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ABSTRACT 

 

The dissertation proposes a new adaptive approach to power system model 

reduction for fast and accurate time-domain simulation. This new approach is a 

compromise between linear model reduction for faster simulation and nonlinear model 

reduction for better accuracy. During the simulation period, the approach adaptively 

switches among detailed and linearly or nonlinearly reduced models based on variations of 

the system state: it employs unreduced models for the fault-on period, uses weighted 

column norms of the admittance matrix to decide which functions are to be linearized in 

power system differential-algebraic equations for large changes of the state, and adopts a 

linearly reduced model for small changes of the state.  

Two versions of the adaptive model reduction approach are introduced. The first 

version uses traditional power system partitioning where the model reduction is applied to 

a defined large external area in a power system and the other area that is defined as the 

study area keeps full detailed models. The second version applies the adaptive model 

reduction to the whole system. 

Speed improvement techniques using parallelization are investigated. The first 

technique uses parallelism in space; it further divides the study area into subareas that can 

be simulated in parallel. The second technique uses parallelism in time; it integrates the 

adaptive model reduction into the coarse solver of the Parareal method.  
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In addition, the dissertation proposes integration of tensor decomposition into the 

adaptive model reduction approach to further improve the speed and accuracy of 

simulation.  

All proposed approaches are validated by comprehensive case studies on the 140-

bus 48-machine Northeast Power Coordinating Council system, 2383-bus 327-machine 

Polish system, and 5617-machine 70285-bus Eastern Interconnection system using 

different dynamic models.  
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CHAPTER ONE  

INTRODUCTION AND BACKGROUND INFORMATION 

 

1.1 Introduction  

Power system simulation is very important for grid operations and planning at 

electricity utilities. It can assess dynamic security under a certain operating condition of 

the studied power system following a given contingency such as loss of a transmission line 

or generator unit. Essentially, power system simulation is to obtain a time-series trajectory 

of the system state for a specified simulation window by solving the initial value problem 

of a set of nonlinear differential-algebraic equations co-determined by the mathematical 

model of the whole system, the operating condition and the contingency. Nowadays, the 

fast growth in electricity demand and a relatively slow construction of new transmission 

infrastructure are pushing power transmission systems to be operated closer to their 

stability limits and motivating the transition of power system simulation from the offline 

planning stage to the real-time operation environment. 

1.2 Model Reduction 

One way to increase the speed of simulation of a complex power grid is to conduct 

network partitioning and then model reduction. For example, a traditional approach defines 

a study area, which is an important small part of the system for dynamic security 

assessment, considering all the details, and reduces the model of the rest of the system, i.e. 
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the external area. In practice, an additional buffer zone is often defined in between with 

moderate reduction to connect the study and the external areas [1]. The methods for model 

reduction on the external area can be divided into two main groups: the ones that preserve 

the structure of a power system and the ones that use mathematical transformations from 

original states to nonphysical states that are subsequently reduced. 

1.2.1 Coherency based model reduction methods 

The most widely used methods from the first group are coherency-based methods 

[2]-[11], which were originally developed for power system model reduction and conduct 

the following steps: coherency identification, aggregation of coherent generators, and 

network reduction. After the first step, the generators that oscillate together following a 

disturbance are included into one group. The groups of coherent generators are then 

aggregated into individual equivalent generators connected with each other by equivalent 

branches and with the study area by a reduced system network. This creates a unique 

boundary between the external area and the study area and does not allow arbitrary division 

between areas. In addition, if the topology of the original system changes, it can affect the 

coherency and consequently the split between the study area and the generator grouping of 

the external area. This can change the boundary in between. Thus, the grouping of 

generators based on coherency has an inherent limitation on the way a system can be 

partitioned. 
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1.2.2 Model reduction methods from automatic control field 

The second group of methods does not have that limitation as the states are 

transformed into a new state space. Thus, the system can be partitioned in any way. These 

methods came from the control field of engineering. In the most used methods from this 

category, the external area model is first linearized and then reduced using balanced 

truncation [12]-[16] or Krylov subspace methods [17]-[20]. The linearization of the model 

gives acceptably accurate results when concerned disturbances are small but once the size 

of the disturbance increases the linearized model cannot guarantee an accurate 

representation of the original part of the system. To improve the accuracy of large-

disturbance simulation, nonlinear model reduction methods can be used. References  

[21]-[22] propose using empirical controllability and observability covariance matrices 

that contain nonlinear behavior of the system around the operating condition. In [23]-[24] 

the authors try to generalize and extend the linear balance truncation to nonlinear systems. 

A proper orthogonal decomposition method is described in [25], whose error and 

computational complexity are analyzed. As shown in [25]-[26], application of nonlinear 

model reduction cannot substantially decrease computational time as compared to the 

original model. In addition, some methods require training simulation data to create a 

reduced model, which cannot guarantee adequate performance during all possible 

disturbances. If a disturbance is very different from that with the training set, the model 

reduction error can substantially increase [27]. 
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1.3 Parareal Method 

In the existing literature, three directions of computational acceleration by 

parallelism for power system simulation have been explored. They are spatial [28]-[29], 

temporal [30]-[32] and across solution methods [33]-[34]. Parareal is a parallel computing 

algorithm based on the decomposition of the temporal domain into separate (coarse) 

subintervals. The algorithm is based on prediction-correction iterations between a 

sequential (coarse, approximate, fast), and concurrent (fine, accurate) integrators. The 

overall speedup is controlled by the performance of the coarse solver and, in the ideal case, 

it scales as the ratio of the number of coarse intervals over the number of iterations. 

However, for nonlinear power system problems, the time spent on propagating the coarse 

solution is not negligible [32], and it may take a large portion of the total consumed time. 

To improve the coarse solver performance, [31] used lower order generator model for the 

coarse solver, but the improvement was marginal. 

1.4 Tensor Decomposition 

Application of tensor decomposition in model reduction is a relatively new and 

growing scope of research [35-37]. The idea of the approach is to convert a large matrix 

into a tensor (represented by a multidimensional array) and apply tensor decomposition to 

represent this tensor as a set of small matrices, which can be converted back to the original 

matrix formulation with a sufficiently small error. Operations with these small matrices 

require less memory and computing power compared to the original large matrix and can 

increase the computational speed. In dynamic system simulation, the tensor decomposition 
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can be used to reduce the calculation time of higher terms of Taylor series expansion [38-

39].  

1.5 Contribution of this Work 

Compared to the existing work, this dissertation proposes a new adaptive model 

reduction approach, which is a compromise between linear model reduction and nonlinear 

model reduction in terms of accuracy and speed of time-domain simulation using the 

reduced model. A comprehensive study is also presented to compare this adaptive model 

reduction approach with the linear model reduction approach and the coherency-based 

model reduction approach. During the simulation period, the approach adaptively switches 

among detailed and linearly or nonlinearly reduced models based on variations of the 

system state: it employs unreduced models for the fault-on period, uses weighted column 

norms of the admittance matrix to decide which functions need to be linearized in the power 

system model for large changes of the state, and adopts a linearly reduced model for small 

changes of the state.  

The version of the adaptive approach described above uses traditional topological 

power system partitioning with the study area and the external area. This partitioning 

creates an additional error that can affect the performance of the model reduction. To 

address the partitioning error, the second version of the adaptive approach is proposed 

where the model reduction is performed to the whole system. 

The main contributions of this work are in the following aspects: 
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- a new model reduction approach is proposed that enables adaptive switching 

among the detailed model, the linear reduced model and the hybrid reduced 

model having only certain functions linearized; 

- unlike most of existing model reduction methods that need to partition the 

whole power network into a study area with detailed models and external area 

with reduced models, the new approach can be applied to either a partitioned 

external area only or the whole system without network partitioning; 

- application of power system model reduction of the system with multiple study 

areas that can be simulated in parallel; 

- application of adaptive model reduction as the coarse solver of the Parareal 

method; 

- integration of tensor decomposition to the adaptive model reduction. 
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CHAPTER TWO  

ADAPTIVE NONLINEAR MODEL REDUCTION 

 

2.1 Power System Partitioning 

As it was mentioned in chapter one, in power system model reduction the system 

is divided into two areas: 1) the study area, which is the main interest of an investigator, 

where all details are preserved, and all disturbances are originated from; 2) the external 

area, which can be simplified and reduced. The partitioned power system is shown in 

Figure 2.1. 
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Figure 2.1.  Power system partitioning. 
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The study area of the original system is connected to the external area by several 

tie-lines. For the study area, a tie-line j is treated as a simple fictitious generator with the 

internal voltage phasor equal to a voltage phasor 
e e
j jV   of the corresponding boundary 

bus in the external area and with the armature resistance and transient reactance equal to 

the resistance and reactance of a tie-line j. Likewise for the external area, a tie-line j is 

treated as a generator with the internal voltage phasor equal to a voltage phasor 
s s
j jV   of 

the corresponding boundary bus in the study area. During each iteration of the system 

simulation these fictitious generators are treated as constant voltage sources and represent 

the current injections from one area to the other area. Therefore, voltage magnitudes and 

voltage angles of boundary buses in one area are the inputs to the model of the other area. 

At every iteration, each area is calculated separately, then the boundary bus voltage phasors 

of both areas are recalculated, and their values are sent as inputs to the corresponding area 

to perform the next iteration. As constant voltage sources the fictitious generators do not 

have inertias or contribute to the dynamics of each area as a component of the differential 

equations of generators inside the corresponding area. 

In this chapter, each generator is represented by a detailed two-axis model with a 

non-reheat steam turbine model, a first-order governor model and an IEEE type 1 exciter 

model [40], as described be these nine differential equations: 
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( )

( )

( )

( )

1

1

i base i

ch m m gvi i i i

i
gv gv gv refi i i i

i

A Fi i
A R R A f fd A ref ti i i i i i i i i
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F f f fdi i i i

Fi

B EE fdi i
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 
= − + + 

 
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 ( )
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q q d d d fdi i i i i i

i i m d d q q i ii i i i i

E E X X I E

H P E I E I D


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
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

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
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
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

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  = − − −  −



     (2.1) 

where 

1 1

cos( ) sin( ) sin( ) cos( )

N Ng g

d d ij i j ij i j q ij i j ij i ji j j
j j

I E G B E G B

= =

    =  −  +  − +  − −  −      

       

1

sin( ) cos( ) ,

Nb

j ij i j ij i j
j

V G B

=

 +  − −  −   

1 1

sin( ) cos( ) cos( ) sin( )

N Ng g

q d ij i j ij i j q ij i j ij i ji j j
j j

I E G B E G B

= =

    = −  − +  − +  − +  −      

       

1

cos( ) sin( ) ,

Nb

j ij i j ij i j
j

V G B

=

 +  − +  −   

Here, i  and i  are the rotor angle and speed of generator i in rad and p.u., respectively; 

120base =   rad/s is the base speed; ,mP  gvi
P  and refi

P  are the mechanical power, 
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governor output power and reference power all in p.u.; iR  is the speed regulation factor; 

,di
E  ,qi

E  ,di
X  ,qi

X  ,di
X   ,qi

X   di
I  and qi

I  are respectively the d- and q-axis internal 

voltages, synchronous reactances, transient reactances and currents all in p.u.; ,Ri
V  ,Ai

K   

,fi
R  ,Fi

K  ,fdi
E  ,refi

V  ,ti
V  ,Ei

K  Ei
A  and Ei

B  are the voltage regulator input, amplifier 

gain, rate feedback, feedback gain, field voltage, reference voltage, terminal bus voltage, 

exciter gain and exciter saturation coefficients all in p.u.; time constants ,iH   ,chi
T  ,gvi

T  

,Ai
T  ,Fi

T   ,Ei
T  qoi

T   and doi
T   are respectively the generator inertia, turbine charging time, 

governor time constant, amplifier time constant, feedback time constant, exciter time 

constant, q-axis open circuit time constant and d-axis open circuit time constant all in s; 

,iD  is the damping coefficient in p.u.; gN  is the number of generators; bN  is the number 

of boundary buses; ijG  and ijB  are conductance and susceptance between generator i and 

generator j. in p.u.; jV  is the voltage magnitude at boundary bus j in the opposite area in 

p.u.; j  is the voltage angle at boundary bus j  in the opposite area in rad. 

2.2 Model Reduction 

If model reduction is applied to the external area, it is necessary to define state 

variables and inputs of the system. Considering that every generator is described by nine 

differential equations and every boundary bus has the voltage magnitude and angle as its 

parameters, let 9 gn N=  and 2 bm N=  respectively denote the numbers of state variables 
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and inputs of the external area, and let the outputs of the system be the state variables of 

the system.  

Then the system (2.1) can be described as the nonlinear system: 

( ), =


=

x f x u

y x
       (2.2) 

where  

( ) ,
T

m gv R f fd d q =x δ P P V R E E E ω  ( ) ,
T

=u θ V  

Rnx  is the state vector; Rmu  is the input vector; Rny  is the output vector. 

2.2.1 Linear model reduction 

The system (2.2) can be linearized around an equilibrium point as: 

 =  + 

 = 

x A x B u

y C x
            (2.3) 

where ,x  u  and y  are the deviation variables of respectively the original states, inputs 

and outputs; Rn nA  is the matrix of partial derivatives of the functions in (2.1) with 

respect to each state variable evaluated at the equilibrium point; Rn mB  is the matrix of 

partial derivatives of the functions in (2.1) with respect to each input variable evaluated at 

the equilibrium point; Rn nC  is the identity matrix. 

The system (2.3) can be reduced using a linear reduction method, for example, the 

balanced truncation method [12]. To apply this method Lyapunov equations are solved to 

obtain controllability Gramian cW  and observability Gramian oW : 
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T T
c c

T T
o o

 + + =


+ + =

AW W A BB 0

A W W A C C 0
      (2.4) 

The Gramians are then used to calculate transformation matrix T  and its  

inverse T . 

Matrix T  transforms the states from the original state space to a new balanced state 

space: . = x T x  

In the resulting new balanced system, the states are arranged in a such way that the 

first state is the most controllable and the most observable and the last state is the least 

controllable and the least observable. Henkel singular values show this relationship: 

1 2 1 0,i n n−                 (2.5) 

where 

( ) .i i c o ii =  = W W  

Considering the above-mentioned fact, only the first r states can be kept and the 

rest can be truncated. H  norm of the error of balanced truncation is bounded by the 

following expression: 

1

2 .
n

i
i r


= +

             (2.6)  

The transformation matrix and its inverse are recalculated as follows: 

,=T PT     ,T=T TP    (2.7) 

where ( )=P I 0  is the identity matrix, the last ( )n r−  rows of which are deleted.  

Thus, the balanced truncated system is represented as follows: 
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 =  + 

 = 

x TAT x TB u

y CT x
    (2.8)  

The system in (2.8) can be written in a more compact form: 

 =  + 

 = 

x A x B u

y C x
            (2.9) 

where 

,=A TAT   ,=B TB   ,=C CT  

R ,r rA   R ,r mB   R .n rC  

2.2.2 Hybrid model reduction 

In this dissertation, a model reduction method is proposed as a hybrid of nonlinear 

and linear model reduction techniques. As shown in [41]-[42], the transformation matrices   

T  and T  can be used to reduce the nonlinear system as well. In this case, the system can 

be represented as follows: 

( ), =


=

x Tf Tx u

y Tx
       (2.10) 

The system in (2.10) has fewer states than the original system but it is still necessary 

to compute all nonlinear functions in f. Thus, there is basically no reduction in computation 

time. To address this problem, reference [43] suggests eliminating some of the functions. 

However, as it is shown in [44] it can create large errors due to the model reduction. 

In the proposed hybrid model reduction approach, the functions that have the least 

contributions to the dynamics between the external area and a study area are not eliminated 
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but linearized. To evaluate contributions of the functions, let us consider the expressions 

for the d-axis current and the q-axis current of generators in the external area as these 

expressions have most nonlinearities and are used in 33 % of all differential equations in 

(2.1). 

Nonlinearities in the expressions are cosine and sine functions and coefficients of 

these functions are conductances and susceptances between generators including fictitious 

generators representing the boundary between the external area and the study area. These 

values are real and imaginary parts of elements of the admittance matrix: 

.ij ij ijY G jB= +        (2.11) 

The matrix can be divided into four submatrices: 

11 12

21 22

,
 

=  
 

Y Y
Y

Y Y
          (2.12) 

where 11 R
N Ng g

Y  is the admittance matrix representing connections between 

generators inside the external area; 22 R
N Nb b

Y  is the admittance matrix representing 

connections between fictitious generators; 21 12 R
N NT b g

= Y Y  is the admittance matrix 

representing connections between the generators of the external area and the fictitious 

generators.  

Thus, column norms of absolute values of elements in matrix 21Y  can be used to 

determine which function is to be linearized as the norms describe how close electrically 

each generator is to the boundary between the external area and a study area. 

Column norms are calculated by: 
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2

21
1

.

Nb

i ji
j

Y

=

 =          (2.13) 

The nonlinear functions that correspond to the generators with large column norms 

are kept nonlinear, and the nonlinear generator functions with small column norms are 

linearized. Thus, the hybrid reduced system can be represented as follows: 

( )ˆ ,

l

  
  =    


=

f Tx u
x T

f

y Tx

          (2.14) 

where 0ˆ ˆ ˆ ,l =  +  +f A x B u x  ˆ ˆ ,=A PAT  ˆ ˆ ,=B PB  ( )ˆ R ,n q r− A  ( )ˆ R ,n q m− B  

0 0ˆˆ ,=x Px  vector  f̂  comprises the functions that are kept nonlinear; lf  has the linearized 

functions; 0
x  is the initial state vector; P̂  is the identity matrix with deleted rows that 

correspond to the functions in ˆ;f  q is the number of nonlinear functions in ˆ.f  

The system in (2.14) can be rewritten as: 

( )
0

ˆ ,

ˆ ˆ ˆ

  
  =

   +  + 


=

f Tx u
x T

A x B u x

y Tx

    (2.15) 

2.3 Adaptive Switching Algorithm 

Considering that the linearly reduced system gives satisfactory performance during 

small disturbances, the duration of a large disturbance is short, and the majority of the time 

a system is under small or no disturbance it is reasonable to change the type of the model 

reduction of the external system to increase the accuracy and speed of the system 
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simulation. The proposed adaptive algorithm can adaptively change the complexity of the 

external area model based on the current condition as shown in Figure. 2.2 

During the fault-on period, the original, fully detailed system model is used as the 

maximum accuracy of the system model is required and the duration of a fault is limited to 

tens of milliseconds, which only slightly increases the simulation time. To obtain the initial 

condition of the post-fault simulation the state vector from the last iteration of the fault-on 

simulation is multiplied by the transformation matrix. In the post-fault period, when the 

angle deviation i  of any generator in a study area exceeds a preset threshold max , the 

external area is reduced using the hybrid model reduction method, which keeps the balance 

between accuracy and speed of simulation when the disturbance is large. In pre-fault and 

post-fault periods when all angle deviations are within the threshold, the external area is 

reduced using a linear model reduction method. This guarantees that most of the time when 

there is no disturbance or variation of the state is very small, the fastest model reduction 

method is applied. 

To calculate the rotor angle deviation, the generator with the smallest column norm 

is used as a reference; i.e., the reference generator is the electrically farthest generator from 

a study area and has the least reactions to disturbances in study areas. If the time for a rotor 

angle deviation i  exceeding threshold, max  denoted by, tht  is longer than a preset 

limit 
maxtht  a new operating condition is obtained and matrices A  and B  of the linearly 

reduced system are recalculated. This action corrects the adaptive algorithm after a large 

change of the system state. As the linearization is performed offline and the update is only  
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Figure 2.2.  Adaptive switching algorithm. 
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necessary when a substantial change of the operating condition occur, the matrix 

recalculation does not affect the speed of the algorithm over a long period of time. Thus, 

the proposed approach is scalable to deal with large power system models. 

2.4 Adaptive Model Reduction of the System without Partitioning 

Partitioning the system into the study area and the external area creates a specific 

error. The error is caused by the fact that the inputs (boundary bus voltage magnitudes and 

boundary bus voltage angles) are calculated at the previous iteration of the simulation, i.e. 

the inputs are lagging by one iteration. To eliminate the partitioning error, the second 

version of the adaptive approach is proposed. This version is applied to the whole system 

that is treated as just one area. 

Without the partitioning, there is no need in the concept of fictitious generators 

representing boundary buses of the study area and the external area, and the expressions in 

(2.1) for the d-axis current and the q-axis current are simplified as: 

1 1

cos( ) sin( ) sin( ) cos( ) ,

N Ng g

d d ij i j ij i j q ij i j ij i ji j j
j j

I E G B E G B

= =

    =  −  +  − +  − −  −      

1 1

sin( ) cos( ) cos( ) sin( ) .

N Ng g

q d ij i j ij i j q ij i j ij i ji j j
j j

I E G B E G B

= =

    = −  − +  − +  − +  −      

As the single area of the system contains all generators including the generators 

from the study area whose dynamics are of the main interests, the transformation and 

truncation of the states are not performed, and the performance improvement comes only 

from the linearization of nonlinear functions. In the absence of inputs from the boundary 
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between the study area and the external area, the control matrix is eliminated from (2.15) 

and the system used in the second version of the adaptive approach is simplified as: 

( )
0

ˆ ,

ˆ

  
  =

   + 


=

f x u
x

A x x

y x

         (2.16) 

where 

ˆ ,PA=A    
( ) .n q nR − A  

All nonlinear functions representing generators of the study area are contained in 

ˆ.f  The list of linearized functions corresponding to generators of the external area is the 

same as in the adaptive approach applied to the partitioned system described above. The 

adaptive switching is performed between the system in (2.16) and the simplified version of 

the linearized system in (2.3): 

 = 

 = 

x A x

y C x
     (2.17) 

As all generators of the system including those of the study area are linearized in 

(2.17) the angle deviation threshold max  of the adaptive switching algorithm is set to a 

small value to enable switching when large oscillations are damped. 

2.5 Case Studies 

Comprehensive case studies are conducted to compare the proposed adaptive model 

reduction approaches with the traditional linear model reduction approach. A realistic 

power system model is tested. For the system, the study area is defined and retained with 

original, detailed models, and the rest of the system is defined as the external area to be 
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reduced respectively by different approaches. Then, time-domain contingency simulation 

using each reduced system model is conducted and compared with the simulation using the 

original system model. In addition, the approaches are validated during different post-fault 

operating conditions and compared with the traditional coherency-based model reduction 

approach. 

2.5.1 Temporary bus fault tests 

The linear model reduction approach and the adaptive approaches described above 

are applied to the NPCC 140-bus 48-generator system shown in Figure 2.3. The study area 

is set to be the ISO-NE region having 9 generators. The external area is set to be the rest 

of the system, which has 39 generators, 39×9=351 state variables and 39×4=156 nonlinear 

functions since the first 5 state variables of each generator is described by linear differential 

equations. The external area is connected to the study area by two tie-lines.  
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Figure 2.3.  Partitioned NPCC system. 
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The H  norm of the balanced truncation error is set to be equal to 
510− :  

5

1

10 2 .
n

i
i r

−

= +

          (2.18) 

This corresponds to truncating 200 out of 351 state variables. To find the threshold 

value of the column norm of the admittance matrix that decides if generator is electrically 

close to the boundary, a case study is performed on the system in (2.15). The threshold 

decreases with 0.1-p.u. increments from 10 until all rotor angle errors following any of the 

contingencies are below 6 degrees. After the case study, the threshold is set as 1 p.u. 

Nonlinear functions corresponding to generators with column norms of the admittance 

matrix less than 1.0 p.u. are linearized. This corresponds to linearization of 136 out of 156 

nonlinear functions of the external area in the case of partitioned system and 136 out of 

192 nonlinear functions of the unpartitioned system. 

The column norm threshold per unit value in not useful if the proposed approach is 

applied to a system with a different base power. To make it more practical, it is converted 

to a value in siemens. The NPCC system has the base power of 100 MVA. Setting the base 

voltage to the common generator terminal voltage of 20 kV the new thresholds is 

calculated: 

( )

6

2 2
3

100 10
1 1 0.25 .

20 10

base
th

base

S
Y S

V


= = =



          (2.19) 

When the proposed approach is applied to a different system, the threshold is 

converted to a per unit value using the new system MVA base and the base voltage of 20 

kV. 
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Another case study is performed to select the angle deviation threshold max  for 

the adaptive switching algorithm applied to the partitioned system. The threshold is 

decreased with 1-degree increments from 180 degrees until all rotor angle errors for all 

generators following any of the contingencies are below 6 degrees. After this case study, 

max  is set to 67 degrees. The threshold for the adaptive approach applied to the 

unpartitioned system is set to 6 degrees to ensure that the rotor angle errors of generators 

representing study area are also below 6 degrees. 

The simulations are performed in MATLAB R2015a on a computer with a 4-GHz 

AMD FX-8350 processor and 8 GB of memory. The duration of the simulation is set to 16 

seconds with an integration time step of 0.01 seconds. 

To compare the approach performance during a large disturbance, a three-phase 

short circuit fault lasting for the critical clearing time (CCT) is created separately at every 

bus of the study area. CCT is calculated using the original system, CCTs of the adaptively 

reduced systems are the same as the ones of the original system, CCTs of the linearly 

reduced system are smaller or equal to the ones of the original system. The errors of all 

outputs (state variables) of all generators in the study area are analyzed and the rotor angle 

state variable has the largest error for each of the generators. For every fault, the generator 

with the largest error of the rotor angle is found and used to compare the approaches. The 

results of comparison of rotor angle root mean square errors of the linear model reduction 

and the adaptive approaches are shown in Table 2.1. From Table 2.1, the linear model 

reduction approach cannot guarantee satisfactory performance during large disturbances 
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Table 2.1.  Comparison of RMS Error of Rotor Angle 

Bus Generator CCT Partitioned Unpartitioned 

Linear Adaptive Adaptive 

1 26 0.13 8.85 1.33 1.06 

2 26 0.13 3.10 0.86 0.57 

3 23 0.39 25.94 5.51 5.12 

4 26 0.12 1.50 0.75 0.41 

5 23 0.09 0.59 0.48 0.29 

6 23 0.08 0.72 0.60 0.30 

7 26 0.05 0.28 0.28 0.47 

8 23 0.05 4.87 4.41 0.29 

9 26 0.06 3.26 2.83 0.29 

10 26 0.13 10.49 2.90 1.26 

11 23 0.19 8.81 1.40 1.46 

12 23 0.1 1.89 0.98 0.44 

13 23 0.12 2.57 0.97 0.49 

14 23 0.13 2.83 1.00 0.51 

15 23 0.07 0.38 0.38 0.33 

16 23 0.05 0.87 0.78 0.31 

17 26 0.03 0.30 0.30 0.59 

18 23 0.04 0.33 0.33 0.66 

19 26 0.03 0.11 0.11 0.95 

20 26 0.03 0.27 0.27 1.05 

21 23 0.22 12.97 1.65 1.89 

22 23 0.19 6.55 1.32 1.06 

23 23 0.20 3.83 1.07 0.71 

24 23 0.18 5.66 1.46 0.91 

25 23 0.22 20.45 2.22 3.87 

26 26 0.03 0.35 0.34 0.86 

27 23 0.10 0.29 0.27 0.46 

28 26 0.12 0.28 0.30 0.42 

29 23 0.06 3.15 3.48 0.43 

30 23 0.06 1.21 1.35 0.38 

31 23 0.08 0.40 0.43 0.25 

32 26 0.11 1.25 0.79 0.42 

33 26 0.11 1.05 0.65 0.39 

34 23 0.15 3.79 0.89 0.63 

35 26 0.14 3.14 0.82 0.52 

36 23 0.21 4.03 0.92 0.61 
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generating errors of more than 25 degrees while the proposed adaptive approach keeps the 

error for all disturbances within 6 degrees both for the case with the system partitioned into 

a study area and external area and the case with only one area representing the whole 

system. 

The fault at bus 3 is the largest disturbance of the NPCC system, and generator 23 

has the largest rotor angle error following this fault, and thus its rotor angle is used for the 

comparison. The results of the simulation are shown in Figure 2.4 when the adaptive 

approach is applied to the partitioned system and in Figure 2.5 when the adaptive approach 

is applied to unpartitioned system.  

As it can be seen from Figure 2.4 and Figure 2.5, if the external system is reduced 

using linear model reduction, the rotor angle trajectory differs significantly from the rotor 

angle trajectory of the original system whereas the rotor angle trajectory of the system 

reduced by the adaptive approaches follows accurately the original trajectory. 

To present in more detail the difference between approaches, the root mean square 

errors of all state variables are calculated using the following expression: 

( )
2

1

ˆ

,

N

ij ij
j

i

x x

N

=

−

 =


           (2.20)  

where N is the number of simulation steps; ijx  and ˆijx  are respectively the values of i-th 

state variable of generator 23 of the original system and the reduced system at time step j. 

The results of this calculation are shown in Table 2.2. The proposed adaptive approaches 

reduce the error by 74% to 81% for every state variable compared to the linear model 

reduction approach. 
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Figure 2.4.  Rotor angle of generator 23 following the fault at bus 3 including the partitioned system. 
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Figure 2.5.  Rotor angle of generator 23 following the fault at bus 3 including the unpartitioned system. 
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A fault with the duration equal to CCT is the worst-case scenario that can cause the 

largest error. The worst-case errors of the proposed adaptive model reduction approach are 

small enough to justify its applicability to power system stability studies. 

In addition to accuracy, the approaches are compared in terms of simulation time 

as shown in Table 2.3.  

In Table 2.3 the large disturbance corresponds to the 0.39-second fault at bus 3 and 

the small disturbance corresponds to the 0.03-second fault at bus 17. The results show that 

the proposed adaptive approach applied to the partitioned system reduces the simulation 

time by 57% during the large disturbance and by 59% during the small disturbance 

compared to the original system. If the adaptive approach is applied to the unpartitioned 

system, the simulation time is reduced by 73% and 84% respectively for the small 

disturbance and the large disturbance. The difference in simulation time between two 

versions of the adaptive approach is caused by the transformation and partitioning in the 

partitioned system and by the fact that the whole unpartitioned system is switched to the 

linearized model which is the fastest model. Especially it is clear in the case of the small 

disturbance as the switching to the linear model happens earlier. 

Thus, the proposed adaptive approach provides both high accuracy and high 

simulation speed. 

2.5.2 Test of operating condition change 

To test the robustness of the adaptive approach against a change of the operating 

condition, the temporary fault at bus 3 representing the largest disturbance is changed to a 
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Table 2.2.  Comparison of RMS Error of States of Generator 23 

States 

System 

Linearly reduced 
Partitioned 

adaptively reduced 

Unpartitioned 

adaptively reduced 

,  degrees 12.24 10  
05.5 10  

05.1 10  

,mP  p.u. 31.8 10−  
44.1 10−  

43.4 10−  

,gvP  p.u. 22.3 10−  
35.1 10−  

34.5 10−  

,RV  p.u. 11.7 10−  
23.7 10−  

24.1 10−  

,fR  p.u. 21.3 10−  
33.4 10−  

33.2 10−  

,fdE  p.u 29.8 10−  
22.2 10−  

22.3 10−  

,dE  p.u. 26.9 10−  
21.4 10−  

21.5 10−  

,qE  p.u. 21.1 10−  
32.8 10−  

32.6 10−  

,  p.u. 34.7 10−  
31.0 10−  

49.7 10−  

 

Table 2.3.  Comparison of Simulation Time 

System 

Simulation time, seconds 

Large disturbance Small disturbance 

Original unpartitioned 3.7 

Partitioned and linearly reduced 0.9 

Partitioned and adaptively reduced 1.6 1.5 

Unpartitioned and adaptively reduced 1.0 0.6 
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permanent fault cleared by tripping one of the lines connected to the bus or by completely 

isolating the bus by tripping all lines connected. Following the bus fault, the operating 

condition of the system is changed. The results of simulation are shown in Table 2.4.  

Table 2.4 shows that the proposed adaptive approach can reduce the system after 

the change of the operating condition maintaining the accuracy of simulation.  

2.5.3 Comparison with the coherency-based model reduction 

Proposed adaptive approaches are compared to another traditional model reduction 

approach based on grouping coherent generators following a small disturbance, which 

follows a conventional industry practice in coherency-based model reduction using 

commercialized software tools SSAT and DYNRED by Powertech Labs. First, the 

complete eigenvalue analysis is performed in SSAT. Accordingly, three dominant inter-

area modes of oscillations between the study and the external area with the largest 

participation factors of generators of the study area are selected. The frequencies of the 

selected modes are 0.71 Hz, 0.72 Hz, and 0.77 Hz. Feed the SSAT result into DYNRED 

and use a tolerance-based method for generator grouping. Then, 17 groups of coherent 

generators are identified based on the selected modes. The first group of 9 generators 

correspond to the study area and the other 16 groups represent generators of the external 

area. The first group plus neighboring 36 buses are set to be the study area. Model reduction 

by DYNRED aggregates 39 generators of the external area into 16 equivalent generators 

resulting in a reduced 82-bus 25-generator system.  

First, the proposed and traditional approaches are tested using faults at boundary 

buses. The results of the simulation are shown in Table 2.5 All approaches provide 
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satisfactory performance. The larger error of the partitioned systems is due to the larger 

partitioning error during contingencies at the boundary. The largest disturbance (0.39-

second fault at bus 3) in the study area makes the coherency-based reduced system 

unstable. To compare the approaches, the duration of the fault is reduced to 0.38 seconds. 

The simulation results are shown in Table 2.6. Both traditional linear and coherency-based 

approaches provide similar performance in terms of accuracy and speed; however, the 

accuracy of proposed approaches is substantially higher. 

2.6 Conclusions 

 This chapter has proposed two versions of a new adaptive model reduction 

approach that can be applied to traditional partitioned system or to unpartitioned system 

for fast power system simulation. The approach is capable of accurate representation of the 

original power system model with significant reduction in computational time. The 

adaptive approach has been comparted with the traditional coherency-based and linear 

model reduction approaches. The proposed approach provides substantial improvement in 

accuracy compared to the traditional approaches. In addition, the robustness of the 

approach to a change in operating condition has been confirmed. 
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Table 2.4.  Comparison of Faults Leading to a New Operating Condition 

Fault 

Rotor angle RMS error, degrees 

Partitioned 

adaptively reduced 

Unpartitioned 

adaptively reduced 

Temporary fault at bus 3 5.51 5.12 

Fault at line 3-2 followed by the line trip 5.48 5.09 

Fault at line 3-4 followed by the line trip 5.28 4.80 

Fault at bus 3 followed by the bus trip 2.74 2.04 

 

Table 2.5.  Comparison of Model Reduction Approaches During Boundary Bus Faults 

Fault 

Rotor angle RMS error, degrees 

Bus 29 fault Bus 35 fault 

Coherency-based reduced 0.93 2.27 

Partitioned and linearly reduced 3.15 3.14 

Partitioned and adaptively reduced 3.48 0.82 

Unpartitioned and adaptively reduced 0.43 0.52 

 

Table 2.6.  Comparison of Model Reduction Approaches During Bus 3 Fault 

System 
Rotor angle RMS 

error, degrees 

Simulation time, 

seconds 

Coherency-based reduced 16.98 1.1 

Partitioned and linearly reduced 14.14 0.9 

Partitioned and adaptively reduced 2.30 1.6 

Unpartitioned and adaptively reduced 1.96 1.0 
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CHAPTER THREE  

APPLICATION OF ADAPTIVE MODEL REDUCTION WITH 

PARALLELISM IN SPACE 

 

3.1 Power System Partitioning 

As it was mentioned in chapter one, in power system model reduction the system 

is divided into two areas: 1) the study area, which is the main interest of an investigator, 

where all details are preserved and disturbances are originated from; 2) the external area, 

which can be simplified and reduced. In general, the reduced external area requires less 

time to simulate compare to the study area. Considering this fact, the study area can be 

further partitioned into multiple subareas which are simulated in parallel to decrease the 

total system simulation time. The partitioned power system with multiple study areas is 

shown in Figure 3.1.  

Each area of the original system is connected to other areas by several tie-lines. For 

every area, each tie-line is treated as a fictitious generator with the internal voltage phasor 

equal to the voltage phasor of the corresponding boundary bus in the opposite area and 

with the armature resistance and transient reactance equal to the resistance and reactance 

of the corresponding tie-line. These fictitious generators are treated as constant voltage 

sources during each iteration and represent the electrical power injections from one area to 

the other areas. Therefore, voltage magnitudes and voltage angles of boundary buses in one 
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Figure 3.1.  Partitioned power system with multiple study areas. 

 

area are the inputs to the model of the other areas. At every iteration of the system 

simulation, each area is calculated separately, then boundary bus voltages of all areas are 

recalculated, and their values are sent as inputs to the corresponding areas to perform the 

next iteration. The simulation of each area can be done in parallel to decrease the total time 

of the simulation.  

In this section, a power system is modeled based on the following assumptions: 1) 

loads are represented by constant admittances, 2) network nodes are eliminated [40], 3) 

sub-transient dynamics and saturation are ignored, 4) torque in p.u. is equal to mechanical 

power in p.u., 5) damper windings’ time constants are equal to zero, 6) synchronous 

reactances are equal to transient reactances, 7) an exciter with one gain and one time 
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constant is used for each generator, 8) a governor with one time constant is used for each 

generator.  

In each area of the partitioned system, every generator is described by the following 

five differential equations: 

( )

( )
( )

( )

1

1 /

2 1

i base i

do q q fdi i i i

A fd fd A ref ti i i i i i

gv m m ref i ii i i i

i i m e i ii i

T E E E

T E E K V V

T P P P R

H P P D

 =   −


  = − +



= − + −


= − + −  −


 = − −  −

             (3.1)  

where 

1

cos( ) sin( )

Ng

e q q ij i j ij i ji i j
j

P E E G B

=

  =  −  +  −   

         

1

cos( ) sin( ) ,

Nb

q j ij i j ij i ji
j

E V G B

=

 +  − +  −   

An example of transformation of the original system to the partitioned system with 

two study areas is shown in Figure 3.2. Voltage phasors of boundary buses in the external 

area 1 1
e eV  , 2 2

e eV   and in the second study area 2 2
1 1V  , 2 2

2 2V   are the internal voltage 

phasors of the fictitious generators of  the first study area. Voltage phasors of boundary 

buses in the first study area 1 1
1 1V  , 1 1

2 2V  , 1 1
3 3V  , 1 1

4 4V   are the internal voltage 

phasors of the fictitious generators of the external area and the second study area. 
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3.2 Case Studies 

3.2.1 Temporary bus fault tests 

The partitioning scheme described above together with the adaptive approach 

introduced in chapter two is tested on the NPCC system. The study area is set to be the 

New England region of the NPCC system, which has 9 generators. To test cases with 

multiple study areas, the study area is divided into two subareas: study area 1 with 5 

generators and study area 2 with 4 generators. The external area is set to be the rest of the  

system, which has the other 39 generators. The external area has 39×5=195 state variables 

and 39 nonlinear functions as the first 4 states of each generator is described by linear 

differential equations. The external area is connected to study area 1 by two tie-lines, and 

study area 1 is connected to study area 2 by two tie-lines as shown in Figure 3.2. The 

partitioned NPCC system is shown in Figure 3.3. 

The H  norm of the balanced truncation error is set to be equal to 
510 .−

 This 

corresponds to truncation of 107 out of 195 state variables. The functions corresponding to 

column norms of admittance matrix less than 1.0 p.u. are linearized. This corresponds to 

linearization of 34 out of 39 functions. The angle deviation threshold max  is set to 67 

degrees. The simulation is performed for 16 seconds to represent at least 10 cycles of 

oscillations.  The integration time step is set to 0.01 seconds. 
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Figure 3.2.  Transformation from the original system to the partitioned system. 
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Figure 3.3.  Partitioned NPCC system with multiple study areas. 
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To compare the approach performance during a large disturbance, a three-phase 

short circuit fault lasting for the critical clearing time (CCT) is created separately at every 

bus of the study areas. The error of all outputs (state variables) of all generators in the study 

areas are analyzed, and the rotor angle variable has the largest error for each of the 

generator. For every fault, the generator with the largest error of the rotor angle is found 

and used to compare the approaches. The results of comparison of rotor angle RMS errors 

of the linear model reduction approach and the adaptive approach are shown in Table 3.1. 

As Table 3.1 shows, the linear model reduction approach cannot guarantee satisfactory 

performance during large disturbances generating the errors of more than 30 degrees while 

the proposed adaptive approach keeps the error for all disturbances within 4 degrees both 

for the case with one study area and the case with two study areas including faults at the 

boundary buses.  

The fault at bus 3 is the largest disturbance of the NPCC system, and generator 23 

has the largest rotor angle error following this fault, and thus its rotor angle is used for 

comparison. The results of simulation are shown in Figure 3.4. As it can be seen from 

Figure 3.4, if the external system is reduced using linear model reduction, the rotor angle 

trajectory differs significantly from the rotor angle trajectory of the original system 

whereas the rotor angle trajectory of the system reduced by the adaptive approach follows 

accurately the original trajectory.  

To present quantitatively the difference between approaches, the RMS errors of all 

states are calculated, and the results of calculation are shown in Table 3.2.  
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Table 3.1.  Comparison of RMS Error of Rotor Angle Including the Case of Two Study Areas  

Bus Generator CCT 1 study area 2 study areas 

Linear Adaptive Adaptive 

1 26 0.22 17.84 1.05 0.97 

2 26 0.22 8.09 0.90 0.89 

3 23 0.67 33.20 3.35 3.82 

4 26 0.22 14.19 0.97 1.23 

5 23 0.14 1.24 0.37 0.57 

6 23 0.11 0.64 0.28 0.49 

7 26 0.07 1.26 1.07 1.37 

8 23 0.06 0.21 0.12 0.26 

9 26 0.08 0.76 0.85 1.27 

10 26 0.21 14.24 0.90 1.59 

11 23 0.29 27.47 1.75 3.35 

12 23 0.15 2.02 0.55 1.53 

13 23 0.2 6.39 0.96 1.23 

14 23 0.23 29.43 2.27 2.08 

15 23 0.11 1.18 0.38 3.40 

16 23 0.07 0.16 0.13 0.25 

17 26 0.04 0.08 0.07 0.30 

18 23 0.05 0.10 0.07 0.12 

19 26 0.04 0.05 0.04 0.13 

20 26 0.04 0.08 0.07 0.24 

21 23 0.28 5.66 0.76 0.85 

22 23 0.28 10.58 1.02 1.03 

23 23 0.26 4.06 0.82 0.93 

24 23 0.27 14.29 1.02 1.23 

25 23 0.29 10.96 0.97 1.06 

26 26 0.04 0.08 0.07 0.24 

27 23 0.15 0.36 0.19 0.24 

28 26 0.21 2.39 0.51 0.55 

29 23 0.08 0.41 0.19 0.31 

30 23 0.08 0.39 0.18 0.33 

31 23 0.12 0.79 0.30 0.40 

32 26 0.19 11.53 0.97 2.85 

33 26 0.19 6.42 0.89 1.13 

34 23 0.26 14.32 1.20 1.20 

35 26 0.25 24.52 1.65 2.55 

36 23 0.27 9.41 1.13 0.94 
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Figure 3.4.  Rotor angle of generator 23 following the fault at bus 3.  

 

Table 3.2.  Comparison of RMS Error of States of Generator 23 Including the Multiple Areas Case 

States 

System 

Only 

partitioned 

Linearly 

reduced 

Adaptively 

reduced 

,  rad 
1 study area 31.4 10−   

15.8 10−   
25.9 10−   

2 study areas 29.1 10−   
15.9 10−   

26.7 10−   

,qE  p.u. 
1 study area 52.3 10−   

39.3 10−   
31.0 10−   

2 study areas 31.4 10−   
39.5 10−   

31.2 10−   

,fdE  p.u 
1 study area 43.4 10−   

11.5 10−   
21.5 10−   

2 study areas 22.4 10−   
11.5 10−   

21.7 10−   

,mP  p.u. 
1 study area 43.5 10−   

11.5 10−   
21.5 10−   

2 study areas 22.3 10−   
11.5 10−   

21.7 10−   

, p.u. 
1 study area 51.5 10−   

36.9 10−  
46.9 10−   

2 study areas 31.1 10−   
37.0 10−  

47.9 10−   
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The proposed adaptive approach reduces the error by 87 % to 90 % for every state 

variable compared to the linear model reduction approach. And for the case with two study 

areas, the adaptive approach is more accurate than the approach with only partitioning the 

system since the adaptive approach switches to the original unpartitioned system during a 

fault. The error of the only partitioned system is caused by the fact that the inputs (voltage 

phasors of the boundary buses) are calculated at the previous iteration of the simulation, 

i.e. the inputs are lagging by one iteration.   

A fault with the duration equal to CCT is the worst-case scenario that can cause the 

largest error. The proposed approach has the worst-case error of 4 degrees, which justifies 

its application in power system stability studies.  

In addition to accuracy, the approaches are compared in terms of simulation time 

as shown in Table 3.3. The results show that the proposed adaptive approach applied to the 

partitioned system with one study area reduces the simulation time by 51% compared to 

the original system. 

If the system with two study areas is used, the simulation takes more time to 

complete. However, if simulations of multiple areas can be performed in parallel, the case 

with multiple study areas performs even faster than the case with only one study area. This 

can be seen from the Table 3.4, which decomposes simulation time into areas.  

The difference between linearly and adaptively reduced systems in terms of 

simulation time of the study areas and the rest of the simulation is caused by the fact that 

during the fault the adaptive approach switches to the original system and this stage cannot 

be parallelized and its simulation time is accounted as the rest of the simulation. 
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Table 3.3.  Comparison of Simulation Time Including the Multiple Areas Case 

System 

Simulation time, seconds 

1 study area 2 study areas 

Original 11.9 

Only partitioned 12.7 14.5 

Partitioned and linearly reduced 5.3 7.1 

Partitioned and adaptively reduced 5.8 7.5 

 

Table 3.4.  Decomposition of Simulation Time in the Parallel Mode 

Components 
System simulation time, seconds 

Original Partitioned Linearly reduced Adaptively reduced 

1 

study 

area 

Study 

11.9 

2.6 2.5 

External 8.4 1 1.5 

The rest 1.7 1.8 

Total 10.1 4.3 4.3 

2 

study 

areas 

Study 1 2.2 2.1 

Study 2 2.2 2.1 

External 8.4 1 1.5 

The rest 1.7 1.8 

Total 10.1 3.9 3.9 
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Table 3.4 shows that in the parallel mode of simulation the adaptive approach time 

performance is identical to the linear model reduction approach, and the approach reduces 

the simulation time by 67 % compared to the original system. 

Thus, the proposed adaptive approach with multiple study areas provides both high 

accuracy and high simulation speed. 

3.2.2 Test of operating condition change 

To test how the adaptive approach performs robustly against a change of the 

operating condition, the temporary fault at bus 3 is changed to a permanent fault cleared 

by isolation of the bus by tripping all lines connected. Following that contingency, the 

operating condition of the system is changed. 

The results of simulation are shown in Table 3.5. Table 3.5 shows that the proposed 

adaptive approach maintains the accuracy of the reduced model after the change of the 

operating condition. 

3.2.3 Test of slow mode of oscillation 

To verify that slow modes of oscillations are preserved when the adaptive approach 

is applied, the slowest mode at 0.266 Hz is excited using the technique described in [45]. 

The results of the simulation are shown in Figure 3.5. 

The difference between the original system and the adaptively reduced system is 

caused by the fact that in order to excite a specific mode, not only rotor angles of the 

generators in the study areas but also rotor angles of the generators in the external area are 
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changed. This violates the assumption that all disturbances are originated from the study 

areas. However, even in this condition the adaptive approach performs satisfactorily. 

To test the adaptive approach, Prony analysis of the frequency of the generator 23 

was performed. The results of the analysis are shown in Table 3.6, from which the proposed 

adaptive approach preserves the modal properties of the slowest oscillation mode. 

3.3 Conclusions 

 This chapter has proposed a power system partitioning approached with multiple 

study areas calculated in parallel for fast power system simulation. The approach is capable 

of accurate representation of the original power system model with significant reduction in 

computational time. The approach has been compared with the traditional linear model 

reduction approach and maintains better accuracy even when there is a change in operating 

condition. In addition, it has been shown that the proposed approach preserves the slow 

inter-area mode of oscillations.  
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Table 3.5.  Comparison of Faults Leading to a New Operating Condition Including the Multiple Areas Case 

Fault 
Rotor angle RMS error, degrees 

1 study area 2 study areas 

Temporary fault at bus 3 3.35 3.82 

Fault at line 3-2 followed by the line trip 3.34 3.81 

Fault at line 3-4 followed by the line trip 3.29 3.76 

Fault at bus 3 followed by the bus trip 2.25 2.60 
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Figure 3.5.  Frequency of generator 23 after 0.266-Hz mode is excited. 

 

Table 3.6.  Slowest Oscillation Mode Comparison 

System Amplitude, p.u. Frequency, Hz Damping, % 

Original 0.015 0.266 16.8 

Adaptively 

reduced 

1 study area 0.016 0.266 16.3 

2 study areas 0.015 0.266 16.2 
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CHAPTER FOUR  

APPLICATION OF ADAPTIVE MODEL REDUCTION WITH 

PARALLELISM IN TIME 

 

The adaptive model reduction described in chapter two can be used together with 

the Parareal method improving the speed of the coarse solver and decreasing the total 

simulation time. In the Parareal method the simulation time is divided into subintervals 

with a coarse time step. Each interval is then simulated in parallel using a fine solver. Based 

on the fine solution of each interval the coarse solution propagated by a coarse solver is 

then corrected. The concept of Parareal method is show in Figure 4.1. There are two main 

Parareal algorithms: the master-workers algorithm and the distributed algorithm [46]. 

In the master-workers algorithm the initial coarse solution propagation is performed 

by the master processor and the results are sent to the worker processors to propagate the 

fine solutions. The fine solutions are then sent back to the master processor where the 

coarse solution is propagated and corrected. This algorithm is suited for shared memory 

systems [47], where all processors share the same global memory. In the distributed 

algorithm the coarse propagation and correction are distributed across all processors. This 

algorithm is suited for distributed memory systems (message passing systems) [47], where 

each processor uses its own local memory.  
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Coarse Solution

T0 T1 Tn Tn+1 TN

δt
ΔT

Fine Solution  

Figure 4.1.  Parareal method. 

 

4.1 Master-Workers Algorithm 

4.1.1 Parareal algorithm 

At the beginning of the master-workers Parareal algorithm, an initial guess of the 

coarse solution needs to be propagated using the coarse solver ,TC   

0 0 0
1

1 0
0 0

( ), 1 ,

,

n n T n cC n N −= =   

=

U U U

U U
   (4.1) 

where nU  and nU  represent the vector of state variables obtained from the coarse solver 

at time nT T n=    before and after the correction from the fine solution, respectively; cN  

is the number of the coarse intervals in the entire simulation period; T  is the coarse step 

size. The superscript denotes the iteration number, i.e., superscript “0” represents the initial 

coarse propagation. 

Starting from the first iteration, the fine solver tF  takes the coarse solution from 

the last iteration as the initial value to propagate the solution in each coarse interval: 
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1
1( ), 1 ,k k

n t n cF n N
−
−=   u U         (4.2)  

where nu  is the vector of state variables obtained from the fine solver at time nT ; t  is 

the fine step size. 

Once the fine solution nu  is obtained for all 1 cn N  , the mismatch between the 

fine solution from the current iteration and the coarse solution from the last iteration ,nΔ  

at the time point ,nT   can be calculated as: 

1, 1 .k k k
n n n cn N−= −   Δ u U         (4.3)  

Before moving to the next iteration, the mismatch nΔ  is added to the coarse solution 

from the last iteration as a correction. Note that this correction is not executed 

simultaneously for all .nT  It is executed sequentially moving along the time :nT  

1

,

( )

k k k
n n n

k k
n T nC −

= +

=

U U Δ

U U
          (4.4)  

Since the coarse propagation is performed for each time point nT  it is critical that 

the coarse solver TC  is as fast as possible.  

The ideal speedup idealR  for Parareal algorithm does not consider the sequential 

coarse propagation, i.e. it is assumed to be negligible: 

.c
ideal

iter

N
R

N
=         (4.5) 

where iterN  is the number of correction iterations. 

However, the actual speedup actR  is influenced by the coarse propagations: 
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,
seq

act
Par

T
R

T
=          (4.6)  

where seqT  is the sequential simulation time, ParT  is the total simulation time of the 

Parareal algorithm which includes the time consumed to propagate the fine solution and 

the coarse solution for each iteration. 

4.1.2 Power system model 

The power system model used in this section includes the detailed generator model, 

the non-reheat steam turbine model, the first-order governor model and the IEEE type 1 

exciter model. The models are represented by a system of 15 differential equations: 

( )

( )

2 2

1 1

2 1

/
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where 

( ) ,e d d q q ads aqs qi i i i i i i i
T E i E i X X i   = + + −  

,ad ads d qi i i i
X i E  = +   ,aq aqs q di i i i

X i E  = +   

( ) ( )
2

sin( ) cos( )
,

d t t i a q t t i qsi i i i i
di
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E V R E V X
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X X X = +  

,
f hi i

d adsi i
f hi i

E X
X X

  
  = +

 
 

 .
g ki i

q aqsi i
g ki i

E X
X X

  
  = − +

 
 

 

Here, ,cT  ,xdi
T  xqi

T  are time constants of dummy coils all in s; is  is the generator rotor 

slip; mi
T  and eT  are the mechanical torque and electrical torque; 2i

V  is the rate feedback; 

ti
  is the terminal bus voltage angle in rad; ,fi

  ,hi
  ,gi

  ,ki
  ,fi

R  ,hi
R  ,gi

R  ,ki
R    

,fli
X  ,hli

X  gli
X  and kli

X are respectively field, h-, g-, and k-winding flux linkages, 

reluctances and leakage reactances; ,adi
  ,aqi

  ,dsi
X   ,qsi

X   ,adsi
X   ,aqsi

X   di
F  and qi

F  

are respectively d- and q-axis mutual flux linkages, saturated subtransient reactances, 

saturated mutual subtransient reactances and saturation components; dci
E  is the dummy 
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coil voltage; ,adi
X  aR  and li

X  are the mutual synchronous reactance, armature resistance 

and leakage reactance. 

The above-mentioned algebraic equations are substituted into the system of 

differential equations in (4.7) so that all differential equations are functions of state 

variables and terminal bus voltage magnitudes and angles. Thus, the terminal bus voltage 

phasors are the inputs in the system and are used to connect the algebraic solver that 

performs power system network calculations with the differential solver that calculates the 

states of the system. 

The resulting model can be described with the following nonlinear system: 

( ), =


=

x f x u

y x
       (4.8) 

where  

( ) ,
T

t=u θ V  

( )2 ,sv m fd R f h g k dc ads aqs=x P T E V V δ ω ψ ψ ψ ψ E X X   

R ,nx  R ,nu  R ,my  14 ,gn N=  2 .gm N=  

Based on the model in (4.7) the following hybrid system model of the adaptive 

model reduction without system partitioning is created: 

( )
0

ˆ ,

ˆ ˆ

  
  =

   +  + 


=

f x u
x

A x B u x

y x

    (4.9) 
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The model in (4.9) is similar to the one in (2.16) with the addition of the control 

matrix B̂  representing the connection between the generator states and the generator 

terminal bus voltage magnitudes and angles.  

4.1.3 Case study 

The adaptive approach is applied to the coarse solver of the master-workers 

Parareal method and compared with the original coarse solver. The test is performed on the 

large-scale 327-machine 2383-bus Polish system. A study area is specified in the system. 

The study area consists of 29 buses and 8 generators. The external area is set to be the rest 

of the system that has 319 generators. The study area and the external area are connected 

by three tie-lines as shown in Figure 4.2. 

A case study is performed to find the largest disturbance in the system. The critical 

clearing time for a three-phase short-circuit fault at every bus in the study area has been 

found and compared. Bus 2274 has the largest CCT of 0.4 seconds (24 cycles) and the 

three-phase short-circuit at this bus is selected as the largest disturbance. In another case 

study, all generator angle deviations have been calculated and ranked. Generator 2197 has 

the largest angle deviation and is used as a reference to compare the adaptive approach 

with the original system. The results of simulations are shown in Figure 4.3 and Figure 4.4. 

It can be seen from Figure 4.3 and Figure 4.4 that the adaptive approach maintains the same 

accuracy.  

As stated previously, the main contributing factor to the time performance of the 

Parareal method is the number of coarse correction iterations. Hence, the parameters of the  
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Figure 4.2.  Study area of the Polish system. 

 

adaptive approach are selected to maintain the same number of correction iterations. The 

admittance threshold is set to 0.1 p.u. which corresponds to linearization of nonlinear 

functions of 281 out of 327 generators. The angle deviation threshold max  is set to five 

times the coarse correction threshold:  0.01 5 0.05 =  rad. Both the original and the 

adaptive coarse solver have the same number of iterations that are shown in Figure 4.5. 

Parareal simulation is performed using MATLAB on 16 cores of a 2.6-Ghz Intel 

Xeon E5-2650 processor with the following settings: simulation length of 8 seconds; time 

window length of 0.32 seconds; 25 time windows; coarse step size of 0.02 seconds; 16 

coarse intervals per window; fine step size of 0.002 seconds; 10 fine intervals per coarse 

interval. 
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Figure 4.3.  Rotor angle of generator 2197 calculated with the original coarse solver. 
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Figure 4.4.  Rotor angle of generator 2197 calculated with the adaptive coarse solver. 
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The number of coarse intervals is set to 16, equal to the number of worker 

processors used in the simulation. If the number of coarse intervals is less than the number 

of worker processors, then some of the computing power will not be utilized. Conversely, 

if the number of coarse intervals is more than the number of worker processors, some of 

the processors will be overtasked while others undertasked. Thus, as may be expected, the 

optimal number of coarse intervals for every time window interval is equal to the number 

of worker processors used in the parallel computing. 

The speed performance comparison is given in Table 4.1. The master-workers 

Parareal method with adaptive model reduction is 47.5% faster than the simulation of the 

original system and 25% faster than the Parareal simulation with the original coarse solver. 

4.2 Distributed Algorithm 

4.2.1 Parareal algorithm 

At the beginning of the distributed Parareal algorithm processor 0 calculates the 

initial coarse solution for the first coarse interval: 

0 0
1 0( ),TC=U U        (4.10) 

Processor 0 then sends the coarse solution to processor 1 and starts the fine propagation: 

1 0
1 0( ),tF=u U        (4.11)  

As the fine solution for the first interval is identical to the sequentially propagated solution 

and no correction is required, the coarse solution for the first interval is equal to the fine 
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Figure 4.5.  Number of correction iterations per window of Parareal simulation. 

 

Table 4.1.  Comparison of Master-Workers Parareal Simulation Time 

System Simulation Time (seconds) 

Original simulation 40 

Parareal simulation with original coarse solver 28 

Parareal simulation with adaptive coarse solver 21 
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solution: 1 1
1 1=U u  . The solution is sent to processor 1. The coarse propagation continues 

as processor id receives the coarse solution from processor id-1, calculates the coarse 

solution for the next interval: 

0 0
1 ( ),id T idC+ =U U           (4.12)  

and sends it to processor id+1. 

After the last processor finishes calculations and the initial coarse propagation is 

complete, the main part of the distributed algorithm starts. Processor id receives the coarse 

solution form processor id-1 obtained during the previous iteration, starts the fine 

propagation: 

1
1 ( ).k k

id t idF
−

+ =u U           (4.13) 

By this time processor id-1 finishes the current iteration, and processor id receives the new 

coarse solution from processor id-1 and propagates the coarse solution: 

1 ( ),k k
id T idC+ =U U           (4.14)  

The new coarse solution is corrected based on the fine solution from the current iteration 

and the coarse solution from the previous iteration: 

1
1 1 1 1,k k k k

id id id id
−

+ + + += + +U U u U       (4.15)  

At any point if the coarse solution at interval id converges, the corresponding 

processor terminates operations and the calculations continue with the processors 

corresponding to the later coarse time intervals (id+1 to cN ). 



 

56 

 

4.2.2 Non-iterative ZIP load modelling 

The power system model used in this section is similar to (4.7) except the additional 

ZIP loads added to the model compared to the constant impedance loads used in the model 

from section 4.1.  

In the ZIP load model, the active power and reactive power are represented by 3 

components: constant impedance (Z), constant current (I), and constant power (P): 

 

2
1 2 3 2

,
L Lo o

L L L Lo
L Lo o

P P
P a P a V a V

V V

  
  = + +

   
   

   (4.16) 

2
1 2 3 2

,
L Lo o

L L L Lo
L Lo o

Q Q
Q b P b V b V

V V

  
  = + +

   
   

   (4.17) 

where ,Lo
V  ,Lo

P  Lo
Q  are respectively the load bus voltage magnitude, active power, and 

reactive power at operating condition (equilibrium point); 1 2 3 1,a a a+ + =  1a  , 2a , 3a  are 

respectively the fractions of constant power, constant current and constant impedance 

component of the active power; 1 2 3 1,b b b+ + =  1b , 2b , 3b  are respectively the fractions 

of constant power, constant current and constant impedance component of the reactive 

power; LV  is the load bus voltage magnitude. 

Active and reactive power are components of the complex power of the load: 

.L L LS P jQ= +        (4.18) 

The current consumed by the load can be calculated as:  
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*

.L
L

L

S
I

V

 
=  
 

     (4.19) 

where LV  is the load bus voltage phasor. 

For the case of constant impedance load model when 1 2 1 2 0a a b b= = = =  and 

3 3 1,a b= =  the load can be represented by the load admittance: 

2
.

L Lo o
L

Lo

P jQ
Y

V

−
=          (4.20) 

Load admittance LY  depends only on the initial conditions and can be absorbed 

into the network admittance matrix. In general, the load can be represented by a Norton 

equivalent as shown in Figure 4.6. 

Load current injection can then be calculated as: 

.l L L LI V Y I= −        (4.21)  

If both the active power and reactive power load components are modeled as 

constant impedance loads, the load current injections lI  is equal to zero. For cases of 

constant power and constant current loads, the value lI  is zero only at the operating point. 

If the system is disturbed and moves away from the initial operating point, lI  changes from 

zero to a new value. The new value is the function of the load bus voltage. In turn, however, 

the load bus voltage is a function of the current injection. Thus, lI  has to be calculated 

iteratively: 1) calculate the load current injection, 2) solve the system of linear equations 

 =Y V I  (where n nR Y  is the complex network admittance matrix, V is the complex 

vector of bus voltages, I is the complex vector of bus current injections, n is the number of 
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buses) to get a new value of the load bus voltage, then 3) calculate the load current injection 

again and continue until convergence is achieved. 

Iterative solution is time consuming because it takes substantial time to solve the 

system of linear equations  =Y V I  for a large system. To avoid iterative solution, the bus 

current injection can be calculated by creating ‘dummy’ state variables [48] for the active 

and reactive components of the bus current injection: 

Re( )

Im( )

L d d lr r

L d d li i

T I I I

T I I I

 = − +


= − +

            (4.22)  

The bus current injection can be obtained by combining active and reactive 

components in a complex form: 

.d d dr i
I I jI= +         (4.23)  

Over time, dI  converges to the correct value of lI . 

4.2.3 Case study 

The adaptive model reduction is used in the coarse solver of the distributed Parareal 

in time method. It is tested on the large-scale 5617-machine 70285-bus Eastern 

Interconnection (EI) system. A study area is defined to be the Entergy Texas area of the EI 

system, which consists of 421 buses and 18 generators. The external area is the rest of the 

system which has 5599 generators. The study area and the external area are connected by 

six tie-lines. The study area is shown in Fig. 3. Green circles represent generation buses 

and red circles represent buses on the boundary between the study and the external area.  
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Figure 4.6.  Load Norton equivalent. 
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Figure 4.7.  Entergy Texas study area. 
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A typical 4-cycle fault is created on bus 105 inside the study area. Generator 210 is 

electrically the closest generator to the fault location and is used to demonstrate the Parareal 

algorithm with the adaptive coarse solver. The results of simulations are shown in Figure 

4.8. The adaptive coarse solution successfully converges to the trajectory of the original 

system simulation.  

One of the main contributing factors to the time performance of the Parareal method 

is the number of coarse correction iterations. The parameters of the adaptive approach are 

selected in such a way as to maintain the same number of correction iterations. The 

admittance threshold is set to 0.01 p.u. The angle deviation threshold max  is set to five 

times the coarse correction threshold: 0.01 5 0.05 =  rad. Both the original and the 

adaptive coarse solver have the same number of iterations that is equal to 8.  

Parareal simulation is performed using Python in high-performance computing 

environment with 512 MPI (message passing interface) processors and the following 

settings: simulation length of 10.24 seconds; coarse step size of 0.02 seconds; fine step size 

of 0.005 seconds; 4 fine intervals per coarse interval. 

The speed performance comparison is given in Table 4.2. The distributed Parareal 

method with adaptive coarse solver is 98.3% faster than the simulation of the original 

system producing the speedup of 59 times and 43.7% faster than the Parareal simulation 

with the original coarse solver. 

4.3 Conclusions 

In this chapter master-workers and distributed Parareal algorithms with the adaptive 

approach has been successfully tested on the large-scale Polish and Eastern Interconnection 
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systems. It has been demonstrated that application of the adaptive model reduction can 

increase the speed of the coarse solver and reduce the total simulation time of Parareal 

method. It maintains the same number of correction iterations while performing each 

iteration faster. Thus, the adaptive approach can provide promising increase in simulation 

speed for power system transient stability studies.  
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Figure 4.8.  Rotor angle of generator 210 following the fault. 

 

Table 4.2.  Comparison of Distributed Parareal Simulation Time 

System Simulation Time (seconds) 

Original simulation 3193.0 

Parareal simulation with original coarse solver 96.1 

Parareal simulation with adaptive coarse solver 54.1 
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CHAPTER FIVE  

INTEGRATION OF TENSOR DECOMPOSITION TO ADAPTIVE 

MODEL REDUCTION 

 

This chapter proposes to use tensor decomposition to represent the Taylor series 

expansion of a power system dynamic model in order to further improve the speed and 

accuracy of the adaptive model reduction described in chapter 2. 

5.1 Power System Model Approximation 

In this chapter, each generator of the power system is represented by a two-axis 

model with a non-reheat steam turbine model, a first-order governor model and an IEEE 

type 1 exciter model as described in section 2.4. The system: 

( ) =


=

x f x

y x
     (5.1) 

can be approximated by Taylor series expansion as shown below in the matrix formulation: 

1 2 3

0

( ) ( ) =  +   +    +


=  +

x A x A x x A x x x

y x x
  (5.2) 

where 
in n

i R A  is the matrix of partial derivatives of the functions in (5.1) of order i; 

“ ” denotes Kronecker product. 

In system (5.2) the dimensions of matrices iA  grow exponentially with the order 

increase, which in turn increases the computational burden and can make the approximated 

model in (5.2) even slower than the original model in (5.1). To address this, we propose to 
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represent matrices iA  as tensors and apply tensor decomposition to decrease the size of 

the matrices and improve the speed of computation. 

5.2 Tensor Representation 

A tensor is a multidimensional array that is defined as 1 2 ,
n n n nk dR
    

  

where kn  is the size in dimension k, d is the number of dimensions. A matrix can be 

converted to a tensor as shown in the example in Figure 5.1. 

Matrices 2 3, ,A A  in (2) can be converted to tensors 2 3, , ,  where 

1 2 3
2 ,

n n n
R

 
  1 2 3 4

3 ,
n n n n

R
  

  1 2 3 4 .n n n n n= = = =  Kronecker product in (5.2) can 

be represented by the tensor dimension multiplication [49]. A k-dimension product of a 

tensor and a matrix is a tensor of which the entries are calculated as follows [50]: 

1 2 1 1 1 2
1

( ) ,

nk

k j j j ij j j j j j ijk k d k d k
jk

X X
− +

=

 =    (5.3)  

where 1 2 1 1 ,
n n n m n nk k d

k X R
      − +   m nkX R


 . 

 

n
1

n2
n3n2 n2

n
1

 

Figure 5.1.  Representation of a matrix by a third-order tensor. 
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The system (5.2) can be rewritten as: 

1 2 2 3 3 2 3 4

0

T T T T T =  +     +       +


=  +

x A x x x x x x

y x x
          (5.4)  

5.3 Tensor Decomposition 

A tensor can be approximated by the sum of a finite number of rank-one tensors 

using the CANDECOMP/PARAFAC (CP) decomposition [51]. A dth-order tensor is rank 

one if it can be written as the outer product of d vectors:  

(1) (2) ( ) ( ) ,k da a a a=            (5.5)  

where 
( ) nk ka R  is the kth rank-one component.  

CP tensor decomposition can be written as 

(1) (2) ( )

1

,
r

d
i i i

i

a a a

=

         (5.6) 

where r is the rank of the decomposed tensor. An example of CP tensor decomposition is 

illustrated in Figure. 5.2. 

 

  + +ꞏꞏꞏ+ 
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(3) ar
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(1) ar
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Figure 5.2.  CP decomposition of a third-order tensor. 
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Components in (5.6) which correspond to the same dimension can be grouped into 

a factor matrix: 

( ) ( )( ) ( )
1 2[ , , , ],
k kk k

ra a a=A        (5.7) 

where 
( ) .

n rk kR


A  

Factor matrices can be used in one-dimension matricization of a tensor to 

reconstruct the original matrix [50]: 

 

 

( )(1) ( ) (3) (2) ,
T

dA A A A A    (5.8) 

where “ ” denotes Khatri-Rao product.  

Tensors in (5.4) are matricized with the help of (5.8) and the following system is 

obtained: 

( )

( )

(1) (3) (2)
1 2 2 2

(1) (4) (3) (2)
3 3 3 3

0

T
T T

T
T T T


 =  +  



+    +


=  +



x A x A x A x A

A x A x A x A

y x x

  (5.9)  

5.4 Proposed Hybrid Model Reduction 

The proposed model reduction approach is based on partitioning the system into 

two areas: the study area and the external area. Generators of the study area and generators 

of the external area electrically close to the boundary between the areas are described by 

the original nonlinear equations. The model of the rest of generators of the external area is 



 

67 

 

reduced by approximating it with the Taylor expansion series up to a certain order, which 

is represented through the tensor decomposition. The resulting hybrid system is described 

by the following expression: 

( )

( )

(1) (3) (2)
1 2 2 2

(1) (4) (3) (2)
3 3 3 3

0

0

ˆ( )

T
T T

T
T T T

  
 +    

  
 =  

+    +  
   −  


=  +

A x A x A x A

x
A x A x A x A

f x x

y x x

  (5.10) 

5.5 Adaptive Switching Algorithm 

As the requirements for the details of the simulated system depend on the severity 

of a contingency this work proposes the following adaptive algorithm: 1) the original 

system (5.1) is used during fault condition; 2) the hybrid system (5.10) is used in post-fault 

condition when system disturbance is large; 3) the Taylor series expansion based system 

(5.9) is used when system disturbance is small. The adaptive algorithm is shown in  

Figure 5.3 

The size of the disturbance is determined by the maximum rotor angle deviation of 

all generators of the study area. A generator with large inertia located electrically far away 

from the boundary between the study area and the external area is selected as the reference 

generator.  

During the simulation the algorithm checks if there is a large change in the system  
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Figure 5.3.  Adaptive switching algorithm. 
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load level. If the load level changes by more than 10% the tensor decomposition matrices 

are chosen from the set of precalculated ones to correspond to the new load level. This 

allows the algorithm to maintain the accuracy after a large operating condition change. 

5.6 Case Studies 

5.6.1 Temporary bus fault tests 

The proposed approach is tested on the 140-bus 48-machine NPCC system. The 

study area is defined as New England part of the system with 36 buses and 9 generators. 

The external area is defined as the rest of the system with 104 buses and 39 generators.  

The threshold for the column norm of the admittance matrix that determines if a 

generator electrically close to the boundary between the study area and the external area is 

set to 1 p.u. based on the case study in chapter 2. This corresponds to the approximation of 

34 out of 48 generators with the Taylor expansion series. The expansion is performed up 

to the third order and converted to the tensor format. Tensor decomposition is computed 

with rank 27 for the second term of the Taylor expansion and with rank 29 for the third 

one. 

The ranks are selected in a case study where the rank is increased from 1 until the 

increase in rank does not improve the accuracy of the approach in terms of rotor angle by 

more than 0.1 degrees. Another case study is conducted to set the threshold for the 

maximum rotor angle deviation that controls the switching between the tensor 

decomposition only model and the hybrid model. The threshold is increased from 1 degree 
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until the largest rotor angle error for all generators in the study area is below 5 degrees. 

The threshold is set to 26 degrees.  

The simulations are performed in MATLAB R2015a on a computer with the 4-GHz 

AMD FX-8350 processor. The simulation length is set to 16 seconds and the integration 

time step is set to 0.01 seconds. 

Based on a case study in chapter 2 the generator with the largest rotor angle error 

(generator 23) following a fault at the bus (bus 3) with the longest CCT is used to compare 

the proposed approach with the traditional linear model reduction approach. The results of 

the comparison are shown in Figure. 5.4.  
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Figure 5.4.  Rotor angle of generator 23 following the fault. 
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The linear model reduction generates a large error while the trajectory simulated 

with the proposed adaptive model reduction closely follows the trajectory obtained from 

the original system simulation.  

For quantitative comparison the RMS error of the rotor angle is calculated. The 

RMS error of the linear model reduction is 22.4 degrees while the RMS error of the 

proposed adaptive model reduction is 4.3 degrees. Thus, the proposed approach reduces 

the RMS error by 81%.  

In addition to accuracy the proposed approach is tested in terms of speed 

performance. The comparison of the simulation time of the original system, the system 

simulated with the linear model reduction and the proposed adaptive model reduction are 

shown in Table 5.1. The proposed approach reduces the simulation time by 76% compare 

to the original system simulation. The speed performance of the adaptive model reduction 

is identical to the traditional linear model reduction approach while the accuracy of the 

simulation is substantially higher.  

5.6.2 Test of operating condition change 

To test how well the proposed approach performs at different operating conditions, 

the load level is changed at 5% increments in both heavier and lighter load directions. The 

fault is set to be at the bus 3 with the duration equal to CCT. The results of the simulations 

are shown in Table 5.2. 

Table 5.2 shows that the accuracy of the proposed approach in terms of the rotor 

angle remains within 5 degrees at different loading levels. When the load level changes by 
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Table 5.1.  Comparison of Tensor Decomposition Simulation Time 

System Simulation Time (seconds) 

Original simulation 3.7 

With linear model reduction 0.9 

With adaptive model reduction 0.9 

 

Table 5.2.  Comparison of Rotor Angle RMS Error at Different Load Levels 

Load level (%) CCT (s) 

Load level of tensor decomposition calculation 

120 % 100 % 80 % 

120 0.19 4.1 

 

 

115 0.23 3.6 

110 0.27 4.9 

105 0.33 

 

4.9 

100 0.39 4.3 

95 0.44 3.5 

90 0.51 

 

3.5 

85 0.59 3.6 

80 0.70 4.9 
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more than 10% the tensor decomposition matrices are changed to the ones obtained from 

the Taylor series expansion calculated around the equilibrium point with larger or lower 

load level based on the direction of load change. Thus, the adaptive model reduction is 

capable of accurate system representation at different operating conditions.  

5.6 Conclusions 

 This chapter has proposed a tensor decomposition based adaptive model reduction 

approach that further improves speed of the power system simulation while maintaining a 

better level of accuracy. The approaches is tested during different load levels and is capable 

of accurate representation of the original system when there is a change in operating 

condition. 
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CHAPTER SIX  

CONCLUSIONS 

 

6.1 Contributions 

This dissertation has proposed a new adaptive nonlinear model reduction approach. 

The major contributions of this works are in the following aspects: 

1. Hybrid model reduction. In the proposed hybrid model reduction all generators 

inside the study area and the generators inside the external area that contribute 

to the dynamics of the study area the most are described by the original 

nonlinear models, the rest of generators inside the external area are represented 

by the linearized models. The hybrid reduced model serves as a compromise 

between accuracy and speed of simulation. 

2. Column norms of the admittance matrix. The columns norms of the reduced 

admittance matrix are proposed to be used as a criterion to judge how close 

electrically each generator inside the external area is to the boundary between 

the study area and the external area and, hence, to determine the list of generator 

models to be linearized in the hybrid reduced model. 

3. Unpartitioned model reduction. Unlike most of existing model reduction 

methods that need to partition the whole power network into a study area with 

detailed models and an external area with reduced models, the new approach 

can be applied to the whole system without network partitioning. 
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4. Adaptive switching algorithm. The proposed adaptive model reduction enables 

adaptive switching among the original detailed model, the linear reduced model 

and the hybrid reduced model. The original nonlinear model is used during 

faults when the highest accuracy is required; the fastest linear reduced model is 

used when the deviation of all system states is within the threshold; the hybrid 

model, as a compromise between speed and accuracy, is used when deviation 

of system states becomes larger than the threshold. 

5. Generator rotor angle deviation. The largest rotor angle deviation of the 

generators inside the study area is proposed to be used as a threshold to define 

the switching instance between the linear reduced model and the hybrid reduced 

model.  

6. Multiple study subareas. The adaptive model reduction is used in the 

parallelization in space method where the study area is proposed to be divided 

into multiple subareas that can be simulated in parallel.  

7. Adaptive coarse solver. The adaptive model reduction is proposed to be used as 

a coarse solver in the parallelization in time Parareal method implemented as 

the master-workers algorithm and as the distributed algorithm.  

8. Tensor decomposition. The tensor decomposition is proposed to be integrated 

into the adaptive model reduction to further improve speed and accuracy of the 

approach. Taylor series expansion of the system is calculated around multiple 

equilibria corresponding to different load levels. The terms of Taylor series 
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expansion are converted to the tensor formant and reduced into smaller matrices 

with the help of tensor decomposition. 

6.2 Future Work 

 The following are the potential directions of the future work: 

1. Adaptive model reduction based on the nonlinear modal decomposition, where 

the local modes of the generators inside the external area are eliminated and the 

local modes of the study area and the inter-area modes of oscillations between 

the generators inside the study area and the external area are preserved.  

2. Hybrid Parareal algorithm, where the coarse solution inside a node of a high-

performance computing system is propagated and corrected using the master-

workers algorithm, and the coarse propagation between nodes is performed 

using the distributed algorithm. 
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