
Addressing Non-Functional
Requirements with Agile Practices
Mario Cardinal
Software Architect

Version: Dec 16th

Who Am I?
• Independent senior consultant

• Software architecture
• Agile coaching
• ALM with Team Foundation Server

• www.mariocardinal.com

Agile is Like Teen Sex Because…
• Everyone wants to do it
• Many say they’re doing it
• Everybody else seems to be doing more than you
• Very few of you/your friends are doing it correctly
• Your start getting a bad reputation when you

spend too much time ‘Doing it’
Source: agile101.net

Agenda
1. Non-functional requirements

• External and internal quality
2. Functional requirements and agile framework

• User Story and scenario
3. Non-functional requirements and agile framework

• Improve external quality using expectations
• Ensure internal quality using sound engineering practices

Non-Functional Requirements
What are they?
• Specify "how well" the "what" must behave

• Not about new features to deliver, but rather about
desirable characteristics of existing features

• Set constraints that typically cut across functional
requirements

• Also known as "technical requirements", “quality
attributes” or "quality of service requirements“

Non-Functional Requirements
It is all about quality
• Can be divided into two main categories:

1. External quality such as performance, correctness,
security and usability, which carry out the software's
functions at run time, and as such, is not only visible
by stakeholders but also highly desirable

2. Internal quality such as maintainability, modifiability
and testability, which is barely visible by stakeholders
but simplify how to build the software

Non-Functional Requirements
Knowledge is not experience
• I do not intend to tell you how to satisfy the many

non-functional requirements
• It is a skill that one acquires with experience

Non-Functional Requirements
I aim for a simpler goal
• I will explain how to translate non-functional

requirements into constraints
• Constraints set a limit to comply with
• Constraints guide your work
• Constraints help determine whether you have satisfied

the non-functional requirements

Non-Functional Requirements
Need to review functional requirements
• Constraints weave through the functional

requirements

Functional Requirements
Express goals with user stories
• A user story is a short description written in

everyday language that represents a discrete
piece of demonstrable functionality
• It is a desirable outcome by stakeholders

• Classic template
• “As a < role>, I want <goal> so that <benefit>”

Functional Requirements
Example: User stories for a Transit Authority
• As a <student>, I want <to buy a pass valid

only on school days> so that I can <go to
school>

• As a <worker>, I want <to buy a monthly pass>
so that I can <go to work>

• A scenario is a concrete example written in
everyday language

• It describes a significant exercise that is required
for the fulfillment of a user story

Functional Requirements
Illustrate User Story with scenarios

Functional Requirements
Confirm success criteria with scenarios
• Scenarios establish the conditions of acceptation
• Scenarios are concrete examples that says in the

words of the stakeholders how they plan to verify
the desirable outcome

• Scenarios enables the team to know when they
are done

• Scenarios are a specification as important, if not
more important, than stories

Functional Requirements
Express scenarios with formality

Given one precondition
And another precondition
And yet another precondition

When an action occurs
Then a consequence

And another consequence

Functional Requirements
Express scenarios with formality

Given an empty shopping cart is created
And a monthly student pass is added to shopping cart

When buyer checkout the shopping cart
Then a 76 dollars sale occurred

Functional Requirements
Store requirements in a database

User Story

User Story

Parent/Child Links

Scenario

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Scenario

Create a web
of

interconnected small pieces
of

requirements

Non-Functional Requirements
Two categories of constraint
• External quality

• Expectations impose conditions that sets a limit to
comply during software execution

• Internal quality
• Practices ensure that the software construction is

done correctly

External Quality
What is it?

Non-Functional
Requirement

Definition

Correctness Ability with which the software respects the specification.

Performance Ease with which the software is doing the work it is supposed to do. Usually
it is measured as a response time or a throughput.

Reliability Ability with which the software performs its required functions under stated
conditions for a specified period of time.

Robustness Ability with which the software copes with errors during execution.

Scalability Ability with which the software handles growing amounts of work in a
graceful manner.

Security Degree to which the software protects against threats.

Usability Ease with which the software can be used by specified users to achieve
measurable goals.

External Quality
Expectations should be SMART
• Specific

• It should target a piece of functionality that is small, consistent and
simple

• Measurable
• It imposes a limit that is measurable, otherwise how would you

know when you’ve addressed it
• Attainable

• It is recognized as achievable by the team
• Relevant

• It is directly related, connected, and pertinent to the non-functional
requirement

• Traceable
• It is linked with a requirement and a target that justifies why it exists

Expectation
The most important element is the ‘measure’
• Easier to express if you

• Reduce the scale of what needs to be measured
• Reduce functional scope

Expectation
Reduce the functional scope to a scenario
• An expectation is addressed side by side with its

linked functional scope

Expectation
Reduce the functional scope to a scenario
• Linking expectations with scenarios is a processed

repeated story after story

Expectation
Set Explicit Quality Objectives

Expectation
Set expectations with formality

Given one precondition
And another precondition
And yet another precondition

Expect a quality objective
Then a consequence

And another consequence

Expectation
Set expectations with formality

Expect response time less than 5 seconds

Expectation
Set positive expectations (Happy path)

Given buyer is logged in
Expect buyer to be authenticated positively

Expectation
Set negative expectations

Given buyer is not logged in
Expect buyer to be authenticated negatively
Then event is saved in security database and user is
redirected to “Login” page

Expectation
Omit implicit expectations

Given the server is down
Expect the query to return 0 transit fare
Then user is redirected to “Server unavailable. Please try
later” page

Expectation
Specific for one scenario
Set expectations with measurable quality
objectives

Given 10 different users accomplished the scenario
Expect 8 users to complete the scenario with success

Expectation
Specific for one user story
“As a user, I want to log in so that I can do transaction”

Given 10,000 buyers are logged in
And new user is not logged in

Expect new user to be unable to complete the story
Then new user is redirected to “Server unavailable.
Please try later” page

External Quality
Test Expectations with Proven Practices
• Accessibility: Verify visual impairments, mobility difficulty,

hearing inability and cognitive disabilities
• Correctness: Determine if the software respects the

specification (Acceptance testing)
• Performance: Measure response time and inspect

throughput
• Reliability: Seek for extraordinary resource consumption

over a specified period of time (memory, CPU, disk space)

External Quality
Test Expectations with Proven Practices
• Robustness: Determine ability of the software to function

correctly in the presence of invalid inputs or stressful
environmental conditions

• Scalability: Verify software behavior under both normal and
anticipated peak load conditions (Load testing)

• Security: Perform intrusion detection and vulnerability
scanning

• Usability: Conduct heuristic evaluation, consistency
inspection and activity analysis to verify if users achieve
specified goals

External Quality
Less is more
• Negotiate with stakeholders to reduce number of

expectations
• Is it « really, really » a desirable outcome?

• Try to target a specific iteration for testing a non-
functional requirement
• Benefit: Transform from a recurrent concern to a one-

time concern

Non-Functional Requirements
What about User Story?
• Cannot be satisfied in a finite period of time

• The “what” that needs to be restricted is not concrete
enough

• The functional scope is fuzzy because it is an iteration
• Can easily induce technical debt

• Once the story is completed, you must put it back in the
backlog to make it available again for a future iteration

• Complicates the management of the backlog unduly

Non-Functional Requirements
Two categories of constraint
• External quality

• Expectation imposes conditions that sets a limit to
comply during software execution

• Internal quality
• Practice that ensure the software construction is done

correctly

Internal Quality
What is it?

Non-Functional
Requirement

Definition

Simplicity Ease to understand or explain

Maintainability Ease to change and evolve with minimal effort

Testability Ease to confirm conformance by observing a reproducible behavior

Portability Ease to reuse for multiple platforms

Extensibility Ease to takes into consideration future changes

Internal Quality
Ensure quality using sound practices
• Practices define how the software construction is

done
• It preserves the sustainability of the source code for

future developments

Internal Quality
Explicit Engineering Practices

Non-Functional
Requirement

Practices (to be applied for each scenario)

Simplicity
Self-documenting code: Practices that ensure code is its own best
documentation by allowing useful information, such as programming constructs
and logical structure, to be deduced from the naming convention and code layout
convention.

• The naming and code layout convention guide
the team during software construction

Internal Quality
Confirm practice with collaborative construction
• Pair programming

• Two teammates work together at one workstation
• Driver

• Type at the keyboard
• Focus his attention on the task at hand
• Use the observer as a safety net and guide

• Observer
• Look at what is produced by driver
• Consider the constraints imposed by the practices
• Offer ideas for improvements

• The two teammates switch roles frequently

Internal Quality
Confirm practice with collaborative construction
• Peer review (aka formal inspection during construction)

• Well-defined roles
• Moderator, author, reviewers, scribe

• Planning
• Inspection isscheduledby moderator(according to predefined selection criteria)

• Preparation
• Reviewer works alone to scrutinize the work product under review
• Reviewer uses a checklist to stimulate their examination

• Inspection
• Moderator chooses someone other than the author to present the work product
• Authorisa « flyon the wall» and scriberecords reworks as they are detected
• Constructive feedbacks, « I propose to replace with…»,

• After inspection
• Moderator ensure that all rework is carried out promptly by the author

Internal Quality
Other examples of engineering practices

Non-Functional
Requirements

Practices (to be applied for each scenario)

Maintainability Continuous Integration: Practices of applying quality control for each new
checked in code by verifying if it integrate with success in the development
branch.

Testability Red-Green-Refactor: Practice that promotes the notion of writing test first when
programming a piece of code and that relies on the repetition of a very short
development cycle divided into three stages (the red, the green and the refactor
stage).

Portability Multi-target compiling: Practices that verifies compilation on every platform.

• Each scenario is not « Done » until each practice is
confirmed

Internal Quality
Engineering practices and user story

Non-Functional
Requirements

Practices (to be applied for each user story)

Maintainability Branching and merging : Practices to merge with the main branch (and
tagged appropriately for traceability) source code from the development
branch.

Portability Multi-target deploying: Practices that verifies the automated build can deploy
on every platform.

• Each user story is not « Done » until each practice
is confirmed

Internal Quality
How to store practices description in TFS

User Story

User Story

Parent/Child Links

Scenario

Practice

Practice

Practice

Practice

Scenario

Practice

Practice

Global list

Resources
• My website

• http://mariocardinal.com
• Book

• Title: Agile Specification
• Author: Mario Cardinal
• Publisher: Addison-Wesley
• Publication Date: Spring 2012

Q & A

