
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133489460
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133489460
https://plusone.google.com/share?url=http://www.informit.com/title/9780133489460
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133489460
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133489460/Free-Sample-Chapter

Adaptive
Software
Development
A COLLABORATIVE APPROACH TO
MANAGING COMPLEX SYSTEMS

Also Available from DORSET HOUSE PUBLISHING Co.
Are Your Lights On? How to Figure Out What the Problem Really Is
by Donald C. Gause and Gerald M. Weinberg
ISBN: 0-932633-16-1 Copyright ©1990 176 pages, softcover

Becoming a Technical Leader: An Organic Problem-Solving Approach
by Gerald M. Weinberg foreword by Ken Orr
ISBN: 0-932633-02-1 Copyright ©1986 304 pages, softcover

Complete Systems Analysis: The Workbook, the Textbook, the Answers
by James & Suzanne Robertson foreword by Tom DeMarco
ISBN: 0-932633-50-1 Copyright ©1998,1994 624 pages, softcover

Creating a Software Engineering Culture
by Karl E. Wiegers ISBN: 0-932633-33-1 Copyright ©1996 384 pages, hardcover

Exploring Requirements: Quality Before Design
by Donald C. Gause and Gerald M. Weinberg
ISBN: 0-932633-13-7 Copyright ©1989 320 pages, hardcover

Peopleware: Productive Projects and Teams, 2nd ed.
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-43-9 Copyright ©1999 264 pages, softcover

The Practical Guide to Business Process Reengineering Using IDEFO
by Clarence G. Feldmann foreword by John V. Tieso
ISBN: 0-932633-37-4 Copyright ©1998 240 pages, softcover

Quality Software Management Series by Gerald M. Weinberg
Vol. 1: Systems Thinking
ISBN: 0-932633-22-6 'Copyright ©1992 336 pages, hardcover

Vol. 2: First-Order Measurement
ISBN: 0-932633-24-2 Copyright ©1993 360 pages, hardcover

Vol. 3: Congruent Action
ISBN: 0-932633-28-5 Copyright ©1994 328 pages, hardcover

Vol. 4: Anticipating Change
ISBN: 0-932633-32-3 Copyright ©1997 504 pages, hardcover

Find Out More about These and Other DH Books:
Contact us to request a Book & Video Catalog and a free issue of The Dorset House
Quarterly, or to confirm price and shipping information.

DORSET HOUSE PUBLISHING Co., INC.
353 West 12th Street New York, NY 10014 USA
1-800-DH-BOOKS (1-800-342-6657) 212-620-4053 fax: 212-727-1044
dhpubco@aol.com http://www.dorsethouse.com

http://www.dorsethouse.com

Adaptive
Software
Development
A COLLABORATIVE APPROACH TO
MANAGING COMPLEX SYSTEMS

James A. Highsmith III

foreword by Ken Orr

Dorset House Publishing
353 West 12th Street

New York, NY 10014

Library of Congress Cataloging-in-Publication Data

Highsmith, James A.
Adaptive software development: a collaborative approach to managing

complex systems / James A. Highsmith, III; foreword by Ken Orr.
p. cm.

Includes bibliographical references and index.
ISBN 0-932633-40-4 (softcover)

1. Computer software-Development. 2. Computer Systems-Management.
3. Management information systems. I. Title.

QA76.76.D47 H55 1999
658'.0551-dc21 99-052212

All product and service names appearing herein are trademarks or registered
trademarks or service marks or registered service marks of their respective own-
ers and should be treated as such.

Graphics from TASK FORCE Clip Art appear in Figs. 1.1, 1.2, and 9.6 with per-
mission from New Vision Technologies. Copyright © 1998. All rights reserved.

Cover Design: David McClintock
Cover Photograph: Stuart Ruckman Photography
Author Photograph: Robert Munk Photography

Copyright © 2000 by James A. Highsmith III. Published by Dorset House Publishing
Co., Inc., 353 West 12th Street, New York, NY 10014.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without prior written permission of the publisher.

Distributed in the English language in Singapore, the Philippines, and Southeast
Asia by Alkem Company (S) Pte. Ltd., Singapore; in the English language in India,
Bangladesh, Sri Lanka, Nepal, and Mauritius by Prism Books Pvt., Ltd., Bangalore,
India; and in the English language in Japan by Toppan Co., Ltd., Tokyo, Japan.

Printed in the United States of America

Library of Congress Catalog Number: 99-052212

ISBN: 0-932633-40-4 12 11 10 9 8 7 6

Digital release by Pearson Education, Inc., June, 2013

Dedication

To William Byron Mowery, whose writing influenced me in subtle
ways I am just beginning to understand. Bill Mowery wrote sev-
eral dozen books and published hundreds of articles from the
1920's through the early 1950's. He taught creative writing at New
York University. Although I never met him, he was my grandfa-
ther, and he passed on a love and understanding of writing to my
mother, Dodie, who is an accomplished writer herself. I am
indebted to her for a lifetime of encouragement, and to him for a
legacy I've always wanted to contribute to in my own way.

This page intentionally left blank

Contents

Acknowledgments xv

Permissions Acknowledgments xvii

Foreword xxi

Preface xxiii

Introduction xxix

Part 1 1

1: Software Ascents 3

A Historical Perspective 4

Monumental Software Development 5
Accidental Software Development 7

A Rebirth in World View 9

Complex Adaptive Systems 10
A New World View of Software Development 11
The Challenge of Understanding 13

VII

viii CONTENTS

Components of Adaptive Software Development 14

The Adaptive Conceptual Model 15
The Adaptive Development Model 17

Thriving on Speed and Change 18
The Adaptive (Leadership-Collaboration) Management Model 20
Integrating the Models 22

The Road Ahead 23

Summary 24

2: Thriving at the Edge of Chaos 27

People as Agents 29

Emergence and the Flocking of Boids 31

Characteristics of Complex Adaptive Systems 33
Orderly, Chaotic, and Complex Realms 35

The Adaptive Development Model 37

The Evolution of Software Life Cycles 38
Speculate-Collaborate-Learn 41

Speculate 42

Speculating on a Mission 44

Collaborate 45

Learn 45

Working in a Complex Environment 46

Summary 49

Part 2 51

3: The Project Mission 53

Identify the Mission 55

A Need to Focus 57
A Need to De-Focus 58

Create Mission Artifacts 59

The Project Vision (Charter) 62
The Project Data Sheet 65
The Product Mission Profile 66
The Product Specification Outline 69

CONTENTS ix

Share Mission Values 71

Quality 74
Evaluate the Mission Every Day 77

Focus on Results 77

Summary 79

4: Planning Adaptive Development Cycles 81

Characteristics of Adaptive Cycles 83

Adaptive Cycles Are Mission-Driven 84
Adaptive Cycles Are Component-Based 84
Adaptive Cycles Are Iterative 85
Adaptive Cycles Are Time-Boxed 88
Adaptive Cycles Are Risk-Driven and Change-Tolerant 89

Adaptive Planning Techniques 90

Defining Versions, Cycles, and Builds 91
Cycle Planning Steps 91

Step 1: Conduct the Project Initiation Phase 93
Step 2: Determine the Project Time-Box 94
Step 3: Determine the Optimal Number of Cycles and

the Time-Box for Each 94
Step 4: Write an Objective Statement for Each Cycle 96
Step 5: Assign Primary Components to Cycles 97
Step 6: Assign Technology and Support Components

to Cycles 98
Step 7: Develop a Project Task List 99

Cycle Reviews 100
Cycle Replanning 103

A Hypothetical Cycle Example 103

Cycle 1: Demonstrate Project Viability 104
Primary Components 105
Technology Components 106
Support Components 107

Cycle 2: Explore the Features 107
Primary Components 108
Support Components 108

Cycle 3: Refine Features and Insure Performance 109
Cycle 4: Finalize All Product Components 109

x CONTENTS

The Evolving World of Components 110

Summary 111

5: Great Groups and the Ability to Collaborate 113

Barriers to Collaboration 115

The Essence of Great Groups 117

Using Complexity Concepts to Improve Collaboration 120

Control Parameters 121
The Management Challenge 126

Building Collaborative Groups 126

The Groan Zone 127
Core Values 129
Collaboration's Pitfalls 132
Rancorous Collaboration 134

Joint Application Development 135

Facilitation 136
JAD Roles 137
Techniques for Successful JADs 139

Prepare 139
Conduct the Session 140
Produce the Documents 140

Stable Change 140

Summary 141

6: Learning: Models, Techniques, and Cycle Review
Practices 143

What Is "Learning"? 144

Senge's Learning Model 147

A CAS Learning Model 149

Innovation and Change 151

Learning Techniques 154

Customer Focus-Group Reviews 156

A Partnership with Customers 157

CONTENTS xi

Objectives of CFG Reviews 160
Preparing for the CFG Session 163

Preparation Tips 163
Conducting the CFG Session 164

Conducting Tips 165
Evaluating Focus-Group Results 166

Software Inspections 167

Preparing for the Inspection 169
Conducting the Inspection 170

Inspection Tips 170
Evaluating Inspection Results 170

Project Postmortems 171

Preparing for the Postmortem 172
Conducting the Postmortem Session 173
Evaluating Postmortem Results 174

Summary 174

Part 3 177

7: Why Even Good Managers Cause Projects to Fail 179

Disruptive Technologies 180

High Change 182

No Silver Bullet 185

Are Organizations True Complex Adaptive Systems? 188

Requisite Variety 190

Project Ecosystems 190

Value Disciplines 191
Tornado Marketing 193

The Technology Adoption Life Cycle 194
The Chasm 196
Implications 197

Simplicity and Complexity 199

Summary 200

xii CONTENTS

8: Adaptive Management 202

The Adaptive (Leadership-Collaboration) Management
Model 205

Leadership 209
Collaboration 211
Accountability 212

Creating an Adaptive Culture 213

Distributed Governance 214
Poise 216

Compromise 217
Managing the Emotional Roller Coaster 219
Holding Anxiety 221
Accidental Success 222

Balance 223

The Progression from Process to Pattern 223

A Process Classification 225
Rigorous Processes 227
Flexible Processes 228
Problem-Solving Processes 229

Patterns 229

Poised at the Edge of Chaos 232

Summary 233

9: Workstate Life Cycle Management 235

Breaking the Workflow Mindset 239

The Workstate of a Component 241

Using Partial Information 241
Component Life Cycles 245
Component Types and States 249

1. Outline (Conceptual) State 249
2. Detail (Model) State 249
3. Reviewed (Revised) State 250
4. Approved (Available) State 250

Constructing an Advanced Adaptive Life Cycle 250

Cycles (Phases) 252
Milestones (Gates) 254

CONTENTS xiii

Managing Component Rigor 255
Increase Component Rigor 256
Increase Emphasis on Dependencies 257
Refine State Transitions 258

Managing Workflow in an Adaptive Environment 258

Summary 259

10: Structural Collaboration 261

The Critical Distinction Between Content and Context 264

Collaboration Services and Tools 268
Large Projects and Virtual Teams 268

Nodes and Links 271
Organic Growth 273
Push and Pull 275
Who and What 275

Collaboration Tools 276
The Collaboration Facilitator 280

Collaboration and Emergence 281
The Boundaries of Self-Organization 283

Order for Free 284
Tuning Collaboration Networks 286
Why Optimization Stifles Emergence 287

Eight Guidelines for Applying Rigor to Project Work 289

Summary 292

11: Managing Project Time Cycles 294

A Project Management Model 295

Initiate the Project 296
Identify the Project Team 298
Create the Project Mission Data 299
Define the Project Approach 300
Increase Speed by Starting Early 301

Plan the Project 301

Time-Boxing Projects 303
Staff Fragmentation 305

xiv CONTENTS

Define the Work 307
Develop the Project Schedule 307
Analyze the Resource Requirements 308
Assess Project Risk 309

Manage the Project 311

Persisting 311
Monitoring Progress 312
Finishing Strong 315
Containing Change 316

Bounding Change 317
Ignoring Change 317
Postponing Change 318
Filtering Change 318
Replanning Based on Change 318
Buffering the Project Schedule 319

Close the Project 319

Summary 319

12: Dawdling, McLuhan, and Thin Air 321

Dawdling 322

McLuhan 323

What Does Adaptive Software Development Enhance ? 323
What Does Adaptive Software Development Make Obsolete? 324
What Does Adaptive Software Development Bring Back? 325
What Does Adaptive Software Development Flip Into? 325

Organizational Growth 326

Surviving in Thin Air 331

Bibliography 333

Index 349

Acknowledgments

The book before you is a result of creative collaboration. While I
take full responsibility for the content, its quality would be
greatly diminished without the efforts of my colleagues and

clients—the people who have contributed in a variety of ways toward
the book's completion.

Ken Orr, with whom I have worked for nearly twenty years. I have
always been in awe of Ken's ability to conceptualize and create visions
of the possible. Over the years, my relationship with Ken has spanned
that of customer, employee, coworker, and colleague—but most impor-
tantly, friend.

Lynne Nix, with whom I also have worked for many years. Lynne
is not only one of the best project managers I have ever known, but she
is the best at conveying her knowledge to others. A number of the proj-
ect management ideas in this book originated with Lynne.

Jerry Weinberg, whose writing has influenced me since the early
1970's. I've known Jerry since the mid-1980's and have always been
inspired by his emphasis on and insight into the human side of our
technological world.

Sam Bayer, who co-developed many of the RAD practices in this
book and with whom I've worked on a number of accelerated develop-

xv

xvi ACKNOWLEDGMENTS

ment projects. As in any good collaborative effort, distinctions as to
which of the ideas were mine and which were Sam's have long since
been lost. Sam has an uncanny ability to extract the essence of a complex
situation and communicate that essence in a cogent, simple way. His
comments on draft versions of this book helped me focus more clearly.

Jerry Gordon, whose ideas impacted this book in many ways. I
first met Jerry nearly twenty years ago when I was doing "structured
stuff." Jerry introduced me to mountaineering and climbing. Many of
the climbing stories in the book are based on trips he and I took. Dur-
ing the years we have worked together (on some form of business or
another), Jerry was actually willing to try some of my ideas about
adaptive development when they were still nascent.

Steve Smith, who read this manuscript more times, and in more
different incarnations of it, than anyone else. His comments and inci-
sive questions always expanded my thinking and were greatly appreci-
ated. Steve and I share two joys—discussing difficult issues and taking
long, arduous hikes.

Others who have contributed directly, and sometimes indirectly,
include Cheryl Allen, Jim Davis, Rob Arnold, James Bach, Karen
Coburn, Tom DeMarco, Anne Farbman, Dan Larlee, Adele Goldberg,
Warren Keuffel, Martyn Jones, Steve McMenamin, Lou Russell, Robert
Charette, Larry Proctor, George Engleberg, James Odell, Bruce Watson,
George Johnson, and Wayne Collier. I thank them all for the wisdom
they have so generously shared.

I had support from many friends in the Salt Lake climbing commu-
nity who were party to the analogies used in the book. Among the
many, I especially thank Amy Irvine, who first taught me that move-
ment skills were more important than strength, and Doug Hunter, who
helped me refine those skills. Thanks also to Mac Lund, my great
friend and regular climbing, skiing, and hiking partner, and to Bob
Richards, Brian Mecham, Dale Goddard, and the crew at Rockreation.

To my wife, Wendie, who encouraged me throughout the ups and
downs of the writing process and who put up with my sleepless nights
and pirated weekend mornings, I am profoundly grateful. To daugh-
ters Nikki and Debbie, and to the other Jim, my father, I am thankful for
their support and encouragement.

I never truly understood the relationship between authors and
publishers—now I do. The staff at Dorset House that worked with me
on this book is exceptional. Mike Lumelsky, Matt McDonald, Bob Hay,
David McClintock, and Wendy Eakin were all part of the collaborative
effort that turned a manuscript into a polished product. My thanks to
all of them.

Permissions
Acknowledgments

p. xxx: Material from Warren Keuffel, "People-Based Processes: a RADical
Concept." Software Development (November 1995), p. 37. Reprinted with per-
mission.

pp. 3-26: Material adapted from Jim Highsmith, "Software Ascents." Amer-
ican Programmer (June 1992), pp. 20-26. Reprinted with permission.

pp. 8; 37; 285; 286: Material from Stuart Kauffman, At Home in the Uni-
verse. Copyright © 1995 by Stuart Kauffman, pp. vii; 15; 100; 84. Reprinted by
permission of Oxford University Press, Inc., and Brockman, Inc. All rights
reserved.

p. 9: Reprinted from W. Brian Arthur, "Increasing Returns and the New
World of Business." Harvard Business Review (July-August 1996), pp. 100, 101,
102, 107. Reprinted with permission.

pp. 9ff.: Material adapted from Jim Highsmith, "Messy, Exciting, and
Anxiety-Ridden: Adaptive Software Development." American Programmer
(April 1997), pp. 23-29. Reprinted with permission.

pp. 10; 329: Material from George Johnson, Fire in the Mind: Science, Faith,
and the Search for Order. Copyright © 1995, pp. 235; 130. Reprinted by permis-
sion of Vintage Books, Random House, Inc. All rights reserved.

pp. 11; 58; 59; 143; 202; 205: Reprinted from Arie de Geus, The Living Com-
pany: Habits for Survival in a Turbulent Business Economy. Boston: Harvard Busi-
ness School Press, 1997, pp. 11; 155; 46; 157; 140; 3. Reprinted with permission.

XVII

xviii PERMISSIONS ACKNOWLEDGMENTS

pp. 13; 182: Material from Michael Crichton, The Lost World. Copyright © 1995,
pp. 2; 2-3. Reprinted by permission of Alfred A. Knopf, Random House, Inc. All
rights reserved.

p. 13: Material from Scott Adams, The Dilbert Principle. Copyright © 1996
HarperBusiness, p. 2. All rights reserved.

pp. 15; 45; 147; 148; 149: Material from Peter M. Senge, The Fifth Discipline.
Copyright © 1990 by Peter M. Senge, pp. xiv; 14; 3; 68, 69; 7. Reprinted by permis-
sion of Doubleday, a division of Bantam Doubleday Dell Publishing Group, Inc. All
rights reserved.

pp. 17; 241; 243; 301: Material reprinted by permission of the publisher. From
Preston Smith and Donald Reinertsen, Developing Products in Half the Time: New Rules,
New Tools, 2nd ed. John Wiley & Sons, 1997, pp. 3,10; 153; 162; 44, 46.

p. 20: Material from Robert D. Hof, "Netspeed at Netscape/' Business Week (Feb-
ruary 10,1997), p. 48. Reprinted with permission.

pp. 31; 33: Material from Peter Coveney and Roger Highfield, Frontiers of Com-
plexity: The Search for Order in a Chaotic World. Copyright © 1995, pp. 426; 7.
Reprinted by permission of Fawcett Columbine, Random House, Inc. All rights
reserved.

pp. 32; 36; 124; 126; 188; 188-89; 205: Reprinted with permission of the publisher.
From Complexity & Creativity in Organizations, pp. 274; 81; 181; 182-83; 7; 71; 152.
Copyright © 1996 by Ralph D. Stacey, Berrett-Koehler Publishers, Inc., San Francisco.
All rights reserved.

pp. 34; 150: Material from J.H. Holland, Hidden Order, pp. 11; 53. © 1995 John H.
Holland. Reprinted by permission of Addison Wesley Longman, Inc.

pp. 35; 121; 261; 331: Material reprinted with permission of the publisher. From
Leadership & the New Science: Learning About Organizations from an Orderly Universe,
pp. 143; 7, 144; 95; 146. Copyright © 1992 by Margaret J. Wheatley Berrett-Koehler
Publishers, Inc., San Francisco. All rights reserved.

pp. 42; 45; 77; 117; 118; 119; 138-39; 210; 211; 222: Material from W. Bennis and P.
Biederman, Organizing Genius, pp. 40; 131; 214; 1; 207, 208; 16; 41-42; 201; 200; 214. ©
1997 Warren Bennis and Patricia Ward Biederman. Foreword © 1997 Charles Handy
Reprinted by permission of Addison Wesley Longman, Inc.

p. 45: Material from Michael Schrage, No More Teams: Mastering the Dynamics of
Creative Collaboration. Published by Doubleday, a division of Bantam Doubleday Dell
Publishing Group, Inc., 1989, p. 4. All rights reserved.

pp. 46; 294; 297; 308: Material from Capers Jones, Patterns of Software Systems
Failure and Success. International Thomson Computer Press, 1996, pp. xxvii; xxvii; 51;
14. Reprinted by permission of the author. All rights reserved.

pp. 53; 54: Reprinted with the permission of Simon & Schuster from Undaunted
Courage by Stephen E. Ambrose. Copyright © 1996 by Ambrose-Tubbs, pp. 94; 94, 95.

pp. 55; 91; 127; 213: Material from Dynamics of Software Development by Jim
McCarthy, pp. 80, 81; 111; 23; 99. Published by Microsoft Press. Copyright 1995. All
rights reserved.

p. 55: Material from Steve Andreas and Charles Faulkner, NLP: The New Technol-
ogy of Achievement. Copyright © 1994 by Steve Andreas and Charles Faulkner, p. 80.

PERMISSIONS ACKNOWLEDGMENTS xix

Reprinted by permission of Quill Trade Paperback, an imprint of William Morrow &
Co., Inc.

p. 60: Material from Jim Johnson, "Creating Chaos." American Programmer (July
1995), pp. 4, 5. Reprinted with permission.

p. 61: Material from Tom Peters, Thriving on Chaos. Copyright © 1987 Tom
Peters, p. 486. Reprinted by permission of Alfred A. Knopf, Random House. All
rights reserved.

pp. 63-64; 141: Material from Crossing the Chasm by Geoffrey A. Moore. Copy-
right © 1991 by Geoffrey A. Moore, pp. 161; ix. Reprinted by permission of Harper-
Collins Publishers, Inc.

p. 74: Material from Capers Jones, Applied Software Measurement, pp. 166, 167.
Copyright © 1992. Published by McGraw-Hill. Reprinted by permission of the
author. All rights reserved.

pp. 74; 148: Material from Gerald Weinberg, Quality Software Management, Vol. 1:
Systems Thinking. Copyright © 1992 by Gerald M. Weinberg, p. 7; xiv-xv. Reprinted
by permission of Dorset House Publishing. All rights reserved.

pp. 75; 126; 185: Material from Gerald Weinberg, Quality Software Management,
Vol. 3: Congruent Action. Copyright © 1994 by Gerald M. Weinberg, pp. 212; 80; 1.
Reprinted by permission of Dorset House Publishing. All rights reserved.

p. 82: Material from Dale Goddard and Udo Neumann, Performance Rock Climb-
ing. Copyright © 1993, p. 15. Reprinted by permission of Stackpole Books. All rights
reserved.

pp. 94; 96: Material from Debugging the Development Process by Steve Maguire,
pp. 98; 100. Copyright 1994. Reproduced by permission of Microsoft Press. All
rights reserved.

p. 116: Material from Wallace Stegner, The American West as Living Space. Copy-
right © 1987, pp. 65, 69-70. Reprinted by permission of The University of Michigan
Press. All rights reserved.

pp. 117; 119; 120; 133; 137: Material from Larry Constantine, Constantine on Peo-
pleware. Copyright © 1995, pp. 47; 77; 72; 6, 7; 7. Reprinted by permission of Your-
don Press/Prentice-Hall. All rights reserved.

pp. 118; 327; 332: Material from Tom DeMarco and Timothy Lister, Peopleware:
Productive Projects and Teams, 2nd ed. Copyright © 1999 by Tom DeMarco and Timo-
thy Lister, pp. 123; 9; 127. Reprinted by permission of Dorset House Publishing. All
rights reserved.

p. 118: Material from Jon R. Katzenbach and Douglas K. Smith, The Wisdom of
Teams: Creating the High-Performance Organization. Boston: Harvard Business School
Press, 1993, p. 45. All rights reserved.

p. 120: Material from M. Treacy/F. Wiersema, Discipline of Market Leaders, p. 97.
© 1995 by Michael Treacy, Fred Wiersema, and CSC Index, Inc. Reprinted by permis-
sion of Addison Wesley Longman, Inc.

pp. 131; 193; 194; 195; 196; 198: Material from Geoffrey A. Moore, Inside the Tor-
nado. Copyright © 1995 by Geoffrey A. Moore Consulting, Inc., pp. 237, 238; 10; 15,
14; 15; 25; 7. Reprinted by permission of HarperCollins Publishers, Inc. All rights
reserved.

xx PERMISSIONS ACKNOWLEDGMENTS

p. 136: Material from Tom Gilb, Principles of Software Engineering Management, p.
209. Published by Addison-Wesley Publishing Co. Copyright 1988 Tom Gilb and
Susannah Finzi. Reprinted by permission of the author. All rights reserved.

p. 136: Material from Sam Kaner, Facilitator's Guide to Participatory Decision-Mak-
ing. New Society Publishers, 1996, p. 56. All rights reserved.

p. 148: Material from The Fifth Discipline Fieldbook. Copyright © 1994 by Peter
Senge, Art Kleiner, Charlotte Roberts, Richard B. Ross, and Bryan J. Smith, p. 235.
Reprinted by permission of Doubleday, a division of Bantam Doubleday Dell Pub-
lishing Group, Inc., and The Spieler Agency. All rights reserved.

p. 149: Material from Bradley J. Smith, Nghia Nguyen, and Richard R Vidale,
"Death of a Software Manager: How to Avoid Career Suicide Through Dynamic
Software Process Modeling/' American Programmer (May 1993), p. 11.

p. 157: Material from Thomas J. Peters and Robert H. Waterman, In Search of
Excellence. Harper & Row, 1982, p. 157. Reprinted by permission of HarperCollins
Publishers. All rights reserved.

p. 157: Material from Jim Highsmith, "Order for Free." Software Development
(March 1998), p. 3. Reprinted with permission.

pp. 199-200: Material from Matt Kramer, Making Sense of Wine. William Morrow
& Co., 1989, pp. 23, 24. All rights reserved.

p. 209: Material reprinted from W. Bennis, On Becoming a Leader, Rev. ed., p. xii.
© 1989 by Warren Bennis, Inc. Reprinted by permission of Addison Wesley Long-
man, Inc.

pp. 231; 306; 309: Material from Tom DeMarco, Why Does Software Cost So Much?
Copyright © 1995 by Tom DeMarco, pp. 24; 87-88, 89, 90; 214. Reprinted by permis-
sion of Dorset House Publishing. All rights reserved.

p. 237: Material from Robert H. Schaffer and Harvey A. Thomson, "Successful
Change Programs Begin with Results." Harvard Business Review (January-February
1992), p. 80. Reprinted with permission.

pp. 265; 269: Material reprinted from Virtual Teams, Jessica Lipnack and Jeffrey
Stamps, Copyright © 1997, pp. 86; 189, 7, 168. Reprinted by permission of John
Wiley & Sons, Inc.

p. 283: Material from Jeffrey Goldstein, The Unshackled Organization: Facing the
Challenge of Unpredictability Through Spontaneous Reorganization. Copyright © 1994,
pp. 113,115. Reprinted by permission of Productivity Press. All rights reserved.

p. 287: Material reprinted from The Origins of Order by Stuart Kauffman. Copy-
right © 1993 by Stuart Kauffman, p. xvi. Reprinted by permission of Oxford Univer-
sity Press, Inc. All rights reserved.

pp. 309; 310: Material from Robert Charette. "Management by Design: A Soft-
ware Management Special Report." Software Management (October 1993), pp. 6; 6.
Reprinted by permission of the author.

p. 328: Material from Jon Krakauer, Into Thin Air: A Personal Account of the Mt.
Everest Disaster. Copyright © 1997, pp. 167-68. Reprinted by permission of Villard
Books, Random House, Inc. All rights reserved.

Foreword

I f I could, I would give a copy of Jim Highsmith's book to everyone
involved in developing large systems—end users, managers, IT pro-
fessionals, and most especially IT project managers! Jim's message is

simple but vitally important: Large information systems don't have to
take so long, they don't have to cost so much, and they don't have to
fail. Unfortunately, as simple as Jim's message is, making it happen is
an enormously difficult undertaking in most large organizations.

While many project management books deal extensively with the
need for building systems faster in today's business workplace, Jim's is
the first book I've read that addresses what must happen when man-
agement is faced both with the need for high-speed delivery and with
business requirements that are rapidly changing as well!

Jim's solution to both these problems is straightforward—a radical
form of incremental development. But actually developing large sys-
tems incrementally is a considerably more difficult business than just
talking about it. Historically, large organizations tend to attack all
problems by breaking them into pieces and assigning each of the pieces
to different organizational units for parallel development. Manage-
ment then places its faith in managing to predefined budgets and
schedules, but usually does so without any clear idea of what exactly

XXI

xxii FOREWORD

the completed project will produce or how the major pieces, the sub-
projects, ultimately will fit together.

Jim's approach combines the best features of techniques that have
been used piecemeal for a long time: customer focus groups, version-
ing, time-boxed management, and active prototyping. Used individu-
ally, these approaches can be effective; combined, they are dynamite.

In my own consulting work, I am often called in to turn off the life
support on large, failed projects. Most of these systems fail because
they lack the right systems strategies and because they take too long.
Projects lasting three-to-five years are rarer and rarer these days
because organizations know that they have to implement systems ear-
lier to meet changing business needs. On the other hand, unstruc-
tured, short-term projects are a maintenance nightmare. So, since
large-scale projects won't simply go away, they need to be approached
in a different fashion. In order for organizations to develop large sys-
tems more successfully, they must develop incremental implementa-
tion plans and incremental architectures, and they must begin to build
individual subprojects in small, short-term pieces. Jim Highsmith's
book provides the framework for doing just that.

August 1999 Ken Orr
Topeka, Kansas

Preface

G eorge Johnson's In the Palaces of Memory weaves a fascinating
story about one of the most complex of all biological phenom-
ena: human memory. From Johnson's stories of neurobiologists

who study the neuron and its components—axons, synapses, den-
drites—and try to model how neural cells excite each other to create
patterns, to tales of computer scientists whose explorations of the mind
use neural networks and artificial intelligence, the reader is drawn to
the conclusion that how memory works is still shrouded in mystery.

Software development may be as close to a purely mental activity
as any complex business undertaking. Just as we are puzzled by the
workings of the mind, we are caught up in the enigma of how software
products emerge from the minds of their creators.

Software seems so simple. A few operators, a few operands, and
voilà—a program is created. Combinatorial mathematics, however,
insures that programs of any length have infinite potential variety—
perpetual novelty.

Chess also seems simple. With fewer than two dozen rules and
despite several hundred years of play, chess's capacity to generate per-
petual novelty has not diminished.

XXIII

xxiv PREFACE

Perpetual novelty is one measure of complexity. However, complex
is not the same as chaotic. Chaos is random. Complexity contains pat-
terns—patterns that peek through the perpetual novelty and can be
used by people in their struggle to thrive in our world. This book is
about the complex human endeavor of building computer software. It
is about using the emerging field of complexity science (or, more
specifically, the field of complex adaptive systems theory) to aid us in
our pursuit of ever-more-complex software products. At its core, soft-
ware development may be about how we turn memories of our world
into computer models.

Neurons are pieces that create the fabric of memory, but how this
fabric is woven is unknown. However, not understanding the weaving
does not keep us from using the fabric. The infinite fascination of
chess arises from simple rules. We cannot predict where a chess game
will go, but we can learn patterns of play that bring success. Both chess
and memory provide instances of a phenomenon that in the language
of complex adaptive systems is called "emergence." Emergence is a
property of complex adaptive systems in which the interaction of the
parts creates some greater property of the whole that cannot be fully
explained from measured behaviors of the agents. These results come
from exploiting patterns. Harnessing emergence is a major theme of
this book.

Goals of the Book

Adaptive Software Development has five primary goals. Detailed in the
paragraphs below, the goals define the essence of building better soft-
ware in a world where high speed, change, and uncertainty are key
characteristics of its intensifying complexity.

The first goal is to offer an alternative to the belief that optimiza-
tion is the only solution to increasingly complex problems. Optimizing
cultures believe they are in control, that they can impose order on the
uncertainty around them. Imposed order is the product of rigorous
engineering discipline and deterministic, cause-and-effect-driven
processes. The alternative idea is one of an adaptive culture or mindset,
of viewing organizations as complex adaptive systems, and of creating
emergent order out of a web of interconnected individuals. An adap-
tive approach raises the acknowledgment of an uncertain and complex
world from being a manager's death knell to being part of a recog-
nized and accepted strategy.

PREFACE xxv

The second goal is to offer a series of frameworks or models to help
an organization employ adaptive principles. The Adaptive Develop-
ment Life Cycle, for example, provides a framework that reinforces the
concepts and details a practical way of moving from the conceptual to
the actionable. While there are other types of iterative life cycles, they
have not been based on underlying adaptive concepts but rather on
short-cycle determinism. There is a certain synergy in linking iteration
with adaptive ideas to combat complexity. The frameworks are sup-
plemented by a discussion of various techniques (customer focus
groups, for example). However, the focus is on the frameworks, not on
a compendium of techniques.

The third goal is to establish collaboration—the interaction of people
with similar and sometimes dissimilar interests, to jointly create and
innovate—as the organizational vehicle for generating emergent solu-
tions to product development problems. To be effective at feature-team,
product-team, and enterprise levels, collaboration must be addressed in
terms of interpersonal, cultural, and structural relationships.

The fourth goal of Adaptive Software Development is to provide a path
for organizations needing to use an adaptive approach on larger projects.
Because Rapid Application Development (RAD) approaches had a repu-
tation of eschewing all discipline and rigor, they were relegated by many
developers for use only on noncritical toy projects. Real projects require
rigor and discipline; RAD was for playing. So, the last chapters of this
book show how adaptive development works in real-life situations in
which uncertainty and complexity create the need for an approach that is
both adaptable and scalable. A major component of meeting this chal-
lenge is the ability to move from a workflow, process-oriented develop-
ment life cycle to one based on workstate and information.

The idea for this book began as one about RAD projects, written to
answer such questions as, "Why does RAD work?" and "How does
what works scale up?" I asked these questions because my experience
and that of colleagues like Sam Bayer in implementing individual RAD
projects was highly successful. I consulted with numerous large soft-
ware companies that used RAD techniques on very large projects. I
also worked with several IT groups that could never seem to leverage
success on individual projects into larger successes. I tried to look not
only at why certain practices worked, but also at the circumstances in
which they were applicable.

Circumstances are defined by culture. The culture of Command-
Control management has become outdated, in part because of wider

xxvi PREFACE

cultural trends toward flexible management styles, wider participation
in decision-making, and empowerment, but also because of a single
pragmatic fact: Command-Control management cannot process
knowledge and information quickly enough in the new economy. So,
the last goal of this book is to offer a new, adaptive management style,
which I label Leadership-Collaboration, to replace Command-Control.
The ability to adapt and move quickly requires that "leadership"
replace "command" and "collaboration" replace "control."

Our business culture and styles of management have been built
around an optimizing mindset that values stability and predictability.
Our management tools (derived from this belief) work—or seem to
work. Consequently, we fail to understand the sharp disparity
between orderly and complex systems. Orderly systems can be
extremely complicated, but complicated and complex describe different
classes of problems. Complicated problems yield to optimizing tech-
niques; complex problems do not. Tools that work in orderly realms
are actually antithetical to complex situations. The disparity between
orderly and complex problems requires not only new tools, but a very
different mindset—a significant transition for many organizations.

In an optimizing culture, increased rigor (process improvement)
and stabilization are the end goal. Optimizing cultures tend to see the
world as black or white, with little room for gray. If it is not rigorous, it
must be chaotic (or immature, to use the Software Engineering Insti-
tute's parlance).

An adaptive culture recognizes gray. Researchers have coined a
phrase for this turbulent gray area between order and chaos—the edge
of chaos. It is in this variable, messy, exciting polyglot that emergence
happens. In the field of evolutionary biology, for example, scientists
postulate that major evolutionary advances occur in this complex
region at the edge of chaos.

In an adaptive culture, the goal of rigor is to maintain balance on
this edge, providing just enough stabilizing force to keep away from
chaos—but no more. Adaptive organizations understand the need for
just enough rigor. This balance does not come from a compromise of
principles, but from an understanding of how the forces of optimiza-
tion draw down the very energy sources that are needed to fuel emer-
gence. Too little rigor yields chaos. Too much stifles emergence and
innovation.

So, while one goal of this book is to offer emergent order as an
alternative to a belief in and a dependence on imposed order, emergent

PREFACE xxvii

order is not a complete replacement but the basis for a new, additional
set of tools for managing complexity. I believe the difference in view-
ing optimization as a balancing force rather than as a goal in itself pro-
vides a significant shift in perspective.

For me, this book was a journey—one that goes on. I invite you to
join and hope it engages you as it did me.

September 1999 J.A.H.
Salt Lake City, Utah

This page intentionally left blank

Introduction

A daptive Software Development is written for several audiences.
First, it is intended for project teams that have been struggling
with high-speed, high-change projects—extreme projects—and

are looking for ways both to improve performance and to moderate
burnout—especially as the projects they undertake get larger and the
teams become more distributed.

Next, the book is written for project teams that have been assigned
a high-speed, high-change project to support a critical new business
initiative. These team members know their standard approach proba-
bly won't work and need a better alternative that will enable them to
deliver in a culture geared to more sedate projects, often in an environ-
ment that actually is hostile to the practices required to succeed.

The third audience consists of project teams that need to accelerate
schedules for small to medium-size projects. Many of the techniques
described in the book were derived from this type of project. Although
the limitation to scaling typical RAD techniques up to work on larger
projects is change itself, adaptive development addresses this issue.

A final audience includes people who need ammunition to fend off
requests for high-speed, high-change projects. Even with the best prac-

XXIX

xxx INTRODUCTION

tices and effective management, extreme projects are risky. Clarifying
that risk, and learning when to avoid it, is important.

Reviewing an early version of this book, columnist Warren Keuffel
described how the approach differs from more procedural approaches:

RADical Software Development. . . is a framework within which
the intelligent project manager is expected to fit the practices that
have been proven to work. —W. Keuffel [1995], p. 37.

Adaptive Software Development does not provide a set of prescriptive
rules or tasks, but a framework of concepts, practices, and guidelines.

The book is divided into three parts. Part 1 consists of Chapters 1
and 2. Chapter 1 provides background material and introduces the
three major models: the Adaptive Conceptual Model, the Adaptive
Development Model, and the Adaptive Management Model. Chapter
2 delves into the concepts of complex adaptive systems (CAS). It then
introduces the Adaptive Development Life Cycle and explains how
that life cycle approach incorporates the concepts of CAS.

Part 2, Chapters 3 through 6, explains the components of the devel-
opment life cycle—speculating on direction, adaptive cycle planning
(detailed speculating), collaboration, and learning. The chapters of
Part 2 introduce additional aspects of complexity, and then propose
practical techniques based on those concepts. The chapters focus on
accelerated delivery from single work groups or feature teams.

Part 3, Chapters 7 through 11, describes the adaptive management
culture and practices that I have grouped under the banner of Leader-
ship-Collaboration management. Chapter 7 provides an overview of
the Leadership-Collaboration Management Model and the rationale
for its use. Then, Chapters 8 through 10 explore components of the
model. These chapters emphasize problems of and solutions for scal-
ing adaptive development to larger projects. They also focus on collab-
oration as it embodies the concepts of emergence across multiple
groups, and on the cultural and structural aspects of collaboration.
Chapter 11 covers project management topics, including an explana-
tion of a project management framework, or life cycle, and time-box-
ing. Project management provides a boundary of imposed order
within which emergent order can flourish. The chapter treats the top-
ics of risk assessment and other practices contributing to successful
adaptive projects.

INTRODUCTION xxxi

The final chapter of the book, Chapter 12, provides some parting
thoughts—about dawdling, Marshall McLuhan's technology views,
assessing organizational growth, and operating in thin air. Although
seemingly unrelated, these topics review the message of the book in
terms of a discussion for applying adaptive systems concepts.

The technology community drives unrelenting change—change in
communications, in business practices, and even in business strategy.
But somehow, while admonishing our businesses to adopt technology
more rapidly, we, as the purveyors of technology, have failed to antici-
pate the impact that the speed and turbulence we have created has had
on our own practice of management. Adaptive Software Development is
ultimately about rethinking how to manage in the turbulent times we
have brought upon ourselves.

This page intentionally left blank

Adaptive
Software
Development
A COLLABORATIVE APPROACH TO
MANAGING COMPLEX SYSTEMS

This page intentionally left blank

CHAPTER 3
The Project

Mission

The object of your mission is to explore the Missouri river, &
such principal stream of it, as, by it's course and communication
with the waters of the Pacific ocean, whether the Columbia, Ore-
gan, Colorado or any other river may offer the most direct &
practicable water communication across this continent for the
purposes of commerce.

—T. Jefferson, as quoted in S. Ambrose [1996], p. 94.

With these words, Thomas Jefferson launched the Lewis and
Clark expedition of discovery, the most notable event in
American exploration. For thirty months, these words drove

the members of the expedition on—through brutal physical challenges,
frightening Indian encounters, isolated winters, and life-and-death
decisions. Writing a mission statement is one thing; understanding the
scope, meaning, subtleties, ambiguities, and limits of a mission is
another thing altogether.

Meriwether Lewis was Thomas Jefferson's secretary for several
years before the expedition began. The men knew each other well,
talked long about the expedition and its goals, and exchanged exten-
sive correspondence on various aspects of the journey. At a time when

53

54 ADAPTIVE SOFTWARE DEVELOPMENT

the Federalists were attacking Jefferson for his purchase of the
Louisiana territory, Jefferson and Lewis shared a vision of a unified
continental United States. They agreed on the purpose of the expedi-
tion, viewing it as one means to achieve their grander continental
vision. Lewis passed their vision on to William Clark and the other
explorers—a vision consisting not only of words, but also of the pas-
sion and inspiration to bring the words to reality.

A broad mission statement is important, for it gives purpose and
meaning to a task, but it needs to be supplemented with specifics. Jef-
ferson's mission statement gave specific instructions about mapmak-
ing: ". . . you will take careful observations of latitude & longitude, at
all remarkable points on the river, & especially at the mouths of rivers,
at rapids, at islands . . ."; about Indian ethnology: "to learn the names
of the nations, and their numbers, the extent of their possessions, their
relations with other tribes . . ."; and about flora and fauna: "to notice
and comment on the soil, the plant and animal life, . . , dinosaur bones,
and volcanoes'7 (Jefferson, in Ambrose96, pp. 94, 95).

The thoroughness of the mission statement was critical to the suc-
cess of the expedition. Because the explorers would be out of contact
with the rest of the world during most of the trip, the mission state-
ment needed to be specific and yet flexible enough to allow the leaders
to make key decisions as their party explored the unknown. (Indeed,
by the spring of 1806 and almost two years into the journey, many peo-
ple had given up on the expedition as "lost in the wilderness.") Jeffer-
son's instructions focused on objectives and broad directives but left
the implementation to Lewis and Clark. Lewis and Clark didn't suc-
ceed because of a good mission statement, but they would not have
succeeded without one.

Good mission statements don't come easily. Jefferson's mission
statement took years of study and represented the collected wisdom of
many colleagues. How many project teams, when asked if they have a
mission, would answer, "No. We just fumble around all the time"?
Most team members probably think they have some sort of mission, but
a good mission is not a thing, not words on a page or on a flip chart. A
good mission is shared passion. At its most basic, a mission is a prod-
uct goal worth striving for. At its best, a mission touches each team
member's sense of a wider purpose beyond producing some thing.

There are three steps to fashioning a statement of mission. The first
is to identify the mission, to understand what constitutes a good mission.
The second is to create mission artifacts, to define specific mission docu-

CHAPTER 3: THE PROJECT MISSION 55

ments and to develop their contents. The third step is to share mission
values, to go beyond the words on paper or in digital images so that
each team member shares the passion and purpose of the mission.

Identify the Mission
A good mission statement is many things, particularly in a complex
environment. It must be concrete, yet still invite people to speculate on
different scenarios. It must also facilitate the flow of information. The
objective of a development effort is to build a usable software product,
so a good mission statement needs to be specific. However, if it is too
specific, the project team may be overly constrained. A mission state-
ment needs to help the team converge on a solution while still keeping
the team open to divergent innovation. A mission statement needs to
direct or define the scope or boundaries for the effort, not detail the
final outcome.

Characteristics of a good mission statement are threefold. The first
is that it will establish a sense of direction. At a project or product
level, a mission establishes a framework for action, a scope for what is
to be accomplished, and a theme for design.

A second characteristic is that a good mission statement is inspira-
tional. People's best efforts arise from their being passionate about
what they are doing. A mission statement answers questions such as,
Why do I care about this project? Why should the team care about this
project?

There is a third aspect to a mission statement. It guides implementa-
tion, suggesting how the project should be approached and providing a
framework for decision-making. Steering development processes and
practices requires knowing what one is steering toward—the mission.
Engineering is in some fundamental way a process of synergy and trade-
off, of trying to derive a design incorporating often disparate require-
ments and making technical trade-offs based on business criteria.

Hundreds of decisions—some major, many minor—are made dur-
ing a software project. Particularly in an adaptive, iterative project
where team members and clients are encouraged to learn and change,
a lack of boundaries defined by a mission statement would create
chaos. Decisions must be made. Trade-offs are a necessity for moving
forward. High rates of change mean that even more decisions must be
made, and quickly. Good mission statements guide decision-making.

"[U]nity is the mas-
ter principle of great
art. And I have seen
over and over that
unity is the master
principle of great
software.... The
theme of your soft-
ware is the dominant
idea that constitutes
the basis of the
design... . You've
got to have a purpose
for your product, and
'unity of purpose' is a
good phrase to
describe the impact of
having a theme."
—J. McCarthy [1995],
pp. 80, 81.

"A mission is a sense
of purpose that lures
you into your future.
It unifies your beliefs,
values, actions, and
your sense of who
you are.. . . Most of
all, a mission is fun."
—}. Andreas and C.
Faulkner [1994], p. 80.

56 ADAPTIVE SOFTWARE DEVELOPMENT

It is not enough to have a two-sentence vision statement: Different lev-
els of mission are needed to make different levels of decisions. Broad-
sweeping, generalized mission statements are useless when detail-level
decisions must be made. Narrow, precise mission statements don't
allow for innovation and flexibility. Part of the ability to develop a
good mission statement lies in the development team's ability to
understand this ambiguity.

In a complex environment, a mission statement is a speculation
about the future, and everyone involved must remember that this spec-
ulation is the best guess of the future available at the time, something
to be continually tested against reality and adjusted accordingly. At a
conceptual level,

A mission statement facilitates collection of information
that is relevant to the project's desired result.

Any product development effort is, at its core, the gathering, analyz-
ing, and reconfiguring of information. One of the defining characteris-
tics of a complex environment is the high rate of information flow. In a
stable environment, information flows slowly and predictably. In a
complex environment, information bombards the project team from
numerous and often unforeseen sources. How do team members
extract the information they need from the vast possibilities?

Industrial robots use "rules" to manufacture automobiles. Insur-
ance service administrators use well-defined "processes" to initiate a
policy. Chess players use "patterns" of play to outsmart their competi-
tors. In software engineering (and in business), the word "process" has
become synonymous with a carefully controlled procedure for arriving
at planned results. What we need is a new word to connote insight
without certainty—and the word becoming more widely used is "pat-
tern." A design pattern is a framework for helping someone transfer
knowledge, but it is not a recipe to be followed by rote. Success on
complex projects requires that we comprehend the difference between
processes and patterns. The first prescribes activities, the second orga-
nizes thinking. A mission statement should suggest a direction rather
than a destination and must help us select the patterns that will
increase our chances of success.

To me, the word "process" suggests a mechanical world, while the
word "pattern" suggests an organic one. Adaptive Software Develop-
ment is not a series of processes, but an assemblage of patterns that can
assist development teams in their thinking but that also have limitations.

CHAPTER 3: THE PROJECT MISSION 57

Innovation and creativity are not the result of processes, but of pat-
terns. Management and organizational patterns are emergent; we can-
not always explain exactly how they work, but we recognize that they
often (although not every time) produce results.

A mission statement helps us navigate through and understand a
complex project environment and facilitates the collection of informa-
tion. Because of the high information-flow rate in a complex environ-
ment, we cannot anticipate exactly what a team will need. However,
by identifying a credible direction and instituting appropriate patterns
of inquiry, we should be able to collect relevant information to produce
the correct product. If the direction is too broad, we will find that pro-
cessing all the captured bits will be too time-consuming. If the direc-
tion is too narrow, there will not be enough diversity to build a viable
product. In short, to identify the mission, software project manage-
ment must focus on direction and it must establish appropriate priori-
ties to facilitate reaching that goal.

A Need to Focus

In the July 1995 issue of American Programmer magazine, several well-
known authors supported the opinion that, to be successful, a project
must meet all of the following criteria. The project must

• meet business objectives

• meet quality expectations and requirements

• stay within budget

• meet its time deadline

• deliver actual benefits

• provide the team with professional satisfaction and the oppor-
tunity to learn

With all due respect to these highly regarded authors, I view this
stance on multiple criteria for measuring project success to be pure
rubbish! There is no way to satisfy all of the above criteria on any rea-
sonably sized project, much less on an extreme one. By making every-
thing top priority, these authors leave managers no effective way to
manage change. Change requires trade-offs, trade-offs require an
understanding of priorities. My objection does not mean that any one

58 ADAPTIVE SOFTWARE DEVELOPMENT

"Yow do not navigate
a company to a prede-

fined destination.
You take steps, one at

a time, into an
unknowable future.

. . . In the final analy-
sis, it is the walking
that beats the path.

It is not the path that
makes the walk."

—A. De Geus [1997],
p. 155.

of the criteria listed above is unimportant, but that we have to choose
one criterion as the most important. By setting up such impossible multi-
ple criteria for measuring success, we do not give truly successful proj-
ects their due.

The siren cry in marketing is Segment, Segment, Segment. In busi-
ness strategy, it is Focus, Focus, Focus. Why should software manage-
ment be any different? It is not, as I show in Table 3.1, which contains
a matrix to help project leaders manage change by establishing appro-
priate priorities for desired project results.

A Need to De-Focus

The Speculate-Collaborate-Learn Adaptive Development Model Life
Cycle, first depicted in Fig. 2.3, has small offshoot arrows that repre-
sent breakthrough or emergent learning, suggesting directions or prod-
uct feature sets not planned but that could potentially improve the
product. If project management has not even considered a potential
project direction, it will find it difficult to accept data relevant to that
direction. So concerned with reducing "scope creep/' the seemingly
constant change in product requirements, we as managers may fail to
examine innovative new directions.

Software development in complex environments is difficult
because it is not deterministic—that is, it is not easily controlled by
simplistic (which must not be confused with simple) rules. While I
encourage project team focus through development of mission state-
ments, a singular focus will doom projects in a complex environment.
Every project team goes through periods of focus—of converging on a
solution—and then de-focus—diverging away from that solution
because of new ideas, problems, or conflicting opinions. Both activities
are healthy if not carried to extremes. It would be simple to say,
"Always focus/7 It is much more difficult to say, "Sometimes focus,
sometimes de-focus/7 Knowing when to focus and when to de-focus
requires judgment—a skill often in short supply. Thinking of a mission
as a boundary rather than as a destination, as a pattern rather than as a
single point, can assist a project in this balancing act.

In the preceding chapter, a fitness landscape was defined as a
three-dimensional representation of a project's success criterion.
Thought of in terms of the fitness landscape, focusing is analogous to
climbing a peak and striving to reach the top. De-focusing is analogous

CHAPTER 3: THE PROJECT MISSION 59

to stopping to consider the possibilities of jumping to an adjacent peak,
one that offers greater potential because it is a higher peak but which
also offers risk because it necessitates abandoning the current peak.

If we need to both focus and de-focus, we need to know when to
do each. Determinists want rules such as, "When x occurs, focus.
When y occurs, de-focus/' This merely replaces one simplistic rule
(Always focus) with a short set of simplistic rules. Unfortunately, no
one rule, or even one set of rules, can be applied to all situations.

Holding anxiety, dealing with paradox and conflicting constraints,
continually being poised at the edge, alternately applying techniques
to converge and diverge—all are critical to maintaining an environ-
ment conducive to emergent results. Knowing when to focus or de-
focus a project team is essential to successful management in complex
environments; adaptive techniques can assist managers in making
these judgment decisions.

One popular technique used for de-focusing is called scenario plan-
ning. Scenario planning requires project members first to change some
basic assumptions about a product, a technology, or a market, and then
to explore what this new direction would mean. Feasibility studies
often contain an analysis of alternatives, but these are usually alterna-
tives for implementation. Scenarios provide alternatives for significant
product feature sets, or even for entire missions.

Monitoring the environment using alternative scenarios keeps the
team from focusing too tightly. As in an ant colony that has scouts out
exploring the territory, software developers must scour the terrain for
the first indications of competitive danger or opportunity.

Create Mission Artifacts
The second step in fashioning a mission statement is the creation of
mission artifacts. Why this step is important is not always clear in the
heat of a project, but it stems from the fact that software project failure
is endemic. At the start of a project, everyone is in a hurry, either
because management has already delayed six months in initiating the
project and needs to make up lost time, or because some competitor
has just struck, or because .. . just fill in the blank: "Full speed ahead/7

"Damn the torpedoes/' "Don't be a wimp/' The beginnings of many
projects are injected with a tremendous oversupply of testosterone.
Three or four months into the project, someone finally realizes that no

"Scenarios bring new
views and ideas about
the landscape into the
heads of managers,
and they help man-
agers learn to recog-
nize new 'unthink-
able aspects of the
landscape even after
the scenario exercise
is over."
—A. De Geus [1997],
p. 46.

60 ADAPTIVE SOFTWARE DEVELOPMENT

one knows what the project is all about, and a reevaluation period
ensues. The following statistics indicate how wasteful this is.

Our research shows a staggering 31.1 percent of projects will get
canceled before they are ever completed. Further results indicate
52.7 percent of projects will overrun their initial cost estimates
by 189 percent. . . . Over one-third of these same challenged or
impaired projects experienced time overruns of 100 to 200 per-
cent. One of the major causes of both cost and time overruns is
restarts. For every 100 projects that start, there are 94 restarts.

—J. Johnson [1995], pp. 4, 5.

That 94 percent of all projects will be restarts is incredible! According
to Johnson, we lose $78 billion a year on canceled IT application devel-
opment projects. A good set of mission artifacts, developed in a feasi-
bility study process, can reduce the losses substantially.

Mission artifacts comprise the specific documents developed for a
project. While the details must be customized for each project, these
artifacts need to answer three questions:

1. What is this project about?

2. Why should we do this project?

3. How should we do this project?

A concept is not a project, but a beginning, a thing to be examined and
nurtured into a full-blown project. Many projects get in trouble because
they confuse starting fast with ending fast. In most situations, taking
extra time to get the project started properly pays big benefits in time
saved at the end.

What is this project about? To provide context for this question,
we might paraphrase Lewis Carroll's Alice in Wonderland: "If we don't
know where we want to go, then any path will do/' One primary rea-
son for project restarts, or outright failure, is the lack of a project mis-
sion. Team members, customers, and other stakeholders need a good
understanding of the project's fundamental components—its goals,
objectives, scope, problem statement, constraints, and vision. A good
test of whether project participants understand a project is to walk
around and ask them, "What is this project about?" The more compli-
cated the answer, the more trouble the project is in. A crisp, business-

CHAPTER 3: THE PROJECT MISSION 61

oriented, nontechnical answer usually means the project's groundwork
has been well established.

Why should we do this project? This question might be restated
as, "Why do / care?" The second major question answered by mission
artifacts is, "Should the project proceed?" Part of analyzing the mission
is determining its feasibility—and one possible option is to not pro-
ceed. A significant portion of the $78-billion loss on software projects
comes from projects that should have never moved past the feasibility
stage, but that have become caught up in a battle of corporate egos and
politics. Once the problems and opportunities have been identified,
the next task is to define the criteria for an acceptable solution. Feasi-
bility (acceptability) incorporates political, economic, technical, and
organizational components.

How should we do this project? Good mission artifacts say more
than "Do it." In addition to defining the project's objectives and help-
ing management decide whether to proceed, the artifacts need to pro-
vide, at the least, a broad outline of how to proceed—giving informa-
tion on items such as architectural considerations, gross project size
(including function points, lines of code, or indications of work effort),
major milestones, and estimates of resources needed. A plan of action
serves two purposes: It gives the follow-on team a direction and it
forces the feasibility team into thinking about critical implementation
issues early in the project.

Words such as mission, vision, goals, objectives, requirements, and
theme apply to many of the concepts discussed in this chapter. I have
cited different authors on what defines a mission, but I will not attempt
a single-sentence definition because I believe a single sentence, or even
a single document, isn't broad enough to encompass the concept of
mission. However, by identifying the basic elements, the artifacts, of a
mission, I show that a project's mission then becomes an amalgamation
of these artifacts. My intent is not to prescribe exact mission artifacts
for each and every project or organization, but to describe types of arti-
facts from which each project's needs can be determined.

The most important mission artifacts are the project vision (char-
ter), the project data sheet (PDS), and the product specification outline
(PSO). They are defined briefly below, are illustrated in Fig. 3.1, and
then they are discussed more fully in named subsections.

The Project Vision (Charter): The charter provides a short, two-to-
ten-page definition of key business objectives, product specifications,
and market positioning.

"Visions are aesthetic
and moral—as well
as strategically
sound. Visions come
from within—as well
as from outside.
They are personal—
and group-centered.
Developing a vision
and values is a
messy, artistic
process. Living it
convincingly is a
passionate one,
beyond any doubt."
—T. Peters [1987],
p. 486.

62 ADAPTIVE SOFTWARE DEVELOPMENT

The Project Data Sheet: As originated by my colleague Lynne Nix,
this staple of her seminars is a single-page summary of key business
benefits, product specifications, and project management information.
The sheet serves as a document to help focus the project team, manage-
ment, and customers.

The Product Specification Outline: The outline inventories the fea-
tures, functions, objects, data, performance, operations, and other rele-
vant specifications of the product at a high level.

Figure 3.1: Mission Artifacts.

The Project Vision (Charter)

The project vision is recorded in a document, or artifact, which estab-
lishes a focus for the project and identifies the foundation on which to
build the team's commitment. It establishes which direction to take into
the fog of the unknown. It provides boundaries for the exploration
phase of the Speculate-Collaborate-Learn Adaptive Development
Model Life Cycle. Depending on the situation, a project vision could be

CHAPTER 3: THE PROJECT MISSION 63

stated as a single sentence or a multi-page document such as a project
charter or a project feasibility study report. The specific categories of
information within the vision document will be different for each orga-
nization, for each size project, and for each release of a product.

Most projects have existing historical information developed by
clients, marketers, or developers. This information may range from a
detailed market research study in a product company, to a project pro-
posal and cost/benefit analysis put together by an internal client, to
previous work done on a project by the IT group. The historical infor-
mation is a starting point for answering questions such as,

• Who are the customers for the product? What are their needs
and how will this product benefit them?

• Is the project a subsequent version of an existing product or a
totally new product?

• How much time do we have for this project? What is the
trade-off between time and value?

• Do similar products exist within our organization? What can
we learn from them about what to do or not do?

• Is there competition for this product? Who is the competition
and who are its customers?

• What does our organization expect to achieve by completing
this project? What is the value of this project?

• Where does the project fit into the "big picture"? Are there
dependent projects?

A vision document should contain a short product-capability state-
ment. This vision statement helps team members pass the elevator
test—that is, by using the statement, they can explain the purpose of
the project within two minutes. As formulated by Geoffrey Moore, the
elements of the elevator test are

• For (target customer)

• Who (statement of the need or opportunity)

• The (product name) is a (product category)

• That (statement of key benefit—that is, compelling reason to buy)

64 ADAPTIVE SOFTWARE DEVELOPMENT

• Unlike (primary competitive alternative)

• Our product (statement of primary differentiation)
—G. Moore [1991], p. 161.

Although the vision statement for an internal product for customers of
IT will vary slightly on the above theme, a vision statement for a ficti-
tious, Web-based collaboration tool might be worded as follows:

For Fortune 1000 companies' product development groups who
need to build innovative products across both geographic and
organizational distances, the Adaptive Software InNovator
product is a Web-based, server-layer collaboration tool that
speeds turning creative ideas into innovative products. Unlike
other collaboration tools, our product integrates accountability
into the too often open-ended creative process.

By answering the questions posed above, the project team puts
together a detailed project vision document, which should contain
some subset of the following:

• Project Background—Describes the current environment(s)
that the project will affect directly or indirectly.

• Project Vision Statement—Defines the project vision in 25 to
50 words (the elevator test).

• Project Scope—Directly sets the boundaries (resource, sched-
ule, scope) on the project so that it can be done successfully.
Also specifies what is not included within the application, a
detail that is useful in understanding the project's boundaries.

• Executive Sponsor—Names who has the greatest stake in the
project and identifies who has overall responsibility for a com-
mercial product or for an internal project. This person
becomes the sponsor responsible for project costs and benefits.

• Product Market Positioning—Describes how the marketing
department is positioning this product.

• Internal and External Customers—Identifies internal and exter-
nal customers and how they will use the product in their job.

CHAPTER 3: THE PROJECT MISSION 65

• Business Functional Objectives—Addresses the benefits of
the product in terms either of opportunities to exploit or of
solutions to current problems.

• Technical Performance Objectives—Identifies technical per-
formance criteria and measurements.

• Project Risks—Describes the major risks that could adversely
impact the outcome of the project.

• Staffing Requirements—Identifies the skills and number of
staff required to develop the product.

• Prerequisite/Dependent Projects—Identifies the project's
dependencies on deliverables (such as requirements specifica-
tions, architectural constraints, or code modules) from other
projects.

• Constraints—Identifies limits imposed on the project and out-
side the project team's control, in the form of staff, budgets,
interfaces with other systems, technology, or time.

• Assumptions—Identifies all costs, benefits, and situations
underlying or having a bearing on the project proposal.

The Project Data Sheet

Where do the project team, other stakeholders in the project, or people
with a casual interest in the project go to get a thumbnail sketch of the
project? The project data sheet! The PDS is the minimum deliverable
from any project initiation activity.

Whatever the detailed contents of a project vision paper, a one-
page PDS should also be developed. For some projects, the PDS either
may be enough by itself or may need only minimal supporting infor-
mation in order to constitute a complete mission statement. The PDS
captures the essential nature of the project in a simple but powerful
fashion.

As the quip "I would have written a shorter letter but I didn't have
time" demonstrates, condensing an enormous volume of project infor-
mation into a single page forces the team to carefully consider and
select the most important parts of the project. The very act of sifting
through and organizing information helps team members focus on
important aspects of the project.

66 ADAPTIVE SOFTWARE DEVELOPMENT

The PDS includes the following details:

• clients / customers
• project objective statement
• features
• client benefits
• performance / quality attributes
• architecture
• issues/risks
• major project milestones
• core team members

The project objective statement (POS) should be specific and short (25
words or less), and it should include important scope, schedule, and
resource information. Referring to the vision statement created for the
InNovator product, the POS might be "Specify, develop, and prepare
for market a new Web-based, server-layer collaboration tool called
InNovator, by the end of July 2001, for an investment of approximately
$500,000."

The Product Mission Profile

The ability to create a mission comes from an understanding of the
company's strategic focus—from such dimensions as product leader-
ship, operational excellence, or customer intimacy—and from an
understanding of the marketing strategy for a particular product. If,
according to Michael Treacy and Fred Wiersema (Treacy95), an entire
company, even one as large as Hewlett-Packard or IBM, needs a single
strategic focus, surely a product team needs a single focus also. Focus-
ing on customer intimacy does not mean ignoring the other two
dimensions; it means concentrating on whatever dimension will offer
the company the greatest competitive advantage.

Marketing strategy must be considered in the context of product
value. Developing software for a piece of in-flight avionics equipment
in which a defect could cause serious injury or death, and developing
the next Internet browser pose fundamentally different challenges.
The market for each dictates a distinct development strategy. Clearly,
these are two unique environments. The first case demands over-
whelming excellence in the eradication of defects. No one is going to
be overly worried about a few months' delay. This does not mean that
any schedule will work, but that a reasonable, adequate, "good

CHAPTER 3: THE PROJECT MISSION 67

enough" schedule is acceptable. In the second case, however, sched-
ule—and a very fast one—is the driver. Defect levels shouldn't be
excessively high, but adequate, reasonable, "good enough" defect rates
may be acceptable.

The product mission profile is an important tool for documenting
focus—a contract between the development group and the executive
sponsor or primary customer. While companies focus on strategy, proj-
ect teams need to focus on the priorities of major product attributes.

Table 3.1 shows a matrix of attributes that give a product its
value—its scope (features), delivery schedule, defect levels, and
resources (cost, staff, and equipment). The table displays the relative
importance of each dimension and provides focus for the development
team. The first two columns, Excel and Improve, can contain only one
entry each, but the third column, Accept, contains two entries. If the
focus of excellence is to ship a product with world-class features, then
everything else takes second place. Schedule might be designated as
warranting improved performance, but it would be less important than
the product's features. (If the schedule slipped seriously, the schedule
itself might assume a temporary position of higher priority, but it still
would not be the focus of competitive excellence.)

Table 3.1: Product Mission Profile Matrix.

As shown in the table, the Excel column identifies Scope (Features) as
the most important characteristic for marketplace success. Given this
matrix, trade-off decisions that the team makes during the project
would favor feature richness over development speed. The second col-

68 ADAPTIVE SOFTWARE DEVELOPMENT

umn, Improve, indicates the second most important characteristic.
Within the constraint specified by the first column, the team tries to
improve the indicated characteristic—schedule—as much as possible.
In the matrix shown, team members try to improve the schedule unless
their action results in unacceptable reductions in features.

An entry in the Accept column indicates that a characteristic can be
more variable than the others. If Resources are given an Accept-level
priority, a wider variation in staffing or cost would be acceptable. The
Accept column indicates the characteristic needs to be "good enough"
and is the first considered when any trade-off is required. In the exam-
ple shown in the table, the team and the product's sponsors have
agreed to expend additional resources or accept higher defect levels
(obviously within limits) if necessary to meet schedule and feature
requirements. "Good enough" does not give team members carte
blanche. An acceptable level needs to be defined. For example, the bud-
geted cost for a project might be $250,000. If cost were indicated as a
priority in the Excel column, $250,000 would be a maximum amount
and the team would strive to spend less, or at least no more, than this
limit. If cost were indicated as an entry in the Accept column, the
"good enough" range might be plus or minus $50,000.

Every project team has to adapt to external and internal change
during a project's life by making trade-off decisions. These decisions
are difficult because of each team member's natural tendency to try to
excel in all dimensions. Without explicit priorities, the executive spon-
sor has to be involved in most change decisions, consuming valuable
project time. Explicit trade-off priorities give the team members a basis
for understanding how various factors relate to each other so they can
make the decisions themselves.

In putting a mission profile matrix together, the team must stay
within the bounds of what is reasonable and feasible. Marking a
dimension as acceptable and then creating extreme acceptability mea-
sures clearly defeats the purpose.

It would be unusual for a complex project to have its highest prior-
ity in either the resource or defect dimension. If the focus is on low
defect levels, it is improbable the schedule focus could be anything but
acceptable. Extremely low defect rates and high speed are generally
not compatible. High speed and acceptable defect rates, however, are.

CHAPTER 3: THE PROJECT MISSION 69

The Product Specification Outline

A short focusing statement such as the project objective statement or
vision statement is very helpful to the project team and other involved
parties, but it is not sufficient to properly determine scope and size or
to understand the product. There must be a level of product specifica-
tion more detailed than the 25-word project objective statement and yet
less detailed than a traditional specification document. This intermedi-
ate-level document is called the product specification outline.

The PSO serves several purposes. First, it provides the stakehold-
ers and core project team members with a reasonable understanding of
the boundaries and scope of the development effort. It is important to
specify what is included and, sometimes even more importantly,
excluded from the product. New projects often suffer from unbounded
expectations. Developers and customers see the new product as solv-
ing all the old nagging problems. Expectations need to be tempered
with a dose of reality.

Second, the PSO is the baseline for size estimation. Whether the
team is developing a work-breakdown structure and estimating each
feature or using a tool such as function-point estimation, a reasonable
project size is necessary for rational project planning. Reasonable siz-
ing requires an understanding of at least an outline level of project
requirements.

Third, the PSO facilitates adaptive cycle planning, which is covered
in greater detail in the next chapter, and is accomplished by assigning
product features to specific cycles (similar to project milestones). In
order to develop these plans, the basic features or functions of the
product need to be identified. Whereas purely task-based planning
can be accomplished (although it is not recommended) by a cursory
analysis of the requirements using a task-list template or methodology
from prior projects, adaptive planning requires knowledge of the fea-
tures of the application to be built. Outline specifications provide the
required information.

The specification outline's primary objective is to define the fea-
tures or functionality of the product. For the purposes of creating a
specification and subsequently for planning iterative cycles, I use the
term "component" to indicate a set or group of features. Although
similar to the concept of component in object-oriented development
approaches, here the term is used to define a group of things (objects,
business features, the graphical user interface (GUI), or containers, for

70 ADAPTIVE SOFTWARE DEVELOPMENT

example) that are planned and implemented together rather than in the
more restrictive sense of components as groups of objects. I use the
words "component" and "feature" (a component is a set of features)
because Adaptive Software Development does not depend upon, or
specify, particular software engineering techniques such as object
development, data flow diagrams, or entity relationship data models.
Adaptive Software Development is a management approach to deliver-
ing software products; it is not a specific development approach.

Three component types are used in ASD—primary, technology, and
support. Primary components deliver functionality to the customer. A
list management component in a spreadsheet program would contain a
number of features to implement that functionality. In a business
application, a component contains the functions and data required to
implement some business process such as generating orders or produc-
ing warehouse stock reports. A primary component could be repre-
sented by a process in a data flow diagram or by a use case in an
object-oriented analysis document.

Technology components—networks, computer hardware, operat-
ing systems, and database management software—are those on which
the primary components are built. Often, many of the technology com-
ponents are already in place and only need to be used by the develop-
ment team. However, if the technology component is not already
installed, it must be identified and installed as one of the project team's
responsibilities. For example, if new database software is part of the
project, its installation is identified as a technology component.

Support components include everything else, from data models to
conversion programs to training materials.

In Dynamics of Software Development (McCarthy95), Jim McCarthy
provides definitions, paraphrased below, that could be incorporated
into a PSO for organizing features:

• strategic features are centered around fundamental choices such
as operating systems and hardware platforms

• competitive features respond to features the competition had or
might implement

• customer satisfaction features are those frequently requested by
customers

• investment features, usually of an architectural nature, are those
offering long-term benefit, but not much short-term benefit

CHAPTER 3: THE PROJECT MISSION 71

• paradigmatic features are those that change the way people
work and therefore have significant competitive implications

Product specification outlines are used in initial estimating and plan-
ning, but they may not be detailed enough for development. As each
development cycle begins, the team will need to decide how much
additional detail is required. In Rapid Development (McConnell96),
Steve McConnell discusses how specification outlines grow into the
minimal specifications necessary for the project, a topic germane to the
minimalist documentation approach needed for extreme projects.

As McConnell points out, detailed specification writing is often
wasted effort because rapid changes occur during the project, making
the specs obsolete. However, there are also potential problems with
minimal specifications, particularly if the team uses the minimalist
concept as an excuse to avoid a seemingly tedious activity. Developing
specifications is extremely important, but the specs do not need to fill
thousands of pages in order to be effective. Writing a useful spec is
another one of the balancing acts required for extreme projects.

Share Mission Values
Documenting mission artifacts is a mechanical task. Creating the
shared values that infuse meaning and purpose into the artifacts
requires interpersonal effort. Sharing a mission—understanding the
subtleties, agreeing on meaning, generating passion—doesn't happen
in a two-hour meeting. With the team's concerted effort and patience,
shared values grow over time. The core team needs to be aligned, but
other stakeholders at various levels of the organization also need to be
brought in sync—a formidable task, for a mission is like a magnetic
field, with alignment based on its strength of shared values, as
depicted by the three variations in Fig. 3.2.

72 ADAPTIVE SOFTWARE DEVELOPMENT

Figure 3.2: Shared Mission Values Show a Magnetic Alignment.

Too many managers and staff think sharing a mission—aligning val-
ues—means getting together for a couple of hours and jointly writing a
mission statement on a flip chart. Unfortunately, sharing a mission is
much more complicated than merely writing down a list of values. Its
difficulty can be likened to the experience of veteran rock climbers who
are always admonishing less experienced climbers to use their feet. The
reminder is a kind of miniature mission statement. The intent—to get
the climber to use leg and core body muscles rather than arm mus-
cles—is correct, but hearing it and understanding it are miles apart. In
rock climbing, mastering very precise foot placement, initiating body
movement from the legs, and directing momentum through the hips
rather than pulling with the arms takes hours and hours and hours of
practice. Getting a team to share a mission is equally challenging.

How does an $8-billion company turn virtually on a dime? Of
course! Its management writes a new mission statement and off it goes
in a new direction! As absurd as it sounds, that is just what Microsoft
did in early 1996 (Rebello96). Within a six-month period, the Internet
went from being a sideline to the main line at Microsoft. With most
15,000-employee companies, such a radical change would have taken
much, much longer—if it happened at all.

What makes Microsoft different? First and foremost is the
Microsoft employee's trust in Bill Gates and others in leadership posi-
tions—a trust that the mission moves the organization in the right
direction, and that, while difficult, it is still achievable. There is a direct
correlation between trust in one's management and commitment to a
mission.

CHAPTER 3: THE PROJECT MISSION 73

A second condition present at Microsoft in 1996 was the staff's
sense of shared purpose or values. If Gates had outlined a mission to
move into the hog-feeding business, the staff's response might have
been different. Good mission statements need to tap into the broader
corporation's shared values as well as those of the development team.

Teams don't jell overnight—they jell over a period of time. During
the process, each team member must ask questions such as

• Does this project's mission connect to something I consider
purposeful?

• Do I understand what to do?

• Do I trust the leadership and the other team members enough
to collaborate, rather than always insist on "my way"?

• Can I develop a sense of excitement about and commitment to
this project?

Not every project manager has the leadership credentials of a Bill
Gates. But there are certain attributes that bring a mission to life for a
project team:

• The core team works on developing the mission components
together. Refining the mission, or reshaping people's percep-
tion of the mission, is viewed as a continuous activity, not just a
checklist item at the beginning.

• The project data sheet is prominently displayed on wall charts
in the team area along with documents related to the project.
The display of important project information is intended as a
reminder, not as a slogan. While slogans attempt to convince
the audience of something, the wall charts help remind it of a
vision already agreed to.

• When decisions must be reached or controversies need resolu-
tion, the mission components are consulted. In the heat of a
project, controversy can escalate. Often, the resolution begins
by reviewing the mission statement in order to identify an
area of agreement that can be used to initiate more construc-
tive discussion.

74 ADAPTIVE SOFTWARE DEVELOPMENT

"[A] cumulative
defect removal effi-

ciency of 95 percent
appears to be a pow-
erful nodal point for

software projects....
[These projects] have

the shortest schedules
..., the lowest quan-
tity of e f f o r t . . . , and

the highest level of
user satisfaction.

—C. Jones [1992],
pp. 166,167.

Quality

Software development teams cannot successfully share values related
to mission statements without discussing quality. Few individuals
strive to accomplish poor-quality work, yet most individuals are frus-
trated by the quality of products produced by their organizations. It
seems there is always someone else whose work degrades our quality.

Despite all the words written and delivered in seminars and at con-
ferences about the issue of assuring quality, there are still significant
problems in practice, such as the following:

• failure to differentiate among perfection, excellence, and
"good enough"

• failure to acknowledge that defects are only one aspect of a
product's value

• failure to develop a shared understanding of a particular
product's expected quality

• failure to understand that quality is an emergent property that
is often ambiguous and uncertain

• failure to understand the unique characteristics of software
that negate application of practices used in other functional
areas such as manufacturing

For something so deeply valued in our software development culture,
quality remains hard to define. For me, the most useful definition of
quality is the following:

Quality is value to some person. —G. Weinberg [1992], p. 7.

The simplicity of Weinberg's definition belies its depth. Two critical
issues are suggested. The first is that quality is multidimensional.
Many software engineers consider defect levels to be the sole dimen-
sion on which to measure quality, but Weinberg's use of the word value
indicates a definition of quality that is broader, to be measured in terms
of schedule, scope, defects, or even aesthetics. A second issue raised by
the definition is whether quality is an intrinsic characteristic or is
dependent on a viewer's perception of the product. Too many defini-
tions of quality leave out consideration of how people are affected by
the product and, therefore, are sterile and lifeless.

CHAPTER 3: THE PROJECT MISSION 75

Many software engineers are unsettled by the idea of value as a
perception of the beholder. Their analytical nature wants quality to be
intrinsic. One of the most telling arguments for quality as a perceived
property is the deep emotion it stirs. By defining quality in an analyti-
cal way, by reducing it to charts and numbers and processes and rules,
we lose passion—the very motivator needed to accomplish it.

The current state of software quality management practices often is
governed by the phrase, Do it right the first time. But in a complex envi-
ronment, Do it right the first time is a recipe for failure. In essence, it
says,

• We can't be uncertain.

• We can't experiment.

• We can't learn from mistakes (because we shouldn't make any).

• We can't deviate from plan.

In the early stages of a project, if the delivery time horizon isn't too far
out, we may be able to speculate on wrhat the generally correct direction
is, but defining a single "right" borders on fantasy. Even if we could
define right, doing it the first time makes no sense for anything other
than trivial products. "The first time" assumes we understand the
cause and effect, the specific algorithm of getting to the final product
from our initial starting position, and the needs of all stakeholders. It
says we know it all. What we need is to be willing to do it wrong the
first time in order to get it right the last time.

Several writers have addressed this multidimensional view of
quality, most notably James Bach. Bach's terminology set off a mini-
firestorm of reaction: He used the term good-enough software develop-
ment as a tag line (Bach95). The irony is that "good enough" seems to
indicate a compromise position, one of settling for less than the best. It
offends many developers whose value systems seek perfection rather
than quality.

To me, "good enough" means the combination of attributes provid-
ing the best total value in a complex environment. With the myriad
combinations and permutations of value attributes—scope, schedule,
defect levels, and resources—there can never be an optimum value.
Not only is the value landscape vast, but competitors are constantly
altering its features. "Good enough" suggests synthesis rather than
compromise. It does not mean settling for average, but advocates

''The rule 'I must be
perfect' is common
enough in the general
population, but
among people
attracted to software
engineering, it's close
to universal"
—G. Weinberg [1994],
p. 212.

76 ADAPTIVE SOFTWARE DEVELOPMENT

delivering the best mix of attributes in a given competitive situation. If
software development is to be considered a true engineering discipline,
then balancing—not compromising—conflicting quality values is part
of building high-quality products.

Value is related to use. For example, with a piece of software slated
to run medical equipment that could injure or kill a patient, the value
goal would be low defects, no matter how much time the development
and test phases take. However, the same value standard would not be
applied to a sales application needed for product planning.

The four broad categories of software quality in Fig. 3.3 are the
same ones used in the product mission profile matrix (Table 3.1): scope,
schedule, resources, and defects. Many project management
approaches use only the first three categories, but I include defects as a
major category because of the emotional reaction many people have to
the issue of quality and the tendency to consider defects to be synony-
mous with a lack of quality.

figure 3.3: Dimensions of Quality.

The belief that a product with zero defects can be achieved is a myth
left over from the manufacturing roots of most quality assurance initia-
tives. In manufacturing a thousand widgets per hour to a statistical
quality tolerance of + /-.001 inches, a plant that can manufacture so
that no widget exceeds the tolerance would be considered to have a
zero-defect level. Would the narrow tolerance have any real meaning
if the best machine tools in existence could only produce to +/-.1

CHAPTER 3: THE PROJECT MISSION 77

inches? Of course not, yet we openly embrace equivalent nonsense
when it comes to software.

Depending on what they are designed to do, software products
have different tolerances for defects. The tolerances for an operating
system, a sales forecasting system, a medical equipment control sys-
tem, and a 3-D adventure game are very different. Many organizations
resist this idea of tolerance for software defects, and have little clue as to
how many defects their software actually contains. It is interesting to
me that the better software developers usually know more about their
defects and which ones they are shipping to customers than the devel-
opers (and companies) who claim a belief in zero defects know about
the defects they ship.

Evaluate the Mission Every Day

Creating a sense of shared values, a sense of a shared mission, requires
constant attention by the team members. In the early stages of the
project, there may be broad ideas about the feature set, but the details
are off in the fog. I once ran a six-month, twenty-plus-person project
with a reasonably stated overall mission, but fuzzy details. The project
plan contained about eighteen tasks, which we never looked at after
the first week. But every single day, in some fashion, the team dis-
cussed the end goals, the contents of the final product, and what the
product's features might look like. Each team member had "to-do"
lists according to his or her own responsibilities but, from an overall
management perspective, meeting the cycle dates and refining the
component definitions were the main focal points.

In complex projects, no one completely understands the final deliv-
erables until they are ready for shipment or installation. The question
in everyone's mind, every day, is, How can we improve our under-
standing of what we are supposed to produce? Shared understanding
itself is not a goal, but an ongoing process of interaction and relation-
ship-building.

Focus on Results

The four steps that define the recipe for success on a complex project
are: Define the result; Define the quality criteria to measure the result;
Create a shared understanding of the destination; and Let the results

''Great Groups
ship. Successful col-
laborations are
dreams with dead-
lines. "
—W. Bennis and P.
Biederman [1997],
p. 214

78 ADAPTIVE SOFTWARE DEVELOPMENT

evolve in an emergent fashion. A feature team of six people who have
their own ideas about what constitutes quality and who are driven to
perfection is a recipe for disaster. The same group, driven by a vision
and guided by a focus on excellence—that is, a group that understands
the pitfalls of perfection—will still be witness to colossal arguments
and bruised feelings, but will stand a better chance of shipping a great
product. Great groups, and particularly leaders of great groups, under-
stand the difference between perfect, excellent, and "good enough/'

One of the critical success factors in mountaineering is the
climber's ability to focus intensely—on the next step, then on the next,
and so on. I've been in situations in which I had to talk myself into
pushing ahead. Counting each crunch in the glacier ice, I more than
once have felt overwhelmed by the need to take even one hundred
steps. Reaching one hundred, my next goal was another hundred—
thinking about getting all the way to the summit was just too daunting.
By playing games with my mind, I could fool myself into taking the
climb step by step. In climbing, just as in product development, you
know one hundred steps isn't the real goal, but it provides relief—a
small accomplishment to battle the fatigue and the little voice saying,
"Go back; you've done enough. It was a valiant effort. The top isn't
really so important anyway." Good mission statements help team
members battle the doubt, indecision, and despair that is part of any
project.

In the beginning, a mission statement is purposefully broad, but as
the project's ship-date approaches, mutual understanding narrows the
gap so a product can be shipped. A mission is like a mountain, broad
at the start, increasingly narrow at the top. The more extreme the soft-
ware project, the more crisply defined and visual the focal point must
be as the end approaches. Head-down, fur-flying ship-mode is not the
time to be uncertain about the goal.

Quality is not about time—software archaeology is littered with the
bones of very long projects of very poor quality. Quality is about set-
ting the correct mission and the correct objectives. It is about under-
standing the constraints, managing trade-offs, and displaying courage.
If the objective is to produce a certain feature set in three months, and
there are no specified criteria for the software to integrate with other
applications, then labeling the result as poor quality because of poor
integration is spurious. If the plan is to monitor quality through the
use of technical reviews and they are bypassed because of time con-

CHAPTER 3: THE PROJECT MISSION 79

straints, then someone has either made a valid trade-off decision or
lacked the courage to take the time needed.

Much of the outcry about poor quality is based on the determinis-
tic view that quality can be predicted and planned, and that specific
processes can be put in place to achieve it. In reality, quality is an
emergent property, an ever-shifting position on a fitness landscape.
Until we learn to view quality not as a point in quality space but as
shifts along a continuum of unfolding possibilities, the arguments will
continue to focus entirely on the wrong issues.

Summary

>- Thomas Jefferson's mission statement to the Lewis and Clark expe-
dition was one of the most famous in history. It combined a spe-
cific goal, boundaries of behavior, and wide latitude for implemen-
tation.

>* A mission statement needs to be focused. Attempting to excel in
multiple dimensions usually results in a product being mediocre in
all of them and excellent in none.

>- The product mission profile forces a focus on the single area—fea-
tures, schedule, defects, or resources—in which the development
team needs to excel. This profile provides the high-level, trade-off
strategy for the project.

>- A mission statement facilitates collection of information that is rele-
vant to the project's desired result.

>• A mission should establish direction, inspire the participants, and
provide enough detail for ongoing decision-making.

>• The components of mission are a project vision (or charter), a proj-
ect data sheet, and a product specification outline.

>^ Writing a mission statement is easy. Creating a sense of shared
responsibility for achieving the mission is very difficult. Building a
shared vision is an ongoing, never-ending, collaborative team
effort.

>• The ability to periodically de-focus is important.

80 ADAPTIVE SOFTWARE DEVELOPMENT

>- The project vision or charter establishes the focus and key motiva-
tional theme for the project. It establishes which direction to take
into the fog of the unknown. It provides the boundaries for the
exploration phase of the Speculate-Collaborate-Learn life cycle.

>* The project data sheet is a one-page summary of the key informa-
tion about the project. It serves as a focal point and quick reminder
of the most important elements about the project. It is simple, but
powerful.

>- The product specification outline describes the features of the
product in enough detail so that developers can understand the
scope of the effort, create a more detailed adaptive cycle plan, and
estimate the general magnitude of the development effort.

>• Quality characteristics are part of the mission definition. Software
developers often fail to differentiate between excellence and perfec-
tion. They also fail to provide a basis for making necessary trade-
offs during a project.

>* Quality is in the eye of the beholders. In Jerry Weinberg's words,
"Quality is value to some person/'

This page intentionally left blank

Index

Accidental Software Development, 5, 7, 8,
13,17, 24, 48, 49,149, 224, 325, 330

Accountability, 119, 130, 132, 212-13, 215,
294, 299

Adams, Scott, xviii, 13, 14, 333
Adaptation and adaptability, xxv, 9, 10, 12,

13, 16, 21, 24, 25, 26, 31, 39, 42, 47, 48,
49, 50, 149, 174, 180, 189, 206, 213, 224,
233, 325ff.

Adaptive Conceptual Model, xxx, 14, 15-
17, 22, 25, 49

Adaptive development, xxv, xxix, xxx, 11,
14, 15, 19, 21, 22, 23-24, 25, 31, 39, 40,
41, 46, 47, 56, 59, 99,156,198, 263
See also Collaboration
culture, xxiv, xxvi, 15, 185, 208, 213-23,

236
cycles, xxx, 69, 111, 129
governance, 214-16, 231
management, xxvi, xxx, 15, 23, 126,

181,185, 202-34, 323

organizations, xxvi, 20, 40, 122, 151,
214, 262, 325

of software, xxv, xxix, xxx, 11, 14, 15,
19, 21ff., 25, 31, 39, 40, 41, 47, 56,
82, 83, 120, 129,189, 242, 252

teams, 46, 47, 118, 218
Adaptive Development Model, xxx, 14, 15,

17-20, 21, 22, 25, 37, 39, 40, 46
Adaptive Development Model Life Cycle,

37ff., 46, 50, 58, 62, 81-112, 144, 147,
154, 159, 182, 211, 217, 225, 238ff., 245,
248, 250-55, 259, 277, 279
Advanced, 237ff., 250-55, 277, 279
characteristics of, 83-90
iterative life cycle and, 37, 50
planning, 81-112
Speculate, Collaborate, Learn, 18, 25,

41, 50, 58, 62, 83,154,182, 237, 328
Adaptive (Leadership-Collaboration)

Management Model, xxx, 14,15, 20-22,
25,182,189, 205-13

349

350 INDEX

accountability and, 212-13
Adhocracy, 4, 5, 325-26
Agents, 15, 22, 29ff., 43, 47ff., 134, 189, 273,

285
independent, 15, 34, 47, 50,189
self-organizing, 189, 273

Aggregation, 34, 35, 50
Ambrose, Steven, xviii, 53, 333
Andreas, Steve, xviii, 55, 333
Anxiety, 37, 41, 59, 122, 125, 216, 217, 220,

221-22, 223, 327
Approved state, 248ff., 254, 255
Arrival of the fittest, 11, 12-13, 25, 31, 33,

47, 213, 326
Arthur, W. Brian, xvii, 9, 24, 33, 333
Artificial Life (A-Life), 32-33, 36,179, 264
Ashby, W.R., 190, 210
Austin, Robert, 231, 333

Bach, James, 75, 332, 334
Balance, 140, 185, 208, 213, 214, 216, 220,

223,232,236,276,286,287,289,295,325
Bayer, Sam, xxv, 19, 334
Bennis, Warren, xviii, xx, 42, 45, 77, 117,

118,139, 209, 210, 211, 222, 334
Best practices, 94, 214, 279
Biederman, Patricia, xviii, 42, 45, 77, 117,

118,139, 222, 334
Boehm, Barry, 18, 38, 309, 334
Boids, 31-32
Booch, Grady, 4
Boundaries, 55, 58, 89, 184, 200, 225, 229,

269, 283-84, 290, 291
hierarchical, 291
permeable, 284
of self-organization, 283-84

Brache, Alan, 225, 344
Building blocks, 34-35, 323-24
Business Process Reengineering (BPR), 8,

151,153,186,187,188, 224, 325, 326

Caldwell, Mike, 157

Campbell, Susan, 322
Capability Maturity Model (CMM), 11-12,

152, 186, 188, 224, 225, 236, 237, 259,
283, 325

Cecret Lake, 27ff.
Change, xxiv, 47, 83, 86, 89-90, 140-41, 151-

54,162,163,182-84, 285, 316-19
containment of, 183-84, 185, 224, 300,

316-19
controlling, 183-84,185, 238, 300, 316
management of, 183,184, 285, 286, 300
requests, 86,163

Chaordic organizations, 206, 207
Chaos, xxiv, xxvi, 8, 15, 25, 27, 50, 55, 126,

189, 216, 223, 283, 287, 289, 327, 328,
329
edge of, xxvi, 27-50, 59, 121, 126, 133,

206, 207, 208, 216, 219, 221, 232-33,
236, 261, 264, 276, 286, 295, 328

teams and, 46, 47, 327
Charette, Robert, xx, 309, 310, 334
Christensen, Clayton, 180-81, 335
Collaborate stage, 18, 25, 41, 50, 58, 62, 83,

154,182, 237, 328
Collaboration, xxv, xxvi, xxx, 13ff., 21, 22,

24, 25, 33, 41, 45, 50, 64, 83,113-42,148,
154ff., 158, 182, 185, 190, 206, 211-12,
214ff., 218, 225, 232, 236, 251, 256, 261-
93, 294, 296, 300, 302, 322ff., 328, 329,
331
See also Structural collaboration; Tools

of collaboration
adaptive, 120,185, 211-12
barriers to, 115-17
complexity and, 120-26
environment for, 124, 146, 148, 210,

216, 236, 302
facilitation of, 137, 205, 275
framework, 268
network, 21, 26, 271, 281, 285, 286-87,

298
pitfalls of, 132-34

INDEX 351

postmortems of, 174
rancorous, 134-35
service layer, 256, 277
teams and, 48,120,126-35,184, 208, 269

Collier, Wayne, 235, 251
Command-Control management, xxv,

xxvi, 21, 23, 25, 115, 117, 126, 137, 182,
192, 199, 205ff., 209, 215, 231, 232, 273,
324, 328ff.

Communication, 45, 50, 116, 127, 262, 271,
272, 300

Competition, 13, 33, 34, 48, 59, 86,186, 287
Completion states, 235, 239, 241, 245, 248,

249, 250, 254, 255
Complex adaptive systems (CASs), xxiv,

xxvi, xxx, 8, lOff., 24, 25, 28ff., 33ff., 39,
45, 47ff., 115, 121, 122, 126, 149ff., 188-
89, 205, 208, 209, 230, 261, 282, 287,
288, 324, 326, 328ff.
four properties of, 34
learning model based on, 149-54

Complexity, xxiv, xxv, xxvii, xxx, 8, 12, 19,
25, 29, 30, 32, 33, 35-37, 46, 47, 50, 83,
120, 122, 186, 199-200, 224, 226, 285,
286, 290, 304
collaboration and, 120-26
complication vs., xxvi, 12, 19, 29, 188,

207, 226, 236
of ecosystems, 231
of environments, 12, 22, 34, 35-37, 38,

41, 42, 45, 46-49, 50, 55ff., 90, 115,
184, 217, 223, 228, 229, 242

of problems, xxiv, xxvi, 30,188-89
of projects, 36, 68, 77, 81, 159, 204, 211,

235, 237
simplicity vs., 199-200

Component-based approach, 37, 40, 83, 84-
85, 241

Components, 35, 37, 40, 69, 70, 84-85, 97-
99, 104, 105-7, 108-11, 144, 211, 241-50,
251, 254, 255, 291, 302, 313
dependencies of, 104, 251, 258, 302

finalizing, 109-10
life cycles of, 244, 245-49
primary, 70, 97-98,105-6,108
rigor of, 255-58
support of, 70, 98-99,107,108-9
technology of, 70, 98-99,106-7,108-9
types and states of, 248-50, 254, 255

Compromise, 216, 217-19, 224
Computer-aided software engineering

(CASE), 6, 267, 277
Concurrency, 15, 17, 19, 87, 205, 239, 241ff.,

329
Connectivity, 122,124-25, 272, 286, 287, 329
Conner, Daryl, 141, 335
Constantine, Larry, xix, 117, 119, 132-33,

137, 335
Context, 125,161, 263, 264-68, 288, 329

content vs., 125, 263, 264-68, 291
Control, 121-26,181,182, 214, 225, 287

management and, 181,182
Convergence, 58, 59,129, 304
Co-opetition, 13
Coveney, Peter, xviii, 31, 33, 335
Cox, Brad, 4
Creativity, 36, 37, 48, 50, 57, 120, 124, 126,

133,190,199, 205, 238, 325, 328
Crichton, Michael, xviii, 13,182, 335
Customer Focus-Group (CFG) Reviews,

xxi, xxv, 46, 95, 101-2, 147, 154, 155,
156-67,172, 256, 280, 295, 313, 324
evaluation of results, 166-67
facilitators in, 135,136-37,155,161,162

Customers, 40, 42, 44, 46, 47, 55, 60, 64,
157ff., 191,198
intimacy of, 66,191,198
relationships with, 154ff., 160

Cusumano, Michael, 41,145, 335

Darwin, Charles, 10, 208, 326
Davenport, Thomas, 262, 336
Davis, Jim, 312
Dawdling, xxxi, 321, 322

352 INDEX

Decision-making, xxvi, 55, 56, 59, 96, 113,
118, 123, 127, 133, 135, 148, 204, 208,
214, 217, 223, 278, 287, 329
distributed, 208, 214
meetings and, 123, 278

Defects, 4, 36, 44, 67, 68, 74, 76, 77, 123,
135,167, 227, 314

De Geus, Arie, xvii, 11, 58, 59, 143, 202,
205, 336

Delivery dates, 94, 307-8
DeMarco, Tom, xix, xx, 4, 117, 118, 231,

306, 309, 327, 332, 336
Deming, W. Edwards, 225
Dependency, 243, 248, 251, 257-58, 263,

267-68, 269, 302
between components, 104,251,258,302
intra- and inter-project, 248, 263

Detail (Model) state, 245, 248, 249
Determinism, xxiv, xxv, 8ff., 17, 20, 24, 39,

40, 41, 42, 47, 48, 50, 58, 79,183-84,187,
189, 326, 327, 330

Developers, 30, 31, 38, 44, 46, 47, 49
Development, See Accidental Software

Development; Adaptive development;
Concurrency; High change; High
speed; Iterative development; Monu-
mental Software Development; Serial
development; Visual development

Discussion groups, 278, 281
Disney, Walt, 138-39, 210, 232
Distributed governance, 33, 208, 213, 214
Divergence, 58, 59, 87,128,136
Diversity, 35, 45, 50, 57, 116, 122, 124, 272,

288, 329
Doyle, Michael, 123, 336

Echo model, 287
E-commerce, 3,106, 236, 262
Ecosystems, 15, 24, 25, 179-80, 189, 190-99,

225, 231, 287
organizations as, 179-80
tornado marketing and, 193-99
value disciplines and, 191-93

Edge of chaos, See Chaos
Electronic meeting systems (EMSs), 219-

21, 278-79
Elevator test, 63-64
Emergence, xxiv, xxvi, xxx, 11, 12, 22, 25,

30, 31, 33, 37, 45, 47ff., 57,121, 132,148,
189, 213, 237, 263, 270, 281-89, 323ff.
of behavior, 12,32,214
of order, xxiv, xxvi, xxx, 8, 12, 21, 22,

23, 25, 32, 34, 37, 40, 188, 206, 207,
213, 261, 323

of outcomes, 15, 264
of processes, 229
of properties, 31, 33, 45, 74
of results, 12, 21, 24, 26, 37, 48, 59, 77-

78, 122, 126, 216, 230, 231, 273,
286, 287, 288, 322

structural collaboration and, 281-89
Emergent order, See Order
Empowerment, xxvi, 33,118, 208, 214, 215
Environments, 14, 15, 20, 34, 35-37, 40, 48,

49, 50, 56, 59,124,183, 223, 227
adaptive, 41, 46
CAS, 34
chaotic, 35-37
collaborative, 124, 146, 148, 210, 216,

236, 302
extreme, 14, 15, 20, 183, 215, 217, 269,

284, 328
Equilibrium, 9, 20, 36,180,183, 216, 318
Everest, Mount, 4, 24,115, 202, 203, 302, 332
Evolution, xxvi, 10-11,15, 35ff.
Evolutionary life cycle, 18,19, 37ff., 50
Exploration, 42, 43, 53, 54, 59
Extreme projects, See Project

Facilitation, 135,136ff., 155,161ff., 169,172,
205, 278, 279, 280-81
of CFG reviews, 161ff.
of JAD sessions, 136-37,138, 280
of postmortems, 172,173
of software inspections, 168,169,170
of structural collaboration, 275,280-81

INDEX 353

types of, 135,136-37
Failure, 40, 59, 60,179-201, 227
Faulkner, Charles, xviii, 55, 333
Feedback, 37, 38, 40, 45ff., 83-84, 86, 95,

100,123,136,145-46,160,190, 227, 229,
230, 242
loops, 83-84,100
meetings, 123,136

Feed-forward, 123,136,146,160
Fitness landscapes, 28, 29, 30, 35-37, 43, 50,

58,89
Flexibility, xxvi, 24, 30, 54, 56, 190, 216,

226-27, 228-29, 232, 295
balancing rigor and flexibility, 295
of processes, 223, 225ff.

Function points, 69, 308

Gates, decision, 254-55
Gates, Bill, 72-73,116, 210
Cell-Man, Murray, 33, 284, 337
Gilb, Tom, xix, 18, 38, 39,136, 337
Goddard, Dale, xix, 29-30, 82, 337
Goldberg, Adele, 279
Goldstein, Jeffrey, xx, 283-84, 337
Groan Zone, 127-29, 304
Groupware, 127, 276

Hacking, 7,17, 207
Hierarchies, 119, 209, 287, 291
High change, xxiv, xxix, 3, 14,15, 18-26, 37,

55,182-85,190, 205, 207, 283, 321
Highfield, Roger, xviii, 31, 33, 335
High speed, xxiv, xxix, 3, 14, 18-20, 23-25,

136,153,182,190,199, 205, 207, 321
Hock, Dee, 206, 207
Hof, Robert, xviii, 20, 338
Holland, John, xviii, 33, 34-35, 149-51, 282,

287, 323, 339

IBM, 66,134
Independent software vendors (ISVs), 21

Information, 34, 45, 48, 49, 55, 56, 57, 122-
23, 126, 241, 243, 245, 247, 251, 270,
275-76
filtering, 247, 275-76
flow, 34, 45, 48, 49, 55, 56, 57, 122, 126,

243, 245, 251, 270, 272, 274, 284,
289, 328, 329

partial, 241-45, 251
Information Engineering, 5, 242
Innovation, 31, 36, 37, 40, 49, 50, 55, 56, 57,

122,125,151-54,194,195,199, 205, 216,
287, 288, 325, 326, 328, 330
results of, 122, 288, 328

Inspections, 147,155,156,167-71, 280
Internet, 8,12,13, 35,106, 324
Iterative development, xxv, 15,17,18,37ff., 44,

55,82,85-88,91,190,205,240,298,329
learning and, 17, 82,190, 328
life cycle, xxv, 18, 19, 37ff., 47, 50, 83,

85-88,144, 225, 324, 328

Java, 8, 48
Jefferson, Mount, 3,113, 203
Jefferson, Thomas, 53-54
Johnson, George, xvii, xxiii, 10, 329, 339-40
Johnson, Jim, xix, 60, 340
Joint Application Development (JAD), 19,

39, 93-94, 106, 128, 135-40, 160, 162,
222, 280, 297

Jones, Capers, xviii, 46, 74, 98, 135, 167,
172, 207, 294, 297, 308, 340

Judgment, 58, 59, 202, 203, 204, 217, 232,
233

K2 mountain, 4, 24,115
Kaner, Sam, xix, 127,135,136,140, 340
Katzenbach, Jon, xix, 117,118,132, 340
Kauffman, Stuart, xvii, xx, 8, 10, 33, 37,

261, 285-87, 340-41
Kelly, Kevin, 261, 341
Keuffel, Warren, xvii, xxx, 341

354 INDEX

Kidder, Tracy, 31, 342
Knowledge work, 263

economics of, 9, 47
management of, 209, 262, 263, 280

Krakauer, Jon, xx, 328, 332, 341
Kramer, Matt, xx, 199-200, 341

Langton, Chris, 36, 287
Leadership, 41, 45, 209-11, 214, 217, 223,

232, 294
Leadership-Collaboration Management,

xxvi, xxx, 14, 15, 20-22, 25, 182, 205-13,
233, 296, 323

Learning, 18, 25, 33, 41ff., 45-46, 50, 55, 57,
58, 62, 83-84, 100, 111, 145, 147, 154,
182, 188, 194, 203, 220, 222, 232, 237,
300, 324, 328
inspections and, 167-71
iterative, 17, 82,190
loop, 83-84,100,145
models, 147-54
organizations, 33, 45ff., 121, 145ff., 208,

324
postmortems and, 171-74
techniques, 147,154-56

Lewis and Clark, 53-54
Life cycle, xxv, xxx, 4, 17, 18, 37ff., 43, 44,

46, 50, 85,198, 244ff.
See also Adaptive Development Model

Life Cycle; Iterative Life Cycle
evolutionary, 37, 38-39, 50
of technology adoption, 194-95
types of, 37-39
workstate focus and, 235-60

Links, 270, 271-73
Lipnack, Jessica, xx, 262, 265, 269, 342
Lister, Timothy, xix, 118, 327, 332, 336
Lotus, 263

McCarthy, Jim, xviii, 55, 70, 91, 117, 127,
213, 342

McConnell, Steve, 71, 343
McLuhan, Marshall, xxxi, 323-26, 343

Maguire, Steve, xix, 94, 96, 343
Management, xxi, xxx, 15, 21, 40, 44, 125,

184, 209, 214, 294
See also Adaptive management; Com-

mand-Control management; Knowl-
edge management; Leadership; Lead-
ership-Collaboration management

of change, 183,184, 285, 286, 300
configuration, 19, 45, 236, 277
of emotions, 219-21, 222
failure of, 58,179-201
human-centered, 33,121, 205
model of, 295ft.
participatory, 33, 127, 130, 131, 205,

214, 266
phase, 295, 311-19
of risk, 309-10
time-boxed, 304
tools, xxvi, xxvii, 4, 20, 21, 22, 24, 26, 48
type, 42,137,173,179-201

Marcus, Stanley, 157
Margin of error, 4, 203, 204
Markets, 15, 20, 30, 35, 43, 49, 59, 64,197

increasing-returns, 9, 12, 13, 24, 25, 47,
183,193

Mechanistic view, 10,11,100,121, 330
Microsoft, 12, 19, 41, 72-73, 145-46, 184,

207, 210, 236, 263, 278
Milestones, 91, 96,129, 246-48, 254-55, 315
Mission, 43, 44, 47, 50, 53-80, 83, 84, 100,

220, 299
artifacts, 54, 59-71, 83,101,149
cycles, 83, 84
data, 299-300
documents, 54-55
profile, 4, 36, 40, 66-69, 76, 93,174,191,

313, 332
statements, 42, 44, 53ff., 65, 72, 73, 78,

87,173, 317, 324
values, 55, 71-77

Models, xxv, 43, 45, 46, 48, 50, 86, 90, 127,
145,147-54,188, 213, 216, 218, 230, 283
See also Adaptive Conceptual Model;

INDEX 355

Adaptive Development Model;
Adaptive (Leadership-Collabora-
tion) Management Model

of learning, 147-54
of management, 295ff.
mental, 43, 45, 46, 48, 50, 86, 127, 145,

147ff., 153,188, 213, 216, 218, 230
use-case, 90

Monumental Software Development, 5, 6,
8, 12, 13, 17, 24, 48, 49, 149, 221, 224,
325, 329-30

Moore, Geoffrey, xix, 63-64, 131, 141, 153,
193-98, 343

Myers-Briggs personality typing, 322

Neometron, 279
Netscape, 12,19,197, 263, 286
Networks, 7, 21, 48, 115, 208ff., 214, 262,

263, 268ff., 281, 285
See also Collaboration network
communication, 262, 271
genetic, 285, 287
growth of, 270, 273-74
nodes within, 270, 271-73, 287
pushes within, 271, 273-74
team, 209, 211, 268, 269, 281

Neumann, Udo, xix, 29-30, 82, 337
Newtonian view, 10, 20, 23, 24, 205, 208
Nix, Lynne, 5, 44, 295
Nonlinearity, 13, 15, 34, 41, 47, 153, 159,

188, 327
CASs and, 153,159

Object technology, 8, 295
Optimization, xxiv, xxvi, xxvii, 9, 12, 13,

19, 24-25, 36, 39, 48, 50, 187, 188, 206,
207, 213, 223, 226, 283, 288, 325, 326
negative effect of, 287-89
paradox of, 187
of process, 283, 288-89

Oracle, 9,19,197

Order, 15, 25, 35-37, 38,189, 226, 227
emergent, xxiv, xxvi, xxx, 8, 12, 21 ff.,

32, 34, 37, 40, 125, 188, 206, 207,
213, 216, 261, 323

for free, 284-86
imposed, xxiv, xxvi, xxx, 8, 12, 22, 23,

32, 37, 40,125, 206, 216
Organizations, xxvi, 16, 31, 33, 36, 37, 44ff.,

118,121,125, 206, 214, 225, 230
adaptive, xxvi, 20, 40, 122, 151, 214,

262, 325
chaordic, 206, 207
culture of, 213
as ecosystems, 179-80
growth and, xxxi, 326-31
learning, 33, 45ff., 121,145ff., 208, 324
team-oriented, 118

Orr, Ken, xxii, 4, 5

Paradox, 37, 42, 59,187, 217
Partnership, 158-59,162
Patterns, xxiv, 56, 57, 58, 200, 225, 229-32,

282, 288, 325
Performance, 109,118,150
Peters, Tom, xix, xx, 61,156,157, 343
Petzinger, Tom, 205, 343
Phase-and-gate approach, 251, 252
Planning, 38, 42, 43, 50, 58, 69, 77, 81-112,

295, 297, 301-11
cycles, xxx, 69, 83, 91-100, 308
risk and, 309-11
time-boxing and, 303-5

Poise, 206, 213, 214, 216-23
Postmortems, 46,147,155,156,160,171-74,

295, 314
Power, 122,125-26, 208, 214, 215, 225
Pragmatists, 195,196-97
Predictability, 39, 227
Prisoner's Dilemma, 134
Problem-solving, 31, 60, 118, 120, 123, 226,

227, 229, 278

356 INDEX

Processes, xxv, 7, 8,12,16, 30, 37, 40, 44, 55,
56, 57, 86, 122, 149, 150, 223-32, 239,
255, 298
See also Flexibility; Rigor; Tasks
classification of, 225-27
development of, xxv, 40
improvement of, xxvi, 6, 44, 198, 225-

26, 229, 239, 276, 324, 326
optimization, 283, 288-89
results vs., 86,149
rigid, 231, 262
rigorous, 122, 221, 223, 226, 227-28

Product, 41, 42
features, 44, 45, 58, 59, 70, 78, 105, 107-

9,117, 208, 269, 271
kick-off week, 93-94,106
leadership, 66,191
profile, 4, 36, 40, 66-69, 76, 93,174,191,

313, 332
specification, 61, 62, 69-71

Project
See also Iterative development; Mile-

stones; Mission; Planning; Risk
charter, 61, 62-65
data sheet (PDS), 61, 62, 65-66, 73,173
death-march, 327
executive sponsor, 64, 93,133, 298-99
extreme, xxix, xxx, 3, 4, 11, 14, 24, 25,

57,126,190, 206, 209, 214, 237, 332
feasibility, 59, 60, 61, 93, 95,104, 301
focus, 43, 44, 57-58, 59, 77-79, 216
initiation, 92, 93-94,106, 295, 296-301
management, 311-19
objectives, 66, 69, 91, 96, 315
progress, 300, 312-15
schedule, 4, 36, 44, 66, 67, 75, 101, 278,

307-8, 314
scope, 4, 36, 44, 53, 55, 58, 60, 64, 66,

67, 75, 97,101, 313-14
Prusak, Laurence, 262, 336
Push and pull information, 271, 275

Quality, 16, 40, 44, 74-77, 78, 217, 305

Quality function deployment (QFD), 217,
218

Rapid Application Development (RAD),
xxv, xxix, xxx, 8, 14, 17, 19, 22, 25, 38-
39,102,125,152,153, 207, 265

Rational Unified Process, 298
Redpointing, 81-82, 84, 315
Reinertsen, Donald, xviii, 17, 241, 243, 301,

345
Relationships, xxv, 32, 45, 121, 138, 139-40,

141, 146, 155, 168, 209, 211, 225, 267,
321, 325
See also Customers; Dependency
JAD sessions and, 138
learning and, 146
who-and-what, 267, 268

Requirements, 6, 18, 19, 39, 40, 44, 57, 58,
61, 221, 291, 308-9

Requisite variety, 190, 210, 215, 222
Resources, 4, 36, 44, 47,101, 308-9
Respect, 130-31,141,158,172, 266
Responsibility, 119, 132, 158, 266, 300, 324,

332
Results, 15, 21, 40, 42ff., 50, 56ff., 77-79, 86,

122,149,160, 216, 225, 239, 324, 328, 331
See also Components; Emergence
desired, 44, 56, 83, 216
management of, 15, 21, 40
Planned, 43, 56
process vs., 86,149

Retrospectives, See Postmortems
Reviews, 46,100-103,123,167, 256, 313
Reynolds, Craig, 31, 32
Rigidity, 36, 39, 48, 231, 262
Rigor, xxvi, 21, 24, 26, 30, 47, 49, 208, 211,

216, 217, 227-28, 232, 236, 237, 238,
255-58, 288, 289-92, 295, 324-35
of components, 255-58
process, 122, 221, 223, 226, 227-28

Risk, xxx, 19, 38, 40, 59, 65, 81, 83, 89-90,
154, 202-3, 204, 209, 245, 302, 309-11
management and, 309-10, 311

INDEX 357

Rules, 32,34,50,56,58,59,137-38,150, 330
Rummler, Geary, 225, 344

Santa Fe Institute, 10, 33, 285, 287
Schaffer, Robert, xx, 237, 344
Schrage, Michael, xviii, 45,114, 344
Selby, Richard, 41,145
Self-organization, 11, 12, 15, 22, 24, 26, 31,

32, 34, 48, 129, 153, 189, 207, 212, 213,
225, 262, 270, 272, 273, 283-84, 285, 322,
324, 327, 328, 329
boundaries of, 283-84

Senge, Peter, xviii, xx, 15,45,147-49,154, 344
Serial development, 242, 243
Sharing, 44, 45, 114, 116, 122-23, 145, 155,

158, 208
values, 44, 45, 46, 50, 54, 55, 71-77

Silver bullet, 6,152,185-88,190,199, 200
Simmons, Mike, 329
Skier analogy, 20
Smith, Bradley, xx, 149, 345
Smith, Douglas K., xix, 118,132, 340
Smith, Preston, xviii, 17, 241, 243, 301, 345
Smith, Steve, 323
Software, See Adaptive development; Devel-

opers; Development; Inspections;
Reviews; Specifications; Vendors

Software Engineering Institute (SEI), xxvi,
6,11, 225, 226, 259, 283, 324

Specifications, 42, 61, 62
Speculation, 18, 25, 41, 42-44, 50, 55, 56, 58,

62,154,159,182, 217, 223, 237, 328
Spencer, Suzanne, 322
Spiral Life Cycle, 17,18, 37, 38-39, 50
Stacey, Ralph D., xviii, 32, 36,121,124,125-

26, 186, 188-89, 205, 208, 214, 216, 261,
272, 326, 329, 345

Stakeholders, 45, 46, 60
Stamps, Jeffrey, xx, 262, 265, 269, 342
StarBase Corporation, 279
States, 249-50, 267
State transitions, 255, 258
Steering organizations, 16, 55, 224
Stegner, Wallace, xix, 116, 345

Straus, David, 123, 336
Structural collaboration, 237, 256, 261-93

context and, 264-68
emergence and, 281-89
facilitators for, 280-81
guidelines for rigor in, 289-92
tools of, 256, 276-80
virtual teams and, 268-76

Stuart, Mount, climb site, 23
Success, 4, 8, 16, 22, 24, 26, 29, 30, 36, 37,

47, 56, 57-58,146, 222-23
Sugarloaf Peak, climb site, 27, 28
Sun Microsystems, 134, 261
Survival of the fittest, 10, 11, 12, 25, 33, 47,

127, 208, 213, 311
SWARM model, 287
Synchronization, 119, 254
Synergy, 55, 218
Systems, 7, 8, 31, 38, 330

See also Complex adaptive systems;
Self-organization

deterministic, 189
dynamic, 227
feedback, 229
organic, 179, 230, 231-32
performance, 150
thinking, 147,148

Task-based approach, 37, 40, 69, 85, 89
component-based vs., 37, 40, 85

Tasks, 85, 99-100, 242, 243, 245, 251
See also Processes
overlap of, 242, 245

Taylor, Frederick Winslow, 20, 345
Teams, xxv, 11, 19, 36, 37, 40, 41, 43, 44, 49,

54ff., 73, 78, 93,101,113-42,147,190
See also Virtual teams
adaptive, 46, 47,118, 218
breakthrough, 119,120
chaotic, 46, 47, 327
collaborative, 48,120,126-35,184, 208
collocated, 22, 125, 244, 257, 258, 268,

269, 278, 289, 330
core, 69, 71, 73, 93, 97,118, 269, 299

358 INDEX

cross-functional, 252
dynamics, 45,118, 262, 266
essence of, 117-20
extended, 269
hierarchical, 119
high-performance, 78,113-42, 211, 329
innovative, 125, 288
jelled, 73,117ff., 218, 332
learning and, 147,148,167
networked, 209, 211, 268, 269, 281
open, 120
as organism, 11,14,16
organizations and, 118
participative, 127
persistence and, 145, 311-12
product features analysis by, xxv, 45,

78,117, 208, 269, 271
self-managed, 33, 208, 214-15
synchronized, 119
teamwork and, 190

Technologies, 98-99,106-7
disruptive, 180-82
sustaining, 180,181

Technology Adoption Life Cycle, 193,194-95
Thomsett, Rob, 157-59
Thomson, Harvey, xx, 237, 344
Threaded discussion groups, 279
Thumb, climb site, 28, 29, 30
Time-boxing, xxii, xxx, 16,19, 39, 83, 88-89,

92, 94-96, 213, 216, 302ff., 305
of cycles, 83, 94-96, 251, 302
management and, 304
of projects, 92, 94, 302, 303-5

Tokenism, 158,159,162
Tools of collaboration, 127, 276-80

meeting systems, 19-21, 278-79
Tornado marketing, 191,193-99
Total Quality Management (TQM), 186,188
Trade-offs, 55,57,63,88,217,223,303ff., 308

QFD and, 217, 218
Transition zone, 36, 37, 49
Treacy, Michael, xix, 66,120,191-93, 346

Trust, 130, 131, 141, 172, 173, 212, 215, 266,
291, 324

Uncertainty, xxiv, xxv, 4, 17ff., 24, 37ff., 43,
47, 83, 95, 100, 146, 186, 223, 226-27,
310, 321

Unpredictability, 159, 184, 186, 187, 205,
226, 227

Value disciplines, 191-93
Values, 44ff., 50, 74, 75,155
Vendors, 21, 25, 44, 47, 291
Versioning, xxii, 91
Viability, 96,104-7
Virtual teams, 22, 26, 206, 212, 268-76
Vision, 54, 60ff., 147,149, 209

shared, 147,149,193, 209
statement, 56, 63, 64, 66, 69

Visionaries, 138-39,195,196, 210, 211

Waterfall Life Cycle, 18, 23, 37, 38, 46, 50,
86, 95,153, 225, 237, 245

Waterman, Robert, xx, 156,157, 343
Web browsers, 12
Weinberg, Gerald, xix, 16, 74, 75, 126, 147-

48,167,185, 322, 336, 346
Wheatley, Margaret, xviii, 35, 120-21, 261,

326, 331, 346
Wiersema, Fred, xix, 66,120,191-93, 346
Windows, 9, 236
Work-breakdown structures, 256
Workflow, xxv, 21, 26, 211, 237-38, 239-41,

255, 258-59, 276
Worksite, xxv, 21, 26, 211, 235-60, 262-63,

324
component, 241-50
life cycle management and, 235-60

Yourdon, Ed, 4

Zachary, Pascal, 216, 347

	Contents
	Acknowledgments
	Permissions Acknowledgments
	Foreword
	Preface
	Introduction
	3: The Project Mission
	Identify the Mission
	Create Mission Artifacts
	Share Mission Values
	Focus on Results
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

