limitations is minimized under the con-
straints that express the dynamical properties of the system under control. For nonlinear system models and
non-quadratic cost functions the solution over a finite time-grid can be obtained by the use of Lagrange’s Reduced
Gradient Method that needs complicated numerical calculations. In this paper it is shown that under not too lim-
iting conditions this procedure can be replaced by a simple fixed point seeking iteration based on Banach’s Fixed
Point Theorem. The simplicity of the proposed algorithm widens the possibility for the practical applications of
the Receding Horizon Control method. The same algorithm is used for adaptively and precisely tracking the “opti-
mized trajectory” that can be constructed by the use of a dynamic model of “overestimated” parameters in order to
evade dynamical overloads in the control process. To illustrate the efficiency of the method the Receding Horizon
Control of a strongly nonlinear, oscillating system, the van der Pol oscillator is presented. In the simulations three
different parameter settings are considered: one of them produces the trajectory to be tracked, the second one is
used for the optimization, and the third one serves as the model of the controlled system.

Key–Words: Nonlinear Programming, Model Predictive Control, Receding Horizon Controller, Adaptive Control,
Fixed Point Transformation

1 Introduction
The classical realization of the Model Predictive Con-
trollers (MPC) controllers [1, 2] applies the mathe-
matical framework of Optimal Control (OC) in which
a cost function constructed of the nonnegative contri-
butions of normally contradictory restrictions is mini-
mized under the constraints that represent the dynamic
properties (i.e. the model) of the controlled system. It
is widely used for the control of nonlinear plants in
traffic control [3, 4], chemistry (e.g. [5, 6]), life sci-
ences (e.g. [7]), web transport systems (e.g. [8]) etc.

The most general approach considers the prob-
lem in analogy with the minimization of the action
functional in Classical Mechanics. The so obtained
Hamilton-Jacobi-Bellman Equations are complicated,
and the Dynamic Programming (DP) applied for their

solution generally needs high computational power
[9, 10]. A more practical approach tackles the prob-
lem by calculating the variables in the discrete points
of a finite time-grid that is considered as a “horizon”
(Nonlinear Programming (NP)). The Receding Hori-
zon Controllers (RHC) [11, 12] work with finite hori-
zon lengths and for the compensation of the effects of
modeling errors the horizon is frequently redesigned
from the actual state of the controlled system. The
optimization under constraints happens by NP that im-
plements Lagrange’s Reduced Gradient Method [13].
In the special case of the LTI system models and
quadratic cost functions the problem is considerably
reduced: the so obtained Linear Quadratic Regulator
(LQR) [14] technically can be realized over a finite
horizon by solving the Riccati Differential Equation
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with a terminal condition for a matrix function that
provides an inhomogeneous part for the equation of
motion of the system state satisfying an initial condi-
tion. In more general cases such a clear separation of
the variables cannot be realized and one has to work
with Time-dependent Riccati Equations. (In the sur-
vey paper [15] a huge number of applications was re-
ferred to in connection with this problem.)

In a formally more general case the RG method
can be numerically implemented. The MS EXCEL’s
Solver Package (provided by an external firm Front-
line Systems, Inc.) in combination with a little pro-
gramming efforts in Visual Basic (VB) in the back-
ground serves as an excellent solution if the size of
the problem is not too big. The problem conveniently
can be formulated by functional relationships between
the contents of the various cells of the worksheets. For
this purpose User Defined Functions can be created in
VB. Then for the Solver a “model” can be specified by
giving the cell that contains the cost to be minimized,
the location of the independent variables and the con-
straints in the worksheets, and the parameter settings
of this optimization package. The so defined “model”
can be saved somewhere in one of the worksheets.
Following that a small program can be written in VB
that declares the model parameters as global variables,
reads their actual values from the worksheets, loads
the “model” for the Solver, and for the horizons under
consideration cyclically a) fills in the cells with the
data of the nominal trajectory to be tracked, the initial
values of the variables to be optimized, and the con-
trol forces, b) calls the Solver with the options that it
must stop optimization if the prescribed limits in the
time or step numbers have been achieved, keeps the so
obtained results, and c) writes the optimized results in
certain cells of a worksheet.

In the first step, the Solver tries to find a com-
mon point on the constraint surfaces by the use of
the Newton-Raphson method [16]. (In the 2010 ver-
sion various initial points can be used for this pur-
pose.) Following that it computes the Reduced Gra-
dient (RG) by calculation the appropriate Lagrange
Multipliers, and realizes little steps in the direction
of the RG. The algorithm stops when the RG takes
zero. At this point the constraints do not allow more
improvement of the cost. The Solver package numeri-
cally calculates the gradient values, can automatically
set the appropriate step lengths. The calculation of
the Lagrange multipliers in principle needs the cal-
culation of a quadratic matrix that generally may be
singular or ill-conditioned, therefore somehow it also
has to tackle these problems.

It is a reasonable expectation that this compli-
cated procedure can be evaded in the control of a
system class in which a) the cost functions contain

separate differentiable contributions for penalizing the
tracking error and the too big control effort, and b) the
mathematical form of the system’s model under con-
trol is ab ovo known. In this case the appropriate gra-
dients can be analytically calculated, and the EXCEL
– VB programming background does not offer further
convenience, especially if the RG algorithm can be
replaced by a simpler one. This program is briefed in
the next section.

2 The Basics of NLP

Consider the numerical approximation
of the problem as follows: determine
a dense enough discrete time-grid as
{t0, t1 = t0 +∆t, . . . , tn+1 = tn +∆t, . . . , tN}
in which t0 and tN correspond to the initial and the
final time of the considered motion. Let the function
ẋ = f(x, u) describe the equation of motion of
the controlled system in which x ∈ IRn denotes
the state variable, and u ∈ IRm is the control
signal (n,m ∈ IN). The nominal trajectory to
be tracked in the given time-grid takes the values
xNom(ti) ≡ xNom

i . In the control task this nominal
trajectory cannot be exactly realized because various
restrictions can be prescribed be the use of a Cost
Function J(x, u) in each point of the grid. The
function J(x, u) ≥ 0 may express various, often con-
tradictory requirements. It can be constructed as the
sum of various non-negative terms that expediently
are differentiable functions of the state variable and
the control signal. The use of large control signals
can be “prohibited” in the cost function, too. For the
last term at tN an extra terminal condition can be
prescribed that depends only on xN . In the Optimal
Control Approach the above sum has to be minimized:

N−1∑
i=0

J(xi, ui) + F (xN ) , (1)

in which the last term F (xN ) gives an “extra weight”
to the last point of the trajectory. However, (1) cannot
be arbitrarily minimized. The dynamics of the sys-
tem expressed by the equation of state propagation has
to be taken into account as a constraint in the mini-
mization. This constraint can be processed by the use
of the Lagrange Multipliers in the following manner:
The time-derivative ẋ has an expression from the state
propagation equation, and the numerical estimation
as xi+1−xi

∆t ≈ f(xi, ui). On this basis an “auxiliary
function” can be introduced in which the Lagrange
multipliers in the great majority of applications have
clear physical meaning (e.g. [17]):
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Φ =

N−1∑
i=0

[
J(xi, ui) + λTi

(
xi+1 − xi

∆t
− f(xi, ui)

)]
+ F (xN ) (2a)

in which Φ = Φ({x}, {u}, {λ}). The indepen-
dent variables of the problem are {x1, . . . , xN},
{u0 . . . , uN−1}, and {λ0, . . . , λN−1 ∈ IRn} are the
Lagrange multipliers. The auxiliary function Φ ev-
idently is unbounded but it has local saddle points
when its partial derivatives by its all variables are ze-
ros. For k ∈ {1, 2, . . . , N − 1} we get:

∂Φ

∂xk
=
∂J(xk, uk)

∂xk
+
λk−1

∆t
− λk
∆t

−
λTk ∂f(xk, uk)

∂xk
= 0,

(3)
for k = N :

∂Φ

∂xN
=
λN−1

∆t
+
∂F (xN )

∂xN
= 0 , (4)

for l ∈ {0, 1, 2, . . . , N − 1}:

∂Φ

∂ul
=
∂J(xl, ul)

∂ul
−
λTl ∂f(xl, ul)

∂ul
= 0, (5)

and for j ∈ {0, 1, . . . , N − 1}
∂Φ

∂λj
=
xj+1 − xj

∆t
− f(xj , uj) = 0 , (6)

for the given initial value x0. Evidently (3) states
that the reduced gradient is zero, that is the set of the
∇Φ = 0 points contains the points where the above
detailed algorithm stops, (4) is related to the terminal
condition, (6) means that the solution must be on the
constraints’ common hypersurface, and (5) expresses
the condition for the control forces. It worths noting
that in general, if they exist, the local maximums of
the cost function also satisfy the ∇Φ = 0 condition.
However, in many practical applications (e.g. in Ther-
modynamics) it corresponds to the local minimum.
The traditional approach consider these equations as
starting point for developing the LQR controller for
special cost functions and model structures.

Instead tracking the traditional route it is expe-
dient to observe that if in the variable X ∈ IRK all
the independent variables of Φ are collected, the func-

tion Ψ(X)
def
= ∇Φ(X) : IRK 7→ IRK is a K(∈ IN)

dimensional vector function, and our goal is to drive
the value of this function to zero from an ini0.1tial
point. This task evidently is in strict analogy with the
Inverse Kinematic Task of Robots in which the Carte-
sian Workshop Coordinates x(q) ∈ IRl as the func-
tions of the Joint Coordinates q ∈ IRs, l, s ∈ IN,
and for a redundant robot s > l describe the Forward
Kinematics of the robot arm.

3 Analogy with The Solution of The
Inverse Kinematic Task of Robots

The task is to find q for a given xDes “desired posi-
tion” has (normally ambiguous) closed form solution
only for special arm constructions, e.g. in the case
of a PUMA-type robot [18]. As a general possibility,
the differential solution based on the use of the Jaco-
bian ∂x

∂q in a function of a scalar variable ξ ∈ IR as
x(ξ) = x(q(ξ)) is considered in the equation

dxj
dξ

=
∑
i

∂xj
∂qi

dqi
dξ

≡
∑
i

Jji
dqi
dξ

, (7)

where the initial conditions as x(ξini) = xini and
q(ξini) are known. The traditional solutions contain
some generalized inverse as e.g. the Moore-Penrose
Pseudoinverse [19, 20] that is singular in, and ill-
conditioned in the vicinity of the kinematic singular-
ities of the robot arm. The general problem is that
such a solution generates huge joint coordinate time-
derivatives therefore it is expedient to “tame” the orig-
inal task to evade the numerical inconveniences, as
e.g. in the method of Damped Least Squares [21]. As
an alternative of the traditional approach in [22] the
original task was transformed into a fixed point prob-
lem that subsequently was solved by simple iteration.
Its special advantage is that it automatically shows sta-
ble solution in and in the vicinity of the kinematic
singularities without the use of any “complementary
trick”, and automatically selects one of the ambigu-
ous solutions. On this reason the use of this algorithm
for driving ∇Φ to zero in the novel RHC controller
was suggested. The essence of the method is briefed
below.

The idea of transforming our task into a fixed
point problem and solving it via iterations, has very
early roots in the 17th century as the Newton-Raphson
Algorithm, that has many applications even in our
days (e.g. [23]). In 1922 Banach extended this way of
thinking to quite wide problem classes [24]. Accord-
ing to his theorem, in a linear, complete metric space
(i.e. the “Banach Space”) the sequence created by
the contractive mapping ψ : IRm 7→ IRm, m ∈ IN as
xs+1 = ψ(xs) is a Cauchy Sequence that converges
to the fixed point of ψ defined as ψ(x⋆) = x⋆. (A map
is contractive if ∃0 ≤ H < 1 so that ∀x, y elements
of the space ∥ψ(x)−ψ(y)∥ ≤ H∥x−y∥.) In [25] the
following transformation was used for this purpose: a
real differentiable function φ(ξ) : IR 7→ IR was taken
with an attractive fixed point φ(ξ⋆) = ξ⋆. It was used
for the generation of a sequence of iterative signals as
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q(i+ 1) =
[
φ(A∥x(q(i))− xDes∥+ ξ⋆)− ξ⋆

]
·

· x(q(i))− xDes

∥x(q(i))− xDes∥
+ q(i) , (8a)

in which the Frobenius norm was used. In (8a)A ∈ IR
is an adaptive parameter. For q(k) = q⋆ that pro-
vides x(q⋆) = xDes, (8a) yields that q(k+1) = q(k),
that means that q⋆, i.e. the solution of our task, is
the fixed point of this function. The convergence of
this sequence was investigated in [26] by making the
first order Taylor series approximation of φ(ξ) in the
vicinity of ξ⋆ and that of x(q) around q⋆. It was found
that if the real part of each eigenvalue of the Jacobian
∂x
∂q simultaneously positive or negative, an appropriate
parameter A can be so chosen that it guarantees the
convergence. This result for the redundant robot arms
of non-quadratic Jacobians in [22] was so applied that
instead of the original problem xDes = x(q) the mod-
ified one JT (q)xDes = JT (q)x(q) was solved. By
the Taylor series approximation of x(q) around q⋆ it
can be shown that the convergence will be determined
by the positive semidefinite matrix JT (q)J(q) that
has non-negative eigenvalue. (The zeros eigenvalues
cause “stagnation” instead of infinite velocities in the
singularities.) For adaptively tracking the “optimized
trajectory” a similar transformation into a fixed point
problem was applied as it is briefed in the sequel.

4 Fixed Point Transformation in
Adaptive Control

The idea of transforming an adaptive control task into
a fixed point problem was risen in [27]. According
to Fig. 1 it can be shortly expounded for the digital
control of a second order system as follows: by ap-
plying an appropriate tracking error feedback in the
“Kinematic Block” to calculate the “Desired Tracking
Error Damping” [in the case of a PD-type controller it
is q̈Des(t) = q̈N (t)+2Λ(q̇N (t)− q̇(t))+Λ2(qN (t)−
q(t))], for a constant Λ > 0 time-exponent by the use
of this signal the elements of the sequence of the “De-
formed Control Signals” q̈Def (t) are created by the
function in (8a); this deformed signal is used as the in-
put of the available “Approximate Model” of the con-
trolled system for the calculation of the control force
Q(t) that is exerted on the actually controlled system
that generates the realized response q̈(t). (The sym-
bolic integrations at the bottom of the figure are done
by the dynamics of the controlled system in a real con-
trol situation, or, in the case of a simulation study, they
have to be implemented numerically.) After converg-
ing to the fixed point the kinematically prescribed tra-
jectory tracking error damping will be precisely real-
ized. In [29] the same control was implemented in
an EXCEL-Solver-Visual Basic environment. In the
present research the same structure is used in the pro-
posed adaptive RHC controller.

Kinematic Block

q̈Des(t)

Adaptive Deformation

Delay

Controlled System

Delay

q̇(t0) +
∫ t
t0
q̈(ξ)dξ

q(t) realized

qN (t) nominal

q̈(t) realized response

q̈Def (t)

Approximate Model

Q(t) control force

q(t0) +
∫ t
t0
q̇(ξ)dξ

Fig. 1. Schematic structure of the “Fixed Point Transformation-based Adaptive Controller” taken from [28]

5 Simulation Investigations

The investigated strongly nonlinear 2nd order physi-
cal system was the van der Pol oscillator invented in
1927 [30]. Its equation of motion is given in (9)

ẍ =
−kx− b(x2 − d)ẋ− cx3 + eu

m
≡ f(x, ẋ, u) ,

(9)

in which u is the control force, x and ẋ are the state
variables. Parameters k > 0 and c > 0 describe a
spring that “strengthens” with increasing extension x,
parameter b > 0 describes viscous damping if x2 > d,
and excitation for x2 < d. Due to it the state x ≡ 0
is an unstable equilibrium point: the smallest distur-
bance brings about excitation and drives the system
into nonlinear oscillation that is bounded by the dis-
sipative nature of the term −b(x2 − d)ẋ for x2 > d.
Parameter e describes the system’s sensitivity for the
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control force u. The appropriate model parameters are
given in Table 1.

Table 1: The applied model parameters
Param. Exact Approx. Traj. generator
m 1.0 2.0 3.0

k 100.0 130.0 140.0

b 1.2 1.5 2.0

d 1.0 1.3 3.0

c 0.5 0.8 0.6

e 2.0 1.5 1.0

For the dynamic control Λ = 2.0 s−1 was used,
parameter A in (8a) was Adc = −0.5. For the pur-
pose of the optimization various values were stud-
ied for Aopt. The time resolution of the grid was
∆t = 10−3 s, the horizons consisted of G = 10 grid
points, that, in the case of a 2nd order system cor-
responds to 8 independent state variables (the initial
conditions correspond to two independent grid points
at the beginning of the horizon), and on the same
reason we have 8 independent Lagrange multipliers
and 8 independent control signals that determine the
system’s motion over the grid. No special terminal
cost was applied, and the “auxiliary function” had the
structure as follows:

Ψ =

G∑
j=3

∣∣∣∣∣xNj − xj

Ax

∣∣∣∣∣
α

x

+Bu

G−2∑
j=1

∣∣∣∣ ujAu

∣∣∣∣α
u

+

G−2∑
j=1

λj [xj+2 − 2xj+1 + xj ] +

G−2∑
j=1

λj
[
−∆t2f(xj , ẋj , uj)

]
, (10a)

in which for αx > 1 and αu > 1 the track-
ing error and the control force are well tolerated if
|xN − x| < Ax and |u| < Au, respectively, but
they are strongly penalized over these limits. In
(10a) the term f(xj , ẋj , uj) can be approximated as
f(xj ,

xj+1−xj

∆t , uj), and the terms in ∇Ψ and the Jaco-
bian of the problem can be calculated in closed form
for optimization. (For sparing room these terms are
not given here.) In (8a) the function φ(x) = x

2 + 0.3
was in use.

In the investigations the trajectory generator was
excited with a constant force Fγ = 300.0N that
makes it settling down at the damped region. The
control parameters were set as follows: Ax = 0.5m,
αx = 6.1, Au = 100.0N , αu = 8.0, Bu = 100. The
RHC algorithm contained 100 internal iterations. The
Aopt = −1 × 10−5 setting represents too slow itera-
tion. Figure 2 reveals that the “optimized” trajectory

is very far from the “nominal” one, and that the in-
ternal iteration did not result in good improvement of
∇Ψ. The counterpart of Fig. 2 for Aopt = −1× 10−2

is displayed in Fig. 3. It reveals that the tracking er-
ror is practically kept under 0.5m that is compatible
with the setting Ax = 0.5m, αx = 6.1. It is also
clear that the ∥∇Ψ∥ went down from the value 15 to
≈ 0.13, i.e. the inner iteration was really responsible
for driving ∇Ψ towards zero.

Figure 2: Trajectory tracking for too small adaptive
parameter in the optimization (Aopt = −1× 10−5)

Regarding the adaptive tracking of the optimized
trajectory it can be seen that in both cases the adap-
tivity that was switched on in the beginning of the
2nd horizon, produced good results. Figure 5 explains
its reason: the “desired” 2nd time-derivatives are well
approximated by the realized ones while they consid-
erably differ from the “adaptively deformed” values.
The significance of the dynamic adaptivity in trajec-
tory tracking is also substantiated by Fig. 4, that de-
scribes the case in which this dynamic adaptivity was
switched off: the realized trajectory even does not ap-
proach the optimized one.

Figure 6 explains the reason for the remnant part
of ∇Ψ: the minimal eigenvalue is 0, therefore the
theoretically expected occurrence of “stagnation” was
substantiated by the computations.

Figure 7 reveals great fluctuations in the Lagrange
multipliers and the control forces. It worths noting
that in [29] similar fluctuations were observed in con-
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Figure 3: Trajectory tracking for appropriate adaptive
parameter in the optimization (Aopt = −1× 10−2)

Figure 4: Trajectory tracking without dynamic adap-
tivity for appropriate adaptive parameter in the opti-
mization (Aopt = −1× 10−2)

Figure 5: The second time-derivatives in the adap-
tive dynamic tracking of the optimized trajectory for
appropriate adaptive parameter in the optimization
(Aopt = −1× 10−2)

Figure 6: The maximal and minimal eigenvalues of
JTJ in the internal iterations for appropriate adaptive
parameter in the optimization (Aopt = −1× 10−2)

nection with a similar problem solved by the use of
the EXCEL–Solver–Visual Basic apparatus.

6 Conclusion
In this paper an attempt is reported for replacing La-
grange’s Reduced Gradient Method’s EXCEL-Solver-
Visual Basic-based implementation with a simple
fixed point transformation-based adaptive solution
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Figure 7: The Lagrange multipliers and the control
signals for appropriate adaptive parameter in the opti-
mization (Aopt = −1× 10−2)

that easily can be implemented in arbitrary software
environment for a wide class of problem classes in
which the gradient of the “auxiliary function” as well
as the gradient of this gradient can be determined in
closed form formulation. The same type of fixed point
transformation was applied for driving the gradient of
the auxiliary function and adaptively tracking of the
optimized trajectory by the actual system.

The applicability of the method was illustrated
by presenting an example realizing the adaptive RHC
control of a van der Pol oscillator. In this task three
different parameter settings were applied: one of them
was used for the generation of the nominal trajectory,
another settings was used in the constraint terms of the
optimization, and the third one represented the actual
system under control. The simulations were made by
a simple sequential code written in Julia language.

It definitely can be stated that the theoretical ex-
pectations were verified by the simulations.

Regarding our future plans, we wish to apply this
approach for tackling adaptive RHC control realiza-
tions in biomedical applications.
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