

Adding value to clinical laboratory services through use of Six Sigma Metrics

Edward Randell

IFCC Committee on Clinical Laboratory Management http://www.ifcc.org/ifcc-education-division/emd-committees/c-clm/

Symposium on Improvement in Clinical Laboratory Services:
Approaches to Adding Value

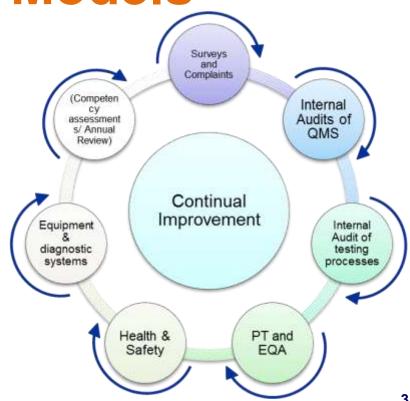
IFCC WorldLab Durban

Durban International Convention Centre

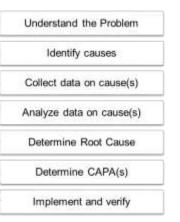
Durban, South Africa - October 25, 2017

Quote

"No human investigation can claim to be scientific if it doesn't pass the test of mathematical proof."


Leonardo da Vinci

Systematic strategies:


- Root Cause Analysis (RCA)
- **PDCA**
- LEAN
- Six Sigma (DMIAC)

IFCC, W.

RCA

Equipment & Materials

Human

Root Causes Organization & System

Reactive:

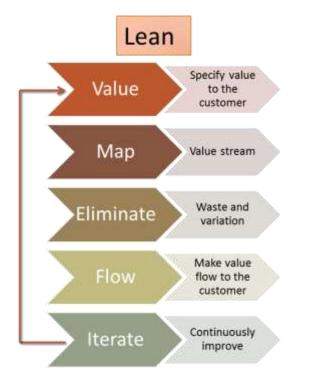
- Determine why a failure occurred.
- Eliminate the problem.
- Minimize probability of recurrence.

Proactive:

- Forecast probable events.
- Identify gaps between desired & actual.
- Determine what to change and how.

Developed during World War II by Walter A. Shewhart (and promoted by his student W. Edwards Deming). Best suited for non-complex problems

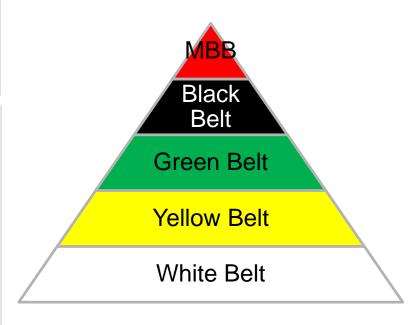
LEAN


- Developed by Toyota during 1970's to help streamline production plants.
- Optimize equipment, time and people to superior performance.
- 5S (Sort, Simplify, Sweep, Standardize, Sustain)
- Kaizen teams for rapid improvement

Sigma

- Developed by Motorola Corp. to make improvements by identifying errors and mistakes.
- Uses measurable and quantifiable STATs to select and conduct improvement projects to improve quality.

LEAN & Six Sigma organizations are based on hierarchal belt systems


Master Black Belts – >2 years experience and train others

Black Belts – Train and oversee projects

Green Belts - Lead projects

Yellow Belts - Familiar and participate

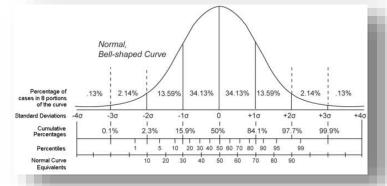
White Belts - Familiar with processes

Presentation Outline

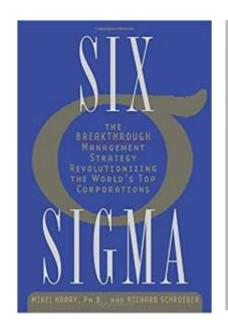
- A Primer in Six Sigma
- Why six sigma in laboratory medicine
- Six Sigma and the Total Testing Cycle
- Six Sigma and Adding Value
- Getting it started and making it stick.

Evolution of Six Sigma

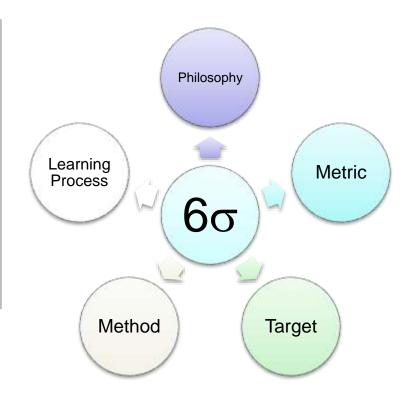
- Carl Fredrich Gauss (1777-1855)
 The normal Curve
- Walter Stewhart (in 1920s) three sigma standard
- Bill Smith (Motorola Engineer; 1980's) – Coined the term
- Today Six Sigma has evolved to a quality system and more…


Gauss

Stewhart


Smith

What is Six Sigma?



'a disciplined method of using extremely rigorous data gathering and statistical analysis to pinpoint sources of errors and ways of eliminating them'

Harry and Schroeder (1999)

Focus: Creating value for Customers

What is Six Sigma?

- Data driven process improvement system.
 - Relies on measuring processes and making improvements
 - Based on statistical concepts
 - Reduces errors and defects

Sigma level	Defect Rate (dpm)	Yield (%) or <i>Accuracy</i>
1σ	690,000	30.8
2σ	307,770	69.1
3σ	66,811	93.3
4σ	6,210	99.4
5σ	233	99.98
6σ	3.4	99.9997

DMAIC: Six Sigma in action.

and Laboratory Medicine DIVIAIC. SIX SIGNIA III action

Assure improvements sustained

Design

Define problem, select & train team, CTQs defined.

Control

Measure

Identify & implement improvements

Improve

Analyze

Analyze process & determine causes

How do we

measure the

problem

U

Assemble Team

Project Charter/Management Plan

VI [

Develop & implement measurement system

A

Collect & analyze data on process, root causes, and gaps

Generate and test solutions

– Implement the best

C

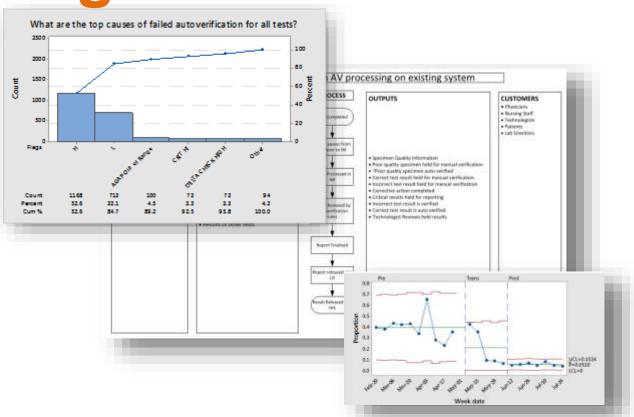
Document/ standardize/monitor/transfer ownership

The Six Sigma Focus

Value to Customer

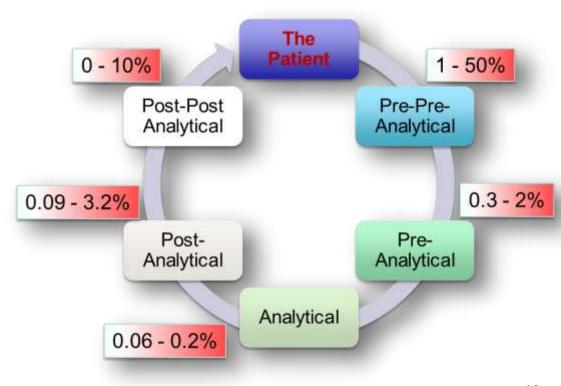
- Patients, friends and family
- Health Care Staff
- Laboratory Staff

Optimizing processes for value


- Quality & Costs & Timeliness
- Patient and Employee Satisfaction
- Safety

Six Sigma Tools

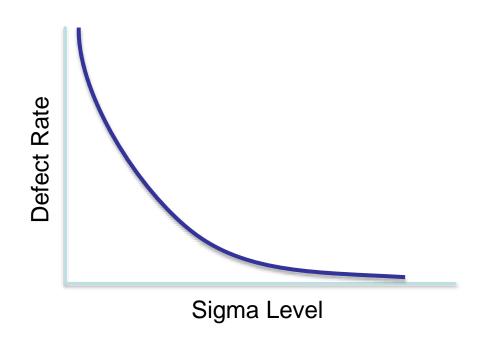
Project Charters Process Flow Charts SIPOC Diagrams 5 Whys **Brain Storming** Pareto Charts **Control Charts** Statistical Analysis Fish-bone and RCA **FMEA** Sigma Calculations Plus many others


Medical Error: Laboratory Medicine Perspective

Six Sigma

- Applicable to any process
- Inerrant tolerance limits
- Identifies and removes defects
- Decreases inefficiency
- Increases quality

Ref: Coskun CCLM 2007:45:121 Stroobants et al. CCA 2003;333:169 Plebani et al. Clin Chem 1997:43:1348



Medical Error: Laboratory Medicine Perspective

Defects are:

- Anything causing dissatisfaction:
 - Unnecessary costs
 - Unnecessary steps
 - Unnecessary services
 - Time loss
 - Errors
 - Medical errors
 - Patient morbidity
 - Patient mortality

What value can the laboratory create?

Patients, friends and family

- Minimized wait times
- Minimized discomfort
- Minimized cost
- Rapid Diagnosis and Treatment

Health Care Staff

- Appropriate TAT
- Reliable Results
- Relevant Information to direct decisions

Laboratory Staff

- Clear Expectations
- Minimized wasted time
- Respect & Appreciation
- Manageable workload and workflow

From value outcome to metric and target

Pre-Analytical

Mis-IDed Samples

Transcription errors

Unsuitable samples

Phlebotomy wait-times

Analytical

EQA results out side limits

QC failures

Valid Complaints

Analytical cost/test

Post-Analytical

TATs

Results delivered outside target

Critical results outside target time

Erroneous Reports

Refs:

CCLM 2011;49:463 CCLM 2015;53:1653 CCLM 2015:53:943 CCLM 2016:54:1169

From value outcome to metric and target

Superior Performance

Quality Goals

Best in class

Performance Goals

Refs:

CCLM 2011;49:463 CCLM 2015;53:1653 CCLM 2015:53:943 CCLM 2016:54:1169

Metric Calculations

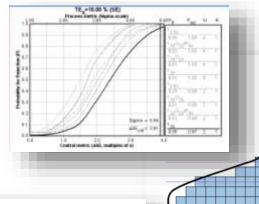
Accuracy and Precision

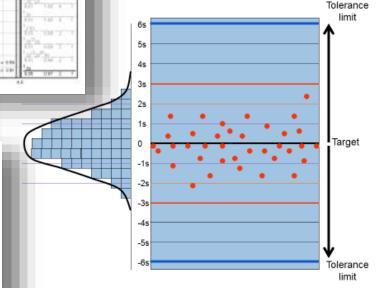
- $Sigma\ Metric = \frac{TEa-Bias}{Precision}$
- $Sigma\ Metric = \frac{TEa |Bias|}{Standard\ Deviation}$
- $Sigma\ Metric = \frac{\%TEa |\%Bias|}{\%CV}$

Other specifications

- Sigma Metric = $Z = \frac{Specification\ Limit-mean}{Standard\ Deviation}$
- For DPMO
 - Use conversion tables
 - Calculation

Sigma metric is directly related to safety, efficiency, and cost of quality.


Applications

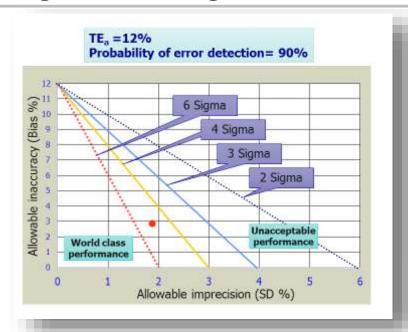


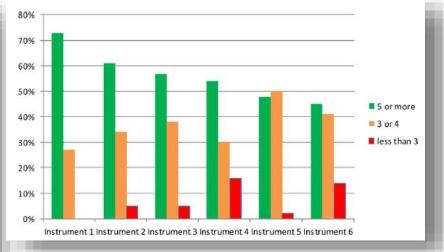
Selecting QC Procedures

Higher Sigma associated with:

- Lower reagent supply
- Lower labor costs
- Fewer QC failures
- Between laboratory reproducibility

Table 4 Quality control rules used for sigma metric of method		
Sigma Metric	QC Rules Used	
6 Sigma	1-3.5s	
5 Sigma	1-3s	
4 Sigma	1-3s, R4s, 2 of 2-2s, and 2 of 3-2s	
3 Sigma	1-3s, R4s, 2 of 2-2s, 2 of 3-2s, 4-1s and 12x	


Ref:Clin Lab Med 2017:37:85
Clin Lab Med 2017:37:117



Applications

Selecting & Evaluating Instruments and Methods

Refs:

Clin. Biochem. 2015:49:599-707 Clin Lab Med 2017:37:117

Applications

Value	Six Sigma Metric/Process	Reference
Safety	6σ process reduced pathology lab error rate	Turk. Patol. Derg 2016:32:171
Efficiency & timeliness	6σ process reduced STAT TAT and elimination of process steps leading to error	J. Clin. Lab. Anal. 2017:e22180
Timeliness	6σ process reduced hemolysis in ED	JCJQPS 2015;41:99
Safety & Efficiency	6σ metrics and rule selection reduced QC costs	Vet. Clin. Path. 2014:43:164
Timeliness & Efficiency	6σ process reduce TAT and LOS in ED	AJCP 2013:140:193
Timeliness & Efficiency	6σ process reduces data entry errors with improved process and cost savings	IJHCQA 2011:26:496
Safety	6σ process reduces analytical errors in automated lab	MLO 2005:37:20

Getting it started

Educate Self & then just do it!

DESIGN

- Prepare a team
- Select a project
- Stakeholder Requirements
- Project Charter
- Process Maps

6σ Project: Expanded auto-verification at 3 regional hospital laboratories

<5% of samples held require no intervention by MLT.

61% critical values

10% hemolysis

9% other reasons

Objectives

Expand to all serum tests.

Fine tune to reduce false flags.

Implement Monitoring System

Getting it started

Value to Stakeholders

Patients

Health Care Professionals

MLTs & lab professionals

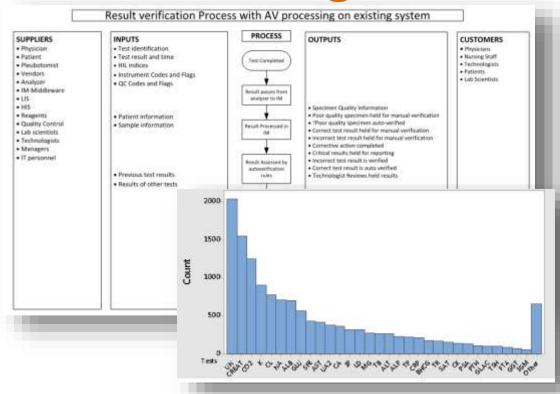
· Safer and Higher Quality Health Care

- More accurate, timely and useful information to inform decisions.
- Better tools to work towards better service.
- · Higher profile in the health care team.
- Champions for high quality care.

Sites	Sample AV rate
HSC (Automated Chemistry)	52%
WMH (Automated Chemistry)	40%
SCH (Not automated)	38%

Project Charter 13-1-2017	Project Name: Expansion of auto-verification Rules at HSC and SCH sites, and begin auto-verification at WMH.		Sponsors: Corey Murray (EHA) Hedy Dalton-Kenny (WHA) Team Leader: Dr. Ed Randell	
ž s	Physician/Patient Impact: Improved notification to prevent medical errors			
. B 55		on Impact: Improved utilitation of staff to focu		
Business Case: (Visually given by the amboyloundles management.)	Employee impact: Better deathfusion and apportunity to focus on test issues that require technologist intervention and/or corrective action.			
		not cover all tests on Clinical Chemistry autom		sites, and some rules
Problem Statement: (Should he imple but provid a querille champion of the problem to be coldinated by the project. And opinion, perception, and blame)	At HSC and SCH, SES of N Of those requiring intervi are because of hemolysis	nnual verification. WiWH has complete manual v seld samples require no tech intervention. ention: QSS are for critical results jucces of the causing interference; SS are for other reasons int; instrument code or QC insue)	se 3/61 are rerun; 16/	
Prob Should proble for participation		th resources are spent manually reviewing and	verifying patient repo	rts requiring no
	corrective actions. List gools/Objectives:	Metric	Baseline	Goal
	1) Espand auto-	Oritical to quality: Calls from unit: Calls to	TBD	>90% of sample
Goal: (Defor the single curcums of the project. A should be concurable)	verification to all server feats on automation of Wildle and MSC; 2) Fine time existing rules to endine failure flags and identify more execut, 3) implement system to manifer automatification effectivement.	unit: Becolected uniple rate or supressed must raise Creation action to Children to schedule: TAT Test and surple authorities the schedule: TAT Test and surple authorities that such schedule: TAT Test and surple Children rate; Process spell time. Children to schedule: Test time for result requiring action. Dithers to be determined.		nuto-verified.
Team Members:	Edward Randell, Danid Parry, Rosanne Thornhill, Tracey Wade, Gordon Peet, Marina Kennell, Natasha Lee, Debbie Hollohan, Colleen Mercer, Margie Spencer, Garry Short, Karen O'Leary.			
Project Scope and limitations: (Dashidothe (Dashidothe)	Project will focus on auto	-verification of tests on the track systems at HS ill not include Urinalysis, urine chemistry, or of		
Stakeholders: (Include all who may how on interest to the outcome)	Laboratory Staff, Ma	nagement, Physicians, Patients, Nursin	g Staff, Laborator	y Scientists
Proposed timeline	and completion dates	C (Attach project schedule Goott and/or ABRT)		
Define	(Time to complete, high leve 2 Weeks; Complete by Jacus	l process milea; custosser requirements; to docume ny 28, 2017	t and set goals and orgo	urian tecars.)
Measure	(Tiene to observe, review, or resource current process to entoblish boselles) 6 to disserve, Complete by Morch 31, 2017			
Analyze	(These to complete data analysis to identify and confirm most caused) 2 weeks; Complete by April 14, 2017			
	(Time to create and implement solutions to eliminate soci causes) 4 to 5 seeks; Complete by May 18, 2017			
Improve	a to 2 meets, coulong by to	ap any sass.		

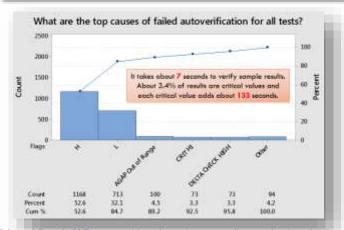
Project Lead:


Mapping and measuring

MEASUREMENT

- Measurement System
- Detailed Mapping
- Metric Identification
- Collecting Data

MLT	Number of Samples	Seconds per sample
1	72	6.57
2	123	7.83
3	213	6.01
4	100	16.58
5	204	4.90
6	42	5.00
7	109	5.10
8	100	5.05
All		7.13 ± 3.95

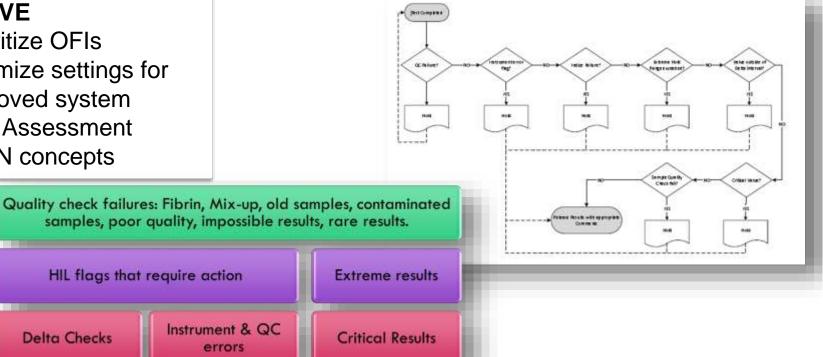


Analysis and baseline

ANALYZE

- Analyze gaps
- Determine sources of variation
- Factors influencing process
- Benchmarks

Performance Metrics	Definition/Units	Baseline	Benchmark or Target
Sample hold rate	Proportion of total	HSC: 0.398±0.037 (n=6) WMH: 0.650±0.014(n=6) SCH: 0.604±0.036(n=6)	<0.10
Test hold rate	Proportion of total	HSC: 0.225± 0.009 (r=6) WMH: 0.209± 0.009(n=6) SCH: 0.223± 0.012(n=6)	<0.10
HIL hold rate for potassium	Proportion of tests held	3.7%	<2.5%
Delta hold rate for potassium	Proportion of tests held	3.7%	<2.5%
High/Low hold rate for potassium	Proportion of tests held	12.8%	<1%
Special Rule hold rate for potassium	Proportion of tests held	1.6%	<2.5%
Process time	Median time (min) from placement on track to result release to electronic medical record.	HSC 41.3±1.00* (n=6) WMH: 32.8 ±1.2* (n=7)	≤baseline
Process time-cost	Weekly labortime-cost associated with review of tests held for manual review.	16785 ± 5461 se conds	>50% reduction
Test manual verification time	Average time (seconds) spend reviewing held sample.	7.1 ± 4.0 (Mean ± SD)	≥baseline
90 th percentile TAT for STAT potassium leve <i>l</i> s	Average weekly Time in minutes	HSC 51.9± 1.0*(n=6) WMH: 66.6 ± 5.1*(n=11)	≤baseline



Improve and implement

IMPROVE

- Prioritize OFIs
- Optimize settings for improved system
- Risk Assessment
- LEAN concepts

HIL flags that require action

Extreme results

Delta Checks

Instrument & QC errors

Critical Results

Control

CONTROL

- Validate Improvements
- Institutionalize
- Close out project

Parameter	N	AV Rate	Sigma ¹
HSC test	8	0.962 ± 0.005	13.6
HSC sample	8	0.947 ± 0.014	3.4
WMH test	8	0.983 ± 0.003	28.1
WMH sample	8	0.911 ± 0.009	1.2
SCH test	5	0.977 ± 0.002	31.6
SCH sample	5	0.925 ± 0.003	8.5

Gains:

- Manual verification time/sample increased 3x
- Total manual verification time/week decreased to ~1/3
- Median Analytical processing time significantly decreased by 1 to 3 minutes
- Test AV rate increased to ~95% at all 3 sites
- Sample AV rate increased to >90% at all 3 sites

Making it work

Challenges

- Completing Projects
- Mentors
- Training and Certification
- Commitment
- Culture

Strategies

- Project Charters
- Mentor and Sponsor involvement throughout
- Leadership Commitment and Involvement

Attention to the human element is critical to success!

Attention must be balanced across technical, process and human elements.

Summary

- Six Sigma is a data driven process improvement scheme focusing on adding value by removing defects.
- Six Sigma metrics and process are easily adaptable to Laboratory Medicine and moves the laboratory toward:
 - Proactivity
 - Metrics driven performance
 - Continuous Improvement
 - Quality Minded Culture