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Motivation

Robust MPC paradigm:

Controlled
System

Prediction &
Optimization

System
Model

u y

d

B MPC requires adequate models of the system, uncertainty, disturbances

B Amount of uncertainty in the model crucially a↵ects performance

B Large e↵ort (time & money) spent on model identification o✏ine
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Motivation

Adaptive MPC paradigm:

Controlled
System

Prediction &
Optimization

System
Model

u y

d

Parameter
Estimation

B Identify model online

B Require: robust constraint satisfaction

closed loop stability & performance guarantees

parameter convergence
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Motivation

An idea with a long history: e.g. self-tuning control, DMC, GPC . . .
[Clarke, Tu↵s, Mohtadi, 1987]

Revisited with new tools:

Set membership estimation
[Bai, Cho, Tempo, 1998]

Robust tube MPC
[Langsson, Chryssochoos, Rakovic, Mayne, 2004]

Dual adaptive/predictive control
[Lee & Lee, 2009]
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Motivation

Recent work on MPC with model adaptation

Focus on online learning & identification:

– Persistency of Excitation constraints

[Marafioti, Bitmead, Hovd, 2014]

– Kalman filter-based parameter estimation with covariance matrix in cost

[Heirung, Ydstie, Foss, 2017]

– Gaussian process regression, particle filtering

[Klenske, Zeilinger, Scholkopf, Hennig, 2016]

[Bayard & Schumitzky, 2010]

Focus on robust constraint satisfaction and performance:

– Constraints based on prior uncertainty set, online update of cost only

[Aswani, Gonzalez, Sastry, Tomlin, 2013]

– Set-based identification, stable FIR plant model

[Tanaskovic, Fagiano, Smith, Morari, 2014]
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Motivation

This talk considers how to

– ensure robust constraint satisfaction;

– update constraints & costs online via set-membership & point estimates;

– enforce parameter convergence via persistency of excitation conditions.

Outline:

1 Set membership parameter estimation

2 Polytopic tube robust MPC

3 Parameter convergence and time-varying parameters
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Parameter set estimate

Plant model with unknown parameter vector ✓
? and disturbance w:

xk+1 = A(✓?)xk + B(✓?)uk + wk

Assume the model is a�ne in ✓
? (assumed constant)

xk+1 = Dk✓
? + dk + wk

⇢
Dk = D(xk, uk)

dk = A0xk + B0uk

with stochastic disturbance wk 2 W a.s., W known, compact, polytopic

If xk, xk�1, uk�1 are known, then ✓
? must lie in the “unfalsified set”:

�k = {✓ : xk = Dk�1✓ + dk�1 + w, w 2 W}

Hence update the parameter set estimate ⇥k via

⇥k = ⇥k�1 \�k
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Parameter set estimate

B If ⇥0 is a compact polytope, then ⇥k is a compact polytope for all k > 0
But the update ⇥k = ⇥k�1 \�k has potentially unbounded complexity!

B Instead, use fixed complexity sets defined for given H⇥ by

⇥k = {✓ : H⇥✓  hk}

and update ⇥k by solving a set of linear programs:

[hk]i = max
w2W, ✓2⇥k�1

[H⇥]i✓ s.t. xk = Dk�1✓ + dk�1 + w

Then
⇥k�1 \�k ✓ ⇥k ✓ ⇥k�1

since
I [H⇥]i✓  [hk]i for all ✓ 2 �k \⇥k�1 implies ⇥k�1 \�k ✓ ⇥k

I [hk]i  max
✓2⇥k�1

[H⇥]i✓ = [hk�1]i implies ⇥k ✓ ⇥k�1
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Parameter point estimate

To ensure closed loop l
2 stability, we define the MPC cost in terms of a point

estimate ✓̂k of ✓
?, computed using a LMS filter

Given a parameter estimate ✓̂k, let x̂1|k = A(✓̂k)xk + B(✓̂k)uk

Then for a given parameter update gain µ > 0 satisfying

1/µ > sup
(x,u)2Z

kD(x, u)k2

the point estimate ✓̂k is defined

✓̃k = ✓̂k�1 + µD
>(xk�1, uk�1)(xk � x̂1|k�1)

✓̂k = ⇧⇥k(✓̃k)

where ⇧⇥k is the Euclidean projection onto ⇥k

Here Z is the joint state and control constraint set (assumed bounded)
and the point estimate update becomes simply a projection onto ⇥k if µ ! 0
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Parameter point estimate

The closed loop l
2 gain property is based on the following result

Lemma (Point estimate)

If supk2N kxkk < 1 and supk2N kukk < 1, then ✓k 2 ⇥k for all k and

sup
T2N,wk2W,✓̂02⇥0

PT
k=0 kx̃1|kk2

1
µk✓̂0 � ✓?k2 +

PT
k=0 kwkk2

 1

where x̃1|k = A(✓?)xk + B(✓?)uk � x̂1|k is the 1-step prediction error
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Control Problem

Consider robust regulation of the system

xk+1 = A(✓)xk + B(✓)uk + wk

with ✓ 2 ⇥k, wk 2 W, subject to the state and control constraints

Fxk + Guk  1 = [1 · · · 1]>

Assumption (Robust stabilizabilty)

There exists a set X = {x : V x  1} and feedback gain K such that X is
�-contractive for some � 2 [0, 1), i.e.

V �(✓)x  �1, for all x 2 X , ✓ 2 ⇥0.

where �(✓) = A(✓) + B(✓)K.
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Control Problem

State and control input sequences predicted at time k: ui|k, xi|k, i = 0, 1, . . .

are expressed in terms of decision variables v = (v0|k, . . . , vN |k):

ui|k =

(
Kxi|k + vi|k i = 0, 1, . . .

Kxi|k

The regulation cost is defined in terms of point estimate ✓̂k:

JN (xk, ✓̂k,vk) =
N�1X

i=0

⇣
kx̂i|kk2

Q + kûi|kk2
R

⌘
+ kx̂N |kk2

P

where x̂i|k, ûi|k are defined by

x̂i+1|k = A(✓̂k)x̂i|k + B(✓̂k)ûi|k

ûi|k = Kx̂i|k + vi|k

and P ⌫ �>(✓)P�(✓) + Q + K
>

RK for all ✓ 2 ⇥0
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Tube MPC

A sequence of sets (a “tube”) is constructed to bound the predicted state
xi|k, with ith cross section, Xi|k:

Xi|k = {x : V x  ↵i|k}

where V is determined o✏ine and ↵i|k are online decision variables

A For robust satisfaction of xi|k 2 Xi|k, we require

V �(✓)x + V B(✓)vi|k + w̄  ↵i+1|k for all x 2 Xi|k, ✓ 2 ⇥k

where [w̄]i = maxw2W [V ]iw

B For robust satisfaction of Fxi|k + Gui|k  1, we require

(F + GK)x + Gvi|k  1 for all x 2 Xi|k

Condition (A) is bilinear in x and ✓, but it can be expressed in terms of linear
inequalities using a vertex representation of either Xi|k or ⇥k
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Tube MPC

We generate the vertex representation:

Xi|k = co{x
1
i|k, . . . x

m
i|k}

using the property that {x : [V ]rx  [↵i|k]r} is a supporting hyperplane of
Xi|k for each r:

X

x
1

x
2

Xi|k

x
1
i|k = x

2
i|k

HHY

Hence each vertex x
j
i|k is given by the intersection of hyperplanes

corresponding to a fixed set of rows of V , and

x
j
i|k = U

j
↵i|k

for some U
j , determined o✏ine from the vertices of X = {x : V x  1}
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Tube MPC

In terms of both hyperplane and the vertex descriptions of Xi|k, the robust
tube constraints become

A V �(✓)U j
↵i|k + V B(✓)vi|k + w̄  ↵i+1|k for all ✓ 2 ⇥k, j = 1, . . . , m

B (F + GK)U j
↵i|k + Gvi|k  1, j = 1, . . . , m

Now condition (B) is linear and (A) can be equivalently written as linear
constraints using

Lemma (Polyhedral set inclusion)

Let Pi = {x : Fix  fi} ⇢ Rn for i = 1, 2. Then P1 ✓ P2 i↵

9⇤ � 0 such that ⇤F1 = F2 and ⇤f1  f2
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Robust MPC online optimization problem

Summary of constraints in the online MPC optimization at time k:

V xk  ↵0|k

⇤j
i|kH⇥ = V D(U j

↵i|k, KU
j
↵i|k + vi|k)

⇤j
i|khk  ↵i+1|k � V d(uj

↵i|k, KU
j
↵i|k + vi|k)� w̄

⇤j
i|k � 0

(F + GK)U j
↵i|k + Gvi|k  1

⇤j
N|kH⇥ = V D(U j

↵N|k, KU
j
↵N|k)

⇤j
N|khk  ↵N|k � V d(uj

↵N|k, KU
j
↵N|k)� w̄

⇤j
N|k � 0

(F + GK)U j
↵N|k  1

for i = 0, . . . , N � 1, j = 1, . . . , m

Let D(xk,⇥k) be the feasible set for the decision variables vk,↵k,⇤k
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Robust adaptive MPC algorithm

O✏ine: Choose ⇥0, X , feedback gain K, and compute P

Online, at each time k = 1, 2, . . .:

1 Given xk, update the set (⇥k) and point (✓̂k) parameter estimates

2 Compute the solution (v⇤
k,↵⇤

k,⇤⇤
k) of the QP

min
vk,↵k,⇤k

J(xk, ✓̂k,vk)

subject to (vk,↵k,⇤k) 2 D(xk,⇥k)

3 Apply the control law u
⇤
k = Kxk + v

⇤
0|k
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Robust adaptive MPC algorithm

Theorem (Closed loop properties)

If ✓
? 2 ⇥0 and D(x0,⇥0) 6= ;, then for all k > 0:

1 ✓
? 2 ⇥k

2 D(xk,⇥k) 6= ;
3 Fxk + Guk  1

and the closed loop system is finite-gain l
2-stable, i.e. there exist constants

c0, c1, c2 > 0 such that for all T :

TX

k=0

kxkk2  c0kx0k2 + c1k✓̂0 � ✓
?k2 + c2

TX

k=0

kwkk2
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A numerical example

Second-order linear system with

(A(✓), B(✓)) = (A0, B0) +
3X

i=1

(Ai, Bi)✓i

A0 =


0.5 0.2
�0.1 0.6

�
, B0 =


0

0.5

�
, A1 =


0.042 0
0.072 0.03

�
, B1 =


0
0

�
,

A2 =


0.015 0.019
0.009 0.035

�
, B2 =


0
0

�
, A3 =


0 0
�0 0

�
, B3 =


0.0397
0.059

�
.

B true parameter ✓
? = [0.8 0.2 �0.5]>, initial set ⇥0 = {✓ : k✓k1  1}.

B disturbance uniformly distributed on W = {w 2 R2 : kwk1  0.1}, wk

B state and input constraints: [x]2 � �0.3 and uk  1.
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A numerical example: constraint satisfaction

Figure: Realized closed-loop trajectory from initial condition x0 = [3 6]> (red line),

predicted state tube at time k = 0 (tube cross-sections: blue, terminal set: pink)
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A numerical example: constraint satisfaction

0 1 2 3 4 5 6 7 8
time step k

-1

0

1

2

3

4

5

co
n
tr

o
l i

n
p
u
t 
u

k

Figure: Realized closed-loop trajectory from initial condition x0 = [3 6]> (red line),

predicted control tube at time k = 0 (tube cross-sections: blue)
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Persistent excitation

B A regressor  k is persistently exciting (PE) if

�1
2I � 1

l

k0+lX

k=k0+1

 k 
>
k � �2

2I

for some �1, �2, l > 0 and all k0 (Narendra,1987).

B Define the diameter of ⇥ as dia(⇥) = sup✓1,✓22⇥ k✓1 � ✓2k

Convergence of set membership parameter estimate

If the noise bound w 2 W is tight and the regressor Dk is persistently
exciting, then dia(⇥k) ! 0 with probability one [Bai, Cho, Tempo, 1998].

B W is a tight noise bound if the support of the probability distribution of
w is equal to W
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Persistent excitation

Regressor:  k = D
>
k =

⇥
A1xk + B1uk · · · Apxk + Bpuk

⇤>

Consider the PE condition evaluated over a window that includes n past
time-steps plus current time:

k=0X

k=�n

D
>
k Dk ⌫ �

2
1I

This is nonconvex in u0 = Kxk + v0|k, but we can linearise to obtain a
convex condition. Thus, let u0 = u

⇤
0 + �u, so that

D
>
0 D0 ⌫ D(x0, u

⇤
0)

>
D(x0, u

⇤
0) + D

>(x0, u
⇤
0)
⇥
B1�u · · · Bp�u

⇤

+
⇥
B1�u · · · Bp�u]>D(x0, u

⇤
0)

Therefore a su�cient condition for
Pk=0

k=�n D
>
k Dk ⌫ �

2
1I is an LMI in �u:

LMI(�u) :
k=�1X

k=�n

D
>
k Dk + D(x0, u

⇤
0)

>
D(x0, u

⇤
0)

+ D(x0, u
⇤
0)

>⇥
B1�u · · · Bp�u

⇤
+

⇥
B1�u · · · Bp�u]>D(x0, u

⇤
0) ⌫ �

2
1I
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Robust adaptive MPC algorithm with PE constraint

O✏ine: Choose ⇥0, X , �1, feedback gain K, and compute P

Online, at each time k = 1, 2, . . .:

1 Given xk, update the set (⇥k) and point (✓̂k) parameter estimates

2 Compute the solution (v⇤
k,↵⇤

k,⇤⇤
k) of the QP

min
vk,↵k,⇤k

J(xk, ✓̂k,vk)

subject to (vk,↵k,⇤k) 2 D(xk,⇥k)

3 If
k=�1X

k=�n

D
>
k Dk + D(x0, u

⇤
0)

>
D(x0, u

⇤
0) 6⌫ �1I:

(a) Re-run the MPC optimization with v0|k = v
⇤
0|k + �u and LMI(�u) as

additional constraints

(b) If a feasible solution exists, set v
⇤
0|k  v

⇤
0|k + �u

⇤

4 Apply the control law u
⇤
k = Kxk + v

⇤
0|k

23/ 30



A numerical example: parameter set

Figure: Parameter set ⇥k at time steps

k 2 {0, 1, 2; 10, 25, 50; 100, 500, 5000}

⇥ set Volume Cost*

(%)

⇥0 100 62.22

⇥1 26.1 61.13

⇥2 18.3 61.03

⇥10 12.7 60.96

⇥25 8.3 60.93

⇥50 6.3 60.77

⇥100 3.4 59.45

⇥500 0.7 57.94

⇥5000 0.0089 53.95

✓
? - 52.70

Table: Volume of ⇥k as ⇥k/⇥0 ⇥ 100%;

Cost* with same initial x0 and constraints
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Time-varying parameters

Assumption (time-varying parameters)

There exists a constant r✓ such that the parameter vector ✓
?
k satisfies

✓
?
k 2 ⇥0 for all k and k✓

?
k+1 � ✓

?
kk  r✓

Define the dilation operator:

Ri(⇥) = {✓ : H⇥✓  h + ir✓1}

Then the parameter set update can be expressed

⇥k = R1(⇥k�1 \�k) \⇥0

and ⇥k is replaced in the tube MPC constraints by

⇥i|k = Ri(⇥k) \⇥0
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Robust adaptive MPC algorithm with time-varying

parameters

Parameter estimate bounds and recursive feasibility properties are unchanged:

Theorem (Closed loop properties)

If ✓
? 2 ⇥0 and D(x0,⇥0) 6= ;, then for all k > 0:

1 ✓
? 2 ⇥k

2 D(xk,⇥k) 6= ;
3 Fxk + Guk  1

But the LMS filter has an additional tracking error, which invalidates the l
2

properties, i.e. “certainty equivalence” no longer applies

However other performance measures can be used in this context, such as the
min-max approach of [Lorenzen, Allgöwer, Cannon, 2017]
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A numerical example: time-varying parameters
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Figure 4. Parameter membership set for the sys-
tem with time-varying parameters at time steps
k 2 {0, 100, 200, 300, 400, 500}.

creases conservatism and can increase performance. Yet,
due to the number of equality constraints in the MPC
optimization program, a significant increase in compu-
tation time was observed with increasing complexity
of X0. Furthermore, note that the scalar input allows
the decomposition of the PE input constraint into two
linear constraints, leading to two convex QP problems
to be solved and compared in each MPC iteration [24].

6 Conclusions

A computationally tractable model predictive control al-
gorithm with recursive parameter update has been pre-
sented that provides guarantees for closed-loop stability
and robust constraint satisfaction. The requirements for
stability and constraint satisfaction are considered sep-
arately. This leads to a set-membership parameter es-
timation scheme being employed to derive bounds on
the state and input predictions whereas a Least Mean
Squares filter is used to achieve a finite gain from the
disturbance to the state. The online optimization to be
solved is a linearly constrained quadratic program and
proven to be recursively feasible. Two numerical exam-
ples are provided to demonstrate the e�ectiveness of the
proposed algorithm.

Extensions for time-varying parameters and for PE re-
gressors are discussed explicitly. As the MPC scheme
is formulated in a modern state-space framework, the
proposed setup provides a solid framework for adaptive
MPC algorithms and can be easily combined with fur-
ther results tailored to specific control objectives, e.g.,
tracking or output feedback MPC.

Compared to the classical adaptive control literature,
the assumptions made are necessarily more restrictive
in order to allow a robust MPC formulation. The use

of less restrictive assumptions in combination with soft
constraints or chance constraints are currently under in-
vestigation. In particular for the time-varying case, it
would furthermore be of interest to derive bounds on
the estimation error, which could then be used to relax
Assumptions 8 and 11 to a parameter dependent presta-
bilizing feedback and terminal constraint. Finally, ques-
tions on optimal excitation of the system as discussed
in [12] remain open for future research.

A Appendix

A.1 Computation of the terminal region

As shown in [8] and [29], a terminal set Xf satisfying As-
sumption 11 can be computed recursively by the follow-
ing algorithm. With X0 and f̄ as given above, i.e., X0 =
{x 2 Rn | Hxx  1} and [f̄ ]i = maxx2X0 [F +GK]ix, let

X0
f = {(z, ↵) 2 Rn � R�0 | (F + GK)z + ↵f̄  1}

and define

Xi+1
f =

�
��

��
(z, ↵)

�����

9(z+
, ↵

+) 2 Xi
f s. t.

Acl(✓)({z} � ↵X0) � W
✓ {z

+} � ↵
+X0 �✓ 2 ⇥

�
��

��
\ X0

f .

(A.1)
The sets Xi

f , i 2 N are non-increasing with i and the
terminal set is given by the limit for i ! 1. Under the
given assumptions, the sequence converges in finite time
such that Xf = Xi

f for some i 2 N satisfying Xi
f = Xi+1

f .

With {✓
k}k2Nvp

1
being the vertices of the set ⇥, [h̄k

x]i =

maxx2X0 [Hx]iAcl(✓k)x, and

X̃i+1
f =

�
��

��

(z, ↵, z
+
, ↵

+) |
Hx

⇥
Acl(✓

k)z � z
+
⇤
+ h̄

k
x↵ + 1↵

+  �w̄

�k 2 Nvp

1

�
��

��
,

the recursion (A.1) can be computed by Xi+1
f =

Projn+1(X̃i+1
f ) where Projn+1 is the projection onto the

first n + 1 coordinates.

As the projection of polytopes can be computationally
demanding, the recursion can be simplified through set-
ting z = z

+ = 0 and determining only a suitable ↵ sat-
isfying Assumption 11.

A.2 Proof of Lemma 24

PROOF. [Lemma 24] Let xk be the solution of (1) with
wk � 0. By [14, Corollary 2.4] {uk}k being PE implies

13

Figure: Parameter set ⇥k at times k 2 {0, 100, 200, 300, 400, 500} for the

time-varying system with r✓ = 0.01
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A numerical example: time-varying parameters

for all possible predicted states and the state converges
to a neighborhood of the origin. Similarly, the input con-
straints (not plotted) are satisfied for all k 2 N.

�0.5 0 0.5 1 1.5 2

0

1

2

3

[xk]1

[x
k
] 2

Figure 1. Realized closed-loop trajectory from initial condi-
tion x0 = [2 3]>, predicted state tube at time k = 0, and
constraint [xk]2 � �0.3.

To highlight the parameter estimation, the PE condi-
tion as described in Section 4.2 has been implemented,
following [24], via an additional constraint on the input

P�1X

l=0

uk�lu
>
k�l ⌫ ↵I (29)

with P = n + 1 and ↵ = 2. Starting from an initial con-
dition x0 = [0 0]>, the closed loop exhibits a persistently
exciting regressor, with the typical cyclic state and in-
put (Figure 2). Due to the state constraint, the center
of the trajectory path is shifted to the positive orthant,
such that the closed-loop state trajectory does not vio-
late the constraint [xk]2 � �0.3. As predicted by Propo-
sition 23, the parameter membership set converges to a
singleton (Figure 3). Given the realized state and input
trajectory, falsified parameters are removed and the un-
certainty set is non-increasing.

Finally, to demonstrate the capability of handling time-
varying systems, in the following, the problem setup has
been changed to a time-varying parameter ✓

⇤
k with ✓

⇤
0 =

✓
⇤ and a bound on the variation of k✓

⇤
k+1 � ✓

⇤
kk  0.01.

In the simulation, the parameter has been taken to be a
periodic deterministic function in time. Each parameter
is increased/decreased linearly by 0.01�

3
, i.e.

[✓⇤
k+1]i = [✓⇤

k]i ± 0.01�
3

,

where the sign is changed upon hitting the boundary of
⇥. As above, the simulation has been initialized with

�0.2 0 0.2 0.4

0

0.5

[xk]1

[x
k
] 2

0 20 40 60 80 100
�1

�0.5
0

0.5
1

time step k

in
p
u
t

u
k

Figure 2. Closed-loop state and input trajectory with en-
forced PE input (solid line), state and input constraints
(dashed line).
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Figure 3. Parameter membership set at time steps
k 2 {0, 5, 25, 70, 120, 500}.

x0 = [0 0]> and the additional PE constraint (29). Fig-
ure 4 shows the estimated parameter set at sampling
times k = 1, 100, 200, 300, 400 and 500. Instead of
convergence to a singleton as in Figure 3, the parameter
set varies in position, shape, and size.

The simulations were performed in Matlab with Yalmip
for setting up the optimization program, which was
solved using MOSEK. The median solver time (with PE
constraint) reported by Yalmip was 0.068s (0.10s) with a
maximum of 0.095s (0.19s) and minimum of 0.05s on an
Intel Core i7 with 3.4GHz. Choosing X0, i.e. the shape
of the tube cross sections, to be the minimal robustly
forward invariant set under the local control law de-

12

Figure: Parameter set ⇥k at times k 2 {0, 5, 25, 70, 120, 500} for the

non-time-varying case for comparison
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Conclusions & Outlook

Conclusions:

Adaptive robust MPC with closed loop guarantees is computationally
tractable

Set-membership parameter estimation and LMS point estimates are
obvious choices for MPC cost functions and robust constraints

Nonconvex PE conditions can be relaxed to convex su�cient conditions

Future work

How to ensure recursive feasibility with PE constraints?

Are PE conditions better handled by adding terms to the MPC cost
(similar to MPC-based dual control)?

How can we relax the requirement of prior knowledge of a robustly
stabilizing local feedback law?
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