

 Adobe®

 Dreamweaver® CS5.5
 Designing and Developing for Mobile
with jQuery, HTML5 and CSS3

David Powers

Studio Techniques

Adobe Dreamweaver CS5.5 Studio Techniques:
Designing and Developing for Mobile with jQuery, HTML5, and CSS3

David Powers

This Adobe Press book is published by Peachpit.
For information on Adobe Press books, contact:

Peachpit
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

For the latest on Adobe Press books, go to www.adobepress.com
To report errors, please send a note to errata@peachpit.com
Peachpit is a division of Pearson Education.

Copyright © 2011 by David Powers

Associate Editor: Valerie Witte
Production Editor: Cory Borman
Developmental Editor: Anne Marie Walker
Copyeditor: Anne Marie Walker
Proofreader: Patricia Pane
Composition: WolfsonDesign
Indexer: Joy Dean Lee
Cover Image: Alicia Buelow
Cover Design: Charlene Charles-Will

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity
with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained
in this book or by the computer software and hardware products described in it.

Trademarks
Dreamweaver and Photoshop are either trademarks or registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear
as requested by the owner of the trademark. All other product names and services identified throughout this book are
used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13:	 978-0-321-77325-8
ISBN–10:	978-0-321-77325-X

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.adobepress.com

iii

Contents
About the Author iv
Acknowledgments v
Introduction vi

Section I Dreamweaver CS5.5	 1

Chapter 1 Dreamweaver Goes Mobile 3
Assessing HTML5 and CSS3 6
Using HTML5 and CSS3 with Dreamweaver CS5.5 14
Developing for Multiple Devices 27

Section II HTML5 and CSS3	 69

Chapter 2 �Progressive Enhancement
with HTML5 and CSS3 29
Improving an Existing Site 31
Sacrificing a Uniform Look 68

Chapter 3 �Adapting Pages for Mobile with
Media Queries 7
Understanding Media Queries 73
Adapting the Tozai Hotel Site 82
Assessing Media Queries 115

Chapter 4 �Making Your Site Available Offline 117
How Offline Sites Work 118
Making the Tozai Hotel Site Available Offline 124
Going Offline 138

Section III jQuery Mobile and PhoneGap 139

Chapter 5 Introducing jQuery Mobile 141
Creating a Basic Site with jQuery Mobile 143
Building on a Solid Foundation 173

Chapter 6 Diving Deeper into jQuery Mobile 175
A Guide to jQuery Mobile Custom Data Attributes 177
Rapid Deployment with jQuery Mobile Widgets 188
Case Study:  Creating a Reservation Form 207
Submitting a Form and Displaying the Response 216
Getting Your Hands Dirty with Code 218

Chapter 7 Building a Native App with PhoneGap 219
Setting Up PhoneGap in Dreamweaver 221
Case Study: A Travel Notes App 230
Going Further 270

 Index 271

 �Bonus material mentioned in this eBook is
available after the index.

iv

About the Author

David Powers started developing websites in 1994 while
at the BBC (British Broadcasting Corporation). He’d just
taken on the role of Editor, BBC Japanese TV, and needed
a way of advertising the fledgling channel in Japan. The
problem was that he had no advertising budget. So, he
begged the IT department for a corner of server space and
singlehandedly developed an 80-page bilingual website,
which he regularly maintained for the next five years—on
top of all his other duties.

After three decades as a radio and TV journalist, David
left the BBC in 1999 to work independently. He created
multilingual websites for several leading clients, including
the Embassy of Japan in London and Oxford Analytica.
In 2003, he decided to combine his professional writing
and editing expertise with his passion for the web, and
began writing books on web development. This is his
fourteenth so far. Readers frequently comment on David’s
ability to explain complex technical subjects in a jargon-
free style that’s easy to understand. At the same time, he
doesn’t talk down to readers, thereby appealing equally to
more experienced web developers.

David is an Adobe Community Professional and Adobe
Certified Instructor for Dreamweaver. You’ll often find
him giving help and advice in the Dreamweaver forums
and Adobe Developer Center—to which he has contrib-
uted many popular tutorials and training videos. He greatly
enjoys traveling and taking photos—all the photos used in
this book were taken by him.

David has also translated a number of musical plays from
Japanese into English, and he likes nothing better than
sushi with a glass or two of cold sake.

v

Acknowledgments

Writing a book about new software is a solitary activity,
grappling with a constantly moving target and pounding
the keyboard to deliver the chapters on time. But none of it
would be possible without an army of helpers. First, there’s
Scott Fegette, Senior Product Manager for Dreamweaver,
who kept me informed of the engineering team’s plans.
Then there’s Kin Blas, a Dreamweaver engineer actively
involved in developing jQuery Mobile, who clarified points
I found difficult to understand. My thanks go to them and
to the rest of the Dreamweaver team for their help both
directly and indirectly.

I’ve also had a strong backup team at Peachpit: Victor
Gavenda, who accepted the concept of this book and liked
it so much that he persuaded Adobe Press that it was high
time one of my books was printed in color; Valerie Witte,
my editor, who calmly accepted my frequent changes of
mind about the structure of the book; Anne Marie Walker,
my development editor, who picked up inconsistencies
and helped me (mis)spell the American way; Tom Muck,
my technical editor, who spotted problems with code and
made suggestions to improve it; and Cory Borman, who
oversaw the production process.

Many others have helped indirectly. At times, the Twitter
stream felt like an annoying distraction, but it provided
some invaluable leads, alerting me to changes in this fast-
moving industry. It also provided some essential light relief,
although I’m not sure I’m ready to watch another cat video
just yet.

vi

Introduction

Don’t be fooled. Although the .5 might give the impression
that Dreamweaver CS5.5 is a point release, it’s anything but.
Dreamweaver engineers have packed a stunning amount
of new features into this version. To mention just a few,
there’s code hinting for the popular jQuery JavaScript
library, the ability to see what pages will look like at differ-
ent screen resolutions without leaving the Document win-
dow, support for jQuery Mobile widgets, and integration
of PhoneGap to build native apps for Android or iOS (the
operating system used in the iPhone, iPad, and iPod touch).

The emphasis in Dreamweaver CS5.5 is firmly on mobile
development and designing for multiple screens, but that’s
not all. There’s improved support for HTML5 and CSS3,
including tools to simplify the creation of rounded cor-
ners and drop shadows without images. Previous versions
of Dreamweaver supported only a limited range of CSS
selectors. Live view now supports them all. Oh yes, Dream-
weaver CS5.5 supports web fonts, too.

There’s a lot to absorb, and this book aims to guide you
through all the new features with the help of three case
studies. The first one centers on redesigning a website
for display on desktops, tablets, and smartphones using
HTML5, CSS3, and media queries. The second takes a cut-
down version of the same site and builds a dedicated mobile
version using jQuery Mobile, a sophisticated JavaScript and
CSS framework designed to work consistently on all major
mobile platforms. The final case study develops a simple
app that stores information in a database, accesses a mobile
phone’s GPS sensor, and displays a map.

Is This the Right Book for You?

The new features in Dreamweaver CS5.5 are aimed at web
designers and developers who are already comfortable with
HTML and CSS. It also helps to have at least a basic under-
standing of JavaScript and some jQuery experience. If the

vii

Introduction

thought of diving into code sends shivers up your spine,
this might not be the most appropriate book for you. Web
development is becoming increasingly sophisticated, and
the days of just copying and pasting snippets of code are
rapidly drawing to a close.

Having said that, you don’t need to be an expert. I firmly
believe that if you understand why you’re being told to do
something a particular way, you’re more likely to remember
and be able to adapt it for your own projects. Each step is
explained, as are new concepts, but I don’t go back to basics,
such as describing what a function or event handler is.

Mac or Windows?

The differences between the Mac and Windows versions
of Dreamweaver are so few as to be negligible. In the rare
cases where there is a difference, I point it out and show a
screen shot if necessary. The most important difference,
as far as this book is concerned, lies in PhoneGap integra-
tion. Both Windows and Mac support Android, but the
software necessary to build apps for iOS runs only on a Mac.
The other difference, as always, lies in keyboard shortcuts.
I provide both versions, Windows first, followed by Mac.

Using a multibutton mouse is now so common among
Mac users that I refer only to right-click instead of giving
Control-click as the alternative. On most Macs, the F keys
now control hardware features, such as sound level and
brightness. When I refer to F keys, you need to hold down
the Fn key at the same time. Alternatively, open Keyboard
in System Preferences and select the “Use all F1, F2, etc.
keys as standard function key” check box.

Although I test on both operating systems, I had to choose
one for taking screen shots. Most of them have been taken
on Windows 7, but some have been taken on Mac OS X 10.6
where appropriate. However, this is a book about mobile
development. So, many screen shots have also been taken
on Android (HTC Desire and Samsung Galaxy Tab) and
iOS (iPad and iPod touch). I also tested on a BlackBerry
Torch and Windows Phone 7.

viii

Introduction

Downloading the Case Study Files

This book doesn’t come with a CD. However, you can
download the files used in the case studies from my website
at http://foundationphp.com/dwmobile. In most cases,
all the necessary files are supplied. However, for licensing
reasons, you need to obtain the Calluna Regular web font
directly (the details are in Chapter 2). Also, the download
files don’t include the jQuery Mobile or PhoneGap libraries.
Dreamweaver copies them directly to your site when you
create a jQuery Mobile page (see Chapter 5) or define the
Native Application Settings (see Chapter 7).

Keeping Up to Date

The jQuery Mobile framework was feature complete at
the time Adobe locked down the code for the release
of Dreamweaver CS5.5. However, work continued on
stabilizing and optimizing performance. Consequently,
newer versions of the jQuery Mobile style sheet, external
JavaScript files, and images are likely to be available by the
time you read this. Adobe plans to release extensions to
update the files in Dreamweaver. Chapter 5 also describes
how to change the source folder for the files so that you
can use your own customized versions.

Because jQuery Mobile is a new framework, it’s likely to
continue to develop. I’ll try to keep abreast of its progress
and will post updates that affect this book on my website at
http://foundationphp.com/dwmobile.

Adobe is a jQuery Mobile project sponsor, and Dreamweaver
engineers are playing an active role in its development.
That holds the promise of even greater things to come.

http://foundationphp.com/dwmobile
http://foundationphp.com/dwmobile

chapter

4
Making Your Site
Available Offline

118

Chapter 4	 Making Your Site Available Offline

You can’t always get what you want,
But if you try sometimes,
You might get what you need.

—The Rolling Stones

Making Your Site Available Offline

Loss of signal is probably one of the most frustrating aspects
of surfing the web with a mobile device. You’ve just clicked
a link and the page is beginning to load when your train
enters a tunnel. Your connection disappears. Even when
the train emerges from the tunnel, your mobile has to
hunt for a signal and you often need to start all over again.

HTML5 can’t improve mobile connectivity, but it does
make it possible to continue interacting with websites, even
when no network connection is available. The secret lies
in caching the necessary files. Although browsers auto-
matically cache recently downloaded files, what’s different
about HTML5 is that you can instruct the browser to down-
load files in advance of their being needed. You can also
specify alternative files to be displayed if the user is offline.

In this chapter, you’ll learn how to make a site available
offline by creating a file that not only tells the browser
which files to cache, but also specifies substitute files for
offline use. To speed up this process, the download files for
this chapter contain a Dreamweaver extension that I cre-
ated to generate a list of all files used in a site or folder.

How Offline Sites Work

To make a site available without a network connection—
an offline web application, as the HTML5 specification calls
it—you need to create a manifest. This is a list of files that
the browser needs to download and store in an application
cache. The first time someone visits your site, the browser

119

II: HTML5 and CSS3

checks the manifest and downloads the listed files ready for
use offline. The next time the same user visits your site, the
browser checks the manifest. If it detects a change, all the
files are downloaded again, updating the application cache.

Figure 4.1 shows which browsers support offline applica-
tions as reported by caniuse.com. Light green shows full
support; darker green shows partial support; and pink
indicates no support. Internet Explorer (IE) is the only
mainstream browser with no support. Crucially, though,
iOS Safari, Android, and Opera Mobile all support offline
access, making it ideal for websites that you expect to be
accessed on mobile devices.

Figure 4.1  Most modern browsers apart from IE support offline access.

Creating a Manifest

The manifest is a plain text file that must be saved with a
.manifest filename extension. It’s not important where
you locate the manifest, but the most logical place is in the
site root. However, if you want to make only part of a site
available offline, the manifest should be located in the rel-
evant folder and cover the files in all subfolders. The first
line inside the manifest file should look like this:

CACHE MANIFEST

There should be only a single space between CACHE and
MANIFEST, both of which should be in uppercase.

Firefox alerts users that the site is
asking to store data on your com-
puter for offline use and offers the
option to decline. Most other brows-
ers download the files without asking.

120

Chapter 4	 Making Your Site Available Offline

Following this is a list of files grouped according to how
you want them to be treated when the user is offline:

	.	 	Explicit section. All files in this section are downloaded
automatically, even if they’re not required for the
current page.

	.	 Online whitelist section. Files in this section are never
cached. The browser always tries to access the online
version.

	.	 Fallback section. This is where you specify substitute files
that the browser should use when the user is offline.

The following basic rules apply to all sections:

	.	 Each file must be listed on a separate line, except in the
fallback section where the original and substitute files
are listed on the same line with a space between them.

	.	 Document-relative paths should be relative to the
manifest.

	.	 Paths relative to the site root (in other words, those that
begin with a leading slash) or fully qualified URLs are
also acceptable.

	.	 The list should include not only web pages, but other
assets, such as images, style sheets, and JavaScript files.

	.	 Blank lines are permitted.

	.	 Comments can be included, but they must be on a
separate line beginning with a hash or pound sign (#)
optionally preceded by spaces or tab characters.

Sections can be listed in any order and don’t need to be a
single block. For example, you might want to make some
files available offline only for a limited period. So, it makes
sense to list them separately from the core files that don’t
normally change.

You create sections by placing a section header on a sepa-
rate line.

Specifying files that should be cached

The explicit section is the default, so files listed immedi-
ately after CACHE MANIFEST are automatically downloaded
and cached. To switch back to the explicit section after the

Section headers must be written
in uppercase and are followed by a
colon. Headers can be preceded by
spaces, but there should be nothing
else on the same line.

121

II: HTML5 and CSS3

online whitelist or fallback section, place the following
section header on a separate line:

CACHE:

Specifying files that must always be accessed online

Server-side scripts and other files that you don’t want to
be cached locally should be listed in the online whitelist
section. You create this by adding the following header on
a separate line:

NETWORK:

Then list the path or URL of each file on a separate line in
the same way as for files that you want to be downloaded.

If your site accesses resources on other domains or subdo-
mains, you should add an asterisk (*) on a line of its own
in the online whitelist section like this:

NETWORK:

*

This indicates that access to resources on other domains is
not blocked.

Specifying alternative files to use offline

To specify alternatives for files that can’t be accessed
offline, create a fallback section by placing the following
section header on a separate line:

FALLBACK:

Each entry in the fallback section lists a file in the online
site followed by the location of a substitute file to be used
when offline. Both files are listed on the same line and
separated by one or more spaces.

To represent any file, use a single forward slash (/) as the
first part of the entry. For example:

FALLBACK:

/ offline.html

This substitutes offline.html for any file not listed elsewhere.

Technically speaking, you can use
the CACHE: section header imme-
diately after CACHE MANIFEST,
but it’s unnecessary.

122

Chapter 4	 Making Your Site Available Offline

Keeping the cache up to date

More often than not, updates to a site involve changing the
contents of a file without changing its name. This presents
a problem for the application cache. The browser checks
only the filenames in the manifest. If they’re the same, it
assumes the cache doesn’t need updating.

To force the browser to update the cache, you need to
change the contents of the manifest. The simplest way to
do this is to add a comment with a version number like this:

CACHE MANIFEST

version 4

Increment the version number each time you make
changes to the site, and upload the revised manifest after
all the changes have been uploaded. You don’t need to
use a version number. Any unique value—such as a time-
stamp—in a comment will do.

Serving the Manifest

You attach a manifest to a web page with the HTML5
manifest attribute in the opening <html> tag like this:

<html manifest=”mysite.manifest”>

The value of the manifest attribute should be a document-
relative or site-root-relative path to the manifest file.

You should do this in every page in a site that you want to
make available offline.

It’s important to serve the manifest with the correct MIME
type: text/cache‑manifest.

Because this is a new MIME type, it might not be supported
by all servers.

Setting the correct MIME type on Apache

If your web server runs on Apache, you should be able to
configure it using an .htaccess file in your site root. If you
already have an .htaccess file, add the following line to it:

AddType text/cache-manifest .manifest

Browser Caches

Application caches are designed to make the
website—or parts of it—available offline. They’re
separate from the normal browser cache, which
speeds up the rendering of pages by avoiding the
need to download files that haven’t changed. When
the normal cache reaches capacity, older files are
deleted to make way for newer ones. The location of
both types of cache is dependent on the browser.

The HTML5 specification doesn’t prescribe any limit
for the amount of disk space used by an application
cache. The specification is equally vague about
allowing users to delete specific application caches.
Web developers should exercise their judgment
about which files to make available offline and not
fill up users’ disk space unnecessarily.

123

II: HTML5 and CSS3

If you don’t have an .htaccess file, you can create one
in Dreamweaver:

1.		 Choose File > New.

2.		 In the New Document dialog box, select Other from
the list on the left, and set Page Type to Text. Click
Create.

3.		 Type the following line of code into the new document,
paying careful attention to spelling (Apache directives
are case-sensitive):

AddType text/cache-manifest .manifest

4.		 Save the file in your site root with the name .htaccess.
The name begins with a dot. Although it’s a text file,
make sure it’s not saved with a .txt filename extension.

On Windows, the file will be saved as normal.

On a Mac, you’ll see a warning that files with names
that begin with a dot are reserved for the system and
will be hidden (Figure 4.2). Click Use “.”. The file will
be listed as normal in the Dreamweaver Files panel.
However, you won’t be able to see it in the Finder or
any other Mac program unless it supports hidden files.

5.		 Upload the .htaccess file to your website.

Setting the MIME type on other web servers

If your website is on a server other than Apache, you
need to ask the server administrator to enable the text/
cache‑manifest MIME type.

Figure 4.2  On a Mac, Dreamweaver
warns you that names beginning with
a dot have special status.

.htaccess

An .htaccess file is a mini-configuration file
for the Apache web server. It has the advantage
that all the settings are applied immediately
without the need to restart the server. Normally,
an .htaccess file is located in the site root
and applies to the whole site. However, you can
apply different settings to individual folders
(directories) by placing an .htaccess file in
the folder you want to control (the same settings
apply to all subfolders unless overridden by another
.htaccess file).

Most hosting companies configure their servers
to allow site owners to fine-tune their settings
with .htaccess. However, if you don’t have
permission to use .htaccess, you need to ask
the server administrator to enable the text/
cache‑manifest MIME type.

124

Chapter 4	 Making Your Site Available Offline

Creating a “Lazy” Manifest

The HTML5 specification includes among its examples the
following extremely simple manifest:

CACHE MANIFEST

FALLBACK:

/ /offline.html

NETWORK:

*

Instead of downloading all pages immediately, the browser
stores only the fallback page (offline.html) and pages that
are visited while the user is online. When the user goes
offline, cached pages are retrieved from the user’s applica-
tion cache. But if the user clicks a link to a page that hasn’t
previously been visited, offline.html is displayed instead.

This lazy way of caching can be very useful on a large site.
However, you still need to update the manifest with a ver-
sion number or other unique value each time a page is
edited. Otherwise, the old version of the page remains in
the application cache.

Only HTML pages can be linked to a manifest. So, other
resources—such as style sheets and images—are not stored
in the application cache unless they’re listed in the explicit
section of the manifest.

Making the Tozai Hotel Site Available Offline

As you just learned, making a website available offline is a
simple matter of generating the manifest, uploading it to
your website, and making sure that it’s served with the cor-
rect MIME type. The user’s browser takes care of the rest.
If the browser doesn’t support offline web applications, it
simply ignores the manifest.

The Tozai Hotel website consists of only 28 files, so typing
out the manifest manually isn’t a major chore, although
it’s important to get the spelling and path names right.
However, life would be a lot easier if you could generate a
file list automatically. So, I created a Dreamweaver exten-
sion to do it for you.

As long as they’re attached to a
manifest, visited pages are stored
in the application cache because
a page that links to the manifest
is automatically included in the
explicit section. However, it’s gener-
ally recommended that you list files
individually rather than relying on
this default behavior.

Web pages that use a server-side
technology, such as PHP, ColdFusion,
or ASP.NET, can also be linked to a
manifest. However, the offline ver-
sion stored by the application cache
contains only the HTML output.
For example, if the dynamic code
outputs the current date, the ver-
sion stored in the application cache
displays the date when the online
version was most recently accessed.
As soon as you go back online, the
stored date is updated.

125

II: HTML5 and CSS3

Installing the Generate Site Manifest Extension

The Generate Site Manifest extension is included in the
download files for this book, and it takes only a minute or
so to install.

1.		 Launch Adobe Extension Manager CS5.5 from within
Dreamweaver or directly using one of the following
methods:

	.	 �Choose Commands > Manage Extensions.

	.	 �Choose Help > Manage Extensions.

	.	 �Launch the Extension Manager from the Start
menu in Windows or from the Finder in Mac OS X.

2.		 Click the Install button in the Extension Manager title
bar, and navigate to the ch04/extension folder in the
download files.

3.		 Select GenerateSiteManifest_1_0.mxp, and click Open
(Select on a Mac).

4.		 Read the Extension Disclaimer and choose to accept
the terms. The extension should install immediately
and display a brief description in the Extension
Manager (Figure 4.3).

Figure 4.3  The Generate Site
Manifest extension has been
successfully installed.

126

Chapter 4	 Making Your Site Available Offline

5.		 The Generate Site Manifest extension should now
be listed at the bottom of the Commands menu in
Dreamweaver (Figure 4.4).

6.		 Close the Extension Manager.

Using the Generate Site Manifest Command

The Generate Site Manifest command installed by the
extension inspects the site’s folder structure and builds
a list of all files (except manifests and their backups, and
.htaccess files), which it stores in a manifest file ready for
you to edit. The command’s dialog box (Figure 4.5) has
the following options:

	.	 �The radio buttons let you choose whether to list files
starting from the current folder or the site root.

	.	 �	If you choose the “Current folder,” all paths are
relative to the folder, and the manifest is created in
the same folder.

	.	 �If you choose “Site root,” the paths are relative to the
site root and the manifest is created in the root folder.

	.	 �By default, the manifest is saved as site.manifest.
However, you can change this by entering your own
value in the Name text field. The command automati-
cally adds the .manifest filename extension to the name.

When you run the command the first time, it sets the
manifest’s version number to 1. If the command detects
an existing manifest with the same name, it saves a backup
with a .manifest.bak filename extension before generat-
ing a new manifest with an updated version number. This
avoids the need to build the online whitelist and fallback
sections from scratch each time you generate a new mani-
fest file. You can copy and paste them from the backup
when editing the new file.

Try out the command with the Tozai Hotel files.

1.		 Open one of the HTML files in your working copy
of the Tozai Hotel site. Alternatively, open one of the
HTML files in ch03/complete.

Figure 4.4  The extension adds a new item at the
bottom of the Commands menu.

The extension should be enabled
immediately in Dreamweaver.
However, if it fails to appear at the
bottom of the Commands menu,
close and relaunch Dreamweaver.

Figure 4.5  The Generate Site Manifest dialog
box lets you choose the scope and name of
the manifest.

127

II: HTML5 and CSS3

2.		 Choose Commands > Generate Site Manifest.

3.		 Leave the options in the Generate Site Manifest dialog
box at their default settings, and click OK.

4.		 If site.manifest doesn’t immediately appear in the
Files panel, click the icon at the top of the panel
to refresh its contents. You should now see site.manifest
listed in the same folder as the file you opened
(Figure 4.6).

5.		 Before you can edit the manifest file in Dreamweaver,
you need to make a small adjustment to the program’s
preferences. Choose Edit > Preferences (Dreamweaver >
Preferences on a Mac), and select the File Types / Editors
category from the list on the left.

6.		 In the “Open in code view” field, insert a space at the
end of the existing list of filename extensions, and type
.manifest (Figure 4.7).

Figure 4.7  You need to add the .manifest filename extension to the list of
files that Dreamweaver can edit.

Figure 4.6  The manifest file has been created in
the same folder.

Don’t forget the period at the begin-
ning of .manifest.

128

Chapter 4	 Making Your Site Available Offline

7.		 Click OK to close the Preferences dialog box.

8.		 In the Files panel, double-click site.manifest to open
it in the Document window. You should see the follow-
ing code:

CACHE MANIFEST

version 1

dining.html

garden.html

index.html

reservations.html

rooms.html

fonts/Calluna-Regular-webfont.eot

fonts/Calluna-Regular-webfont.svg

fonts/Calluna-Regular-webfont.ttf

fonts/Calluna-Regular-webfont.woff

images/basin_bg.jpg

images/basin_bg_phone.jpg

images/basin_bg_tab.jpg

images/chef.jpg

images/cherry_blossom.png

images/exterior.jpg

images/exterior_tab.jpg

images/hotel-room.jpg

images/sake.jpg

images/sake_tab.jpg

images/sashimi.jpg

images/stone-lantern.jpg

images/sushi.jpg

js/jquery-1.5.min.js

styles/desktop.css

styles/phone.css

styles/tablet.css

styles/tozai.css

styles/tozai_mq.css

129

II: HTML5 and CSS3

You now have a complete list of files ready to divide
into the explicit, online whitelist, and fallback sections.

9.		 Edit the code by adding an online whitelist section
header before the list of font files like this:

CACHE MANIFEST

version 1

dining.html

garden.html

index.html

reservations.html

rooms.html

NETWORK:

fonts/Calluna-Regular-webfont.eot

10.	Save site.manifest and close it.

11.	Run the Generate Site Manifest command again and
refresh the Files panel if necessary. You should now
have both site.manifest and site.manifest.bak in the
same folder as the HTML file you opened.

12.	Double-click site.manifest to open it. The first few lines
should look like this:

CACHE MANIFEST

version 2

dining.html

garden.html

index.html

reservations.html

rooms.html

fonts/Calluna-Regular-webfont.eot

The version number has changed, and the list has been
generated anew, so the online whitelist section header
has disappeared.

130

Chapter 4	 Making Your Site Available Offline

13.	Right-click site.manifest.bak and choose Open with >
Dreamweaver from the context menu. The file contains
the edit you made in step 9.

You can continue experimenting with the Generate Site
Manifest command, selecting the option to list files starting
from the site root, and changing the name.

Editing the Manifest File

When deciding how to organize your manifest file, it’s a
good idea to look at the size of the files in your site. Unlike
media queries, you can’t restrict what is cached by each
type of device. It’s an all-or-nothing decision. Unless you’re
careful, you could undo all the good work of your media
queries by forcing mobile phones to download files they’ll
never use.

Overall, the Tozai Hotel site weighs in at 696 KB, broken
down as follows:

	.	 �Fonts. 212 KB

	.	 �Images. 370 KB

	.	 �JavaScript (external). 83 KB

	.	 �	Style sheets. 9 KB

	.	 �HTML files. 22 KB

Quite clearly, the bulk of the weight lies in the first three
categories. The fonts are used purely for aesthetic reasons,
so they can easily be sacrificed offline. The styles specify
alternative fonts anyway. Many of the images are decora-
tive, but the site would be less attractive and meaningful if
you got rid of all of them. However, the external JavaScript
file is used only by reservations.html, which is meaningless
offline. Although the form isn’t connected to a processing
script in the example files, in a real website users would need
to be online to submit a request about the availability of
rooms. So, the external JavaScript can be dispensed with; and
reservations.html needs to have a fallback page for offline use.

Losing the fonts, external JavaScript, and some of the
images reduces the overall download by approximately
half. You can’t avoid serving all the style sheets to every
device, but the size is trivial and could be reduced by elimi-
nating comments and unnecessary whitespace.

If you delete the existing manifest
files, the version number reverts to 1.
This is fine when experimenting be-
fore deploying a manifest file, but it
could cause problems with a live site.
If users have an earlier copy of the
manifest with the same number, the
updated files won’t be downloaded.

131

II: HTML5 and CSS3

Here’s my suggested version of site.manifest for the Tozai
Hotel site:

CACHE MANIFEST

version 1

dining.html

garden.html

index.html

rooms.html

images/basin_bg.jpg

images/chef.jpg

images/cherry_blossom.png

images/hotel-room.jpg

images/sashimi.jpg

images/stone-lantern.jpg

images/sushi.jpg

styles/desktop.css

styles/phone.css

styles/tablet.css

styles/tozai.css

styles/tozai_mq.css

FALLBACK:

images/basin_bg_phone.jpg images/basin_bg.jpg

images/basin_bg_tab.jpg images/basin_bg.jpg

reservations.html reservations_off.html

NETWORK:

fonts/Calluna-Regular-webfont.eot

fonts/Calluna-Regular-webfont.svg

fonts/Calluna-Regular-webfont.ttf

fonts/Calluna-Regular-webfont.woff

images/exterior.jpg

images/exterior_tab.jpg

images/sake.jpg

images/sake_tab.jpg

132

Chapter 4	 Making Your Site Available Offline

The following points should be noted:

	.	 Only one version of the background image at the top of
the page, basin_bg.jpg, is in the explicit section. It’s 37
KB but is required for the desktop layout.

	.	 The fallback section instructs browsers to replace
basin_bg_phone.jpg and basic_bg_tab.jpg with the
larger image, basin_bg.jpg, when offline. The styles
for tablets and phones use the CSS3 background-size
property to scale the image, so it looks the same in all
devices.

	.	 The fallback section tells browsers to substitute reser-
vations_off.html for reservations.html when offline.
This tells users to go online to check the availability of
rooms (Figure 4.8).

	.	 In addition to the fonts, four images that are 183 KB
in total have been added to the online whitelist sec-
tion. This prevents them from being downloaded to
the application cache. It means these particular images
won’t be available offline (Figure 4.9), but they’re
mainly decorative. However, they need to be listed
explicitly here. Otherwise, they aren’t displayed even
when the user is online.

	.	 The manifest results in browsers caching 177 KB, just
25 percent of the total size of the site.

Figure 4.8  When accessed offline, the
reservations page displays a different
message.

In a real-world situation, it would
make more sense to use the same
background image for all devices
rather than serving smaller ones
through media queries. Alternatively,
you could add the background im-
ages to the online whitelist section
to prevent them from being cached
and display the site offline without
the background image.

133

II: HTML5 and CSS3

Attaching the Manifest File

The manifest file needs to be attached to all web pages
listed in the explicit section. However, it should not be
attached to any pages that you don’t want to be cached,
because attaching a manifest automatically adds the file to
the explicit section, even if it isn’t listed there.

There are two ways to attach a manifest file in Dreamweaver:

	.	 Manually in Code view

	.	 With the Find and Replace dialog box

To attach a manifest file in Code view:

1.		 Position the insertion point just before the closing
angle bracket of the opening <html> tag at the top of
the page.

2.		 Insert a space to bring up code hints. Use your
keyboard down arrow key or mouse to select manifest
(Figure 4.10), and press Enter/Return or double-click.
This inserts manifest=”” and moves the insertion point
to between the quotes.

Figure 4.9  The exterior image isn’t
shown when the index page is viewed
offline on a tablet.

Instead of listing all files that you
don’t want to be downloaded, you
can use an asterisk (*) on a line of its
own after the NETWORK: section
header as a convenient shortcut.

Figure 4.10  Dreamweaver displays a code hint for
manifest in the <html> tag.

134

Chapter 4	 Making Your Site Available Offline

3.		 Type site.manifest (or the name of your manifest file)
between the quotes.

Alternatively, right-click and choose Code Hint Tools
> URL Browser from the context menu. Click Browse,
and navigate to the manifest file. Click OK (Choose on
a Mac) to insert the filename and path.

In a small site like Tozai Hotel, attaching a manifest file
manually to each HTML file takes only a couple of min-
utes, but you need a more efficient approach on a larger
site. Dreamweaver doesn’t have a dedicated dialog box to
handle this, but the Find and Replace dialog box does the
job quickly and easily.

This is how you do it:

1.		 In the Files panel, Ctrl-click/Command-click to select the
files you want to attach the manifest file to (Figure 4.11).

2.		 Choose Edit > Find and Replace or press Ctrl+F/
Command+F to open the Find and Replace dialog box.

3.		 Set “Find in” to Selected Files in Site.

4.		 Set Search to Specific Tag, and select html from the
adjacent list.

5.		 If necessary, click the icon to remove further search
option menus.

6.		 Set Action to Set Attribute, and select manifest from
the adjacent list.

7.		 In the To field, type the name (and path, if necessary)
of the manifest file. The settings in the Find and
Replace dialog box should now look like Figure 4.12.

Figure 4.12  Find and Replace offers
a quick way to attach a manifest to
multiple pages.

Figure 4.11  Select only the files that you want to
be cached by the manifest.

135

II: HTML5 and CSS3

8.		 Click Replace All.

9.		 Dreamweaver warns you that the operation cannot be
undone in files that are not currently open and asks
you to confirm. Click Yes.

10.	The Search tab of the Reports panel opens to display
the changes (Figure 4.13).

Right-click the gray area to the right of the tabs, and
choose Close Tab Group to close the Reports panel.

Testing a Site Offline

As soon as you add a manifest file to the pages in a site,
browsers that support offline web applications start cach-
ing the files. Once they’re stored in the application cache,
the browser relies on the manifest file to inform it of any
changes. It’s worth repeating that the manifest file needs
to be updated not only when you add or remove files from
the site, but also if existing pages are edited. Consequently,
you should attach the manifest file only in the final stages
of testing a site. Otherwise, you need to update the mani-
fest’s version number every time you make an adjustment
to the site.

When you have decided the site’s ready, create the mani-
fest file, and attach it to the pages you want to make avail-
able offline. Then upload the manifest and web pages to
your web server.

In theory, the application cache should be created and
populated by visiting just one page. However, the time it
takes for all files to be downloaded depends entirely on the
browser and network conditions.

Figure 4.13  The Reports panel
confirms that the manifest attribute
has been added to the selected pages.

If you attach the wrong file or make
a mistake in the path name, you can
use the Find and Replace dialog box
to change the value of the mani-
fest attribute. You can also remove
the manifest attribute by setting
Action to Remove Attribute.

136

Chapter 4	 Making Your Site Available Offline

To test the application cache on a mobile device, disable
all wireless connections:

	.	 	On iOS, choose Settings, and turn on Airplane Mode.

	.	 On Android devices, choose Settings > Wireless and
network(s), and tap Airplane mode or Flight mode to
select it.

	.	 On BlackBerry, choose Manage Connections, and tap
Turn All Connections Off.

It might take a short while for the mobile device to discon-
nect from Wi-Fi and other networks.

Once disconnected, open the browser and navigate to the
site. Usually, the browser displays a warning telling you
there is no network connection (Figure 4.14) or telling you
to turn off Airplane Mode (Figure 4.15).

Click OK to dismiss the alert. You should now be able to
continue to the site, which should be loaded from the
application cache. If you have specified an alternative page
in the fallback section, it should be displayed instead of the
normal page, as shown in Figure 4.8 earlier in this chapter.

If the alternative page fails to display or if images are miss-
ing, there are two likely explanations:

	.	 The manifest file is not being served with the correct
MIME type.

	.	 The files are being served from the browser’s normal
cache rather than from the application cache.

A simple way to check whether the manifest file is being
served with the correct MIME type is to try to load it
directly in Firefox, Safari, or IE 9. If the browser asks if you
want to save the file, the MIME type is probably OK. The
Firefox dialog box actually confirms it as a manifest file
(Figure 4.16). If the manifest opens in the browser as plain
text, you need to check the .htaccess file or ask the server
administrator to verify the MIME type.

Figure 4.14  In Flight mode, the Samsung Galaxy
Tab warns about the lack of a network connection.

Figure 4.15  iOS tells you to turn off
Airplane Mode and offers a shortcut
to Settings.

137

II: HTML5 and CSS3

The second issue is not quite as easy to check. In my
experiments on a small number of mobile devices, brows-
ers appeared to use the application cache only if a file
couldn’t be found in the normal cache. For example, my
iPad continued to display the online version of reserva-
tions.html, even offline. However, going back online and
visiting several other sites cleared it out of the cache. Only
then did the offline version display correctly.

Generally speaking, the fact that browsers store files in
their local cache is beneficial. It avoids unnecessary down-
loads, saving bandwidth and speeding up the user’s experi-
ence. However, you might want to add the following line
to the <head> of pages that you don’t want to be available
offline:

<meta http-equiv=”expires” content=”-1”>

This doesn’t prevent the page from being cached, but it
expires the page immediately, so the browser always fetches
a new version. The downside of using this technique is that
the page will always be downloaded afresh.

Figure 4.16  Firefox correctly
identifies the MIME type.

At the time of this writing, Opera
and Chrome open manifest files
as plain text, even when they are
served with the correct MIME type.

138

Chapter 4	 Making Your Site Available Offline

Going Offline

It doesn’t take a great deal of effort to make a website
available offline, although it’s important to update the
manifest file by adding a version number or another unique
identifier each time you make any changes to the site’s
content. However, just because you can make a site avail-
able offline doesn’t necessarily mean that you should. Ask
yourself whether the site makes sense offline. Remember
that a manifest forces the browser to download all files
listed in the explicit section, taking up bandwidth and valu-
able disk space on the user’s device. Firefox asks the user’s
permission to create an application cache, but most other
browsers don’t.

When creating a manifest, give careful thought to the size
and importance of files you add to the explicit section. Are
they really vital to the offline version of the site? If not, add
them to the online whitelist section or specify substitutes in
the fallback section.

All the techniques explored in Chapters 2–4 can be used in
websites designed for a wide range of devices from desktops
to mobile phones. The rest of the book is devoted to build-
ing websites and apps designed specifically for modern
smartphones using the jQuery Mobile framework, which
has been integrated into Dreamweaver CS5.5.

271

Index

A
Accelerometer mobile device feature,

230
accessibility. See ARIA
Accessible Rich Internet

Applications. See ARIA
action attribute, 68
a–d values, data-grid attribute,

180–181
adjacent sibling selectors, 32
Adobe Dreamweaver CS5 with PHP:

Training from the Source, 216
Adobe Extension Manager CS5.5, 125
a–f values, attributes

data-counttheme, 181
data-dividertheme, 181
data-groupingtheme, 181
data-split-theme, 182
data-theme, 182, 187–188
data-track-theme, 182

::after CSS pseudo-element, 20
Ajax, online forms, 217
alert() method, 247
alert value, data-icon attribute,

184
and keyword, 75
Android

Android Developers website, 270
Android SDK, 221, 270

configuring Dreamweaver,
222–224

display width and orientation, 81
jQuery Mobile, 24, 147
packaging apps for deployment, 6
PhoneGap, 26–27, 221
support

for CSS3 media queries,
72–73

for HTML5, 8
for last-of-type pseudo-

class, 110
for offline applications, 119

testing
offline web applications, 136
Travel Notes app, 266–269

Animations, Transforms, Transitions
category, CSS Properties pane, 20

Apache web server, 122–123
Apple. See also iOS; iPad; iPhone;

iPod
Safari Web Inspector, 250, 261

WHATWG involvement, 11
Apple, Safari support

for columns without values, 250
for CSS3

background-size property,
100

@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for drop shadows, 48
for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest MIME type, 136
for OTF, 40
for TTF, 40
for WOFF, 39

ARIA (Accessible Rich Internet
Applications) roles, 36–39, 150–151

Find and Replace settings, 39
for HTML5 semantic elements,

37
arrow-d value, data-icon attribute,

184
arrow-l value, data-icon attribute,

184
arrow-r value, data-icon attribute,

184
arrow-u value, data-icon attribute,

184
<article> element, 8

rule to apply font family/size, 8
WAI-ARIA roles, 37

article role, 37
<article> tag, 236
<aside> element, 8

WAI-ARIA roles, 37
Aside option, List View widget, 191
aspect ratio

aspect-ratio media feature, 74
jQuery Mobile, 162

ASP.NET
jQuery Mobile, 144, 216
manifests, 124

attr() method, 150, 254
attribute selectors, CSS, 17–18
auto property, margins, 109
autofocus attribute, 56
autoform value, data-role attribute,

177

B
 property, 34–36
Back and Home buttons, 172–173
back value, attributes

data-icon, 184
data-rel, 169–170, 182,

185–186
background images, hiding, 91–95
background-image property, 92, 109
background-size property, 100
banner role, 37
::before CSS pseudo-element, 20
bind() method, 66
BlackBerry OS

display width and orientation,
81–82, 115

jQuery Mobile, 24, 147
PhoneGap, 220

support
for CSS3 media queries,

72–73
for last-of-type pseudo-

class, 110
by PhoneGap, lack of, 6

testing offline web applications,
136

Blas, Kin, 142
block attribute, 109–110
#blossom style rule, 93
border-radius property, 13, 14, 16,

49–52
Live view support, 17

bottom value, data-iconpos
attribute, 184

box-shadow property, 14, 16, 45–49
lack of Live view support, 17

browsers. See also specific browsers
standard and quirks modes, 7
support for HTML5, 6

semantic elements, 7–8
Buivenga, Jos, 40
button value, data-role attribute,

165–166, 177
Button widget, 164–166, 189–190,

203–205

C
cache manifest, 5
CACHE MANIFEST, 119, 128–129

CACHE: section, 120–121

Index

272

Index

FALLBACK: section, 121, 131
NETWORK: section, 121, 129, 133
version numbers, 122, 130

Camera mobile device feature, 230
caniuse.com, 7, 119
<canvas> element, 12
case sensitivity, HTML5, 7
CDN (content distribution network),

Google, 9
Çelik, Tantek, 10
change() method, 65–66
check value, data-icon attribute,

184
Checkbox widget, 189, 201–203
Chrome (Google), support

for columns without values, 250
for CSS3

background-size property,
100

@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for drop shadows, 48
for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest file MIME type, 137
for WOFF, 39

Chrome Developer Tools, 250, 261
click event, 251
click() method, 264
ColdFusion

jQuery Mobile, 144, 216
manifests, 124
parsing before validator

submission, 67
ColdFusion 9 Web Application

Construction Kit, 216
collapsed value, data-state

attribute, 182
Collapsible Block widget, 189,

194–195
collapsible blocks, 178–179
collapsible value, data-role

attribute, 177–178, 194
collapsible-set value, data-role

attribute, 177, 194
color

drop shadows, 43–44, 47
values and opacity, 21–22

color attribute, 47, 53
color media feature, 74–75
Color module, CSS3, 21
color-index media feature, 74
comma-separated values, box

shadows, 46–47
comparison operators, JavaScript, 214
Compass mobile device feature, 230

compatibility charts, CSS (Cascading
Style Sheets), 18

complementary role, 37
conditional comments, IE, 76, 96–97
Contacts mobile device feature, 230
contain keyword, 100
content distribution network. See

CDN
content value, data-role attribute,

149–150, 156–157, 164, 177
contentinfo role, 37
context-aware image sizing, 83
controlgroup value, data-role

attribute, 177, 202–203
convertToMDY() function, 256
Coordinated Universal Time. See

UTC
Copy Dependent Files dialog box

problem, 185
cover keyword, 100
createElement() method, 9
CSS (Cascading Style Sheets), 14–15.

See also CSS3
compatibility charts, 18
IE (Internet Explorer), 7
jQuery Mobile, 142
Media Queries module, 72
PhoneGap, 220
predefined layouts, 9
progressive enhancement, 30–31
sprites, 147
vendor-specific prefixes, 13

CSS3 (Cascading Style Sheets),
14–15. See also CSS

attribute selectors, 17–18
code hints, properties, 14
color values and opacity, 21–22
Document window size, 22–23
drop shadows, 16
embedded fonts, 17
Multiscreen Preview panel, 14,

22–23
properties, 20–21
pseudo-classes, 18–19
pseudo-elements, 19–20
rounded corners, 16
Styles panel Properties pane

new categories, 20–21
versus Property inspector, 16

custom data attributes
data-ajax, true/false values,

168, 181
data-backbtn, true/false

values, 171, 181
data-back-btn-text, text

values, 181
data-collapsed, true/false

values, 177, 179, 181, 194

data-counttheme, a–f values,
181

data-direction, reverse
values, 181, 187

data-dividertheme, a–f values,
181

data-filter, true/false
values, 181, 191

data-fullscreen, true/false
values, 181

data-grid, a–d values, 180–181
data-groupingtheme, a–f

values, 181
data-icon, 172, 181

values, 184
data-iconpos, 172, 181

values, 184
data-id, text values, 181, 183
data-inline, true/false

values, 182
data-insert, true/false

values, 182
data-native-menu, true/false

values, 182, 200
data-placeholder

versus HTML5 placeholder
attribute, 210

true/false values, 182, 200
data-position, fixed/inline/
fullscreen values, 182–183

data-rel
back/dialog values,

169–170, 182, 185–186
external value, 168, 170

data-role, 150, 160, 182
collapsible value, 177–178,

194
collapsible-set value,

177, 194
controlgroup value, 202–203
fieldcontain value, 195, 202
navbar value, 177, 179–180
nojs value, 177, 180
values, 177–178

data-split-icon, 182
data-split-theme, a–f values,

182
data-state, collapsed/
horizontal/vertical values,
182

data-theme, a–f values, 182,
187–188

data-track-theme, a–f values,
182

data-transition, 182
fade value, 186
flip value, 185–186
pop value, 185–187
slide value, 187

273

Index

slidedown value, 187
slideup value, 187

data-type, horizontal/
vertical values, 182, 203

D
data attributes. See custom data

attributes
data-ajax attribute, true/false

values, 168, 181
data-backbtn attribute, true/false

values, 171, 181
data-back-btn-text attribute, text

values, 181
data-collapsed attribute, true/
false values, 177, 179, 181, 194

data-counttheme attribute, a–f
values, 181

data-direction attribute, reverse
values, 181, 187

data-dividertheme attribute, a–f
values, 181

data-filter attribute, true/false
values, 181, 191

data-fullscreen attribute, true/
false values, 181

data-grid attribute, a–d values,
180–181

data-groupingtheme attribute, a–f
values, 181

data-icon attribute, 172, 181
values, 184

data-iconpos attribute, 172, 181
values, 184

data-id attribute, text values, 181,
183

data-inline attribute, true/false
values, 182

data-insert, true/false values,
182

<datalist> element, 53–56
cross-browser solutions, 54

data-native-menu attribute, true/
false values, 182, 200

data-placeholder attribute
versus HTML5 placeholder

attribute, 210
true/false values, 182, 200

data-position attribute, fixed/
inline/fullscreen values,
182–183

data-rel attribute
back/dialog values, 169–170,

182, 185–186
external value, 168, 170

data-role attribute, 150, 160, 182
collapsible value, 177–178, 194
collapsible-set value, 177, 194

controlgroup value, 177,
202–203

fieldcontain value, 195, 202
navbar value, 177, 179–180
nojs value, 177, 180
values, 177–178

data-split-icon attribute, 182
data-split-theme attribute, a–f

values, 182
data-state attribute, collapsed/
horizontal/vertical values, 182

data-theme attribute, a–f values,
182, 187–188

data-track-theme attribute, a–f
values, 182

data-transition, 182
fade value, 186
flip value, 185–186
pop value, 185–187
slide value, 187
slidedown value, 187
slideup value, 187

data-trnote attribute, 259
data-type attribute, horizontal/
vertical values, 182, 203

date() method, 248
date pickers, 57–67, 110
Datepicker widget, jQuery, 57, 67
dates and times

attributes
date, 13, 53
datetime, 53
datetime-local, 53

date type, 57
dateParts object, 59–60
<select> menus, 110
UI Datepicker widget, jQuery,

57, 67
UTC (Coordinated Universal

Time), 60
default value, data-iconpos

attribute, 184
delete value, data-icon attribute,

184
deleteItem() function, 258–259
Desire (HTC)

display width and orientation,
81, 107

embedded fonts, 98
navigation menu, 109

desktop computers, style rules, 82–84
desktop.css, 95–97
device-aspect-ratio media

feature, 74
device-height media feature, 74,

78–80
device-width media feature, 74,

78–79
<dfn> tags, 34

dialog boxes, 185
dialog value, data-rel attribute,

182
display property, 83, 109–110
displayMap() function, 256–257,

263–265
<div> elements

nested <div> elements, 24
universally supported, 36

DOCTYPE and <!DOCTYPE HTML>
declarations, case sensitivity, 7

Document Object Model. See DOM
Document window viewport, sizing,

95, 102
DOM (Document Object Model), 12

jQuery Mobile, 142, 147, 157,
166, 213

dot notation versus square bracket
notation, 61

dpc (dots per centimeter), 75
dpi (dots per inch), 75
Dreamweaver CS5 with PHP: Training

from the Source, 68
Dreamweaver CS5.5

code hints
for CSS properties, 14
for HTML5 tags, 14–15
for JQuery Core, 14–15,

25–26
CSS3, 14–15

attribute selectors, 17–18
color values and opacity,

21–22
Document window size,

22–23
drop shadows, 16
embedded fonts, 17
Multiscreen Preview panel,

14, 22–23
properties, 20–21
pseudo-classes, 18–19
pseudo-elements, 19–20
rounded corners, 16
Styles panel Properties pane,

new categories, 20–21
Styles panel Properties pane,

versus Property inspector, 16
development for multiple

devices, 27
HTML5

code hints, 14–15
editing tags manually, 15

jQuery Mobile, 14–15, 24–26
media query handling, 14
PhoneGap, 14, 26–27
Property inspector, 15

versus Properties pane, CSS
Styles panel, 16

274

Index

support, lack of, for role
attribute, 37

Tag Inspector, Behaviors tab, 15
W3C validator, 67
Windows version, no support for

iOS, 26
drop shadows, 13, 16

to page elements, 45–49
to text, 43–45

E
editItem() function, 258–259
 property, 34–36
em unit of measure, 75
email attribute, 53
embedded fonts, 17, 39–42, 91–95
Embedded Open Type (EOT), 40
:empty() CSS pseudo-class, 19
EOT (Embedded Open Type), 40
executeSql() method, 241, 252
external value, data-rel attribute,

168, 170

F
fade value, data-transition

attribute, 186
fieldcontain value, data-role

attribute, 177
<figcaption> element, 8
<figure> element, 8
Filament Group, 83
File mobile device feature, 230
Find and Replace dialog box, 37–39
Firefox (Mozilla), support

for CSS3
background-size property,

100
@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest MIME type, 136
for WOFF, 39

:first-child() CSS pseudo-class,
19

::first-letter CSS pseudo-
element, 20

::first-line CSS pseudo-element,
20

:first-of-type() CSS pseudo-
class, 19

fixed value, data-position
attribute, 182

Flip Toggle Switch widget, 190, 207

flip value, data-transition
attribute, 185–186

@font-face rule, 17, 39–42, 91
wrapping in @media rule, 99–100

fonts
embedded fonts, 17, 39–42
@font-face declaration, 39–42
online font library services, 40

<footer> element, 7–8, 235–236, 256
WAI-ARIA roles, 37

footer value, data-role attribute,
149, 164, 177

footers, 155–156, 183
forms, 52–53

client-side validation, 52
date pickers, 57–66
editable drop-down menus, 53–56
elements

<datalist>, 53–56
<form>, 195
<input>, 52–53
<select>, 53–56

HTML5 attributes, 56–57
autofocus, 56
date type, 57
max, 56
min, 56
placeholder, 56
required, 56

jQuery Mobile
with Radio Button widget,

211–212
with Select Menu widget,

208–209
with Select Menu widget,

replacing with text input
field, 213–216

with Slider widget, 211–212
submitting and displaying

response, 216–218
with Text Input widget,

209–211
spaces, 196

Forta, Ben, 216
forward value, data-icon attribute,

184
fullscreen value, data-position

attribute, 182

G
Gartner research company, 4
gear value, data-icon attribute, 184
Generate Site Manifest extension,

125–130
Geolocation mobile device feature,

230
getCurrentPosition() method,

245–247

getElementByClassName() method,
26

getElementById() method, 26
getItem() function, 254–256, 259,

263
getLocation() function, 251
getNextDay() function, 59–60,

60–61
getNumDays() function, 62–63
getTitles() function, 251, 259–261
Gillenwater, Zoe Mickley, 19, 40
Google

CDN (content distribution
network), 9

Chrome Developer Tools, 250,
261

Google Maps, 265
Google Static Maps APIs, 265
Google’s Chrome, support

for columns without values, 250
for CSS3

background-size property,
100

@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for drop shadows, 48
for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest file MIME type, 137
for WOFF, 39

grid media feature, 74–75
grid value, data-icon attribute, 184

H
<h1> tags, ARIA rules, 37
handheld value, media attribute, 72
<header> element, 7–8

ARIA restrictions, 37
WAI-ARIA roles, 37
wrapping in <div> tags, 36

header value, data-role attribute,
149, 156–158, 164, 170–171, 177

headers, 157–158, 169–171, 183
height media feature, 74, 78–79
height property, 80, 101

removing from HTML
tags, 83

#hero style rule, 92, 101, 109
hexadecimal notation, 21
Hickson, Ian, 6, 10
home value, data-icon attribute, 184
horizontal value, attributes

data-state, 182
data-type, 182, 203

HSL (hue, saturation, lightness),
CSS3 Color module, 21

275

Index

hsla() method, 21–22
.htaccess file, 123
HTC Desire

display width and orientation,
81, 107

embedded fonts, 98
navigation menu, 109

HTML
development history, 10–13
“living standard,” 11–12
poor markup encouragement,

13–14
versus XML (Extensible Markup

Language), 10
html() method, 253
HTML5

assistive technology for disabled,
10

backwards compatibility, 7
cache manifest, 5
caniuse.com, 7
case sensitivity, 7
code hints, 14–15
converting from XHTML 1.0

Strict, 5
custom data attributes, 150
editing tags manually, 15
HTML 4.01 compatibility, 7
JavaScript default, 9
jQuery Mobile, 142, 144,

147–151, 154, 165–166
logo, 10
new elements and attributes, 7
PhoneGap, 220

Travel Notes app, 231–237
progressive enhancement, 30–31
semantic elements, 7

style sheet rule for partial
support browsers, 8

W3C specification approval
process, 6

HTML5 Now, 10

I
<i> property, 34–36
icons, adding to buttons, 184–185
IE (Internet Explorer), Microsoft

conditional comments, 76
and Netscape, 30
support or lack of, 136

for background-size
property, 100

for CSS, 7, 9
for CSS3, @import rule, 84
for CSS3, media queries,

72–73, 76–77
for CSS3, selectors, 18–19
for drop shadows, 48
for EOT, 40

for HTML5, 6, 8
for HTML5, workarounds,

9–10
for jQuery Mobile, 142
for offline applications, 119
for offline applications,

manifest file MIME type,
136

for WOFF, 39
images. See also inline images

context-aware image sizing, 83
embedded, 83
hiding background images, 91–95

 tags, 83
width attribute, 109

@import media rule
conditions, 77–78
style sheets, 84

Indexed Database API, 240
info value, data-icon attribute, 184
initial-scale property, 80
inline images, 83. See also images

floatleft and floatright
classes, 109

inline value, data-position
attribute, 182

innerHTML property, 12
<input> element, 190, 201, 204–206

attributes available, 15
insertEntry() method, 247, 249
Inset option, List View widget, 191
Introducing HTML5, 9, 56
Invisible Elements widget, 154
iOS

display width and orientation, 81
iOS SDK

configuring Dreamweaver,
222–224

downloading, 221
jQuery Mobile, 24, 147
packaging apps for deployment, 6
PhoneGap, 26–27, 220–221

configuring Dreamweaver,
222–228

support
for CSS3 media queries,

72–73
for last-of-type pseudo-

class, 110
for offline applications, 119

testing
offline web applications, 136
Travel Notes app, 266–269

iPad (Apple)
device-height media feature, 80
display width and orientation,

81, 98
mobile Internet access, 4
PhoneGap, 26

testing, Travel Notes app,
266–269

iPhone (Apple)
display width and orientation, 81
media features

device-height, 78–80
device-width, 78–79
max-width, 78–79
min-width, 78–79
width, 78–79

PhoneGap, 26
testing, Travel Notes app,

266–269
iPod (Apple)

display width and orientation,
81, 115

media features
device-height, 78–80
device-width, 78–79
max-width, 78–79
width, 78–79

PhoneGap, 26
Items option, List View widget, 191

J
Java versus JavaScript, 26
JavaScript

default for HTML5, 9
DOM methods, 26
versus Java, 26
jQuery Mobile, 5, 142
PhoneGap, 26, 220

JavaScript-disabled content, 180
jQuery Core library, 237–238
jQuery html() method, 62
jQuery Mobile (Local) Mobile

Starter, 144, 163
jQuery Mobile (PhoneGap) Mobile

Starter, 144, 224
jQuery Mobile (CDN–content

distribution network) Mobile
Starter, 144

jQuery/jQuery Mobile, 5, 14–15,
24–26

code hints, 14–15, 25–26
data attributes (See custom data

attributes)
DOM (Document Object Model),

142, 147, 157, 166, 213
forms

with Radio Button widget,
211–212

with Select Menu widget,
208–209

with Select Menu widget,
replacing with text input
field, 213–216

with Slider widget, 211–212

276

Index

submitting and displaying
response, 216–218

with Text Input widget,
209–211

HTML5, 142, 144, 147–151, 154,
165–166

library, 237–238
Library Source field, 163
mobile site creation, 143–144

Back and Home buttons,
172–173

collapsible blocks, 178–179
dialog boxes, 185
footers, 155–156, 183
headers, 157–158, 169–171,

183
icons, adding to buttons,

184–185
IDs, 164
JavaScript-disabled content,

180
linking to external pages,

163–169
Mobile Starters, 144–147
Mobile Starters, adding

content, 153–155
navigation bars, 179–180
page transitions, 186–187
static versus dynamic pages,

144
structure, 147–153
text, 156–157
themes, 187–188

processing data input with server-
side technology, 216–218

ThemeRoller tool, 188
updating files, 143, 163
widgets

Button, 164–166, 189–190,
203–205

Checkbox, 189, 201–203
Collapsible Block, 189,

194–195
Flip Toggle Switch, 190, 207
insertion point importance,

158
Invisible Elements, 154
Layout Grid, 189, 192–194
List View, 158–162, 166–168,

189–192, 231–233, 250,
253–254, 259–261

Loading, 165
Page, 166, 189
Password Input, 189, 197
Radio Button, 189, 203,

211–212
Select Menu, 189, 198–201,

208–209

Select Menu, replacing with
text input field, 213–216

Slider, 190, 205–206, 211–212
Text Area, 189, 198
Text Input, 189, 195–197,

209–211, 233

K – L
Keith, Jeremy, 54–55
Koch, Peter-Paul, 18

<label> tags, 198, 202
<lang> tag, 34, 36
:last-child() CSS pseudo-class, 19
:last-of-type() CSS pseudo-class,

19, 110
Lawson, Bruce, 9, 56
Layout Grid widget, 189, 192–194
lazy manifests, 124
left value, data-iconpos attribute,

184
<legend> tags, 202
Less Than or Equal to IE &

Conditional Comment, 96
Line Layout category, CSS Properties

pane, 20
<link> tag, style sheets, 84, 97
List Type option, List View widget,

191
List View widget, 158–162, 166–168,

189–192, 231–233, 250, 253–254,
259–261

list-divider value, data-role
attribute, 160, 162, 167, 177

listview() method, 253
listview value, data-role attribute,

149, 160, 162, 167, 177
LiveScript. See JavaScript
Loading widget, 165

M
main role, 37
.manifest filename extension, 119,

127
manifests, offline websites, 118

CACHE MANIFEST listings,
120–121, 129

creating, 119–120
files, attaching, 133–135
files, editing, 130–133
lazy manifests, 124
manifest attribute, 122–123
PHP, ColdFusion, or ASP.NET

files, 124
serving, 122–123
site manifest extensions, 125–130
up-to-date caches, 122
version numbers, 122, 126, 130

max attribute, 15, 56
maximum-scale property, 80
max-width media feature, 74, 78–79
media attribute, 5

handheld value, 72
Media mobile device feature, 230
media queries, 5, 14. See also Media

Queries module, CSS3
assessing, 115–116
CSS comments, 89
inline images, 83
site-wide files, 84–90

Media Queries dialog box, 85–90
Media Queries module, CSS3, 72
@media rules, 101, 110

conditions, 77–78
@font-face rule, wrapping in,

99–100
style sheets, 83

<meta> tag, 79–80
Microsoft category, CSS Properties

pane, 20–21
Microsoft’s IE (Internet Explorer)

conditional comments, 76
and Netscape, 30
support or lack of, 136

for background-size
property, 100

for CSS, 7, 9
for CSS3, @import rule, 84
for CSS3, media queries,

72–73, 76–77
for CSS3, selectors, 18–19
for drop shadows, 48
for EOT, 40
for HTML5, 6, 8
for HTML5, workarounds,

9–10
for jQuery Mobile, 142
for offline applications, 119
for offline applications,

manifest file MIME type,
136

for WOFF, 39
MIME type, 122–123, 136–137
min attribute, 15, 56
min-height media feature, 101
minimum-scale property, 80
minus value, data-icon attribute,

184
min-width media feature, 74, 78–79
Mobile Starters, 144–147

adding site content, 153–155
Mobile Starter page, 24–25
updating pages, 143

$.mobile.changePage() method,
249, 259, 265

mobile-init event, 238
modulo division, 63

277

Index

monochrome media feature, 74–75
month attribute, 53
-moz- prefix, 13
Mozilla category, CSS Properties

pane, 20
Mozilla’s Firefox, support

for CSS3
background-size property,

100
@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest MIME type, 136
for WOFF, 39

Mozilla’s Firefox, WHATWG, 11
Multi-column Layout category, CSS

Properties pane, 20
Multiscreen Preview panel, 14

N
<nav> element, 7–8

WAI-ARIA roles, 37
#nav rule, 101, 107–108
navbar value, data-role attribute,

177, 179–180
navigation bars, 179–180
navigation role, 37
Netscape

CSS3, @import rule, 84
IE (Internet Explorer),

Microsoft, 30
quirks mode, 7

nojs value, data-role attribute,
177, 180

non-breaking spaces, 165
none value, data-role attribute, 177
note role, 37
notext value, data-iconpos

attribute, 184–185
Notification mobile device feature,

230
:nth-child() CSS pseudo-class,

18–19, 109
:nth-last-child() CSS pseudo-

class, 19
:nth-last-of-type() CSS pseudo-

class, 19
:nth-of-type() CSS pseudo-class,

18–19
number attribute, 13, 53

O
offline websites

manifests, 118

CACHE MANIFEST listings,
120–121, 129

creating, 119–120
files, attaching, 133–135
files, editing, 130–133
lazy manifests, 124
manifest attribute, 122–123
PHP, ColdFusion, or ASP.

NET files, 124
serving, 122–123
site manifest extensions,

125–130
up-to-date caches, 122
version numbers, 122, 126,

130
offline web applications, 118–119

going offline, 138
online access only files, 121
testing offline, 135–137

only keyword, 75, 78
:only-child() CSS pseudo-class, 19
:only-of-type() CSS pseudo-class,

19
opacity property, 21–22, 44
Open Type (OTF), 40
openDatabase() method, 240–242
Opera

support
for CSS3, background-size

property, 100
for CSS3, @import rule, 84
for CSS3, media queries,

72–73
for CSS3, selectors, 18
for drop shadows, 48
for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119
for offline applications,

manifest file MIME type,
137

for OTF, 40
for TTF, 40

WHATWG involvement in W3C,
11

Opera category, CSS Properties pane,
20–21

<option> elements, 198
orientation media feature, 74
OTF (Open Type), 40
overflow property, 157

P
</p> tag, omitted in HTML5, 14
<p> tag, rule to apply font family/

size, 8
packaging apps for deployment, 6
page transitions, 186–187

page value, data-role attribute,
149–150, 157, 164, 171, 177

Page widget, 166, 189
pagebefoeshow event, 250–251
Palm WebOS, jQuery Mobile, 147
Password Input widget, 189, 197
percentages, units of measure, 100
Perl, jQuery Mobile, 216
PhoneGap, 14, 26–27

API access to mobile device
features, 230–231

jQuery Mobile (PhoneGap)
Mobile Starter, 144, 224–228

library, 237–238
packaging apps for deployment, 6
startup screen for Windows

Phone OS, 228–230
support for Android and iOS, 6
Travel Notes app, 230–231

building and testing, 266–269
database, 242–244
database, current location,

244–250
database, displaying record

details, 254–257
database, displaying records,

250–254
database, inserting data,

244–250
database, updating and

deleting items, 257–262
HTML structure, 231–237
map, displaying, 262–266
programming, 237–241
removing from simulator,

269–270
up-to-date features, 220

PHP (PHP Hypertext Preprocessor)
jQuery Mobile, 144, 216

form-processing scripts, 201
manifests, 124
parsing before validator

submission, 67
placeholder attribute, 15, 56

versus jQuery Mobile data-
placeholder attribute, 210

plus value, data-icon attribute, 184
pop value, data-transition

attribute, 185–187
populateDate() function, 61–62, 65
populateYear() function, 61–62
preferences

bold and italics, 35
File Types / Editors, filename

extensions, 127
window sizes, 111

preventDefault() method, 249
Property inspector, 15

278

Index

versus Properties pane, CSS Styles
panel, 16

pseudo-classes, CSS3, 18–19
pseudo-elements, CSS3, 19–20
px unit of measure, 75, 100

Q – R
quirks mode, browsers, 7, 18
quotation marks, caution, 253
Radio Button widget, 189, 203,

211–212
range attribute, 53
refresh value, data-icon attribute,

184
region role, 37
Related Files toolbar, 83, 89, 91
rel=”external” data attribute, 168,

170
required attribute, 15, 56
resetDates() function, 65–66
resolution media feature, 74–75
RGB (red, green, blue) values, CSS3

Color module, 21
rgba(), 21–22
right value, data-iconpos attribute,

184
role attribute, WAI-ARIA, 36–39
:root CSS pseudo-class, 19
rounded corners, 13, 16, 49–52
rows property, 253

S
Safari (Apple), support

for columns without values, 250
for CSS3

background-size property,
100

@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for drop shadows, 48
for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest MIME type, 136
for OTF, 40
for TTF, 40
for WOFF, 39

Safari Web Inspector, 250, 261
#sake style rule, 92–93, 109
Samsung Galaxy Tab, display width

and orientation, 81–82, 98
scan media feature, 74
<script> tags, 59, 239
search attribute, 53
search role, 37

search value, data-icon attribute,
184

<section> element, 7–8
WAI-ARIA roles, 37

<select> elements, 189, 198–201,
207

date pickers, 57–65
text input field disadvantage, 216

Select Menu widget, 189, 198–201,
208–209

replacing with text input field,
213–216

SELECT query, 252–254
semantic elements, HTML5

browser support, 7–10
style sheet rule for partial

support browsers, 8
Code view, adding elements, 15
new, 7
WAI-ARIA roles, 36–37

setValues() function, 60–61
Sharp, Remy, 9, 56
show() method, 254
slide value, data-transition

attribute, 187
slidedown value, data-transition

attribute, 187
slider value, data-role attribute,

177
Slider widget, 190, 205–206, 211–212
slideup value, data-transition

attribute, 187
Snippets panel, 95–97
 tag, 256
Specify Site-wide Media Query dialog

box, 86–87
Split Button Icon option, List View

widget, 191
Split Button option, List View widget,

191
sprites, CSS (Cascading Style Sheets),

147
SQL (Structured Query Language),

221
Indexed Database API, 240
SQL injection, 241
Web SQL Database API, 240–242

SQL injection, 241
SQLite, 221
square bracket notation versus dot

notation, 61
star value, data-icon attribute, 184
Storage mobile device feature, 230
 property, 34–36
Structured Query Language. See SQL
Stunning CSS3, 19, 40
<style> block, 236

@import media rule, 84
Styles panel Properties pane, CSS3

new categories, 20–21
versus Property inspector, 16

styles/style sheets
external, attaching, 84–90

jQuery Mobile, 155
hiding from earlier browsers,

75–77
for mobile phones, 112–115
for multiple devices, 84
organizing, 82–84
for tablets, 98–115
for varying screen widths,

111–112
swapList() function, 260, 262
Symbian S60, jQuery Mobile, 24

T
Tag Inspector

Attributes tab, 160
Behaviors tab, 15

Taylor, Jorge, 142
tel attribute, 53
tenary operator, 65
Text Area widget, 189, 198
Text Bubble option, List View widget,

191
Text Description option, List View

widget, 191
Text Input widget, 189, 195–197,

209–211, 233
text values, attributes

data-back-btn-text, 181
data-id, 181, 183

<textarea> element, 189
<textarea> tag, 198
text-shadow property, 14, 17, 43–45
themes, 187–188
time attribute, 53
times and dates

attributes
date, 13, 53
datetime, 53
datetime-local, 53

date type, 57
dateParts object, 59–60
<select> menus, 110
UI Datepicker widget, jQuery,

57, 67
UTC (Coordinated Universal

Time), 60
toLowerCase() function, 256–265
top value, data-iconpos attribute,

184
Travel Notes app, 230–231

building and testing, 266–269
database, 242–244

current location, 244–250
displaying record details,

254–257

279

Index

displaying records, 250–254
inserting data, 244–250
updating and deleting items,

257–262
HTML structure, 231–237
map, displaying, 262–266
programming, 237–241
removing from simulator,

269–270
true/false values, attributes

data-ajax, 168, 181
data-backbtn, 171, 181
data-collapsed, 177, 179, 181,

194
data-filter, 181, 191
data-fullscreen, 181
data-inline, 182
data-insert, 182
data-native-menu, 182, 200
data-placeholder, 182, 200

TrueType (TTF), 40
try/catch blocks, 247
TTF (TrueType), 40
type attributes, 13
Typekit, 40

U
UI Datepicker widget, jQuery, 57, 67
ui-btn-active class, 152
ui-mobile-viewport-
transitioning class, 152

 elements, 36
Unicode (UTF-8), 148
updateItem() function, 258–259
url attribute, 53
User Interface category, CSS

Properties pane, 20
user-scalable property, 80
UTC (Coordinated Universal Time),

60

V
val() method, 61
validation of adapted pages, 67–68
vertical value, attributes

data-state, 182
data-type, 182, 203

viewport <meta> tag, properties,
79–80

W
W3C (World Wide Web Consortium)

ARIA (Accessible Rich Internet
Applications) specification, 37

DOM (Document Object Model),
12

HTML5

logo, 10
specification approval

process, 6
HTML5 specification approval

process, 6
Indexed Database API, 240
language tags usage, 36
media attribute rules, 72
media queries specification, 75
Web SQL Database API, 240
WOFF (Web Open Font Format),

39–40
W3C validator, 67
WAI (Web Accessibility Initiative)-

ARIA (Accessible Rich Internet
Applications) roles, 36–39, 150–151

Find and Replace settings, 39
for HTML5 semantic elements,

37
Web Accessibility Initiative. See WAI
web applications, offline, 118–119.

See also offline websites
going offline, 138
online access only files, 121
testing offline, 135–137

Web Open Font Format (WOFF),
39–40

web safe fonts, 17, 40
Web SQL Database API, 240–242
WebKit browsers, CSS3 prefixes, 13
Webkit category, CSS Properties

pane, 20–21
-webkit property, 13, 21
-webkit-box-shadow property, 17
week attribute, 53
WHATWG (Web Hypertext

Application Technology Working
Group)

FAQs, 14
HTML5 development, 11

white-space property, 157
widgets, jQuery Mobile

Button, 164–166, 189–190,
203–205

Checkbox, 189, 201–203
Collapsible Block, 189, 194–195
Flip Toggle Switch, 190, 207
insertion point importance, 158
Invisible Elements, 154
Layout Grid, 189, 192–194
List View, 158–162, 166–168,

189–192, 231–233, 250,
253–254, 259–261

Loading, 165
Page, 166, 189
Password Input, 189, 197
Radio Button, 189, 203, 211–212
Select Menu, 189, 198–201,

208–209

replacing with text input
field, 213–216

Slider, 190, 205–206, 211–212
Text Area, 189, 198
Text Input, 189, 195–197,

209–211, 233
width attribute, 109
width media feature, 74, 78–79
width property, 80
Windows Phone 7

jQuery Mobile, 24, 147
PhoneGap, 220

configuring Dreamweaver,
228–230

Windows version, no support for
iOS, 26

WOFF (Web Open Font Format),
39–40

World Wide Web Consortium. See
W3C

#wrapper style rule, 92, 100

X – Z
Xcode

downloading, 221
testing Travel Notes app, 266–269

XHTML 1.0, 10
development of HTML, 10
DOCTYPE declaration

HTML 1.0 Strict, 31
replacing with HTML5
DOCTYPE declaration, 7

HTML5
compatibility, 7
converting to, 5, 33–36

XHTML 2.0, 10–11
converting to HTML5, 14

XML (Extensible Markup Language)
versus HTML, 10

XMLHttpRequest object, 12

	Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 4 Making Your Site Available Offline
	How Offline Sites Work
	Making the Tozai Hotel Site Available Offline
	Going Offline

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Z

