
Adobe Acrobat 7.0.5

Acrobat Interapplication
Communication Overview

July 27, 2005

 Adobe Solutions Network — http://partners.adobe.com

http://partners.adobe.com
http://partners.adobe.com

© 2005 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or
electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text are references to the
PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as a product
trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display device,” or similar item refers to a printing device,
display device or item (respectively) that contains PostScript technology created or licensed by Adobe Systems Incorporated and not to devices
or items that purport to be merely compatible with the PostScript language.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Distiller, PostScript, the PostScript logo and Reader are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Apple, Macintosh, and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries. PowerPC
is a registered trademark of IBM Corporation in the United States. ActiveX, Microsoft, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Verity is a registered trademark of Verity,
Incorporated. UNIX is a registered trademark of The Open Group. Verity is a trademark of Verity, Inc. Lextek is a trademark of Lextek
International. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies,
makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and all warranties
of merchantability, fitness for particular purposes, and noninfringement of third party rights.

Acrobat Interapplication Communication Overview 3

Contents

Preface . 5

What Is In This Document . 5

Prerequisites . 6

Related Documents . 6

Developer Documentation . 6

Code Samples . 6

Interapplication Communication Documentation . 6

Core API Documentation . 7

File Format Documentation . 7

Platform-Specific Documentation . 7

Conventions Used in This Book . 8

Chapter 1 Architecture . 9

Interapplication Communication Objects . 9

Accessing the AV and PD Layers . 10

Using Plug-ins for Interapplication Communication . 13

The Role of Plug-ins in Extending IAC Interfaces . 13

Using Acrobat JavaScript in InterApplication Communication . 13

Chapter 2 Apple Event Support . 15

Acrobat Objects In Apple Events . 15

Acrobat Support For Apple Events . 16

Required Events . 16

Core Events . 16

Acrobat-specific Events . 17

Miscellaneous Apple Events . 18

Chapter 3 OLE Support . 19

Differences Among the Acrobat Applications . 19

How To Tell If an Acrobat Application Is Running . 19

OLE Server Support . 19

OLE Automation Support . 20

Contents

4 Acrobat Interapplication Communication Overview

Dual Interfaces. 20

OLE Objects and Methods . 20

What’s Possible: Examples and Approaches . 22

Development Environments . 23

Using Visual Basic and Visual C# .NET with the Acrobat SDK . 25

Understanding the Acrobat OLE Interfaces. 26

Using the COleDispatchDriver Class With Acrobat . 27

OLE Automation Using the JSObject Interface. 31

Other Useful Information . 32

Using OLE Messages . 32

MDI Usage . 32

Event Handling . 32

OLE Automation Summary . 34

Objects . 34

Data Types . 34

Methods. 35

Chapter 4 DDE Support . 43

Differences Among the Acrobat Applications . 43

General Information . 44

Acrobat Application DDE Messages . 45

Application Configuration . 45

Document Manipulation . 45

Document Printing . 46

View Manipulation . 46

Search-related . 46

Appendix A IAC Coordinate Systems . 47

User Space . 47

Device Space. 48

Appendix B Visual Studio .NET Migration . 49

Introduction . 49

Upgrading Plug-ins to Visual Studio .NET 2003 . 49

Acrobat Interapplication Communication Overview 5

Preface

Adobe® Acrobat® provides support for interapplication communication (IAC) through
Apple® events and AppleScript on Macintosh® platforms and through OLE and DDE on
Windows® platforms. This support allows programs to control Acrobat and Adobe Reader®
in much the same way a user would. You can also use the IAC support to render a PDF file
into any specified window instead of the Acrobat or Reader window. The IAC support
methods and events serve as wrappers for some of the core API calls in the Acrobat SDK.
Thus, IAC supports enterprise workflows by making it possible to control Acrobat and
Reader, display PDF documents in other applications, and manipulate PDF data from other
applications.

What Is In This Document

This document explains the IAC support concepts, such as objects and commands
universally understood by applications. This document is divided into chapters that parallel
the different technologies:

● The overall IAC architecture in Chapter 1, “Architecture”

● Apple Events in Chapter 2, “Apple Event Support.”

● OLE in Chapter 3, “OLE Support.”

● DDE in Chapter 4, “DDE Support.”

You only need to read the chapters that are relevant to your own platforms and
technologies.

In addition, the appendices provide useful information for migrating your IAC applications
to Microsoft® Visual Studio .NET and taking advantage of the new Automation support
using ATL interfaces.

Preface
Prerequisites

6 Acrobat Interapplication Communication Overview

Prerequisites

You should already be familiar with at least one of these technologies:

● Apple events

● AppleScript

● DDE

● OLE

If you are not, see the list of documents that describe them in Other Useful Documentation.

You should also know something of the Acrobat core API. The IAC capabilities are actually a
subset of those provided in the Acrobat core API; many of the IAC messages are similar to
core API methods.

Related Documents

The Acrobat SDK includes many other books that you might find useful. If for some reason
you did not install the entire SDK onto your system and you do not have all of the
documentation, please visit the Adobe Solutions Network web site
(http://partners.adobe.com/asn/) to find the books you need.

Developer Documentation

The Acrobat SDK User’s Guide describes the capabilities of the Acrobat SDK, and provides a
general overview of its usage

Code Samples

The Acrobat SDK contains several examples of using IAC. See the Guide to SDK Samples for a
list of all the samples.

Interapplication Communication Documentation

Acrobat Interapplication Communication Reference provides detailed information on the
Apple Event, DDE, and OLE support in Acrobat.

http://partners.adobe.com/asn/

Acrobat Interapplication Communication Overview 7

Preface
Related Documents

Core API Documentation

Acrobat and PDF Library API Overview gives an overview of the objects and methods in the
core API.

Acrobat and PDF Library API Reference describes in detail the objects, methods and callbacks
in the core API.

File Format Documentation

PDF Reference provides the authoritative, detailed description of the industry-standard PDF
file format.

Platform-Specific Documentation

Inside Macintosh: Interapplication Communication, ISBN 0-201-62200-9, Addison-Wesley.
This contains information on Apple events and scripting.

AppleScript Language Guide, ISBN 0-201-40735-3, Addison-Wesley. This contains more
information on the AppleScript language.

Apple Event Registry: Standard Suites, by Apple Developer Technical Publications, Part
number 030-1958-A. This contains more information on the core and required Apple
events.

OLE 2 Programmer’s Reference Volumes One and Two, ISBN 1-55615-628-6 and ISBN 1-55615-
629-4, Microsoft Press. Volume One contains information on OLE 2.0; Volume Two covers
OLE Automation.

Preface
Conventions Used in This Book

8 Acrobat Interapplication Communication Overview

Conventions Used in This Book

The Acrobat documentation uses text styles according to the following conventions.

Font Used for Examples

monospaced Paths and filenames C:\templates\mytmpl.fm

Code examples set off
from plain text

These are variable declarations:
 AVMenu commandMenu,helpMenu;

monospaced bold Code items within plain
text

The GetExtensionID method ...

Parameter names and
literal values in
reference documents

The enumeration terminates if proc
returns false.

monospaced italic Pseudocode ACCB1 void ACCB2 ExeProc(void)
{ do something }

Placeholders in code
examples

AFSimple_Calculate(cFunction,
cFields)

blue Live links to Web pages The Adobe Solutions Network URL is:
http://partners.adobe.com/asn/

Live links to sections
within this document

See Using the SDK.

Live links to code items
within this document

Test whether an ASAtom exists.

bold PostScript language and
PDF operators,
keywords, dictionary
key names

The setpagedevice operator

User interface names The File menu

italic Document titles that are
not live links

Acrobat Core API Overview

New terms User space specifies coordinates for...

PostScript variables filename deletefile

http://partners.adobe.com/asn/

Acrobat Interapplication Communication Overview 9

1 Architecture

The Acrobat core API exposes most of its architecture in C, although it is written to simulate
an object-oriented system with nearly fifty objects. The IAC interface for Apple events and
OLE automation exposes a smaller number of objects, which closely map those in the
Acrobat API and can be accessed through Visual C++ .NET, Visual Basic .NET, and Visual C#
.NET. This chapter provides an overview of those objects. You can read the Acrobat
Interapplication Communication Reference for more detailed information of how to use IAC
objects on your platform.

N O T E : DDE does not organize IAC capabilities around objects, but instead uses DDE
messages to Acrobat.

Interapplication Communication Objects

You can think of the Acrobat API as having two distinct layers that use IAC objects:

● The Acrobat application (AV) layer.

● The Portable Document (PD) layer.

The AV layer enables you to control how the document is viewed. For example, the view of
a document object resides in the layer associated with Acrobat. The PD layer provides
access to the information within a document, such as a page. From the PD layer you can
perform basic manipulations of PDF documents, such as deleting, moving or replacing
pages, as well as changing annotation attributes. You can print PDF pages, select text,
access manipulated text, and create or delete thumbnails.

In addition, it is also possible to treat a PDF document as an ActiveX document and
implement convenient PDF browser controls through the AcroPDF object, which
provides you with the ability to load a file, move to various pages within a file, and specify
various display and print options. A detailed description of its usage is provided in OLE
Automation Support.

In addition to the convenient AcroPDF object, IAC provides you with control over the
application’s user interface and appearance of its window by either using its PD layer
object, PDPage, or by using its AV layer object, AVDoc. The PDPage object has a method
called Draw which exposes Acrobat’s rendering capabilities. If you need more fine-grained
control, you can create your application with the AVDoc object, which has a function called
OpenInWindow that can display text annotations and active links in your application’s
window.

Architecture
Interapplication Communication Objects

1

10 Acrobat Interapplication Communication Overview

Accessing the AV and PD Layers

The Apple Events, Applescript, and OLE Automation 2.0 systems each refer to the
objects with a different syntax. The following subsections provide tables that explain the
objects and class names for each system. If you are using Apple Events, you will use the
name of the object in a CreateObjSpecifier statement. If you are using AppleScript,
you will use the object name in a set ... to statement. If you are using OLE, you will
use the name in either a Visual Basic .NET or Visual C# .NET CreateObject statement or
in an MFC CreateDispatch statement. If the name of the object appears in the table as
"None," there is no corresponding class name for the object in that system.

Acrobat Application Layer

Table 1.1 displays IAC objects in the Acrobat Application Layer. The first three objects are the
primary source for controlling the user interface.

TABLE 1.1 Acrobat Application Layer Objects

Object Description
Apple Event
Class Name

OLE
Automation
Class Name

AVApp The top-level object, representing Acrobat. You
can control the appearance of Acrobat, whether
or not an Acrobat window appears, and the size
of the application window. Your application has
access to the menu bar and the toolbar through
this object.

Application AcroExch.
App

AVDoc Represents a window containing an open PDF
file. Your application can use this to cause
Acrobat to render into its window so that it
closely resembles Acrobat’s window. You can
also use this object to select text, find text, or
print pages. This object has several bridge
methods to access other objects.

Document AcroExch.
AVDoc

AVPageView Controls the contents of the AVDoc window.
Your application can scroll, magnify, go to next,
go to previous, or go to an arbitrary page. This
object also holds the history stack.

PDF Window AcroExch.
AVPageView

AVMenu Represents a menu in Acrobat. You can count or
remove menus. Each menu has a language-
independent name used to access it.

Menu None

AVMenuItem Represents a single item in a menu. You can
execute or remove menu items. Every menu
item has a language-independent name used
to access it.

Menu item None

AVConversion A format in which to save the document. conversion None

Acrobat Interapplication Communication Overview 11

Architecture
Interapplication Communication Objects

1

Portable Document Layer

Table 1.2 displays the IAC objects in the Portable Document layer.

TABLE 1.2 Portable Document Layer Objects

Object Description
Apple Event
Class Name

OLE Automation
Class Name

PDDoc The underlying PDF representation of a
document. Using this object, your
application can perform operations such as
deleting and replacing pages. You can
create and delete thumbnails with this
object, as well as set and retrieve
document information fields.

Note: With Apple Events the first page of a
document is page 1; with OLE Automation
the first page is page 0.

Document AcroExch.PDDoc

PDPage PDDoc objects are composed of
PDPage objects. You can use this object
to render Acrobat to your application’s
window. You can also access page size and
rotation, set up text regions, create and
access annotations through this object.

Note: For Apple Events the first page of a
document is page 1; for OLE automation it
is page 0.

page AcroExch.
PDPage

PDAnnot Used to manipulate link and text
annotations. You can set and query about
the physical attributes of the annotation.
You can perform a link annotation with this
object.

Note: Apple Events have two additional,
related objects: PDTextAnnot, a text
annotation, and PDLinkAnnot, a link
annotation.

annotation AcroExch.
PDAnnot

PDBookmark This object represents bookmarks in the
PDF document. You cannot directly create
a bookmark, but if you know a bookmark’s
title, you can change its title or delete it.

bookmark AcroExch.
PDBookmark

Architecture
Interapplication Communication Objects

1

12 Acrobat Interapplication Communication Overview

PDTextSelect Serves two purposes: If selected texts
exists within an AVDoc object, your
application can access the words in that
region through this object, or you can
cause text to appear selected.

None AcroExch.
PDTextSelect

TABLE 1.2 Portable Document Layer Objects

Object Description
Apple Event
Class Name

OLE Automation
Class Name

Acrobat Interapplication Communication Overview 13

Architecture
Using Plug-ins for Interapplication Communication

1

Using Plug-ins for Interapplication Communication

The Role of Plug-ins in Extending IAC Interfaces

You can extend the functionality of the IAC interfaces by writing plug-ins that use core API
objects that are not already part of the IAC support system. Figure 1.1 shows the software
architecture needed to establish a connection.

FIGURE 1.1 Using Plug-Ins for Interapplication Communication

Using Acrobat JavaScript in InterApplication Communication

The JSObject interface provides you with convenient access to the powerful features
offered by Acrobat JavaScript. It is recommended that you take advantage of this interface
wherever possible, and its usage is explained in OLE Support.

Application

Viewer

PI

IA
C

IA
C

H
F

T
s

Architecture
Using Plug-ins for Interapplication Communication

1

14 Acrobat Interapplication Communication Overview

Acrobat Interapplication Communication Overview 15

2 Apple Event Support

Acrobat supports Apple Events and a number of Apple Event objects on the Macintosh
platforms. IAC support includes some of the objects and events described in Apple Event
Registry: Standard Suites, as well as Acrobat-specific objects and events. This chapter lists
each of the supported events and objects. (You can find information on Apple Events
supported by the Acrobat Search plug-in by referring to the Acrobat and PDF Library API
Reference. Other plug-ins supporting additional Apple Events are described in the Acrobat
and PDF Library API Overview.)

When programming for Macintosh platforms, it is advised that you use AppleScript with
Acrobat whenever possible. There are some Apple Events not available through
AppleScript; these can be handled with C or other programming languages. When
programming in C, use the declarations in AcroAETypes.h. For a complete description
of the parameters, see the Acrobat Interapplication Communication Reference.

Acrobat Objects In Apple Events

Acrobat presents these objects to the Apple Event interface:

● annotation: an annotation on a page of a document. The Text Annotation and
LinkAnnotation classes are two specific annotation types.

● application: represents Acrobat itself.

● bookmark: a bookmark within a PDF document.

● conversion: a format in which to save a document. Any installed conversion (such as
TIFF or JPEG) is supported, and Acrobat provides extra support for EPS Conversion
and PostScript Conversions.

● document: represents a single open document.

● Link Annotation: a link annotation within the PDF document.

● menu: a menu in Acrobat.

● menu item: a single item in a menu within the PDF document.

● page: represents a single page in a PDF document.

● PDF Window: represents the view of a document in Acrobat’s window.

● Text Annotation: a text annotation within the PDF document.

Apple Event Support
Acrobat Support For Apple Events

2

16 Acrobat Interapplication Communication Overview

Acrobat Support For Apple Events

Acrobat supports four categories of Apple Events:

● Required Events: Events the Finder sends to all applications

● Core Events: Events common to a wide variety of applications, though not universally
applicable to all applications.

● Acrobat-specific Events: Events that are specific to Acrobat.

● Miscellaneous Apple Events: Events that don’t fall into one of the above categories

N O T E : Acrobat supports all of the above events, but Adobe Reader supports only the four
required events: open, run, print and quit.

Required Events

The suite of required Apple Events consists of four events sent by the Finder to all
applications:

● open: opens a file.

● run: launches an application and invokes its standard startup procedures.

● print: prints one or more files.

● quit: terminates an application. See the version of the quit Event in the core suite for a
variant that accepts options.

Core Events

Acrobat supports the following subset of the core suite of Apple Events:

● close: closes a document.

● count: counts the number of elements of a particular class in an object.

● delete: deletes one or more objects.

● exists: tests whether a specified object exists.

● get: retrieves the value of a property of an object.

● make: creates a new object.

● move: moves a page object.

● open: opens one or more documents.

● quit: terminates Acrobat.

● save: saves a document to a file, optionally specifying the format in which to save the
document.

● set: assigns one or more values to one or more variables.

Acrobat Interapplication Communication Overview 17

Apple Event Support
Acrobat Support For Apple Events

2

Acrobat-specific Events

This suite contains Acrobat-specific Events and objects. Apple encourages the use of an
application’s signature as the name of its class for application-specific Apple Events, so
CARO is the name of the class for Acrobat-specific Apple Events, as shown below.
AppleScript does not need this information.

#define kAEAcrobatViewerClass ’CARO’

The supported Events in this suite are:

● bring to front: brings the specified document’s window to the front.

● clear selection: clears the document’s current selection, if any.

● close all docs: closes all documents.

● create thumbs: creates thumbnail images for all pages in the document

● delete pages: deletes a range of pages in the document.

● delete thumbs: deletes all thumbnails from the document.

● execute: executes the specified menu item as if the user had selected it.

● find next note: finds and selects the next text note in a document.

● find text: finds text in a document.

● get info: retrieves the value of a key in the document’s Info dictionary.

● go backward: goes to the previous view in the stored view history.

● go forward: goes to the next view in the stored view history.

● goto: displays a specified page.

● goto next: displays the page after the one currently displayed in the PDF Window.

● goto previous: displays the page before the one currently displayed in the PDF
Window.

● insert pages: inserts one or more pages from one document into another.

● is toolbutton enabled: tests whether the specified toolbutton is enabled.

● maximize: sets the document’s window size to its maximum or original size.

● perform: executes a bookmark’s or link annotation’s action.

● print pages: prints one or more pages of a document.

● read page down: scrolls forward through the document by one screen.

● read page up: scrolls backward through the document by one screen.

● remove toolbutton: removes a button from the toolbar.

● replace pages: replaces one or more pages in a document with pages from another
document.

● scroll: scrolls the page view by the specified amount.

● select text: selects the specified text.

Apple Event Support
Acrobat Support For Apple Events

2

18 Acrobat Interapplication Communication Overview

● set info: sets the value of a key in the document’s Info dictionary.

● zoom: changes the zoom level of the specified PDF Window.

Miscellaneous Apple Events

Acrobat provides the following Apple Event:

● do script: perform the specified Acrobat JavaScript script.

Acrobat Interapplication Communication Overview 19

3 OLE Support

This chapter describes OLE 2.0 support in Adobe Acrobat for Microsoft Windows. Acrobat
applications are OLE servers and also respond to a variety of OLE automation messages.
Since Acrobat is an OLE server, you can embed PDF documents into documents created by
an application that is an OLE client.

For complete descriptions of the Acrobat parameters associated with OLE automation
methods, see the OLE automation sections of the Acrobat Interapplication Communication
Reference.

N O T E : The header files containing values of various constants, needed by C and C++
programmers to use the OLE automation support described in this chapter, are
located in the SDK IAC directory. Visual Basic .NET and Visual C# .NET users do not
need these header files, though it may be useful to refer to them in order to verify
the constant definitions.

Differences Among the Acrobat Applications

Acrobat supports all of the OLE automation methods listed in this chapter and in the
Acrobat Interapplication Communication Reference. Adobe Reader does not support OLE
automation, except for the PDF browser controls provided in the AcroPDF object.

How To Tell If an Acrobat Application Is Running

Use the Windows FindWindow method with the Acrobat class name. You can use Spy++
to determine the class name for the version of the application.

OLE Server Support

Acrobat provides the appropriate OLE interfaces to be an OLE server. You can embed PDF
documents or link them to OLE containers. However, Acrobat does not perform in-place
activation.

N O T E : Acrobat 7.0 supports dual interfaces, so the methods all have a return type of
HResult.

OLE Support
OLE Automation Support

3

20 Acrobat Interapplication Communication Overview

OLE Automation Support

Dual Interfaces

The automation interfaces for Acrobat 7.0 have been changed from MFC Disp interfaces to
Dual interfaces. Thus, methods previously returning LONG values in place of boolean values
in Acrobat 6.0 now return BOOL values (-1 for success, 0 for failure). The return values for
such methods are equivalent to VARIANT_TRUE and VARIANT_FALSE.

For example, in Acrobat 6.0, a client using the CAcroPDDoc object’s Open method
would contain the following code:

int ret = pdfDoc.Open(inputFile);

Now, in Acrobat 7.0, the client would contain the following code:

bool ret = pdfDoc.Open(inputFile);

N O T E : It is only necessary to migrate previously written projects if they will refer to the
Acrobat 7.0 type libraries.

OLE Objects and Methods

OLE automation support is provided by a set of classes in Acrobat’s API.

Figure 3.1 is a graphical representation of the objects and methods that are used in OLE.
The arrows indicate bridge methods, which are methods that can get an object from a
related object of a different layer. For instance, you may want to get the PDDoc associated
with a particular AVDoc object. In OLE automation, you can use the GetPDDoc method in
the AcroExch.AVDoc object.

Acrobat Interapplication Communication Overview 21

OLE Support
OLE Automation Support

3

FIGURE 3.1 OLE Objects and Methods

OLE Support
OLE Automation Support

3

22 Acrobat Interapplication Communication Overview

What’s Possible: Examples and Approaches

For OLE automation, Acrobat provides three capabilities: rendering PDF documents,
remotely controlling the application, and implementing PDF browser controls. You can
accomplish these tasks in a number of ways.

Rendering PDF Documents

You can render PDF files on the screen in two ways:

● Using an interface similar to Acrobat’s user interface. The AVDoc object’s
OpenInWindowEx method opens a PDF file in your application’s window. This window
has vertical and horizontal scroll bars, as well as buttons on the window’s perimeter for
setting the zoom factor. Users interacting with this type of window find its operation
similar to that of working in Acrobat, though not everything works the same way. For
instance, links are active and the window can display any text annotation on a page.

● Using the Page object’s DrawEx method. You provide a window and an HDC, as well
as a zoom factor. Acrobat renders the current page into your window. The application
must manage scroll bars and other items in the user interface. This approach works
unless your application requires an AVDoc representation, in which case you should use
the AVDoc object’s methods.

The SDK provides two samples that illustrate these mechanisms. The ActiveView and
StaticView samples use the OpenInWindowEx and DrawEx methods respectively.

N O T E : In the current implementation of Acrobat, when a user quits an application using
OLE automation, this can have an effect on Acrobat itself as well as a web browser
displaying PDF files:

– If there are no PDF documents open in Acrobat, the application will quit.
– If a web browser is displaying a PDF file, the display will go blank. (The user can refresh

the page to re-display it.)

Remotely Controlling the Application

There are two ways to remotely control Acrobat:

● Given the exported interfaces, you can write an application that manipulates various
aspects of PDF files, such as pages, annotations, and bookmarks. Thus, your application
might use AVDoc, PDDoc, Page, and annotation methods, and might not provide
any visual feedback that requires rendering into its application window.

● You can launch Acrobat from your own application, which has set up an environment for
the user. Your application can cause Acrobat to open a file, set the page location, zoom
factor, and possibly even select some text. This would be useful, for example, as part of a
help system.

Acrobat Interapplication Communication Overview 23

OLE Support
OLE Automation Support

3

PDF Browser Controls

You may use the AcroPDF library to display a PDF document in applications using
simplified browser controls. In this case the PDF is treated as an ActiveX document, and the
interface is available in Adobe Reader.

The document may be loaded via the AcroPDF object’s LoadFile method. Once this has
been accomplished, you may implement browser controls to determine which page to
display as well as the display, view, and zoom modes, whether to display bookmarks,
thumbs, scrollbars, and toolbars, print pages using various options, and highlight a text
selection.

Development Environments

You have a choice of environments in which to integrate with Acrobat: Visual Basic .NET,
Visual C# .NET and Visual C++ .NET.

If possible, use Visual Basic .NET or Visual C# .NET. The run-time type checking offered by
the CreateObject call in Visual Basic allows quick prototyping of an application, and in
both cases the implementation details are simplified.

N O T E : In these examples you will see strings with "AcroExch.App" and strings with
"Acrobat.CAcroApp". The first is the form for the external string used by OLE
clients to create an object of that type. The second is the form that is included in
developer type libraries.

Example 3.1 shows a Visual Basic subroutine to view a given page:

EXAMPLE 3.1 Visual Basic View Page
Sub Goto(Int where)

Dim app as Object, avdoc as Object, pageview as Object

Set app = CreateObject("AcroExch.App")
Set avdoc = app.GetActiveDoc
Set pageview = avdoc.GetAVPageView
pageview.Goto(where)

End Sub

Example 3.2 shows the same route in Visual C++:

EXAMPLE 3.2 Visual C++ View Page
void goto(int where)
{

CAcroApp app;
CAcroAVDoc *avdoc = new CAcroAVDoc;
CAcroAVPageView pageview;
COleException e;
app.CreateDispatch("AcroExch.App");
avdoc->AttachDispatch(app.GetActiveDoc, TRUE);
pageview->AttachDispatch(avdoc->GetAVPageView, TRUE);
pageview->Goto(where);

}

OLE Support
OLE Automation Support

3

24 Acrobat Interapplication Communication Overview

Example 3.3 shows how to use PDF browser controls to view a page:

EXAMPLE 3.3 Visual Basic .NET using AcroPDF Browser Controls

Friend WithEvents AxAcroPDF1 As AxAcroPDFLib.AxAcroPDF
Me.AxAcroPDF1 = New AxAcroPDFLib.AxAcroPDF
'AxAcroPDF1
Me.AxAcroPDF1.Enabled = True
Me.AxAcroPDF1.Location = New System.Drawing.Point(24, 40)
Me.AxAcroPDF1.Name = "AxAcroPDF1"
Me.AxAcroPDF1.OcxState = CType(

resources.GetObject("AxAcroPDF1.OcxState"),
System.Windows.Forms.AxHost.State

)
Me.AxAcroPDF1.Size = New System.Drawing.Size(584, 600)
Me.AxAcroPDF1.TabIndex = 0
AxAcroPDF1.LoadFile("http://myURL/myFile.pdf")
AxAcroPDF1.setCurrentPage(TextBox2.Text)

The Visual Basic .NET examples are simpler to read, write, and support, and are similar in
terms of implementation detail to the code required for Visual C# .NET. In Visual C++, the
CAcro classes hide much of the type checking that must be done. Using OLE automation
objects in Visual C++ requires understanding the AttachDispatch and
CreateDispatch methods of the COleDispatchDriver class. See Using Visual Basic
and Visual C# .NET with the Acrobat SDK for more information.

Acrobat Interapplication Communication Overview 25

OLE Support
OLE Automation Support

3

Using Visual Basic and Visual C# .NET with the Acrobat SDK

The only requirement for using the OLE objects made available by Acrobat is to have the
product installed on your system and the appropriate type library file included in the
project references for your Visual Basic project. The Acrobat type library file is named
Acrobat.tlb. This file is included in the
InterAppCommunicationSupport\Headers folder in the SDK. Once you have the
type library file included in your project, you can use the object browser to browse the OLE
objects. It is not sufficient to install just an ActiveX control or DLL to enable OLE
Automation. You must have the full Acrobat product installed to use OLE automation.

Getting Started

This overview and the Acrobat Interapplication Communication Reference both document
the objects and methods available. These documents (as well as the API) were designed
with C programming in mind and programming with the API requires some familiarity with
C concepts.

The best resources for a VB or C# .NET programmer, besides the object browser, are
the sample projects. These samples demonstrate use of the Acrobat OLE objects and
contain comments describing the parameters for the more complicated methods.

If you are a VB .NET programmer, it will be helpful to include the iac.bas module in your
project (included in the headers folder).

Necessary C Knowledge

Although you do not need the header files provided in the SDK, these files may be used to
find the values of various constants, such as AV_DOC_VIEW, that are referenced in the
documentation. The file iac.h contains most of these values.

Some of the methods, such as OpenInWindowEx, can be confusing when utilized in
VB .NET. OpenInWindowEx takes a long for the openflags parameter. The
options for this parameter provided in the Acrobat Interapplication Communication
Reference are:

● AV_EXTERNAL_VIEW — Open the document with the toolbar visible.

● AV_DOC_VIEW — Draw the page pane and scrollbars.

● AV_PAGE_VIEW — Draw only the page pane.

If you were developing in the C, these strings would be replaced by a numeric value prior to
compilation; passing these strings to the method would not raise an error. When
programming in VB .NET, these strings correspond to constant variables defined in
iac.bas.

OLE Support
OLE Automation Support

3

26 Acrobat Interapplication Communication Overview

In some situations, you will need to apply a bitwise OR to multiple values and pass
the resultant value to a method. An example of this is using PDDocSave. The
ntype parameter of the PDDocSave method is a bitwise OR of the following flags
as defined in iac.h:

/* PDSaveFlags — used for PD-level Save
** All undefined flags should be set to zero.
** If either PDSaveCollectGarbage or PDSaveCopy are used, PDSaveFull
must be used. */
typedef enum {

PDSaveIncremental = 0x0000, /* write changes only */
PDSaveFull = 0x0001, /* write entire file */
PDSaveCopy = 0x0002, /* write copy w/o affecting current

state */
PDSaveLinearized = 0x0004, /* writes the file linearized */
PDSaveCollectGarbage = 0x0020 /* perform garbage collection on

unreferenced objects */
} PDSaveFlags;

For example, if you would like to fully save the PDF file and linearize it within a VB
.NET application, pass PDSaveFull + PDSaveLinearized (both defined in
iac.bas) into the ntype parameter; this is the equivalent of a binary OR of the
PDSaveFull and PDSaveLinearized parameters. In many instances, the numeric
values are spelled out in comments in the VB .NET sample code; however,
knowledge of why the methods are structured in this way and how they are utilized
in C can be useful to VB and C# .NET programmers.

Understanding the Acrobat OLE Interfaces

OLE 2.0 support includes several classes whose names begin with "CAcro" (such as
CAcroApp and CAcroPDDoc) to simplify driving Acrobat. Several files in the SDK
encapsulate the definitions of these classes.

The CAcro classes are defined in the Acrobat type library acrobat.tlb. The OLEView tool
in Visual Studio allows you to browse registered type libraries. Use acrobat.tlb when
defining OLE automation for a project in Microsoft Visual C++. The files acrobat.h and
acrobat.cpp are included in the Acrobat SDK, and implement a type-safe wrapper to the
Acrobat automation server.

N O T E : Do not modify the acrobat.tlb, acrobat.h, and acrobat.cpp files in the SDK;
these define Acrobat’s OLE automation interface.

The CAcro classes inherit from the MFC COleDispatchDriver class. Understanding
this class makes it easier to write applications that use the CAcro classes and their
methods.

Acrobat Interapplication Communication Overview 27

OLE Support
OLE Automation Support

3

The COleDispatchDriver class implements the client side of OLE automation,
providing most of the code needed to access automation objects. It provides several
wrapper functions: AttachDispatch, DetachDispatch, and ReleaseDispatch,
as well as several convenience functions: InvokeHelper, SetProperty, and
GetProperty. You employ some of these methods when you use the Acrobat-provided
automation objects. Other methods are used in Acrobat’s implementation of these objects.

The next section discusses how to use the classes exported by acrobat.cpp, and shows
when to call the CreateDispatch and AttachDispatch methods.

See the Acrobat Interapplication Communication Reference for details on the CAcro classes
and their methods.

Using the COleDispatchDriver Class With Acrobat

COleDispatchDriver is essentially a “class wrapper” for IDispatch, which is the OLE
interface by which applications expose methods and properties so that other applications
written in Visual Basic and C# .NET can use the application’s features. This provides OLE
support for Acrobat applications.

Example 3.4 is a section of code from acrobat.h that declares the CAcroHiliteList
class. CAcroHiliteList is a subclass of the COleDispatchDriver class, which
means that it shares all the instance variables of COleDispatchDriver. One of these
variables is m_lpDispatch, which holds an LPDISPATCH for that object. An
LPDISPATCH is a long pointer to an IDispatch, which can be considered an opaque
data type representing a dispatch connection. m_lpDispatch can be used in functions
that require an LPDISPATCH argument.

EXAMPLE 3.4 CAcroHiliteList Class Declaration

class CAcroHiliteList : public COleDispatchDriver
{
public:

CAcroHiliteList() {}// Calls COleDispatchDriver default constructor
CAcroHiliteList(LPDISPATCH pDispatch) :

COleDispatchDriver(pDispatch) {}
CAcroHiliteList(const CAcroHiliteList& dispatchSrc) :

COleDispatchDriver(dispatchSrc) {}

// Attributes
public:

// Operations
public:

bool Add(short nOffset, short nLength);
};

OLE Support
OLE Automation Support

3

28 Acrobat Interapplication Communication Overview

Here is the related implementation section of the Add method from ACROBAT.CPP:

bool CAcroHiliteList::Add(short nOffset, short nLength)
{

bool result;
static BYTE parms[] =

VTS_I2 VTS_I2;
InvokeHelper(0x1, DISPATCH_METHOD, VT_I4, (void*)&result, parms,

nOffset, nLength);
return result;

}

When the Add method is called (such as with this code from Example 3.5),

hilite->Add(0, 10);

the InvokeHelper function gets called. This COleDispatchDriver method takes a
variable number of arguments. It eventually calls the Acrobat implementation for
CAcroHiliteList object’s Add method. This happens across the virtual OLE "wires"
and takes care of all the OLE details. The end result is that a page range is added to the
CAcroHiliteList object.

Example 3.5 is an implementation of a method adapted from the ActiveView sample in
the SDK:

EXAMPLE 3.5 Using C OleDispatchDriver Class

// This code demonstrates how to highlite words with
// either a word or page highlite list
void CActiveViewDoc::OnToolsHilitewords()
{

CAcroAVPageView pageView;
CAcroPDPage page;
CAcroPDTextSelect* textSelect = new CAcroPDTextSelect;
CAcroHiliteList* hilite = new CAcroHiliteList;
char buf[255];
long selectionSize;

if ((BOOL) GetCurrentPageNum() > PDBeforeFirstPage) {

// Obtain the AVPageView
pageView.AttachDispatch(m_pAcroAVDoc->GetAVPageView(),TRUE);

// Create the Hilite list object
hilite->CreateDispatch("AcroExch.HiliteList");
if (hilite) {

// Add the first 10 words or characters of that page to the hilite list
hilite->Add(0,10);
page.AttachDispatch(pageView.GetPage(), TRUE);

// Create text selection for either page or word hilite list
textSelect->AttachDispatch(page.CreateWordHilite(hilite->m_lpDispatch));

Acrobat Interapplication Communication Overview 29

OLE Support
OLE Automation Support

3

m_pAcroAVDoc->SetTextSelection(textSelect->m_lpDispatch);
m_pAcroAVDoc->ShowTextSelect();

// Extract the number of words and the first word of text selection
selectionSize = textSelect->GetNumText();
if (selectionSize)

sprintf (buf, "# of words in text selection: %ld\n1st word in text
selection = '%s'", selectionSize, textSelect->GetText(0));

else
sprintf (buf, "Failed to create text selection.");

AfxMessageBox(buf);
}

}

delete textSelect;
delete hilite;

}

In the above sample, the objects with the prefix CAcro are all CAcro class objects—and
they are also COleDispatchDriver objects—since all the Acrobat CAcro classes are
subclasses of COleDispatchDriver.

Instantiating a class is not sufficient to use it. Before you use an object, you must attach your
object to the appropriate Acrobat object by using one of the Dispatch methods of the
COleDispatchDriver class. These functions also initialize the m_lpDispatch
instance variable for the object.

This code from Example 3.5 illustrates how to attach an IDispatch that already exists:

CAcroAVPageView pageView;
// Obtain the AVPageView
pageView.AttachDispatch(m_pAcroAVDoc->GetAVPageView(), TRUE);

The GetAVPageView method of the CAcroAVDoc class returns an LPDISPATCH—
which is what the AttachDispatch method is expecting for its first argument. The BOOL
passed as the second argument indicates whether or not the IDispatch should be
released when the object goes out of scope, and is typically TRUE. In general, when an
LPDISPATCH is returned from a method such as GetAVPageView, you use
AttachDispatch to attach it to an object.

The following code from Example 3.5 uses the CreateDispatch method:

CAcroHiliteList *hilite = new CAcroHiliteList;
hilite->CreateDispatch("AcroExch.HiliteList");
hilite->Add(0, 10);

In this case, the CreateDispatch method both creates the IDispatch object and
attaches it to the object. This code works fine; however, the following code would fail:

CAcroHiliteList *hilite = new CAcroHiliteList;
hilite->Add(0, 10);

This error is analogous to using an uninitialized variable. Until the IDispatch object is
attached to the COleDispatchDriver object, it is not valid.

OLE Support
OLE Automation Support

3

30 Acrobat Interapplication Communication Overview

CreateDispatch takes a string parameter, such as “AcroExch.HiliteList”, which
represents a class. The following code is incorrect:

CAcroPDDoc doc = new CAcroPDDoc;
doc.CreateDispatch("AcroExch.Create");

This fails because Acrobat won’t respond to such a parameter. The parameter should be
"AcroExch.PDDoc" instead. The following table lists all the valid strings.

TABLE 3.1 Strings For CreateDispatch

Returning to the code in Example 3.5:

CAcroPDPage page;
page.AttachDispatch(pageView.GetPage(), TRUE);

A PDPage object is needed, because the purpose of this code is to highlight words on the
current page. Since it is a CAcro variable, it is necessary to attach to the OLE object before
using its methods. CreateDispatch cannot be used create a PDPage object (since
there is no “AcroExch.PDPage” object listed in Table 3.1). However, the AVPageView
method GetPage returns an LPDISPATCH pointer for a PDPage object. This is passed as
the first argument to the AttachDispatch method of the page object. (The TRUE
argument indicates we want the object to be released automatically when it goes out of
scope).

CAcroPoint: “AcroExch.Point”

CAcroRect: “AcroExch.Rect”

CAcroTime: “AcroExch.Time”

CAcroApp: “AcroExch.App”

CAcroPDDoc: “AcroExch.PDDoc”

CAcroAVDoc: “AcroExch.AVDoc”

CAcroHiliteList: “AcroExch.HiliteList”

CAcroPDBookmark: “AcroExch.PDBookmark”

CAcroMatrix: “AcroExch.Matrix”

AcroPDF: “AxAcroPDFLib.AxAcroPDF”

Acrobat Interapplication Communication Overview 31

OLE Support
OLE Automation Support

3

CAcroPDTextSelect* textSelect = new CAcroPDTextSelect;
textSelect->AttachDispatch

(page.CreateWordHilite(hilite->m_lpDispatch));
m_pAcroAVDoc->SetTextSelection (textSelect->m_lpDispatch);
m_pAcroAVDoc->ShowTextSelect();

This code does the following:

1. Declares a text selection object textSelect.

2. Calls the CAcroPDPage method CreateWordHilite, which returns an
LPDISPATCH for a PDTextSelect. CreateWordHilite takes an LPDISPATCH
argument representing a CAcroHilite list. The hilite variable already contains a
CAcroHiliteList object,and its instance variable m_lpDispatch contains the
LPDISPATCH pointer for the object.

3. Calls the CAcroAVDoc object’s SetTextSelection method to select the first ten
words on the current page.

4. Calls the AcroAVDoc’s ShowTextSelect method to cause the visual update on the
screen.

OLE Automation Using the JSObject Interface

Whenever possible, you should take advantage of the powerful capabilities inherent to
Acrobat JavaScript by using the JSObject interface available within the
AcroExch.PDDoc object. To obtain the interface, invoke the object’s GetJSObject
method, as shown below in Example 3.6:

EXAMPLE 3.6 Using the JSObject Interface

Dim gApp As Acrobat.CAcroApp
Dim gPDDoc As Acrobat.CAcroPDDoc
Dim jso As Object

Private Sub Form_Load()
 Set gApp = CreateObject("AcroExch.App")
 Set gPDDoc = CreateObject("AcroExch.PDDoc")

 If gPDDoc.Open("c:\adobe.pdf") Then
 Set jso = gPDDoc.GetJSObject
 jso.console.Show
 jso.console.Clear
 jso.console.println ("Hello, Acrobat!")
 gApp.Show
 End If
End Sub

OLE Support
Other Useful Information

3

32 Acrobat Interapplication Communication Overview

Other Useful Information

This section provides other pieces of information and hints useful in developing plug-ins
using OLE automation.

Using OLE Messages

The Acrobat OLE automation implementation is based on a synchronous messaging
scheme. When an application sends a request to Acrobat, the application processes that
request and returns control to the application. Only then can the application send Acrobat
another message. If your application sends one message followed immediately by another,
the second message may not be properly received (instead of generating a server busy
error, it fails with no error message).

For example, this problem manifests itself with the AVDoc.OpenInWindowEx method,
where a large volume of information regarding drawing position and mouse clicks is
exchanged, and with the usage of the PDPage.DrawEx method on especially complex
pages. With the DrawEx method, the problem arises when a WM_PAINT message is
generated. If the page is complex and the environment is multi-threaded, the application
may not finish drawing the page before the application generates another WM_PAINT
message. Since the application is single-threaded, multi-thread applications must take care
to handle this situation appropriately.

MDI Usage

Suppose you create a multiple document interface application that creates a static window
into which Acrobat displays (using the OpenInWindowEx call), and this window is based
on the CFormView OLE class. If another window is placed on top of that window and is
subsequently removed, the Acrobat window does not repaint correctly.

To fix this, assign the Clip Children style to the dialog template (on which CFormView is
based). Otherwise, the dialog erases the background of all child windows, including the
one containing the PDF file, which wipes out the previously covered part of the PDF
window.

Event Handling

When a PDF file is opened with OpenInWindowEx, Acrobat creates a child window on top
of it. This allows the application to receive events for this window directly. However, an
application must also handle the following events: resize, key up, and key down.

The following example from the ActiveView sample shows how to handle a resize
event:

Acrobat Interapplication Communication Overview 33

OLE Support
Other Useful Information

3

EXAMPLE 3.7 Handling Resize Events

void CActiveViewVw::OnSize(UINT nType, int cx, int cy)
{

CWnd* pWndChild = GetWindow(GW_CHILD);
if (!pWndChild)

return;
CRect rect;
GetClientRect(&rect);
pWndChild->
SetWindowPos(NULL,0,0,rect.Width,rect.Height,
SWP_NOZORDER | SWP_NOMOVE);

CView::OnSize(nType, cx, cy);

}

After sending the message to the child window, it also does a resize. This results in both
windows being resized, which is the desired effect.

OLE Support
OLE Automation Summary

3

34 Acrobat Interapplication Communication Overview

OLE Automation Summary

This section simply lists all the OLE automation methods. For complete descriptions of the
parameters associated with OLE automation methods, see the OLE automation sections of
the Acrobat Interapplication Communication Reference.

Objects

The Acrobat application is represented as several OLE automation objects:

● AcroExch.App — The application itself.

● AcroExch.AVDoc — A document as seen in the user interface.

● AcroExch.PDDoc — The underlying PDF representation of a document. The first
page in a PDDoc is page 0.

● AcroExch.Hilite — An entry in a highlight list. A highlight list is used to highlight
one or more groups of characters/words on a single page.

● AcroExch.AVPageView — The area of Acrobat’s window that displays the contents
of a document’s page.

● AcroExch.PDPage — A single page in the PDF representation of a document. The
first page in a PDDoc is page 0.

● AcroExch.PDAnnot — An annotation on a page in the PDF file.

● AcroExch.PDBookmark — A bookmark in a PDF file.

● AcroExch.PDTextSelect — A selection of text on a single page that may contain
more than one disjointed group of words.

● AxAcroPDFLib.AxAcroPDF — An object containing PDF browser controls. This
object provides simple methods making it possible to load a file, move to various pages
within a file, and specify various display and print options.

Data Types

Acrobat supports the following data types for OLE automation:

● AcroExch.HiliteList — A list of highlighted characters, which may include one
or more contiguous groups of characters or words on a single page. The Add function is
provided to add to a HiliteList.

● AcroExch.Point — A point, specified by its x– and y–coordinates.

● AcroExch.Rect — A rectangle, specified by the top left and bottom right points.

● AcroExch.Time — A specified time, accurate to the millisecond, including the day of
the week.

Acrobat Interapplication Communication Overview 35

OLE Support
OLE Automation Summary

3

Methods

Acrobat OLE automation support includes the following methods, grouped by object.

AcroExch.App

● CloseAllDocs — Closes all open documents.

● Exit — Exits Acrobat.

● GetActiveDoc — Gets the frontmost document.

● GetActiveTool — Gets the name of the currently active tool.

● GetAVDoc — Gets an AVDoc via its index within the list of open AVDoc objects.

● GetFrame — Gets the window’s frame.

● GetInterface — Gets an IDispatch interface for a named object such as a third-party
plug-in.

● GetLanguage — Gets a code that specifies which language Acrobat’s user interface is
using.

● GetNumAVDocs — Gets the number of open AVDocs.

● GetPreferenceEx — Gets a value in the preferences file for zoom values and colors.

● Hide — Hides Acrobat.

● Lock — Locks Acrobat.

● Maximize — Maximizes Acrobat.

● MenuItemExecute — Executes the menu item whose language-independent menu
item name is specified.

● MenuItemIsEnabled — Determines whether the specified menu item is enabled.

● MenuItemIsMarked — Determines whether the specified menu item is marked.

● MenuItemRemove — Removes the menu item whose language-independent menu
item is specified.

● Minimize — Minimizes Acrobat.

● Restore — Restores the Acrobat window to its previous state.

● SetActiveTool — Sets the active tool according to the specified name.

● SetFrame — Sets the window’s frame to the specified rectangle.

● SetPreferenceEx — Sets a value in the preferences file for zoom values and colors.

● Show — Shows Acrobat.

● ToolButtonIsEnabled — Determines whether the specified toolbar button is
enabled.

● ToolButtonRemove — Removes the specified button from the toolbar.

● UnlockEx — Unlocks Acrobat if it was previously locked.

OLE Support
OLE Automation Summary

3

36 Acrobat Interapplication Communication Overview

AcroExch.AVDoc

● BringToFront — Brings the window to the front.

● ClearSelection — Clears the current selection.

● Close — Closes a document.

● FindText — Finds the specified text, scrolls so that it is visible, and highlights it.

● GetAVPageView — Gets the AVPageView associated with an AVDoc.

● GetFrame — Gets the rectangle specifying the window’s size and location.

● GetPDDoc — Gets the PDDoc associated with an AVDoc.

● GetTitle — Gets the window’s title.

● GetViewMode — Gets the current document view mode (pages only, pages and
thumbnails, or pages and bookmarks).

● IsValid — Determines whether the AVDoc is still valid.

● Maximize — Maximizes the window if MaxSize is true.

● Open — Opens a file.

● OpenInWindowEx — Opens a PDF file and displays it in the specified window,
according to the specified page number, zoom factor, and page view.

● PrintPages — Prints a specified range of pages, displaying a print dialog box.

● PrintPagesSilent — Prints a specified range of pages without displaying any print
dialog box.

● SetFrame — Sets the window’s size and location.

● SetTextSelection — Sets the document’s selection to the specified, previously
created text selection.

● SetTitle — Sets the window’s title.

● SetViewMode — Sets the mode in which the document is viewed (pages only, pages
and thumbnails, or pages and bookmarks).

● ShowTextSelect — Changes the view so that the current text selection is visible.

Acrobat Interapplication Communication Overview 37

OLE Support
OLE Automation Summary

3

AcroExch.AVPageView

● DevicePointToPage — Converts the coordinates of a point from device space to
user space.

● DoGoBack — Goes to the previous view on the view history stack, if any.

● DoGoForward — Goes to the next view on the view history stack, if any.

● GetAVDoc — Gets the AVDoc corresponding to the current page.

● GetAperture — Gets the aperture associated with the current page. The aperture is
the rectangular region of the window in which the document is drawn, measured in
device space units.

● GetDoc — Gets the PDDoc object corresponding to the current page.

● GetPage — Gets the Page objectcorresponding to the current page.

● GetPageNum — Gets the page number of the page. The first page in a document is
page zero.

● GetZoom — Gets the current zoom factor, specified as a percent (for example, 100 is
returned if the magnification is 1.0).

● GetZoomType — Gets the current zoom type.

● Goto — Goes to the specified page.

● ReadPageDown — Scrolls forward through the document by one screen area.

● ReadPageUp — Scrolls backward through the document by one screen area.

● ScrollTo — Scrolls to the specified location on the current page.

● ZoomTo — Zooms to the specified magnification.

AcroExch.HiliteList

● Add — Adds the specified highlight to the current highlight list.

OLE Support
OLE Automation Summary

3

38 Acrobat Interapplication Communication Overview

AcroExch.PDAnnot

● GetColor — Gets an annotation’s color.

● GetContents — Gets a text annotation’s contents.

● GetDate — Gets an annotation’s date.

● GetRect — Gets an annotation’s bounding rectangle.

● GetSubtype — Gets an annotation’s subtype.

● GetTitle — Gets a text annotation’s title.

● IsEqual — Determines whether or not an annotation is the same as the specified
annotation.

● IsOpen — Tests whether a text annotation is open.

● IsValid — Tests whether an annotation is still valid.

● Perform — Performs a link annotation’s action.

● SetColor — Sets an annotation’s color.

● SetContents — Sets a text annotation’s contents.

● SetDate — Sets an annotation’s date.

● SetOpen — Opens or closes a text annotation.

● SetRect — Sets an annotation’s bounding rectangle.

● SetTitle — Sets a text annotation’s title.

AcroExch.PDBookmark

N O T E : It is not possible to create a bookmark with OLE—only to destroy one.

● Destroy — Destroys a bookmark. It is not possible to create a bookmark with OLE.

● GetByTitle — Gets the bookmark that has the specified title.

● GetTitle — Gets a bookmark’s title (up to 256 characters).

● IsValid — Determines whether the bookmark is still valid.

● Perform — Performs a bookmark’s action.

● SetTitle — Sets a bookmark’s title.

Acrobat Interapplication Communication Overview 39

OLE Support
OLE Automation Summary

3

AcroExch.PDDoc

● AcquirePage — Acquires the specified page.

● ClearFlags — Clears a document’s flags. The flags indicate:
– whether the document has been modified.
– whether the document is a temporary document and should be deleted when closed.
– the version of PDF used in the file. This method can be used only to clear, not to set,

flag bits.

● Close — Closes a file.

● Create — Creates a new PDDoc.

● CreateTextSelect — Creates a text selection from the specified rectangle on the
specified page.

● CreateThumbs — Creates thumbnail images for the specified page range in a
document.

● CropPages — Crops the pages in a specified page range.

● DeletePages — Deletes pages from a file.

● DeleteThumbs — Deletes thumbnail images from the specified pages in a document.

● GetFileName — Gets the name of the file associated with this PDDoc.

● GetFlags — Gets a document’s flags. The flags indicate:
– whether the document has been modified.
– whether the document is a temporary document and should be deleted when closed.
– the version of PDF used in the file.

● GetInfo — Gets the value of a specified key in the document’s info dictionary.

● GetInstanceID — Gets the instance ID from the ID array in the document’s trailer.

● GetJSObject — Gets a dual interface to the JavaScript object associated with the
PDDoc, allowing automation clients full access to the built-in and user-defined Acrobat
JavaScript methods available in the document.

● GetNumPages — Gets the number of pages in a file.

● GetPageMode — Gets a value indicating whether Acrobat is currently displaying only
pages, pages and thumbnails, or pages and bookmarks.

● GetPermanentID — Gets the permanent ID from the ID array in the document’s
trailer.

● InsertPages — Inserts the specified pages from a source document after the
indicated page within the current document.

● MovePage — Moves a page to another location within the same document.

● Open — Opens a file.

● OpenAVDoc — Opens a window and displays the document in it.

OLE Support
OLE Automation Summary

3

40 Acrobat Interapplication Communication Overview

● ReplacePages — Replaces the indicated pages in the current document with those
specified from the source document.

● Save — Saves a document.

● SetFlags — Sets a document’s flags. The flags indicate:
– whether the document has been modified.
– whether the document is a temporary document and should be deleted when closed.
– the version of PDF used in the file. This method can be used only to set, not clear, flag

bits.

● SetInfo — Sets the value of a key in a document’s info dictionary.

● SetOpenInfo — Sets the parameters that tell how a document is opened.

● SetPageMode — Sets the page mode in which a document is opened: display only
pages, pages and thumbnails, or pages and bookmarks.

AcroExch.PDPage

● AddAnnot — Adds a specified annotation at a specified location in the page’s
annotation array.

● AddNewAnnot — Creates a new text annotation and adds it to the page.

● CopyToClipboard — Copies a PDF image to the clipboard without requiring an
hWnd or hDC.

● CreatePageHilite — Creates a text selection from a list of character offsets and
character counts on a single page.

● CreateWordHilite — Creates a text selection from a list of word offsets and word
counts on a single page.

● CropPage — Crops the current page.

● DrawEx — Instructs Acrobat to draw into a specified window, specifying a page view
and zoom factor.

● GetAnnot — Gets the specified annotation on the page.

● GetAnnotIndex — Gets the index (in the page’s annotation array) of the specified
annotation.

● GetDoc — Gets the PDDoc associated with the page.

● GetNumAnnots — Gets the number of annotations on the page.

● GetNumber — Gets the page number of the current page. The first page in a
document is page zero.

● GetRotate — Gets the rotation value for the current page.

● GetSize — Gets a page’s width and height in points.

● RemoveAnnot — Removes the specified annotation from the page’s annotation array.

● SetRotate — Sets the rotation for the current page.

Acrobat Interapplication Communication Overview 41

OLE Support
OLE Automation Summary

3

AcroExch.PDTextSelect

● Destroy — Destroys a text selection.

● GetBoundingRect — Gets a text selection’s bounding rectangle.

● GetNumText — Gets the number of text elements in a text selection.

● GetPage — Gets the page number on which a text selection is located.

● GetText — Gets the text from the specified element of a text selection.

AxAcroPDFLib.AxAcroPDF

● GoBackwardStack — Goes to the previous view on the view stack, if it exists.

● GoForwardStack — Goes to the next view on the view stack, if it exists.

● GotoFirstPage — Goes to the first page in the document.

● GotoLastPage — Goes to the last page in the document.

● GotoNextPage — Goes to the page in the document, if it exists.

● GotoPreviousPage — Goes to the previous page in the document, if it exists.

● LoadFile — Opens and displays the specified document within the browser.

● Print — Prints the document according to the specified options in a user dialog box.

● PrintAll — Prints the entire document without a user dialog box.

● PrintAllFit — Prints the entire document without a user dialog box, and shrinks
pages as needed to fit the imageable area of a page in the printer.

● PrintPages — Prints the specified pages without displaying a user dialog box.

● PrintPagesFit — Prints the specified pages without displaying a user dialog box,
and shrinks pages as needed to fit the imageable area of a page in the printer.

● PrintWithDialog — Prints the document according to the specified options in a
user dialog box. These options may include embedded printing and specifying which
printer is to be used.

● SetCurrentHighlight— Highlights the text selection within the specified
bounding rectangle on the current page.

● SetCurrentPage — Goes to the specified page within the document.

● SetLayoutMode — Sets the layout mode for the page view.

● SetNamedDest — Changes the page view to the specified named destination.

● SetPageMode — Sets the page mode to display the document only, or to additionally
display bookmarks or thumbnails.

● SetShowScrollbars — Determines whether scrollbars will appear in the document
view.

● SetShowToolbar — Determines whether a toolbar will appear in the application.

● SetView — Determines how the page will fit in the current view.

OLE Support
OLE Automation Summary

3

42 Acrobat Interapplication Communication Overview

● SetViewRect — Sets the view rectangle according to the specified coordinates.

● SetViewScroll — Determines how the page will fit in the current view, and scrolls
the page either to the right or down by the specified amount.

● SetZoom — Sets the magnification according to the specified value, expressed as a
percent.

● SetZoomScroll — Sets the magnification according to the specified value, and
scrolls the page either to the right or down by the specified amount.

Acrobat Interapplication Communication Overview 43

4 DDE Support

This chapter describes DDE support in Acrobat under Microsoft Windows.

IMPORTANT: You should use OLE automation instead of DDE whenever possible, since DDE is
not a COM technology.

This chapter lists all DDE messages. For complete descriptions of the parameters associated
with DDE messages, see the DDE sections of the Acrobat Interapplication Communication
Reference.

Differences Among the Acrobat Applications

Acrobat 4.0 and later supports 32-bit applications.

Acrobat supports all of the DDE messages listed in Acrobat Application DDE Messages.

Adobe Reader supports only the following DDE messages: AppExit, CloseAllDocs,
DocClose, DocGoTo, DocGoToNameDest, DocOpen, FileOpen,
FilePrint, FilePrintEx, FilePrintSilent, and FilePrintTo.

DDE Support
General Information

4

44 Acrobat Interapplication Communication Overview

General Information

For all DDE messages listed in this chapter, the service name is acroview, the transaction
type is XTYPE_EXECUTE, and the topic name is control. The data is the command to be
executed, enclosed within square brackets. The item argument in the
DdeClientTransaction call is NULL.

Example 1 sets up a DDE message:

EXAMPLE 1 Set Up a DDE Message

DDE_SERVERNAME = "acroview";
DDE_TOPICNAME = "control";
DDE_ITEMNAME = "[AppHide()]";

N O T E : The square bracket characters in DDE messages are mandatory.

N O T E : DDE messages are case-sensitive and must be used exactly as described.

You must first open a document using the DocOpen DDE message in order to be able to
use other DDE messages on it. You cannot use DDE messages to close a document that a
user opened manually.

You can use NULL for pathnames, in which case the DDE message operates on the front
document.

If more than one command is sent at once, they are executed sequentially, and the results
appear to the user as a single action. For instance, you can utilize this feature to open a
document to a certain page and zoom level.

Page numbers are zero-based: the first page in a document is page 0.

Quotation marks are needed only if a parameter contains white space.

The document manipulation methods, such as those for deleting pages or scrolling, only
work on documents that are already open.

Acrobat Interapplication Communication Overview 45

DDE Support
Acrobat Application DDE Messages

4

Acrobat Application DDE Messages

This section lists all DDE messages. For complete descriptions of the parameters associated
with DDE messages, see the DDE sections of the Acrobat Interapplication Communication
Reference.

Application Configuration

● AppExit — Exits Acrobat.

● AppHide — Iconifies or hides Acrobat.

● AppShow — Shows Acrobat.

● CloseAllDocs — Closes all open documents.

● HideToolbar — Hides the toolbar.

● MenuitemExecute — Invokes a menu item, given its language-independent name.

● ShowToolbar — Shows the toolbar.

Document Manipulation

● DocClose — Closes the file without saving it and without prompting the user to save
the document if it has been modified.

● DocDeletePages — Deletes a specified range of pages in a document. It cannot
delete all pages in a document.

● DocInsertPages — Inserts specified pages from one file into another.

● DocOpen — Opens a document and adds it to the list of documents known to DDE,
allowing it to be manipulated by other DDE messages (for example, FileOpen).

● DocReplacePages — Replaces specified pages using pages from another file.

● DocSave — Saves the specified file.

● DocSaveAs — Saves an open file into a new file, without warning the user if there is a
problem saving.

● DocSetViewMode — Controls whether bookmarks or thumbnail images are shown in
addition to the document content.

● FileOpen — Opens and displays a file, making it the current document and bringing it
to the front if it is already open.

● FileOpenEx — Opens and displays a file, making it the current document and
bringing it to the front if it is already open. The file is opened during an idle loop to allow
DDE messages to continue flowing during the opening of large documents.

DDE Support
Acrobat Application DDE Messages

4

46 Acrobat Interapplication Communication Overview

Document Printing

● DocPrint — Prints a specified range of pages from a document, without displaying a
modal Print dialog box to the user.

● FilePrint — Prints all pages in a document, displaying a modal Print dialog box to
the user.

● FilePrintEx — Prints all pages in a document, displaying a modal Print dialog box to
the user. Only PostScript Level 1 operators are used for PostScript printing. Printing is
performed during an idle loop to allow DDE messages to continue flowing during the
printing of large documents.

● FilePrintSilent — Prints all pages in a document, displaying no print dialog box
to the user.

● FilePrintSilentEx — Prints all pages in a document, displaying no print dialog
box to the user. Only PostScript Level 1 operators are used for PostScript printing.
Printing is performed during an idle loop to allow DDE messages to continue flowing
during the printing of large documents.

● FilePrintTo — Prints all pages in a document to a specified printer, using a specified
driver and port, displaying a modal Print dialog box to the user.

● FilePrintToEx — Prints all pages in a document to a specified printer, using a
specified driver and port, displaying a modal Print dialog box to the user. Only
PostScript Level 1 operators are used for PostScript printing. Printing is performed
during an idle loop to allow DDE messages to continue flowing during the printing of
large documents.

View Manipulation

● DocGoTo — Goes to the specified page.

● DocGoToNameDest — Goes to the specified name destination within the document.

● DocPageDown — Scrolls forward through the document by one screen area.

● DocPageLeft — Scrolls to the left by a small amount.

● DocPageRight — Scrolls to the right by a small amount.

● DocPageUp — Scrolls backward through the document by one screen area.

● DocScrollTo — Scrolls the view of the current page to a specified location.

● DocZoomTo — Sets the zoom for a specified document.

Search-related

● DocFind — Finds a string in a specified file.

Acrobat Interapplication Communication Overview 47

A IAC Coordinate Systems

The Acrobat application’s IAC support uses two coordinate systems: user space and device
space. This appendix describes these coordinate systems.

User Space

User space is the coordinate system used within PDF files. In the IAC interface, it is used for
most PD layer objects (that is, objects such as PDBookmark whose names begin with
“PD”). Figure A.1 shows the user space coordinate system. The orientation, origin, and scale
of the user space coordinate system can be changed by operators in the page description
in a PDF file.

FIGURE A.1 User Space Coordinate System

Default user space is the user space coordinate system in effect immediately before each
page begins drawing. The origin of this coordinate system is the lower left corner of a
page’s media box. The x-coordinate increases to the right, and the y-coordinate increases
upward. One unit in default user space is 1/72 of an inch.

Media Box

Crop Box

(0,0)

IAC Coordinate Systems
Device Space

A

48 Acrobat Interapplication Communication Overview

Device Space

Device space specifies coordinates in screen pixels, as shown in Figure A.2. It is used in the
AVModel portion of the IAC interface (that is, objects such as AVDoc whose names begin
with “AV”).

FIGURE A.2 Device Space Coordinate System

The origin of the device space coordinate system is at the upper left corner of the visible
page on the screen (that is, the upper left corner of the white part of the page). The x-
coordinate increases to the right, and the y-coordinate increases downward.

N O T E : The upper left corner of the visible page is determined by the intersection of a
page’s PDF crop box and media box. As a result, the device space coordinate system
changes if the cropping on a page changes.

Media Box

Aperture

Crop Box

(0,0)

Acrobat Interapplication Communication Overview 49

B Visual Studio .NET Migration

Introduction

In general, Acrobat 6 and earlier plug-ins require no code modification to make them
compatible with Acrobat 7 running on any Windows platform.

However, the Acrobat 7 SDK is only supported within Visual Studio .NET 2003, so you must
upgrade your plug-ins from earlier versions of Visual Studio.

Upgrading Plug-ins to Visual Studio .NET 2003

Use Visual Studio .NET 2003 to automatically convert your project from previous versions of
Visual Studio. Once this is accomplished, you must also make the following changes to your
plug-in’s project:

● Update the relative path of the header files in the file AcroDSPOptions.rsp. Note that
the Headers folder now contains three sub-folders: ADM, API, and SDK.

● Update the paths of all files that are located in the header files folders and are source
files for your project. Additionally, for each plug-in you must also update the path for
PIMain.c. For plug-ins that use ADM, update the paths for ADMAcroSDK.cpp and
ADMAcroSDK.h. To update these files, delete the source file from your project and then
add it back in using the correct path.

● For each plug-in, turn on the GS switch. This is accomplished through the usage of
Project->Properties->C/C++/->Code Generation: set the Buffer Security Check flag
to Yes (/GS).

● Enable incremental linking for each plug-in. This is accomplished through the usage of
Project->Properties->Linker->General: set the Enable Incremental Linking flag to
Yes.

Once you have upgraded your project, recompile your plug-in using the headers provided
in the Acrobat 7 SDK.

Be sure that the AcroSDKPIDir environment variable is set correctly. This is accomplished
through the usage of My Computer->Control Panel->System->Advanced: set the
environment variable to the desired location for your plug-ins.

Visual Studio .NET Migration
Upgrading Plug-ins to Visual Studio .NET 2003

B

50 Acrobat Interapplication Communication Overview

	Acrobat Interapplication Communication Overview
	Adobe Acrobat 7.0.5
	Contents
	Preface
	What Is In This Document
	Prerequisites
	Related Documents
	Developer Documentation
	Code Samples
	Interapplication Communication Documentation
	Core API Documentation
	File Format Documentation
	Platform-Specific Documentation

	Conventions Used in This Book

	Architecture
	Interapplication Communication Objects
	Accessing the AV and PD Layers

	Using Plug-ins for Interapplication Communication
	The Role of Plug-ins in Extending IAC Interfaces
	Using Acrobat JavaScript in InterApplication Communication

	Apple Event Support
	Acrobat Objects In Apple Events
	Acrobat Support For Apple Events
	Required Events
	Core Events
	Acrobat-specific Events
	Miscellaneous Apple Events

	OLE Support
	Differences Among the Acrobat Applications
	How To Tell If an Acrobat Application Is Running

	OLE Server Support
	OLE Automation Support
	Dual Interfaces
	OLE Objects and Methods
	What’s Possible: Examples and Approaches
	Development Environments
	Using Visual Basic and Visual C# .NET with the Acrobat SDK
	Understanding the Acrobat OLE Interfaces
	Using the COleDispatchDriver Class With Acrobat
	OLE Automation Using the JSObject Interface

	Other Useful Information
	Using OLE Messages
	MDI Usage
	Event Handling

	OLE Automation Summary
	Objects
	Data Types
	Methods

	DDE Support
	Differences Among the Acrobat Applications
	General Information
	Acrobat Application DDE Messages
	Application Configuration
	Document Manipulation
	Document Printing
	View Manipulation
	Search-related

	IAC Coordinate Systems
	User Space
	Device Space

	Visual Studio .NET Migration
	Upgrading Plug-ins to Visual Studio .NET 2003

