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ABSTRACT

The dissertation proposes a new adaptive approach to power system model
reduction for fast and accurate time-domain simulation. This new approach is a
compromise between linear model reduction for faster simulation and nonlinear model
reduction for better accuracy. During the simulation period, the approach adaptively
switches among detailed and linearly or nonlinearly reduced models based on variations of
the system state: it employs unreduced models for the fault-on period, uses weighted
column norms of the admittance matrix to decide which functions are to be linearized in
power system differential-algebraic equations for large changes of the state, and adopts a
linearly reduced model for small changes of the state.

Two versions of the adaptive model reduction approach are introduced. The first
version uses traditional power system partitioning where the model reduction is applied to
a defined large external area in a power system and the other area that is defined as the
study area keeps full detailed models. The second version applies the adaptive model
reduction to the whole system.

Speed improvement techniques using parallelization are investigated. The first
technique uses parallelism in space; it further divides the study area into subareas that can
be simulated in parallel. The second technique uses parallelism in time; it integrates the

adaptive model reduction into the coarse solver of the Parareal method.



In addition, the dissertation proposes integration of tensor decomposition into the
adaptive model reduction approach to further improve the speed and accuracy of
simulation.

All proposed approaches are validated by comprehensive case studies on the 140-
bus 48-machine Northeast Power Coordinating Council system, 2383-bus 327-machine
Polish system, and 5617-machine 70285-bus Eastern Interconnection system using

different dynamic models.

Vi
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CHAPTER ONE

INTRODUCTION AND BACKGROUND INFORMATION

1.1 Introduction

Power system simulation is very important for grid operations and planning at
electricity utilities. It can assess dynamic security under a certain operating condition of
the studied power system following a given contingency such as loss of a transmission line
or generator unit. Essentially, power system simulation is to obtain a time-series trajectory
of the system state for a specified simulation window by solving the initial value problem
of a set of nonlinear differential-algebraic equations co-determined by the mathematical
model of the whole system, the operating condition and the contingency. Nowadays, the
fast growth in electricity demand and a relatively slow construction of new transmission
infrastructure are pushing power transmission systems to be operated closer to their
stability limits and motivating the transition of power system simulation from the offline

planning stage to the real-time operation environment.

1.2 Model Reduction

One way to increase the speed of simulation of a complex power grid is to conduct
network partitioning and then model reduction. For example, a traditional approach defines
a study area, which is an important small part of the system for dynamic security

assessment, considering all the details, and reduces the model of the rest of the system, i.e.



the external area. In practice, an additional buffer zone is often defined in between with
moderate reduction to connect the study and the external areas [1]. The methods for model
reduction on the external area can be divided into two main groups: the ones that preserve
the structure of a power system and the ones that use mathematical transformations from

original states to nonphysical states that are subsequently reduced.

1.2.1 Coherency based model reduction methods

The most widely used methods from the first group are coherency-based methods
[2]-[11], which were originally developed for power system model reduction and conduct
the following steps: coherency identification, aggregation of coherent generators, and
network reduction. After the first step, the generators that oscillate together following a
disturbance are included into one group. The groups of coherent generators are then
aggregated into individual equivalent generators connected with each other by equivalent
branches and with the study area by a reduced system network. This creates a unique
boundary between the external area and the study area and does not allow arbitrary division
between areas. In addition, if the topology of the original system changes, it can affect the
coherency and consequently the split between the study area and the generator grouping of
the external area. This can change the boundary in between. Thus, the grouping of
generators based on coherency has an inherent limitation on the way a system can be

partitioned.



1.2.2 Model reduction methods from automatic control field

The second group of methods does not have that limitation as the states are
transformed into a new state space. Thus, the system can be partitioned in any way. These
methods came from the control field of engineering. In the most used methods from this
category, the external area model is first linearized and then reduced using balanced
truncation [12]-[16] or Krylov subspace methods [17]-[20]. The linearization of the model
gives acceptably accurate results when concerned disturbances are small but once the size
of the disturbance increases the linearized model cannot guarantee an accurate
representation of the original part of the system. To improve the accuracy of large-
disturbance simulation, nonlinear model reduction methods can be used. References
[21]-[22] propose using empirical controllability and observability covariance matrices
that contain nonlinear behavior of the system around the operating condition. In [23]-[24]
the authors try to generalize and extend the linear balance truncation to nonlinear systems.
A proper orthogonal decomposition method is described in [25], whose error and
computational complexity are analyzed. As shown in [25]-[26], application of nonlinear
model reduction cannot substantially decrease computational time as compared to the
original model. In addition, some methods require training simulation data to create a
reduced model, which cannot guarantee adequate performance during all possible
disturbances. If a disturbance is very different from that with the training set, the model

reduction error can substantially increase [27].



1.3 Parareal Method

In the existing literature, three directions of computational acceleration by
parallelism for power system simulation have been explored. They are spatial [28]-[29],
temporal [30]-[32] and across solution methods [33]-[34]. Parareal is a parallel computing
algorithm based on the decomposition of the temporal domain into separate (coarse)
subintervals. The algorithm is based on prediction-correction iterations between a
sequential (coarse, approximate, fast), and concurrent (fine, accurate) integrators. The
overall speedup is controlled by the performance of the coarse solver and, in the ideal case,
it scales as the ratio of the number of coarse intervals over the number of iterations.
However, for nonlinear power system problems, the time spent on propagating the coarse
solution is not negligible [32], and it may take a large portion of the total consumed time.
To improve the coarse solver performance, [31] used lower order generator model for the

coarse solver, but the improvement was marginal.

1.4 Tensor Decomposition

Application of tensor decomposition in model reduction is a relatively new and
growing scope of research [35-37]. The idea of the approach is to convert a large matrix
into a tensor (represented by a multidimensional array) and apply tensor decomposition to
represent this tensor as a set of small matrices, which can be converted back to the original
matrix formulation with a sufficiently small error. Operations with these small matrices
require less memory and computing power compared to the original large matrix and can

increase the computational speed. In dynamic system simulation, the tensor decomposition



can be used to reduce the calculation time of higher terms of Taylor series expansion [38-

39].

1.5 Contribution of this Work

Compared to the existing work, this dissertation proposes a new adaptive model
reduction approach, which is a compromise between linear model reduction and nonlinear
model reduction in terms of accuracy and speed of time-domain simulation using the
reduced model. A comprehensive study is also presented to compare this adaptive model
reduction approach with the linear model reduction approach and the coherency-based
model reduction approach. During the simulation period, the approach adaptively switches
among detailed and linearly or nonlinearly reduced models based on variations of the
system state: it employs unreduced models for the fault-on period, uses weighted column
norms of the admittance matrix to decide which functions need to be linearized in the power
system model for large changes of the state, and adopts a linearly reduced model for small
changes of the state.

The version of the adaptive approach described above uses traditional topological
power system partitioning with the study area and the external area. This partitioning
creates an additional error that can affect the performance of the model reduction. To
address the partitioning error, the second version of the adaptive approach is proposed
where the model reduction is performed to the whole system.

The main contributions of this work are in the following aspects:



a new model reduction approach is proposed that enables adaptive switching
among the detailed model, the linear reduced model and the hybrid reduced
model having only certain functions linearized,

unlike most of existing model reduction methods that need to partition the
whole power network into a study area with detailed models and external area
with reduced models, the new approach can be applied to either a partitioned
external area only or the whole system without network partitioning;
application of power system model reduction of the system with multiple study
areas that can be simulated in parallel;

application of adaptive model reduction as the coarse solver of the Parareal
method;

integration of tensor decomposition to the adaptive model reduction.



As it was mentioned in chapter one, in power system model reduction the system
is divided into two areas: 1) the study area, which is the main interest of an investigator,
where all details are preserved, and all disturbances are originated from; 2) the external

area, which can be simplified and reduced. The partitioned power system is shown in

CHAPTER TWO

ADAPTIVE NONLINEAR MODEL REDUCTION

2.1 Power System Partitioning

Figure 2.1.
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Figure 2.1. Power system partitioning.




The study area of the original system is connected to the external area by several

tie-lines. For the study area, a tie-line j is treated as a simple fictitious generator with the
internal voltage phasor equal to a voltage phasor vjeze‘j of the corresponding boundary

bus in the external area and with the armature resistance and transient reactance equal to

the resistance and reactance of a tie-line j. Likewise for the external area, a tie-line j is
treated as a generator with the internal voltage phasor equal to a voltage phasor V fzeﬁ of

the corresponding boundary bus in the study area. During each iteration of the system
simulation these fictitious generators are treated as constant voltage sources and represent
the current injections from one area to the other area. Therefore, voltage magnitudes and
voltage angles of boundary buses in one area are the inputs to the model of the other area.
Atevery iteration, each area is calculated separately, then the boundary bus voltage phasors
of both areas are recalculated, and their values are sent as inputs to the corresponding area
to perform the next iteration. As constant voltage sources the fictitious generators do not
have inertias or contribute to the dynamics of each area as a component of the differential
equations of generators inside the corresponding area.

In this chapter, each generator is represented by a detailed two-axis model with a
non-reheat steam turbine model, a first-order governor model and an IEEE type 1 exciter

model [40], as described be these nine differential equations:



8i = Wpase ((Di _1)
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Np
+ZVJ I:GU Sln(6| —GJ)— B” COS(Si —GJ)],

N N
9 9
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Here, &; and o; are the rotor angle and speed of generator i in rad and p.u., respectively;

Wpase =1207 rad/s is the base speed; Ry, Py, and P are the mechanical power,



governor output power and reference power all in p.u.; R; is the speed regulation factor;

By Eqo Xao Xgo X

L X g

i and Iqi are respectively the d- and g-axis internal

G’

voltages, synchronous reactances, transient reactances and currents all in p.u.; VRi , K A

Ry,

i Kro Efgir Vet Vi Kg» Ag and Bg, are the voltage regulator input, amplifier

gain, rate feedback, feedback gain, field voltage, reference voltage, terminal bus voltage,

exciter gain and exciter saturation coefficients all in p.u.; time constants Hj, Te,, Tgy,

Tao T Tg, Tgg and Tgo are respectively the generator inertia, turbine charging time,

governor time constant, amplifier time constant, feedback time constant, exciter time
constant, g-axis open circuit time constant and d-axis open circuit time constant all in s;

D;, is the damping coefficient in p.u.; Ng is the number of generators; Ny, is the number
of boundary buses; Gj; and Bj; are conductance and susceptance between generator i and
generator j. in p.u.; Vj is the voltage magnitude at boundary bus j in the opposite area in

p.u.; 6; is the voltage angle at boundary bus j in the opposite area in rad.

2.2 Model Reduction

If model reduction is applied to the external area, it is necessary to define state
variables and inputs of the system. Considering that every generator is described by nine
differential equations and every boundary bus has the voltage magnitude and angle as its

parameters, let n=9Ny and m=2N}, respectively denote the numbers of state variables

10



and inputs of the external area, and let the outputs of the system be the state variables of
the system.

Then the system (2.1) can be described as the nonlinear system:

f(x
{x (x,u) 22)
y=X

where

x=(5 Py, Py Vi Ry Ey Ey E m)T, u=( V),

x e R" is the state vector; u e R™ is the input vector; y € R" is the output vector.

2.2.1 Linear model reduction

The system (2.2) can be linearized around an equilibrium point as:

AX = AAX+BAU
{ (2.3)

Ay = CAX
where AX, Au and Ay are the deviation variables of respectively the original states, inputs

and outputs; A eR™" is the matrix of partial derivatives of the functions in (2.1) with

respect to each state variable evaluated at the equilibrium point; B € R™™ is the matrix of

partial derivatives of the functions in (2.1) with respect to each input variable evaluated at

the equilibrium point; Ce R™"

iIs the identity matrix.
The system (2.3) can be reduced using a linear reduction method, for example, the
balanced truncation method [12]. To apply this method Lyapunov equations are solved to

obtain controllability Gramian W, and observability Gramian W, :

11



AW, + W,AT +BBT =0
(2.4)

ATW, +W,A+CTC=0

The Gramians are then used to calculate transformation matrix T and its
inverse T .

Matrix T transforms the states from the original state space to a new balanced state
space: AX =TAX.

In the resulting new balanced system, the states are arranged in a such way that the
first state is the most controllable and the most observable and the last state is the least
controllable and the least observable. Henkel singular values show this relationship:

G > Gy >:+>Cj > >0C_1>0,20, (2.5)

where

o; :\/W=Eii-

Considering the above-mentioned fact, only the first r states can be kept and the

rest can be truncated. H_, norm of the error of balanced truncation is bounded by the

following expression:

||8||OO <2 Z Gj. (2.6)

i=r+l
The transformation matrix and its inverse are recalculated as follows:
T=PT, T=TPT, (2.7)
where P =(1 0) is the identity matrix, the last (n—r) rows of which are deleted.

Thus, the balanced truncated system is represented as follows:

12



AX = TATAX+TBAuU
- (2.8)
Ay =CTAX
The system in (2.8) can be written in a more compact form:
A% = AAX + BAu
- (2.9)
Ay = CAX
where
A=TAT, B=TB, C=cCT,
AcR™, BeRM™M CeR™,

2.2.2 Hybrid model reduction

In this dissertation, a model reduction method is proposed as a hybrid of nonlinear
and linear model reduction techniques. As shown in [41]-[42], the transformation matrices
T and T can be used to reduce the nonlinear system as well. In this case, the system can

be represented as follows:

{)‘( =Tf ('T'X,u) (2.10)

The system in (2.10) has fewer states than the original system but it is still necessary
to compute all nonlinear functions in f. Thus, there is basically no reduction in computation
time. To address this problem, reference [43] suggests eliminating some of the functions.
However, as it is shown in [44] it can create large errors due to the model reduction.

In the proposed hybrid model reduction approach, the functions that have the least

contributions to the dynamics between the external area and a study area are not eliminated

13



but linearized. To evaluate contributions of the functions, let us consider the expressions
for the d-axis current and the g-axis current of generators in the external area as these
expressions have most nonlinearities and are used in 33 % of all differential equations in
(2.2).

Nonlinearities in the expressions are cosine and sine functions and coefficients of
these functions are conductances and susceptances between generators including fictitious
generators representing the boundary between the external area and the study area. These
values are real and imaginary parts of elements of the admittance matrix:

The matrix can be divided into four submatrices:

Y. Y,
Yo1 Yoo

NgxNg . : : : .
where Y} eR 99 s the admittance matrix representing connections between

NpxNp

generators inside the external area; Y,, e R is the admittance matrix representing

. o NpxNg . . ,
connections between fictitious generators; Y = Y1T2 eR P79 s the admittance matrix

representing connections between the generators of the external area and the fictitious
generators.

Thus, column norms of absolute values of elements in matrix Y,; can be used to
determine which function is to be linearized as the norms describe how close electrically
each generator is to the boundary between the external area and a study area.

Column norms are calculated by:

14



(2.13)

The nonlinear functions that correspond to the generators with large column norms
are kept nonlinear, and the nonlinear generator functions with small column norms are

linearized. Thus, the hybrid reduced system can be represented as follows:

. f('T’f(, u)
B f (2.14)

y=Tx
where f; =AAx+BAu+X°, A=PAT, B=PB, AcRMI BRrMO-axm

%0 =Px?, vector f comprises the functions that are kept nonlinear; f, has the linearized

functions; x° is the initial state vector; P is the identity matrix with deleted rows that
correspond to the functions in f; q is the number of nonlinear functions in f.

The system in (2.14) can be rewritten as:

. f('T’)”(,u)

X

AAX +BAU + K° (2.15)
TX

y

2.3 Adaptive Switching Algorithm

Considering that the linearly reduced system gives satisfactory performance during
small disturbances, the duration of a large disturbance is short, and the majority of the time
a system is under small or no disturbance it is reasonable to change the type of the model
reduction of the external system to increase the accuracy and speed of the system

15



simulation. The proposed adaptive algorithm can adaptively change the complexity of the
external area model based on the current condition as shown in Figure. 2.2

During the fault-on period, the original, fully detailed system model is used as the
maximum accuracy of the system model is required and the duration of a fault is limited to
tens of milliseconds, which only slightly increases the simulation time. To obtain the initial
condition of the post-fault simulation the state vector from the last iteration of the fault-on
simulation is multiplied by the transformation matrix. In the post-fault period, when the

angle deviation Ad; of any generator in a study area exceeds a preset threshold A8,y , the

external area is reduced using the hybrid model reduction method, which keeps the balance
between accuracy and speed of simulation when the disturbance is large. In pre-fault and
post-fault periods when all angle deviations are within the threshold, the external area is
reduced using a linear model reduction method. This guarantees that most of the time when
there is no disturbance or variation of the state is very small, the fastest model reduction
method is applied.

To calculate the rotor angle deviation, the generator with the smallest column norm
is used as a reference; i.e., the reference generator is the electrically farthest generator from
a study area and has the least reactions to disturbances in study areas. If the time for a rotor

angle deviation Ag; exceeding threshold, A8, denoted by, ty, is longer than a preset
limit bty & NEW operating condition is obtained and matrices A and B of the linearly

reduced system are recalculated. This action corrects the adaptive algorithm after a large

change of the system state. As the linearization is performed offline and the update is only

16
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necessary when a substantial change of the operating condition occur, the matrix
recalculation does not affect the speed of the algorithm over a long period of time. Thus,

the proposed approach is scalable to deal with large power system models.

2.4 Adaptive Model Reduction of the System without Partitioning

Partitioning the system into the study area and the external area creates a specific
error. The error is caused by the fact that the inputs (boundary bus voltage magnitudes and
boundary bus voltage angles) are calculated at the previous iteration of the simulation, i.e.
the inputs are lagging by one iteration. To eliminate the partitioning error, the second
version of the adaptive approach is proposed. This version is applied to the whole system
that is treated as just one area.

Without the partitioning, there is no need in the concept of fictitious generators
representing boundary buses of the study area and the external area, and the expressions in

(2.1) for the d-axis current and the g-axis current are simplified as:
Ng Ng

Idi = Z]-Eaj [GU COS(Si —Sj)-i- B'J Sin(8i —SJ):|+ Z‘iEéJ I:GU Sin(Si —Sj)— B'J COS(Si —SJ)],
1= 1=
Ng Ng

|qi = Z Eaj [_Gij sin(6i —61')+ Bij COS(Si —81)]4— Z Eéj I:GU COS(6i —Sj)-f- Bij sin(6i —61):|

= j=1
As the single area of the system contains all generators including the generators
from the study area whose dynamics are of the main interests, the transformation and
truncation of the states are not performed, and the performance improvement comes only

from the linearization of nonlinear functions. In the absence of inputs from the boundary
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between the study area and the external area, the control matrix is eliminated from (2.15)

and the system used in the second version of the adaptive approach is simplified as:

~ f(xu)

” =[AAX+>‘<O} (216)

y =X
where

A=PA, A e R(M-aMn
All nonlinear functions representing generators of the study area are contained in

f. The list of linearized functions corresponding to generators of the external area is the
same as in the adaptive approach applied to the partitioned system described above. The
adaptive switching is performed between the system in (2.16) and the simplified version of
the linearized system in (2.3):

{A)’( = AAX
(2.17)

Ay = CAX
As all generators of the system including those of the study area are linearized in
(2.17) the angle deviation threshold Ad,,, Of the adaptive switching algorithm is set to a

small value to enable switching when large oscillations are damped.

2.5 Case Studies

Comprehensive case studies are conducted to compare the proposed adaptive model
reduction approaches with the traditional linear model reduction approach. A realistic
power system model is tested. For the system, the study area is defined and retained with

original, detailed models, and the rest of the system is defined as the external area to be
19



reduced respectively by different approaches. Then, time-domain contingency simulation
using each reduced system model is conducted and compared with the simulation using the
original system model. In addition, the approaches are validated during different post-fault
operating conditions and compared with the traditional coherency-based model reduction

approach.

2.5.1 Temporary bus fault tests

The linear model reduction approach and the adaptive approaches described above
are applied to the NPCC 140-bus 48-generator system shown in Figure 2.3. The study area
is set to be the ISO-NE region having 9 generators. The external area is set to be the rest
of the system, which has 39 generators, 39x9=351 state variables and 39x4=156 nonlinear
functions since the first 5 state variables of each generator is described by linear differential

equations. The external area is connected to the study area by two tie-lines.
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Figure 2.3. Partitioned NPCC system.



The H_, norm of the balanced truncation error is set to be equal to 107°:
10°<2 i oi. (2.18)
i=r+l1

This corresponds to truncating 200 out of 351 state variables. To find the threshold
value of the column norm of the admittance matrix that decides if generator is electrically
close to the boundary, a case study is performed on the system in (2.15). The threshold
decreases with 0.1-p.u. increments from 10 until all rotor angle errors following any of the
contingencies are below 6 degrees. After the case study, the threshold is set as 1 p.u.
Nonlinear functions corresponding to generators with column norms of the admittance
matrix less than 1.0 p.u. are linearized. This corresponds to linearization of 136 out of 156
nonlinear functions of the external area in the case of partitioned system and 136 out of
192 nonlinear functions of the unpartitioned system.

The column norm threshold per unit value in not useful if the proposed approach is
applied to a system with a different base power. To make it more practical, it is converted
to a value in siemens. The NPCC system has the base power of 100 MVA. Setting the base
voltage to the common generator terminal voltage of 20 kV the new thresholds is

calculated:

6
Yy, =1 base _q 100x10 5 =0.255. (2.19)

Visase (20x103)

When the proposed approach is applied to a different system, the threshold is
converted to a per unit value using the new system MVA base and the base voltage of 20
kV.
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Another case study is performed to select the angle deviation threshold A8, for

the adaptive switching algorithm applied to the partitioned system. The threshold is
decreased with 1-degree increments from 180 degrees until all rotor angle errors for all
generators following any of the contingencies are below 6 degrees. After this case study,

Admax 1S set to 67 degrees. The threshold for the adaptive approach applied to the

unpartitioned system is set to 6 degrees to ensure that the rotor angle errors of generators
representing study area are also below 6 degrees.

The simulations are performed in MATLAB R2015a on a computer with a 4-GHz
AMD FX-8350 processor and 8 GB of memory. The duration of the simulation is set to 16
seconds with an integration time step of 0.01 seconds.

To compare the approach performance during a large disturbance, a three-phase
short circuit fault lasting for the critical clearing time (CCT) is created separately at every
bus of the study area. CCT is calculated using the original system, CCTs of the adaptively
reduced systems are the same as the ones of the original system, CCTs of the linearly
reduced system are smaller or equal to the ones of the original system. The errors of all
outputs (state variables) of all generators in the study area are analyzed and the rotor angle
state variable has the largest error for each of the generators. For every fault, the generator
with the largest error of the rotor angle is found and used to compare the approaches. The
results of comparison of rotor angle root mean square errors of the linear model reduction
and the adaptive approaches are shown in Table 2.1. From Table 2.1, the linear model

reduction approach cannot guarantee satisfactory performance during large disturbances
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Table 2.1. Comparison of RMS Error of Rotor Angle

Bus Generator CCT Partitioned Unpartitioned
Linear Adaptive Adaptive
1 26 0.13 8.85 1.33 1.06
2 26 0.13 3.10 0.86 0.57
3 23 0.39 25.94 5.51 5.12
4 26 0.12 1.50 0.75 0.41
5 23 0.09 0.59 0.48 0.29
6 23 0.08 0.72 0.60 0.30
7 26 0.05 0.28 0.28 0.47
8 23 0.05 4.87 4.41 0.29
9 26 0.06 3.26 2.83 0.29
10 26 0.13 10.49 2.90 1.26
11 23 0.19 8.81 1.40 1.46
12 23 0.1 1.89 0.98 0.44
13 23 0.12 2.57 0.97 0.49
14 23 0.13 2.83 1.00 0.51
15 23 0.07 0.38 0.38 0.33
16 23 0.05 0.87 0.78 0.31
17 26 0.03 0.30 0.30 0.59
18 23 0.04 0.33 0.33 0.66
19 26 0.03 0.11 0.11 0.95
20 26 0.03 0.27 0.27 1.05
21 23 0.22 12.97 1.65 1.89
22 23 0.19 6.55 1.32 1.06
23 23 0.20 3.83 1.07 0.71
24 23 0.18 5.66 1.46 0.91
25 23 0.22 20.45 2.22 3.87
26 26 0.03 0.35 0.34 0.86
27 23 0.10 0.29 0.27 0.46
28 26 0.12 0.28 0.30 0.42
29 23 0.06 3.15 3.48 0.43
30 23 0.06 1.21 1.35 0.38
31 23 0.08 0.40 0.43 0.25
32 26 0.11 1.25 0.79 0.42
33 26 0.11 1.05 0.65 0.39
34 23 0.15 3.79 0.89 0.63
35 26 0.14 3.14 0.82 0.52
36 23 0.21 4.03 0.92 0.61
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generating errors of more than 25 degrees while the proposed adaptive approach keeps the
error for all disturbances within 6 degrees both for the case with the system partitioned into
a study area and external area and the case with only one area representing the whole
system.

The fault at bus 3 is the largest disturbance of the NPCC system, and generator 23
has the largest rotor angle error following this fault, and thus its rotor angle is used for the
comparison. The results of the simulation are shown in Figure 2.4 when the adaptive
approach is applied to the partitioned system and in Figure 2.5 when the adaptive approach
is applied to unpartitioned system.

As it can be seen from Figure 2.4 and Figure 2.5, if the external system is reduced
using linear model reduction, the rotor angle trajectory differs significantly from the rotor
angle trajectory of the original system whereas the rotor angle trajectory of the system
reduced by the adaptive approaches follows accurately the original trajectory.

To present in more detail the difference between approaches, the root mean square

errors of all state variables are calculated using the following expression:

(2.20)

where N is the number of simulation steps; Xij and %;j are respectively the values of i-th

state variable of generator 23 of the original system and the reduced system at time step j.
The results of this calculation are shown in Table 2.2. The proposed adaptive approaches
reduce the error by 74% to 81% for every state variable compared to the linear model

reduction approach.
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Figure 2.4. Rotor angle of generator 23 following the fault at bus 3 including the partitioned system.
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A fault with the duration equal to CCT is the worst-case scenario that can cause the
largest error. The worst-case errors of the proposed adaptive model reduction approach are
small enough to justify its applicability to power system stability studies.

In addition to accuracy, the approaches are compared in terms of simulation time
as shown in Table 2.3.

In Table 2.3 the large disturbance corresponds to the 0.39-second fault at bus 3 and
the small disturbance corresponds to the 0.03-second fault at bus 17. The results show that
the proposed adaptive approach applied to the partitioned system reduces the simulation
time by 57% during the large disturbance and by 59% during the small disturbance
compared to the original system. If the adaptive approach is applied to the unpartitioned
system, the simulation time is reduced by 73% and 84% respectively for the small
disturbance and the large disturbance. The difference in simulation time between two
versions of the adaptive approach is caused by the transformation and partitioning in the
partitioned system and by the fact that the whole unpartitioned system is switched to the
linearized model which is the fastest model. Especially it is clear in the case of the small
disturbance as the switching to the linear model happens earlier.

Thus, the proposed adaptive approach provides both high accuracy and high

simulation speed.

2.5.2 Test of operating condition change

To test the robustness of the adaptive approach against a change of the operating

condition, the temporary fault at bus 3 representing the largest disturbance is changed to a
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Table 2.2. Comparison of RMS Error of States of Generator 23

System
States Linearly reduced Pa_lrtitioned Unpartitioned
adaptively reduced | adaptively reduced

8, degrees 2.24x10 5.5x10° 5.1x10°
Pns p.U. 1.8x1073 4.1x1074 3.4x107
Pgv: P-U. 2.3x1072 5.1x107° 4.5%1073
VR, p.u. 1.7x107t 3.7x1072 4.1x1072
R¢, p.u. 1.3x1072 3.4x107 3.2x1073
Efg, pu 9.8x1072 2.2x1072 2.3x1072
Eg. p.u. 6.9x1072 1.4x1072 1.5%x1072
Eg. p-u. 1.1x1072 2.8x107 2.6x107°
®, p.u 471073 1.0x1073 9.7x107

Table 2.3. Comparison of Simulation Time

System

Simulation time, seconds

Large disturbance

Small disturbance

Original unpartitioned 3.7

Partitioned and linearly reduced 0.9
Partitioned and adaptively reduced 1.6 1.5
Unpartitioned and adaptively reduced 1.0 0.6
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permanent fault cleared by tripping one of the lines connected to the bus or by completely

isolating the bus by tripping all lines connected. Following the bus fault, the operating

condition of the system is changed. The results of simulation are shown in Table 2.4.
Table 2.4 shows that the proposed adaptive approach can reduce the system after

the change of the operating condition maintaining the accuracy of simulation.

2.5.3 Comparison with the coherency-based model reduction

Proposed adaptive approaches are compared to another traditional model reduction
approach based on grouping coherent generators following a small disturbance, which
follows a conventional industry practice in coherency-based model reduction using
commercialized software tools SSAT and DYNRED by Powertech Labs. First, the
complete eigenvalue analysis is performed in SSAT. Accordingly, three dominant inter-
area modes of oscillations between the study and the external area with the largest
participation factors of generators of the study area are selected. The frequencies of the
selected modes are 0.71 Hz, 0.72 Hz, and 0.77 Hz. Feed the SSAT result into DYNRED
and use a tolerance-based method for generator grouping. Then, 17 groups of coherent
generators are identified based on the selected modes. The first group of 9 generators
correspond to the study area and the other 16 groups represent generators of the external
area. The first group plus neighboring 36 buses are set to be the study area. Model reduction
by DYNRED aggregates 39 generators of the external area into 16 equivalent generators
resulting in a reduced 82-bus 25-generator system.

First, the proposed and traditional approaches are tested using faults at boundary

buses. The results of the simulation are shown in Table 2.5 All approaches provide
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satisfactory performance. The larger error of the partitioned systems is due to the larger
partitioning error during contingencies at the boundary. The largest disturbance (0.39-
second fault at bus 3) in the study area makes the coherency-based reduced system
unstable. To compare the approaches, the duration of the fault is reduced to 0.38 seconds.
The simulation results are shown in Table 2.6. Both traditional linear and coherency-based
approaches provide similar performance in terms of accuracy and speed; however, the

accuracy of proposed approaches is substantially higher.

2.6 Conclusions

This chapter has proposed two versions of a new adaptive model reduction
approach that can be applied to traditional partitioned system or to unpartitioned system
for fast power system simulation. The approach is capable of accurate representation of the
original power system model with significant reduction in computational time. The
adaptive approach has been comparted with the traditional coherency-based and linear
model reduction approaches. The proposed approach provides substantial improvement in
accuracy compared to the traditional approaches. In addition, the robustness of the

approach to a change in operating condition has been confirmed.
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Table 2.4. Comparison of Faults Leading to a New Operating Condition

Rotor angle RMS error, degrees

Fault Partitioned Unpartitioned
adaptively reduced | adaptively reduced
Temporary fault at bus 3 551 5.12
Fault at line 3-2 followed by the line trip 5.48 5.09
Fault at line 3-4 followed by the line trip 5.28 4.80
Fault at bus 3 followed by the bus trip 2.74 2.04

Table 2.5. Comparison of Model Reduction Approaches During Boundary Bus Faults

Rotor angle RMS error, degrees

Fault
Bus 29 fault Bus 35 fault
Coherency-based reduced 0.93 2.27
Partitioned and linearly reduced 3.15 3.14
Partitioned and adaptively reduced 3.48 0.82
Unpartitioned and adaptively reduced 0.43 0.52

Table 2.6. Comparison of Model Reduction Approaches During Bus 3 Fault

Rotor angle RMS

Simulation time,

System error, degrees seconds
Coherency-based reduced 16.98 1.1
Partitioned and linearly reduced 14.14 0.9
Partitioned and adaptively reduced 2.30 1.6
Unpartitioned and adaptively reduced 1.96 1.0
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CHAPTER THREE
APPLICATION OF ADAPTIVE MODEL REDUCTION WITH

PARALLELISM IN SPACE

3.1 Power System Partitioning

As it was mentioned in chapter one, in power system model reduction the system
is divided into two areas: 1) the study area, which is the main interest of an investigator,
where all details are preserved and disturbances are originated from; 2) the external area,
which can be simplified and reduced. In general, the reduced external area requires less
time to simulate compare to the study area. Considering this fact, the study area can be
further partitioned into multiple subareas which are simulated in parallel to decrease the
total system simulation time. The partitioned power system with multiple study areas is
shown in Figure 3.1.

Each area of the original system is connected to other areas by several tie-lines. For
every area, each tie-line is treated as a fictitious generator with the internal voltage phasor
equal to the voltage phasor of the corresponding boundary bus in the opposite area and
with the armature resistance and transient reactance equal to the resistance and reactance
of the corresponding tie-line. These fictitious generators are treated as constant voltage
sources during each iteration and represent the electrical power injections from one area to

the other areas. Therefore, voltage magnitudes and voltage angles of boundary buses in one
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Figure 3.1. Partitioned power system with multiple study areas.

area are the inputs to the model of the other areas. At every iteration of the system
simulation, each area is calculated separately, then boundary bus voltages of all areas are
recalculated, and their values are sent as inputs to the corresponding areas to perform the
next iteration. The simulation of each area can be done in parallel to decrease the total time
of the simulation.

In this section, a power system is modeled based on the following assumptions: 1)
loads are represented by constant admittances, 2) network nodes are eliminated [40], 3)
sub-transient dynamics and saturation are ignored, 4) torque in p.u. is equal to mechanical
power in p.u., 5) damper windings’ time constants are equal to zero, 6) synchronous

reactances are equal to transient reactances, 7) an exciter with one gain and one time
32



constant is used for each generator, 8) a governor with one time constant is used for each
generator.
In each area of the partitioned system, every generator is described by the following

five differential equations:

S = Opase (@ -1)
Tdoj Eqy = —Eq; + Erq;
TAi Efdi = _Efdi + KAi (Vrefi _Vti ) (3.1)

Tgvi P = =P + Pref; — (@ —1)/ R
2Hid)i = Pm. — Pei — Di ((Di —1)

where
Ng
Pei = E(’:1i ZlEaJ |:Glj COS(Si —5j)+ Bij sin(6i —61):|
J:

Nh
+ Eé]l ZVJ [G” COS(Si —91)+ B'J sm(S, —91)],

J:
An example of transformation of the original system to the partitioned system with

two study areas is shown in Figure 3.2. Voltage phasors of boundary buses in the external
area Vi£~£6¢, V.£.205 and in the second study area V42262 , V2203 are the internal voltage
phasors of the fictitious generators of the first study area. Voltage phasors of boundary
buses in the first study area Vi'£07, V3205, V405, Vi£6} are the internal voltage

phasors of the fictitious generators of the external area and the second study area.
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3.2 Case Studies

3.2.1 Temporary bus fault tests

The partitioning scheme described above together with the adaptive approach
introduced in chapter two is tested on the NPCC system. The study area is set to be the
New England region of the NPCC system, which has 9 generators. To test cases with
multiple study areas, the study area is divided into two subareas: study area 1 with 5
generators and study area 2 with 4 generators. The external area is set to be the rest of the
system, which has the other 39 generators. The external area has 39x5=195 state variables
and 39 nonlinear functions as the first 4 states of each generator is described by linear
differential equations. The external area is connected to study area 1 by two tie-lines, and
study area 1 is connected to study area 2 by two tie-lines as shown in Figure 3.2. The

partitioned NPCC system is shown in Figure 3.3.
The H_, norm of the balanced truncation error is set to be equal to 107°. This

corresponds to truncation of 107 out of 195 state variables. The functions corresponding to
column norms of admittance matrix less than 1.0 p.u. are linearized. This corresponds to

linearization of 34 out of 39 functions. The angle deviation threshold Ad,a is Set to 67

degrees. The simulation is performed for 16 seconds to represent at least 10 cycles of

oscillations. The integration time step is set to 0.01 seconds.

34



VAL
External
Area

1 nl\/1 Al
.WZQ?Z%.
|

(: /il[’l;a%. I)

Vo L5\ 265

]

External
Area

IESO X" = - T

2 “\ L < 5 _ V——\«\
MISO l \g -
Y Q/&///"’ . _= y

Figure 3.3. Partitioned NPCC system with multiple study areas.

35



To compare the approach performance during a large disturbance, a three-phase
short circuit fault lasting for the critical clearing time (CCT) is created separately at every
bus of the study areas. The error of all outputs (state variables) of all generators in the study
areas are analyzed, and the rotor angle variable has the largest error for each of the
generator. For every fault, the generator with the largest error of the rotor angle is found
and used to compare the approaches. The results of comparison of rotor angle RMS errors
of the linear model reduction approach and the adaptive approach are shown in Table 3.1.
As Table 3.1 shows, the linear model reduction approach cannot guarantee satisfactory
performance during large disturbances generating the errors of more than 30 degrees while
the proposed adaptive approach keeps the error for all disturbances within 4 degrees both
for the case with one study area and the case with two study areas including faults at the
boundary buses.

The fault at bus 3 is the largest disturbance of the NPCC system, and generator 23
has the largest rotor angle error following this fault, and thus its rotor angle is used for
comparison. The results of simulation are shown in Figure 3.4. As it can be seen from
Figure 3.4, if the external system is reduced using linear model reduction, the rotor angle
trajectory differs significantly from the rotor angle trajectory of the original system
whereas the rotor angle trajectory of the system reduced by the adaptive approach follows
accurately the original trajectory.

To present quantitatively the difference between approaches, the RMS errors of all

states are calculated, and the results of calculation are shown in Table 3.2.
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Table 3.1. Comparison of RMS Error of Rotor Angle Including the Case of Two Study Areas

Bus Generator CCT 1 study area 2 study areas
Linear Adaptive Adaptive
1 26 0.22 17.84 1.05 0.97
2 26 0.22 8.09 0.90 0.89
3 23 0.67 33.20 3.35 3.82
4 26 0.22 14.19 0.97 1.23
5 23 0.14 1.24 0.37 0.57
6 23 0.11 0.64 0.28 0.49
7 26 0.07 1.26 1.07 1.37
8 23 0.06 0.21 0.12 0.26
9 26 0.08 0.76 0.85 1.27
10 26 0.21 14.24 0.90 1.59
11 23 0.29 27.47 1.75 3.35
12 23 0.15 2.02 0.55 1.53
13 23 0.2 6.39 0.96 1.23
14 23 0.23 29.43 2.27 2.08
15 23 0.11 1.18 0.38 3.40
16 23 0.07 0.16 0.13 0.25
17 26 0.04 0.08 0.07 0.30
18 23 0.05 0.10 0.07 0.12
19 26 0.04 0.05 0.04 0.13
20 26 0.04 0.08 0.07 0.24
21 23 0.28 5.66 0.76 0.85
22 23 0.28 10.58 1.02 1.03
23 23 0.26 4.06 0.82 0.93
24 23 0.27 14.29 1.02 1.23
25 23 0.29 10.96 0.97 1.06
26 26 0.04 0.08 0.07 0.24
27 23 0.15 0.36 0.19 0.24
28 26 0.21 2.39 0.51 0.55
29 23 0.08 0.41 0.19 0.31
30 23 0.08 0.39 0.18 0.33
31 23 0.12 0.79 0.30 0.40
32 26 0.19 11.53 0.97 2.85
33 26 0.19 6.42 0.89 1.13
34 23 0.26 14.32 1.20 1.20
35 26 0.25 24.52 1.65 2.55
36 23 0.27 9.41 1.13 0.94
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Figure 3.4. Rotor angle of generator 23 following the fault at bus 3.

Table 3.2. Comparison of RMS Error of States of Generator 23 Including the Multiple Areas Case

System

States Only Linearly Adaptively
partitioned reduced reduced
5. rad 1 study area 1.4x1073 5.8x107* 5.9x1072
2 study areas 9.1x1072 5.9x107% 6.7x1072
£ pu 1 study area 2.3x107° 9.3x1072 1.0x1073
2 study areas 1.4%x1073 9.5x107° 1.2x107°
£ pu 1 study area 3.4x107 1.5x107! 1.5x1072
2 study areas 2.4x1072 15x107t 1.7x1072
_— 1 study area 3.5%x1074 15x107t 1.5x1072
2 study areas 2.3x1072 15x107t 1.7x1072
o pu. 1 study area 15x107° 6.9x107° 6.9x1074
2 study areas 1.1x1073 7.0x1073 7.9x107%
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The proposed adaptive approach reduces the error by 87 % to 90 % for every state
variable compared to the linear model reduction approach. And for the case with two study
areas, the adaptive approach is more accurate than the approach with only partitioning the
system since the adaptive approach switches to the original unpartitioned system during a
fault. The error of the only partitioned system is caused by the fact that the inputs (voltage
phasors of the boundary buses) are calculated at the previous iteration of the simulation,
i.e. the inputs are lagging by one iteration.

A fault with the duration equal to CCT is the worst-case scenario that can cause the
largest error. The proposed approach has the worst-case error of 4 degrees, which justifies
its application in power system stability studies.

In addition to accuracy, the approaches are compared in terms of simulation time
as shown in Table 3.3. The results show that the proposed adaptive approach applied to the
partitioned system with one study area reduces the simulation time by 51% compared to
the original system.

If the system with two study areas is used, the simulation takes more time to
complete. However, if simulations of multiple areas can be performed in parallel, the case
with multiple study areas performs even faster than the case with only one study area. This
can be seen from the Table 3.4, which decomposes simulation time into areas.

The difference between linearly and adaptively reduced systems in terms of
simulation time of the study areas and the rest of the simulation is caused by the fact that
during the fault the adaptive approach switches to the original system and this stage cannot

be parallelized and its simulation time is accounted as the rest of the simulation.
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Table 3.3. Comparison of Simulation Time Including the Multiple Areas Case

Simulation time, seconds
System
1 study area 2 study areas
Original 11.9
Only partitioned 12.7 14.5
Partitioned and linearly reduced 5.3 7.1
Partitioned and adaptively reduced 5.8 75

Table 3.4. Decomposition of Simulation Time in the Parallel Mode

System simulation time, seconds
Components
Original | Partitioned | Linearly reduced | Adaptively reduced
Study 2.6 2.5
1 | External 8.4 1 1.5
study
area | The rest 1.7 1.8
Total 10.1 4.3 4.3
Study 1 11.9 2.2 2.1
Study 2 2.2 2.1
2
study | External 8.4 1 1.5
areas
The rest 1.7 1.8
Total 10.1 3.9 3.9

40



Table 3.4 shows that in the parallel mode of simulation the adaptive approach time
performance is identical to the linear model reduction approach, and the approach reduces
the simulation time by 67 % compared to the original system.

Thus, the proposed adaptive approach with multiple study areas provides both high

accuracy and high simulation speed.

3.2.2 Test of operating condition change

To test how the adaptive approach performs robustly against a change of the
operating condition, the temporary fault at bus 3 is changed to a permanent fault cleared
by isolation of the bus by tripping all lines connected. Following that contingency, the
operating condition of the system is changed.

The results of simulation are shown in Table 3.5. Table 3.5 shows that the proposed
adaptive approach maintains the accuracy of the reduced model after the change of the

operating condition.

3.2.3 Test of slow mode of oscillation

To verify that slow modes of oscillations are preserved when the adaptive approach
is applied, the slowest mode at 0.266 Hz is excited using the technique described in [45].
The results of the simulation are shown in Figure 3.5.

The difference between the original system and the adaptively reduced system is
caused by the fact that in order to excite a specific mode, not only rotor angles of the

generators in the study areas but also rotor angles of the generators in the external area are
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changed. This violates the assumption that all disturbances are originated from the study
areas. However, even in this condition the adaptive approach performs satisfactorily.

To test the adaptive approach, Prony analysis of the frequency of the generator 23
was performed. The results of the analysis are shown in Table 3.6, from which the proposed

adaptive approach preserves the modal properties of the slowest oscillation mode.

3.3 Conclusions

This chapter has proposed a power system partitioning approached with multiple
study areas calculated in parallel for fast power system simulation. The approach is capable
of accurate representation of the original power system model with significant reduction in
computational time. The approach has been compared with the traditional linear model
reduction approach and maintains better accuracy even when there is a change in operating
condition. In addition, it has been shown that the proposed approach preserves the slow

inter-area mode of oscillations.
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Table 3.5. Comparison of Faults Leading to a New Operating Condition Including the Multiple Areas Case

Rotor angle RMS error, degrees
Fault
1 study area 2 study areas
Temporary fault at bus 3 3.35 3.82
Fault at line 3-2 followed by the line trip 3.34 3.81
Fault at line 3-4 followed by the line trip 3.29 3.76
Fault at bus 3 followed by the bus trip 2.25 2.60
1.0015 T T T T T T
:\- ", Original system
10011 .
| b —— Adaptive approach
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Figure 3.5. Frequency of generator 23 after 0.266-Hz mode is excited.
Table 3.6. Slowest Oscillation Mode Comparison
System Amplitude, p.u. | Frequency, Hz | Damping, %
Original 0.015 0.266 16.8
Adaptively 1 study area 0.016 0.266 16.3
reduced 2 study areas 0.015 0.266 16.2
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CHAPTER FOUR
APPLICATION OF ADAPTIVE MODEL REDUCTION WITH

PARALLELISM IN TIME

The adaptive model reduction described in chapter two can be used together with
the Parareal method improving the speed of the coarse solver and decreasing the total
simulation time. In the Parareal method the simulation time is divided into subintervals
with a coarse time step. Each interval is then simulated in parallel using a fine solver. Based
on the fine solution of each interval the coarse solution propagated by a coarse solver is
then corrected. The concept of Parareal method is show in Figure 4.1. There are two main
Parareal algorithms: the master-workers algorithm and the distributed algorithm [46].

In the master-workers algorithm the initial coarse solution propagation is performed
by the master processor and the results are sent to the worker processors to propagate the
fine solutions. The fine solutions are then sent back to the master processor where the
coarse solution is propagated and corrected. This algorithm is suited for shared memory
systems [47], where all processors share the same global memory. In the distributed
algorithm the coarse propagation and correction are distributed across all processors. This
algorithm is suited for distributed memory systems (message passing systems) [47], where

each processor uses its own local memory.

44



Coarse Solution

TO Tl Tn Tn+1 TN
— ] :
AT |
"
Fine Solution

Figure 4.1. Parareal method.

4.1 Master-Workers Algorithm

4.1.1 Parareal algorithm
At the beginning of the master-workers Parareal algorithm, an initial guess of the
coarse solution needs to be propagated using the coarse solver C,r,

Ug = 02 :CAT (U2—1)7 Vi<n< NC’

(4.1)
uj = ug,

where U, and U,, represent the vector of state variables obtained from the coarse solver

attime T,, = AT -n before and after the correction from the fine solution, respectively; N,

is the number of the coarse intervals in the entire simulation period; AT is the coarse step
size. The superscript denotes the iteration number, i.e., superscript “0” represents the initial
coarse propagation.

Starting from the first iteration, the fine solver Fg takes the coarse solution from

the last iteration as the initial value to propagate the solution in each coarse interval:
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Uk = Fg (UK, vi<n<nN, (4.2)
where u,, is the vector of state variables obtained from the fine solver at time T,,; ot is

the fine step size.

Once the fine solution uy, is obtained for all 1<n < N, the mismatch between the

fine solution from the current iteration and the coarse solution from the last iteration A,
at the time point T,,, can be calculated as:

AK —uk 0K vi<n<N,. (4.3)

Before moving to the next iteration, the mismatch A, is added to the coarse solution

from the last iteration as a correction. Note that this correction is not executed

simultaneously for all T,,. It is executed sequentially moving along the time T, :

k _ ik, Ak
U, =U; +A},
o (4.4)
Up =Cat (Un1)
Since the coarse propagation is performed for each time point T,, it is critical that
the coarse solver C,1 is as fast as possible.

The ideal speedup Rjqeq for Parareal algorithm does not consider the sequential

coarse propagation, i.e. it is assumed to be negligible:

N¢

I\Iiter

Rideal = (4.5)

where Nji, IS the number of correction iterations.

However, the actual speedup R, is influenced by the coarse propagations:
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T
Ract = ' (4-6)

TPar

where Tgq is the sequential simulation time, Tpg, is the total simulation time of the

Parareal algorithm which includes the time consumed to propagate the fine solution and

the coarse solution for each iteration.

4.1.2 Power system model

The power system model used in this section includes the detailed generator model,
the non-reheat steam turbine model, the first-order governor model and the IEEE type 1

exciter model. The models are represented by a system of 15 differential equations:

Toyi Ijsvi =—PFy; + P =i /R;

TchiTmi =—Tm + Py,

T Bt :_(KEi + Ag; exp(Bg Efdi))Efdi +VR

T Vo =V +E g Kk / Tk,

TriVy, =V +V4,

TaVe = VR, + KaVa; —Erg Ka K /T + Ky (Veer; =Vy; )
&; = pS;

2H;$; =Ty, ~To - D

Ve =W opRe / Xy +Wag 0pRy / X gy + E g, opRy; / X,
U = =W @Ry / Xppi +Wag; @Ry, / Xy,

Wi =—Wgi@bRg; / Xgij + Vag@Rg; / X g

Wi = =W @b R / Xig; + Wag; @R / Xy

TCE(':ici = _Eéci _(Xasi - X&si )iqi

Txdi ngsi = _ngsi + Fdi (4.7)
Tugj Xags; = ~Xaas; + F
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where
Te, = Egila; +Eglg +(Xaas — Xasi )y
Wadj = Xads;ld; + Eq;» Wag; = Xagsilg; + Edj.

(Eg Ve sin(0y —8;))Ra —(Ef Vi cos(0y, —5)) X g

i

2 " /4
R2 + X s X
- (g — Vs cos(@y; — ;) Ra —( Eg; —Vy sin0y; —5;)) X &,
q- B 2 14 14 !
' R + X s X
Xds; = Xads; + Xpj» Xasi = Xags; + X
Vi Wy Vg Wk
B =| =—t+—" [Xigs»  Eg =—| — -+ —" | Xags: -
i (xfi XhiJ i ] xgi xki as;

Here, Tg, Tyq;, Txg are time constants of dummy coils all in's; s; is the generator rotor

slip; Tmi and T, are the mechanical torque and electrical torque; V2i is the rate feedback;

Oy, Is the terminal bus voltage angle inrad; v, Wh, Vg, Wi, Rey Ry Ry R,

Xir Xpij» Xgi and Xy, are respectively field, h-, g-, and k-winding flux linkages,

gli
reluctances and leakage reactances; Waq., Wag» Xds;» Xgsj» Xads: Xags» Fg and Fg
are respectively d- and g-axis mutual flux linkages, saturated subtransient reactances,

saturated mutual subtransient reactances and saturation components; Egc. is the dummy
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coil voltage; Xaq;, Ry and X, are the mutual synchronous reactance, armature resistance

and leakage reactance.

The above-mentioned algebraic equations are substituted into the system of
differential equations in (4.7) so that all differential equations are functions of state
variables and terminal bus voltage magnitudes and angles. Thus, the terminal bus voltage
phasors are the inputs in the system and are used to connect the algebraic solver that
performs power system network calculations with the differential solver that calculates the
states of the system.

The resulting model can be described with the following nonlinear system:

{)’(:f(x,u) 48)
y =X
where
u=(0 V),
X=<Psv Tn Erg V2 VR 8 o wi wy wg v Eg X Xaqs)’
xeR", ueR", yeR™, n=14Ng,  m=2N,.

Based on the model in (4.7) the following hybrid system model of the adaptive

model reduction without system partitioning is created:

. f(xu
AAX +BAU + £° (4.9)
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The model in (4.9) is similar to the one in (2.16) with the addition of the control

A

matrix B representing the connection between the generator states and the generator

terminal bus voltage magnitudes and angles.

4.1.3 Case study

The adaptive approach is applied to the coarse solver of the master-workers
Parareal method and compared with the original coarse solver. The test is performed on the
large-scale 327-machine 2383-bus Polish system. A study area is specified in the system.
The study area consists of 29 buses and 8 generators. The external area is set to be the rest
of the system that has 319 generators. The study area and the external area are connected
by three tie-lines as shown in Figure 4.2.

A case study is performed to find the largest disturbance in the system. The critical
clearing time for a three-phase short-circuit fault at every bus in the study area has been
found and compared. Bus 2274 has the largest CCT of 0.4 seconds (24 cycles) and the
three-phase short-circuit at this bus is selected as the largest disturbance. In another case
study, all generator angle deviations have been calculated and ranked. Generator 2197 has
the largest angle deviation and is used as a reference to compare the adaptive approach
with the original system. The results of simulations are shown in Figure 4.3 and Figure 4.4.
It can be seen from Figure 4.3 and Figure 4.4 that the adaptive approach maintains the same
accuracy.

As stated previously, the main contributing factor to the time performance of the

Parareal method is the number of coarse correction iterations. Hence, the parameters of the

50



Figure 4.2. Study area of the Polish system.

adaptive approach are selected to maintain the same number of correction iterations. The

admittance threshold is set to 0.1 p.u. which corresponds to linearization of nonlinear
functions of 281 out of 327 generators. The angle deviation threshold Ad . is set to five

times the coarse correction threshold: 0.01x5=0.05 rad. Both the original and the
adaptive coarse solver have the same number of iterations that are shown in Figure 4.5.
Parareal simulation is performed using MATLAB on 16 cores of a 2.6-Ghz Intel
Xeon E5-2650 processor with the following settings: simulation length of 8 seconds; time
window length of 0.32 seconds; 25 time windows; coarse step size of 0.02 seconds; 16
coarse intervals per window; fine step size of 0.002 seconds; 10 fine intervals per coarse

interval.
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Figure 4.3. Rotor angle of generator 2197 calculated with the original coarse solver.
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Figure 4.4. Rotor angle of generator 2197 calculated with the adaptive coarse solver.
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The number of coarse intervals is set to 16, equal to the number of worker
processors used in the simulation. If the number of coarse intervals is less than the number
of worker processors, then some of the computing power will not be utilized. Conversely,
if the number of coarse intervals is more than the number of worker processors, some of
the processors will be overtasked while others undertasked. Thus, as may be expected, the
optimal number of coarse intervals for every time window interval is equal to the number
of worker processors used in the parallel computing.

The speed performance comparison is given in Table 4.1. The master-workers
Parareal method with adaptive model reduction is 47.5% faster than the simulation of the

original system and 25% faster than the Parareal simulation with the original coarse solver.
4.2 Distributed Algorithm

4.2.1 Parareal algorithm

At the beginning of the distributed Parareal algorithm processor O calculates the

initial coarse solution for the first coarse interval:
0 =Car (UD), (4.10)
Processor 0 then sends the coarse solution to processor 1 and starts the fine propagation:
ui = Fr (UG), (4.12)
As the fine solution for the first interval is identical to the sequentially propagated solution

and no correction is required, the coarse solution for the first interval is equal to the fine
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Figure 4.5. Number of correction iterations per window of Parareal simulation.

Table 4.1. Comparison of Master-Workers Parareal Simulation Time

System Simulation Time (seconds)
Original simulation 40
Parareal simulation with original coarse solver 28
Parareal simulation with adaptive coarse solver 21
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solution: U% = u% . The solution is sent to processor 1. The coarse propagation continues

as processor id receives the coarse solution from processor id-1, calculates the coarse
solution for the next interval:

Ofg 1= Car (Uiy), (4.12)
and sends it to processor id+1.

After the last processor finishes calculations and the initial coarse propagation is
complete, the main part of the distributed algorithm starts. Processor id receives the coarse
solution form processor id-1 obtained during the previous iteration, starts the fine
propagation:

Ul = Fa (Ui, (4.13)
By this time processor id-1 finishes the current iteration, and processor id receives the new
coarse solution from processor id-1 and propagates the coarse solution:
0ig.1 = Cat (Uig), (4.14)
The new coarse solution is corrected based on the fine solution from the current iteration
and the coarse solution from the previous iteration:
Ulg.1 = Uff,0 +ulfq + Ofgh, (4.15)

At any point if the coarse solution at interval id converges, the corresponding

processor terminates operations and the calculations continue with the processors

corresponding to the later coarse time intervals (id+1to N.).
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4.2.2 Non-iterative ZIP load modelling

The power system model used in this section is similar to (4.7) except the additional
ZIP loads added to the model compared to the constant impedance loads used in the model
from section 4.1.

In the ZIP load model, the active power and reactive power are represented by 3

components: constant impedance (Z), constant current (1), and constant power (P):

P P
a:aHOm{;%}ngigvﬁ (4.16)
VLo VLo
Qu,
QL = blPLO +b2 v VL b3 VL , (417)
Lo Ve,

where VLO, PLO, QLO are respectively the load bus voltage magnitude, active power, and
reactive power at operating condition (equilibrium point); a; +a, +ag =1, 3 , ay, az are
respectively the fractions of constant power, constant current and constant impedance
component of the active power; b +b, +by3 =1, by, b,, by are respectively the fractions

of constant power, constant current and constant impedance component of the reactive

power; V| is the load bus voltage magnitude.

Active and reactive power are components of the complex power of the load:
SL=P +iQc. (4.18)

The current consumed by the load can be calculated as:
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I
VY

<|| %]
— |-

J . (4.19)

where V| is the load bus voltage phasor.
For the case of constant impedance load model when & =a, =b; =b, =0 and

ag =bz =1, the load can be represented by the load admittance:

S

Y, = LO—ZJQLO. (4.20)
Vi,

Load admittance Y, depends only on the initial conditions and can be absorbed

into the network admittance matrix. In general, the load can be represented by a Norton
equivalent as shown in Figure 4.6.

Load current injection can then be calculated as:
I =V.Y —1,. (4.22)
If both the active power and reactive power load components are modeled as
constant impedance loads, the load current injections 1, is equal to zero. For cases of
constant power and constant current loads, the value 1, is zero only at the operating point.
If the system is disturbed and moves away from the initial operating point, 1; changes from
zero to a new value. The new value is the function of the load bus voltage. In turn, however,
the load bus voltage is a function of the current injection. Thus, I, has to be calculated
iteratively: 1) calculate the load current injection, 2) solve the system of linear equations

Y-V=1 (where Y e R™" is the complex network admittance matrix, V is the complex

vector of bus voltages, | is the complex vector of bus current injections, n is the number of
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buses) to get a new value of the load bus voltage, then 3) calculate the load current injection
again and continue until convergence is achieved.

Iterative solution is time consuming because it takes substantial time to solve the
system of linear equations Y-V =1 for a large system. To avoid iterative solution, the bus
current injection can be calculated by creating ‘dummy’ state variables [48] for the active

and reactive components of the bus current injection:

Tle =—|d +RE(||)
r r (4.22)

TLIdi =—|di +|m(||)

The bus current injection can be obtained by combining active and reactive
components in a complex form:

Id :ldr+j|di. (423)

Over time, 1,4 converges to the correct value of 1.

4.2.3 Case study

The adaptive model reduction is used in the coarse solver of the distributed Parareal
in time method. It is tested on the large-scale 5617-machine 70285-bus Eastern
Interconnection (EI) system. A study area is defined to be the Entergy Texas area of the El
system, which consists of 421 buses and 18 generators. The external area is the rest of the
system which has 5599 generators. The study area and the external area are connected by
six tie-lines. The study area is shown in Fig. 3. Green circles represent generation buses

and red circles represent buses on the boundary between the study and the external area.
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Figure 4.6. Load Norton equivalent.
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Figure 4.7. Entergy Texas study area.
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A typical 4-cycle fault is created on bus 105 inside the study area. Generator 210 is
electrically the closest generator to the fault location and is used to demonstrate the Parareal
algorithm with the adaptive coarse solver. The results of simulations are shown in Figure
4.8. The adaptive coarse solution successfully converges to the trajectory of the original
system simulation.

One of the main contributing factors to the time performance of the Parareal method
is the number of coarse correction iterations. The parameters of the adaptive approach are
selected in such a way as to maintain the same number of correction iterations. The

admittance threshold is set to 0.01 p.u. The angle deviation threshold A8,y is set to five

times the coarse correction threshold: 0.01x5=0.05 rad. Both the original and the
adaptive coarse solver have the same number of iterations that is equal to 8.

Parareal simulation is performed using Python in high-performance computing
environment with 512 MPI (message passing interface) processors and the following
settings: simulation length of 10.24 seconds; coarse step size of 0.02 seconds; fine step size
of 0.005 seconds; 4 fine intervals per coarse interval.

The speed performance comparison is given in Table 4.2. The distributed Parareal
method with adaptive coarse solver is 98.3% faster than the simulation of the original
system producing the speedup of 59 times and 43.7% faster than the Parareal simulation

with the original coarse solver.

4.3 Conclusions

In this chapter master-workers and distributed Parareal algorithms with the adaptive

approach has been successfully tested on the large-scale Polish and Eastern Interconnection
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systems. It has been demonstrated that application of the adaptive model reduction can
increase the speed of the coarse solver and reduce the total simulation time of Parareal
method. It maintains the same number of correction iterations while performing each
iteration faster. Thus, the adaptive approach can provide promising increase in simulation

speed for power system transient stability studies.
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Figure 4.8. Rotor angle of generator 210 following the fault.

Table 4.2. Comparison of Distributed Parareal Simulation Time

12

System

Simulation Time (seconds)

Original simulation 3193.0
Parareal simulation with original coarse solver 96.1
Parareal simulation with adaptive coarse solver 54.1
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CHAPTER FIVE
INTEGRATION OF TENSOR DECOMPOSITION TO ADAPTIVE

MODEL REDUCTION

This chapter proposes to use tensor decomposition to represent the Taylor series
expansion of a power system dynamic model in order to further improve the speed and

accuracy of the adaptive model reduction described in chapter 2.

5.1 Power System Model Approximation

In this chapter, each generator of the power system is represented by a two-axis
model with a non-reheat steam turbine model, a first-order governor model and an IEEE
type 1 exciter model as described in section 2.4. The system:

x=f(x
{ () 5.
y=X

can be approximated by Taylor series expansion as shown below in the matrix formulation:

(5.2)

AX = AjAX + Ay (AX® AX) + Ag(AX @ AX ® AX) + - -
y =AX+Xg

where A, e R™"' s the matrix of partial derivatives of the functions in (5.1) of order i;
“®” denotes Kronecker product.
In system (5.2) the dimensions of matrices A; grow exponentially with the order

increase, which in turn increases the computational burden and can make the approximated

model in (5.2) even slower than the original model in (5.1). To address this, we propose to
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represent matrices A; as tensors and apply tensor decomposition to decrease the size of

the matrices and improve the speed of computation.

5.2 Tensor Representation

A tensor is a multidimensional array that is defined as A e R Mk >Nd
where ny is the size in dimension k, d is the number of dimensions. A matrix can be
converted to a tensor as shown in the example in Figure 5.1.

Matrices A,,Agz,... in (2) can be converted to tensors Ay, As,..., where
Ay e RN - A ¢ RWN2MFNA -y =, =g =n, =n. Kronecker product in (5.2) can

be represented by the tensor dimension multiplication [49]. A k-dimension product of a

tensor and a matrix is a tensor of which the entries are calculated as follows [50]:

Nk
(A X) - fegiiar-d = _ZlAjljZ"'jk“'jd X (53)
Jk=

Whel’e AXk X c Rnl><n2>('"Xnk_leXnk+lX~"Xnd , X c Rank .

»{\"3

!

ny

ny

N3N, ny

Figure 5.1. Representation of a matrix by a third-order tensor.
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The system (5.2) can be rewritten as:

{A)‘( = AJAX+ Ay xp AXT xg AXT + Ag xp AXT x5 AXT 34 AXT 4+ 54)

y = AX+Xq

5.3 Tensor Decomposition

A tensor can be approximated by the sum of a finite number of rank-one tensors
using the CANDECOMP/PARAFAC (CP) decomposition [51]. A dth-order tensor is rank

one if it can be written as the outer product of d vectors:
A=a®ca@o...0a®o..og@ (5.5)

where a®) e R™ s the kth rank-one component.
CP tensor decomposition can be written as
"0 ) ()
A=Y a0 ooay, (5.6)
i=1
where r is the rank of the decomposed tensor. An example of CP tensor decomposition is

illustrated in Figure. 5.2.

3 3 3
%y . wy a,® )
Dar Do Ds
~ + +oot
a,® 2, 2,

Figure 5.2. CP decomposition of a third-order tensor.
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Components in (5.6) which correspond to the same dimension can be grouped into

a factor matrix:

AV =[a®) ald | aly, &7)

where AK) ¢ RMkxT
Factor matrices can be used in one-dimension matricization of a tensor to

reconstruct the original matrix [50]:

.
AzA(l)(A(owO...@A@)@A(Z)) , (5.8)

where “®” denotes Khatri-Rao product.

Tensors in (5.4) are matricized with the help of (5.8) and the following system is

obtained:

;
ax= Ax+ AP (axT AR 0 axT AP

;
+AP (A o ax" AP 0 axT AP ) - (5.9)
y = AX+Xg

5.4 Proposed Hybrid Model Reduction

The proposed model reduction approach is based on partitioning the system into
two areas: the study area and the external area. Generators of the study area and generators
of the external area electrically close to the boundary between the areas are described by

the original nonlinear equations. The model of the rest of generators of the external area is
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reduced by approximating it with the Taylor expansion series up to a certain order, which
is represented through the tensor decomposition. The resulting hybrid system is described

by the following expression:

.
Ax+ AP (axT AP 0 axT AP )
AX = T
AP (XA oA AP 0 AT AP 4 (5.10)
f(x)—xg
y = AX+Xq

5.5 Adaptive Switching Algorithm

As the requirements for the details of the simulated system depend on the severity
of a contingency this work proposes the following adaptive algorithm: 1) the original
system (5.1) is used during fault condition; 2) the hybrid system (5.10) is used in post-fault
condition when system disturbance is large; 3) the Taylor series expansion based system
(5.9) is used when system disturbance is small. The adaptive algorithm is shown in
Figure 5.3

The size of the disturbance is determined by the maximum rotor angle deviation of
all generators of the study area. A generator with large inertia located electrically far away
from the boundary between the study area and the external area is selected as the reference
generator.

During the simulation the algorithm checks if there is a large change in the system
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Figure 5.3. Adaptive switching algorithm.
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load level. If the load level changes by more than 10% the tensor decomposition matrices
are chosen from the set of precalculated ones to correspond to the new load level. This

allows the algorithm to maintain the accuracy after a large operating condition change.

5.6 Case Studies

5.6.1 Temporary bus fault tests

The proposed approach is tested on the 140-bus 48-machine NPCC system. The
study area is defined as New England part of the system with 36 buses and 9 generators.
The external area is defined as the rest of the system with 104 buses and 39 generators.

The threshold for the column norm of the admittance matrix that determines if a
generator electrically close to the boundary between the study area and the external area is
set to 1 p.u. based on the case study in chapter 2. This corresponds to the approximation of
34 out of 48 generators with the Taylor expansion series. The expansion is performed up
to the third order and converted to the tensor format. Tensor decomposition is computed
with rank 27 for the second term of the Taylor expansion and with rank 29 for the third
one.

The ranks are selected in a case study where the rank is increased from 1 until the
increase in rank does not improve the accuracy of the approach in terms of rotor angle by
more than 0.1 degrees. Another case study is conducted to set the threshold for the
maximum rotor angle deviation that controls the switching between the tensor

decomposition only model and the hybrid model. The threshold is increased from 1 degree
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until the largest rotor angle error for all generators in the study area is below 5 degrees.
The threshold is set to 26 degrees.

The simulations are performed in MATLAB R2015a on a computer with the 4-GHz
AMD FX-8350 processor. The simulation length is set to 16 seconds and the integration
time step is set to 0.01 seconds.

Based on a case study in chapter 2 the generator with the largest rotor angle error
(generator 23) following a fault at the bus (bus 3) with the longest CCT is used to compare
the proposed approach with the traditional linear model reduction approach. The results of

the comparison are shown in Figure. 5.4.
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Figure 5.4. Rotor angle of generator 23 following the fault.
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The linear model reduction generates a large error while the trajectory simulated
with the proposed adaptive model reduction closely follows the trajectory obtained from
the original system simulation.

For quantitative comparison the RMS error of the rotor angle is calculated. The
RMS error of the linear model reduction is 22.4 degrees while the RMS error of the
proposed adaptive model reduction is 4.3 degrees. Thus, the proposed approach reduces
the RMS error by 81%.

In addition to accuracy the proposed approach is tested in terms of speed
performance. The comparison of the simulation time of the original system, the system
simulated with the linear model reduction and the proposed adaptive model reduction are
shown in Table 5.1. The proposed approach reduces the simulation time by 76% compare
to the original system simulation. The speed performance of the adaptive model reduction
is identical to the traditional linear model reduction approach while the accuracy of the

simulation is substantially higher.

5.6.2 Test of operating condition change

To test how well the proposed approach performs at different operating conditions,
the load level is changed at 5% increments in both heavier and lighter load directions. The
fault is set to be at the bus 3 with the duration equal to CCT. The results of the simulations
are shown in Table 5.2.

Table 5.2 shows that the accuracy of the proposed approach in terms of the rotor

angle remains within 5 degrees at different loading levels. When the load level changes by
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Table 5.1. Comparison of Tensor Decomposition Simulation Time

System Simulation Time (seconds)
Original simulation 3.7
With linear model reduction 0.9
With adaptive model reduction 0.9

Table 5.2. Comparison of Rotor Angle RMS Error at Different Load Levels

Load level of tensor decomposition calculation
Load level (%) CCT (s)
120 % 100 % 80 %

120 0.19 41

115 0.23 3.6

110 0.27 4.9

105 0.33 4.9

100 0.39 4.3

95 0.44 3.5

90 0.51 3.5
85 0.59 3.6
80 0.70 4.9
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more than 10% the tensor decomposition matrices are changed to the ones obtained from
the Taylor series expansion calculated around the equilibrium point with larger or lower
load level based on the direction of load change. Thus, the adaptive model reduction is

capable of accurate system representation at different operating conditions.

5.6 Conclusions

This chapter has proposed a tensor decomposition based adaptive model reduction
approach that further improves speed of the power system simulation while maintaining a
better level of accuracy. The approaches is tested during different load levels and is capable
of accurate representation of the original system when there is a change in operating

condition.
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CHAPTER SIX

CONCLUSIONS

6.1 Contributions

This dissertation has proposed a new adaptive nonlinear model reduction approach.
The major contributions of this works are in the following aspects:

1. Hybrid model reduction. In the proposed hybrid model reduction all generators
inside the study area and the generators inside the external area that contribute
to the dynamics of the study area the most are described by the original
nonlinear models, the rest of generators inside the external area are represented
by the linearized models. The hybrid reduced model serves as a compromise
between accuracy and speed of simulation.

2. Column norms of the admittance matrix. The columns norms of the reduced
admittance matrix are proposed to be used as a criterion to judge how close
electrically each generator inside the external area is to the boundary between
the study area and the external area and, hence, to determine the list of generator
models to be linearized in the hybrid reduced model.

3. Unpartitioned model reduction. Unlike most of existing model reduction
methods that need to partition the whole power network into a study area with
detailed models and an external area with reduced models, the new approach

can be applied to the whole system without network partitioning.
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. Adaptive switching algorithm. The proposed adaptive model reduction enables
adaptive switching among the original detailed model, the linear reduced model
and the hybrid reduced model. The original nonlinear model is used during
faults when the highest accuracy is required; the fastest linear reduced model is
used when the deviation of all system states is within the threshold; the hybrid
model, as a compromise between speed and accuracy, is used when deviation
of system states becomes larger than the threshold.

Generator rotor angle deviation. The largest rotor angle deviation of the
generators inside the study area is proposed to be used as a threshold to define
the switching instance between the linear reduced model and the hybrid reduced
model.

Multiple study subareas. The adaptive model reduction is used in the
parallelization in space method where the study area is proposed to be divided
into multiple subareas that can be simulated in parallel.

. Adaptive coarse solver. The adaptive model reduction is proposed to be used as
a coarse solver in the parallelization in time Parareal method implemented as
the master-workers algorithm and as the distributed algorithm.

. Tensor decomposition. The tensor decomposition is proposed to be integrated
into the adaptive model reduction to further improve speed and accuracy of the
approach. Taylor series expansion of the system is calculated around multiple

equilibria corresponding to different load levels. The terms of Taylor series
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expansion are converted to the tensor formant and reduced into smaller matrices

with the help of tensor decomposition.

6.2 Future Work

The following are the potential directions of the future work:

1. Adaptive model reduction based on the nonlinear modal decomposition, where
the local modes of the generators inside the external area are eliminated and the
local modes of the study area and the inter-area modes of oscillations between
the generators inside the study area and the external area are preserved.

2. Hybrid Parareal algorithm, where the coarse solution inside a node of a high-
performance computing system is propagated and corrected using the master-
workers algorithm, and the coarse propagation between nodes is performed

using the distributed algorithm.
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