
Adaptive Model Predictive Control for
Constrained Nonlinear Systems ?

Veronica Adetola ∗ Martin Guay ∗

∗Dept. Chemical Engineering, Queen’s University, Kingston Ontario
Canada K7L 3N6 (e-mail: martin.guay@chee.queensu.ca).

Abstract: A true adaptive nonlinear model predictive control (MPC) algorithm must address
the issue of robustness to model uncertainty while the estimator is evolving. Unfortunately, this
may not be achieved without introducing extra degree of conservativeness and/or computational
complexity in the controller calculations. To attenuate this problem, we employ a finite time
identifier and propose an adaptive predictive control structure that reduces to a nominal MPC
problem when exact parameter estimates are obtained. The adaptive MPC is formulated in such
a way that useful excitation is automatically injected into the closed loop system to decrease
the identification period.

1. INTRODUCTION

Model predictive control (MPC) has attracted a great
deal of interest from practitioners due to the relative
ease constraints can be incorporated Qin and Badgwell
(2003). Although it has been proven that a standard
implementation of MPC using a nominal model of the
system dynamics exhibit nominal robustness to sufficiently
small disturbances Scokaert et al. (1997), such marginal
robustness guarantee may be unacceptable in practical
situations. Present uncertainties must be accounted for
in the computation of the control law to achieve robust
stability.

In general, most physical systems possess parametric
uncertainties or unmeasurable parameters. Examples in
chemical engineering include reaction rates, activation en-
ergies, fouling factors, and microbial growth rates. Since
parametric uncertainty may degrade the performance of
MPC, mechanisms to update the unknown or uncertain
parameters are necessary in application. One possibility
would be to use state measurements to update the model
parameters off-line. A more attractive possibility is to
apply adaptive extensions of MPC in which parameter
estimation and control are performed online.

While some results are available for linear adaptive MPC
(See Shouche et al. (1998) for example), very few adaptive
MPC schemes have been developed for nonlinear systems
Adetola and Guay (2004); Mayne and Michalska (1993).
The result in Mayne and Michalska (1993), implements
a certainty equivalence nominal-model MPC feedback to
stabilize a parametric uncertain system subject to an input
constraint. The result shows that there must exist a finite
time such that an excitation condition is satisfied and thus
parameter convergence is achieved. There is no mechanism
to decrease the identification period in any way and more-
over, it is only by assumption that the true system trajec-
tory remains bounded during the identification phase. In
Adetola and Guay (2004), an input-to-state stable control
? This work was supported in part by the Natural Sciences and
Engineering Council of Canada.

Lyapunov functions (iss-clf) is used to develop a MPC
scheme that provides robust stabilization in the absence of
parameter estimation algorithm, and ensures asymptotic
stability of the closed loop with parameter adaptation.
However, the work only deals with unconstrained nonlin-
ear systems.

The design of adaptive nonlinear MPC schemes is very
challenging because the “separation principle assumption”
widely employed in linear control theory is not applicable
to general class of nonlinear systems, in particular in the
presence of constraints. A true adaptive nonlinear MPC
algorithm must address the issue of robustness to model
uncertainty while the estimator is evolving. Unfortunately,
this may not be achieved without introducing extra de-
gree of conservativeness and/or computational complexity
in the controller calculations. The recent work DeHaan
and Guay (2007) provided an adaptive robust MPC that
deals with both state and input constraints within an
adaptive framework. In the presented approach, a set val-
ued description of the parametric uncertainty is adapted
online to reduce the conservativeness of the solutions,
especially with respect to the design of terminal penalty.
The parameterization of the feedback MPC policy in terms
of uncertainty set and the underlying min-max feedback
MPC used in the study make the controller’s computation
very challenging. The result can be viewed as a conceptual
result that focus on performance improvement rather than
implementation.

In this paper, we assume that the uncertainties in the sys-
tem are due to static nonlinearities, expressible in the form
of unknown (constant) model parameters. As in DeHaan
and Guay (2007), an adaptation mechanism is embedded
within the frame work of a robust MPC to reduce the
conservativeness of the MPC controller while retaining its
stabilizing properties. The adaptive MPC is formulated in
such a way that useful excitation is automatically injected
into the closed loop system. In contrast to DeHaan and
Guay (2007), simplicity is achieved by generating a param-
eter estimator for the unknown parameter vector rather
than adapting a parameter uncertainty set directly. The
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identifier employed Adetola and Guay (2007) ensures that
the degree of uncertainty is non-increasing at every time
step. This means that the controller employs a process
model which approaches that of the true system over time.
Moreover, when an excitation condition is satisfied, the
estimation routine recovers the true value of the uncer-
tain parameters in a known finite time. Subsequently, the
adaptive and robustness features of the MPC is eliminated
and the complexity of the resultant controller reduces to
that of nominal model predictive control.

The remainder of the paper is organized as follows. The
problem description is given in section 2 while the finite
time identifier employed is outlined in section 3. Our
proposed robust adaptive MPC techniques are presented
in sections 4 and 5. Simulation results are shown in
section 6 and conclusions are given in section 7.

1.1 Nomenclature and Definitions

λ(M), det(M) and cond(M) denote the smallest eigen-
value, the determinant and the condition number of matrix
M respectively. A continuous function µ : R+ → R+ is of
class K∞ if µ(0) = 0, µ(.) is strictly increasing on R+ and
is radially unbounded.

2. PROBLEM DESCRIPTION

The system considered is the following nonlinear parame-
ter affine system

ẋ = f(x, u) + g(x, u)θ , F(x, u, θ) (1)
θ ∈ Rp is the unknown parameter vector whose entries
may represent physically meaningful unknown model pa-
rameters or could be associated with any finite set of
universal basis functions. It is assumed that θ is uniquely
identifiable and lie within an initially known compact set
Θ0 , B(θ0, z0

θ), a ball described by an initial nominal
estimate θ0 and associated error bound z0

θ = sups∈Θ0 ‖s−
θ0‖. The mapping F : Rn × Rm × Rnθ → Rn is assumed
to be locally Lipschitz with respect to its arguments and
F(0, 0, θ) = 0. The state and the control input trajecto-
ries are assumed to be subject to pointwise constraints
x ∈ X ∈ Rn and u ∈ U ∈ Rm respectively. The objective
of the study is to (robustly) stabilize the plant by means of
state feedback adaptive MPC. Optimality of the resulting
trajectories are measured with respect to the accumulation
of some stage cost L(x, u) ≥ 0. The cost is assumed to be
continuous, L(0, 0) = 0, and L(x, u) ≥ µL(‖x, u‖), where
µL is a K∞ function.

3. FINITE TIME IDENTIFIER

In the following, we give a brief description of the identifier
employed in the adaptive robust design framework. The
finite time (FT) identification procedure assumes the state
of the system x(.) is accessible for measurement but do not
require the measurement or computation of the velocity
state vector ẋ(.). The algorithm is independent of the
control structure employed.

Let the state predictor for (1) be denoted as x̂ and define

˙̂x = f(x, u) + g(x, u)θ̂ + ke+ w
˙̂
θ, (2)

where θ̂ is the parameter estimate vector, k > 0 a design
constant or (n× n) matrix, e = x− x̂ the prediction error
and w the output of the filter

ẇ = g(x, u)− kw, w(t0) = 0. (3)

Denoting the parameter estimation error as θ̃ = θ − θ̂, it
follows from (1) and (2) that

ė = g(x, u)θ̃ − ke− w ˙̂
θ. (4)

Defining
η = e− wθ̃ (5)

It follows from (3) and (4) that η can be generated from
η̇ = −kη, η(t0) = e(t0). (6)

The adaptive compensator used in this work is given as
˙̂
θ = Proj

{
γwT (e− η), θ̂

}
, θ̂(t0) = θ0 ∈ Θ0 (7)

where γ = γT > 0 and Proj{φ, θ̂} denotes a Lipschitz
projection operator such that

− Proj{φ, θ̂}T θ̃ ≤ −φT θ̃, (8)

θ̂(t0) ∈ Θ0 ⇒ θ̂(t) ∈ Θ0
ε , ∀ t ≥ t0. (9)

where Θ0
ε , B(0,Π + ε), ε > 0. More details on parameter

projection can be found in Krstic et al. (1995).
Lemma 1. Let Q ∈ Rp×p and C ∈ Rp be generated from
the following dynamics:

Q̇ = wTw, Q(t0) = 0

Ċ = wT (wθ̂ + e− η), C(t0) = 0

and define γ = λ(γ), a Lyapunov function Vθ̃ = θ̃T θ̃,
excitation index E(t) = λ

(
Q(t)

)
, and contraction factor

0 < α(t) = 1
1+γE(t) ≤ 1,

(1) the identifier (7) is such that the estimation error
‖θ̃‖ = ‖θ − θ̂‖ is non-increasing and

Vθ̃(t) ≤ α(t)Vθ̃(t0), for all t > t0. (10)
(2) suppose there exists a time tc such that Q(tc) is

invertible, then
θ = Q(t)−1C(t), for any t ≥ tc. (11)

Proof

(1) It follows from (5), (7), and (8) that
V̇θ̃ ≤ −γθ̃

TwTwθ̃ ≤ 0,

which guarantees non-increase of ‖θ̃‖. Also,

Vθ̃(t) = Vθ̃(t0) +
∫ t

t0

V̇θ̃dτ

≤ Vθ̃(t0)− γλ
(∫ t

t0

w(τ)Tw(τ)dτ
)

min
τ∈[t0,t]

‖θ̃(τ)‖2.

Hence
Vθ̃(t) ≤ Vθ̃(t0)− γE(t)Vθ̃(t) (12)

Rearranging (12) concludes the proof of part (1).

(2) This can be easily shown by noting that

Q(t) θ =
∫ t

t0

wT (τ)w(τ)
[
θ̂(τ) + θ̃(τ)

]
dτ. (13)

Since wθ̃ = e− η, it follows from (13) that

θ = Q(t)−1

∫ t

t0

Ċ(τ) dτ = Q(t)−1C(t) �
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Let θc , Q(tc)−1 C(tc), the finite time (FT) identifier is
given by

θ̂(t) =
{
θ̂(t), if t < tc
θc, if t ≥ tc.

(14)

Remark 2. The invertibility condition in theorem 1.2 is
equivalent to the standard persistence of excitation condi-
tion required for parameter convergence in adaptive con-
trol. However, the superiority of the above design lies in
the fact that we can actually compute the true parameter
value at any time instant tc the regressor matrix becomes
positive definite and subsequently stop parameter adapta-
tion.

4. ROBUST ADAPTIVE MPC - A MIN-MAX
APPROACH

In this section, the concept of min-max robust MPC is
employed to provide robustness for the MPC controller
during the adaptation phase. The resulting optimization
problem can either be solved in open-loop or closed-loop.
In the presented approach, we choose the least conservative
option by performing optimization with respect to closed
loop strategies. As in typical feedback-MPC fashion, the
controller chooses input u as a function of the current
states. The formulation consists of maximizing a cost
function with respect to θ and minimizing over feedback
control policies κ. The uncertainty set is a ball of the
form Θ , B(θ̂, zθ), described by a nominal estimate θ̂ and
associated error bound zθ ≥ ‖θ − θ̂‖, which is updated as

zθ(t) =
√
α(t)zθ(t0)

The receding horizon control law is defined by

u = κmpc(x, θ̂, zθ) , κ∗(0, x, θ̂, zθ) (15a)

κ∗ , arg min
κ(·,·,·,·)

J(x, θ̂, zθ, κ) (15b)

where J(x, θ̂, zθ, κ) is the (worst-case) cost associated with
the optimal control problem:

J(x, θ̂, zθ, κ) , max
θ∈B(θ̂,zθ)

∫ T

0

L(x̄, ū)dτ +W (x̄(T ), ˜̄θ(T )) (16a)

s.t. ∀τ ∈ [0, T ]
˙̄x = f(x̄, ū) + g(x̄, ū)θ, x̄(0) = x (16b)
˙̄w = β

(
gT (x̄, ū)− kw̄

)
, w̄(0) = w (16c)

˙̄̂
θ = Proj

{
γw̄T w̄ ˜̄θ, θ̂

}
, ˜̄θ = θ − ˆ̄θ, ˆ̄θ(0) = θ̂ (16d)

ū(τ) , κ(τ, x̄(τ), ˆ̄θ(τ)) ∈ U (16e)

x̄(τ) ∈ X, x̄(T ) ∈ Xf (˜̄θ(T )) (16f)

In the above framework, β ∈ {0, 1} is a design parameter.
The bared variables denote the predicted values internal
to the min-max nonlinear MPC controller. The effect
of future parameter adaptation is accounted for, which
results in less conservative worst-case predictions. Also,
the conservativeness of the terminal cost is reduced by
parameterizing both W and Xf as functions of θ̃T .
Remark 3. The fact that the terminal penalty is parame-
terized as a function of θ̃ ensures that the algorithm will
seek to reduce the parameter error in the process of opti-
mizing the cost function J . However, to further improve

the quality of excitation in the closed loop and thereby
achieve parameter convergence in a minimum time, the
PE condition can be explicitly incorporated in the min-
max optimization problem by selecting terminal function
of the form

W (x̄T , θ̃T ) = W1(x̄T , θ̃T ) + α(T )Vθ̃(0) (17)

where α(T ) = 1
1+γE(T ) as given in lemma 1

4.1 Implementation Algorithm

Algorithm 1. The MPC algorithm performs as follows: At
sampling instant ti

(1) Measure the current state of the plant x
(2) Obtain the current value of matrices w, Q
(3) If det(Q) = 0 or cond(Q) is not satisfactory

If zθ(ti) ≤ zθ(ti−1)− ‖θ̂(ti)− θ̂(ti−1)‖
θ̂ = θ̂(ti), zθ = zθ(ti), β = 1

Else
θ̂ = θ̂(ti−1), zθ = zθ(ti−1), β = 1

End

Elseif det(Q) > 0 and cond(Q) is satisfactory,

θ̂ = θc , Q−1C, zθ = 0, β = 0
End

(4) Solve the optimization problem (15) and apply the
resulting feedback control law to the plant until the
next sampling instant

(5) Increment i = i + 1. If zθ > 0, repeat the procedure
from step 1 for the next sampling instant. Otherwise,
repeat only steps 1 and 4 for the next sampling
instant.

Implementing the adaptive MPC controller according to
algorithm 1 guarantees that the uncertainty ball Θ ,
B(θ̂, zθ) is contained in the previous one, that is, Θ(ti) ⊆
Θ(ti−1). Hence, a successive reduction in the computa-
tional requirement of (15) is ensured. Moreover, when the
parameter estimate θc becomes available, the uncertainty
set B(., .) reduces to a single point with θ̃ = 0 and
the predictive robust control structure becomes that of
a nominal MPC:

u = κmpc(x) , κ∗(0, x) (18a)

κ∗ , arg min
κ(·,·)

J(x, κ) ,
∫ T

0

L(x̄, ū)dτ +W (x̄(T )) (18b)

s.t. ∀τ ∈ [0, T ]
˙̄x = f(x̄, ū) + g(x̄, ū)θc, x̄(0) = x (18c)
ū(τ) , κ(τ, x̄(τ)) ∈ U, x̄(τ) ∈ X, x̄(T ) ∈ Xf (18d)

In the remainder of this section, we drop constraints (16e)
and (16f) by using the convention that if some of the
constraints is not satisfied, then the value of J is +∞.

4.2 Closed loop Robust Stability

Robust stability is guaranteed if predicted state at termi-
nal time belong to a robustly invariant set for all possible
uncertainties. Let Θ̃0 = {θ̃ | ‖θ̃‖ ≤ zθ(t0)}, sufficient con-
ditions for the robust MPC (15,16) to guarantee stabiliza-
tion of the origin is outlined below:
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Criterion 4. The terminal penalty function W : Xf ×
Θ̃0 → [0, +∞] and the terminal constraint function Xf :
Θ̃0 → X are such that for each (θ, θ̂, θ̃) ∈ (Θ0 ×Θ0

ε × Θ̃0),
there exists a feedback kf (., θ̂) : Xf → U satisfying

(1) 0 ∈ Xf (θ̃) ⊆ X, Xf (θ̃) closed
(2) kf (x, θ̂) ∈ U, ∀x ∈ Xf (θ̃)
(3) W (x, θ̃) is continuous with respect to x ∈ Rn
(4) Xf (θ̃) is strongly positively invariant under kf (x, θ̂)
(5) W (x(t+ δ), θ̃(t))−W (x(t), θ̃(t))
≤ −

∫ t+δ
t

L(x, kf (x, θ̂))dτ , ∀x ∈ Xf (θ̃).

In addition to criterion (4), the θ̃ dependence of W and
Xf is required to satisfy the following:

Criterion 5. For any θ̃1, θ̃2 ∈ Θ̃0 s.t. ‖θ̃1‖ ≤ ‖θ̃2‖,

(1) W (x, θ̃1) ≤W (x, θ̃2), ∀x ∈ Xf (θ̃2)
(2) Xf (θ̃1) ⊇ Xf (θ̃2)

Note that criterion (4) require only the existence, not
knowledge, of kf (x, θ̂) and the stability condition requires
the terminal penalty function W (x, θ̃) to be a robust-CLF
on the domain Xf (θ̃). Criterion (5) requires W to decrease
and the domain Xf to enlarge with decreased parametric
uncertainty as expected.
Theorem 6. Let X0(Θ0) denote the set of initial states
with uncertainty Θ0 for which (16) has a solution. As-
suming criteria 4 and 5 are satisfied, then the closed loop
system state x, given by (1,14,15), originating from any
x0 ∈ X0 feasibly approaches the origin as t→ +∞.

Proof. The stability of the closed loop system is es-
tablished by proving strict decrease of the optimal
cost J∗(x, θ̂, zθ) , J(x, θ̂, zθ, κ∗). Let the trajectories
xp, θ̂p, θ̃p, zpθ and control up correspond to any worst case
minimizing solution of J∗(x, θ̂, zθ). If xp[ 0,T ] were extended
to τ ∈ [0, T + δ] by implementing the feedback u(τ) =
kf (xp(τ), θ̂p(τ) ) on τ ∈ [T, t+ δ], then criterion 5.5 guar-
antees the inequality∫ T+δ

T

L(xp, kf (xp, θ̂p) )dτ +W (xpT+δ, θ̃
p
T )−W (xpT , θ̃

p
T ) ≤ 0

(19)

where in (19) and in the remainder of the proof, xpσ ,
xp(σ), θ̃pσ , θ̃

p(σ), for σ = T, T + δ.
The optimal cost J∗(x, θ̂, zθ)

=
∫ T

0

L(xp, up)dτ +W (xpT , θ̃
p
T )

≥
∫ T

0

L(xp, up)dτ +W (xpT , θ̃
p
T ) +

∫ T+δ

T

L(xp, kf (xp, θ̂p) )dτ

+W (xpT+δ, θ̃
p
T )−W (xpT , θ̃

p
T ) (20)

≥
∫ δ

0

L(xp, up)dτ +
∫ T

δ

L(xp, up)dτ

+
∫ T+δ

T

L(xp, kf (xp, θ̂p) )dτ +W (xpT+δ, θ̃
p
T+δ) (21)

≥
∫ δ

0

L(xp, up)dτ + J∗(x(δ), θ̂(δ), zθ(δ)) (22)

Hence, it follows from (22) that

J∗(x(δ), θ̂(δ), zθ(δ))− J∗(x, θ̂, zθ) ≤ −
∫ δ

0

L(xp, up)dτ

�

Remark 7. In the above proof,

• (20) is obtained using inequality (19)
• (21) follows from criterion 5.1 and the fact that ‖θ̃‖

is non-increasing
• (22) follows by noting that the last 3 terms in (21) is a

(potentially) suboptimal cost on the interval [δ, T +δ]
starting from the point (xp(δ), θ̂p(δ)) with associated
uncertainty set B(θ̂p(δ), zpθ (δ)).

5. ROBUST ADAPTIVE MPC - A LIPSHITZ BASED
APPROACH

Due to the computational complexity associated with
(feedback) min-max optimization problem for non-linear
systems, it is (sometimes) more practical to use a more
conservative but computationally efficient methods.

In this section, we present a Lipschitz based method
whereby the nominal model rather than the unknown
bounded system state is controlled, subject to conditions
that ensure that given constraints are satisfied for all
possible uncertainties. State prediction and parameter es-
timation error bounds are determined based on the Lips-
chitz continuity of the model. A knowledge of appropriate
Lipschitz bounds for the x-dependence of the dynamics
f(x, u) and g(x, u), and for the penalty functions L(x, u)
and W (x, θ) are assumed as follows:
Assumption 8. A set of functions Lj : X × U → R+,
j ∈ {f, g, L} and LW : X × Θ → R+ are known which
satisfy

Loj(X, u) ≥ min
{
Lj
∣∣∣

sup
x1,x2∈X

(
‖j(x1, u)−j(x2, u)‖−Lj‖x1−x2‖

)
≤ 0
}
,

LoW (X, θ) ≥ min
{
LW

∣∣∣
sup

x1,x2∈X

(
W (x1, θ)−W (x2, θ)−LW ‖x1−x2‖

)
≤ 0
}

where for j ≡ g is interpreted as an induced norm.

Note that the functions Lof , Log, LoL in assumption 8 can
be parameterized in terms of u.

5.1 Prediction of State and Parameter Estimation Errors
Bounds

State Prediction: Consider the actual system
ẋ = f + gθ, (24)

and the nominal model
˙̄x = f̄ + ḡθ̄, (25)

where f , f(x, ū), g , g(x, ū), f̄ , f(x̄, ū), ḡ , g(x̄, ū)
and θ̄ is a constant estimate of θ, it can be seen that

‖ẋ− ˙̄x‖ = ‖f − f̄‖+ ‖gθ − ḡθ‖+ ‖ḡθ − ḡθ̄‖.
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Defining z̄x , maxθ∈Θ ‖x−x̄‖ and Πθ = ‖θ̂‖+zθ, it follows
that

˙̄zx = (Lof + LogΠθ)z̄x + ‖ḡ‖zθ, z̄x(t0) = 0 (26)

provides a bound on the worst-case deviation of the
nominal state trajectory from the solution of the actual
system.

Parameter Estimation Error Prediction: Using a nomi-
nal model prediction, it is impossible to predict the actual
future behavior of the parameter estimation error as was
possible in the min-max framework. However, based upon
the excitation of the nominal prediction, one can generate
a lower bound on the excitation index E(.) and hence an
upper bound on the future parameter estimation error.
To this end, let ζ = wTw − w̄T w̄, it follows that

ζ̇ = −2kζ + wT g − w̄T ḡ + gTw − ḡT w̄
By adding and subtracting some extra terms, we have

ζ̇ = −2kζ + w̄T (g − ḡ) + (g − ḡ)T w̄ + (w − w̄)T ḡ
+ ḡT (w − w̄) + (w − w̄)T (g − ḡ) + (g − ḡ)T (w − w̄)

Thus, an upper bound z̄ζ ≥ ‖ζ‖ can be obtained from

˙̄zζ = 2
{
kz̄ζ + ‖w̄‖Log z̄x + ‖ḡ‖z̄w + Log z̄xz̄w

}
,

z̄ζ(t0) = 0. (27)

where z̄w ≥ ‖w − w̄‖ is generated from
˙̄zw = kz̄w + Log z̄x, z̄w(t0) = 0. (28)

Lemma 9. (Bhatia (1997), Corollary III.2.6)
Let A and B be real-symmetric matrices of order n with
eigenvalues λ↓(.) = λ1, · · · , λn arranged in decreasing
order. Then

max
j
| λ↓(A)− λ↓(B) |≤ ‖A−B‖. (29)

Using lemma (9), we have that

| λ(wTw)− λ(w̄T w̄) |≤ z̄ζ , (30)

which implies that

λ

(∫ τ

t0

w(σ)Tw(σ)dσ
)
≥ Ē(τ) (31)

where Ē(τ) , λ
(∫ τ

t0
w̄(σ)T w̄(σ)dσ

)
− z̄ζ(τ − t0)

So, the parameter estimation error bound z̄θζ ≥ ‖θ− θ̂‖ is
given as

z̄θζ(τ) ,
√
αζ(τ) ‖ θ̃(t0)‖ (32)

αζ(τ) =

 ᾱ(τ) ,
1

1 + γĒ(τ)
, if 0 < ᾱ(τ) < 1

1, otherwise.
(33)

5.2 Lipschitz Based Finite Horizon optimal Control Problem

The model predictive feedback is defined as
u = κmpc(x, θ̂, zθ) = u∗(0) (34a)

u∗(.) , arg min
ū[ 0,T ]

J(x, θ̂, zθ, ū) (34b)

where J(x, θ̂, zθ, ū) is given by the optimal control prob-
lem:

J(x, θ̂, zθ, ū) =
∫ T

0

L′(x̄, ū, z̄x)dτ +W ′(x̄, z̄x, z̄θ) |T (35a)

s.t. ∀τ ∈ [0, T ]
˙̄x = f(x̄, ū) + g(x̄, ū)θ̄, θ̄ = θ̂ x̄(0) = x (35b)
˙̄zx = ϕ(Lof + LogΠ)z̄x + ‖ḡ‖zθ, z̄x(0) = 0 (35c)

X̄(τ) , B(x̄(τ), z̄x(τ)) ⊆ X, ū(τ) ∈ U (35d)
X̄(T ) ⊆ Xf (z̄θ(T )) (35e)

In the proposed formulation, ϕ ∈ {0, 1} is a design pa-
rameter. The uncertainty radius zθ in (35c) and θ̄ in (35b)
are held constant over the prediction horizon. However,
the fact that they are updated at every sampling instant
enlarges the terminal domain and hence reduces the con-
servativeness of the robust MPC that would otherwise
have been designed based on a large initial uncertainty
zθ(t0).

For simplicity, z̄θ(T ) which appears in the terminal expres-
sions of (35a) and (35e) can be selected as zθ. However,
using z̄θ(T ) ,

√
αζ(T ) zθ can further improve the overall

performance by reducing the conservatism of the terminal
penalty (i.e. the robust-CLF estimate of the remaining
cost-to-go).

The objective function requires the minimization of the
worst case cost since we explicitly incorporate z̄x in to the
penalties as follows:

L′(x̄, ū, z̄x) = L(x̄, ū) + LoLz̄x (36)
W ′(x̄, z̄x, z̄θ) = W (x̄, z̄θ) + LoW z̄x (37)

5.3 Implementation and Result
The Lipshitz based MPC is implemented according to
algorithm 1. Implementing the algorithm ensures that the
size of the uncertainty cone B(x̄(τ), z̄x(τ)) around the
nominal state trajectory reduces as zθ shrinks and the
problem becomes that of a nominal MPC (18) when exact
parameter estimate vector θc is obtained.

Theorem 10. Let X ′0(Θ0) denote the set of initial states for
which (34) has a solution. Assuming criteria 4 and 5 are
satisfied, then the origin of the closed loop system given
by (1,14,34) is feasibly asymptotically stabilized from any
x0 ∈ X ′0.

Stability proof is performed similar to that of theorems 6.

6. SIMULATION EXAMPLE

An adaptive extremum seeking control problem is used
to demonstrate the applicability of the proposed adaptive
MPC scheme. In this type of problem, the desired target
is the operating set-point that optimizes an uncertain cost
function. Any set-point chosen a priori will be suboptimal
and can be improved by using some sort of adaptation and
perturbation to search for the optimal operating condition
in real time.
We consider two parallel isothermal stirred-tank reactors
DeHaan and Guay (2005) in which reagent A forms
product B and waste-product C

A
1−→ B, 2A 2−→ C

Reaction kinetic constants are only nominally known.
Material balances for the reactors give

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1950



dAi
dt

= Ain
F ini
Vi
−Ai

F outi

Vi
− ki1Ai − ki2A2

i ,

dBi
dt

= −Bi
F outi

Vi
+ ki1Ai,

dCi
dt

= −Ci
F outi

Vi
+ ki2A

2
i ,

where Ai, Bi, Ci denote concentrations in reactor i. The
inlet flows F ini are the control inputs, while the outlet
flows F outi are governed by PI controllers which regulate
reactor volume to V 0

i . Denoting xp = [A1, A2]T , and
θ = [k11, k12, k21, k22]T , the net expense of operating the
process at steady state is given by

p(xp, s, θ) =
2∑
i=1

[(pi1si + PA − PB)ki1AiV 0
i

+ (pi2si + 2PA)ki2A2
iV

0
i ], (38)

where PA, PB denote component prices, pij is the net
operating cost of reaction j in reactor i and measured
disturbances s1 and s2 reflect changes in the operating
cost (utilities, etc,) of each reactor.

The control objective is to steer the system to optimal
operating conditions that optimize the economic steady
state cost function (38) subject to the uncertainty 0.01 ≤
kij ≤ 0.2, the state constraint 0 ≤ xpi ≤ 3.0, and the
control input constraint 0.05 ≤ ui ≤ 0.15 (for i = 1, 2 and
j = 1, 2).

The system was simulated subject to a ramping economic
disturbance in s2 for t ∈ [2, 6]. The extremum seeking
trajectory xp(t, s, θ̂) was generated online via a Lyapunov
based set-point update law DeHaan and Guay (2005).
At every sampling instant, the current value of the θ̂-
dependent optimal setpoint is passed to the adaptive
MPC for implementation. For this simulation, we used
the proposed Lipschitz based adaptive MPC procedure.
Fig. 1(a) shows that the cost function converges to the
unknown optimal p∗(x∗p, θ), while Fig. 1(b) shows that the
state xp converges to the optimum value. The parame-
ter estimates converge to their true values as shown in
Fig. 1(c-d) and the constrained control inputs, Fig. 1(e),
are implementable.

7. CONCLUSIONS

This paper provides an adaptive MPC design technique
for constrained nonlinear systems with parametric un-
certainties. Robustly stabilizing MPC schemes are devel-
oped to ensure robustness to parameter estimation error
during the adaptation phase. The true unknown param-
eter values are reconstructed when the given invertibil-
ity condition is satisfied and the computational require-
ment/conservativeness of the adaptive MPC reduces to
that of a nominal MPC. Extension of the approach to sys-
tems with both parametric uncertainties and time varying
disturbances is underway.
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