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Adjustable broaching tool for tolerance compensation in
precision manufacturing

Emil Nielsena , Rasmus Eriksen, Nikolas Paldan, and Mogens Arentoft

IPU, Process Technology, Produktionstorvet, DK-2800 Kgs. Lyngby, Denmark

Abstract. Current manufacturing of precision tools for machining typically requires
processes such as grinding, EDM or laser processing in order to comply with high
requirements on tolerances. However even tools manufactured by these processes come
short, when a new batch of workpieces are supplied, and their tolerances are not compliant.
This approach presents a precision broaching tool for adjusting the inner diameter of an
external broach. The tool compensates for the manufacturing tolerance chain of tool and
workpieces by up to 37 �m. The approach is based on conventional shrink fitting of cold
forging tools. A numerical and analytical model of the compression is compared with
experimental results.

1. Introduction

The tolerance chain in precision machining is crucial to the realisation of micro mechanical
functionalities. It includes manufacturing tolerances of workpieces, tool parts, and positional tolerances.
Effects such as strain and rigidity of both the workpiece and tools also play an important role on the
precision, as do thermal expansion, load situation and vibrations.

The proposed micro-broaching process is based on cost and precision requirements for a cycloid
gear. The gear consists of a macro-scale titanium grade 5 (Ti-6Al-4V) shaft and ring with an approximate
diameter of 12 mm, and 38 �m high micro teeth from tooth to recess. The workpieces are manufactured
by CNC and grinding, and the tool by CNC and wire EDM. As can be seen in Fig. 1, the tolerance
chain exceeds the tolerance of the diameter of the shaft and the ring, which makes the process chain
highly incapable. The clearance tolerance is the deviation of both the shaft’s and ring’s diameter from
the nominal diameters, in order for the shaft and ring to match during assembly. The clearance tolerance
is ±5 �m, but for manufacturing just one part, the capability is ±8 �m. This paper is focused on the
shaft shown in Fig. 2.

This paper proposes a novel tool system for the compensation of tolerances of the workpiece
diameter, tool manufacture diameter and broaching guidance. The inner broach diameter is adjusted
to match the individual workpiece diameters. Workpiece specifications can vary within a batch, from
batch to batch, or from supplier to supplier. The same applies for tools. These variations introduce
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Figure 1. Tolerance chain prior to broaching and required tolerances for broached shafts or rings. Broached shaft.

Figure 2. Left: broaching and compression concept for shafts (left) and rings (right); right: broached shaft.

costs as workpieces, processed parts, or tools outside tolerances are scrapped. More strict control of
manufacturing tolerances of semi-finished parts and tools is a solution, but it leads to higher costs of
manufacturing and quality control. Other ways of mitigating with these variations would be closed
loop control of the processes or adaptive control of process parameters to compensate for varying
manufacturing system properties [1]. The purpose of this tool is to reduce tool and workpiece costs by
reducing scrap, the need for tight tolerances, or the need for tools of different dimensional tolerances.
The assembly of gears for this particular application is very time consuming when parts do not comply
with tolerances, due to the fact that shaft and ring counterparts are matched on a trial and error basis
during assembly.

This approach requires all workpieces to be measured before broaching, and allows for matching
out of tolerance rings and shafts. The tool can be set up to broach either rings or shafts. When broaching
the shafts, the tool works by compressing an external broach to adjust the inner broach diameter. This
is based on a well-established concept from cold forging, exploiting shrink fitting. When broaching the
rings, the workpieces (rings) are placed inside a stress-ring instead of the broach as shown in Fig. 2, and
the tool works by compressing the workpieces while an internal broach remains unaffected.

2. Previous work

Pre-stressing dies by shrink fitting is a known technology in cold forging. The purpose of shrink fitting
is to reduce die deflection during forging, hence increasing precision, and to ensure compressive die
stresses rather than tensile tangential stresses in order to increase the die life. One of the more recent
commercial developments is a strip-wound pre-stressing container with a very high stiffness. The
container proved to increase die life with a factor of 3–10, reduce maximum tangential stresses from
1500 MPa to 680 MPa, and reduce die deflection with 30–50%. A similar container proved capable
of easily adjusting the inner die diameter for spline forming on shafts by 0.01 mm [2]. A state of the
art version of this container, developed to compensate for die manufacture tolerances, tool dimension
changes due to temperature and friction, wear, and variations in workpiece, has been used to compensate
for dimensional tolerances due to varying radial forces, acting on the inner die diameter during cold
forging of gears, caused by workpiece variations [1]. Another tool, capable of compensating for thermal
expansion and deflections of the die dimensions, employs a shape memory alloy (SMA) ring between
the die and a compression ring. The SMA can resume a previous shape above a critical temperature, and
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Figure 3. Broach adjustment to workpiece (shaft) diameter.

also gains an increased strength and modulus with increasing temperatures. This allows for an in-process
adjustment of the die diameter – a necessity in extrusion and drawing processes [3].

Conventional analytical methods for designing shrink fitted dies and determining the inner die
diameter in cold forging includes thick walled cylinder theory [4, 5]. By the use of FEM the thick
walled cylinder approach has shown to be inadequate for designing shrink fits and accurately modelling
stresses when applied on gear shaped dies. A hybrid approach for designing shrink fits was proposed,
based on correction constants [6]. The constants fit the analytical cylinder approach to similar results
from FEM. The purpose was to introduce a set of easy to use equations, for designing accurate shrink
fits for cold forging of gears [7].

By using FEM the dimension of cold forged parts has been estimated within ±10 �m. The approach
requires an FEM model for estimation of the pre-stress based on the interference fit, the pre-stress is
then applied on a different model with the nominal diameter, as the die diameter is machined after
shrink fitting [8].

3. Broach compression

The proposed concept adjusts the broach diameter dependent on the workpiece diameter as shown
in Fig. 3. The adjustment is carried out between each broaching experiment, by adjusting the shrink
fit between a conical nut and a conical stress-ring. As the stress-ring is compressed, the broach or
ring inside is also compressed as shown in Fig. 4. The broach can then be adjusted by up to 37 �m
to compensate for the tolerance chain and broach near net shape teeth independent of the workpiece
diameter.

The stress-ring is compressed by screwing the nut onto the screw. The conical surfaces of the stress-
ring and the nut, converts the axial force into a radial force and friction. This compresses the broach,
resulting in a reduced diameter. The broach has been manufactured with a diameter 10 �m larger than
nominal, as it can only compensate for tolerances in one way – by reduction of the diameter and not
expansion.

3.1 Analytical model

The Analytical model is based on the thick wall cylinder theory [5]. The model does not take the gear
teeth into account; hence the inner broach diameter is modelled as flat. The shrink fit pressure p resulting
from a specific interference � is calculated by Eq. (1). E and ν are young’s modulus and Poisson’s ratio
for the broach (i) and the stress-ring (o). The radii can be seen in Fig. 3.

p = �
r

Eo

(
r2
o +r2

r2
0 −r2+v0

)
+ r

Ec

(
r2+r2

i

r2−r2
i

− vi

) · (1)

The broach is subsequently treated as a cylinder subject to an external pressure p from the interference
fit with no internal pressure, thus the radial compression �r can be found at any given radius r� by using
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Figure 4. Left: sectional view of the shrink fitting and broaching tool for shaft broaching. Right: top - Shrink fit of
nut, stress ring and broach; bottom: displacement of parts.

Figure 5. Numerical 60 �m shrink fit model showing displacements of nut, stress-ring, broach and top guide.

Eq. (2). In this case the compression is found at the inner broach diameter r� = ri .

�r = r2 · p

Ei(r2 − r2
i )

[
(1 − ν) + (1 + ν)

r2
i

r2
�

]
· (2)

3.2 Numerical model

The numerical model is an initial estimation built in 2D and simulated in DEFORM. It does not
include any circumferential gear-teeth as they only make up 0.4% of the radius, and hence has a limited
contribution to the broach stiffness. Nor have friction or the cutting teeth of the broach for machining
been included. The model employs a shrink fit between the nut and the stress-ring, resulting in very
limited relative motion and thus negligible friction. The displacement of the nodes on the inner broach
diameter is measured, as is the mean pressure between the stress-ring and the broach. A simulation of
an interference of 60 �m is shown in Fig. 5.

3.3 Torque and shrink fit pressure relationship

The torque applied to the nut can be calculated based on a certain shrink fit pressure, from either of the
models, in order to predict the resulting compression. The force FCompression acting on the broach and
the top guide due to the pressure p, is of the same magnitude as the opposite acting reaction force on
the stress ring. The forces for the following equations can be seen in Fig. 6.
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Figure 6. Left: force acting acting on broach and top guide; middle: free body diagram of stress-ring; right: applied
nut torque and resultant axial screw force.

Figure 7. Left: setup for tool compression and inner broach diameter measurements; right: graph of experimental,
analytical and numerical inner broach diameter compression as a function of torque.

Equations (3)–(5) are used to calculate the required torque for broach compression, where Ki is the
torque coefficient, which can be approximated to 0.21 for lubricated threads with a coefficient of friction
of 0.15 [9]. The equations are based on the free body diagram from Fig. 6, where forces are treated as
in equilibrium in x- and y-components resulting in two equations with two unknowns that are solved to
find FScrew.

FCompression = p(ABroach + Atopguide) (3)

FFriction = �NNut (4)

T = FScrewKidbolt . (5)

3.4 Experimental verification

In order to verify the analytical and numerical models, a series of compression experiments are carried
out, by compressing the tool and measuring the inner broach diameter. The tool is first fixed to avoid
any rotation of the screw. A torque is then applied to the nut by a wrench. The torque can be determined
with a resolution of 3.5 Nm. The compression setup can be seen in Fig. 5. The inner diameter of the
broach is measured by using an internal three-point micrometer clamped in a fixture. The micrometer is
from Tesa, and it has an accuracy of 0.004 mm.

The analytical model does not include any gear or cutting teeth of the broach. Previous studies have
shown insufficient capability for the thick walled cylinder approach to model stresses in shrink fits of
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Table 1. Fit of models to experimental data.

Tolerance chain R2 MAE [��� m] Max. error [���m] Min. error [���m]
Numerical model 0.71 5.9 �m +12.5 �m −0.4 �m
Analytical model 0.95 1.8 �m +4.9 �m −4.6 �m

cold forging tools for gears. In this case however, the analytical model agrees well with the experimental
data on deflection given that the coefficient of determination R2 = 0.95. The analytical model only has
a mean absolute error (MAE) of 1.8 �m – which is less than half the measurement uncertainty of the
internal micrometer. The performance of the two models can be seen in Table 1, and the graphs of the
models can be seen in Fig. 6.

The linear behaviour of the models in Fig. 7 is the result of the linear elasticity of the materials below
the yield stress. The experimental data is scattered and does not show a strictly linear behaviour. This
is the result of clearances between parts, measurement uncertainty of the broach diameter and torque,
and form errors, although form errors have been shown to have a negligible influence on stresses in
interference fits [10]. Clearances and form errors of contact surfaces also influences the starting point of
compression which requires approximately 50 Nm. Both the numerical and analytical model have been
calibrated to the experimental data, by shifting the starting torque from 0 Nm to 50 Nm. The difference
in slope between the models is most likely due to the FEM shrink-fit approach, excluding relative lateral
motion, and hence frictional loss of the applied torque.

4. Future work

Of noteworthy improvements the FEM simulation will be modelled in 3D and include gear teeth, cutting
teeth and friction. The clearances between nut and stress-ring and stress-ring and broach, and stress ring
and top guide will be included in both the numerical and analytical model, hence giving an estimate
of the minimum torque required for compression without experimental calibration. Having an accurate
measure of friction in the thread and between the nut, stress-ring and broach, should also increase the
accuracy of the models. An angular approach of the nut tightening combined with the applied torque
could possibly increase the experimental verification accuracy, as the relationship between the torque
and radial wrench displacement is not linear. The broaching accuracy and the relationship between
compressed broach diameter and the workpiece diameter will be examined by carrying out a series of
broaching experiments of the shaft and the ring.

5. Conclusions

A novel tool-system for adjusting the inner broach diameter has been developed, exploiting conventional
shrink fitting from cold forging. It has been used for compressing the inner broach diameter with up to
37 �m on the diameter. The relationship between the applied torque and the resultant compression of the
inner broach diameter has been both numerically and analytically modelled. The thick walled cylinder
approach seems sufficient for modelling the compression, despite being inadequate for stresses due to
stress concentrations. Clearances and form errors of nut, stress-ring and broach however influences the
accuracy of the models. The analytical model fit the experimental data with R2 = 0.95 and had a mean
absolute error of 1.8 �m.
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