Adding and Subtracting Mixed Numbers and Improper Fractions

Just like our counting numbers (1, 2, 3, ...), fractions can also be added and subtracted. When counting improper fractions and mixed numbers, we are counting the number wholes and parts.

Note: The rules for adding and subtracting improper fractions are the same as working with proper fractions.

Case 1: Adding and Subtracting Improper Fractions with Common Denominators
Step 1: Keep the denominator the same.
Step 2: Add or subtract the numerators.
Step 3: If the answer is an improper form, reduce the fraction into a mixed number.

Exercise 1: Add the fractions, $\frac{5}{4}+\frac{6}{4}$.
Let's draw a picture to see what this looks like.
The 4 in the denominator tells us that each whole is cut into 4 equal portions. By adding the fractions we are grouping the total number of wholes and parts.

$$
\begin{array}{ll}
\text { We have } 5 \text { slices and } & \text { We have } 6 \text { slices and } \\
\text { each whole is made up } & \text { each whole is made up } \\
\text { of } 4 \text { slices, } \frac{5}{4} . & \text { of } 4 \text { slices, } \frac{6}{4} .
\end{array}
$$

How does the math work?

Step 1: Since the two fractions have equal sized slices, keep the denominator the same, $\frac{?}{4}$.

Step 2: Add the numerators, $\quad \frac{5}{4}+\frac{6}{4}=\frac{5+6}{4}=\frac{11}{4}$.
Step 3: Thus, we have $2 \frac{3}{4}$ wholes.

Adding and Subtracting Mixed Numbers and Improper Fractions

Case 2: Adding and Subtracting Improper Fractions with Different Denominators
Step 1: Find the Lowest Common Multiple (LCM) between the denominators.
Step 2: Multiply the numerator and denominator of each fraction by a number so that they have the LCM as their new denominator.
Step 3: Add or subtract the numerators and keep the denominator the same.
Step 4: If the answer is an improper form, reduce the fraction into a mixed number.

Exercise 2: Subtract the fractions, $\frac{7}{6}-\frac{3}{8}$.
Step 1: List the multiples of 6 and 8.
Multiplies of 6: 6, 12, 18, 24, 30, 36, 48...
Multiplies of $8: 8,16,24,32,40,48,56 \ldots$
The Lowest Common Multiple between 6 and 8 is 24.
Step 2: a) We need to find a number that when multiplied to the top and bottom of $\frac{7}{6}$, we get the LCM (24) as the new denominator.

$$
\frac{7 \times ?}{6 \times ?}=\frac{?}{24}
$$

Since $6 \times 4=24$, we need to multiply the numerator and the denominator by 4.

$$
\frac{7 \times 4}{6 \times 4}=\frac{28}{24}
$$

Thus, $\frac{7}{6}$ is equivalent to $\frac{28}{24}$.
b) We need to find a number that when multiplied to the top and bottom of $\frac{3}{8}$, we get the LCM (24) as the new denominator.

$$
\frac{3 \times ?}{8 \times ?}=\frac{?}{24}
$$

Since $8 \times 3=24$, we need to multiply the numerator and the denominator by 3.

$$
\frac{3 \times 3}{8 \times 3}=\frac{9}{24}
$$

Thus, $\frac{3}{8}$ is equivalent to $\frac{9}{24}$.
Step 3: Since our fractions now have equal sized slices, we can subtract their numerators. Thus, we now have, $\frac{28}{24}-\frac{9}{24}=\frac{19}{24}$ of a whole.

Adding and Subtracting Mixed Numbers and Improper Fractions

Case 3: Adding and Subtracting Mixed Numbers Method 1

Step 1: Convert all mixed numbers into improper fractions.
Step 2: Check! Do they have a common denominator? If not, find a common denominator.
Step 3: When necessary, create equivalent fractions.
Step 4: Add or subtract the numerators and keep the denominator the same.
Step 5: If the answer is an improper form, reduce the fraction into a mixed number.

Exercise 3: Subtract the fractions, $2 \frac{3}{4}-1 \frac{1}{7}$.
Step1: Convert both mixed numbers into improper fractions.

Step 2: List the multiples of 4 and 7.

Multiplies of 4: 4, $8,12,16,20,24,28 \ldots$
Multiplies of 7: 7, 14, 21, 28, 35...

The Lowest Common Multiple between 4 and 7 is $\mathbf{2 8}$.
Step 3: a) We need to find a number that when multiplied to the top and bottom of $\frac{\mathbf{1 1}}{\mathbf{4}}$, we get the LCM (28) as the new denominator.

$$
\frac{11 \times ?}{4 \times ?}=\frac{?}{28}
$$

Since $4 \times 7=28$, we need to multiply the numerator and the denominator by 7 .

$$
\frac{11 \times 7}{4 \times 7}=\frac{77}{28}
$$

Thus, $\frac{11}{4}$ is equivalent to $\frac{77}{28}$.
b) We need to find a number that when multiplied to the top and bottom of $\frac{8}{7}$, we get the LCM (28) as the new denominator.

Adding and Subtracting Mixed Numbers and Improper Fractions

$$
\frac{8 \times ?}{7 \times ?}=\frac{?}{28}
$$

Since $7 \times 4=28$, we need to multiply the numerator and the denominator by 4.

$$
\frac{8 \times 4}{7 \times 4}=\frac{32}{28}
$$

Thus, $\frac{8}{7}$ is equivalent to $\frac{32}{28}$.
Step 4: Since our fractions now have equal sized slices, we can subtract their numerators. Subtracting their numerators we have, $\frac{77}{28}-\frac{32}{28}=\frac{45}{28}$ of a whole.

Step 5: Thus, we have $1 \frac{17}{28}$ wholes.

Case 4: Adding and Subtracting Mixed Numbers Method 2

In this second method, we will break the mixed number into wholes and parts.

Step 1: Add or subtract the whole number part.
Step 2: Check! Does the fraction part share a common denominator? If not, find one.
Step 3: When necessary, create equivalent fractions.
Step 4: Add or subtract the numerators of the fraction part and keep the denominator the same.
Step 5: If the answer is an improper form, reduce the fraction into a mixed number.

Exercise 4: Jessica is $19 \frac{1}{2}$ years old today. How old was she $2 \frac{1}{4}$ years ago?
Since we are looking at the difference between her current and past ages, our equation will look like, $9 \frac{1}{2}-2 \frac{1}{4}$.

Step 1: Subtract the whole number part, $19-2=17$ wholes .
Step 2: List the multiples of 2 and 4.
Multiplies of 2: 2, 4, 6, $8 \ldots$
Multiplies of 4: 4, 8, 12...
The Lowest Common Multiple between 2 and 4 is 4 .
Step 3: a) We need to find a number that when multiplied to the top and bottom of $\frac{1}{2}$, we get the LCM (4) as the new denominator.

Since $2 \times 2=4$, we need to multiply the numerator and the denominator by 2.

Adding and Subtracting Mixed Numbers and Improper Fractions

$$
\frac{1 \times 2}{2 \times 2}=\frac{2}{4}
$$

Thus, $\frac{1}{2}$ is equivalent to $\frac{2}{4}$.
b) Since $\frac{1}{4}$ already has the LCM (4) as the denominator, we leave the fraction as it is.

Step 4: Since our fraction part now has equal sized slices, we can subtract their numerators. Subtracting their numerators we have, $\frac{2}{4}-\frac{1}{4}=\frac{1}{4}$ of a whole.

Step 5: Combining our whole number and fraction parts we get,

$$
17 \text { wholes and } \frac{1}{4}=17 \frac{1}{4} .
$$

Exercise 5: Subtract the fractions, $3 \frac{1}{4}-1 \frac{3}{4}$.
Step 1: Subtracting the whole number part, we get $3-1=2$ wholes.
Step 2: Subtracting the fraction part, we get $\frac{1}{4}-\frac{3}{4}=$? of a whole.
Since we cannot take 3 away from 1, we need to borrow a whole from the first fraction.

Given $3 \frac{1}{4}$, let's borrow a whole by following the steps below:

$(\mathbf{2}+\mathbf{1}) \frac{1}{4}$	Rewrite 3 wholes into 2 wholes + 1 whole.
$2 \frac{1+\mathbf{4}}{\mathbf{4}}$	Since each whole has 4 slices, add the four slices from the borrowed whole into the numerator of the fraction part.
$2 \frac{5}{4}$	Thus, we have created an equivalent fraction where $3 \frac{1}{4}=2 \frac{5}{4}$.

Step 3: Now we are able to subtract the fractions, $2 \frac{5}{4}-1 \frac{3}{4}$.
Subtracting the whole number part, we are left with, $2-1=1$ whole.
Subtracting the fraction part, we are left with, $\frac{5}{4}-\frac{3}{4}=\frac{2}{4}=\frac{1}{2}$ of a whole.

Combining our whole number and fraction parts we are left with,
1 whole and $\frac{1}{2}=1 \frac{1}{2}$.

Adding and Subtracting Mixed Numbers and Improper Fractions

Exercises:

1. Add or subtract the following improper fractions and mixed numbers. Remember to reduce where possible.
a) $6 \frac{5}{8}-4 \frac{3}{8}$
b) $6 \frac{3}{8}+9 \frac{1}{24}$
c) $9 \frac{9}{10}+6 \frac{7}{10}$
d) $\frac{10}{7}+\frac{11}{7}$
e) $\frac{9}{5}+\frac{14}{7}$
f) $1 \frac{2}{4}-\frac{4}{3}$
g) $\frac{11}{8}+3 \frac{2}{3}$
h) $3-\frac{6}{5}$
i) $1 \frac{3}{5}-1 \frac{4}{9}$
j) $4 \frac{1}{7}+2 \frac{1}{3}-\frac{3}{4}$
k) $5 \frac{4}{5}+8 \frac{1}{3}-\frac{23}{4}$
l) $5 \frac{4}{7}-4 \frac{6}{7}$
2. Each week Fred works $31 / 2$ hours on Monday, 3 hours on Tuesday, 2 hours on Wednesday, $21 / 4$ hours on Thursday, and 4 hours on Friday. How many hours does he work per week?
3. During a workshop, the English Tutors ate $31 / 2$ pizzas and the Math Tutors ate $52 / 3$ pizzas. How many pizzas were ordered? (Hint: Pizzas are ordered in wholes.)
4. The fourth floor of the D building has $6001 / 2 \mathrm{ft}^{2}$ of space to house the TLC (Tutoring Learning Centre), SLC (Student Learning Centre), and PAL (Peer Assisted Learning). If the TLC uses $1201 / 4 \mathrm{ft}^{2}$ and the PAL uses $1151 / 3 \mathrm{ft}^{2}$, how much space does SLC use?
5. It takes $22 / 3$ hours to travel to Toronto from Waterloo while travelling with the GO. However, driving takes $11 / 8$ hours. How much time do you save by driving?

Solutions:

1.

a) $2 \frac{1}{4}$
b) $15 \frac{5}{12}$
c) $16 \frac{3}{5}$
d) $2 \frac{3}{7}$
e) $3 \frac{4}{5}$
f) $\frac{1}{6}$
g) $5 \frac{1}{24}$
h) $1 \frac{4}{5}$
i) $\frac{7}{45}$
j) $5 \frac{61}{84}$
k) $8 \frac{23}{60}$
l) $\frac{5}{7}$
2. $14 \frac{3}{4}$
3. 10 pizzas
4. $364 \frac{11}{12}$
5. $1 \frac{13}{24}$

