

Adhesive and Cementitious Anchorage Systems: Researching the Behavior of Anchors

Scott Civjan and Doug Droesch University of Massachusetts Amherst

NESMEA 2014

Presentation

- Anchor Systems
- Acceptance Criteria
- Design and Research Issues
- UMass/MassDOT Project

Anchor Systems

Cast in Place

Cast in Place Anchors – Headed Bolt, Headed Stud, or Hooked Bolt Installed Before Placing Concrete. (ACI 318-02)

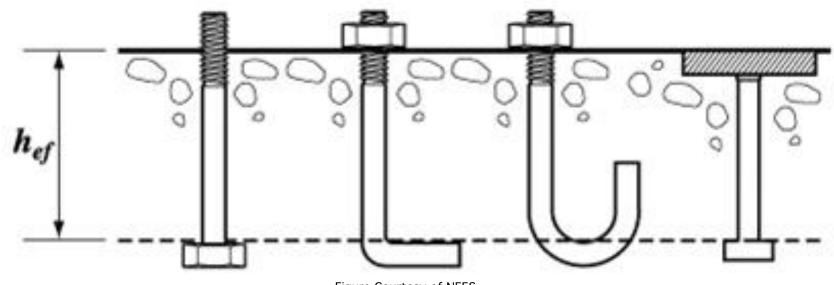
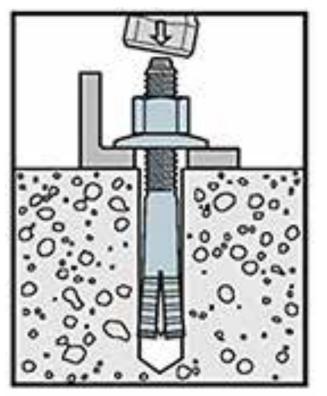
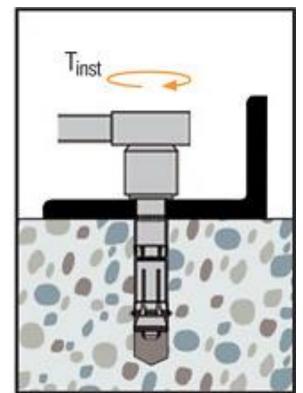



Figure Courtesy of NEES

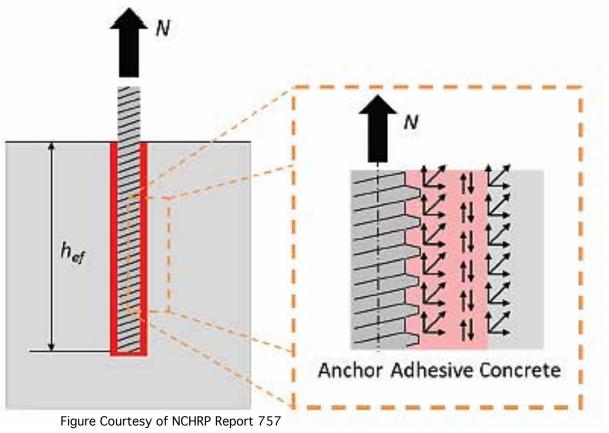


Post Installed - Mechanical

Expansion – Friction by wedging steel sleeve against base concrete

Undercut– Mechanical Interlock by cutting into base concrete

Figures Courtesy of Simpson Strong Tie

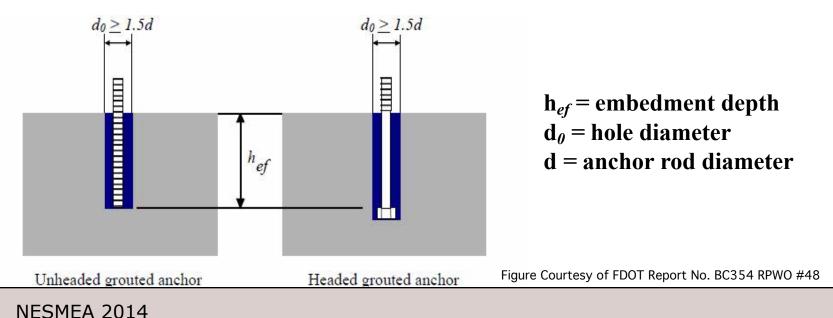

Post Installed – Adhesive or Cementitious

- Bonded:
 - Hole Diameters Less Than 1.5 x Anchor Diameter
 - Typically Adhesives (Polymers such as Epoxies)
- Grouted:
 - Hole Diameters Greater Than 1.5 x Anchor Diameter
 - Either Adhesive (with filler material) or Cementitious

Post Installed – Bonded

Transfer Applied Load from Anchor Rod to Base Concrete through shear stress in the bonding agent.

Post installed - Grouted


Polymer Grout

Researched Less Than Bonded Anchors

Same polymer structure as polymer adhesives, but fine aggregate is used to increase bond material between anchor rod and base concrete

Cementitious Grout

Mixture of sand, cement, water, and other additives

Researched Less Than Bonded

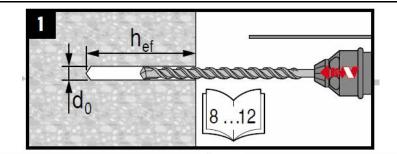
Post Installed – Grouted

Anchors Ν hef Anchor Adhesive Concrete

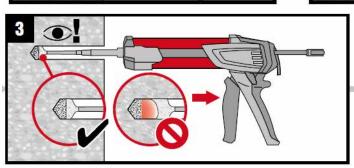
Figure Courtesy of NCHRP Report 757

NESMEA 2014

Installation Procedure

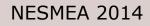

- Drill Hole
- Clean Hole
- Install Bonding Material

6 bar/


90 psi

3...14

Install Anchor



2x 3x 13...14

6 twork 15

Figures Courtesy of Hilti

Failure Modes

Bonded Anchor Failure Modes

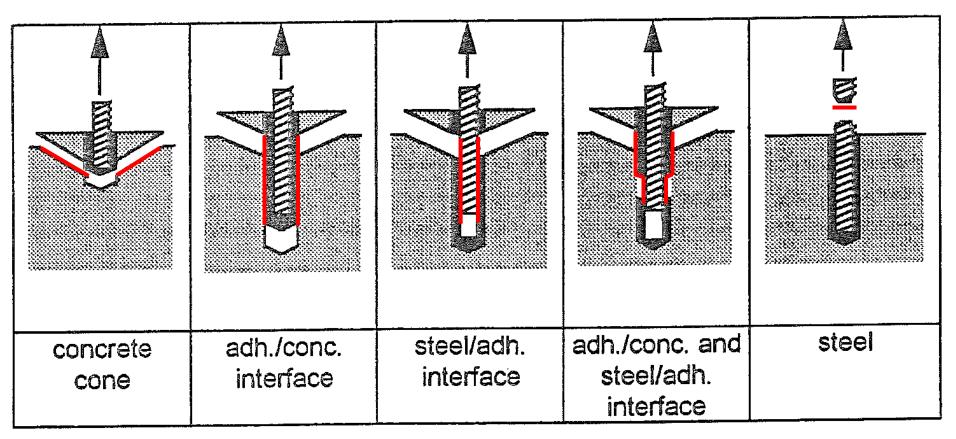


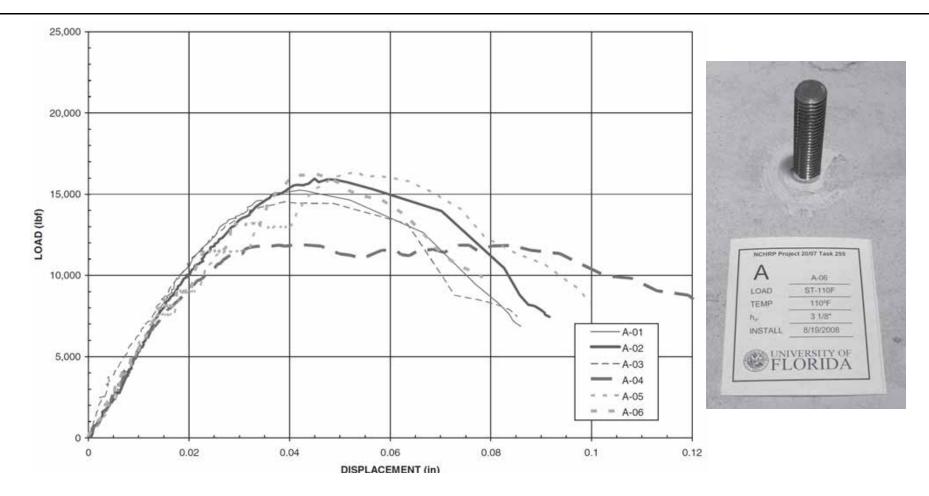
Figure from NCHRP Report 757

Concrete Capacity Design (ACI 318 Appendix D)

$$N_b = k \sqrt{f'_c} h_{ef}^{1.5}$$

 N_b = concrete breakout strength in tension of a single anchor in cracked concrete

k = *Coefficient for basic concrete breakout strength in tension*


(24 for Cast in Place Anchors, 16 for Mechanical Post-Installed Anchors)

f′_{*c*} = *Specified Compressive Strength of Concrete (psi)*

 $h_{ef} = Effective anchor embedment depth (in)$

Static Test – Confined Failure

Behavior Models: Adhesive Uniform Bond Stress Model

$$N_{bond} = \tau' \pi dh_{ef}$$

 $au' = nominal \ bond \ stress = au_k lpha_1 lpha_2 lpha_3$

 $\tau_k = 5\%$ lower fractile of mean bond stress

 $\alpha_1 \alpha_2 \alpha_3 = reduction factors for different parameters$

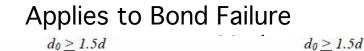
Applies to Bond Failure

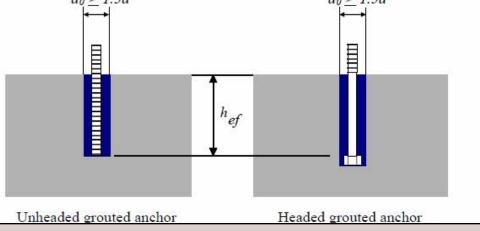
$$N_N$$
 Modes
 $N_u \leq \emptyset N_{bond}$
 $N_u = Factored Tension Load$
 $\emptyset = capacity reduction factor$
 $d = anchor diameter h_{ef} =$
 $embedment depth$
Figures Courtesy of NCHRP Report 757

NESMEA 2014

Assumptions

- Embedment depth $\leq 20d$
- Hole diameter $\leq 1.5d$


Behavior Models: Grouted Uniform Bond Stress Model


 $N_{bond,inner} = \tau'_{inner} \pi dh_{ef}$ $N_{bond,outer} = \tau'_{outer} \pi d_0 h_{ef}$ **Assumptions**

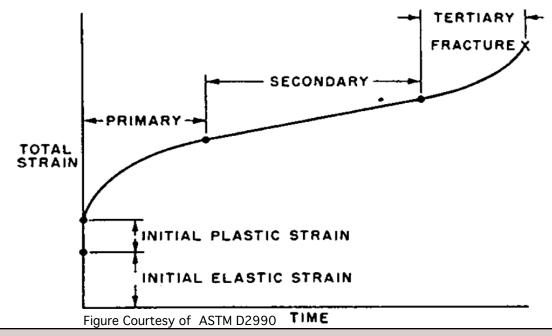
- Embedment depth $\leq 20d$
- Hole diameter $\geq 1.5d$

 τ'_{inner} = nominal bond stress steel/grout interface (non-headed)

 τ'_{outer} = nominal bond stress grout/concrete interface

 $N_u \leq \emptyset N_{bond}$

 $N_u = Factored Tension Load$ $\emptyset = capacity reduction factor$ $d = anchor diameter h_{ef} =$ embedment depth


Figure Courtesy of FDOT Report No. BC354 RPWO

Static Capacity vs Sustained Load Capacity

- Polymer adhesives exhibit rigid behavior in short term tests (~5 minutes)
- Polymer adhesives deform over time under a sustained load (Creep)

NESMEA 2014

I-90 Connector Tunnel July 10, 2006

Displaced Anchors Found During Inspection

- 78 of 198 westbound tunnel
- 57 of 248 eastbound tunnel
- 26 of 188 high occupancy vehicle (HOV) tunnel

Photos Courtesy of NTSB Ceiling Collapse of the I-90 Connector Tunnel Accident Repo

Parameters Affecting Capacity

In-Service Factors (1 of 1)

- Elevated Temperature: temperature variations during the life of the structure, and effects of sustained elevated temperature.
- Reduced Temperature: brittleness associated with reduced temperature.
- Moisture-in-Service: adhesive anchor subjected to dry, damp, or immersed conditions during the life of the anchor.
- Freeze-Thaw: magnitude and frequency of freeze-thaw cycles.

Adhesive Related Factors (1 of 1)

- Type of Adhesive: for example: epoxy-mercaptan, epoxyamine, vinylester, polyester, or hybrid.
- Mixing Effort: how well are the constituent parts mixed prior to installation.
- Adhesive Curing Time When First Loaded: 24 hours, 7 days, 28 days, or longer.
- Bond Line Thickness: how much space is there between the anchor and the sides of the hole.
- Fiber Content of Adhesive: type and proportion of fillers in the adhesive.
- Chemical Resistance: alkalinity, sulfur dioxide, and other compounds.

Installation Related Factors (1 of 2)

- Hole Orientation: downward, horizontal, overhead.
- Hole Drilling: rotary hammer, core drill, or drilled in accordance with manufacturer's instructions.
- Hole Cleaning: uncleaned, partially cleaned, or cleaned in accordance with the manufacturer's instructions.
- Moisture in Installation: dry, damp, submerged, or installed in holes with moisture limitation conditions in accordance with manufacturer's instructions.
- Installation Temperature: concrete below freezing, adhesive below freezing, or preheated.

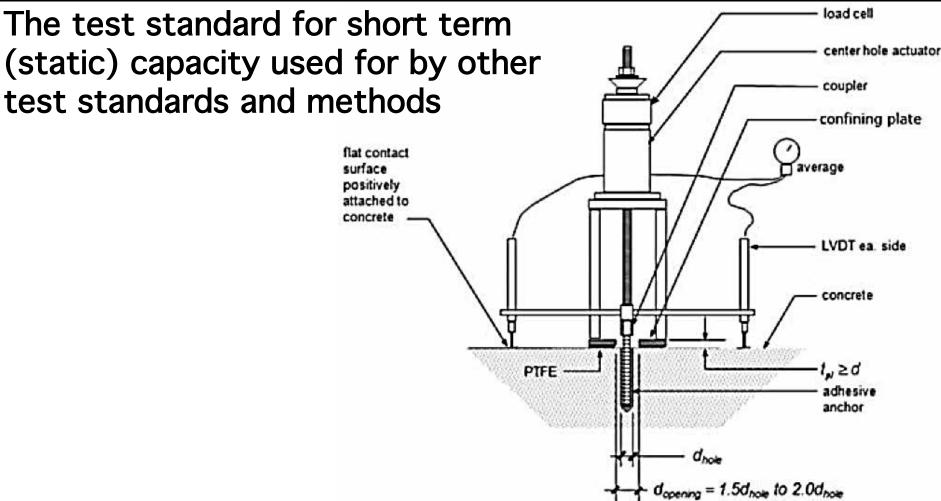
Installation Related Factors (2 of 2)

- Depth of Hole (Embedment Depth): the depth of the anchor can affect not only the bond strength but the type of failure.
- Anchor Diameter: anchor diameter can affect bond strength.
- Type of Concrete: Portland cement only, Portland cement with blast furnace slag, fly ash, or other additives.
- Concrete Strength: low compressive strength, high compressive strength.
- Type of Coarse Aggregate: mineralogy, absorption, and hardness (affects hole roughness).
- Cracked or Uncracked Concrete: the presence of cracks can reduce the bond strength significantly (30%-70%).
- **Concrete Age:** installed and/or loaded at early age.

Testing and Certification

Test Standards (Partial Listing)

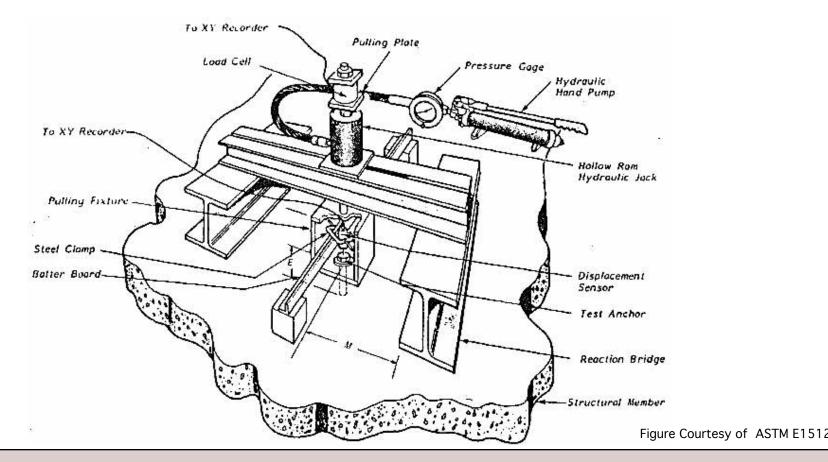
- ASTM E488: Standard Test Methods for Strength of Anchors in Concrete Elements
- ASTM E1512: Standard Test Method for Testing Bond Performance of Bonded Anchors
- ACI 355.4: Qualification of Post-Installed Adhesive Anchors in Concrete
- AASHTO TP-84: Standard Method of Test for Evaluation of Adhesive Anchors in Concrete under Sustained Loading Conditions


ASTM E488: Standard Test Methods for Strength of Anchors in Concrete Elements

- Published: 1996 (reapproved 2003), changed 2010
- Anchors Tested: All (cast in place, mechanical post installed, bonded)
- Parameters Tested
 - <u>In Service</u>: Seismic, Fatigue, Shock, Freeze/Thaw, Elevated/Reduced Temperature, Moisture, Corrosion
 - **Installation**: Hole Cleaning, Moisture, Temperature
 - Anchor Related: N/A
 - <u>Concrete Related</u>: Cracked, Uncracked
- Data Output: Force, Displacement
- Qualification Criteria: None

ASTM E488: Standard Test Methods for Strength of Anchors in

Concrete Elements


ASTM E1512: Standard Test Methods for Testing Bond Performance of Bonded Anchors

- Published: 2001 (reapproved 2007)
- Anchors Tested: Bonded (Chemical Compound)
- Parameters Tested
 - <u>In Service</u>: E488 (Seismic, Fatigue, Shock), Freeze/Thaw, Elevated/Reduced Temperature, Moisture, Corrosion, Fire, Radiation, Sustained Load
 - **Installation**: Moisture, Cleaning, Temperature
 - **Anchor Related**: Embedment Depth
 - **Concrete Related**: Cracked, Uncracked
- Data Output:
 - **<u>Static Tests</u>**: Force, Displacement
 - <u>Creep Tests</u>: Time, Force, Displacement, Extrapolated Displacement

ASTM E1512: Standard Test Methods for Testing Bond Performance of Bonded Anchors

Qualification Criteria: None

NESMEA 2014

ACI 355.4: Qualification of Post-Installed Adhesive Anchors in Concrete

- Published: 2011
- Anchors Tested: Adhesive
- Parameters Tested:
 - <u>In Service</u>: Moisture, Chemical Exposure, Sustained Load, Seismic (optional), Freeze/Thaw (optional), Elevated Temperature (optional)
 - Installation: Moisture, Cleaning, Temperature, Orientation, Drilling Method
 - <u>Anchor Related</u>: Anchor Rod, Embedment Depth, Anchor Diameter
 - **Concrete Related**: Cracked, Un-cracked

ACI 355.4: Qualification of Post-Installed Adhesive Anchors in <u>Concrete</u>

- Data Output:
 - **Static Tests**: Force, Displacement
 - <u>Creep Tests</u>: Time, Force, Displacement, Extrapolated Displacements
 - Alpha Reduction Ratio:

$$\alpha = \frac{\overline{\tau}_{u,i}}{\overline{\tau}_{0,i}}$$

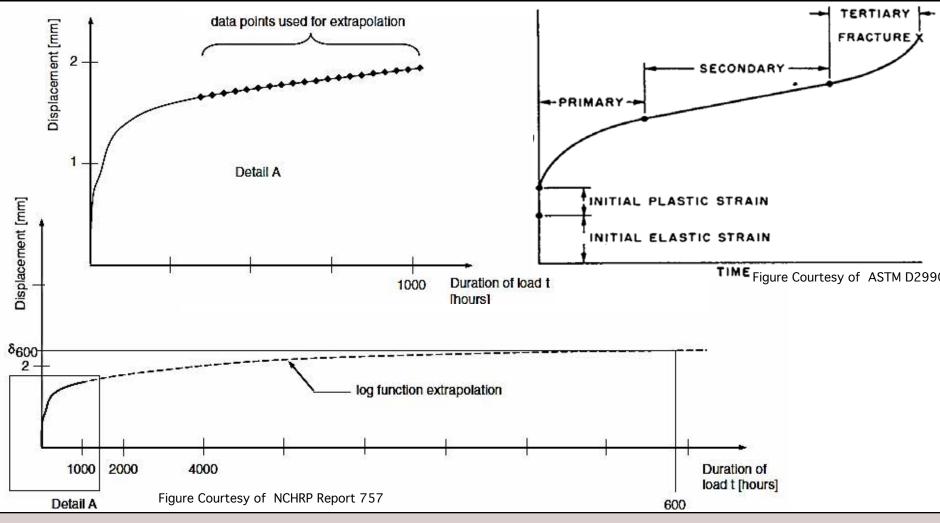
 $\bar{\tau}_{u,i} = Mean bond stress from reliability (parameter) test series in test member i$

 $\bar{\tau}_{0,i} = Mean \ bond \ stress \ from \ reference \ (baseline) \ test$ series in test member i

ACI 355.4: Qualification of Post-Installed Adhesive Anchors in Concrete

Creep Tests (modified from ASTM E1512)

- Separate tests for Standard Temperature, 73° F ± 8° F (23° C ± 4° C), and Elevated Temperature ≥ 110° F (50° C)
- 42 Day Test; loaded at 55% of Short Term Capacity
- Displacement is measured and extrapolated out to 600 days for elevated temperature and 50yrs for standard temperature


ACI 355.4: Qualification of Post-Installed Adhesive Anchors in Concrete

Why 600 days?

- Study of Bridge in California Desert yields maximum bridge temperatures between 110° F and 120° F (43° C and 48° C) for 2.4 hours per day
- 4 Months of Summer = 288hrs/year at elevated temperature
- 50 year design life = 600 days at temperatures between 110° F and 120° F (43° C and 48° C)

ACI 355.4: Qualification of Post-Installed Adhesive Anchors in Concrete

NESMEA 2014

ACI 355.4: Qualification of Post-Installed Adhesive Anchors in Concrete

Acceptance Criteria

- 600 day displacement must be less than displacement at failure of short term elevated temperatures test
- 50yr displacement must be less than displacement at failure of short term standard temperatures test
- Residual capacity must be 90% of short term tests

Qualifications of Post Installed Anchors

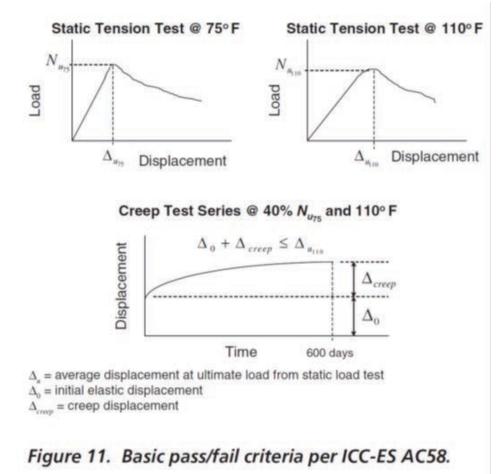
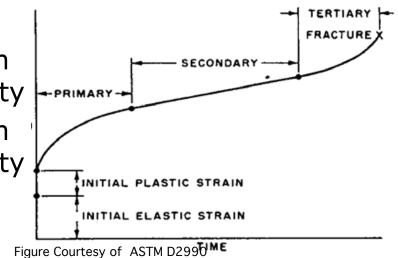
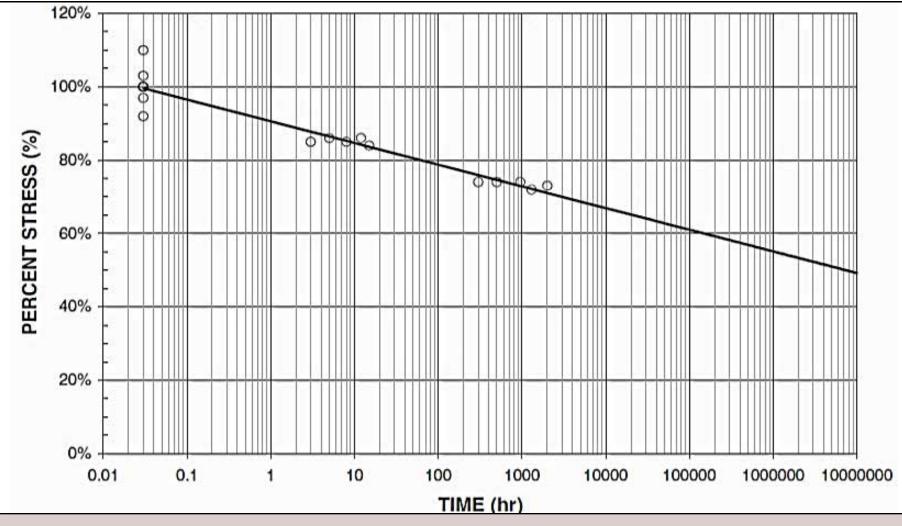


Figure Courtesy of NCHRP Report 757

NESMEA 2014

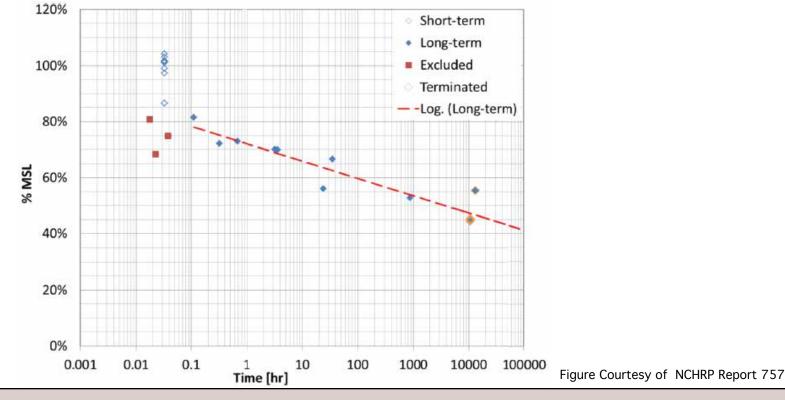

AASHTO TP-84: Standard Method of Test for Evaluation of Adhesive Anchors in Concrete under Sustained Loading Conditions

- Published: 2009, Approved 2014
- Anchors Tested: Bonded
- Parameters Tested:
 - <u>In Service</u>: Sustained Load at Elevated Temperature 110° F to 120° F (43° C to 48° C)
 - Installation: None
 - Anchor Related: None
 - Concrete Related: None


AASHTO TP-84: Standard Method of Test for Evaluation of Adhesive Anchors in Concrete under Sustained Loading Conditions

- Data Output:
 - **<u>Static Tests</u>**: Force, Displacement
 - <u>Creep Tests</u>: Time, Force, Displacement, Stress vs Time to Failure Plot
- Creep Tests Conducted to Failure
 - 5 Short Term Tests
 - 5 Tests at a sustained load between 60% and 70% of short term capacity
 - 5 Tests at a sustained load between 70% and 80% of short term capacity

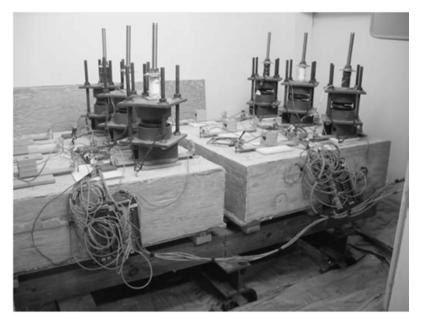
Stress Vs Time to Failure Plot



NESMEA 2014

Recommended Changes to AASHTO TP-84

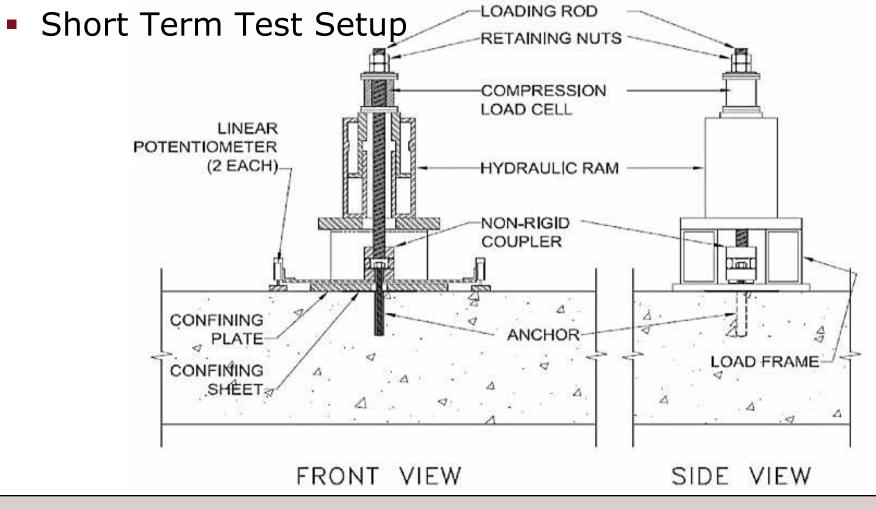
- 1. Do not use short term test data in building stress vs time to failure plot
- 2. Use three sustained load levels instead of two


- NCHRP 757
 - 48 Sustained Load Tests of Time to Failure
 - 30 Reference Tests (Static) of Time to Failure
 - 72 Sustained Load Tests of Standard Method
 - 30 Reference Tests (Static) of Standard Method
 - 216 Sustained Load Tests Total
 - 185 Reference Tests (Static) Total

Proposed UMass Research Program

RESEARCH APPROACH

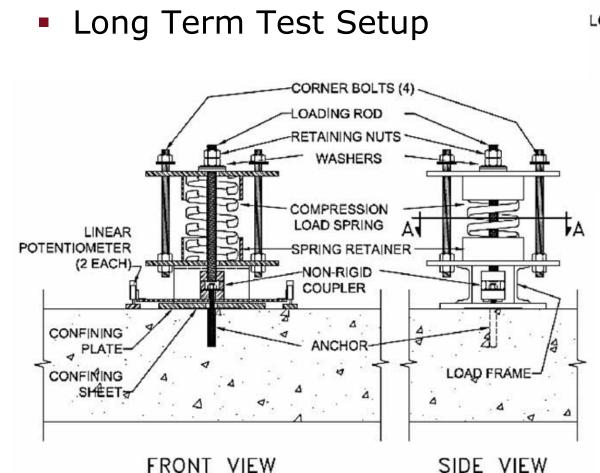
Florida Testing per NCHRP 639 and 757

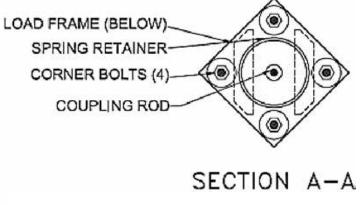


Research Approach

- 16"x16"x12" Deep (406mm x 406mm x 304mm) Concrete Specimens of 4000psi concrete
- Anchors Installed in accordance with Manufacturer's Printed Instructions
- Short Term Tests Conducted to Establish Baseline Short Term Capacity
- Long Term Tests Conducted at Elevated Temperature in Environmental Chamber (to be built)

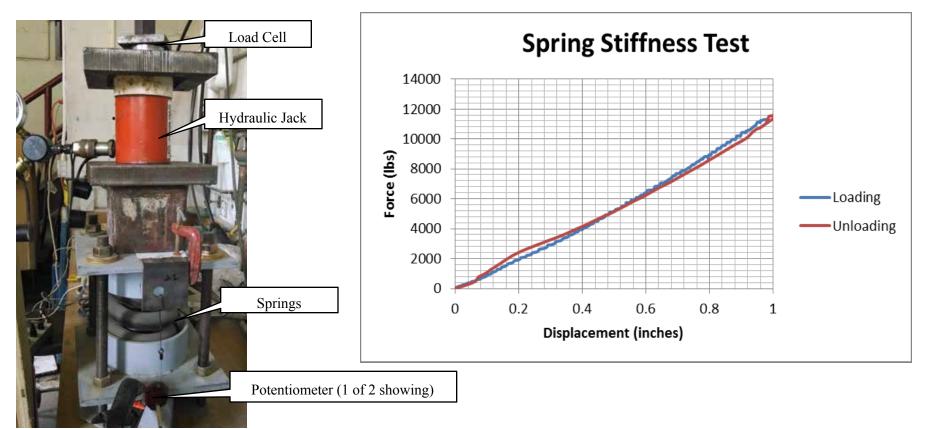
Research Approach




NESMEA 2014

NESMEA 2014

Research Approach



Spring Calibration

Spring Stiffness 11.5 kips/in (14 kN/m)

Purpose

- Develop Test Capabilities to Meet AASHTO TP-84 testing methods at UMass Amherst
- Identify Gaps in Research and Standards Regarding Definitions and Testing Methods of Bonded Anchors
- Recommend Qualification Criterion for Bonded Anchors

MassDOT Project

- Contracting in place from MassDOT 2 year project
- Project Kick-Off Meeting 9/18/14
- Initial approval requested to begin purchase of materials
- Year 1 Focus initially on three previously approved anchor systems; AASHTO TP-84 methodology

QUESTIONS?

MassDOT Project

- Contracting in place from MassDOT 2 year project
- Project Kick-Off Meeting 9/18/14
- Initial approval requested to begin purchase of materials
- Year 1 Focus initially on Hilti HIT-RE 500-SD, Simpson Strong-Tie SET-XP, and Chemofast C-RE 385; AASHTO TP-84 methodology

Presentation

- Purpose
- Introduction
 - Cast in Place Anchor Systems
 - Mechanical Post Installed Anchor Systems
 - Bonded Post Installed Anchor Systems
- Bonded Anchor Systems
 - Installation Procedures
 - Failure Modes/Behavior Models
 - Parameters That Affect Capacity
 - Test Standards
- Research Approach/Future Work

Adhesive Anchors (Hole Diameters Less Than 1.5 x Anchor Diameter)

Adhesive – Any adhesive comprised of chemical components that cure when blended together. Adhesives are formulated from organic polymers, or a combination of organic polymers and inorganic materials. Organic polymers used in adhesives can include, but are not limited to, epoxies, polyurethanes, polyesters, methyl methacrylates and vinyl esters. – ACI 355.4

Preliminary Concrete Specimens

- Three Specimens were cast on June 4th using 4000psi Sakrete
- Specimens will be used to validate pullout test methods and anchor installation procedures

NESMEA 2014