Additive Manufacturing

Stelian Coros

Reminder - Mini assignment!

- Design a unique, functional object that you would like to have
 - Pencil holder, chair, toy, lamp, etc...
 - Just a concept drawing or description

- Remember
 - Endless design opportunities
 - Think outside the box

Basics of 3D Printing

"3D Printing" coined at MIT in 1995

Additive vs. Subtractive Manufacturing

Much of current manufacturing is subtractive

Subtractive Manufacturing

Subtractive Manufacturing - Limitations

Basics of 3D Printing - possible issues?

- Overhangs & support structures
- Print direction
- Fill-in and hollow objects
- Materials
- Layer Resolution
- Price
- Safety and ease of operation
- Need for post-processing

• ...

Overview of 3D Printing Technologies

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- DLP 3D printing
- Photopolymer Phase Change Inkjets (PolyJet)
- Selective laser sintering (SLS)
 - Direct metal laser sintering (DMLS)
- Plaster-based 3D printing (PP)
 - Powder bed and inkjet head 3D printing
- Thermal Phase Change Inkjets
- Laminated object manufacturing (LOM)

Overview of 3D Printing Technologies

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- DLP 3D printing
- Photopolymer Phase Change Inkjets (PolyJet)
- Selective laser sintering (SLS)
 - Direct metal laser sintering (DMLS)
- Plaster-based 3D printing (PP)
 - Powder bed and inkjet head 3D printing
- Thermal Phase Change Inkjets
- Laminated object manufacturing (LOM)

Developed by Scott and Lisa Crump in the late 80s FDM is trademarked by Stratasys AKA Fused Filament Fabrication (FFF)

source: http://reprap.org

- Filament is made of thermoplastic materials
 - Acrylonitrile butadiene styrene (ABS)
 - **Polylactide** (**PLA**) biodegradable!
 - Many new materials

source: makerbot.com

- Dual extruder machines exist
 - Temporary support structures can be made from water-soluble material
 - Two colors

FDM Process Timelapse

https://www.youtube.com/watch?v=ik39_sv-wgQ

Fused Deposition Modeling - Commercial Systems

- Stratasys
 - Dimension family
- Z resolution: 0.18 mm
- Build size: 8 x 8 x 12 inches
- Limited color
- Limited material types

Fused Deposition Modeling - Clones

MakerBot

• Delta 3D Printer

Ultimaker

- Cube from 3D Systems
- And many others

Overview of 3D Printing Technologies

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- DLP 3D printing
- Photopolymer Phase Change Inkjets (PolyJet)
- Selective laser sintering (SLS)
 - Direct metal laser sintering (DMLS)
- Plaster-based 3D printing (PP)
 - Powder bed and inkjet head 3D printing
- Thermal Phase Change Inkjets
- Laminated object manufacturing (LOM)

Stereolithography (SLA)

- SLA uses liquid photoreactive resin
- Laser beam traces one layer on the surface of the resin
- Laser light cures and solidifies parts it hits
- The platform descends by one layer

Stereolithography (SLA)

- Support structure
 - thin support lattice can be broken off

Stereolithography Process

http://www.youtube.com/watch?feature=player_embedded&v=5L5vdpklrtU

Stereolithography - History

- Developed by Charles Hull in the 80s
 - Coined term stereolithography
 - Founded 3D Systems in 1986

Charles Hull next to one of his latest 3D printers, the SLA7000

Stereolithography - 3D Systems

- Two main families
 - ProJet
 - iPro
- Build volume: varies, can be very large
- Resolution up to 0.05mm
- Materials (only one can be used):
 - photopolymers
 - clear, opaque, temperature resistant, ceramic-like, abs-like

Stereolithography - Clones

Formlabs

- Smaller build volume
- Similar resolution
- Much less expensive

Overview of 3D Printing Technologies

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- DLP 3D printing
- Photopolymer Phase Change Inkjets (PolyJet)
- Selective laser sintering (SLS)
 - Direct metal laser sintering (DMLS)
- Plaster-based 3D printing (PP)
 - Powder bed and inkjet head 3D printing
- Thermal Phase Change Inkjets
- Laminated object manufacturing (LOM)

Digital Light Projector (DLP) 3D Printing

- DLP 3D also uses liquid ultraviolet curable photopolymer resin
- DLP exposes and solidifies one layer at a time on the surface of the resin
- The Z-axis moves by one layer

DLP 3D Printing Features

- Similar to SLA
 - laser+mirror is replaced by a projector
- Simple design
 - only one degree of freedom
- Faster than SLA
 - exposes one layer at a time
- Materials
 - same as SLA
- No additional support material
 - Lattice structure similar to SLA

DLP 3D Printing - Commercial Systems

Perfactory from EnvisionTec

- http://www.envisiontec.de
- Z resolution 50 microns
- XY resolution 50 microns
- projector resolution (2800x2100 pixels)
- Build volume 5.5 x 4.1 x 9.1 inches

DLP 3D Printing - DIY

B9Creator

MiiCraft

http://www.3ders.org/articles/20120911-a-list-of-diy-high-resolution-dlp-3d-printers.html

DLP 3D Printing - DIY Video

Overview of 3D Printing Technologies

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- DLP 3D printing
- Photopolymer Phase Change Inkjets (PolyJet)
- Selective laser sintering (SLS)
 - Direct metal laser sintering (DMLS)
- Plaster-based 3D printing (PP)
 - Powder bed and inkjet head 3D printing
- Thermal Phase Change Inkjets
- Laminated object manufacturing (LOM)

Photopolymer Phase Change Inkjets

- Inkjet printhead jets liquid photopolymer and support material
- UV light cures photopolymer and support material
- Excess material is removed using a roller
- The platform descends by one layer

Printing Process

https://www.youtube.com/watch?v=XLLq9SwSTpM

Photopolymer Phase Change Inkjets Features

- Similar to SLA
 - Also uses photopolymers
- The only technology supporting multiple materials
 - Currently two + support material
- Materials
 - Photopolymers only
 - Can be mixed before curing -> graded materials
 - Soft, rigid, opaque, transparent, different colors

Photopolymer Phase Change Inkjets - Commercial Systems

- Objet (now Stratasys)
 - Called PolyJet
 - Eden series (one material + support)
 - Connex series (two materials + support)
 - Build size: 19.3 x 15.4 x 7.9 inches
 - Z resolution: up to 16 microns (1600 dpi)
 - XY resolution 600 dpi

Sample Fabricated Objects

Source: Objet Geometries

Rubber-like Materials

Multiple Materials

USING MULIT-MATERIAL 3D PRINTING TO PRODUCE SPRINGS

Overview of 3D Printing Technologies

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- DLP 3D printing
- Photopolymer Phase Change Inkjets (PolyJet)
- Selective laser sintering (SLS)
 - Direct metal laser sintering (DMLS)
- Plaster-based 3D printing (PP)
 - Powder bed and inkjet head 3D printing
- Thermal Phase Change Inkjets
- Laminated object manufacturing (LOM)

Selective Laser Sintering (SLS) Direct Metal Laser Sintering (DMLS)

- SLS and DMLS use a bed of small particles (made of plastic, metal, ceramic, or glass)
- High-power laser traces one layer on the surface of the powder bed fusing the particles
- The platform descends by one layer and more material is added

Selective Laser Sintering (SLS) Direct Metal Laser Sintering (DMLS)

- SLS and DMLS use a bed of small particles (made of plastic, metal, ceramic, or glass)
- High-power laser traces one layer on the surface of the powder bed melting/fusing the particles
- The platform descends by one layer and more material is added

SLS & DMLS Features

- Laser and scanner system
 - Similar do SLA but laser is more powerful
- Bulk material can be preheated
 - Reduces the required energy to melt it
- Materials
 - One material at a time
 - Glass, polymers (e.g., nylon, polysterine), metals (e.g., steel, titanium, alloys), ceramic
- Does not require support structure
 - Overhangs are supported by powder material

Single- and Two-Component Powders

B – two-component metal/metal powder mixter

C – two-component metal/metal coated powder

Source: Tolochko et al. 2003

solid (particle, non-melted core or coating)

- liquid (melt)

Raw Powder Particles

Raw Ni-alloy-Cu powder mixture

Raw Fe-Cu powder mixture

Source: Tolochko et al. 2003

Sintered Powders

Single component Fe powder after sintering

Source: Tolochko et al. 2003

Sintered Powders

Fe-Cu powder mixture after sintering

Source: Tolochko et al. 2003

SLS & DMLS Process

https://www.youtube.com/watch?v=BZLGLzyMKn4

SLS & DMLS - History

Invented at UT Austin by Joe Beaman and Carl Deckard (80s)

This is part of the original machine, nicknamed Betsy, made by Carl Deckard as a graduate student in 1986.

One of the first attempts at making an object with selective laser sintering.

Associate Professor Joe Beaman shows some three-dimensional plastic models made by the 'selective laser centering' device developed by Carl Deckard, left.

Source:

http://www.me.utexas.edu/news/2012/0612_selective_laser_sintering.php

Commercial Systems

- 3D Systems
 - sPro family & Pro DM
- EOS GmbH
 - Formiga and EOSINT family
- Requires powerful laser
 - 30W for SLS
 - 400W for DMLS
- Layer thickness: 0.02 0.08mm

Sample Fabricated Parts

Sources: http://www.bridgesmathart.org, http://www.freedomofcreation.com

Sample Fabricated Parts

3D printed, titanium central wing spar

Airbus wing brackets

Overview of 3D Printing Technologies

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- DLP 3D printing
- Photopolymer Phase Change Inkjets (PolyJet)
- Selective laser sintering (SLS)
 - Direct metal laser sintering (DMLS)
- Plaster-based 3D printing (PP)
 - Powder bed and inkjet head 3D printing
- Thermal Phase Change Inkjets
- Laminated object manufacturing (LOM)

Plaster-based 3D Printing

- This method uses a bed of small plaster particles
- Inkjet printhead prints with liquid adhesive (possibly colored), one layer on the surface of the powder bed fusing the particles
- The platform descends by one layer and more material is added

Source: Zhou and Lu, 2011

Plaster-based 3D Printing Features

- Similar to SLS and DMLS
 - Also uses granular materials
 - Uses inkjet printhead instead of laser
 - Glues particles instead of melting them
- Does not require support structure
 - Overhangs are supported by powder material
- The only technology supporting full-color printing
- Materials
 - Plaster only
 - Color can be applied (typically on/near the surface)
- Brittle, requires post-processing

Plaster-based 3D Printing Process

https://www.youtube.com/watch?v=GnFxujCyD70

Plaster-based 3D Printing - History

- Developed at MIT
 - http://web.mit.edu/tdp/www/whatis3dp.html
- Commercialized by Z Corporation in 1995

MIT Alpha Machine

Plaster-based 3D Printing - Commercial Systems

- Z Corporation (now 3D Systems)
 - Z-Printer family
 - Uses HP inkjet print heads
 - 390K colors
 - XY resolution: 600 x 540dpi
 - Z resolution: 0.1mm
 - Build size: 20 x 15 x 9 inches

ZPrinter® 850

Source: Z corporation

Fabricated Parts

Overview of 3D Printing Technologies

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- DLP 3D printing
- Photopolymer Phase Change Inkjets (PolyJet)
- Selective laser sintering (SLS)
 - Direct metal laser sintering (DMLS)
- Plaster-based 3D printing (PP)
 - Powder bed and inkjet head 3D printing
- Thermal Phase Change Inkjets
- Laminated object manufacturing (LOM)

Thermal Phase Change Inkjets

Copyright © 2008 CustomPartNet

- Inkjet printhead jets heated liquid plastic and support material (wax)
- Material droplets solidify as they cool down
- Excess material is removed using a milling head to make a uniform thickness layer
- Particles are vacuumed away
- The platform descends by one layer

Source: http://www.additive3d.com/bpm.htm

Thermal Phase Change Inkjets Features

- Extremely high resolution
- Slow printing time
- Materials
 - Limited: plastics and waxes
- Support material
 - Wax: easy to remove
- Manufactured objects are used as casting pattern but almost never as final functional parts

Thermal Phase Change Inkjets - Commercial Systems

- Produced by Solidscape (now Stratasys)
 - 3Z Pro
 - XY resolution: 5000 x 5000 dpi
 - Y resolution: 8000 dpi
 - Build volume: 6 x 6 x 4 inches

Source: http://www.solid-scape.com

Sample Fabricated Parts

Source: Solidscape

Source: http://www.protojewel.com

Overview of 3D Printing Technologies

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- DLP 3D printing
- Photopolymer Phase Change Inkjets (PolyJet)
- Selective laser sintering (SLS)
 - Direct metal laser sintering (DMLS)
- Plaster-based 3D printing (PP)
 - Powder bed and inkjet head 3D printing
- Thermal Phase Change Inkjets
- Laminated object manufacturing (LOM)

Laminated Object Manufacturing (LOM)

1 Foil supply. 2 Heated roller. 3 Laser beam. 4. Scanning prism. 5 Laser unit. 6 Layers. 7 Moving platform. 8 Waste.

- Sheet is adhered to a substrate with a heated roller
- Laser traces desired dimensions of prototype
- Laser cross hatches non-part area to facilitate waste removal
- Platform with completed layer moves down out of the way
- Fresh sheet of material is rolled into position
- Platform moves up into position to receive next layer

Printing Process

Laminated Object Manufacturing Features

- Inexpensive low material cost
- Print resolution is lower than other methods
- Color can be added using additional printhead
- Materials
 - Paper (most common), plastics, composites, metal, ceramics
- Support material
 - Same material can be used as support

Support Material

Source: http://blog.nus.edu.sg/u0804594/common-rp-techniques/laminated-object-manufacturing-lom/

Commercial Systems

- Helisys (now Cubic Technologies)
 - SD300
 - Build Size 160 x 210 x 135 mm
 - Z resolution: 0.3 mm
 - XY resolution 0.2 mm
 - Build material plastics

Printing Process

https://www.youtube.com/watch?v=nE-8Wnz9-Qc

Sample Fabricated Objects

Source: http://www.solido3d.com

Overview of 3D Printing Technologies

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- DLP 3D printing
- Photopolymer Phase Change Inkjets (PolyJet)
- Selective laser sintering (SLS)
 - Direct metal laser sintering (DMLS)
- Plaster-based 3D printing (PP)
 - Powder bed and inkjet head 3D printing
- Thermal Phase Change Inkjets
- Laminated object manufacturing (LOM)

Questions

That's All for Today