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Abstract. For many years, address clustering for the identification of
entities has been the basis for a variety of graph-based investigations
of the Bitcoin blockchain and its derivatives. Especially in the field of
fraud detection it has proven to be useful. With the popularization and
increasing use of alternative blockchains, the question arises how to rec-
ognize entities in these new systems. Currently, there are no heuristics
that can directly be applied to Ethereum’s account balance model. This
drawback also applies to other smart contract platforms like EOS or
NEO, for which previous transaction network analyses have been lim-
ited to address graphs. In this paper, we show how addresses can be
clustered in Ethereum, yielding entities that are likely in control of mul-
tiple addresses. We propose heuristics that exploit patterns related to
deposit addresses, multiple participation in airdrops and token autho-
rization mechanisms. We quantify the applicability of each individual
heuristic over the first 4 years of the Ethereum blockchain and illustrate
identified entities in a sample token network. Our results show that we
can cluster 17.9% of all active externally owned account addresses, indi-
cating that there are more than 340,000 entities that are likely in control
of multiple addresses. Comparing the heuristics, we conclude that the
deposit address heuristic is currently the most effective approach.
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1 Introduction

Since the introduction and popularization of Bitcoin [22] in 2009, blockchain and
cryptocurrency analysis has gained a foothold in science as well as in business. A
number of established companies and startups are investigating blockchain data
for purposes related to cryptoasset assessment, insights for financial institutions
and the support of law enforcement [7]. In most of these networks, an individual
can participate with several pseudonymous addresses, the creation of which is
virtually cost-free. For outsiders, it is not necessarily obvious that they belong
to the same entity. It is known that cryptocurrencies are also used for criminal
activities where the perpetrators hope to cover up their traces. For example,
extortionists do not use the same address for every victim [25], and money laun-
dering is carried out using a large number of addresses [21]. In blockchain-based
voting systems, where currency balance determines voting power, equality could
be faked when a user distributes their assets to multiple addresses. Therefore,
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a core component of many investigations is the detection of single entities that
interact through multiple addresses. To detect entities, a number of address
clustering heuristics have been proposed for Bitcoin, that have also been reused
in derivatives like Litecoin and ZCash [14,11]. Most of the existing heuristics
are based on Bitcoin’s UTXO model which allows a single transaction to have
multiple inputs and outputs. However, a growing number of blockchain imple-
mentations have not adopted this model. A prominent example is Ethereum,
which instead employs an account model, where a regular transaction has one
source and one destination account address. Apart from Ethereum, this account
model is also present in other popular smart contract platforms such as EOS or
NEO. Existing address clustering heuristics based on multiple inputs or outputs
cannot be used for transactions with single inputs and outputs.

However, performing entity identification on account model blockchains such
as Ethereum is of great interest, as it forms the basis for entity graph analysis,
which allows for better assessment of network properties related to usage, wealth
distribution and fraudulent activity. For example, Ether payments are also ac-
cepted in darknet marketplaces [15], and ponzi schemes also exist through smart
contracts [2,6]. It is likely that money laundering also exist on Ethereum, and
the emergence of decentralized finance services like on-chain derivatives, loans
and the use of decentralized exchanges are likely targets for manipulation. Sev-
eral of these may rely on the idea of creating the illusion of interaction between
supposedly distinct participants.

Our contribution. In this work, we propose several novel address clustering
heuristics for Ethereum’s account model, derived from the analysis of phenom-
ena surrounding deposit addresses, multiple participation in airdrops and token
transfer authorization. We explore each heuristic in detail and quantify their
applicability over time. Our results show that we can cluster 17.9% of all active
externally owned account addresses, indicating that there are more than 340,000
entities likely in control of multiple addresses. Comparing the heuristics, we con-
clude that the deposit address heuristic is currently the most effective approach.
Finally, we make an implementation of the heuristics publicly available!.

The remainder of this paper is structured as follows: In Sections 2 and 3, we
provide an overview of the background on Ethereum, Tokens and Airdrops, as
well as existing research results on address clustering for entity identification. In
Section 4, we describe the data that forms the basis of our analyses and provide
a set of high-level statistics of our data set. In Section 5 we study the heuristics
of exchange deposit address reuse, airdrop multi-participation and token transfer
authorization. We analyze the heuristics over time in Section 6, before discussing
(Section 7) and summarizing the results of our paper in Section 8.

2 Background

After the creation of Bitcoin in 2009 [22], many alternative blockchains, dis-
tributed ledgers and associated cryptocurrencies have been proposed. According

! https://github.com/etherclust/etherclust
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to market capitalization in 2019, Ethereum [33], with its native currency Ether, is
the second most popular blockchain after Bitcoin. Both systems are open-source,
public, distributed and rely on a Proof-of-Work-based consensus algorithm. To
interact with the underlying transaction network, users typically use a wallet
software. Within such a software, they can create and manage multiple pub-
lic/private key pairs, which can be used to sign transactions. For each key pair,
an address is derived from the public key, serving as a pseudonymous identifier.

While both Bitcoin and Ethereum share the basic notion of an address, they
differ in their abstraction of currency transfer. In Bitcoin, each transaction on the
ledger must have one or multiple Unspent Transaction Output (UTXO) as input,
which may be used by the corresponding holders of the private keys. Each UTXO
contains a certain amount of Bitcoin. If a user wants to transfer more Bitcoin
than what is contained in one of the UTXO under his control, several of them
have to be used as inputs for the transaction. While the outputs of a transaction
are again UTXO, the inputs are spent, documented on the blockchain, and can’t
be used anymore.

In Ethereum, each regular transaction has one sender and one receiver ac-
count address. An account can either be an Externally Owned Account (EOA),
where the private key is owned by an external user, or a smart contract account.
Smart contract accounts contain executable code and don’t have a private key.
Their address is determined by the deployer’s address and nonce, and the code
can be executed by sending transactions to them, optionally with parameters.

2.1 Tokens

Smart contracts are frequently used to create token systems. A token can repre-
sent a variety of transferable and countable goods such as votes, memberships,
loyalty points, shares or other utility [3]. To create a new token that is compatible
with popular wallet software, developers can follow implementation standards
such as ERC20? for fungible tokens, or ERC7213 for non-fungible tokens. Similar
standards exist on other smart contract platforms.

2.2 1ICOs, Bounties and Airdrops

Startups have embraced the idea of tokens in order to raise funds in an initial
coin offering (ICO), and distribute tokens in return for investment. Apart from
distributing tokens only for investment, some token creators also offer so-called
bounties, in which social-media engagement, translation and other activities are
rewarded with tokens. This idea can also be found in several so-called Airdrops,
in which a large number of participants can obtain tokens either for free or for
similar online activities such as retweeting or following an online presence. By
giving out tokens to a large number of addresses, the airdrop operators hope to
kickstart their project. If the value of the tokens increases at a later stage, the
founders can sell some of their retained tokens.

2 https://eips.ethereum.org/EIPS /eip-20
3 https://eips.ethereum.org/EIPS /eip-721
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3 Related Work

In the context of distributed ledgers, address clustering heuristics determine a
one-to-many mapping of entities to addresses [9]. While the addresses are likely
to be controlled by the same entity, some addresses could be clustered incorrectly.
Due to a lack of ground truth, quantifying the error rate is very difficult.

Notwithstanding, a long line of research has examined the anonymity prop-
erties of Bitcoin [27,24,1,18, 31], frequently using address clustering to identify
entities. Therefore, they can study transaction graphs between entities. This is in
contrast to Ethereum, where the existing studies focus on the address graph [32,
30, 8, 5], as no entity identification heuristics have been proposed so far.

3.1 Address clustering methods

The most frequently used approaches to cluster addresses in Bitcoin and other
UTXO based ledgers are the multiple input heuristic, and the change heuristic.
The multiple input heuristic is based on the idea that multiple UTXOs which are
used as input for a transaction are most likely controlled by the same entity [26,
18]. Similarly, the change heuristic assumes that a previously unused one-time
change address created by a transaction is likely controlled by the same en-
tity that created the transaction [1,18,31]. The effectiveness of these heuristics
has been studied [9] and are implemented in open source analysis software like
BlockSci [13] and GraphSense [11], which enable a range of features, including
the tagging of entire address clusters given a label of one of its members.

By exploiting Airdrops based on existing wallets on Bitcoin, the reuse of
addresses in newly created blockchains has enabled cross-ledger address cluster-
ing [10]. Related, and as an example of heuristics proposed for an alternative
blockchain, Moreno-Sanchez et al. have developed clustering heuristics for the
Ripple platform [20]. They exploit exchange gateways that allow exchanging
Ripple with Bitcoins and other altcoins and are thus able to link wallets across
cryptocurrencies. However, the approach it is not based on deposit address reuse,
which is introduced in this paper.

Considering network-level information, Neudecker and Hartenstein associate
IP addresses to transactions and exploit correlations with clusters [23]. Apart
from these heuristics, Bitcoin users have been identified based on features de-
rived from their transaction behavior [19]. By similar means, Jourdan et al. have
characterized Bitcoin entities [12]. To the best of our knowledge, no clustering
heuristics have been proposed for Ethereum’s account model so far.

3.2 Address clustering countermeasures

To complicate the analysis of currency flows and disguise existing entities, a num-
ber of coin mixing services have been developed. These include CoinJoin [16]
which lets separate entities create transactions jointly, causing the standard
multiple-input heuristic to produce false results, as well as XIM [4] and Coin-
Shuffle [28]. Coin mixing services have also been proposed for Ethereum, through
smart contract-based solutions like Mébius [17] and Mixeth [29].
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4 Data Collection

To perform our analyses, we have collected all blocks, transactions and event data
up until block number 8,500,000 on the Ethereum blockchain, which appeared on
September 7th, 2019. The following highlights the data parts that are relevant
for the present work.

— Transaction data consists of a source and a target account address, as well
as the amount of Ether transferred or smart contract function called. This
data also includes internal transactions, that originate from smart contracts
but are originally triggered by an EOA.

— Event data consists of a list of topics, that characterize the event, and a
data field carries some value. This lets us extract any type of event a smart
contract has triggered. Therefore, we extract all token Transfer events and
the token minting events Mint, Distr, Airdrop and Tokendrop, that are
sometimes used for initial token distributions. Finally, we retrieve Approval
events, which state that an owner approves another address to spend some
of his tokens. All total numbers of extracted events are listed in Table 1.

4.1 Account types

For the following heuristics and analyses, we make extensive use of knowledge
about the characteristics of addresses on the Ethereum blockchain. We catego-
rize each address into whether it is an EOA or a smart contract, if it has mined
blocks, and whether any transactions originate from it. If an address was never
source of a transaction, we define it as inactive. One such inactive address is
0x0000000000000000000000000000000000000000, which is commonly used to
burn cryptoassets. Ether or tokens that are sent to this address become inacces-
sible because in all likelihood no one has the private key to this account.

Finally, we also obtained a list of addresses that are known to belong to ex-
changes. To do so, we have extracted all exchange addresses as listed by Ether-
scan*, adding additional addresses manually, which we identified through our
own exchange deposits and research on public discussion forums. Table 2 shows
the number and type of accounts in our dataset.

Table 1. Event types and counts Table 2. Account address types and counts
Event type Count Account characteristic Count
Transfer 255,931,124 EOA, active 53,291,969
Mint 3,528,933 EOA, inactive 22,641,698
Distr 7,978,077 Smart contract 17,970,742
Airdrop 156,131 Miner address 4,922
Tokendrop 19,036 EOA, exchange 186
Approval 7,325,925 Smart contract, exchange 28

* https://etherscan.io/accounts/label /exchange
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5 Heuristics

In the following subsections, we illustrate three entity identification heuristics:
deposit address reuse, airdrop multi-participation and transfer-authorization.
Each of the heuristics are based on usage patterns that can be observed on the
Ethereum ledger. This means they are not inherent to the protocol, so that their
effectiveness could change over time.

5.1 Deposit address reuse

The fact that the reuse of exchange deposit addresses provides a way to link ad-
dresses to each other is practically known, but has not yet been systematically
exploited. In order to sell Ether or other cryptoassets, a user has to send them to
an exchange. To credit the assets to the correct account, exchanges typically cre-
ate so-called deposit addresses, which will then forward received funds to a main
address. As these deposit addresses are created per customer, multiple addresses
that send funds to the same deposit address are highly likely to be controlled by
the same entity. This concept is illustrated in Figure 1. The key challenge lies
in identifying these deposit addresses. Their characteristic property is that they
forward received amounts to a major exchange account. The forwarded amount
is often slightly less than what was received, as the exchange has to pay for the
transaction costs. In most cases, deposit addresses are EOAs, but they can also
be smart contracts. When depositing tokens on the cryptocurrency exchange
Kraken for example, users are instructed to send them to a given smart con-
tract address, identical versions of which have been mass deployed in advance.
This makes it trivial to identify all identical token deposit contracts deployed
by Kraken. They are designed to forward received tokens automatically, thereby
passing on the transaction costs to the user. Here, we focus on the forwarding
principle.

O O e Colors indicate the same entity

EAO, non-miner, non-exchange ’ M

Deposit address, non-exchange \ 0xd5 ) \ 0xd6 )
lﬂ ~8, ~9
EOA, Exchange address Exchange B

Fig. 1. Deposit address reuse: if 0xd1 to 0xd6 are exchange controlled deposit addresses
that forward what is received, we cluster addresses that use the same deposit address.
We can see 5 entities: 2 exchanges (dotted/dashed) and 3 potential users (colored).
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Identifying deposit addresses relies on two parameters: the maximum amount
difference between what was received and forwarded: a,,,, and the maximum
time difference between receiving and forwarding: ¢,,4.. The former frequently
corresponds to the transaction fees that are paid in the forwarding process, but it
doesn’t have to: If a deposit address is a smart contract, the fee is 0 as the EOA
initiating the transaction already pays for the fee. Secondly, if a sufficiently small
amount of Ether is transferred to a forwarding deposit address, the exchange may
choose to wait for more deposits to make it worth the transaction fees. In the
case of tokens, a4, is typically 0, as transaction fees cannot be paid with tokens.

Sometimes exchanges send funds to one another. As these could acciden-
tally appear in a forwarding trace, we exclude deposit addresses that are known
exchange addresses. Furthermore, we require that the deposit address only for-
wards to a single exchange address. In practice, this may not always be true, as
an exchange may change their main wallet address. However, by imposing this
restriction, we avoid accidentally linking major exchanges to the same entity.
Furthermore, we only consider EOA addresses using a deposit address that are
neither a known exchange address nor have mined blocks. The former case ap-
pears frequently when users send funds directly between exchanges, the latter is
frequent in mining pools, where participants request their share to be sent to a
deposit address directly. For the full process see Algorithm 1.

Algorithm 1: Deposit address reuse heuristic
IHPUt : G(V, E), V;i:rch C V; Vminer - V, Omaz, tmaz
V': addresses, E: Ether transactions and token transfers
Output: Mappings M, and M, of addresses for each entity
1 foreach path v, — vq — v,
2 where Uy ¢ Vemch ) Vminer; Vq ¢ V:axah; Ve € V:izch do
3 €1 = UyVq; €2 = UqUe;
4 if ey.type = es.type and
5 er.amount — ez.amount € [0, ma,| and
6
7
8
9

ea.block Number — ey .blockNumber € [0, tq4,] then
depositAddresses.add(vg);

exchangeEntities.addPath(vg — ve); // builds a graph
userEntities.addPath(v, — vg); // builds a graph

10 // find weakly connected components as address clusters

11 M, = getWCC(exchangeEntities) ; // for exchanges
12 // remove deposit addresses as they belong to exchanges
13 M, = getWCC(userEntities) \ depositAddresses ; // for users

Parameter estimation. We initially identify Ether and token forwarding
traces in a time window t,,., of 10,000 blocks, and an amount difference a,,q
of 1 Ether. In the result, the empirical a4, in non-contract forwards is 0.0083
Ether at the 95th percentile, and t,,,, at the 95th percentile is 3,185 blocks,
corresponding to approximately 13 hours. Hence we rerun the extraction with
thresholds a,4,=0.01 Ether and t,,,,=3,200 blocks. As a result, we identify
13,104,448 traces that forward Ether or tokens to an EOA exchange address.
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1.7 million belong to Shapeshift. ties consist of 10 or more addresses.

Results. Clustering the deposit addresses with the exchanges provides in-
sight into how large the exchange clusters are. Figure 2 illustrates the top 10
exchange addresses by cluster size. We can see that Shapeshift and Binance
form some of the largest clusters, with the former covering more than 1.7 million
deposit addresses. In total, we can associate 6,670,392 deposit addresses to 186
EOA exchange addresses. Out of these, 5,671,405 are EOA, which means relative
to all active EOA accounts, exchange deposit addresses account for 10.6%.

With respect to the accounts that have sent transactions or tokens to deposit
addresses, we can make the following statements: Out of the 3,261,091 addresses
that have used a deposit address, 1,446,715 (44.3%) have used the same deposit
address with more than one account. In total, there are 333,107 entities that
consist of more than one address. We can explore the full distribution with a
complementary cumulative distribution function (CCDF), which is illustrated
in Figure 3. There, we can also see that we find 4 entities with each more than
1,000 addresses (indicated by the cutoff). We believe such large address clusters
are unlikely, and therefore ignore them.

Limitations. To consider how this heuristic could lead to false positives,
we assume the role of an adversary. As soon as we receive a transaction from
an arbitrary address, we send the same amount to one of the known Exchange
wallets. This would result in our account being considered a forwarding deposit
address. In this way, the sending address cluster could be extended to include our
own address. Furthermore, we’ve only investigated one layer of forwarding. With
this approach, we also can’t capture which major exchange addresses belong to
each other, as we’ve limited deposit addresses to only have one target.



Address clustering heuristics for Ethereum 9

5.2 Airdrop multi-participation

Airdrops are a popular mechanism to distribute tokens. On the Ethereum block-
chain, they are performed through smart contracts. The owners of the smart
contract choose recipients either based on past activity, or ask users to sign
up through online forms. Some of these registration processes require users to
perform certain actions on social media, such as posting articles or following
users. The amount of tokens given to each user is either fixed, or based on existing
account balances. If the amount is fixed, there is an incentive to cheat the system.
A single user could sign up with multiple email addresses and perform actions
with multiple social media accounts. Once the airdrop is performed, the user
will receive the tokens on all of his registered addresses. Since it is impractical
to manage the tokens on all of them, they are usually collected and aggregated
to one address.

We can exploit this pattern to identify single entities that receive tokens
multiple times. The concept is illustrated in Figure 4. We identify Airdrops where
a fixed number of tokens is distributed to many recipients. Then we search for
addresses that have been forwarded the same amount from the initial recipients.
It is important to ensure that these second hop recipients are not exchange
wallets or Decentralized Exchange (DEX) contracts, as several honest recipients
may transfer their tokens there directly. Furthermore, they must not be inactive
accounts, as this could indicate many recipients burning the token.

O O e Colors indicate the same entity

I Airdrop
distributor

Fig. 4. In a token airdrop, where a large number of addresses (Oxal, ..., Oxan) receive
the same token amount (in this case 1), we cluster addresses that forward the exact
received amount to a single address. Receiving addresses should be active EOAs, and
should not be an exchange or a smart contract, such as a DEX.
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This heuristic depends on two inputs. First, a set of airdrops with equal
amounts, characterized by a signature of a distributing address, a token network
and an amount. Second, the minimum number of token aggregations aggm, into
a single address. The second parameter is trivial to choose, as multi-participation
in its smallest form consists of two airdrop recipient addresses forwarding their
tokens to a third address (aggmin = 2). In this case a single entity would be in
control of at least 3 addresses.

Input and parameter choice. The main challenge therefore lies in iden-
tifying airdrops. To do so, we first examine all same-source, fixed amount token
distribution events. Figure 5 shows the CCDF of same amount token distribu-
tions. We can observe that there are about 10,000 distribution events with at
least 1,000 recipients. Manual inspection reveals that this also includes token
transfers within the EOS token network, which was an ICO, not an airdrop.
Therefore we must further filter the set of token distribution events. As airdrops
are frequently distributed in an automated fashion, we can inspect the temporal
domain of such a distribution event. We calculate the block difference between
the individual airdrop token transfers and calculate the median block difference.
If it is very low, a large number of addresses received their tokens in a short
time frame, so we assume it to be an airdrop. Figure 6 shows a cumulative dis-
tribution function (CDF) of how many distribution events fall into a maximum
median block difference. The fastest same-amount EOS transfers with at least
1,000 recipients occur with a median block difference of 4. Therefore, we only
select distributions where this difference is less than 2. This means at least 500
recipients have received their tokens in consecutive time steps of at most one
block, corresponding to about 15 seconds on average.
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between 2 and 1000 addresses.

Secondly, we need to determine what constitutes a suspicious aggregation
process. Figure 7 shows the CDF of aggregation instances by maximum number
of addresses collected from. Already two airdrop recipients forwarding their to-
kens to a single address can constitute multi-participation. Visible in the plot,
the CDF reaches a plateau from about 1,000 token receiver aggregations. There
are aggregations with more addresses participating, but only very few of them.

Results. Retrieving all aggregations results in 4,880,118 traces from airdrop
source to final collecting address. The median time between airdrop and collec-
tion is 10 days, with the lower quartile at 40 hours. The number of entities we can
extract is lower than the number of aggregation instances depicted in Figure 7.
One user likely participates in multiple airdrops, where each multi-participation
may slightly differ. Depending on the requirements for airdrop participation,
users may add additional addresses, or not use all of them. As such, address
clusters can merge. Once the joining is performed, we obtain our final entity
clusters. The corresponding distribution is illustrated in Figure 8. Some very
large clusters have formed, which are unlikely to exist. This could be due to a
collecting address that is actually a service used by many users. Secondly, some
token transfers may have been falsely identified as airdrops. To reduce such is-
sues, we only consider entities consisting of at most 1,000 addresses. Using this
threshold, we count 675,512 addreses, likely controlled by 20,453 entities.

5.3 Self authorizaion

The ERC20 token standard requires an approve function to allow another ad-
dress to spend tokens on behalf of the actual owner. Through the execution,
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a spender address gains access to a limited amount of tokens. This functional-
ity is mainly used in connection with smart contracts, especially decentralized
exchanges. Although smart contract use is the main purpose, this type of autho-
rization can also be used for regular EOA addresses.

In this section, we exploit this functionality under the assumption that there
are users that approve another address they own. We call this process self au-
thorization. Reasons for such self approval might include test purposes or risk
distribution over several addresses with partial accessibility. Successful func-
tion calls typically emit an Approval event, which contains the owner, spender
and permitted amount. As stated in section 4, we have obtained 7,325,925 such
events. Out of these, 338,510 (~4.6%) are between active EOA addresses. As
there may still be exchange addresses among the approved spenders, we remove
them accordingly. Finally, we extract all unique pairs of owners and spenders,
disregarding the type of token or the amount.
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Fig.9. Most EOA owners approve ex- Fig.10. Most spenders have been ap-
actly one EOA spender. More than 100 proved by one owner, one spender is ap-
approved spenders appears once. proved by more than 10,000 owners.

We can then study the relationship between these owners and spenders. Fig-
ure 9 illustrates that the vast majority of owner addresses only approve one
spender address. However, it appears that this single spender address is fre-
quently the same across many owner addresses: On the far right side of Figure 10,
we can observe that there is one spender address, that has been approved by
more than 10,000 owners, and 65 addresses with more than 1,000 owners. For
these, it is unlikely that they belong to the same entity. To extract entities, we
believe a limit of up to 10 owners approving the same spender and up to 10
spenders approved by the same owner is a plausible. Doing so, lets us extract
4,599 entities from 7,107 addresses.
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6 Analysis

In this section, we study the applicability of each clustering heuristic over time.
Secondly, we apply the heuristics on a sample token network which illustrates
how the results allow for an interpretation of the interactions in the network.

Figure 11 illustrates how many newly seen addresses are clustered with an
existing entity per block range of 100,000 blocks. It clearly illustrates that the
deposit address clustering heuristic is the most effective by number of captured
addresses. Most of these however, are the exchange deposit addresses themselves.
Both deposit address reuse and multiple airdrop participation decrease in num-
ber of captured addresses. Even though the number of addresses captured by
multi-airdrop participation is much lower, they appear consistently relative to
the total number of addresses captured by all heuristics. The approval heuristic
however, only captures a very small number of addresses. In fact, there are so
few of them, that they are not visible in the chart. With all clustering heuris-
tics combined, we can cluster 10,561,143 addresses into 343,467 entities. The
majority of these addresses belong to the exchange entities, which include smart
contract deposit addresses. The number of EOA addresses we were able to cluster
is 9,562,153, which equates to a share of 17.9% relative to all active EOAs.
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Fig. 12. Bionic token network (0xef51c9377feb29856e61625caf9390bd0b67eals). Ex-
cept for gray, colors indicate the same entity. The Bionic token network contains an
airdrop source at D4, the gray circlce surrounding it are recipients that received tokens,
but never did anything withthem. But there are many airdrop recipients that appear to
belong to the same entity, as they aggregate their recieved tokens. At D9, the HotBit
exchange is visible in red. Deposit addresses belonging to HotBit are visible in C8-E10.

In Figure 12, we illustrate the airdrop and deposit heuristics applied to the
token transfers of only the Bionic token network, and highlight entities with
colors. In the token network, we can see that an airdrop has been performed
originating from D4. The airdrop itself is responsible for a large part of all
transfers. Many recipients did not forward their received tokens, but some of
them trade them on exchanges like IDEX (E8) or Hotbit (D9). Airdrop recipients
in C7-D7 forward tokens to Hotbits deposit addresses in D8, which are colored
in red. Addresses in D10 have received tokens from Hotbit, and some of sent
them back.

Surrounding the airdrop, there are 170 clusters of entities that likely control
multiple addresses. They have received airdropped tokens and forwarded them
to a single address. The majority of these entities have then forwarded tokens
to the decentralized exchange IDEX, most likely in order to sell them. Due
to the many transfers involved in collecting from multiple addresses, the token
network appears to have significant activity, when in reality, a large portion of
this activity originates from a few entities.
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7 Discussion

Due to a lack of ground-truth labels on which addresses actually belong to the
same entity, it is very difficult to assess the quality of the clustering heuris-
tics. This same issue is prevalent in existing UTXO-based clustering heuristics.
In comparison to them, the proposed approaches in this paper have the draw-
back that they are not parameter-free. They require lists of previously known
addresses or thresholds. Nevertheless, in the case of deposit address reuse, the
advantage lies in the fact that the usefulness can be improved when provided
with more labels of major exchange addresses. Some of the very large cluster
formations could be due to unknown exchange addresses. In the case of air-
drop multi-participation, the main challenge is identifying airdrops correctly.
We have chosen the path of counting same amount recipients, as well as consid-
ering the temporal domain. As a result, some very large clusters have formed
which we had to exclude. We perceive better airdrop detection as future work.
With respect to the utility of each of the heuristics, we can state the following:
whereas deposit address reuse and self-authorization may provide insightful links
for future analysis surrounding fraudulent behavior, we expect that the clusters
around airdrop multi-participation are mostly limited to the particular use case
of multi-participation.

8 Conclusion and Future Work

This paper is the first to propose clustering heuristics for Ethereum’s account
model, including an analysis of their applicability. We have explored deposit ad-
dress reuse, airdrop multi-participation and self-authorization. For each heuris-
tic, we have analyzed and selected parameters as inputs. We have shown that
the exchange deposit address reuse heuristic captures the majority of addresses,
whereas the airdrop multi-participation heuristic can provide fewer but addi-
tional address clusters. The self-authorization heuristic however, has only pro-
vided very few results. Overall, we are able to cluster 17.9% of active addreses
on the Ethereum blockchain, which may form the foundation of future entity
graph analyses related to usage assessments or fraud detection.

8.1 Future work

As part of future work, we believe the detection of exchange wallets is impor-
tant to improve the clustering results. Further usage patterns on the Ethereum
blockchain can be studied. They may provide insight into how entities use them,
which in turn allows for clustering heuristics. Examples include online wallets,
identity management solutions like ERC 725, smart contracts related to games,
gambling or services in the realm of decentralized finance.

Another challenge is the question of how to treat smart contract accounts
when identifying entities. A smart contract could act as a regular wallet, in
which case the owner is likely the creator. But it is also possible that the smart
contract merely forwards currency, in which case the owner is irrelevant.
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