
 

 

  
Abstract— This paper is focused in application of a self – tuning 

predictive controller for real – time control of a three – tank – system 
laboratory model. The objective laboratory model is a two input – 
two output (TITO) nonlinear system. It is based on experience with 
authentic industrial control applications. The controller integrates a 
predictive control synthesis based on a multivariable state – space 
model of the controlled system and an on – line identification of an 
ARX model corresponding to the state – space model. The model 
parameters are recursively estimated using the recursive least squares 
method with the directional forgetting. The control algorithm is 
based on the Generalised Predictive Control (GPC) method. The 
optimization was realized by minimization of a quadratic objective 
function. Results of real-time experiments are also included. 
 

Keywords—About four key words or phrases in alphabetical 
order, separated by commas.  

I. INTRODUCTION 
YPICAL technological processes require the 

simultaneous control of several variables related to one 
system. Each input may influence all system outputs. The 
three – tank – system in Fig. 1 is a typical multivariable 
nonlinear system with significant cross – coupling. The design 
of a controller for such a system must be quite sophisticated if 
the system is to be controlled adequately. Simple 
decentralized PI or PID controllers largely do not yield 
satisfactory results. There are many different advanced 
methods of controlling multi-input–multi-output (MIMO) 
systems. The problem of selecting an appropriate control 
technique often arises. Perhaps the most popular way of 
controlling MIMO processes is by designing decoupling 
compensators to suppress the interactions (e.g. [1]) and the 
designing multiple SISO controllers (e.g. [2]). This requires 
determining how to pair the controlled and manipulated 
variables and that the plant has the same number of inputs and 
outputs. One of the most effective approaches to control of 
multivariable systems is model predictive control (MPC) [3], 
[4], [5], [6], [7], [8], [9], [10]. An advantage of model 
predictive control is that multivariable systems can be handled 
in a straightforward manner. When using most of other 
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approaches, the control actions are taken based on past errors. 
MPC uses also future values of the reference signals.   

The aim of this contribution is implementation of an 
adaptive predictive controller for control of the three – tank – 
system laboratory model. The design of the controller is based 
on a state – space model. An initial state – space model was 
constructed according to first principles and physical rules. 
The parameters of the system were not recognizable. 
Moreover, the laboratory model is a nonlinear system with 
variable parameters and its description by a linear model is 
valid only in a neighbourhood of a steady state. Self-tuning 
controllers [11], [12] are a possible approach to the control of 
this kind of system. However, the state – space description is 
not quite suitable for a recursive identification of the 
parameters of the process which is performed during control 
with self – tuning controllers. The state space model was then 
converted to a model in the form of difference equations. This 
model is suitable for the recursive identification. So the 
proposed approach combines both types of models. The state 
– space model is used for the controllers design and the 
corresponding input/output model for the estimation of the 
unknown parameters. Of course it is possible to base the 
controllers design on the input/output model as well. But the 
main theoretical results of predictive control come from a state 
space formulation, which can be used easily both for SISO 
and MIMO systems. It also enables to solve tasks which are 
unsolvable when using an input/output model. For example 
control with state constraints.  

Reverse conversion of the difference equations to the 
original state – space model is not possible. It is explained in 
section 3. An alternative state – space model was than 
established and used for the controllers design. This model 
corresponds to the original model despite the fact that it has a 
different structure. So it is possible to assume that this model 
describes main properties of the controlled process as well as 
the original model.   

The Generalised Predictive Control (GPC) method [13], 
[14] was then applied for the controllers design. In the 
optimization part of the algorithm a quadratic cost function 
was used. The algorithm takes into account constraints of 
manipulated variables. The recursive least squares method 
with the directional forgetting is used in the identification part.  
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II. THREE-TANK-SYSTEM 
The three – tank – system laboratory model can be viewed 

as a prototype of many industrial applications in process 
industry, such as chemical and petrochemical plants, oil and 
gas systems [15]. The typical control issue involved in the 
system is how to keep the desired liquid level in each tank. 
The principle scheme of the model is shown in Fig 1. The 
basic apparatus consists of three plexiglass tanks numbered 
from left to right as T1, T2 and T3. These are connected 
serially with each other by cylindrical pipes. Liquid, which is 
collected in a reservoir, is pumped into the first and the third 
tanks to maintain their levels. The level in the tank T2 is a 
response which is uncontrollable. It affects the level in the two 
end tanks. Each tank is equipped with a static pressure sensor, 
which gives a voltage output proportional to the level of liquid 
in the tank. 

Q1 and Q2 are the flow rates of the pumps 1 and 2. Two 
variable speed pumps driven by DC motor are used in this 
apparatus. These pumps are designed to give an accurate well 
defined flow per rotation. Thus, the flow rate provided by 
each pump is proportional to the voltage applied to its DC 
motor.  

There are six manual valves V1, V2...V6 that can be used to 
vary the configuration of the process or to introduce 
disturbances or faults. In our case the apparatus was 
configured so that the valves V3 and V5 were closed and the 
remaining valves were open. As q1 is denoted the flow rate 
between the tanks T1 and T2, q2 is the flow rate between the 
tanks T2 and T3. The flow rates q4 and q6 represent leakages 
from the tanks T1 and T3.  

The model was controlled as a two input – two output 
(TITO) system. The outputs are controllable liquid levels of 
the tanks T1 and T2 and the inputs are the pump flow rates Q1 
and Q2. Each pump flow rate affects both liquid levels. This is 
the coupling. The systems inputs and outputs interact and the 
whole system is a multivariable system. 

The three – tank – system is a nonlinear system with 
variable parameters. The nonlinear behaviour is caused by 
characteristics of the valves, pipes and pumps. Additional 
nonlinearities are due to air bubbles which are present in the 
pipes and valves. The bubbles deflate from the pipe system in 
certain moments.  

 
Fig. 1 Principle scheme of three-tank-system 

III. MATHEMATICAL MODEL OF THE CONTROLLED SYSTEM  
If we consider flow rates balances we get relatively simple 

dynamic mathematical model as a set of three differential 
equations which can be written in a form (1). This simplified 
model is suitable as further technique will consider estimation 
of the models coefficients according to measured data and 
direct determination of the constants will not be considered. 
We can define following parameters: section of cylinder S (the 
tanks have equal sections) and liquid levels in particular tanks 
h1, h2, h3. We will consider two input variables which are flow 
rates of the pumps Q1 and Q2, two output variables 
represented by liquid levels of the two outer tanks h1 and h3 
and three state variables which are the liquid levels h1, h2, h3.  
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Flow rate of liquid through a valve is proportional to square 
root of a pressure difference in front of and behind the valve. 
Particular flow rates in our case are then given by following 
equations. 
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Where k1 and k2 are constants. The model then takes 
following form 
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The model is described by the nonlinear equations which 
express relations among state variables. Initial conditions in 
equations (1) we can obtain by solving of a steady state 
model. In the steady state holds 
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                                                               (4) 

After substitution of (4) to (3) we can obtain expressions 
for computation of steady state liquid levels and then position 
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of the operational point ( )sss hhh 321 ,,  
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We can compute a linearized mathematical model which is 
a differential model. Let us establish differences of liquid 
levels and input flow rates from the initial steady state as 
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Now we transcribe equations (1) to the differential form 
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The differences are then substituted by linear terms of their 
Taylor polynomial in the neighbourhood of the operational 
point ( )sss hhh 321 ,,  
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The coefficients K1, K2 are dependant on the operational 
point position. After substitution of (8), (9), (10) and (11) to 
(7) we obtain the linearized differential model of the system in 
the form 
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with zero initial conditions. The model can be transcribed to 
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The state equations can be transcribed to a matrix form 
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The output equation can be defined as 
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The continuous – time process model can be transferred for 
a given sampling time Tv to a discrete time state – space model 
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The discrete state – space model which structure 
corresponds to the continuous – time state space model (15) 
and (16) takes the following general form 
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The model has 15 unknown parameters. This state – space 
model, which is in fact based on first principles and perceives 
physical nature of the process, can be transcribed to difference 
equations 
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This model is suitable for a recursive identification of the 
unknown parameters of the process and was used in the 
identification part. From the equations (20) it is obvious that 
conversion of the obtained difference equations to the original 
state – space form is not possible. The difference equations 

were then converted to an alternative state – space model. This 
model corresponds to the original model despite the fact that it 
has a different structure. So it is possible to assume that this 
model describes main nature of the controlled process as well 
as the original model.  

New state variables were established. The model has four 
state variables defined as follows 
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The state – space model then takes the form 
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For purposes of the controller design it was necessary to 

incorporate an integrator to the model of the process in order 
to achieve zero permanent control error. One possibility is to 
define a new state vector by making  
u(k-1) an additional internal state. 
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Then we can obtain an augmented state space – model in 
the form 
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This model was then used for the controller’s design. 

IV. DESIGN OF THE CONTROLLER 
The basic idea of MPC is to use a model of a controlled 

process to predict N future outputs of the process. A trajectory 
of future manipulated variables is given by solving an 
optimization problem incorporating a suitable cost function 
and constraints. Only the first element of the obtained control 
sequence is applied. The whole procedure is repeated in 
following sampling period. This principle is known as the 
receding horizon strategy. The computation of a control law of 
MPC is based on minimization of the following criterion 

( ) ( ) ( )∑∑
==

+Δ++=
uN

j

N

j
jkjkkJ

1

2

1

2 ue λ                                  (26) 

where e(k+j) is a vector of predicted control errors, Δu(k+j) is 
a vector of future increments of manipulated variables (for the 
system with two inputs and two outputs each vector has two 
elements), N is length of the prediction horizon, Nu is length 
of the control horizon and λ is a weighting factor of control 
increments.  

A predictor in a vector form is given by 

0ˆ yuGy +Δ=                                                                       (27) 
where ŷ  is a vector of system predictions along the horizon 
of the length N, Δu is a vector of control increments over the 
horizon Nu, y0 is the free response vector. G is a matrix of the 
dynamics given as 
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where sub-matrices Gi have dimension 2x2 and contain values 
of the step sequence. 

Predictions over the horizon N are computed recursively 
using (24), resulting in 

( ) ( ) ( )∑
−

=

−− +Δ+=+
1

0

1ˆˆ
j

i

ijj ikkjk uBACxACy                      (29) 

where ( )kx̂  is an estimation of the state vector ( )kx . As the 
state vector (21) is not accessible an observer must be 
included. In this case was applied a Kalman filter [16] and the 
unknown state is estimated on the basis of the last measured 
input and output. 

The equation (27) can be after substitution written as 

( ) uGxFy Δ+= kˆˆ                                                                  (30) 

The free and forced responses are then computed 
recursively. 

j
ij ACF =                                                                            (31) 
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The criterion (26) can be written in a general vector form 

( ) ( ) uuwywy ΔΔ+−−= TTJ λˆˆ                                        (35) 

where w is a vector of the reference trajectory.  The criterion 
can be modified using the expression (30) to 

uHuug ΔΔ+Δ= TTJ 2                                                         (36) 

where the gradient g and the Hess matrix H are defined by 
following expressions 

( )( )wxFGg −= kTT ˆ                                                             (37) 

IGGH λ+= T                                                                     (38) 

In case of the three – tank – system, actuators have a 
limited range of action. Voltages applied to the DC motors can 
vary between fixed limits. MPC can consider constrained 
input and output signals in the process of the controller design 
[17]. This is one of the major advantages of predictive control. 
General formulation of predictive control with constraints is 
then as follows 

uHuug
u

ΔΔ+Δ
Δ

TT2min                                                        (39) 

owing to 

buA ≤Δ                                                                               (40) 

The inequality (40) expresses the constraints in a compact 
form. In our case of the constrained input signals particular 
matrices can be expressed as 
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Forms of the matrices for an arbitrary control horizon are as 
follows 
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The optimization problem is then solved numerically by 
quadratic programming in each sampling period. The first 
element of the resulting vector is then applied as the increment 
of the manipulated variable. 

The design of the controller is based on the state – space 
model which has significant advantages in predictive control. 
However, this model is not suitable for recursive estimation of 
its parameters. This requirement suits an input – output model. 
A problem is that it is not possible to simply convert a state – 
space model to an input – output model and vice versa. An 
alternative possible conversion which enables both controllers 
design based on the state – space model and simple recursive 
estimation of its parameters is presented in the previous 
section.  

V. SYSTEM IDENTIFICATION  
The control algorithm was applied as self-tuning controller 

(as discussed in section 1). The unknown parameters of the 
controlled process were identified on the basis of the model in 
the form of the difference equations (19) which are suitable 
for recursive identification. Self-tuning control is based on the 
online identification of a model of a controlled process. Each 

self – tuning controller consists of an on – line identification 
part and a control part.  

Various discrete linear models are used to describe dynamic 
behaviour of controlled systems; see for example the overview 
in [18]. The most widely applied linear dynamic model is the 
ARX model. Usually the ARX model is tested first and more 
complex model structures are only examined if it does not 
perform satisfactorily. However, the ARX model matches the 
structure of many real processes. The parameters can be easily 
estimated by a linear least-squares technique. It is suitable also 
for the proposed difference equations (19). 

The ARX model describing the TITO process is defined as  
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where es1(k), es2(k) are non-measurable disturbances.  
Parameter vectors are specified as follows: 

( ) [ ]432143211 b,b,b,b,a,a,a,akT =Θ                                    (44) 
( ) [ ]876587652 b,b,b,b,a,a,a,akT =Θ  

The data vector is 

( ) ( ) ( ) ( )[
( ) ( ) ( ) ( ) ( )]2121,2
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211

−−−−−
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k,uk,uk,ukuky
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The aim of the identification is a recursive estimation of 
unknown model parameters Θ   on the basis of the inputs and 
the outputs considering the time moment k, {y(i), u(i), i = k, k 
- 1, k - 2, ..., k0} (where k0  is an initial time of the 
identification). We are looking for a vector Θ̂  minimizing the 
criterion  
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where 
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When using the least squares method, the influence of all 
measured input and output samples to the parameter estimates 
is the same. This is inconvenient for the identification of 
nonlinear systems, where changes in the identified parameters 
are expected. Tracking of changes of the parameters can be 
achieved using exponential forgetting. This technique ensues 
from the assumption that new data describe the dynamics of 
an object better than older data, which are multiplied by 
smaller weighting coefficients. However, if the identified 
plant is insufficiently activated, the input and output signals 
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are steady (this situation is typical for closed control systems), 
and the exponential forgetting factor can cause numerical 
instability of the identification algorithm. A possible solution 
of this problem is the application of adaptive directional 
forgetting [19]. This technique changes the forgetting factor 
according to the level of information in the data. In view of 
the parameter changes in the nonlinear three – tank – system 
and the expected insufficient activation of the controlled 
system, the recursive least squares method with adaptive 
directional forgetting was applied. Then we minimize a 
modified criterion 

( ) ( ) ( )∑
=

−=
k

ki
s

ik
k ieJ

0

22ϕΘ                                                         (48) 

where 10 2 ≤〈ϕ   is the exponential forgetting factor. 
The vector of parameters is actualised according to the 

following recursive expression 
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where 

( ) ( ) ( ) ( )1111 −−−=− kkkk T φCφξ                                      (50) 

is an auxiliary scalar and 

( ) ( ) ( ) ( )11ˆ1ˆ −−−=− kkkyke T φΘ                                       (51) 

is a prediction error. If ξ(tk) > 0, then the square covariance 
matrix C is actualised according to following expression 
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If, 0)1( =−kξ then 

( ) ( )1−= kk CC                                                                     (54) 

The directional forgetting factor is computed in each 
sampling period according to the expression 
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are auxiliary variables. 

VI. EXPERIMENTAL EXAMPLES  
The model was connected with a PC equipped with a 

control and measurement PC card. Matlab and Real Time 
Toolbox were used to control the system. 

Because the design of the predictive controller takes into 
account constraints of the input signals the constrained case, 
which is important for practical reasons, is presented. The 
constrained case means that a manipulated variable reaches a 
maximum limit and then, after a transient action, stabilizes 
between the limits. 

An approximate sampling period was found on the basis of 
measured step responses so that ten samples cover important 
part of the step response. The sampling period was tuned 
experimentally and the best value was T0 = 5s.  

The tuning parameters that are the prediction and control 
horizons and the weighting coefficient λ were also tuned 
experimentally. Length of the prediction horizon, which 
should cover the important part of the step response, was set 
to N = 15. Length of the control horizon was also set to Nu = 
15. With increasing control weighting factor λ decreases 
quality of asymptotic tracking. On the other hand, courses of 
the manipulated variables get steadier. As the best value of the 
weighting factor appeared to be 0.1 when the manipulated 
variables were significantly calmed down and asymptotic 
tracking had still good performance.The coefficient λ was then 
taken as equal to 0.1. 

In Fig. 2 are shown time responses of the control when the 
initial parameter estimates were chosen without any a priori 
information. The reference signals contain frequent step 
changes in the beginning of experiments to activate input and 
output signals and improve the identification. The controlled 
variables y1 and y2 are liquid levels of the tanks T1 and T2. 
The manipulated variables u1 and u2 are flow rates of liquid 
into the tanks. As w1 and w2 are denoted desired liquid levels 
in particular tanks (reference signals). 

In subsequent experiments, the initial parameter estimates 
were set to the values obtained at the end of the previous 
experiment. The initial conditions of the recursive 
identification were also modified by reducing the diagonal 
elements of the square covariance matrix that represent 
variances of the identified parameters. The reference 
trajectories were chosen to have the same values at the 
beginning as they had at the end of the previous experiments. 
This is because the system is nonlinear and the identified 
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parameters were valid only for particular steady states. Time 
responses of these experiments are shown in Fig 3. 

 
Fig. 2  Predictive control of three – tank – system  

 
Fig. 3  Predictive control of three – tank – system: experiment 

with steady parameters 

VII. CONCLUSIONS 
The model predictive self - tuning controller was proposed 

and verified by control of the nonlinear time varying system. 
The proposed approach combines both state – space and input 
output models of the controlled system. State space models do 
not enable simple recursive parameters estimation. On the 
other hand predictive controllers based on state – space 
formulation are better for handling of multivariable systems 
and they also enable to solve tasks which are unsolvable when 
using input/output models. State – space model is then used 
for the controllers design and the corresponding input/output 
model for the estimation of the unknown parameters of the 
process. The original state – space model based on first 
principles and physical rules was converted to the difference 
equations. Reverse conversion of the difference equations to 
the original state – space form was not possible. An 
alternative state – space model was than established and used 
for the controllers design. It is possible to assume that this 
model describes main properties of the controlled process as 

well as the original model. 
General principles were elaborated on a specific system 

with two inputs and two outputs that is often applicable in 
industrial practice. Control algorithm based on the specific 
model was derived in the form of self-contained expressions 
that is especially useful for practical applications of control on 
common industrial devices. 

The performance of the controller in the adaptation phase 
was significantly improved by choosing the initial parameter 
estimates with a priori information. 

An advantage of the proposed strategy lies in its simplicity 
and applicability. The control tests executed on the laboratory 
model provided satisfactory results, even though its nonlinear 
dynamics were described by a linear model. The laboratory 
model simulates technological processes that frequently occur 
in industry, and the tests proved that the proposed method 
could be implemented and used successfully to control such 
processes. There is also an assumption of possible 
implementation for other processes of different physical 
nature which have character of a system with two inputs and 
two outputs.  
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