
Adaptive
Real-Time Rendering

Fredo Durand
MIT

Digression:
Photography & Video

• Enhancement
– Contrast management
– Flash photography
– Capture style & skills from professionals

• Tools
– Non-linear filtering
– Gradient domain
– Statistical analysis

• High Computational cost
• The Image is a stream

e.g. Contrast management
• Real world: high range of intensity

(often 1: 100,000)
• Display or print have a limited contrast

(1:50)

10-6 106

10-6 106

Real world

Picture

Low contrast

High dynamic range

Live demo

• 1.6 GHz Pentium 4

Adaptive
Real-Time Rendering

Fredo Durand
MIT

Real Time Rendering: Context
• Send geometry: mostly polygons
• Rasterization
• Visibility (z buffer)

• Appearance
– Programmable “shaders”

Quality: amazing

Rules of the game

• Real time is Important
• Highly parallelizable
• We can degrade quality
• Multiple platforms/architectures

– PC, PlayStation, GameCube, Xbox

• Various levels of parallelism
• Before an application (e.g. game) is

shipped, a lot of optimization is affordable

Goals in Real-time graphics

• Better
– Nicer appearance, better lighting

• Faster
– Culling (do not draw what is hidden)
– Simplification (for distant objects)
– Optimizations (hardware specific)

• Easier
– For the programmer
– For the artists

Better: e.g Fake soft shadows

shadow map b i c u b i c f i l t e r

O u r me t hod (t = 0 . 0 2) O u r me t hod (t = 0 . 0 8)

1 7 ms 1 4 2 ms

2 2 ms 2 4 ms

With Eric Chan

Faster
• Simplification:

cheaper model
for distant objects

• Culling
– Do not waste

resources on
hidden objects

• Optimization
– hardware specific

Hot Topic: Shader Simplification

• Adapt shader to hardware:

• Manipulation of expression tree
• Lossless: Hardware virtualization

– [Chan et al. 02]
• Lossy: Degrade shader quality

– Find simplification operations (peephole)
– Predict impact of simplification

Simplification metric

• Objective: Geometric, L2
• Subjective: perceptual

– Use psychophysics
– Just Noticeable difference
– Masking (frequency content)
– Saliency
– Ad hoc developer judgment

Faster
• Simplification:

cheaper model
for distant objects

• Culling
– Do not waste

resources on
hidden objects

• Optimization
– hardware specific

• point-based / From region (cells)

• Occluders / Portals

• Object space / Image space

Visibility culling – many choices

Additional degrees of freedom

• Spatial hierarchy
– Which hierarchy?
– Which depth?

• Latency issues
– E.g. occlusion queries:

• Ask graphics hardware if object is visible
• Large delay

– Importance of scheduling

Faster
• Simplification:

cheaper model
for distant objects

• Culling
– Do not waste

resources on
hidden objects

• Optimization
– hardware specific

Faster: Low-level optimization

• Improve bandwidth/caching
– Triangle strips
– Vertex cache
– Vertex arrays

• Avoid context switch
– Sort by material
– But conflicts with spatial hierarchy

Dealing with complexity

• Better and faster conflict with easier

=>Put more intelligence in the system
– Inspiration from compilation, optimization,

linear algebra packages

Adaptive real-time rendering

• Problem
– Writing a fast rendering engine is a black art

– Performances depend on
• The hardware configuration (CPU, GPU bandwidth, memory)

• The scene properties

– It is impossible to optimize for all configurations

• Solution: automatic optimization
and self-adaptive systems

Adaptive real-time rendering

• High-level
– Choose acceleration strategies
– Optimize parameters
– Scheduling, latency (e.g. culling queries)

• Low level
– Optimize how geometry is sent
– Sort by material, find a smart order of triangles for

better caching

• Hardware level
– Reconfigure hardware
– E.g. shadows in Doom 3 make most of the

programmable transistors idle

Rules of the game

• Real time is Important
• Very repetitive computation
• We can degrade quality
• Multiple platforms/architectures

– PC, PlayStation, GameCube, Xbox

• Various levels of parallelism
• Before an application (e.g. game) is

shipped, a lot of optimization is affordable

Thanks

Invitation

• Opportunities for much architecture and
compiler research

• One big difference: quality can be
degraded

Real-time shaders

• Capabilities vary tremendously
– Some hardware is not programmable
– Different set of instructions
– Different control structures
– Different speed

• Hard to develop for all platforms
• Developers target for 1 or 2 platforms

Goal

• Systems that can adapt
– To the hardware resources
– To the scene

• Real-time
– Set the minimal frame rate

• Adaptation
– Tune the parameters
– Choose the algorithms
– Static and dynamic

• Longer-term: distributed context

Degrade the image to reach real
time

• Frame rate is more important than image
quality

• Generalize the notion of levels of details
• Study precisely how framerate varies
• Prediction of rendering time
• Control problem
• Perceptual metric to estimate image

degradation

Pervasive computing makes it
harder!

• Very different resources
– PDA, laptop, desktop

• Distributed
– Maybe the framebuffer is on one machine, the

display on the other machine, etc.
– Bandwidth and latency must be taken into

account

• Load varies
– Dynamically adapt to load variation

Challenges

• Flexible architecture
• More flexible acceleration techniques
• Shader simplification and levels of detail
• Transitions between levels of details
• Speed prediction (statistics, law)
• Optimize the algorithms and parameters

High-performance compilation

• Better than scientific computing ;-)
• Industry demand
• Performance matters
• Programs are smaller
• Analysis and profiling
• Result can be changed

Our approach

• 2-scale decomposition of intensity
• Reduce contrast of large scaleOutputLarge-scale

Detail

Color

Feedback & optimization

• If we know the final image, we can
optimize for it

• Reduction operators
• Delay streams and others

– It is easier to optimize when you know the
results

• Adaptive, perception, masking
– Masking
– Gaze

What is the situation?

• Everything needs to be precisely targeted
• Usually choose one or two target platform

and optimize manually
• Each programmer have their favorite algorithms

• Tedious
• Sub-optimal for most platforms

• Real-time is not ensured

Simplification: Billboard clouds
(Decoret, Durand, Sillion and Dorsey)

• Approximate shape by a set of plane

• Project model on these planes => textures

Faster: Low-level optimization

• Improve bandwidth/caching
– Triangle strips
– Vertex cache
– Vertex arrays

• Avoid context switch
– Sort by material

• Electronic Art uses
an art-asset compiler

