

Just like our counting numbers (1, 2, 3,...), fractions can also be added and subtracted. When counting **improper fractions** and **mixed numbers**, we are counting the number wholes and parts.

**Note:** The rules for adding and subtracting improper fractions are the same as working with proper fractions.

**Case 1: Adding and Subtracting Improper Fractions with Common Denominators** 

**Step 1:** Keep the denominator the same.

**Step 2:** Add or subtract the numerators.

**Step 3:** If the answer is an improper form, reduce the fraction into a mixed number.

**Exercise 1:** Add the fractions,  $\frac{5}{4} + \frac{6}{4}$ .

Let's draw a picture to see what this looks like.

The 4 in the **denominator** tells us that each whole is cut into **4 equal** portions. By adding the fractions we are grouping the total number of wholes and parts.



We have 5 slices and each whole is made up of 4 slices,  $\frac{5}{4}$ .

We have 6 slices and each whole is made up of **4** slices,  $\frac{6}{4}$ .

Altogether, we have 2 wholes and 3 quarters,  $2^{\frac{3}{4}}$ 

#### How does the math work?

Step 1: Since the two fractions have equal sized slices, keep the denominator the same,  $\frac{?}{4}$ .

**Step 2:** Add the numerators,  $\frac{5}{4} + \frac{6}{4} = \frac{5+6}{4} = \frac{11}{4}$ .

$$\frac{5}{4} + \frac{6}{4} = \frac{5+6}{4} = \frac{11}{4}$$
.

**Step 3:** Thus, we have  $2\frac{3}{4}$  wholes.

### Case 2: Adding and Subtracting Improper Fractions with Different Denominators

**Step 1:** Find the Lowest Common Multiple (LCM) between the denominators.

**Step 2:** Multiply the numerator and denominator of each fraction by a number so that they have the LCM as their new denominator.

**Step 3:** Add or subtract the numerators and keep the denominator the same.

Step 4: If the answer is an improper form, reduce the fraction into a mixed number.

**Exercise 2:** Subtract the fractions,  $\frac{7}{6} - \frac{3}{8}$ .

Step 1: List the multiples of 6 and 8.

Multiplies of 6: 6, 12, 18, 24, 30, 36, 48... Multiplies of 8: 8, 16, 24, 32, 40, 48, 56...

The Lowest Common Multiple between 6 and 8 is 24.

**Step 2:** a) We need to find a number that when multiplied to the top and bottom of  $\frac{7}{6}$ , we get the LCM (24) as the new denominator.

$$\frac{7 \times ?}{6 \times ?} = \frac{?}{24}$$

Since  $6 \times 4 = 24$ , we need to multiply the numerator and the denominator by **4.** 

$$\frac{7\times 4}{6\times 4} = \frac{28}{24}$$

Thus,  $\frac{7}{6}$  is equivalent to  $\frac{28}{24}$ .

b) We need to find a number that when multiplied to the top and bottom of  $\frac{3}{8}$ , we get the LCM (24) as the new denominator.

$$\frac{3\times?}{8\times?} = \frac{?}{24}$$

Since  $8 \times 3 = 24$ , we need to multiply the numerator and the denominator by 3.

$$\frac{3\times 3}{8\times 3} = \frac{9}{24}$$

Thus,  $\frac{3}{8}$  is equivalent to  $\frac{9}{24}$ .

**Step 3:** Since our fractions now have equal sized slices, we can subtract their numerators. Thus, we now have,  $\frac{28}{24} - \frac{9}{24} = \frac{19}{24}$  of a whole.



### Case 3: Adding and Subtracting Mixed Numbers Method 1

**Step 1:** Convert all mixed numbers into improper fractions.

Step 2: Check! Do they have a common denominator? If not, find a common denominator.

Step 3: When necessary, create equivalent fractions.

**Step 4:** Add or subtract the numerators and keep the denominator the same.

Step 5: If the answer is an improper form, reduce the fraction into a mixed number.

**Exercise 3:** Subtract the fractions,  $2\frac{3}{4} - 1\frac{1}{7}$ .

Step1: Convert both mixed numbers into improper fractions.



Step 2: List the multiples of 4 and 7.

**Multiplies of 4:** 4, 8, 12, 16, 20, 24, **28**... **Multiplies of 7:** 7, 14, 21, **28**, 35...

The Lowest Common Multiple between 4 and 7 is 28.

**Step 3:** a) We need to find a number that when multiplied to the top and bottom of  $\frac{11}{4}$ , we get the LCM (28) as the new denominator.

$$\frac{11\times?}{4\times?} = \frac{?}{28}$$

Since  $4 \times 7 = 28$ , we need to multiply the numerator and the denominator by **7.** 

$$\frac{11\times7}{4\times7}=\frac{77}{28}$$

Thus,  $\frac{11}{4}$  is equivalent to  $\frac{77}{28}$ .

b) We need to find a number that when multiplied to the top and bottom of  $\frac{8}{7}$ , we get the LCM (28) as the new denominator.



$$\frac{8\times?}{7\times?} = \frac{?}{28}$$

Since  $7 \times 4 = 28$ , we need to multiply the numerator and the denominator by 4.

$$\frac{8\times4}{7\times4}=\frac{32}{28}$$

Thus,  $\frac{8}{7}$  is equivalent to  $\frac{32}{28}$ .

**Step 4:** Since our fractions now have equal sized slices, we can subtract their numerators. Subtracting their numerators we have,  $\frac{77}{28} - \frac{32}{28} = \frac{45}{28}$  of a whole.

**Step 5:** Thus, we have  $1\frac{17}{28}$  wholes.

### Case 4: Adding and Subtracting Mixed Numbers Method 2

In this second method, we will break the mixed number into wholes and parts.

**Step 1:** Add or subtract the *whole number part*.

**Step 2:** Check! Does the *fraction part* share a common denominator? If not, find one.

**Step 3:** When necessary, create equivalent fractions.

**Step 4:** Add or subtract the numerators of the *fraction part* and keep the denominator the same.

**Step 5:** If the answer is an improper form, reduce the fraction into a mixed number.

**Exercise 4**: Jessica is  $19\frac{1}{2}$  years old today. How old was she  $2\frac{1}{4}$  years ago?

Since we are looking at the difference between her current and past ages, our equation will look like,  $9\frac{1}{2}-2\frac{1}{4}$ .

**Step 1:** Subtract the whole number part, 19 - 2 = 17 wholes.

Step 2: List the multiples of 2 and 4. Multiplies of 2: 2, 4, 6, 8...

Multiplies of 4: 4, 8, 12...

The Lowest Common Multiple between 2 and 4 is 4.

**Step 3:** a) We need to find a number that when multiplied to the top and bottom of  $\frac{1}{2}$ , we get the LCM (4) as the new denominator.

Since  $2 \times 2 = 4$ , we need to multiply the numerator and the denominator by **2**.



$$\frac{1\times 2}{2\times 2} = \frac{2}{4}$$

Thus,  $\frac{1}{2}$  is equivalent to  $\frac{2}{4}$ .

b) Since  $\frac{1}{4}$  already has the LCM (4) as the denominator, we leave the fraction as it is.

**Step 4:** Since our **fraction part** now has equal sized slices, we can subtract their numerators. Subtracting their numerators we have,  $\frac{2}{4} - \frac{1}{4} = \frac{1}{4}$  of a whole.

Step 5: Combining our whole number and fraction parts we get,

17 wholes and 
$$\frac{1}{4} = 17 \frac{1}{4}$$
.

**Exercise 5**: Subtract the fractions,  $3\frac{1}{4} - 1\frac{3}{4}$ .

**Step 1:** Subtracting the **whole number part**, we get 3 - 1 = 2 wholes.

**Step 2:** Subtracting the **fraction part**, we get  $\frac{1}{4} - \frac{3}{4} = ?$  of a whole.

Since we cannot take 3 away from 1, we need to borrow a whole from the first fraction.

Given  $3\frac{1}{4}$ , let's **borrow** a whole by following the steps below:

| $(2+1)\frac{1}{4}$ | Rewrite 3 wholes into 2 wholes + 1 whole.                                                                           |
|--------------------|---------------------------------------------------------------------------------------------------------------------|
| $2\frac{1+4}{4}$   | Since each whole has 4 slices, add the four slices from the borrowed whole into the numerator of the fraction part. |
| $2\frac{5}{4}$     | Thus, we have created an equivalent fraction where $3\frac{1}{4} = 2\frac{5}{4}$ .                                  |

**Step 3:** Now we are able to subtract the fractions,  $2\frac{5}{4} - 1\frac{3}{4}$ .

Subtracting the **whole number part**, we are left with, 2 - 1 = 1 whole. Subtracting the **fraction part**, we are left with,  $\frac{5}{4} - \frac{3}{4} = \frac{2}{4} = \frac{1}{2}$  of a whole.

Combining our whole number and fraction parts we are left with,

1 whole and 
$$\frac{1}{2} = 1\frac{1}{2}$$
.

#### **Exercises:**

1. Add or subtract the following improper fractions and mixed numbers. Remember to reduce where possible.

a) 
$$6\frac{5}{8} - 4\frac{3}{8}$$

b) 
$$6\frac{3}{8} + 9\frac{1}{24}$$

b) 
$$6\frac{3}{8} + 9\frac{1}{24}$$
 c)  $9\frac{9}{10} + 6\frac{7}{10}$  d)  $\frac{10}{7} + \frac{11}{7}$ 

d) 
$$\frac{10}{7} + \frac{11}{7}$$

e) 
$$\frac{9}{5} + \frac{14}{7}$$

f)
$$1\frac{2}{4} - \frac{4}{3}$$

f) 
$$1\frac{2}{4} - \frac{4}{3}$$
 g)  $\frac{11}{8} + 3\frac{2}{3}$  h)  $3 - \frac{6}{5}$ 

h) 
$$3 - \frac{6}{5}$$

i) 
$$1\frac{3}{5} - 1\frac{4}{9}$$

j) 
$$4\frac{1}{7} + 2\frac{1}{3} - \frac{3}{4}$$

j) 
$$4\frac{1}{7} + 2\frac{1}{3} - \frac{3}{4}$$
 k)  $5\frac{4}{5} + 8\frac{1}{3} - \frac{23}{4}$  l)  $5\frac{4}{7} - 4\frac{6}{7}$ 

1) 
$$5\frac{4}{7} - 4\frac{6}{7}$$

2. Each week Fred works 3½ hours on Monday, 3 hours on Tuesday, 2 hours on Wednesday, 21/4 hours on Thursday, and 4 hours on Friday. How many hours does he work per week?

3. During a workshop, the English Tutors ate 3½ pizzas and the Math Tutors ate 5½ pizzas. How many pizzas were ordered? (Hint: Pizzas are ordered in wholes.)

4. The fourth floor of the D building has 600½ ft2 of space to house the TLC (Tutoring Learning Centre), SLC (Student Learning Centre), and PAL (Peer Assisted Learning). If the TLC uses 1201/4 ft<sup>2</sup> and the PAL uses 1151/3 ft<sup>2</sup>, how much space does SLC use?

5. It takes 2\% hours to travel to Toronto from Waterloo while travelling with the GO. However, driving takes 1½ hours. How much time do you save by driving?

#### Solutions:

1.

a) 
$$2\frac{1}{4}$$

b) 
$$15\frac{5}{12}$$
 c)  $16\frac{3}{5}$ 

c) 
$$16\frac{3}{5}$$

d)2 
$$\frac{3}{7}$$

e)3 
$$\frac{4}{5}$$

$$f)\frac{1}{6}$$

$$g)5\frac{1}{24}$$

h)1
$$\frac{4}{5}$$

$$i)\frac{7}{45}$$

$$j) 5 \frac{61}{84}$$

k) 
$$8\frac{23}{60}$$

$$1)\frac{5}{7}$$

2. **14** 
$$\frac{3}{4}$$

4. 
$$364 \frac{11}{12}$$
 5.  $1 \frac{13}{24}$ 

5. 
$$1\frac{13}{24}$$