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Summary

Let (X,Y) be a pair of random variables such that X = (X1,...,XJ)
and let f be a function that depends on the joint distribution of

(X,Y). A variety of parametric and nonparametric models for f are

discussed in relation to flexibility, dimensionality, and interpretability.

It.is then supposed that each X.e [0,1] , that Y is real valued with

mean p and finite variance, and that f is the regression function of

Y on X . Let f*, of the form f*(x1, ..,x ) = p + ft(xl) +...+ f(X)

be chosen subject to the constraints E fj= 0 for 1 < j < J to

minimize E[(f(X)-f*(X))2J . Then f* is the closest additive

approximation to f, and f* = f if f itself is additive. Spline

estimates of fj and its derivatives are considered based on a random

sample from the distribution of (X,Y). Under a common smoothness

assumption on f*, 1 < j < J, and some mild auxiliary assumptions, these

estimates achieve the same (optimal) rate of convergence for general J

as they do for J = 1
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1. Introduction. Let (X,Y) be a pair of random variables, each

ranging over some space, and let f be a function that depends on the

joint distribution of X and Y . As examples, f could be the

regression function of Y on X , the hazard rate of the conditional

distribution of Y given X , or the density of X ; alternatively, f

could be the logarithm or logit of any of these functions, where

logit(p) = log(p/(l-p)) .

Suppose as usual that the joint distribution of X and Y is unknown

and consider the problem of estimating f based on a random sample from

this joint distribution. The parametric approach starts with the assumption

of an a priori model for f that contains only finitely many unknown

parameters, while the nonparametric approach eschews such an assumption.

Three fundamental aspects of statistical models are flexibility,

dimensionality, and interpretability. FZexibiZity is the ability of

the model to provide accurate fits in a wide variety of situations,

inaccuracy here leading to bias in estimation. DimensionaZity can be

thought of in terms of the variance in estimation, the "curse of

dimensionality" being that the amount of data required to avoid an

unacceptably large variance increases rapidly with increasing dimensionality.

In practice there is an inevitable trade-off between flexibility

and dimensionality or, as usually put, between bias and variance.

Interpretability lies in the potential for shedding light on the underlying

structure.

In Section 2, parametric models for f are discuRsed in relation to

these three aspects. Nonparametric and semiparametric models are similarly

discussed in Section 3, where a heuristic dimensionality reduction principle
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is presented. In Section 4, a precise special case of this principle is

stated for additive regression functions and, more generally, for additive

approximations to a not necessarily additive regression function. The

proof is given in Sections 5 and 6.

2. Parametric models. Let X = (XI,...,X ) , where X.e X. for

1 < j < J . Suppose each X. is either a finite set or an interval (i.e.,

a nondegenerate subinterval of R ). If X. is finite X. is called

a "factor", which can be either quantitative or qualitative; in either case

the elements of X. are referred to as the possible levels of X

If there are any factors present, the remaining Xi's are called

"covari ates".

Suppose now that the Xi's are each intervals. Two common parametric

models for f are

Model 1 f(x 9...,x6 ) = a + E b x

and

Model 2 f(x...x) = a + El b.x + EJ Ei cx xxJI 'J cii 1 1 jkjik

If f is the regression function, Model 1 corresponds to linear regression

and Model 2 corresponds to quadratic regression; if f is the logit of

the regression function, Model 1 corresponds to logistic regression; and

if f is the logarithm of the density of X , Model 2 corresponds to the

multivariate normal density.

Suppose instead that the X.'s are each finite sets. Here it is

common to consider

Model 3 f(xl9***,xJ) =+ z f(x
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which is an additive function of the various factors, or

Model 4 f(xl,...,x ) = i + EJ f (x.) + E E f PXJ 1 i j<k kx k

which also includes the two-factor interaction terms. If f is the

regression function, these models are considered in analysis of variance

(see Scheffe, 1959 ), while if f is the (discrete) density of X ,

these models arise in discrete multivariate analysis (see Bishop et al.,

1975 and Haberman, 1978). In such models the functions f. and fjk will

be referred to as functionaZ components.

More generally, suppose that the first L of the X.'s are finite

sets and the remaining Xi's are intervals, where 1 < L < J . (Such

situations are especially cormmon in Social Science.) In this context

it is natural to consider models such as those that arise in the analysis

of covariance; e.g.,

Model 5 f(xS9..x =
1
+L fx)+x EJ b x.1 J 1~~ f~ ~ L+l ii

These and similar models are the bread-and-butter of applied statistics,

even though they are rarely justified on theoretical grounds. The orthodox

approach to model selection is by means of hypothesis testing; e.g. Model

1 vs. Model 2, or Model 3 vs. Model 4. But this approach has its limitations.

In particular one does not know in advance that Model 2 or Model 4 is valid;

and there may not be enough data to perform such a test (see Scheffe, 1959,

for a discussion of the one-degree-of-freedom test for additivity due to

Tukey, 1949 ). Often there is not enough data to fit high-dimensional

models such as Model 2 or 4, so lower-dimensional models such as Model 1,

3 or 5 are automatically assumed (as in models involving Latin and Greco-Latin

squares and balanced incomplete blocks). In the chapter on Latin squares

John (1971) discusses bias in estimation of treatment effects due to ignored
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interaction effects. On the other hand, Fisher and McDonald (1978) assert

that, when there is enough data to test for the presence of interaction

effects, in a large fraction (but by no means all) of the time they are

found not to be statistically significant.

Even when there is enough data to fit models such as Model 2 or 4 and

when the presence of interaction terms is detected, say, by hypothesis

testing, additive models such as Models 1, 3 and 5 may be preferable because

of greater interpretability. In particular, in the regression context

additive models allow for the following interpretation: if x. is changed

xj , then all other variables remaining the same, the mean of Y is increased

by an amount which depends only on xj and xj ; under the linear, additive

Model 1 the amount of increase is a linear function of (xj-x.) . In their

discussion of additive regression models involving two factors, Box et al.

(1978) state that

While blind faith in a particular model is foolhardy, refusal
to associate data with any model is to eschew a powerful tool.
As implied earlier, a middle course may be followed. On the
one hand, inadequacies in proposed models should be looked for;
on the other, if a model appears reasonably appropriate,
advantage should be taken of the greater simplicity and clarity
of interpretation that it provides.

Models 3 and 4 can be fitted by solving the normal equations for the

associated dummy variable regression problem. Andrews et al. (1967) described

a computer program, Multiple Classification Analysis (MCA), which uses instead

a computationally efficient iterative method to fit the additive Model 3.

Morgan and Sonquist (1963) proposed a tree structured alternative to Model

4 for detecting and interpreting interaction effects. Their automatic

interaction detection technique was implemented in a prqgram called AID

(see Sonquist, Baker and Morgan, 1971; Fielding, 1977; and the discussion

of a similar program, CART, in Breiman et al., 1984). Sonquist (1970)

compared AID with MCA and suggested a strategy for using the two programs
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jointly. Both programs have been very popular among sociologists. They

were developed by the Institute for Social Research, University of Michigan,

and are currently available in the software package OSIRIS distributed by

that organization. (SEARCH, in that package, is an outgrowth of AID.)

3. Nonparametric and semiparametric models. Suppose now that the Xi's
are each intervals. (The following discussion also applies, with obvious

modifications, when some of these sets are intervals *and the others are

finite.) At the opposite end of the spectrum from Models 1 and 2, f can

be totally unrestricted (perhaps subject to some smoothness assumptions).

Alternatively, one can consider, say, the additive Model 3 with unrestricted

functional components. As a further step toward parametric modelling, one

could impose parametric restrictions on some of these functional components

as in Model 5. For example, if f is the logarithm of the hazard rate of

the conditional distribution of the failure time Y given X , then the

additive model given by

Model 6 f(x1,...,x3,y) = g(y) + E xb.x

is the famous proportional hazards model of Cox (1972). See Lawton, Sylvestre

and Maggio (1972), Sttutzle, et al. (1980), Oakes (1981), Begun, et al. (1983),

Engle, et al. (1982), and Wahba (1983) for other such semiparametric models.

An interesting generalization of the additive model is

Model 7 f(x l.-x ) = f (Ab x.)I'~ J 1 v 1 vi 3

which arises in projection pursuit regression (PPR) and. (log)density

estimation (see Friedman and Stuetzle, 1981; Friedman, Stuetzle and Schroeder,

1984; Friedman, Gross and Stuetzle, 1983; and Huber, 1983). Like Model 4,

this model is more flexible than the additive model. Indeed, roughly
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speaking, the projection pursuit model is so flexible that if V is

permitted to be indefinitely large, it can yield an arbitrarily good

approximation to any given function. The individual functional components

fv occurring in the projection pursuit model are readily graphed; but

when V > 1 , the model itself is hard to interpret. A less flexible, but

more easily interpretable, generalization of the additive model is

Model 8 f(xl,... xj) = g(EJ f (xj))

which was considered by Winsberg and Ramsay (1980) (see also de Leeuw, et al.,

1976; Young, et al., 1976; and Breiman and Friedman, 1985).

Friedman and Stuetzle (1981) also discussed "projection selection", which

is PPR restricted to be additive, and they suggested strategies for using

projection selection and unrestricted PPR jointly. Tibshirani (1983)

discussed the extension of Cox's proportional hazards model (Model 6)

to the unrestricted additive model. Hastie (1983) discussed the additive

model for the logistic regression function when Y is an indicator variable,

and Hastie (1984) pointed out the usefulness in graphical model diagnostics

of additive estimates of the regression function or of its logit. Previously,

Breiman and Stone (1978) proposed various additive regression estimates as

modifications of (nonadditive) tree structured regression. They were

motivated both by the successful meteorological application of an ad hoc

additive regression technique (Zeldin and Thomas, 1975) and by the realization

that unrestricted multivariate nonparametric regression is hard to interpret

as well as being subject to the curse of dimensionality.

It is convenient to think of an arbitrary function of d real

variables as being "d-dimensional". Consider a nonparametric model in

which f is defined explicitly in terms of other functions, at least one

of which is d-dimensional and none of which are more than d-dimensional.
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Such a model will also be thought of as being d-dimensional. Accordingly,

Models 3, 5, 6, 7 (for fixed V ) and 8 are one-dimensional, while Model 4

is two-dimensional.

Model dimensionality, as just defined, is relevant to optimal rates

of convergence for nonparametric function estimation (see Stone, 1982).

In the absence of a restrictive model for f , the optimal rate of

convergence in an L2 norm is typically of the form n 2r ; here

r = (p-m)/(2p+J) , p being a measure of the assumed smoothness of f

and m being the order of the derivative of f that is being estimated

( m = 0 if f itself is being estimated). It is quite plausible that

under the additional restriction of a d-dimensional model for f ( d < J ),

the optimal rate of convergence is of the same form with J replaced by

d in the definition of r . But it is not at all obvious that this

heuristic dimensionality reduction principZe can be established rigorously

as a general theorem applying, say, to projection pursuit regression.

(Huber, 1985, points out that the sampling theory of PPR is practically

nonexistent.) The discussion in Section 4 below suggests more general

versions of this principle. The principle is implicit in Question 2 of

Stone (1982).

4. Rates of convergence of additive regression. Suppose from now

on that X =[0,91 for 1 < j < J and that E Y2 <X. Let f be

the regression function of Y on X i so that f(x) = E(YIX= x) for

xe C = [O,11 . Set VP = EY= Ef(X)

If f is additive, it can be written in the form

f(xl,...,xJ) = V + 0 f (xj) ,

where E f (X ) = 0 for 1 < j < J . Under the mild Condition 1 below33 -i
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the functional components f. are uniquely determined up to sets of

measure zero (see Lemma 1 in Section 5); and there is at most one

continuous version of each such function.

Even if f is not genuinely additive, an additive approximation

to .f may be sufficiently accurate for a given application as well as

being readily interpretable. Let f* , 1 < j < J , be chosen subject

to the constraints Efj(X.) = 0 for 1 < j < J to minimize

E[(f*(X)-f(X))2I , where

f (xi,... ,x3) = p + El f (x.)

(These functions exist under Condition 1 below--see Lemma 1 in Section 2.)

Then f* is the closest additive approximation to f in the sense of

mean squared error. Again, under Condition 1 below, the functional

components f* are uniquely determined up to sets of measure zero and

there is at most one continuous version of each such function. If f

is genuinely additive, of course, then f* = f and fj = f. for

1 <j < J

A smoothness assumption, Condition 3 below, will be imposed on the

functions f'* , 1 < j < J . Then a special case of the dimensionality

reduction principle will be established by determining the rates of

convergence for spline estimates of f* and its derivatives and for the

corresponding estimates of f* based on a random sample from the

distribution of (X,Y)

Three conditions are required for the statements of the main results.

CONDITION 1. The distribution of X is absoluteTy continuous and

its density g is bounded away from zero and infinity on C.

It follows from Condition 1 that the marginal density gj of Xj
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is bounded away from zero and infinity on [0,11 . Set

Var(YIX= x) = E((Y-f(x)) 21X= x) .

CONDITION 2. f and Var(YIX= ) are bounded on C

Let k be a nonnegative integer, let 6e (0,1] be such that

p = k + 6 > .5 , and let Me (O,oo) . Let H denote the collection of

functions h on [0,11 whose kth derivative, h(k) , exists and

satisfies the Holder condition with exponent S :

Ih(k)(t3)-h(k)(t)I < MIt'-t|1 for 0 < t , t' < 1

CONDITION 3. f e H for 1< j < J

Let (Xl,Y1),(X2,Y2),... denote independent random pairs, each having

the same distribution as (X,Y) and write X as (X1,... ,X0j) . We

will consider additive spline estimates fn of f* based on the random

sample (Xl,Y1),009,(Xn,Yn) of size n. Set Y = (Y +.,.+Y )/n

Let Nn denote a positive integer and let Inv , 1 < v < Nn

denote the subintervals of [0,11 defined by Inv = [(v-l)/Nn,v/Nn)
for 1 < v < Nn and In [l-Nn ,1] . Let 2Q and Q' be integers

such that Q > k and Q > 2'. Let Sn denote the collection of functions

s on [0,11 such that

(i) the restriction of s to Inv is a polynomial of degree

Q (or less) for I < v < Nn

and, if 2' _ ,

(ii) s is Q'-times continuously differentiable oh 10,11

A function satisfying (i) is called a piecewise polynomial; if

2 = 0 , it is piecewise constant. A function satisfying (i) and (ii)
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is called a spline. Typically, splines are considered with Q' = - 1

and then called linear, quadratic or cubic splines accordingly as

k = 1, 2 or 3 . Wegman and Wright (1983) give a broad survey of

works on splines in statistics.

Let fn , of the form

frn(x1,...,Xj) = Yn + E fni(xj)
^ ~~~n 0be chosen subject to the constraints that fneSn and E1' fn(X.) = 0

for 1 < j < J to minimize the residual sum of squares E n(y f (X 2

We call the estimate fn of f an additive spline. If Q = 0 , we

borrow from Tukey (1961) and call fn an additive regressogrcan. The

numerical minimization is readily solved by using B-splines (see de Boor,

1978, or Powell, 1981); either the normal equations can be solved or

iterative techniques can be employed as in MCA. It follows easily from

Lemma 3 in Section 5 that under Condition 1 and the condition on Nn

in Theorem 1 below, the solutions fnjs 1 < j < J, to the constrained

minimization problem are uniquely determined except on an event whose

probabi 1 i ty tends to zero wi th n -

Given positive numbers an and bn n > 1, let an % bn mean

that an/bn is bounded away from zero and infinity. Given random

variables Z
n

n > 1 , let Zn = 0pr(bn) mean that the random variables

bZI , n > 1 , are bounded in probability or, equivalently, thatn n

lim limsup Pr(IZnI>cbn) = 0
c--0 n

Let IIpII denote the L2 norm of a function yp on C , defined
2 2 = 2 2by II101 E sp (X)= fep (x)g(x)dx. For 1 < j < J let II hll denote
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the L2 norm of a function h on [0,1] , defined by

IIhII1 = Eh2(X.) = f h2(x.)g.(x.)dx;. Set y = 1/(2p+1) and r =p/(2p+1)
Let m be a nonnegative integer such that m < k and set

rm = (p-m)/ (2p+1)

THEOREM 1. Suppose that Conditions 1-3 hold and that Nn - n

Then

(1) E (IIf(?)(fm)mIII2Xl..Xn) = O (n 2rm) for 1 < < Jn3 j pr

Since Y has mean v and finite second moment,

(2) E((Yn-f )21X,.. ,X)= Q(n 1) = Q (n 2r
n 1 n pr pr

Thus Theorem 1 has the following consequence.

COROLLARY 1. Suppose that Conditions 1-3 hold and that N nn

Then

(3) E(Ifj-f'I~I2Xl ,X )=O Or(f2r) for 1 <j < J(3) fn~j jj 1Itooxn pr -n

and

(4) E(lInftn-If11 l, *9.Xn) = Opr(n2r)

The rates of convergence in (1), (3) and (4) do not depend on J

It is clear from the results in Stone (1982) for J = 1 that these

rates are optimal.

5. Proof of Theorem 1. Throughout the remainder of the paper it

will be assumed that Condition 1 is satisfied. Let b and B be

positive numbers such that



b < g < B on C .

Set 6 = (l-bB1)2 < 1 . Let SD(Z) denote the standard deviation of a

random variable Z

LEMMA 1. Let V. = h.(X.) be random variabZes such that JV

has finite second moment. Then each Vj has finite second moment. Also

SD(V1+...+Vj) > (Jj )(jil)/2(SD(V1)+...+SD(Vj)) for 1 < i < J

PROOF. By Condition 1, the first conclusion reduces to that for

independent V.'s, which follows from Theorem 6.4.1 of Chung (1974). In

proving the second conclusion it can be assumed that EV. = 0 for

1 < j < J . Set a. = SD(V.) and T. = SD(V1+...+V.) . The desired

result is trivially true for j = 1 . Suppose it is true for j , where

1 < j < J . It will now be shown to hold for j + 1 . If T. = 0 , then

1 =...=a. =0 and the desired conclusion reduces to the obvious
3

inequality 0 < (1-6)/2 < 1 . If a 0+1= 0 ,the desired conclusion follows

from that for j . Suppose instead that T > 0 and aj+l > , and

let p denote the correlation between V1 +...+ V. and V + . Set

W = (X1,...,X.) and Z = Xj+.1. Let gW and gZ denote respectively

the joint density of W, Z and the marginal density of Z . Then

9W z > b on [0,i1i 1 and gz < B on [0,1] . Write V1 +...+ Vj as

¢(W) and Vj+l as '(Z) . Then

j+l j1
(1-P )aJ+l =mnE(()6()2

= min J(J(z)-f(w))2gw z(w,zYdwdz

> bB- min JJ((z)-a4(w)) 29Z(z)dz]dw

> bB 1 2

(5)
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so that p2 < 1 - bB1 and hence p > -6 . Consequently,

T1 =T2 + 2pT.a + C20j+l j j j+1 j+l

> l+p (T+Ca )23 j+l

1-6 6(j-l)/2 + Cy 2

1- ~~~~~2-( 2 1)(a1 . . . j+l)

Therefore, the desired result holds for j + 1 . By induction it holds

for 1 < j < J as desired.

Let Prn correspond to the empirical distribution of X1,... ,X ;

so that Pr(Xe Inv) is n1 times the cardinality of

{i: 1 < i < n and X e Inv} . Recall that y = 1/(2p+l) < .5 since

p > .5. Thus if N -nY , thenn

(6) lim na lN2 = 0 for some a > 0
n

The next result follows easily from (5) and Bernstein's inequality (see

Theorem 3 of Hoeffding, 1963) applied to the Binomial distribution.

LEMMA 2. Suppose (6) holds and Let £ > 0 . Then, except on an

event whose probability tends to zero with n ,

Prn(Xje Inv)-Pr(Xje Inv)I < sPr (Xje Inv)
for 1 < j < J and 1 < v < Nn

and
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Pr (X. e I,Xn e Inv)-Pr(Xj.e InvXj2 Inv2

< E Pr (Xj Invl X.6 Inv)
1i 1 J2 2

for 1 < j1 2 j, # , and 1 < v1, v2 < Nn

For 1 < j < J and s a function on [0,1] , let V.(s) be the

function on C defined by

Vj(s)(xl... x) = S (s(x)

Let SDn denote the standard deviation corresponding to the empirical

distribution of X1 ,..Xn . The proof of the next result will be given

in Section 6.

LEMMA 3. Suppose (6) hoZds and Zet 6l1e ((5,1) . Then, except on an

event whose probability tends to zero with n, the foZZowing statement

is vaZid for alZ choices of s1 . . ., s eSn :

SDn(E1 vi(sj) > 2) E1 SD (Vi(sj)

If the constrained minimization problem arising in the definition of

fn has a unique solution, then
n~~~~~~~~~~~

f .(X) = w .(.Y
nj j i=l nji(xj)y

where the functions Wnji on [0,11 are uniquely determined. Set

IWnj(xj) 2 = Zj=l W2ii(xi)
LEMMA 4. Suppose (6) hoZds. Then the constrained minimization problem

has a unique soZution, except on an event whose probabiZity tends to zero



16

with n . Moreover,

sup |W (x.)( 2 = 0 (n 1N )
O<x.<l- j pr n

3-j

for 1 < j < J .

PROOF. Think of X,. ..,X. as fixed. Consider an alternative

experiment having nJ cases (X.,Y.) , (i= (1,. %) , where

1 < ,. < n and X.e RJ is defined by X = for 1 < j < J ;

so that the jth coordinate of X, is the same as the jth coordinate of

Xi. . Note that, for 1 < j < J and a function h defined on [0,1]

E. h(X.) = h(X.) = n31 n h(X .)Se iYn =ia

Set Y =n E.Y. andn kI

Y.i = n
lin

E YY. for 1 < j < J and 1 < i < n .
3.=i-1

n=l (Y .-Y ) = ° for 1 < j < J

i i,n n-

Let fn of the fonm

fn(x19 ..xi) = Yn + z1 fni(xi)

be chosen subject to the constraints that f *eSn and E f .(X(.) =
nci nt nj kt

for 1 < j < J to minimize the residual sum of squares

s= 2,(Y-fn(X . Observe that the constraint E. fn.(X..) = 0 is

equivalent to the constraint E1 fn J(XIJ) = 0 ; observe also that

s2 = nJ-l zn y- -f(x)) + E9(Y--Y- -)21 1 ijn n nj It .-L n 1 kc cin n

since the omitted cross-product terms equal zero. Thus fni minimizes

S = Zn(Y. -Y _f- (X ))2
1 ijn n nj

Then
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^ ~~~n^subject to the constraints that fnjeSn and E1 fnj(Xj) = 0 ;

equivalently, fnj minimizes Sj subject to the constraint that

fnj esn
Suppose now that -Q' = -1 in the definition of Sn Let 1 < j < J

and 1 < v < N and set

Iniv = {i: 1 < i < n and X.je Inv}

Then fnj reduces to a polynomial Pnjv of degree Q (or less) on

Injv Pnjv minimizes

E1~ ~~(ijYnP(Xj 2
n~jv

among all such polynomials. Suppose this minimization problem has a

unique solution. Then

fn (x.) Pnv(x.) = Vnji X ijn ,n' 3 nv

where the functions Vnji on Inv are uniquely determined. Set

IV n(x.) I I vnjv(x.) xfe Invnl

It follows from (5), (6), Hoeffding's inequality (Theorem 1 of Hoeffding,

1963) and the argument on pages 1354-1355 of Stone (1980) that, except

on an event whose probability tends to zero with n , these minimization

problems all have a unique solution; and

(7) sup IVn (x)j2 = 0pr(n1Nn) for 1 < < J

3-

Wri te
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f (x.) = St W j.(xj)Y.

and set

~~ o -- 2_IWnj(xj)I = (X) for 0 < x. < 1

It follows from (7) that

(8) sup IWnj( j)I 2 pr(f Nn) for 1 <- <

- 3-

If Q' is changed from -1 to a nonnegative number, then additional

constraints are imposed on the overall minimization problem. Thus the

probability of nonuniqueness and the quantity IW n(x)I2 under uniqueness

are both reduced or unaltered. Consequently, even without the supposition

that Q = -1 it is true that, except on an event whose probability tends

to zero with n , the overall constrained minimization problem has a

unique solution; and it is true that (8) holds.

Consider a function ¢ on C of the form

0(Xl,...,X) =U + E1 Sj(Xj

where u is any real number and

s.eS and Zn=l s (X..) = 0 for 1 < j < Jj n i j

Observe that

z:. (X,) = n u2 + n31 zA9 £nK S2(X

and

n1=1 2(Xi) = nu2 + ni (E s.(X 2))
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Thus it follows from Lemma 3 that there is a ye (0,1) such that,

except on an event whose probability tends to zero with n

n 2 1lJ 2zn
=1 V(X > yn~ E. 2(xj

for every real number u and, for 1 < j < J , for all choices of

s jeSn such that En s (Xj) = 0 . The conclusion of the lemma now

follows from (8) and Lemma 2.1 of Ehrenfeld (1956), a result involving

the comparison of two experiments.

Let IIhIl1, = sup Ih(t)I denote the supnorm of a function h on
O<t<l

[0,1] *

LEMMA 5. For each heH and n > 1 there is an se Sn with

lls-hil. < M N-P_ here M is some fixed positive constant.

This result is due to de Boor (1968); see also de Boor (1978) or

Powell (1981).

LEMMA 6. Consider a Hiubert space with norm 11 11 . Let P. denote

the orthogonaZ projection onto a subspace V for 0 < j < J . Suppose

v = EJO v; ,where v e V. for 0 < j < J . Then

0 ~ ~ ~ ~ _<i Jv12 < ( max lIvI1(lpv.I1.v,
O< j<J 0

PROOF. Let "*" denote the Hilbert space inner product. Observe

that v..(v-P.v) = 0 for 0 < j < J . Thus

2 3I1tv112 E * v = .i ~< EI11v~I1illPv II

which yields the desired result.
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Set pa = n 1 fn f(X.) . Since f(X) has mean } and finitent,
second moment,

(9) (~iniJ)2 =0pr(nl ) = Opr(n 2r)

Suppose (6) holds. Let fn , of the form

(x1g xsJ) = + Tnn(xi)

be a solution to the constrained minimization problem with Y. replaced

by f(X.) ; by the first conclusion to Lemma 4, this problem has a

unique solution except on an event whose probability tends to zero with n

Let '11f1n denote the L2 norm of a function 4 on C with respect

to the empirical distribution of X1,... ,Xn ; so that

HOn2 = n 1 En 2(Xi) . Similarly, for 1 < j < J , let lthIInj denote

the L2 norm of a function h on [0,11 with respect to the empirical

distribution of X1 ,...

LEMMA 7. Suppose that Conditions 1 and 3 hold and that N n

Then

lhfnj filn2j = 0 pr(n-2r) for 1 < j < J

PROOF. Since f = f* + f - f* (f*)* = f* and (f-f*)* = 0

it suffices to verify the lemma when f = f* and when f* = Q

Suppose first that f = f* and set f. = fj . Then

f(x1**.PqxJ = + 1 fj(xj) .For I < j < J choose snj esn such

that IIf.-s l.0 <I'Mn , which is possible by Lemma 5' Define fthtlfj-injhc s osbn
by n x ogXJ s xnjj) Then llf -fil =O(n r) and
hence llf-fi 2 = O(n 2r) . Now hf -fhl < lf -fil , so thatn-ln no 1fn-f1n Ifn- nn
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ifn-ffiln= 0 pr 2r and hence

nnpr~~~~~~~ n p
(10) IIfn-fnIl =0°pr(n~ 2r)

For 1 < j < J set iinj = n E1 fj(X j) and observe that f. is

bounded by Condition 3 and hence that n2 = (prn 1 npr 2r)
also set n.= n n s .(X .) and observe that v2. = 0 (n 2r)nj1 nj 13 Vnj pr (

It now follows from (10) and Lemma 3 that, for 1 < j < J

l-s = 0 (n 2r) and hence 1lT -s l=2 0 (n 2r)nj nj nj nj pr nij njini pr /

consequently, lliTfiI2 = liT *-f.12f = 0 (n 2r) as desired.nj- j nj nj- 3fnj pr

Suppose next that f*= 0 or, equivalently, that E(f(X)IX.) = 03

for 1 < i < J and hence that 0i=0 . Then

0=0(n1) =0 (n2r) by (9). For 1 < j < J let fi . of the
n pr pr n

form fnj(xl,.,xJ) = snj(xj) , be chosen subject to the constraint that
-l n ~~~~~~~~~~~0

s .eS and n 1 En s .(X..) = 0 to minimize IIf .-f 11 . It followsnj n 1 nj 13 nj n

from the assumption that f* = 0 , the boundedness of f and

Lemma 4 (with J = 1 ) that

(11) llf .iI2 = 0 (n~') for 1 < j < Jnj n pr

Temporarily, think of X1... ,Xn as fixed. Consider the Hilbert

space of functions defined on the range of XI **,Xn with the empirical

norm 11ii defined by 1lf11 = n 1 n 42(X.) . Let V denote the
n n 1l 1 0

space of constant functions and, for 1 < j < J , let V. denote the

space of functions of the form 4(x1...,xJ) = s(x.) , where seSn

and E n s(X..) = 0 . Let P. denote the orthogonal projection onto

V. for 0 j << . Let v denote the constant function n and,

for 1 < j < J , let v. denote the function defined by

v (x *...,xJ= fT (x.) . Set v = f = E9J v. It follows from (9)
ji ci nj 30 j
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with ,u = 0 and (11) that

(12) lIP.v1l2 = 0 (n 2r) for 0 < j < Jj n pr

According to Lemma 3 there is a constant ye (0,1] such that, except on

an event whose probability tends to zero with n

IIl v ll2 > y Z livjII2 and hence

21 = 119E v.1 =lv ii 3 > y max 11v -1
vll 10 jn 1 n 11 vl1n 0<j<J j n

Thus, by Lemma 6, 11 v l2 < y 1(E9tliP.vIl)2 so, by (12), 1Ivilv2 = 0 (n 2r
n- o j n n pr

It now follows from Lemma 3 applied to the norm li 11n that

lvIIv2 = 0 (n 2r) for 1 < j < J , which is equivalent to the conclusionjn pr

of the lemma when f* = 0

The proofs of the next two results will be given in Section 6.

LEMMA 8. There is an M2e (Q,oo) such that

115(m h(m)2 < 2(m-p)2m 2Is(m)_h(m)l, < M2(Nn )+N 11 s-hit.)

for 1 < j<J , hell , n > 1 and se S

LEMMA 9. Suppose that

(13) lim na lN =0 for some a > 0.
n n

Then there is an M3e (Q,oo) such that, except on an event whose probabiZity

tends to zero with n

11 s-h l1 j < m3(N-n+I s-h 11j

for 1 < j < J , hell and se Sn
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The next result follows from Lemmas 7-9.

LEMMA 10. Suppose that Conditions l and 3 hold and that N nY .

Then

lIgm)- (f* ) =il O (n m) for 1 < j < Jnjj j pr -

PROOF OF THEOREM 1. Suppose that Conditions 1-3 hold and that

Nn ny Now

(14) -(m) (f*)(m) = f(m) _ gm) + .(r) (f*)(m)

It follows from Lerma 4 that

E(nlf nfn 1121X nX =n pr(n )

Thus, by Lemma 8,

(15) E(,( 1 2 lX1,..,X) = Opr(n m)

The desired conclusion follows from (14), (15) and Lemma 10.

6. Proofs of Lemmas 3, 8 and 9. The next result follows easily
from a compactness argument and change of variables.

LEMMA 11. If Q is a poZynonmiaZ of degree k (or Zess), I

is an intervaZ of finite positive Zength T , and toe I

then

k Tm (m) 2 2 -1 2

Here ck is some positive constant depending only on k
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PROOF OF LEMMA 8. Let toe I = Inv C [0,11 , where I has

length T = . Let Q be the Taylor polynomial of degree k about
n

t0 corresponding to h . Since he H , |h-Q| < MTP/k! on I and

hence (h-Q)2 < M2T2p+l/(k1)2 . Thus by Lemma 11

(S(m) (t0)h(m)() )2 =(s(m) (m) 2

< M2T1 (2mnl) (T2P+l+f (s-h)2

for some M2e (,o) . Consequently

f (s(m)-h(m))2 < M2T-2m(l2P+l+ (s-h)2)
I 2Ij

and hence

f(s(m)-h(m))2 < M2(T2(p-m)+T-2mfl(s-h)2

Since each gj is bounded away from 0 and X by Condition 1, the

desired result holds.

Let I denote an interval of finite positive length T and let

(T,U) denote a pair of I-valued random variables each having an absolutely

continuous distribution. Let E' be the expectation operator corresponding

to the empirical distribution based on a random sample of size no from

the distribution of (T,U) . Similarly, let Cov' denote the covariance

operator corresponding to this empirical distribution.

LEMMA 12. Suppose that the marginaZ densities of T and U are

each bounded beZow by a/T on I, where a > O. Let t >O. Then,

except on an event having probabiZity at most dkexp(-2not2), the

folZowing inequaZities hold simuZtaneousZy for all poZynomiaZs Q, R
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of degree k

jE' Q(T)-EQ(T)|I < tC '2ck SD(Q(T));

jE' Q2(T)-EQ2(T)j < ta 1ck Var(Q(T)) ;

IE' R(U)-E R(U)I < tS ck SD(R(U));

and

iCov'(Q(T),R(U))-Cov(Q(T),R(U))I < t(t+3), 1c2 SD(Q(T))SD(R(U))

Here dk is some positive constant depending only on k

PROOF. Let t0 denote the left endpoint of I . It follows from

Hoeffding's inequality that, for m > 1

Pr (E'[( T -E)J_E[TO)] > < exp(-2n t2)

Thus by Lemma 11, except on an event having probability at most

k exp(-2n t2)

I E' Q(T)-E Q(T) I

for all polynomials Q

k Q(m)(t0) / E T-t0\m rT____
0 m! Tm(E [( T-) J -E[I ])1)

t E k iT Q(m)(to)

< tck(T1 Q2(t)dt)½

< ta' 2(EQ2(T

= 2 SD(Q(T))

of degree k such that EQ(T) = 0 ; and hence



26

the first inequality of the lemma holds for all polynomials Q of

degree k . The proofs of the remaining inequalities are similar.

PROOF of LEMMA 9. Let T. denote the jth coordinate of X
1 1

Observe that Iv =Inv has length T = Nn *Set
vnv ~~~~~~n

v = {i: 1 < i < n and T e Iv} and let 1lIj denote the number of

elements in I . It follows from (5), (13) and Lemma 2 that, except on

an event whose probability tends to zero with n , for n sufficiently

large

Ill > bTn/2 > na for all v ;

here a is some positive constant. Choose tve Iv and let Qv be the

Taylor polynomial of degree k about tv corresponding to h . Then

lh-QvI < MTP/k! on Iv . It follows from Lemma 12 (the second inequality)

that, except on an event whose probability tends to zero with n , for

n sufficiently large and for all v

1 (Q )2 < E (sg(T) Qv(Ti 2

v v~ ~ ~~~~

< 2( MT +Tp 1 (s(T )-h(Ti ))2

and hence

l fjJI (s-h) gj < 6(( k! ) + T E (s(T1)-h(T1))2

Consequently by (5),

f (s-h)2g; < IZBT((MT) + I I1 (s(T )-h(T1))
v
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The conclusion to Lemma 9 now follows easily by summing on v

Let (Q,P) be a probability space. Let A be a positive integer

and let A1,...q,AA be a finite partition of Q2 which is nondegenerate

in the sense that p. = P(Ax) > 0 for 1 < X < A . Let V1, V2 be

a pair of random variables having finite second moment. Set pj = EV.
2~~~~~~~~~~~~~~~~~

a.j = Cov(Vj,V) and c2 = a.. = Var(V.) . Also set pjlA = E(Vj'AX)
a I = Cov(VVj,VQIAA) = E (a ( Vj-ji ) (=VQ-lQ I A ) a c j =A ii
Let (Q,P') be a second probability space having a nondegenerate

partition A',...,AA and a pair Vi, V' of random variables each

having finite second moment. Define PA,p' , etc. as before.

LEMMA 13. Given E > 0 , there is a 6 > 0 such that the folZowing

statement is vaZid: If IPA-PAI < 6PAx Iil -j-v I < 6aj|A and

Ija-IXaj IXi <6' Iag,aIj for 1 < j. Q < 2 and 1 < X < A , then

IjaQ--ajII < E:sa. for 1 < j,i < 2

PROOF. Observe that

aj z PAjlS kl 1jlJj = ailx(jixii

and

ajQ PX (ajiI X (Ij |AXpj ) N' I -I Q))

and that similar formulas hold for the second probability space. The

desired conclusion now follows in a straightforward manner (Schwarz's

inequality is used several times).
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PROOF OF LEMMA 3. Choose E with 0 < £ < ((1-6)t2)J 1 . It

follows easily from Lemmas 2, 12 and 13 that, except on an event whose

probability tends to zero with n , the following inequality holds for

all choices of 1l'**.sJESn and the corresponding choices of

V. = V.(s.) :

ICovn(Vj9V2)-Cov(Vj9VQ)I < E SD(V )SD(V,) for 1 < ij Q < J ;

in particular

SDn(V) < (1+£) 2 SD(V.) for 1 < j < J

and hence by Lemma 1

Varn(V +-..+VJ) > Var(V +...+V) - ( SD(V 2

>1 Jl1 2> ( 2 -E£) (E (V)

> 1 +E (E SDn( V ) )2

Since E can be made arbitarily small, the desired result holds.
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