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Adiabatic topological quantum computing
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Topological quantum computing promises error-resistant quantum computation without active error correction.
However, there is a worry that during the process of executing quantum gates by braiding anyons around each
other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we
explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological
codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols
that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the
system constant with respect to the computation size and introduces only simple local Hamiltonian interactions.
This allows one to perform holonomic quantum computing with these topological quantum computing
systems. The tools we develop allow one to go beyond numerical simulations and understand these processes
analytically.
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I. INTRODUCTION

There are many approaches to constructing a quantum
computer. In addition to the numerous different physical
substrates available, there are a plethora of different underlying
computational architectures from which to choose. Two major
classes of architectures can be distinguished: those requiring a
substantial external active control system to suppress errors
[1–3], and those whose underlying physical construction
eliminates much, if not all, of the need for such a control system
[4,5]. The first class of architectures strives to minimize the
control resources needed to quantum compute fault tolerantly.
The second class of architectures strives to minimize the
complexity of systems that enable fault-tolerant quantum
computation intrinsically. Here, we focus on the latter class of
architectures and address the following question: “How does
one quantum compute on a system protected from decoherence
by a static (i.e., time-independent) Hamiltonian?” We present a
solution that adiabatically interpolates between static Hamilto-
nians, each of which protects the quantum information stored
in its ground space. Since each of these ground spaces can be
described as a quantum error-correcting code space, we call
this process adiabatic code deformation [6,7]. This procedure
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amounts to a simulation of the measurement-based process of
code deformation employed in the first class of architectures
[8–14]. We further show that this procedure preserves the
energy gap of the system throughout the evolution, except at
certain points where the ground-state degeneracy changes and
the degenerate states are connected only by very high-weight
operators.

While previous work has made reference to adiabatic
evolutions as a method for performing topological quantum
computation [15], our work can be seen as making the
assumptions of adiabatic evolution explicit for certain models
of topological quantum computers. In contrast, for example,
to topological quantum computing in fractional quantum Hall
systems where even the ground state of the system is subject
to debate, our models are exactly solvable and simple. Similar
work has been performed for Kitaev’s honeycomb model
by Lahtinen and Pachos [16], who examined the adiabatic
transport of vortices in Kitaev’s honeycomb lattice model
numerically. Here, we are able to investigate these issues
analytically.

Our results marry three different lines of research, which we
now describe. The first is the idea originated by Kitaev [4] that
quantum information can be protected from decoherence by
encoding it into the degenerate ground space of a many-body
quantum system. In particular, Kitaev suggested a family of
systems such that each system has a ground space equivalent
to a quantum error-correcting code space. Moreover, each of
these ground spaces is separated from its first-excited space
by an energy gap, a gap that does not shrink with the system
size (i.e., the gap is “constant”).

In Kitaev’s original construction, the quantum error-
correcting code also possesses a topological property that
makes the distance of the code grow with the number of
qubits in the system. This implies that any local perturbing
interaction will only split the energy of a degenerate ground
state by an exponentially small amount in the size of the
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system [17]. Information encoded into the ground space should
therefore remain well protected from the detrimental effects
of decoherence. Further, if one immerses the system in a
bath with a temperature lower than that of the energy gap
in the system, then one should expect a suppression of thermal
excitations out of the ground space. The decay rate of the
quantum information encoded into the ground space is not set
by a length scale in the system, but instead the lifetime scales as
exp(cβ�) where β is the inverse temperature, � is the energy
gap of the Hamiltonian, and c is a constant [18]. Crucially, this
implies that the lifetime of the information is exponentially
lengthened as a function of the inverse temperature. While
one does not obtain, using Kitaev’s original idea, a method
for protecting quantum information with a lifetime that grows
with the size of the system, a hallmark of “self-correcting”
quantum memories [8,19], for a suitably low temperature,
the information lifetime will be long enough for all practical
purposes. Thus, via the use of a static many-body Hamil-
tonian, Kitaev proposed that quantum information could be
protected without resorting to active quantum error-correcting
algorithms.

Following Kitaev’s introduction of this idea, numerous
authors put forward similar approaches. Many of these ideas
stayed within the realm of topological protection [15,20–24],
but others explored energetic protection without reference
to topological ideas [25–28]. Here, we will focus on the
topological models, but many of our results apply in the more
general setting.

Kitaev noted in his original proposal that the excited states
of his Hamiltonian act as particles with exotic statistics. In
particular, he showed that the excitations were quasiparti-
cles called anyons [29], particles that exist in two spatial
dimensions that exhibit statistics different from fermions and
bosons and which interact by braiding around one another in
space-time, an interaction that only depends on the topology
of the anyon worldlines. These excitations not only describe
errors in the code space, but can also be thought of as quantum
information carriers in their own right. Indeed, for some
many-body Hamiltonians, it is possible to have non-Abelian
anyons (anyons whose braidings do not commute) that perform
universal quantum computation in the label space of the
anyons. This is known as topological quantum computing
[4,30–32], the principal model of quantum computing we will
consider here.

In a topological quantum computation, one creates anyons
from the vacuum, braids them around one another in space-
time, fuses them together, then records their label types.
Although the topological nature of the anyonic interaction
provides a degree of control robustness, it is not immediately
clear why the processes of anyon creation and fusion could
not create new unwanted anyons. Such anyons could in
turn wander and disrupt the desired braid. The initialization
process in particular is quite subtle [33]. Moreover, there
will likely be a background of thermal anyons and anyons
arising from material defects which could also disorder the
quantum computation. On top of all of this, even if a space-time
braid is topologically correct, the mere act of moving anyons
around at any nonzero speed has the potential to generate new
excitations because the adiabatic approximation is not exact.
Measurement-based topological quantum computation [34,35]

has the potential to overcome this last problem, but the other
problems remain. In summary, the great merit of topological
quantum computation is that the “only” thing that can corrupt
it is uncontrolled anyons, the problem is that there are many
ways that uncontrolled anyons can arise. Even something
as seemingly innocuous as a lack of complete knowledge
of the system’s Hamiltonian could do this because it could
lead to anyons being trapped or leaking out of the system
unbeknownst to the computer operator [15]. We do not claim
to address every possible adversarial scenario for topological
quantum computation here; our focus is on constructing an
architecture that limits the chances for uncontrolled anyons to
appear.

The second line of research relevant to our proposal is
the recent use of code deformations to perform quantum
computation on topological quantum error-correcting codes
[8–10,12,32]. In this approach, one works directly with the
quantum error-correcting code used in topological quantum
computing without introducing a Hamiltonian to provide
energetic protection of the quantum information. Instead, one
focuses on active error correction, but performed with the
topological quantum codes. Consideration of such codes for
quantum error correction was first examined in detail by
Dennis et al. [8]. In this approach, qubits are arranged on
a two-dimensional surface with a boundary, resulting in a
single encoded qubit for each such surface. In order to build a
quantum computer with more than one qubit, such surfaces
are stacked on top of each other so that transversal gates
can be achieved between the neighboring surfaces. Since the
original analysis, modifications [10,36] of this architecture
have been introduced that have considerable advantages over
the three-dimensional stacking of Dennis et al. In these models,
one takes a surface code and “punctures” it by removing the
quantum check operators (stabilizer generators) from a region,
creating a defect [37]. For each defect, one obtains an encoded
qubit with a code distance that is the minimum of the perimeter
of the defect and the distance from the defect to the nearest
appropriate boundary (which may lie on another defect). One
can show that, via a sequence of adaptive measurements,
one can deform the boundary of the defect, and, by using
suitable deformations, braid defects in such a way that logical
operations are performed between the logical qubits associated
with the defects.

The third line of research relevant to our proposal is the
recent discovery of methods to perform holonomic [38] and
open-loop holonomic [39] universal quantum computation
in a stabilizer code setting [6,7,40]. In holonomic quantum
computing, adiabatic changes of a Hamiltonian with degen-
erate energy levels around a loop in parameter space induce
unitary gates on each energy eigenspace. The enacted gate
depends on geometric properties of the Hamiltonian path
and not on the exact timing used to traverse it (to within
the limits of the adiabatic approximation), thus offering a
method to avoid some timing errors. Universal quantum
computation using holonomic methods was originally studied
in Ref. [38]. Recently, Oreshkov et al. demonstrated a novel
manner for achieving universality within the context of fault-
tolerant quantum computing [6]. In particular, this result
showed how to perform gates on information encoded into
a quantum stabilizer code. Building along these lines, two
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of the present authors (D.B. and S.T.F.) have shown how to
achieve similar constructions within the context of open-loop
holonomic quantum computation [7,41]. In this setting, instead
of using cyclic evolutions, one can quantum compute using
noncyclic evolutions. A consequence of this is a scheme
known as adiabatic gate teleportation where one mimics gate
teleportation via a very simple interpolation between two-qubit
interactions [7]. Another consequence is that it is possible to
perform measurement-based quantum computing [42] using
only adiabatic deformations of a Hamiltonian [41]. Further,
and more suggestive for this work, it is possible to perform
holonomic quantum computation on symmetry-protected spin
chains [43]. Holonomic quantum computation, whether per-
formed cyclically or noncyclically, should be distinguished
from (universal) adiabatic quantum computation, in which the
ground state is always nondegenerate throughout the noncyclic
adiabatic evolution [44–48].

In this work, we combine many of the above insights into a
method for computing on information encoded into the energy
levels of a Hamiltonian. We consider a situation where, as
in the first line of research, quantum information is encoded
into the ground state of a topologically ordered many-body
system. Rather than storing information in the label space of
anyons themselves, we consider information stored in defects,
which act somewhat like anyons, as in the second line of
research. We then examine explicit adiabatic interpolations
between Hamiltonians that simulate code deformation, as in
the third line of research. This is all done while keeping the
energy gap in the system constant, a necessary requirement to
use these techniques to maintain the topological protection
offered by these systems. Further, we demonstrate how
to prepare quantum information into fiducial states using
adiabatic evolutions. The gap only closes when we change
the ground-state degeneracy, and in this case the degenerate
states are connected only by operators with a weight that grows
with the system size, making this part of the evolution robust
to low-order error processes. Some of these state-preparation
procedures are robust to error, but some (e.g., the preparation
of certain “magic states” [49]) are not robust and thus require
distillation protocols. Finally, we discuss how one can use
code deformations to facilitate measurements of certain logical
operators. We discuss all of these procedures first within the
context of Kitaev’s surface codes with defects, and then we
discuss how these results can be extended to the topological
color codes [50].

The systems and protocols we use are not strictly fault
tolerant. Without active error correction, the lifetime of the
codes studied is a constant independent of the system size
[18]. As mentioned above, here we rely on a coupling
to a cold (with respect to the gap) thermal bath, which
suppresses the creation of errors exponentially in the size of
the gap. We retain robustness to things like control errors by
virtue of the holonomic nature of the logical operations we
implement, and robustness to correlated fluctuations induced
by the environment by keeping defects well separated during
braiding. Once the environment creates an excitation, it is
free to wander and corrupt the computation. We prevent the
environment from doing this by ensuring that it is cold, and we
prevent ourselves from introducing excitations accidentally by
carefully designing our procedures.

Z
Z

Z
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X
X

X
X s

FIG. 1. (Color online) Stabilizer generators (checks) for the sur-
face code. An example of a plaquette check Sp and a vertex
check Sv .

II. SURFACE CODES WITH DEFECTS

We begin by working with a simple class of surface codes
with defects to establish the main ideas behind our procedures.
In Sec. VII, we extend these ideas to the topological color
codes. We assume that the reader is familiar with the theory
of stabilizer codes [51], toric codes [4], and surface codes
[37], which are specializations of toric codes to bounded
planar surfaces. However, we review these subjects to set our
notation.

Let L be a two-dimensional square lattice (see Fig. 1) that
is l edges (or links) wide and l edges tall, with the leftmost
l vertical edges and bottommost l horizontal edges removed.
(Other lattices are possible; we make this restriction only to
be concrete.) We call the sides of the lattice with the edges
removed the rough or X-type boundaries and the other sides the
smooth or Z-type boundaries (see Fig. 2). A qubit is associated
with each edge of the lattice so that there are 2l2 qubits in
total. For each plaquette (or face) p of the lattice, define the
plaquette operator Sp = ⊗

e∈∂p Ze where ∂p denotes the edges
bounding the plaquette and Ze is the Pauli Z operator acting
on the qubit at edge e. In other words, Sp acts as the tensor
product of Z operators on the qubits touching the plaquette
p and acts trivially everywhere else in the lattice (see Fig. 1).
Similarly, for each vertex (or site) in the lattice, define a vertex
operator Sv = ⊗

e∈δv Xe, where δv denotes the edges incident
at vertex v and Xe is the Pauli X operator acting on the qubit
at edge e. In other words, Sv acts as a tensor product of Pauli
X operators on all the edges surrounding a vertex and acts
trivially on all the other qubits in the lattice, as shown in
Fig. 1.

It is important to note that the rough and smooth boundaries
still have plaquette and vertex operators defined on them; these
operators simply act nontrivially on fewer qubits than the
operators in the bulk of the lattice. Since the lattice L has l2

plaquettes and l2 vertices, there are also l2 plaquette operators
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X

Z

FIG. 2. (Color online) A smooth (Z-type) defect. A logical Z

operator is defined by a closed loop of Z’s on the lattice that surrounds
the defect and a logical X operator is defined by a connected path of
X’s on the dual lattice from the defect to a smooth (Z-type) boundary.
By removed, we mean that stabilizers in the gray region are removed
from the stabilizer group. Also, the star operators on the boundary of
the lattice or the defect have lower weight in general. Here, we depict
the removed region by removing that part of the lattice; this simply
indicates that the code of the system factors into a code in the drawn
region and a code inside of the defect.

and l2 vertex operators. These operators are all independent
in the sense that no strict subset can generate the rest, and,
moreover, they all commute since they are incident on each
other an even number of times.

The collection of all the Sp and Sv operators comprises the
set of stabilizer generators for a quantum surface code, the
code space being defined by the simultaneous +1 eigenspace
of all the stabilizer generators. This set generates the stabilizer
group for the code, which is simply the set of all the products
of generators. The above description actually specifies a single
state rather than a code space since it has 2l2 checks on 2l2

qubits. This is a consequence of the particular way in which
we chose the boundary of the lattice, which disallows the
existence of any additional operators that commute with all
of the generators but which are not elements of the stabilizer
group. Encoding quantum information in the lattice requires
the constructions described next.

Consider a closed simple curve c on L that does not
cross itself and that does not touch the boundary of L. Call
the interior of this loop, excluding c itself, Ic. Consider
“removing” all of the qubits in Ic. Here, by “removing” we
do not mean physically removing the qubits, but rather that
we consider a new code in which the stabilizer generators
exterior to the region Ic are consistent with the description
above, while the region Ic has a different set of stabilizer
generators (not necessarily of the plaquette and vertex type).
We call this process puncturing (not to be confused with the
notion of puncturing associated with classical coding theory
[52]), and the resulting region of removed qubits is called a
defect. Given such a defect, we can study the properties of the

X

Z

FIG. 3. (Color online) A rough (X-type) defect. A logical X

operator is defined by a closed loop of X’s on the dual lattice that
surrounds the defect and a logical Z operator is defined by a connected
path of Z’s on the lattice from the defect to a rough (X-type) boundary.

new code induced on the exterior of Ic. Careful counting of
the stabilizer generators and qubits in this new code reveals
that the puncturing procedure has created a logical qubit [37].
The logical operators for the new logical qubit can be chosen
as follows: an encoded Z is a closed loop of Z operators on
the lattice L that encircles the defect and an encoded X is a
connected path of X operators on the dual lattice L∗ that starts
on the smooth (Z-type) boundary of the defect and ends on a
smooth (Z-type) boundary of the lattice L other than the loop
c (see Fig. 2). The distance of this code is the minimum of
the length of curves on L bounding the defect and the length
of paths connecting the defect to a smooth (Z-type) boundary
of L. We note that the curve c itself is the minimum-weight
choice for the encircling logical Z operator. Similarly, instead
of starting with a simple closed curve on the lattice, we can
consider a simple closed curve on the dual lattice and remove
the interior of this curve. To be consistent with the definition
given for the former kind of defect, we must define the encoded
X to be a closed loop c∗ of X operators on the dual lattice L∗
that encircles the defect and the encoded Z to be a connected
path of Z operators on the lattice L that starts on the rough
(X-type) boundary of the defect and ends on a rough (X-type)
boundary of the lattice L other than the loop c∗ (see Fig. 3).

Puncturing the surface code creates a single encoded qubit.
By puncturing multiple times we can create a code with more
than one encoded qubit, one for each additional puncture. The
boundary curves of these defects can be on the lattice, in which
case we call the defect smooth (Z type), or on the dual lattice,
in which case we call the defect rough (X type). The distance
of such a code is the minimum of the distance between defects,
the distance between a defect and the boundary of the lattice,
and the circumference of a defect. This is most easily seen by
appealing to the homological nature of the code [53].

Surface codes with defects were first explored within
the framework of active quantum error correction. Here,
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we consider an alternative situation in which we construct
a Hamiltonian with a ground space that is degenerate and
identical to the code space of a quantum error-correcting
code. The construction of such a Hamiltonian is easy from
a theoretical point of view; it is simply the negative sum of the
stabilizer generators G:

H = −�

2

∑
S∈G

S. (1)

The constant in front is chosen so that all errors will have an
energy penalty of a least � (errors adjacent to a boundary will
have this penalty, while errors away from boundaries will have
a penalty of 2�). Since the set of generators is commutative,
the eigenspaces of H can be labeled by their eigenvalues with
respect to the operators S. Because the eigenvalues of all the S

are ±1, the ground state of this Hamiltonian is equivalent to the
code space of the quantum code generated by G: S|ψ〉 = |ψ〉
for all S ∈ G.

Hamiltonians such as those in Eq. (1), which we call stabi-
lizer Hamiltonians, have interesting properties for protecting
quantum information. The first property is that operators that
act nontrivially on the code space (the degenerate ground
space) must be nonlocal, having a Pauli weight at least as
large as the code’s distance. This allows the system to retain
its information even when perturbed by a local Hamiltonian
[17,54]. For toric codes, surface codes, color codes, and, more
generally, codes formed from quantum double models [55],
this is a partial indication of a topological order in the system.
(A more robust indicator would be a nontrivial topological
entanglement entropy [56–59].)

While a stabilizer Hamiltonian is robust to local perturba-
tions, if the system is immersed in a thermal bath, the lifetime
of information encoded into the ground state does not necessar-
ily scale with the size of the system (or the size of the defect for
a surface code with defects). For example, for the toric code,
the lifetime of this information is proportional to exp(2β�)
[18], where β = (kBT )−1 is the inverse temperature of the
bath. It is widely believed that all stabilizer Hamiltonians with
local terms embedded in two spatial dimensions have a similar
lifetime [60]. The more challenging issue is how to compute
with them without increasing the rate at which information is
destroyed. As mentioned in Sec. I, if a stabilizer Hamiltonian
describes a topologically ordered system possessing anyons
with a sufficiently rich non-Abelian structure, then quantum
computation can be carried out by creating, braiding, and
fusing the anyons. However, it is not entirely clear that one
can controllably create single excitations without also creating
other uncontrolled excitations that could then disorder the
system, nor how one can move the anyons without causing
other anyons to be produced. This has led to the search for
self-correcting quantum systems where the excitations are
not pointlike particles like anyons but structures that have
boundaries with dimension [8,19,60]. The energetic cost of an
excitation in such a system is proportional to the size of its
boundary and thus would be robust to errors during creation
and movement processes; such a system would energetically
favor shrinking the boundaries of the errors to zero, causing
them to vanish. In particular, it has been argued that such
systems would have a lifetime proportional to their size,

indicating that the system and the environment to which it
is coupled participate in a form of “self-correction” in which
the environment that creates the errors can also fix the errors;
at a low enough temperature, the rate of the latter process
dominates the rate of the former. In this paper, we do not
directly address the question of self-correction; instead, we
attempt to better understand how computation can be done
adiabatically within existing models.

III. ADIABATIC CODE DEFORMATIONS

Before showing how to perform the adiabatic deformations
and creation of fiducial states, we briefly review a scheme
for performing adiabatic gate teleportation [7] (AGT), as this
gives an idea of how the protocols we introduce below operate.
AGT is a procedure for transferring information in one qubit
to information in another qubit (with a possible gate applied to
this information) via the use of an adiabatic evolution and
an ancillary qubit. The following example is on a system
composed of three qubits in which the first and third qubits
are swapped (without a gate applied during the swapping).
Initially, the system evolves under a Hamiltonian given by

Hi = −�(I1X2X3 + I1Z2Z3), (2)

where Pi represents the operator P acting on the ith qubit
and where we soon omit the identity operators I . A final
Hamiltonian is defined as

Hf = −�(X1X2I3 + Z1Z2I3). (3)

The AGT protocol begins with the information encoded in the
first qubit and Hi turned on. Then, Hi is adiabatically turned
off while simultaneously turning on Hf . In other words, the
evolution is described by

H (t) = f (t)Hi + g(t)Hf , (4)

where f (0) = 1, f (T ) = 0, g(0) = 0, and g(T ) = 1 and T is
the time taken to perform the evolution. If f (t) and g(t) are
chosen to be slowly varying and the time T is long enough
such that the evolution is adiabatic (meaning here that the
probability of exciting the system out of its ground space is
made small), then the above evolution will take information
in the first qubit and send it to information in the third qubit.
For example, one may choose f (t) = 1 − g(t) and g(t) = t

T

so that the evolution is made adiabatic for sufficiently large T .
A constant error can be achieved for a fixed constant T .

To see that a constant energy gap is maintained during the
above evolution and that the information is transported from
the first to third qubit, it is convenient to use the formalism
of stabilizer codes to describe this evolution. Indeed, it is
actually useful to define three codes. The first code, call it
S1, is defined by the stabilizer generators X2X3 and Z2Z3 and
the logical Pauli operators Z = Z1Z2Z3 and X = X1X2X3. A
second code, call it S2, is defined by the stabilizer generators
X1X2 and Z1Z2 and the logical Pauli operators Z = Z1Z2Z3

and X = X1X2X3. Suppose information is encoded into the
stabilizer code S1 so that it is in the +1 eigenstate of both
X2X3 and Z2Z3. Notice then that because X1 = X(X2X3)
and Z1 = Z(Z2Z3), information encoded into this code can
be accessed by making a measurement on the first qubit.
Similarly, information encoded into the second code, S2, is
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localized in the third qubit. The adiabatic evolution in Eq. (4)
can now be seen as adiabatically dragging a Hamiltonian that
is a sum over stabilizer generators in S1 to a sum over stabilizer
generators in S2 such that the information in the encoded qubit
described by X and Z is not touched.

To analyze how the dragging between S1 and S2 occurs, it is
useful to introduce a new code S3. This code has no nonidentity
stabilizer operators, but has three encoded qubits. These are
defined by

X1 = X1X2, Z1 = Z2Z3,

X2 = X2X3, Z2 = Z1Z2,

X3 = X1X2X3, Z3 = Z1Z2Z3.

(5)

Notice that Z1 and X2 are the stabilizer generators of S1

and X1 and Z2 are the stabilizer generators for S2. From
this perspective, then, the adiabatic evolution is from the
initial Hamiltonian −�(Z1 + X2) to the final Hamiltonian
−�(X1 + Z2). These are then simple interpolations between
single operators on encoded qubits, and will have a constant
energy gap. Indeed, both S1 and S2 can be turned into S3

by promoting stabilizer generators in these codes to logical
Pauli operators. When it is possible to perform such a change
between codes via an adiabatic evolution, we say that we can
adiabatically deform one code into the other. This technique is
at the heart of the constructions in this paper.

To see that the information encoded in the first qubit ends
up at the third qubit, first note that, during the above evolution,
the third encoded qubit is not involved. This implies that
information encoded into this qubit will not be affected by
the evolution. Next, note that X1 = X3X2, Z1 = Z3Z1 and
X3 = X3X1, Z3 = Z3Z2. Recall that we are dragging between
the +1 eigenstate of X2 and Z1 to the +1 eigenstate of Z2 and
X1. Thus, since information encoded into the third qubit is not
changed during the above evolution, we see that the protocol
transports the information in the first qubit to the third qubit.

More generally, the AGT protocol can be extended to enable
universal quantum computation [7]. We omit the details of this
construction except for noting that even when generalized,
the energy gap used to guarantee adiabatic evolution is a
constant with respect to the number of qubits in the system.
We will often refer to this by saying that the energy gap of
an adiabatic evolution is constant when considered by itself;
we use this language merely to imply that stringing together
similar parallel evolutions will not shrink the gap as a function
of the number of qubits involved in the evolution.

IV. ADIABATIC CODE DEFORMATIONS
OF THE SURFACE CODE

With the punctured surface code defined, we now present
a series of adiabatic code deformations that allow for a nearly
universal set of operations. First, we show how to prepare
a surface code without any defects. Next, we show how to
prepare smooth defects in the +1 eigenstate of Z and rough
defects in the +1 eigenstate of X. We then show how to
prepare smooth defects in ±1 eigenstates of X and rough
defects in ±1 eigenstates of Z. (These procedures prepare the
defects in eigenstates of the stringlike logical operators that
tether the defects to a boundary.) Following this, we introduce

FIG. 4. (Color online) A large array of qubits in the state |0〉, each
protected by a Hamiltonian H = −�Z.

a procedure to allow code regions containing defects to be
separated from and attached to the rest of the code. We next
show how defects can be deformed, allowing them to be moved
around the lattice. This additionally allows for the CNOT to be
enacted between a smooth and a rough defect. Finally, we
show how arbitrary ancilla states can be injected into defects
and utilized in a computation.

The procedures above can be performed in an entirely
adiabatic fashion and thus benefit from the protection of
a Hamiltonian gap. Additionally, procedures such as defect
braiding also benefit from the topological nature of the surface
code Hamiltonian, with logical errors requiring high weight,
correlated physical errors corresponding to nontrivial cycles on
the lattice or dual lattice. We mention this now to highlight the
difference between the entirely adiabatic operations presented
in this section and operations we present in Sec. V, such as
measurement or heralded gate application, that do not inherit
any protection from the gap or the topology.

A. Creation of a surface code without defects

We begin by assuming that we have a large array of qubits,
shown in Fig. 4, stabilized by a Hamiltonian Hi given by

Hi = −�
∑

j

Zj , (6)

where the sum runs over all the qubits. The ground state of
this Hamiltonian is unique and has all the qubits in the state
|0〉. To prepare the surface, standard active error correction
techniques call for the stabilizer generators to be measured.
Here, we simulate these measurements in the vein of the
“forced measurements” introduced in Ref. [14] by slowly
turning off Hi and turning on the Hamiltonian introduced
in Eq. (1) for the specific instance of a “small” surface
code. Turning on a Hamiltonian with a “large” surface code
as the ground state would cause the system gap to shrink
proportionately with the size of the code, so to be concrete
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FIG. 5. (Color online) A large array of qubits, an eight-qubit
region of which is now encoded in the surface code (shown in black).
The boundaries of the code are chosen to be trivial so that the code
space is nondegenerate.

we choose to evolve initially to a Hamiltonian with a small
surface code ground state. (We will subsequently show how
its size can be sequentially increased.) In other words, we
adiabatically follow the Hamiltonian

H (t) =
(

1 − t

T

) ∑
j∈Q

(−�Zj ) + t

T

∑
S∈G

(
−�

2
S

)

+
∑
j �∈Q

(−�Zj ), (7)

where Q is the set of qubits participating in the surface code
terms. In this case, G has eight elements, the four plaquette
operators and the four vertex operators shown in Fig. 5.
Provided T is large, the system will remain in the ground state.
As we showed before, the ground state of the Hamiltonian in
Eq. (1) is the code space of a surface code. We choose it to be
nondegenerate by our choice of boundaries, although this is
not a necessity. After the evolution, the array of qubits looks
like Fig. 5.

Having created a small surface code that encodes no
qubits, we can increase its size by modifying the boundaries
adiabatically. For example, we can grow out part of the smooth
boundary by performing an evolution of the form

H (t) =
(

1 − t

T

)
(−�Z1 − �Z2 − �Z3)

+ t

T

(
−�

2
Z1Z2Z3 − �

2
X1X2 − �

2
X2X3

)
, (8)

where the numbering corresponds to Fig. 6. This also requires
the modification of vertex checks on the smooth boundary
being extended, which can be performed at the same time.
Additionally, a similar procedure will allow the extension
of rough boundaries. By piecing these additional evolutions
together, a larger surface code region can be constructed while

1
2

3

FIG. 6. (Color online) Growth of a small surface code region that
involves only the qubits labeled 1, 2, and 3.

maintaining a Hamiltonian gap that is lower bounded by a
constant proportional to �.

For the remainder of this section, we will specialize our
figures so that they do not include the black dots that represent
qubits, instead keeping only the underlying square lattice
structure of the code. However, the full plane of qubits is
still assumed to exist.

B. Creation of a small Z (X) defect in a +1 eigenstate of Z (X)

Here, we describe how to create a two-plaquette smooth
defect in an unpunctured surface code. (The creation of a
rough defect will proceed in an exactly analogous way with
the roles of Z and X interchanged.) We create defects using
two neighboring plaquettes for pedagogical clarity, although
creating single defects is also possible. With two-plaquette
defects, it is intuitive that the creation process inherits
protection from a Hamiltonian gap, charge conservation, and
the topological nature of logical operators; for single-plaquette
defects, the Hamiltonian gap protection is not present.

To begin the creation procedure, the Hamiltonian is initially
given by Eq. (1), the negative sum of all the plaquette and
vertex stabilizer generators for the code. The defect will consist
of two adjacent plaquettes, bounded by a curve c that encloses
these plaquettes. If the stabilizer generators associated to these
two plaquettes are Sp1 and Sp2 , we can promote them to Z

operators for two encoded qubits (Zp1 and Zp2 , respectively)
of a new code where the stabilizer generators Sp1 and Sp2

have been removed. If we do this, then X for each qubit can
be chosen as a string of Pauli X operators beginning on the
appropriate plaquette, traversing the dual lattice, and ending
on a smooth boundary (see Fig. 7). In fact, we can always
choose these operators so that they overlap on all but the
qubit separating the two plaquettes. We call these two encoded
logical X operators Xp1 and Xp2 . The operator Xp1Xp2 is then
the single Pauli X operator acting on the qubit between the
plaquettes.

012336-7



CESARE, LANDAHL, BACON, FLAMMIA, AND NEELS PHYSICAL REVIEW A 92, 012336 (2015)

p1 p2

Sp1 = Zp1

p1 p2

p1 p2p1

Sp2 = Zp2

p2

Xp1 Xp2

FIG. 7. (Color online) Operators involved in creating the defect
that includes p1 and p2. Note that the X operations span to a nearby
smooth boundary.

Suppose that we now perform the following adiabatic
evolution: while turning off the two plaquette operators Sp1

and Sp2 in the Hamiltonian, we simultaneously turn on the
Pauli X operator between these two plaquettes. In terms of
the encoded logical operators we have defined above, this is
equivalent to starting with the Hamiltonian

Hi = −�

2

(
Sp1 + Sp2

) = −�

2

(
Zp1 + Zp2

)
(9)

and ending with the Hamiltonian

Hf = −�

2
Xp1Xp2 . (10)

All the other terms in the Hamiltonian commute with the
relevant operators and therefore do not contribute to any
spectral shifts that might cause crossings.

In order to understand what happens in interpolating
between Hi and Hf , it is convenient to note that Zp1Zp2 (which
is a closed loop of Pauli Z operators surrounding the smooth
defect we are creating) commutes with these Hamiltonians.
Also, note that initially the system is in the +1 eigenstate
of both Zp1 and Zp2 , and hence also in the +1 eigenstate
of Zp1Zp2 . Because Zp1Zp2 commutes with both Hi and
Hf , we may work in a basis in which Zp1Zp2 and the full
Hamiltonian are simultaneously diagonal. This commutativity
ensures that the eigenvalue of Zp1Zp2 is conserved throughout
the evolution. If we perform this evolution via a simple
adiabatic dragging between these Hamiltonians (as described
in Sec. III), then the energy gap in the system during this
evolution remains constant. At the end of the evolution, the

system is in the +1 eigenstate of both Zp1Zp2 and Xp1Xp2 ,
which is simply a single Pauli X on the qubit between the
plaquettes.

The above can be interpreted in terms of codes. By turning
off two stabilizer generators and turning on only a single Pauli
X, we have introduced an encoded qubit by decreasing the
number generators. The product of the two missing plaquette
checks is Z, and either Xp1 or Xp2 can be chosen as X.
Additionally, because the operator Z commuted with the
Hamiltonian throughout the adiabatic evolution, the encoded
qubit is prepared in the +1 eigenstate of Z.

After this adiabatic evolution, the Hamiltonian does not
quite factor into two separate codes on the interior and exterior
of the defect. The vertex operators adjacent to the defect region
still check the single qubit on the interior. As a generating set,
the four-body checks adjacent to the defect and the single-body
“check” on the interior qubit can equally well be thought of
as a generating set with two three-body operators that do
not act on the interior qubit, and the single-body operator
that does. However, in the Hamiltonian framework we must
explicitly remove support of these four-body checks on the
interior qubits. We do this either by including the modification
of the adjacent vertex checks in the evolution discussed above,
or by using another evolution afterward that performs the
modification. We will assume that the former modification
is used.

We note at this point that, while the defect we have created
is small and thus susceptible to relatively low-weight loops
of Z errors, these errors actually have no effect. Since Z acts
trivially on the state we have prepared, namely |0〉, the fact
that the defect has a small perimeter is not detrimental. Once
we start performing gates that change the state, we will have
to make sure that the perimeter is large, and that the defect is
far from the boundaries and other defects.

As mentioned above, the same arguments can be made for
preparing rough defects in the +1 eigenstate of X. In that
case, two adjoining vertex checks are turned off while a single
body Z on the qubit in the middle is turned on. Two adjacent
four-body Z checks have to be modified in this case, but the
arguments are exactly the same as above.

It might be useful to address a question that may have
entered the reader’s head. The procedures above adiabatically
interpolate between a Hamiltonian with a nondegenerate
ground space to a Hamiltonian with a degenerate ground
space. Is there a level crossing between the ground space
and an excited space that can cause transitions away from
the state we want to prepare? Protection from this coupling
is provided by the topological nature of the logical operators.
The only operator that can couple |0〉 and |1〉 for a smooth
defect is the stringlike operator X that connects the defect to
a boundary. This amounts to another way of saying that the
eigenvalue of the operator Z is a conserved quantity throughout
the evolution, and so such a crossing is not meaningful.

Now that we have introduced a method for creating smooth
defects in the +1 eigenstate of Z and rough defects in the +1
eigenstate of X, we will show how these defects can be grown
and moved around the lattice. This will allow us to introduce
other procedures, such as the isolation of a defect from the bulk
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(a) (b)

(c) (d)

FIG. 8. The four potential situations faced when growing a
smooth defect. (a) Only one interior qubit. (b) Two interior qubits.
(c) Three interior qubits. (d) Four interior qubits.

of the code and an adiabatic code deformation that performs a
CNOT gate.

C. Adiabatic deformation of defects

We now show how to deform a defect. This involves
modifying the Hamiltonian by adding or removing stabilizer
generators, the combination of which allows defects to be
moved.

Consider a smooth defect that we wish to grow by turning
off a single adjacent plaquette check in the bulk of the system.
The number of edges bordering the interior of the defect
is either 1, 2, 3, or 4, as shown in Fig. 8. The procedure
in each case is basically the same, with the cleanup or
potential removal of the adjacent vertex checks being the only
difference. The growth is achieved by turning off the plaquette
check in the Hamiltonian and turning on a single-qubit −�

2 X

Hamiltonian for each qubit in the interior after the evolution.
We also modify any adjacent vertex checks at the same time to
make the code factor properly into an interior and an exterior.
We will briefly analyze the different interior edge cases.

For a single interior edge, as shown in Fig. 9, there is not
much different with respect to the case of defect creation. As
the plaquette check to grow into is turned off, a single body X

on the qubit adjacent to the defect and the plaquette is turned
on. To fully sever the interior and exterior regions, the only
thing left to do is modify the two adjacent vertex checks from
three-body operators to two-body operators.

The cases of two, three, and four interior edges are different
in that some vertex checks are not only modified but are turned
off completely. For the case of two interior edges, as shown
in Fig. 10, the appropriate evolution turns off the plaquette
check while turning on two single-body X Hamiltonians on

(a) (b)

(c) (d)

−X

−ZZZZ

−XX

−XXX

FIG. 9. (Color online) Growth of a smooth defect with only a
single qubit on the interior after the procedure. (a) We wish to grow
the defect to the indicated plaquette. (b) We adiabatically turn off
the neighboring plaquette while (c) turning on a −X Hamiltonian
on the interior qubit. (d) This procedure causes modifications to
the neighboring X checks that can be performed simultaneously
with steps (b) and (c). The initial and final Hamiltonians are Hi =
−�/2(ZtZlZrZb + XtX1X2 + XtX3X4X5) and Hf = −�/2(Xt +
X1X2 + X3X4X5), where Zt , Zr , Zl , Zb are the Z operators for the
top, right, left, and bottom spins on the relevant plaquette, and Xi are
X operators for spins on the edges of the vertices adjacent to the top
edge labeled in clockwise order.

the interior edges. Note that the two-body vertex check that
operated on both the interior qubits is now redundant in terms
of stabilizer generators: it is simply the product of the two
single-body X terms that were turned on. As such, it can
simply be turned off without having to worry about the code
space being affected; it merely provides an additional energy
penalty for errors on the two interior qubits. The result is
that we have removed two stabilizer generators, the plaquette
check and the two-body vertex check, and added two stabilizer
generators, the two single-body X operators. Thus, we have
not added any additional logical qubits, we have merely grown
the perimeter of an existing one. As a final note, the two
adjacent four-body vertex checks also must be modified to
three-body checks, and again, this can happen simultaneously
with the other adiabatic evolutions. The case of three and four
interior qubits, shown in Figs. 11 and 12, respectively, is almost
identical. For the case of three, the plaquette check is turned off
while three single-body X Hamiltonians are turned on. In this
case, two weight-two vertex checks are now redundant, and as
before they can simply be turned off without worrying about
level crossings. The counting works in a similar way, in that
we have removed three stabilizer generators and added three,
preserving the number of logical qubits. The two adjacent
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(a) (b)

(c) (d)

−X

−ZZZZ

−XXX−X

−XXX

FIG. 10. (Color online) Growth of a smooth defect with two
qubits on the interior. (a) We wish to grow the defect to the indicated
plaquette. (b) We adiabatically turn off the neighboring plaquette
while (c) turning on two −X Hamiltonians on the interior qubits.
(d) This procedure causes modifications to the neighboring X checks.

weight-four vertex checks also get modified to weight-three
operators. Finally, in the case of four interior qubits, the same
adiabatic deformation is performed: the plaquette check is
turned off and four single-body X Hamiltonians are turned on.
Only three of the two-body vertex checks are independent, and
so only those three appeared in the original Hamiltonian. They
are the three checks made redundant by the single-body X

Hamiltonians in this case. Unlike the other cases, in this case
there are no other vertex checks that need to be modified.

The procedure for shrinking defects is simply the inverse
of the procedures introduced above. By combining the “grow”
and “shrink” operations, we can move defects. As demon-
strated in Ref. [61], an encoded CNOT gate can be performed
by moving a smooth defect in a full loop around a rough
defect. The smooth defect is the control and the rough defect
is the target, and the direction of movement, clockwise or
counterclockwise, is unimportant.

D. Detaching and attaching surface code regions with defects

For some subsequent procedures we will consider, it is
helpful to have an operation that isolates a defect from the
surface code or reintroduces a defect to the surface code
that was previously isolated. By using defect creation and
growth operations described in Secs. IV B and IV C, we can
grow a defect “moat” around a defect of interest so that the
“castle” surrounding the defect has just a single “drawbridge”
connecting it to the rest of the surface, as depicted in Fig. 13.
The only additional operation we must consider to complete
the isolation procedure is how to “lift the drawbridge” by
modifying the remaining check operators adjacent to it. As

(a) (b)

(c) (d)

−X

−ZZZZ

−XXX

−X

−XXX

−X

FIG. 11. (Color online) Growth of a smooth defect with three
qubits on the interior. The process is essentially the same as the one
depicted in Fig. 10.

before, we will only consider the case of manipulating smooth
defects; the case for rough defects is similar.

To isolate smooth defect, we must use smooth boundaries
on the “castle” to ensure that X for the defect will have a place
to terminate once the “drawbridge” is lifted. For concreteness,

(a) (b)

(c) (d)

−X

−ZZZZ

−X −X

−X

FIG. 12. (Color online) Growth of a smooth defect with four
qubits on the interior. The procedure is the same as the others, but
there are no resulting X check modifications.
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· · ·

· · ·

1

2

FIG. 13. (Color online) The setup for pinching off a smooth
defect from a smooth wall.

we assume that this smooth boundary corresponds to the large
boundary of the surface, but the same procedure could be
performed using a defect to create the isolated region.

To remove the “drawbridge,” we simply turn off the single
plaquette check that connects the two regions while turning
on a single body X on each of the two qubits that need to
be removed. (These qubits are labeled 1 and 2 in Fig. 13.)
The operator X1X2, which was an element of the stabilizer
group before the evolution, is now redundant, just as in the
case of the interior checks that appear during defect growth in
Sec. IV C, and it is also removed. Thus, we remove two checks,
the check associated with the “drawbridge” and the two-body
check X1X2, and replace them with two single-body X checks
in the Hamiltonian. As before, the vertex checks adjacent to
the drawbridge must be modified, and in this case they become
three-body operators. (As a closing aside, if we had tried to
detach a smooth defect through a rough boundary, the operator
X1X2 would no longer have been an element of the stabilizer
group.)

Reversing the detachment procedure allows regions with
defects to be attached to the surface, introducing (or reintro-
ducing) isolated defects back into the code. This attachment
procedure is an important step in our protocols for making
measurements of X and Z and injecting ancilla states into
the system, as discussed in Secs. V A and IV F. It is also
possible to isolate and reintroduce a rough defect through a
rough boundary in an analogous fashion.

E. Creation of a X (Z) defect in a ±1 eigenstate of Z (X)

Another capability that will be useful for later procedures
is the ability to prepare rough defects in an eigenstate of Z

and smooth defects in an eigenstate of X. The preparation of
these defects is performed in a region that is disconnected from
the main surface. It is then attached to the surface using the
procedure described in Sec. IV D to introduce it to the bulk
surface.

To prepare a rough qubit in the +1 eigenstate of Z, we
utilize a procedure very similar to the original creation of

the surface, described in Sec. IV A. Recall that the stabilizer
Hamiltonian on a region disconnected from the surface is
simply a sum of single-body −Z operators on each qubit. Once
the location and size of the disconnected region is chosen, we
prepare it in a surface with solely rough boundaries. Rather
than following this up with the creation of a rough defect, we
simply prepare the surface by leaving a region of adjacent X

checks turned off and the single-body Z terms on the interior of
the region unchanged. Since the system began in an eigenstate
of any product of Z operators, and since Z for the rough qubit
commutes with all of the check operators we turn on, the
system remains in the +1 eigenstate of Z after the evolution.

We also could have prepared the rough defect in the −1
eigenstate of Z by first performing an adiabatic evolution on
each qubit of the form −Z → X → Z. This has the effect of
dragging each of the qubits into the −1 eigenstate of the local
Z operators, and now, given a region of appropriate size, Z

will have an eigenvalue of −1 both before and after the defect
creation process. The “appropriate size” constraint is to ensure
that the weight of the logical operator is odd.

Smooth defects can be prepared in ±1 eigenstates of X

in much the same way, requiring only simple modifications.
To prepare a smooth defect in the +1 eigenstate of X, each
qubit first undergoes the evolution induced by the adiabatic
sequence −Z → −X. Likewise, to prepare a smooth defect in
the −1 eigenstate of X, each qubit first undergoes the adiabatic
evolution −Z → X. Now, X will have the correct value before
and after the evolution that creates the defect, subject to the
same size constraints mentioned above.

F. State injection into defects

Creating defects in known ancilla states is another important
building block for our model. In typical architectures based
on the surface code, completing a universal set of encoded
quantum gates requires the ability to “distill” high-fidelity
states, called “magic states,” using protocols like the one
discovered by Bravyi and Kitaev [49]. In this section, we
describe how to implement these preparations in an adiabatic
simulation of the process of state injection.

In measurement-based injection of a magic state [36], one
first exposes a qubit by preparing a single (unencoded) qubit
in the state |ψ〉. Then, the state is quickly encoded in a surface
code defect, and the procedure is finished by growing the
defect to a sufficiently large size so that it is well protected
from noise. This process need not be perfect, but any error
introduced by the injection procedure must keep the total error
in the encoded state |ψ〉 below the threshold of the distillation
protocol.

We describe our adiabatic simulation of this process for
an injection into a smooth defect, but the rough-defect case is
similar. We begin by preparing an all-smooth-boundary surface
near the edge of the bulk surface using the method described
in Sec. IV A. We then create a rough defect in a +1 eigenstate
of X in this region using the procedure described in Sec. IV B.
The situation is depicted in Fig. 14. Because this region has
only smooth boundaries, there is nowhere for a string of X

operators from the defect to connect. Indeed, if we ignore the
one qubit on the interior of the defect, then what we would
normally call X, a string of X operators enclosing the defect,
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· · ·

· · ·

...

...
FIG. 14. After the Hamiltonian deformation (or sequence of

deformations), we are left with a surface code with trivial boundaries
encoding a rough defect in the state |+〉.

is already an element of the stabilizer group. It can be formed
by taking the product of all the vertex checks. (As an aside, we
note that this is a consequence of the topology of the sphere,
for which all loops remain homotopic when a single point is
removed.) As discussed in Sec. IV B, this leaves the single
qubit on the interior of the defect in the +1 eigenstate of Z.

We then transform this interior qubit to the desired state by
an adiabatic evolution. For example, if we want to prepare
the state T |+〉, we evolve using the Hamiltonian H (s) =
(1 − s)(−Z) + sUZU †, where in this case U = T H . If we
think of this as a logical qubit, then X is a single X on the qubit
and Z is a single Z on the qubit. Recall that the face checks
originally incident on the interior qubit have been modified
and are no longer incident. The situation is now described
by Fig. 15. Next, we adiabatically turn on the two vertex

|ψ

· · ·

· · ·

...

...
FIG. 15. The interior qubit is adiabatically dragged to the state

|ψ〉, the desired magic state.

· · ·

· · ·

...

...
FIG. 16. (Color online) The missing X checks are reintroduced

to the code, causing neighboring Z checks to be removed. This new
defect is now encoded in the state |ψ〉 with an encircling Z and a
single qubit X.

checks that were originally turned off to create the defect. We
simultaneously (and adiabatically) also turn off the three-body
plaquette checks, as they would otherwise anticommute with
the final Hamiltonian. This evolution transforms the logical
operators since the initial single body Z does not commute
with the final X checks. The transformation Z undergoes is
determined by the Pauli algebra and the demands of a stabilizer
code. Since Z must still commute with the code after the vertex
checks are turned back on (note that the formerly interior qubit
has now been reintroduced to the code because the vertex
checks are incident on it once again), and since it also must not
be in the stabilizer group itself, a suitable choice of the new Z

is the product of the old Z and one of the three-body plaquette
checks that also did not commute with the vertex checks. What
remains is what appears to be a normal two-plaquette defect
as shown in Fig. 16, but the crucial difference is that there
is now no sense of an isolated interior since the neighboring
vertex checks are still incident on the qubit inside. In fact,
because X has never been disturbed by any of the evolutions
we performed, it is still a single-body operator localized to the
qubit inside the defect. This leaves the encoded qubit prone
to decohering environmental interactions, and so we make it
larger by “splitting” the defect apart into a pair of defects, as
depicted in Fig. 17. As we move the parts away from each other,
we also grow their perimeters using the methods described
above to protect against Z errors.

This double-defect qubit could be used as is, but to make it
more like the defects we have worked with so far, we simply
take one of the halves and merge it with the global smooth
boundary of our preparation region, as depicted in Fig. 18.
Finally, we attach the surface containing this defect to the
main surface using the procedure described in Sec. IV D. This
defect can be shuttled in and the boundary can be modified to
the original shape.

Encoded distillation circuits, such as those depicted in
Figs. 19 and 20 (where the S and T gates are implemented
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· · ·

· · ·

...

...
FIG. 17. (Color online) Because X was only a single-qubit oper-

ator, the two removed faces are moved apart and grown to combat
decoherence.

by teleportation circuits such as the one depicted in Fig. 23),
utilize operations we have already described: preparation of
defects in |0〉, |+〉, T |+〉, and S|+〉 states and implementation
of CNOT gates by code deformation. The only encoded
operations these circuits use that we have not described are
measurements of encoded Pauli X and Z operators, which we
describe in Sec. V A.

V. NONADIABATIC PROCEDURES FOR SURFACE
CODE DEFECTS

The procedures presented in Sec. IV can be made universal
for quantum computation by adding the capability to perform
logical measurements, i.e., to measure X and Z for smooth and
rough defects. These measurements are the only nonadiabatic
ingredients appearing in our model. In this section, we describe

· · ·

· · ·

...

...
FIG. 18. (Color online) One of the defects is merged with the

boundary to make the standard single defect.

|+ • T MX

|+ • T MX

|+ • T MX

|+ • T MX

|0 T MX

|0 T MX

|0 T MX

|0 T MX

|0 T MX

|0 T MX

|0 T MX

|0 T MX

|0 T MX

|0 T MX

|0 T MX

|+ • T † |+

FIG. 19. Distillation circuit for T |+〉 states, constructed from the
15-qubit Reed-Muller code’s encoding circuit.

how to perform them as well as use them in additional
procedures, such as heralded application of X and Z gates.
Although the measurements are not protected by adiabaticity
or a Hamiltonian gap, their topological nature provides
robustness to local errors.

|+〉 • S MX

|+〉 • S MX

|+〉 • S MX

|0〉 S MX

|0〉 S MX

|0〉 S MX

|0〉 S MX

|+〉 • S† |+〉

FIG. 20. A distillation protocol for S|+〉 states based on the
encoding circuit for the [[7,1,3]] quantum Steane code.
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|ψ〉smooth •
|0〉rough Z

FIG. 21. An example of measuring Z for a smooth qubit. It
requires the preparation of a rough defect in a +1 eigenstate of Z, as
discussed in Sec. IV E.

A. Measurements of X and Z for defects

In measurement-based surface-code models, defect logical
operators are measured in situ by simply measuring a region
of individual qubits in the surface. The parities of the
measurements are then used to infer the eigenvalue of X

or Z with probability 1 − O(pd ), where d is the distance
of the code and p is the probability that an individual qubit
measurement is faulty. In our Hamiltonian model, this in situ
measurement is an issue because single-qubit measurements
in the surface will necessarily anticommute with the code
Hamiltonian, leading to excitations out of the ground space.
If it is the end of the computation, and we want to know the
state of all the defect qubits, we can just turn the Hamiltonian
off and measure everything. However, the use of magic states
via gate teleportation (described later) requires conditioning
future actions on the classical outcome of logical qubit
measurements. In this section, we present an ancilla-coupled
method to perform these logical measurements.

To measure X or Z for a defect in a “nondestructive”
way (meaning that the post-measured state stays in the code
space), we use the method of ancilla-coupled measurement
introduced by Steane in Ref. [62]. Figure 21 depicts this
process for measuring Z for a smooth defect qubit in the
state |ψ〉. First, we prepare a rough defect in the +1 eigenstate
of Z as described in Sec. IV E. Next, we perform a sequence
of adiabatic deformations, described in Sec. IV C, to enact
a CNOT gate between the smooth and rough defects. Then,
the rough-defect ancilla is detached from the code using the
method demonstrated in Sec. IV D. Finally, we turn off the
Hamiltonian and destructively measure the isolated region in
the Z basis. A similar procedure performs a measurement of X

for a smooth qubit (simply measure the isolated region in the
X basis), and a similar circuit can be used to measure logical
operators for a rough defect.

B. Heralded application of X and Z to defects

With the ability to perform ancilla-coupled measurements,
introduced in Sec. V A, and the Hamiltonian evolutions
described in Sec. IV, we can apply X and Z to defects using
the circuit shown in Fig. 22, where the measurements are
assumed to be of the type described in the previous section.
These operations are not necessary to establish universality;
the set of encoded operations we have presented thus far
are a universal set by themselves. In fact, there is never a
need to apply logical Pauli operators at all using our encoded
gate basis because logical Pauli operators can be propagated
through encoded circuits efficiently by the Gottesman-Knill
theorem [63] (the only non-Clifford gate in our gate basis
is the preparation T |+〉), and Pauli operators never need to
be propagated through preparations. The propagated “Pauli

|ψ〉smooth • MX • X
a
Z

b |ψ〉

|0〉rough MZ

FIG. 22. Circuit used to apply one of the Pauli operators to a
smooth defect qubit. The outcome of the X measurement is b ∈ {0,1}
and the outcome of the Z measurement is a ∈ {0,1}. The outcomes
of the measurement all occur with equal probability and the final
state depends on these outcomes as shown. If an undesired operator is
applied, the ancilla qubit is reinitialized and the circuit is implemented
again. However, now the appropriate operator is the one that undoes
the operator applied in the first iteration and applies the desired
operator. (This, of course, will just be a different one of the four

operators X
a
Z

b
.)

frame” can then be used to reinterpret measurement results as
needed, without active application of logical Pauli operators.
Nevertheless, we present methods for applying logical Pauli
operators in case there is a situation where propagating the
Pauli frame is undesirable.

All of the pieces in this circuit have been described
previously. The preparation of a rough defect in the +1
eigenstate of Z is described in Sec. IV E, performing a CNOT

between a smooth defect and a rough defect is described in
Sec. IV C, and making measurements of X and Z for smooth
and rough defects was just described in Sec. V A.

VI. COMPLETED MODEL

To summarize our surface code model, we list the proce-
dures we have defined in Secs. IV and V:

(1) Sec. IV A: adiabatic preparation of a surface code
encoding no qubits.

(2) Sec. IV B: adiabatic preparation of smooth defects in
the +1 eigenstate of Z and rough defects in the +1 eigenstate
of X.

(3) Sec. IV C: adiabatic deformation of smooth and rough
defects, allowing for defect movement.

(4) Sec. IV D: adiabatic detaching and attaching proce-
dures, allowing for the isolation of regions containing defects.

(5) Sec. IV E: adiabatic preparation of smooth defects in
the ±1 eigenstate of X and rough defects in the ±1 eigenstate
of Z.

(6) Sec. IV F: adiabatic injection of ancilla states into
defects.

(7) Sec. V A: nonadiabatic procedures for “nondestruc-
tive” ancilla-coupled measurement of X and Z for defects.

(8) Sec. V B: nonadiabatic, measurement-based procedure
for the heralded application of X and Z.

Magic-state gate teleportation of the T gate is performed
using the circuit in Fig. 23, and the Hadamard gate can be
performed with an ancilla state using the circuit in Fig. 24. In
both cases, the only operations required involve the procedures
defined in the list above. Other procedures, such as performing
a CNOT between two smooth qubits, have been studied
previously [36] and also only require operations from the list
above. Thus, in encoded form, we can prepare Pauli X and Z

eigenstates, perform a universal gate set, and measure any qubit
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|ψ〉 • S T |ψ〉

T |+〉 Z •

FIG. 23. Gate teleportation circuit using the T |+〉 state. The
S correction needs to be performed half of the time and can be
implemented in the same way using the state S|+〉 = |+i〉 instead of
T |+〉 (and utilizing a Z correction half of the time).

in either the X or Z basis. Taken together, these procedures
allow for universal quantum computation.

VII. EXTENSION TO 2D COLOR CODES

We briefly discuss how one can adapt our surface code pro-
cedures to the two-dimensional (2D) color codes, in particular
to the 4.8.8 2D color code. This extends our construction to all
nontrivial homological stabilizer codes because by Anderson’s
classification theorem [64], all homological stabilizer codes
with nonlocal logical operators are either surface codes or
color codes.

Color codes in two dimensions are defined on a two-
dimensional lattice that is trivalent (each vertex is of degree
three) and face-three-colorable (we can color the plaquettes by
three colors such that no two adjacent plaquettes are the same
color). In such a graph, the edges can also be colored to be the
color that is different from the colors of the two faces incident
upon it. Figure 25 is an example of such a lattice. Unlike our
presentation of the surface code in which graph edges were
associated with qubits, color codes are naturally presented
so that graph vertices are associated with qubits. Let V (p)
denote the vertices that are on the boundary of a plaquette, and
define a stabilizer group structure of the color codes as follows.
To every plaquette p, associate two stabilizer generators, the
tensor product of Pauli X on the adjacent qubits, given by

SX
p =

⊗
v∈V (p)

Xv, (11)

as well as the tensor product of Pauli Z on the adjacent qubits,
given by

SX
p =

⊗
v∈V (p)

Zv. (12)

The representative code in Fig. 25 has four-body (red) and
eight-body (blue and green) stabilizer generators. (These are
the weights away from the boundaries of the code, where
four-body blue and green faces also exist.) Boundaries in

|ψ〉 S S† A H |ψ〉

|+〉 • S X •

FIG. 24. Circuit for applying the Hadamard gate with an ancilla
state. The correction A depends on the result of the measurement: if
the measurement result is +1, then A = X, and if the measurement
result is −1, then A = Z. The S and S† gates can be performed using
a circuit like the one in Fig. 23.

FIG. 25. (Color online) A lattice with colored plaquettes on
which one can define the color codes.

the color code also have a slightly richer structure. They are
no longer smooth and rough, but rather, they have a color
associated to them. This color is determined by the boundary’s
missing color. For example, in Fig. 25, the bottom boundary
is red since there are no red plaquettes adjacent to the bottom
edge. A careful accounting of qubits and checks in Fig. 25
indicates that there is a single logical qubit associated with the
surface. For our purposes, we will treat it as a “gauge” degree
of freedom using the subsystem stabilizer code formalism [19].
The operators X and Z associated with this qubit can be chosen
as strings of Pauli X and Z operators, respectively, along the
bottom boundary.

Just as with the surface codes, we can create defects in the
color code to store more logical qubits. In addition to having
a type (X or Z), the defects now also have a color. To create
the analog of a smooth defect, we remove a Z-type stabilizer
generator, and to create the analog of a rough defect, we remove
an X-type generator. For a Z-type defect, one choice for Z is
the removed generator (equivalent to a string of a different
color around the defect that only passes through edges and
faces of that color), and one choice for X is a string of X’s
connecting to a boundary whose color is the same as that of
the removed plaquette (such that the string only passes through
edges and faces of the same color as the removed plaquette).

As is true for any stabilizer code, we can define the
Hamiltonian in Eq. (1), and it has a ground space equivalent
to the code space of the code. In the case of the color codes it
can be written as

H = −
∑

p

(
SX

p + SZ
p

)
. (13)

The color-code Hamiltonian, like the surface-code Hamilto-
nian, does not lead to a self-correcting quantum memory, but
we can use adiabatic interpolations between static Hamiltoni-
ans of the type in Eq. (13).

As in Sec. IV A, we can perform an adiabatic interpolation
to initially create the color code without any defects. We
imagine the same setting, a large number of qubits in the
ground state of local Hamiltonians H = −Z, and prepare the
code by using an interpolation of the form

H (t) =
(

1 − t

T

) ∑
j∈Q

(−Zj ) + t

T

∑
p

(−SX
p − SZ

p

)

+ t

T

∑
j �∈Q

(−Zj ). (14)
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FIG. 26. (Color online) Two adjacent green Z plaquettes are
turned off while turning on the −XX Hamiltonian shown, creating a
Z-type defect in the +1 eigenstate of Z (shown here as a light blue
string encircling the defect). The green string depicts the associated
X operator.

(Since Z for the newly created code commutes with this
Hamiltonian at all times, and since it initially has eigenvalue
+1, the qubit associated with the surface is prepared in the +1
eigenstate of Z. This is the gauge degree of freedom mentioned
above.) As we did for the surface code, we choose to create
a small color code first and then grow it to avoid a shrinking
gap. The small color code is grown in a manner similar to
Sec. IV A. For example, to create a green Z-type defect in the
+1 eigenstate of Z, described for the surface code in Sec. IV B,
two Z-type green plaquettes separated by one red plaquette are
turned off while simultaneously turning on −XX on two pairs
of qubits in-between, as shown in Fig. 26. Note that during the
defect’s creation, a neighboring blue plaquette gets modified
to a six-body operator and a neighboring red plaquette gets
modified to a two-body operator.

The surface code procedures for growing and moving
defects, presented in Sec. IV C, can also be adapted to the color
codes. We will not present the cases for different numbers
of interior qubits separately here. Rather, we examine the
simplest case when there are only two neighboring qubits.
The other cases, as in the surface code, simply require more
modifications of adjoining checks. To grow a Z-type green
defect like the one in Fig. 26, first pick another green face. It
will be separated from the defect region by a red plaquette.
Along one of the two lines connecting the defect region to
the green check, turn on −XX while turning off the green
plaquette. This will incur a modification a neighboring blue
plaquette as well as the red plaquette itself.

Next, we show that the color code also supports detachment
and attachment procedures, described in Sec. IV D for the
surface code. Imagine a two-plaquette red defect, depicted in
Fig. 27, that we would like to isolate from the bulk code. To
complete the detachment procedure for a Z-type red defect,
two −XX Hamiltonians (on the qubits indicated by yellow
dots) are turned on while turning off the Z-type red plaquette
operator adjacent to the dots. In the process, the adjacent
blue and green plaquettes get modified to four-body operators.
Since the four-body X operator that is the product of the two
−XX Hamiltonians is in the stabilizer group at the beginning
and at the end of the evolution, we have successfully severed
the two code regions.

FIG. 27. (Color online) A Z-type red defect isolation procedure.
The “drawbridge” in this case is the red plaquette adjacent to the
yellow dots in the figure. The Z-type check on the red face is turned
off while the two −XX operators are turned on. The four-body X

operator that is the product of the two −XX Hamiltonians is in the
stabilizer group before the evolution, and it is trivially in the stabilizer
group of the code after the evolution. The blue and green plaquettes
adjacent to the yellow dots are modified to be four-body operators.
(Also note that the X-type check on the red plaquette must also turned
off to fully isolate the region, and two −ZZ Hamiltonians are turned
on.)

As discussed in Sec. IV E, it is important that we are able
to prepare Z-type defects in eigenstates of X and vice versa.
For color codes, the procedure is essentially identical to the
one for surface codes, and proceeds by preparing single qubits
in particular states (±1 eigenstates of X for Z-type defects
and ±1 eigenstates of Z for X-type defects). Just as before, a
defect location is anticipated and the preparation of the surface
proceeds normally everywhere except for the defect.

Ancilla state injection for the color codes is slightly
different than the procedures for the surface code introduced
in Sec. IV F. After isolating a region with green boundaries,

FIG. 28. (Color online) The creation of a defect region with both
the X-type and Z-type green checks turned off. There are four interior
qubits prepared in two Bell pairs by this procedure.
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FIG. 29. (Color online) Four interior qubits are “exposed.”

or creating such a region adjacent to a green boundary, we use
the procedures described above to introduce an X-type and
a Z-type defect at the same location, as pictured in Fig. 28.
Notice that the interior red checks have also been modified
during this procedure, putting the four interior qubits into
two Bell pairs. Additionally, the neighboring blue plaquettes
have been modified to six-body operators. An evolution is
then performed that only touches these four interior qubits,
turning on the Hamiltonians pictured in Fig. 29 while turning
off the two −XX − ZZ Hamiltonians. Next, just as we did
for the surface code, we adiabatically drag a qubit to the
desired state, as pictured in Fig. 30. The “logical qubit” is
localized to the upper-right qubit, with single-body X and Z

operators. The next step is to “grow” these logical operators
in a particular way. This is achieved by performing another

FIG. 30. (Color online) The upper-right qubit is adiabatically
dragged to the desired state. For instance, to inject T |+〉 states,
U = T H .

FIG. 31. (Color online) The single-body terms in Fig. 30 are
turned off while turning on the X-type and Z-type checks on the
red plaquette.

adiabatic evolution on the four qubits to the Hamiltonian
represented in Fig. 31, which is just the reintroduction of
the red face checks that we turned off at the beginning. This
evolution modifies X and Z from single-body operators to
the operators shown in Fig. 32. Finally, the X-type checks
on the green faces currently housing the defect are turned
on while the adjacent Z-type blue faces are turned off, leading
to the situation depicted in Fig. 33. As in the case of the surface
code, one of these faces is moved away and absorbed into the
green boundary of the region. Then, the region is attached
and the green defect encoding the state is moved into the bulk
computational region.

FIG. 32. (Color online) X and Z after the reintroduction of the
red plaquette in Fig. 31.
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FIG. 33. (Color online) The arrangement of the defect after
reintroducing the X-type green plaquettes. X is a string of Pauli
X operators connecting two blue faces and Z is a loop of Pauli Z

operators around a blue face.

None of the other procedures introduced in Secs. IV and
V are appreciably different for the color codes. Measurements
are still performed in an ancilla-coupled manner, and X and Z

can still be applied in a heralded fashion. Logical CNOT gates
are still performed by braiding, with the control being a Z-type
defect and the target being an X-type defect. Reference [65]
discusses how to perform a CNOT between defects of the same
type (or color). Thus, all the ingredients are precisely the same,
and encoded universal quantum computation can be performed
with two ingredients: adiabatic interpolations between static
Hamiltonians and ancilla-coupled measurements.

VIII. CONCLUSION

We have presented a model of quantum computation that
utilizes adiabatic interpolations between static Hamiltonians
which encode quantum information in their degenerate ground
spaces. By utilizing the process of adiabatic code deformation,
we create and grow small code regions, introduce and
braid defects, and inject arbitrary states into defects. These
procedures never cause the Hamiltonian gap to shrink below a
constant proportional to �, and they can all be performed with
the protection of a gap and topology. However, to perform
logical measurements, we use an ancilla-coupled scheme,
braiding and isolating an ancilla defect and then turning pieces
of the Hamiltonian off and destructively measuring a code
region. Taken together, these procedures allow for universal
quantum computation.

Our model lives at the intersection of three other models
of quantum computation. It provides explicit examples of
adiabatic evolutions in the setting of a topological code,
and we make an effort to supply procedures that do not
increase the rate at which errors (anyons) are introduced to
the system. Since we store information in the ground space
of a changing Hamiltonian, our model also borrows intuition

and robustness from holonomic quantum computing. Indeed,
the braiding operations we perform rely precisely on the
nontrivial structure of ground-space holonomies. Lastly, our
adiabatic interpolations are like miniature adiabatic quantum
computations, and their implementations are made less noisy
by traversing an adiabatic path more slowly.

Unfortunately, the model we present is not fault tolerant.
While the lifetime of the ground space, and thus the encoded
quantum information, is exponential in �/T in the presence
of coupling to a thermal bath, no protection is gained by
increasing the size of the code. It would be interesting to study
a model that can actively remove entropy from the system,
utilizing active error correction in a way that is compatible with
the Hamiltonian nature of the model, but we do not address
these problems in this work.

We hope that the model we have analyzed here can be
useful for a further understanding of the properties of quantum
computation based on stabilizer Hamiltonians. In particular, it
would be interesting to extend this work to models such as
Kitaev’s quantum double model [4] or the Turaev-Viro codes
[32], where universality can be achieved without the creation
and distillation of magic states.

Another line of inquiry worth investigating is the degree
to which the control requirements on our construction can
be relaxed. In particular, one can imagine moving a defect
not by turning off and on a few terms in a Hamiltonian to
perform a deformation, but instead by turning large numbers
of these terms off and on at the same time. This would have
the advantage of not requiring precise few-term control of a
Hamiltonian, but a spatially more course-grained ability to
change the Hamiltonian. In Ref. [66], such an approach was
investigated for adiabatic implementations of measurement-
based quantum computing, where it was argued that this
results in a nonconstant, but inverse-polynomial energy gap.
Such a gap would require a slower evolution to maintain the
adiabatic condition, and one might worry that it would also
destroy the robustness of the mode. However, [66] argued
that this polynomial gap did not destroy the error protection
properties in a worse manner than the constant gap model. Can
the topological adiabatic evolutions we describe here be done
similarly, with the ability to only change the Hamiltonian over
a spatial course graining?

Note added: Zheng and Brun in Ref. [67] published an
article on a similar topic; it is worth comparing and contrasting
our work to theirs.

Both works bring together concepts from holonomic,
adiabatic, and circuit-model quantum computing to effect
universal quantum computation. Both works also utilize
adiabatic interpolations between degenerate Hamiltonians in
a way that maintains a constant energy gap.

Our work differs in that we expand in detail about how
adding the extra ingredient of topological codes into the mix
offers additional modes of error suppression and local quantum
processing. We develop explicit methods for how adiabatic,
holonomic, and circuit-model ideas can be brought to bear
on topological codes, leading to a comprehensive model of
“adiabatic topological quantum computing.” The work by
Zheng and Brun concludes with the following sentences:
“We hope to apply our method to fault-tolerant schemes
based on large block codes and topological codes, which
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may have higher thresholds than fault-tolerant schemes that
concatenate small codes. Very likely, the maximum weight
of the Hamiltonian terms used to describe topological codes
during adiabatic evolution will be small and well bounded.”

Our work also differs in that we focus on a model of quan-
tum computation that only uses (a) adiabatic interpolations
between Hamiltonians that can never be completely turned off
and (b) measurements of logical operators; we further make
it clear that these operations alone are insufficient to make
our model fault tolerant relative to standard definitions of fault
tolerance. The work by Zheng and Brun focuses on a model
that has these operations but also adds (c) the ability to measure
code check operators and (d) the ability to completely turn on
and off Hamiltonians. With these additional features, their
model becomes fault tolerant according to a definition of fault
tolerance they provide. Augmented with these capabilities, our
model also becomes fault tolerant according to their definition,
but we have not highlighted this property in the main text as
our emphasis is on the features of pure adiabatic topological
quantum computing model.

Finally, by explicitly going through the steps of how
to implement each element of a universal set of encoded
operations, we have found that contrary to the statement in
the work of Zheng and Brun that “standard techniques, like
magic state injection and distillation, can realize fault-tolerant
encoded non-Clifford gates,” it can in fact be quite subtle as
to how to realize state injection by adiabatic interpolations.

Indeed, we point out that there are even qualitative differences
between how to do this correctly for surface codes and for
color codes. Repeating the end of our main Conclusion section
above, this revelation suggests that an interesting area for
future research would be extending our analysis to models
that can achieve universality without the need for the creation
and distillation of magic states.
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