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Motivation

Robust MPC paradigm:

d
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System
Model

> MPC requires adequate models of the system, uncertainty, disturbances
> Amount of uncertainty in the model crucially affects performance

> Large effort (time & money) spent on model identification offline
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otivation

Adaptive MPC paradigm:

d
_| Prediction& | U | Controlled y
Optimization - System .
System P Parameter |
Model A Estimation

> Identify model online
> Require: robust constraint satisfaction
closed loop stability & performance guarantees

parameter convergence



Motivation

An idea with a long history: e.g. self-tuning control, DMC, GPC ...
[Clarke, Tuffs, Mohtadi, 1987]

Revisited with new tools:
@ Set membership estimation
[Bai, Cho, Tempo, 1998]

@ Robust tube MPC
[Langsson, Chryssochoos, Rakovic, Mayne, 2004]

o Dual adaptive/predictive control
[Lee & Lee, 2009]
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Motivation

Recent work on MPC with model adaptation

@ Focus on online learning & identification:

— Persistency of Excitation constraints
[Marafioti, Bitmead, Hovd, 2014]

— Kalman filter-based parameter estimation with covariance matrix in cost
[Heirung, Ydstie, Foss, 2017]

— Gaussian process regression, particle filtering
[Klenske, Zeilinger, Scholkopf, Hennig, 2016]
[Bayard & Schumitzky, 2010]

@ Focus on robust constraint satisfaction and performance:

— Constraints based on prior uncertainty set, online update of cost only
[Aswani, Gonzalez, Sastry, Tomlin, 2013]

— Set-based identification, stable FIR plant model
[Tanaskovic, Fagiano, Smith, Morari, 2014]

5/ 30



Motivation

This talk considers how to

— ensure robust constraint satisfaction;
— update constraints & costs online via set-membership & point estimates;

— enforce parameter convergence via persistency of excitation conditions.

Outline:

@ Set membership parameter estimation
@ Polytopic tube robust MPC

© Parameter convergence and time-varying parameters



Parameter set estimate

Plant model with unknown parameter vector 8* and disturbance w:

Thi1 = A(e*)l‘k —+ B(G*)uk + wg

Assume the model is affine in 6* (assumed constant)

Dk = D(mk,uk)

= Dp0* +di +
e g R { dr = Aoy, + Boug

with stochastic disturbance w; € W a.s., W known, compact, polytopic

If 25, Tp_1,ur_1 are known, then 6* must lie in the “unfalsified set”:
A = {9 cxp = Dp 10 +di_1 +w, w EW}
Hence update the parameter set estimate O via

Or =01 NA,



Parameter set estimate

> If ©g is a compact polytope, then ©y is a compact polytope for all k£ > 0
But the update O = ©;_1 N Ay has potentially unbounded complexity!
> Instead, use fixed complexity sets defined for given Hg by
Or ={0: Hob < Iy}
and update O by solving a set of linear programs:

[hk]z = max [H@]le st. zp=Dp_10+dp_1+w
wWEW, €O, _1

Then
Or_1NAL C O, C Oy
since
> [H@]ZG < [hk]z forall € Ay NOr_1 implies Or_1NAL C O
> [hk]z < max [H@L‘@ = [hk—l]i implies Or C O

T 0€0,_



Parameter point estimate

To ensure closed loop 12 stability, we define the MPC cost in terms of a point
estimate 6 of 6*, computed using a LMS filter

Given a parameter estimate O, let Ty, = A(ék)xk + B(ék)uk
Then for a given parameter update gain p > 0 satisfying

Vp> sup [|D(z,u)]?
(z,u)eZ

the point estimate 0y is defined
O = Op—1 + uD " (31, up—1) (T — Z1)5_1)
O, = o, (Or)

where Ilg, is the Euclidean projection onto ©y

Here Z is the joint state and control constraint set (assumed bounded)
and the point estimate update becomes simply a projection onto O if u — 0
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Parameter point estimate

10/ 30

The closed loop 12 gain property is based on the following result

Lemma (Point estimate)

If supy.cy || 2x]| < 00 and supyey |Juk|| < oo, then ), € ©y, for all k and

T =
> k=0 ||931|k||2
sup T 0 = 5 =
TEeN,wxEW,00€600 p||90 = %12 + 2o lwe

where &), = A(0*)xr 4+ B(0*)u — 215, is the 1-step prediction error




Control Problem

Consider robust regulation of the system
1 = A(0)xr + B(0)uy + wy,
with 8 € O, wi € W, subject to the state and control constraints

Fap+Gup<1=1[1 --- 1]

Assumption (Robust stabilizabilty)

There exists a set X = {x : Vo < 1} and feedback gain K such that X is
A-contractive for some A € [0,1), i.e.

Vo(0)r <A1, forallz e X,0 € Oy.

where ®(0) = A() + B(0)K.
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Control Problem

State and control input sequences predicted at time k: w;x, T;x, ¢ = 0,1, ...

are expressed in terms of decision variables v = (vog, ..., Un|x):
- K$z|k+vz|k 220,17
Uik =
Ka?“k

The regulation cost is defined in terms of point estimate Op:
N—

In (s O vi) = S (lanld + lell?) + lawinl?
=0

=

where Z;;, 1, are defined by
Zivik = AOk)Eqp + B0k )t
Ui = Kq)p + vk

and P = @7 (0)P®(0) + Q + K" RK for all § € Oy
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Tube MPC

A sequence of sets (a “tube”) is constructed to bound the predicted state
x|, with ith cross section, X

Xijp = {z: Vo < oyp}

where V' is determined offline and «;;, are online decision variables

@ For robust satisfaction of x;;, € Xj);,, we require
Ve(@)x+ VB v, +w < ajpq, forall z € Xy, 0 € Oy
where [@]; = max,ew[V]iw
@ For robust satisfaction of Fz;, + Gug, < 1, we require

(F+GK)x + Guyp, <1 for all z € &y,

Condition (A) is bilinear in « and 6, but it can be expressed in terms of linear
inequalities using a vertex representation of either &, or O

13/ 30



Tube MPC

We generate the vertex representation:
_ 1 m
X = co{@;j, - )

using the property that {z : [V],2 < [a;],} is a supporting hyperplane of
Xy for each 7

Hence each vertex :z:g|k is given by the intersection of hyperplanes
corresponding to a fixed set of rows of V, and

xg|k = Uy,
for some U7, determined offline from the vertices of X = {z : Vo <1}
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Tube MPC

In terms of both hyperplane and the vertex descriptions of A, the robust
tube constraints become

Q@ VOO)U oy + VB0 + 0 < ajpqp forall 0 € O, j=1,....m
Q@ (F+GK)UWay,+Guy, <1,j=1,....m

Now condition (B) is linear and (A) can be equivalently written as linear
constraints using

Lemma (Polyhedral set inclusion)
Let P; = {a: Fix < fz} C R™ fori= 1,2. Then P C Pq iff
JA > 0 such that AFy = Fy and Afy < fo
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Robust MPC online optimization problem

Summary of constraints in the online MPC optimization at time k:

Ve < agp
AZ|kHe = VD(UjOéi‘k,KUjOéi‘k + Uz\k)

Af|khk < aipp — VAW o, KU cipp + vigg) — @

A 20
(F+ GE)U ayj + Gogi, < 1

J
AN\k

Ho = VD(UjOéN‘k,KUjOlN\k)
Ag\”khk < anpk — Vd(ujozN‘k,KUjaN‘k) —w

Aj

N\kzo

(F+GK)UjOéN|k§1
fori=0,...,N—1,j=1,....,m

Let D(zg, Ok) be the feasible set for the decision variables v, a, Ay
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Robust adaptive MPC algorithm

Offline: Choose ©g, X, feedback gain K, and compute P
Online, at each time £k =1,2,...:
Given z, update the set () and point (f)) parameter estimates

Compute the solution (v, o, Af) of the QP

min  J(zk, 0, vi)
Vi, Ay

subject to (Vk, ay, Ak) S 'Z)(.’E]€7 @k)

Apply the control law u} = Kz, + Uglk
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Robust adaptive MPC algorithm
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Theorem (Closed loop properties)

If 6* € ©g and D(x,©0) # 0, then for all k > 0:
Q 0* € O
Q D(zx,0r) #0
Q@ Fuar+Gup <1

and the closed loop system is finite-gain [2-stable, i.e. there exist constants
o, C1,C2 > 0 such that for all T':

T T
D lleell® < colloll? + eallfo — 0711 + ez Y [l
k=0 k=0




A
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numerical example

Second-order linear system with
3

(A(6), B(6)) = (Ao, Bo) + Y _(Ai, B:)b;
=1
0.5 0.2 0 0042 0 0
Ao = {—0.1 0.6] b= {0.5} y A= [0.072 0.03} » Bi= [0] ’
0.015 0.019 0 0 0 0.0397
Az = {0.009 0.035] , B2 = M y As= [—0 0] ’ e {0.059} ’

> true parameter 0* = [0.8 0.2 —0.5]T, initial set O = {6 : [|0]|oc < 1}.
> disturbance uniformly distributed on W = {w € R? : |[w]|oo < 0.1}, wy

> state and input constraints: [z]s > —0.3 and u; < 1.



A numerical example: constraint satisfaction

state [x]2
w

N

-

-0.5 0 0.5 1 1.5 2 25 3 3.5
state [x]1

Figure: Realized closed-loop trajectory from initial condition 2o = [3 6] (red line),
predicted state tube at time k = 0 (tube cross-sections: blue, terminal set: pink)
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A numerical example: constraint satisfaction

control input u K

time step k

Figure: Realized closed-loop trajectory from initial condition 2o = [3 6] (red line),
predicted control tube at time k = 0 (tube cross-sections: blue)
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Persistent excitation

> A regressor Uy, is persistently exciting (PE) if

1 ko+l
B’ =< 7 Z U < 371
k=ko+1

for some 1, 82,1 > 0 and all kg (Narendra,1987).

> Define the diameter of © as dia(©) = supy, g,co |61 — 02|

Convergence of set membership parameter estimate

If the noise bound w € W is tight and the regressor Dy, is persistently
exciting, then dia(©y) — 0 with probability one [Bai, Cho, Tempo, 1998].

> W is a tight noise bound if the support of the probability distribution of
w is equal to W
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Persistent excitation

-
Regressor: ¥y = D,;r = [Alxk + Biug - Apzp + Bpuk]

Consider the PE condition evaluated over a window that includes n past
time-steps plus current time:

k=0
> DiDy = BT

k=—n
This is nonconvex in ug = Kz, + vg|x, but we can linearise to obtain a
convex condition. Thus, let ug = uf + du, so that
Dqg Do = D(zo,uy) " D(zo, uy) + DT(IO,US)[Bléu -+ Byou]
+ [Bidu - Bpéu)" D(z0, uy)

Therefore a sufficient condition for Z’,jin D[ Dy, = BT is an LMl in du:

k=—1
LMI(6u) : > Dy Dy + D(wo,u5) " D(wo, up)

k=—n

+ D(zo,up) " [Bidu -+ Bydu] + [Bidu --- Bpdu]' D(wo,up) = Bil



Robust adaptive MPC algorithm with PE constraint
Offline: Choose O, X', 51, feedback gain K, and compute P

Online, at each time k =1,2,...:

Given xj, update the set (0y) and point ();) parameter estimates

Compute the solution (v, o, Af) of the QP
min J(xk,ék,vk)
Vi, o, A

subject to (vg, ag, Ag) € D(zy, Of)

k=—1
If Z D] Dy + D(xo,u}) T D(xo, ul) # Bul:

k=—n

(2) Re-run the MPC optimization with vy, = vg;, + du and LMI(du) as
additional constraints
(b) If a feasible solution exists, set v, < vg, + ou”

Apply the control law u} = Kxj, + vglk
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A numerical example: parameter set

© set | Volume | Cost*

i
© 80 =
: S e O 100 | 62.22

6, 26.1 61.13

‘ ‘ ‘ 0, 183 | 61.03
| . | . | . O, | 127 | 6096

O2s 8.3 60.93
Os0 6.3 60.77

“ ‘| | ©100 3.4 590.45
8 s 1 ©s00 | 0.7 | 57.94
R s T Os000 | 0.0089 | 53.95
0* - 52.70

Figure: Parameter set O at time steps Table: Volume of @y, as ©4/60 x 100%;

k € {0, 1,2;10,25,50; 100, 500, 5000} Cost* with same initial zo and constraints
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Time-varying parameters

Assumption (time-varying parameters)

There exists a constant rg such that the parameter vector 8 satisfies
0r € ©q for all k and ||07, | — 0;|| <o

Define the dilation operator:
Ri(©)={0: Hob < h+irgl}
Then the parameter set update can be expressed

O, = Rl(G)k_l n Ak) N B

and Oy is replaced in the tube MPC constraints by
Ok = Ri(O1) N O
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Robust adaptive MPC algorithm with time-varying
parameters
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Parameter estimate bounds and recursive feasibility properties are unchanged:

Theorem (Closed loop properties)

If 6* € ©g and D(x,©0) # 0, then for all k > 0:
Q 0*c0Oy
Q D(zx,0r) #0
Q@ Fuar+Gup <1

But the LMS filter has an additional tracking error, which invalidates the {2
properties, i.e. “certainty equivalence” no longer applies

However other performance measures can be used in this context, such as the
min-max approach of [Lorenzen, Allgdwer, Cannon, 2017]



A numerical example: time-varying parameters

—1 -1 —1 -1

—1 —1 —1 —1
Figure: Parameter set O, at times k € {0, 100, 200, 300,400, 500} for the
time-varying system with ry = 0.01

-1 -1
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A numerical example: time-varying parameters

0 0
-1 -1 -1 -1 -1 -1

Figure: Parameter set O at times k € {0, 5,25, 70,120, 500} for the
non-time-varying case for comparison
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Conclusions & Outlook

Conclusions:

o Adaptive robust MPC with closed loop guarantees is computationally
tractable

@ Set-membership parameter estimation and LMS point estimates are
obvious choices for MPC cost functions and robust constraints

@ Nonconvex PE conditions can be relaxed to convex sufficient conditions

Future work
@ How to ensure recursive feasibility with PE constraints?
@ Are PE conditions better handled by adding terms to the MPC cost
(similar to MPC-based dual control)?

@ How can we relax the requirement of prior knowledge of a robustly
stabilizing local feedback law?
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