
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321349606
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321349606
https://plusone.google.com/share?url=http://www.informit.com/title/9780321349606
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321349606
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321349606/Free-Sample-Chapter

Advance praise for
Java Concurrency in Practice

I was fortunate indeed to have worked with a fantastic team on the design and
implementation of the concurrency features added to the Java platform in Java 5.0
and Java 6. Now this same team provides the best explanation yet of these new
features, and of concurrency in general. Concurrency is no longer a subject for
advanced users only. Every Java developer should read this book.

—Martin Buchholz
JDK Concurrency Czar, Sun Microsystems

For the past 30 years, computer performance has been driven by Moore’s Law;
from now on, it will be driven by Amdahl’s Law. Writing code that effectively
exploits multiple processors can be very challenging. Java Concurrency in Practice
provides you with the concepts and techniques needed to write safe and scalable
Java programs for today’s—and tomorrow’s—systems.

—Doron Rajwan
Research Scientist, Intel Corp

This is the book you need if you’re writing—or designing, or debugging, or main-
taining, or contemplating—multithreaded Java programs. If you’ve ever had to
synchronize a method and you weren’t sure why, you owe it to yourself and your
users to read this book, cover to cover.

—Ted Neward
Author of Effective Enterprise Java

Brian addresses the fundamental issues and complexities of concurrency with
uncommon clarity. This book is a must-read for anyone who uses threads and
cares about performance.

—Kirk Pepperdine
CTO, JavaPerformanceTuning.com

This book covers a very deep and subtle topic in a very clear and concise way,
making it the perfect Java Concurrency reference manual. Each page is filled
with the problems (and solutions!) that programmers struggle with every day.
Effectively exploiting concurrency is becoming more and more important now
that Moore’s Law is delivering more cores but not faster cores, and this book will
show you how to do it.

—Dr. Cliff Click
Senior Software Engineer, Azul Systems

I have a strong interest in concurrency, and have probably written more thread
deadlocks and made more synchronization mistakes than most programmers.
Brian’s book is the most readable on the topic of threading and concurrency in
Java, and deals with this difficult subject with a wonderful hands-on approach.
This is a book I am recommending to all my readers of The Java Specialists’
Newsletter, because it is interesting, useful, and relevant to the problems facing
Java developers today.

—Dr. Heinz Kabutz
The Java Specialists’ Newsletter

I’ve focused a career on simplifying simple problems, but this book ambitiously
and effectively works to simplify a complex but critical subject: concurrency. Java
Concurrency in Practice is revolutionary in its approach, smooth and easy in style,
and timely in its delivery—it’s destined to be a very important book.

—Bruce Tate
Author of Beyond Java

Java Concurrency in Practice is an invaluable compilation of threading know-how
for Java developers. I found reading this book intellectually exciting, in part be-
cause it is an excellent introduction to Java’s concurrency API, but mostly because
it captures in a thorough and accessible way expert knowledge on threading not
easily found elsewhere.

—Bill Venners
Author of Inside the Java Virtual Machine

Java Concurrency in Practice

This page intentionally left blank

Java Concurrency in Practice

Brian Goetz
with

Tim Peierls
Joshua Bloch

Joseph Bowbeer
David Holmes
and Doug Lea

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is
available through Safari Bookshelf. When you buy this book, you get free access to the online
edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find
code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.awprofessional.com/safarienabled

• Complete the brief registration form

• Enter the coupon code UUIR-XRJG-JWWF-AHGM-137Z

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-ser-
vice@safaribooksonline.com.

Library of Congress Cataloging-in-Publication Data

Goetz, Brian.
Java Concurrency in Practice / Brian Goetz, with Tim Peierls. . . [et al.]

p. cm.
Includes bibliographical references and index.
ISBN 0-321-34960-1 (pbk. : alk. paper)

1. Java (Computer program language) 2. Parallel programming (Computer science) 3. Threads (Computer
programs) I. Title.

QA76.73.J38G588 2006
005.13'3--dc22 2006012205

Copyright © 2006 Pearson Education, Inc.

Printing13th

Text printed in the United States on recycled paper at Courier Stoughton in Stoughton, Massachusetts.

ISBN 0-321-34960-1

www.awprofessional.com
http://www.awprofessional.com/safarienabled

To Jessica

This page intentionally left blank

Contents

Listings xii

Preface xvii

1 Introduction 1
1.1 A (very) brief history of concurrency 1
1.2 Benefits of threads . 3
1.3 Risks of threads . 5
1.4 Threads are everywhere . 9

I Fundamentals 13

2 Thread Safety 15
2.1 What is thread safety? . 17
2.2 Atomicity . 19
2.3 Locking . 23
2.4 Guarding state with locks . 27
2.5 Liveness and performance . 29

3 Sharing Objects 33
3.1 Visibility . 33
3.2 Publication and escape . 39
3.3 Thread confinement . 42
3.4 Immutability . 46
3.5 Safe publication . 49

4 Composing Objects 55
4.1 Designing a thread-safe class . 55
4.2 Instance confinement . 58
4.3 Delegating thread safety . 62
4.4 Adding functionality to existing thread-safe classes 71
4.5 Documenting synchronization policies 74

ix

x Contents

5 Building Blocks 79
5.1 Synchronized collections . 79
5.2 Concurrent collections . 84
5.3 Blocking queues and the producer-consumer pattern 87
5.4 Blocking and interruptible methods 92
5.5 Synchronizers . 94
5.6 Building an efficient, scalable result cache 101

II Structuring Concurrent Applications 111

6 Task Execution 113
6.1 Executing tasks in threads . 113
6.2 The Executor framework . 117
6.3 Finding exploitable parallelism . 123

7 Cancellation and Shutdown 135
7.1 Task cancellation . 135
7.2 Stopping a thread-based service . 150
7.3 Handling abnormal thread termination 161
7.4 JVM shutdown . 164

8 Applying Thread Pools 167
8.1 Implicit couplings between tasks and execution policies 167
8.2 Sizing thread pools . 170
8.3 Configuring ThreadPoolExecutor . 171
8.4 Extending ThreadPoolExecutor . 179
8.5 Parallelizing recursive algorithms . 181

9 GUI Applications 189
9.1 Why are GUIs single-threaded? . 189
9.2 Short-running GUI tasks . 192
9.3 Long-running GUI tasks . 195
9.4 Shared data models . 198
9.5 Other forms of single-threaded subsystems 202

III Liveness, Performance, and Testing 203

10 Avoiding Liveness Hazards 205
10.1 Deadlock . 205
10.2 Avoiding and diagnosing deadlocks 215
10.3 Other liveness hazards . 218

11 Performance and Scalability 221
11.1 Thinking about performance . 221
11.2 Amdahl’s law . 225
11.3 Costs introduced by threads . 229
11.4 Reducing lock contention . 232

Contents xi

11.5 Example: Comparing Map performance 242
11.6 Reducing context switch overhead . 243

12 Testing Concurrent Programs 247
12.1 Testing for correctness . 248
12.2 Testing for performance . 260
12.3 Avoiding performance testing pitfalls 266
12.4 Complementary testing approaches 270

IV Advanced Topics 275

13 Explicit Locks 277
13.1 Lock and ReentrantLock . 277
13.2 Performance considerations . 282
13.3 Fairness . 283
13.4 Choosing between synchronized and ReentrantLock 285
13.5 Read-write locks . 286

14 Building Custom Synchronizers 291
14.1 Managing state dependence . 291
14.2 Using condition queues . 298
14.3 Explicit condition objects . 306
14.4 Anatomy of a synchronizer . 308
14.5 AbstractQueuedSynchronizer . 311
14.6 AQS in java.util.concurrent synchronizer classes 314

15 Atomic Variables and Nonblocking Synchronization 319
15.1 Disadvantages of locking . 319
15.2 Hardware support for concurrency . 321
15.3 Atomic variable classes . 324
15.4 Nonblocking algorithms . 329

16 The Java Memory Model 337
16.1 What is a memory model, and why would I want one? 337
16.2 Publication . 344
16.3 Initialization safety . 349

A Annotations for Concurrency 353
A.1 Class annotations . 353
A.2 Field and method annotations . 353

Bibliography 355

Index 359

Listings

1 Bad way to sort a list. Don’t do this. xix
2 Less than optimal way to sort a list. xx
1.1 Non-thread-safe sequence generator. 6
1.2 Thread-safe sequence generator. 7
2.1 A stateless servlet. 18
2.2 Servlet that counts requests without the necessary synchroniza-

tion. Don’t do this. 19
2.3 Race condition in lazy initialization. Don’t do this. 21
2.4 Servlet that counts requests using AtomicLong. 23
2.5 Servlet that attempts to cache its last result without adequate

atomicity. Don’t do this. 24
2.6 Servlet that caches last result, but with unnacceptably poor con-

currency. Don’t do this. 26
2.7 Code that would deadlock if intrinsic locks were not reentrant. . . . 27
2.8 Servlet that caches its last request and result. 31
3.1 Sharing variables without synchronization. Don’t do this. 34
3.2 Non-thread-safe mutable integer holder. 36
3.3 Thread-safe mutable integer holder. 36
3.4 Counting sheep. 39
3.5 Publishing an object. 40
3.6 Allowing internal mutable state to escape. Don’t do this. 40
3.7 Implicitly allowing the this reference to escape. Don’t do this. . . . 41
3.8 Using a factory method to prevent the this reference from escap-

ing during construction. 42
3.9 Thread confinement of local primitive and reference variables. . . . 44
3.10 Using ThreadLocal to ensure thread confinement. 45
3.11 Immutable class built out of mutable underlying objects. 47
3.12 Immutable holder for caching a number and its factors. 49
3.13 Caching the last result using a volatile reference to an immutable

holder object. 50
3.14 Publishing an object without adequate synchronization. Don’t do

this. 50
3.15 Class at risk of failure if not properly published. 51
4.1 Simple thread-safe counter using the Java monitor pattern. 56
4.2 Using confinement to ensure thread safety. 59
4.3 Guarding state with a private lock. 61

xii

Listings xiii

4.4 Monitor-based vehicle tracker implementation. 63
4.5 Mutable point class similar to java.awt.Point. 64
4.6 Immutable Point class used by DelegatingVehicleTracker. 64
4.7 Delegating thread safety to a ConcurrentHashMap. 65
4.8 Returning a static copy of the location set instead of a “live” one. . 66
4.9 Delegating thread safety to multiple underlying state variables. . . 66
4.10 Number range class that does not sufficiently protect its invari-

ants. Don’t do this. 67
4.11 Thread-safe mutable point class. 69
4.12 Vehicle tracker that safely publishes underlying state. 70
4.13 Extending Vector to have a put-if-absent method. 72
4.14 Non-thread-safe attempt to implement put-if-absent. Don’t do this. . 72
4.15 Implementing put-if-absent with client-side locking. 73
4.16 Implementing put-if-absent using composition. 74
5.1 Compound actions on a Vector that may produce confusing results. 80
5.2 Compound actions on Vector using client-side locking. 81
5.3 Iteration that may throw ArrayIndexOutOfBoundsException. 81
5.4 Iteration with client-side locking. 82
5.5 Iterating a List with an Iterator. 82
5.6 Iteration hidden within string concatenation. Don’t do this. 84
5.7 ConcurrentMap interface. 87
5.8 Producer and consumer tasks in a desktop search application. . . . 91
5.9 Starting the desktop search. 92
5.10 Restoring the interrupted status so as not to swallow the interrupt. 94
5.11 Using CountDownLatch for starting and stopping threads in timing

tests. 96
5.12 Using FutureTask to preload data that is needed later. 97
5.13 Coercing an unchecked Throwable to a RuntimeException. 98
5.14 Using Semaphore to bound a collection. 100
5.15 Coordinating computation in a cellular automaton with Cyclic-

Barrier. 102
5.16 Initial cache attempt using HashMap and synchronization. 103
5.17 Replacing HashMap with ConcurrentHashMap. 105
5.18 Memoizing wrapper using FutureTask. 106
5.19 Final implementation of Memoizer. 108
5.20 Factorizing servlet that caches results using Memoizer. 109
6.1 Sequential web server. 114
6.2 Web server that starts a new thread for each request. 115
6.3 Executor interface. 117
6.4 Web server using a thread pool. 118
6.5 Executor that starts a new thread for each task. 118
6.6 Executor that executes tasks synchronously in the calling thread. . 119
6.7 Lifecycle methods in ExecutorService. 121
6.8 Web server with shutdown support. 122
6.9 Class illustrating confusing Timer behavior. 124
6.10 Rendering page elements sequentially. 125
6.11 Callable and Future interfaces. 126

xiv Listings

6.12 Default implementation of newTaskFor in ThreadPoolExecutor. . . 126
6.13 Waiting for image download with Future. 128
6.14 QueueingFuture class used by ExecutorCompletionService. 129
6.15 Using CompletionService to render page elements as they be-

come available. 130
6.16 Fetching an advertisement with a time budget. 132
6.17 Requesting travel quotes under a time budget. 134
7.1 Using a volatile field to hold cancellation state. 137
7.2 Generating a second’s worth of prime numbers. 137
7.3 Unreliable cancellation that can leave producers stuck in a block-

ing operation. Don’t do this. 139
7.4 Interruption methods in Thread. 139
7.5 Using interruption for cancellation. 141
7.6 Propagating InterruptedException to callers. 143
7.7 Noncancelable task that restores interruption before exit. 144
7.8 Scheduling an interrupt on a borrowed thread. Don’t do this. 145
7.9 Interrupting a task in a dedicated thread. 146
7.10 Cancelling a task using Future. 147
7.11 Encapsulating nonstandard cancellation in a Thread by overriding

interrupt. 149
7.12 Encapsulating nonstandard cancellation in a task with newTaskFor. 151
7.13 Producer-consumer logging service with no shutdown support. . . 152
7.14 Unreliable way to add shutdown support to the logging service. . . 153
7.15 Adding reliable cancellation to LogWriter. 154
7.16 Logging service that uses an ExecutorService. 155
7.17 Shutdown with poison pill. 156
7.18 Producer thread for IndexingService. 157
7.19 Consumer thread for IndexingService. 157
7.20 Using a private Executor whose lifetime is bounded by a method

call. 158
7.21 ExecutorService that keeps track of cancelled tasks after shutdown.159
7.22 Using TrackingExecutorService to save unfinished tasks for later

execution. 160
7.23 Typical thread-pool worker thread structure. 162
7.24 UncaughtExceptionHandler interface. 163
7.25 UncaughtExceptionHandler that logs the exception. 163
7.26 Registering a shutdown hook to stop the logging service. 165
8.1 Task that deadlocks in a single-threaded Executor. Don’t do this. . . 169
8.2 General constructor for ThreadPoolExecutor. 172
8.3 Creating a fixed-sized thread pool with a bounded queue and the

caller-runs saturation policy. 175
8.4 Using a Semaphore to throttle task submission. 176
8.5 ThreadFactory interface. 176
8.6 Custom thread factory. 177
8.7 Custom thread base class. 178
8.8 Modifying an Executor created with the standard factories. 179
8.9 Thread pool extended with logging and timing. 180

Listings xv

8.10 Transforming sequential execution into parallel execution. 181
8.11 Transforming sequential tail-recursion into parallelized recursion. . 182
8.12 Waiting for results to be calculated in parallel. 182
8.13 Abstraction for puzzles like the “sliding blocks puzzle”. 183
8.14 Link node for the puzzle solver framework. 184
8.15 Sequential puzzle solver. 185
8.16 Concurrent version of puzzle solver. 186
8.17 Result-bearing latch used by ConcurrentPuzzleSolver. 187
8.18 Solver that recognizes when no solution exists. 188
9.1 Implementing SwingUtilities using an Executor. 193
9.2 Executor built atop SwingUtilities. 194
9.3 Simple event listener. 194
9.4 Binding a long-running task to a visual component. 196
9.5 Long-running task with user feedback. 196
9.6 Cancelling a long-running task. 197
9.7 Background task class supporting cancellation, completion notifi-

cation, and progress notification. 199
9.8 Initiating a long-running, cancellable task with BackgroundTask. . 200
10.1 Simple lock-ordering deadlock. Don’t do this. 207
10.2 Dynamic lock-ordering deadlock. Don’t do this. 208
10.3 Inducing a lock ordering to avoid deadlock. 209
10.4 Driver loop that induces deadlock under typical conditions. 210
10.5 Lock-ordering deadlock between cooperating objects. Don’t do this. 212
10.6 Using open calls to avoiding deadlock between cooperating objects. 214
10.7 Portion of thread dump after deadlock. 217
11.1 Serialized access to a task queue. 227
11.2 Synchronization that has no effect. Don’t do this. 230
11.3 Candidate for lock elision. 231
11.4 Holding a lock longer than necessary. 233
11.5 Reducing lock duration. 234
11.6 Candidate for lock splitting. 236
11.7 ServerStatus refactored to use split locks. 236
11.8 Hash-based map using lock striping. 238
12.1 Bounded buffer using Semaphore. 249
12.2 Basic unit tests for BoundedBuffer. 250
12.3 Testing blocking and responsiveness to interruption. 252
12.4 Medium-quality random number generator suitable for testing. . . 253
12.5 Producer-consumer test program for BoundedBuffer. 255
12.6 Producer and consumer classes used in PutTakeTest. 256
12.7 Testing for resource leaks. 258
12.8 Thread factory for testing ThreadPoolExecutor. 258
12.9 Test method to verify thread pool expansion. 259
12.10 Using Thread.yield to generate more interleavings. 260
12.11 Barrier-based timer. 261
12.12 Testing with a barrier-based timer. 262
12.13 Driver program for TimedPutTakeTest. 262
13.1 Lock interface. 277

xvi Listings

13.2 Guarding object state using ReentrantLock. 278
13.3 Avoiding lock-ordering deadlock using tryLock. 280
13.4 Locking with a time budget. 281
13.5 Interruptible lock acquisition. 281
13.6 ReadWriteLock interface. 286
13.7 Wrapping a Map with a read-write lock. 288
14.1 Structure of blocking state-dependent actions. 292
14.2 Base class for bounded buffer implementations. 293
14.3 Bounded buffer that balks when preconditions are not met. 294
14.4 Client logic for calling GrumpyBoundedBuffer. 294
14.5 Bounded buffer using crude blocking. 296
14.6 Bounded buffer using condition queues. 298
14.7 Canonical form for state-dependent methods. 301
14.8 Using conditional notification in BoundedBuffer.put. 304
14.9 Recloseable gate using wait and notifyAll. 305
14.10 Condition interface. 307
14.11 Bounded buffer using explicit condition variables. 309
14.12 Counting semaphore implemented using Lock. 310
14.13 Canonical forms for acquisition and release in AQS. 312
14.14 Binary latch using AbstractQueuedSynchronizer. 313
14.15 tryAcquire implementation from nonfair ReentrantLock. 315
14.16 tryAcquireShared and tryReleaseShared from Semaphore. 316
15.1 Simulated CAS operation. 322
15.2 Nonblocking counter using CAS. 323
15.3 Preserving multivariable invariants using CAS. 326
15.4 Random number generator using ReentrantLock. 327
15.5 Random number generator using AtomicInteger. 327
15.6 Nonblocking stack using Treiber’s algorithm (Treiber, 1986). 331
15.7 Insertion in the Michael-Scott nonblocking queue algorithm

(Michael and Scott, 1996). 334
15.8 Using atomic field updaters in ConcurrentLinkedQueue. 335
16.1 Insufficiently synchronized program that can have surprising re-

sults. Don’t do this. 340
16.2 Inner class of FutureTask illustrating synchronization piggybacking.343
16.3 Unsafe lazy initialization. Don’t do this. 345
16.4 Thread-safe lazy initialization. 347
16.5 Eager initialization. 347
16.6 Lazy initialization holder class idiom. 348
16.7 Double-checked-locking antipattern. Don’t do this. 349
16.8 Initialization safety for immutable objects. 350

Preface

At this writing, multicore processors are just now becoming inexpensive enough
for midrange desktop systems. Not coincidentally, many development teams are
noticing more and more threading-related bug reports in their projects. In a recent
post on the NetBeans developer site, one of the core maintainers observed that
a single class had been patched over 14 times to fix threading-related problems.
Dion Almaer, former editor of TheServerSide, recently blogged (after a painful
debugging session that ultimately revealed a threading bug) that most Java pro-
grams are so rife with concurrency bugs that they work only “by accident”.

Indeed, developing, testing and debugging multithreaded programs can be
extremely difficult because concurrency bugs do not manifest themselves pre-
dictably. And when they do surface, it is often at the worst possible time—in
production, under heavy load.

One of the challenges of developing concurrent programs in Java is the mis-
match between the concurrency features offered by the platform and how de-
velopers need to think about concurrency in their programs. The language pro-
vides low-level mechanisms such as synchronization and condition waits, but these
mechanisms must be used consistently to implement application-level protocols
or policies. Without such policies, it is all too easy to create programs that com-
pile and appear to work but are nevertheless broken. Many otherwise excellent
books on concurrency fall short of their goal by focusing excessively on low-level
mechanisms and APIs rather than design-level policies and patterns.

Java 5.0 is a huge step forward for the development of concurrent applica-
tions in Java, providing new higher-level components and additional low-level
mechanisms that make it easier for novices and experts alike to build concurrent
applications. The authors are the primary members of the JCP Expert Group
that created these facilities; in addition to describing their behavior and features,
we present the underlying design patterns and anticipated usage scenarios that
motivated their inclusion in the platform libraries.

Our goal is to give readers a set of design rules and mental models that make
it easier—and more fun—to build correct, performant concurrent classes and ap-
plications in Java.

We hope you enjoy Java Concurrency in Practice.

Brian Goetz
Williston, VT
March 2006

xvii

xviii Preface

How to use this book

To address the abstraction mismatch between Java’s low-level mechanisms and
the necessary design-level policies, we present a simplified set of rules for writing
concurrent programs. Experts may look at these rules and say “Hmm, that’s
not entirely true: class C is thread-safe even though it violates rule R.” While
it is possible to write correct programs that break our rules, doing so requires a
deep understanding of the low-level details of the Java Memory Model, and we
want developers to be able to write correct concurrent programs without having
to master these details. Consistently following our simplified rules will produce
correct and maintainable concurrent programs.

We assume the reader already has some familiarity with the basic mecha-
nisms for concurrency in Java. Java Concurrency in Practice is not an introduction
to concurrency—for that, see the threading chapter of any decent introductory
volume, such as The Java Programming Language (Arnold et al., 2005). Nor is it
an encyclopedic reference for All Things Concurrency—for that, see Concurrent
Programming in Java (Lea, 2000). Rather, it offers practical design rules to assist
developers in the difficult process of creating safe and performant concurrent
classes. Where appropriate, we cross-reference relevant sections of The Java Pro-
gramming Language, Concurrent Programming in Java, The Java Language Specification
(Gosling et al., 2005), and Effective Java (Bloch, 2001) using the conventions [JPL
n.m], [CPJ n.m], [JLS n.m], and [EJ Item n].

After the introduction (Chapter 1), the book is divided into four parts:
Fundamentals. Part I (Chapters 2-5) focuses on the basic concepts of con-

currency and thread safety, and how to compose thread-safe classes out of the
concurrent building blocks provided by the class library. A “cheat sheet” summa-
rizing the most important of the rules presented in Part I appears on page 110.

Chapters 2 (Thread Safety) and 3 (Sharing Objects) form the foundation for
the book. Nearly all of the rules on avoiding concurrency hazards, constructing
thread-safe classes, and verifying thread safety are here. Readers who prefer
“practice” to “theory” may be tempted to skip ahead to Part II, but make sure to
come back and read Chapters 2 and 3 before writing any concurrent code!

Chapter 4 (Composing Objects) covers techniques for composing thread-safe
classes into larger thread-safe classes. Chapter 5 (Building Blocks) covers the
concurrent building blocks—thread-safe collections and synchronizers—provided
by the platform libraries.

Structuring Concurrent Applications. Part II (Chapters 6-9) describes how
to exploit threads to improve the throughput or responsiveness of concurrent ap-
plications. Chapter 6 (Task Execution) covers identifying parallelizable tasks and
executing them within the task-execution framework. Chapter 7 (Cancellation
and Shutdown) deals with techniques for convincing tasks and threads to ter-
minate before they would normally do so; how programs deal with cancellation
and shutdown is often one of the factors that separates truly robust concurrent
applications from those that merely work. Chapter 8 (Applying Thread Pools)
addresses some of the more advanced features of the task-execution framework.

Preface xix

Chapter 9 (GUI Applications) focuses on techniques for improving responsiveness
in single-threaded subsystems.

Liveness, Performance, and Testing. Part III (Chapters 10-12) concerns itself
with ensuring that concurrent programs actually do what you want them to do
and do so with acceptable performance. Chapter 10 (Avoiding Liveness Hazards)
describes how to avoid liveness failures that can prevent programs from making
forward progress. Chapter 11 (Performance and Scalability) covers techniques
for improving the performance and scalability of concurrent code. Chapter 12
(Testing Concurrent Programs) covers techniques for testing concurrent code for
both correctness and performance.

Advanced Topics. Part IV (Chapters 13-16) covers topics that are likely to
be of interest only to experienced developers: explicit locks, atomic variables,
nonblocking algorithms, and developing custom synchronizers.

Code examples

While many of the general concepts in this book are applicable to versions of Java
prior to Java 5.0 and even to non-Java environments, most of the code examples
(and all the statements about the Java Memory Model) assume Java 5.0 or later.
Some of the code examples may use library features added in Java 6.

The code examples have been compressed to reduce their size and to high-
light the relevant portions. The full versions of the code examples, as well
as supplementary examples and errata, are available from the book’s website,
http://www.javaconcurrencyinpractice.com.

The code examples are of three sorts: “good” examples, “not so good” exam-
ples, and “bad” examples. Good examples illustrate techniques that should be
emulated. Bad examples illustrate techniques that should definitely not be em-
ulated, and are identified with a “Mr. Yuk” icon1 to make it clear that this is
“toxic” code (see Listing 1). Not-so-good examples illustrate techniques that are
not necessarily wrong but are fragile, risky, or perform poorly, and are decorated
with a “Mr. Could Be Happier” icon as in Listing 2.

public <T extends Comparable<? super T>> void sort(List<T> list) {
// Never returns the wrong answer!
System.exit(0);

}

Listing 1. Bad way to sort a list. Don’t do this.

Some readers may question the role of the “bad” examples in this book; after
all, a book should show how to do things right, not wrong. The bad examples
have two purposes. They illustrate common pitfalls, but more importantly they
demonstrate how to analyze a program for thread safety—and the best way to do
that is to see the ways in which thread safety is compromised.

1. Mr. Yuk is a registered trademark of the Children’s Hospital of Pittsburgh and appears by permis-
sion.

http://www.javaconcurrencyinpractice.com

xx Preface

public <T extends Comparable<? super T>> void sort(List<T> list) {
for (int i=0; i<1000000; i++)

doNothing();
Collections.sort(list);

}

Listing 2. Less than optimal way to sort a list.

Acknowledgments

This book grew out of the development process for the java.util.concurrent
package that was created by the Java Community Process JSR 166 for inclusion in
Java 5.0. Many others contributed to JSR 166; in particular we thank Martin Buch-
holz for doing all the work related to getting the code into the JDK, and all the
readers of the concurrency-interest mailing list who offered their suggestions
and feedback on the draft APIs.

This book has been tremendously improved by the suggestions and assistance
of a small army of reviewers, advisors, cheerleaders, and armchair critics. We
would like to thank Dion Almaer, Tracy Bialik, Cindy Bloch, Martin Buchholz,
Paul Christmann, Cliff Click, Stuart Halloway, David Hovemeyer, Jason Hunter,
Michael Hunter, Jeremy Hylton, Heinz Kabutz, Robert Kuhar, Ramnivas Lad-
dad, Jared Levy, Nicole Lewis, Victor Luchangco, Jeremy Manson, Paul Martin,
Berna Massingill, Michael Maurer, Ted Neward, Kirk Pepperdine, Bill Pugh, Sam
Pullara, Russ Rufer, Bill Scherer, Jeffrey Siegal, Bruce Tate, Gil Tene, Paul Tyma,
and members of the Silicon Valley Patterns Group who, through many interest-
ing technical conversations, offered guidance and made suggestions that helped
make this book better.

We are especially grateful to Cliff Biffle, Barry Hayes, Dawid Kurzyniec, Ange-
lika Langer, Doron Rajwan, and Bill Venners, who reviewed the entire manuscript
in excruciating detail, found bugs in the code examples, and suggested numerous
improvements.

We thank Katrina Avery for a great copy-editing job and Rosemary Simpson
for producing the index under unreasonable time pressure. We thank Ami Dewar
for doing the illustrations.

Thanks to the whole team at Addison-Wesley who helped make this book a
reality. Ann Sellers got the project launched and Greg Doench shepherded it to a
smooth completion; Elizabeth Ryan guided it through the production process.

We would also like to thank the thousands of software engineers who con-
tributed indirectly by creating the software used to create this book, including
TEX, LATEX, Adobe Acrobat, pic, grap, Adobe Illustrator, Perl, Apache Ant, IntelliJ
IDEA, GNU emacs, Subversion, TortoiseSVN, and of course, the Java platform
and class libraries.

This page intentionally left blank

Chapter 6

Task Execution

Most concurrent applications are organized around the execution of tasks: ab-
stract, discrete units of work. Dividing the work of an application into tasks
simplifies program organization, facilitates error recovery by providing natural
transaction boundaries, and promotes concurrency by providing a natural struc-
ture for parallelizing work.

6.1 Executing tasks in threads

The first step in organizing a program around task execution is identifying sen-
sible task boundaries. Ideally, tasks are independent activities: work that doesn’t
depend on the state, result, or side effects of other tasks. Independence facili-
tates concurrency, as independent tasks can be executed in parallel if there are
adequate processing resources. For greater flexibility in scheduling and load bal-
ancing tasks, each task should also represent a small fraction of your application’s
processing capacity.

Server applications should exhibit both good throughput and good responsiveness
under normal load. Application providers want applications to support as many
users as possible, so as to reduce provisioning costs per user; users want to get
their response quickly. Further, applications should exhibit graceful degradation
as they become overloaded, rather than simply falling over under heavy load.
Choosing good task boundaries, coupled with a sensible task execution policy (see
Section 6.2.2), can help achieve these goals.

Most server applications offer a natural choice of task boundary: individual
client requests. Web servers, mail servers, file servers, EJB containers, and da-
tabase servers all accept requests via network connections from remote clients.
Using individual requests as task boundaries usually offers both independence
and appropriate task sizing. For example, the result of submitting a message to
a mail server is not affected by the other messages being processed at the same
time, and handling a single message usually requires a very small percentage of
the server’s total capacity.

113

114 Chapter 6. Task Execution

6.1.1 Executing tasks sequentially

There are a number of possible policies for scheduling tasks within an applica-
tion, some of which exploit the potential for concurrency better than others. The
simplest is to execute tasks sequentially in a single thread. SingleThreadWeb-
Server in Listing 6.1 processes its tasks—HTTP requests arriving on port 80—
sequentially. The details of the request processing aren’t important; we’re inter-
ested in characterizing the concurrency of various scheduling policies.

class SingleThreadWebServer {
public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);
while (true) {

Socket connection = socket.accept();
handleRequest(connection);

}
}

}

Listing 6.1. Sequential web server.

SingleThreadedWebServer is simple and theoretically correct, but would per-
form poorly in production because it can handle only one request at a time. The
main thread alternates between accepting connections and processing the associ-
ated request. While the server is handling a request, new connections must wait
until it finishes the current request and calls accept again. This might work if
request processing were so fast that handleRequest effectively returned immedi-
ately, but this doesn’t describe any web server in the real world.

Processing a web request involves a mix of computation and I/O. The server
must perform socket I/O to read the request and write the response, which can
block due to network congestion or connectivity problems. It may also perform
file I/O or make database requests, which can also block. In a single-threaded
server, blocking not only delays completing the current request, but prevents
pending requests from being processed at all. If one request blocks for an un-
usually long time, users might think the server is unavailable because it appears
unresponsive. At the same time, resource utilization is poor, since the CPU sits
idle while the single thread waits for its I/O to complete.

In server applications, sequential processing rarely provides either good
throughput or good responsiveness. There are exceptions—such as when tasks
are few and long-lived, or when the server serves a single client that makes only
a single request at a time—but most server applications do not work this way.1

1. In some situations, sequential processing may offer a simplicity or safety advantage; most GUI
frameworks process tasks sequentially using a single thread. We return to the sequential model in
Chapter 9.

6.1. Executing tasks in threads 115

6.1.2 Explicitly creating threads for tasks

A more responsive approach is to create a new thread for servicing each request,
as shown in ThreadPerTaskWebServer in Listing 6.2.

class ThreadPerTaskWebServer {
public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable task = new Runnable() {

public void run() {
handleRequest(connection);

}
};

new Thread(task).start();

}
}

}

Listing 6.2. Web server that starts a new thread for each request.

ThreadPerTaskWebServer is similar in structure to the single-threaded
version—the main thread still alternates between accepting an incoming con-
nection and dispatching the request. The difference is that for each connection,
the main loop creates a new thread to process the request instead of processing it
within the main thread. This has three main consequences:

• Task processing is offloaded from the main thread, enabling the main loop
to resume waiting for the next incoming connection more quickly. This
enables new connections to be accepted before previous requests complete,
improving responsiveness.

• Tasks can be processed in parallel, enabling multiple requests to be serviced
simultaneously. This may improve throughput if there are multiple process-
ors, or if tasks need to block for any reason such as I/O completion, lock
acquisition, or resource availability.

• Task-handling code must be thread-safe, because it may be invoked concur-
rently for multiple tasks.

Under light to moderate load, the thread-per-task approach is an improvement
over sequential execution. As long as the request arrival rate does not exceed the
server’s capacity to handle requests, this approach offers better responsiveness
and throughput.

116 Chapter 6. Task Execution

6.1.3 Disadvantages of unbounded thread creation

For production use, however, the thread-per-task approach has some practical
drawbacks, especially when a large number of threads may be created:

Thread lifecycle overhead. Thread creation and teardown are not free. The ac-
tual overhead varies across platforms, but thread creation takes time, intro-
ducing latency into request processing, and requires some processing activ-
ity by the JVM and OS. If requests are frequent and lightweight, as in most
server applications, creating a new thread for each request can consume
significant computing resources.

Resource consumption. Active threads consume system resources, especially
memory. When there are more runnable threads than available process-
ors, threads sit idle. Having many idle threads can tie up a lot of memory,
putting pressure on the garbage collector, and having many threads com-
peting for the CPUs can impose other performance costs as well. If you have
enough threads to keep all the CPUs busy, creating more threads won’t help
and may even hurt.

Stability. There is a limit on how many threads can be created. The limit varies
by platform and is affected by factors including JVM invocation parameters,
the requested stack size in the Thread constructor, and limits on threads
placed by the underlying operating system.2 When you hit this limit, the
most likely result is an OutOfMemoryError. Trying to recover from such an
error is very risky; it is far easier to structure your program to avoid hitting
this limit.

Up to a certain point, more threads can improve throughput, but beyond that
point creating more threads just slows down your application, and creating one
thread too many can cause your entire application to crash horribly. The way to
stay out of danger is to place some bound on how many threads your application
creates, and to test your application thoroughly to ensure that, even when this
bound is reached, it does not run out of resources.

The problem with the thread-per-task approach is that nothing places any
limit on the number of threads created except the rate at which remote users can
throw HTTP requests at it. Like other concurrency hazards, unbounded thread
creation may appear to work just fine during prototyping and development, with
problems surfacing only when the application is deployed and under heavy load.
So a malicious user, or enough ordinary users, can make your web server crash
if the traffic load ever reaches a certain threshold. For a server application that is
supposed to provide high availability and graceful degradation under load, this
is a serious failing.

2. On 32-bit machines, a major limiting factor is address space for thread stacks. Each thread main-
tains two execution stacks, one for Java code and one for native code. Typical JVM defaults yield
a combined stack size of around half a megabyte. (You can change this with the -Xss JVM flag or
through the Thread constructor.) If you divide the per-thread stack size into 232, you get a limit of
a few thousands or tens of thousands of threads. Other factors, such as OS limitations, may impose
stricter limits.

6.2. The Executor framework 117

6.2 The Executor framework

Tasks are logical units of work, and threads are a mechanism by which tasks
can run asynchronously. We’ve examined two policies for executing tasks using
threads—execute tasks sequentially in a single thread, and execute each task in its
own thread. Both have serious limitations: the sequential approach suffers from
poor responsiveness and throughput, and the thread-per-task approach suffers
from poor resource management.

In Chapter 5, we saw how to use bounded queues to prevent an overloaded
application from running out of memory. Thread pools offer the same benefit for
thread management, and java.util.concurrent provides a flexible thread pool
implementation as part of the Executor framework. The primary abstraction for
task execution in the Java class libraries is not Thread, but Executor, shown in
Listing 6.3.

public interface Executor {
void execute(Runnable command);

}

Listing 6.3. Executor interface.

Executor may be a simple interface, but it forms the basis for a flexible and
powerful framework for asynchronous task execution that supports a wide vari-
ety of task execution policies. It provides a standard means of decoupling task
submission from task execution, describing tasks with Runnable. The Executor
implementations also provide lifecycle support and hooks for adding statistics
gathering, application management, and monitoring.

Executor is based on the producer-consumer pattern, where activities that
submit tasks are the producers (producing units of work to be done) and the
threads that execute tasks are the consumers (consuming those units of work).
Using an Executor is usually the easiest path to implementing a producer-consumer
design in your application.

6.2.1 Example: web server using Executor

Building a web server with an Executor is easy. TaskExecutionWebServer in
Listing 6.4 replaces the hard-coded thread creation with an Executor. In this
case, we use one of the standard Executor implementations, a fixed-size thread
pool with 100 threads.

In TaskExecutionWebServer, submission of the request-handling task is de-
coupled from its execution using an Executor, and its behavior can be changed
merely by substituting a different Executor implementation. Changing Executor
implementations or configuration is far less invasive than changing the way tasks
are submitted; Executor configuration is generally a one-time event and can eas-
ily be exposed for deployment-time configuration, whereas task submission code
tends to be strewn throughout the program and harder to expose.

118 Chapter 6. Task Execution

class TaskExecutionWebServer {
private static final int NTHREADS = 100;
private static final Executor exec

= Executors.newFixedThreadPool(NTHREADS);

public static void main(String[] args) throws IOException {
ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable task = new Runnable() {

public void run() {
handleRequest(connection);

}
};
exec.execute(task);

}
}

}

Listing 6.4. Web server using a thread pool.

We can easily modify TaskExecutionWebServer to behave like ThreadPer-
TaskWebServer by substituting an Executor that creates a new thread for each
request. Writing such an Executor is trivial, as shown in ThreadPerTaskExecut-
or in Listing 6.5.

public class ThreadPerTaskExecutor implements Executor {
public void execute(Runnable r) {

new Thread(r).start();

};
}

Listing 6.5. Executor that starts a new thread for each task.

Similarly, it is also easy to write an Executor that would make TaskExecut-
ionWebServer behave like the single-threaded version, executing each task syn-
chronously before returning from execute, as shown in WithinThreadExecutor
in Listing 6.6.

6.2.2 Execution policies

The value of decoupling submission from execution is that it lets you easily spec-
ify, and subsequently change without great difficulty, the execution policy for a
given class of tasks. An execution policy specifies the “what, where, when, and
how” of task execution, including:

6.2. The Executor framework 119

public class WithinThreadExecutor implements Executor {
public void execute(Runnable r) {

r.run();
};

}

Listing 6.6. Executor that executes tasks synchronously in the calling thread.

• In what thread will tasks be executed?

• In what order should tasks be executed (FIFO, LIFO, priority order)?

• How many tasks may execute concurrently?

• How many tasks may be queued pending execution?

• If a task has to be rejected because the system is overloaded, which task
should be selected as the victim, and how should the application be noti-
fied?

• What actions should be taken before or after executing a task?

Execution policies are a resource management tool, and the optimal policy
depends on the available computing resources and your quality-of-service re-
quirements. By limiting the number of concurrent tasks, you can ensure that
the application does not fail due to resource exhaustion or suffer performance
problems due to contention for scarce resources.3 Separating the specification of
execution policy from task submission makes it practical to select an execution
policy at deployment time that is matched to the available hardware.

Whenever you see code of the form:
new Thread(runnable).start()

and you think you might at some point want a more flexible execution
policy, seriously consider replacing it with the use of an Executor.

6.2.3 Thread pools

A thread pool, as its name suggests, manages a homogeneous pool of worker
threads. A thread pool is tightly bound to a work queue holding tasks waiting to
be executed. Worker threads have a simple life: request the next task from the
work queue, execute it, and go back to waiting for another task.

3. This is analogous to one of the roles of a transaction monitor in an enterprise application: it can
throttle the rate at which transactions are allowed to proceed so as not to exhaust or overstress limited
resources.

120 Chapter 6. Task Execution

Executing tasks in pool threads has a number of advantages over the thread-
per-task approach. Reusing an existing thread instead of creating a new one
amortizes thread creation and teardown costs over multiple requests. As an
added bonus, since the worker thread often already exists at the time the request
arrives, the latency associated with thread creation does not delay task execution,
thus improving responsiveness. By properly tuning the size of the thread pool,
you can have enough threads to keep the processors busy while not having so
many that your application runs out of memory or thrashes due to competition
among threads for resources.

The class library provides a flexible thread pool implementation along with
some useful predefined configurations. You can create a thread pool by calling
one of the static factory methods in Executors:

newFixedThreadPool. A fixed-size thread pool creates threads as tasks are sub-
mitted, up to the maximum pool size, and then attempts to keep the pool
size constant (adding new threads if a thread dies due to an unexpected
Exception).

newCachedThreadPool. A cached thread pool has more flexibility to reap idle
threads when the current size of the pool exceeds the demand for process-
ing, and to add new threads when demand increases, but places no bounds
on the size of the pool.

newSingleThreadExecutor. A single-threaded executor creates a single worker
thread to process tasks, replacing it if it dies unexpectedly. Tasks are guar-
anteed to be processed sequentially according to the order imposed by the
task queue (FIFO, LIFO, priority order).4

newScheduledThreadPool. A fixed-size thread pool that supports delayed and
periodic task execution, similar to Timer. (See Section 6.2.5.)

The newFixedThreadPool and newCachedThreadPool factories return in-
stances of the general-purpose ThreadPoolExecutor, which can also be used
directly to construct more specialized executors. We discuss thread pool configu-
ration options in depth in Chapter 8.

The web server in TaskExecutionWebServer uses an Executor with a bounded
pool of worker threads. Submitting a task with execute adds the task to the work
queue, and the worker threads repeatedly dequeue tasks from the work queue
and execute them.

Switching from a thread-per-task policy to a pool-based policy has a big effect
on application stability: the web server will no longer fail under heavy load.5

4. Single-threaded executors also provide sufficient internal synchronization to guarantee that any
memory writes made by tasks are visible to subsequent tasks; this means that objects can be safely
confined to the “task thread” even though that thread may be replaced with another from time to
time.
5. While the server may not fail due to the creation of too many threads, if the task arrival rate exceeds
the task service rate for long enough it is still possible (just harder) to run out of memory because
of the growing queue of Runnables awaiting execution. This can be addressed within the Executor
framework by using a bounded work queue—see Section 8.3.2.

6.2. The Executor framework 121

It also degrades more gracefully, since it does not create thousands of threads
that compete for limited CPU and memory resources. And using an Executor
opens the door to all sorts of additional opportunities for tuning, management,
monitoring, logging, error reporting, and other possibilities that would have been
far more difficult to add without a task execution framework.

6.2.4 Executor lifecycle

We’ve seen how to create an Executor but not how to shut one down. An Exec-
utor implementation is likely to create threads for processing tasks. But the JVM
can’t exit until all the (nondaemon) threads have terminated, so failing to shut
down an Executor could prevent the JVM from exiting.

Because an Executor processes tasks asynchronously, at any given time the
state of previously submitted tasks is not immediately obvious. Some may have
completed, some may be currently running, and others may be queued awaiting
execution. In shutting down an application, there is a spectrum from graceful
shutdown (finish what you’ve started but don’t accept any new work) to abrupt
shutdown (turn off the power to the machine room), and various points in be-
tween. Since Executors provide a service to applications, they should be able to
be shut down as well, both gracefully and abruptly, and feed back information to
the application about the status of tasks that were affected by the shutdown.

To address the issue of execution service lifecycle, the ExecutorService in-
terface extends Executor, adding a number of methods for lifecycle management
(as well as some convenience methods for task submission). The lifecycle man-
agement methods of ExecutorService are shown in Listing 6.7.

public interface ExecutorService extends Executor {
void shutdown();
List<Runnable> shutdownNow();
boolean isShutdown();
boolean isTerminated();
boolean awaitTermination(long timeout, TimeUnit unit)

throws InterruptedException;
// ... additional convenience methods for task submission

}

Listing 6.7. Lifecycle methods in ExecutorService.

The lifecycle implied by ExecutorService has three states—running, shutting
down, and terminated. ExecutorServices are initially created in the running state.
The shutdown method initiates a graceful shutdown: no new tasks are accepted
but previously submitted tasks are allowed to complete—including those that
have not yet begun execution. The shutdownNow method initiates an abrupt shut-
down: it attempts to cancel outstanding tasks and does not start any tasks that
are queued but not begun.

Tasks submitted to an ExecutorService after it has been shut down are han-
dled by the rejected execution handler (see Section 8.3.3), which might silently dis-

122 Chapter 6. Task Execution

card the task or might cause execute to throw the unchecked RejectedExecu-
tionException. Once all tasks have completed, the ExecutorService transitions
to the terminated state. You can wait for an ExecutorService to reach the termi-
nated state with awaitTermination, or poll for whether it has yet terminated with
isTerminated. It is common to follow shutdown immediately by awaitTermina-
tion, creating the effect of synchronously shutting down the ExecutorService.
(Executor shutdown and task cancellation are covered in more detail in Chapter
7.)

LifecycleWebServer in Listing 6.8 extends our web server with lifecycle sup-
port. It can be shut down in two ways: programmatically by calling stop, and
through a client request by sending the web server a specially formatted HTTP
request.

class LifecycleWebServer {
private final ExecutorService exec = ...;

public void start() throws IOException {
ServerSocket socket = new ServerSocket(80);
while (!exec.isShutdown()) {

try {
final Socket conn = socket.accept();
exec.execute(new Runnable() {

public void run() { handleRequest(conn); }
});

} catch (RejectedExecutionException e) {
if (!exec.isShutdown())

log("task submission rejected", e);
}

}
}

public void stop() { exec.shutdown(); }

void handleRequest(Socket connection) {
Request req = readRequest(connection);
if (isShutdownRequest(req))

stop();
else

dispatchRequest(req);
}

}

Listing 6.8. Web server with shutdown support.

6.3. Finding exploitable parallelism 123

6.2.5 Delayed and periodic tasks

The Timer facility manages the execution of deferred (“run this task in 100 ms”)
and periodic (“run this task every 10 ms”) tasks. However, Timer has some draw-
backs, and ScheduledThreadPoolExecutor should be thought of as its replace-
ment.6 You can construct a ScheduledThreadPoolExecutor through its construc-
tor or through the newScheduledThreadPool factory.

A Timer creates only a single thread for executing timer tasks. If a timer
task takes too long to run, the timing accuracy of other TimerTasks can suffer.
If a recurring TimerTask is scheduled to run every 10 ms and another Timer-
Task takes 40 ms to run, the recurring task either (depending on whether it was
scheduled at fixed rate or fixed delay) gets called four times in rapid succession
after the long-running task completes, or “misses” four invocations completely.
Scheduled thread pools address this limitation by letting you provide multiple
threads for executing deferred and periodic tasks.

Another problem with Timer is that it behaves poorly if a TimerTask throws
an unchecked exception. The Timer thread doesn’t catch the exception, so an un-
checked exception thrown from a TimerTask terminates the timer thread. Timer
also doesn’t resurrect the thread in this situation; instead, it erroneously assumes
the entire Timer was cancelled. In this case, TimerTasks that are already sched-
uled but not yet executed are never run, and new tasks cannot be scheduled.
(This problem, called “thread leakage” is described in Section 7.3, along with
techniques for avoiding it.)

OutOfTime in Listing 6.9 illustrates how a Timer can become confused in this
manner and, as confusion loves company, how the Timer shares its confusion
with the next hapless caller that tries to submit a TimerTask. You might expect
the program to run for six seconds and exit, but what actually happens is that
it terminates after one second with an IllegalStateException whose message
text is “Timer already cancelled”. ScheduledThreadPoolExecutor deals properly
with ill-behaved tasks; there is little reason to use Timer in Java 5.0 or later.

If you need to build your own scheduling service, you may still be able to take
advantage of the library by using a DelayQueue, a BlockingQueue implementation
that provides the scheduling functionality of ScheduledThreadPoolExecutor. A
DelayQueue manages a collection of Delayed objects. A Delayed has a delay time
associated with it: DelayQueue lets you take an element only if its delay has
expired. Objects are returned from a DelayQueue ordered by the time associated
with their delay.

6.3 Finding exploitable parallelism

The Executor framework makes it easy to specify an execution policy, but in
order to use an Executor, you have to be able to describe your task as a Runn-
able. In most server applications, there is an obvious task boundary: a single
client request. But sometimes good task boundaries are not quite so obvious, as

6. Timer does have support for scheduling based on absolute, not relative time, so that tasks can be
sensitive to changes in the system clock; ScheduledThreadPoolExecutor supports only relative time.

124 Chapter 6. Task Execution

public class OutOfTime {
public static void main(String[] args) throws Exception {

Timer timer = new Timer();
timer.schedule(new ThrowTask(), 1);
SECONDS.sleep(1);
timer.schedule(new ThrowTask(), 1);
SECONDS.sleep(5);

}

static class ThrowTask extends TimerTask {
public void run() { throw new RuntimeException(); }

}
}

Listing 6.9. Class illustrating confusing Timer behavior.

in many desktop applications. There may also be exploitable parallelism within
a single client request in server applications, as is sometimes the case in database
servers. (For a further discussion of the competing design forces in choosing task
boundaries, see [CPJ 4.4.1.1].)

In this section we develop several versions of a component that admit varying
degrees of concurrency. Our sample component is the page-rendering portion of
a browser application, which takes a page of HTML and renders it into an image
buffer. To keep it simple, we assume that the HTML consists only of marked up
text interspersed with image elements with pre-specified dimensions and URLs.

6.3.1 Example: sequential page renderer

The simplest approach is to process the HTML document sequentially. As text
markup is encountered, render it into the image buffer; as image references are
encountered, fetch the image over the network and draw it into the image buffer
as well. This is easy to implement and requires touching each element of the
input only once (it doesn’t even require buffering the document), but is likely to
annoy the user, who may have to wait a long time before all the text is rendered.

A less annoying but still sequential approach involves rendering the text ele-
ments first, leaving rectangular placeholders for the images, and after completing
the initial pass on the document, going back and downloading the images and
drawing them into the associated placeholder. This approach is shown in Sin-
gleThreadRenderer in Listing 6.10.

Downloading an image mostly involves waiting for I/O to complete, and dur-
ing this time the CPU does little work. So the sequential approach may under-
utilize the CPU, and also makes the user wait longer than necessary to see the
finished page. We can achieve better utilization and responsiveness by breaking
the problem into independent tasks that can execute concurrently.

6.3. Finding exploitable parallelism 125

public class SingleThreadRenderer {
void renderPage(CharSequence source) {

renderText(source);
List<ImageData> imageData = new ArrayList<ImageData>();
for (ImageInfo imageInfo : scanForImageInfo(source))

imageData.add(imageInfo.downloadImage());
for (ImageData data : imageData)

renderImage(data);
}

}

Listing 6.10. Rendering page elements sequentially.

6.3.2 Result-bearing tasks: Callable and Future

The Executor framework uses Runnable as its basic task representation. Runn-
able is a fairly limiting abstraction; run cannot return a value or throw checked
exceptions, although it can have side effects such as writing to a log file or placing
a result in a shared data structure.

Many tasks are effectively deferred computations—executing a database
query, fetching a resource over the network, or computing a complicated func-
tion. For these types of tasks, Callable is a better abstraction: it expects that the
main entry point, call, will return a value and anticipates that it might throw
an exception.7 Executors includes several utility methods for wrapping other
types of tasks, including Runnable and java.security.PrivilegedAction, with
a Callable.

Runnable and Callable describe abstract computational tasks. Tasks are usu-
ally finite: they have a clear starting point and they eventually terminate. The
lifecycle of a task executed by an Executor has four phases: created, submitted,
started, and completed. Since tasks can take a long time to run, we also want to be
able to cancel a task. In the Executor framework, tasks that have been submitted
but not yet started can always be cancelled, and tasks that have started can some-
times be cancelled if they are responsive to interruption. Cancelling a task that
has already completed has no effect. (Cancellation is covered in greater detail in
Chapter 7.)

Future represents the lifecycle of a task and provides methods to test whether
the task has completed or been cancelled, retrieve its result, and cancel the task.
Callable and Future are shown in Listing 6.11. Implicit in the specification of
Future is that task lifecycle can only move forwards, not backwards—just like the
ExecutorService lifecycle. Once a task is completed, it stays in that state forever.

The behavior of get varies depending on the task state (not yet started, run-
ning, completed). It returns immediately or throws an Exception if the task
has already completed, but if not it blocks until the task completes. If the task
completes by throwing an exception, get rethrows it wrapped in an Execution-

7. To express a non-value-returning task with Callable, use Callable<Void>.

126 Chapter 6. Task Execution

public interface Callable<V> {
V call() throws Exception;

}

public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
boolean isDone();
V get() throws InterruptedException, ExecutionException,

CancellationException;
V get(long timeout, TimeUnit unit)

throws InterruptedException, ExecutionException,
CancellationException, TimeoutException;

}

Listing 6.11. Callable and Future interfaces.

Exception; if it was cancelled, get throws CancellationException. If get throws
ExecutionException, the underlying exception can be retrieved with getCause.

There are several ways to create a Future to describe a task. The submit
methods in ExecutorService all return a Future, so that you can submit a Runn-
able or a Callable to an executor and get back a Future that can be used to
retrieve the result or cancel the task. You can also explicitly instantiate a Fut-
ureTask for a given Runnable or Callable. (Because FutureTask implements
Runnable, it can be submitted to an Executor for execution or executed directly
by calling its run method.)

As of Java 6, ExecutorService implementations can override newTaskFor in
AbstractExecutorService to control instantiation of the Future corresponding
to a submitted Callable or Runnable. The default implementation just creates a
new FutureTask, as shown in Listing 6.12.

protected <T> RunnableFuture<T> newTaskFor(Callable<T> task) {
return new FutureTask<T>(task);

}

Listing 6.12. Default implementation of newTaskFor in ThreadPoolExecutor.

Submitting a Runnable or Callable to an Executor constitutes a safe publica-
tion (see Section 3.5) of the Runnable or Callable from the submitting thread to
the thread that will eventually execute the task. Similarly, setting the result value
for a Future constitutes a safe publication of the result from the thread in which
it was computed to any thread that retrieves it via get.

6.3. Finding exploitable parallelism 127

6.3.3 Example: page renderer with Future

As a first step towards making the page renderer more concurrent, let’s divide it
into two tasks, one that renders the text and one that downloads all the images.
(Because one task is largely CPU-bound and the other is largely I/O-bound, this
approach may yield improvements even on single-CPU systems.)

Callable and Future can help us express the interaction between these coop-
erating tasks. In FutureRenderer in Listing 6.13, we create a Callable to down-
load all the images, and submit it to an ExecutorService. This returns a Future
describing the task’s execution; when the main task gets to the point where it
needs the images, it waits for the result by calling Future.get. If we’re lucky, the
results will already be ready by the time we ask; otherwise, at least we got a head
start on downloading the images.

The state-dependent nature of get means that the caller need not be aware
of the state of the task, and the safe publication properties of task submission
and result retrieval make this approach thread-safe. The exception handling code
surrounding Future.get deals with two possible problems: that the task encoun-
tered an Exception, or the thread calling get was interrupted before the results
were available. (See Sections 5.5.2 and 5.4.)

FutureRenderer allows the text to be rendered concurrently with download-
ing the image data. When all the images are downloaded, they are rendered onto
the page. This is an improvement in that the user sees a result quickly and it
exploits some parallelism, but we can do considerably better. There is no need for
users to wait for all the images to be downloaded; they would probably prefer to
see individual images drawn as they become available.

6.3.4 Limitations of parallelizing heterogeneous tasks

In the last example, we tried to execute two different types of tasks in parallel—
downloading the images and rendering the page. But obtaining significant per-
formance improvements by trying to parallelize sequential heterogeneous tasks
can be tricky.

Two people can divide the work of cleaning the dinner dishes fairly effectively:
one person washes while the other dries. However, assigning a different type of
task to each worker does not scale well; if several more people show up, it is not
obvious how they can help without getting in the way or significantly restructur-
ing the division of labor. Without finding finer-grained parallelism among similar
tasks, this approach will yield diminishing returns.

A further problem with dividing heterogeneous tasks among multiple workers
is that the tasks may have disparate sizes. If you divide tasks A and B between
two workers but A takes ten times as long as B, you’ve only speeded up the total
process by 9%. Finally, dividing a task among multiple workers always involves
some amount of coordination overhead; for the division to be worthwhile, this
overhead must be more than compensated by productivity improvements due to
parallelism.

FutureRenderer uses two tasks: one for rendering text and one for download-
ing the images. If rendering the text is much faster than downloading the images,

128 Chapter 6. Task Execution

public class FutureRenderer {
private final ExecutorService executor = ...;

void renderPage(CharSequence source) {
final List<ImageInfo> imageInfos = scanForImageInfo(source);
Callable<List<ImageData>> task =

new Callable<List<ImageData>>() {
public List<ImageData> call() {

List<ImageData> result
= new ArrayList<ImageData>();

for (ImageInfo imageInfo : imageInfos)
result.add(imageInfo.downloadImage());

return result;
}

};

Future<List<ImageData>> future = executor.submit(task);

renderText(source);

try {
List<ImageData> imageData = future.get();

for (ImageData data : imageData)
renderImage(data);

} catch (InterruptedException e) {
// Re-assert the thread’s interrupted status
Thread.currentThread().interrupt();
// We don’t need the result, so cancel the task too
future.cancel(true);

} catch (ExecutionException e) {
throw launderThrowable(e.getCause());

}
}

}

Listing 6.13. Waiting for image download with Future.

6.3. Finding exploitable parallelism 129

as is entirely possible, the resulting performance is not much different from the
sequential version, but the code is a lot more complicated. And the best we can do
with two threads is speed things up by a factor of two. Thus, trying to increase
concurrency by parallelizing heterogeneous activities can be a lot of work, and
there is a limit to how much additional concurrency you can get out of it. (See
Sections 11.4.2 and 11.4.3 for another example of the same phenomenon.)

The real performance payoff of dividing a program’s workload into tasks
comes when there are a large number of independent, homogeneous tasks
that can be processed concurrently.

6.3.5 CompletionService: Executor meets BlockingQueue

If you have a batch of computations to submit to an Executor and you want
to retrieve their results as they become available, you could retain the Future
associated with each task and repeatedly poll for completion by calling get with
a timeout of zero. This is possible, but tedious. Fortunately there is a better way:
a completion service.

CompletionService combines the functionality of an Executor and a Block-
ingQueue. You can submit Callable tasks to it for execution and use the queue-
like methods take and poll to retrieve completed results, packaged as Futures,
as they become available. ExecutorCompletionService implements Completion-
Service, delegating the computation to an Executor.

The implementation of ExecutorCompletionService is quite straightforward.
The constructor creates a BlockingQueue to hold the completed results. Future-
Task has a done method that is called when the computation completes. When a
task is submitted, it is wrapped with a QueueingFuture, a subclass of FutureTask
that overrides done to place the result on the BlockingQueue, as shown in Listing
6.14. The take and poll methods delegate to the BlockingQueue, blocking if
results are not yet available.

private class QueueingFuture<V> extends FutureTask<V> {
QueueingFuture(Callable<V> c) { super(c); }
QueueingFuture(Runnable t, V r) { super(t, r); }

protected void done() {
completionQueue.add(this);

}
}

Listing 6.14. QueueingFuture class used by ExecutorCompletionService.

130 Chapter 6. Task Execution

6.3.6 Example: page renderer with CompletionService

We can use a CompletionService to improve the performance of the page ren-
derer in two ways: shorter total runtime and improved responsiveness. We
can create a separate task for downloading each image and execute them in a
thread pool, turning the sequential download into a parallel one: this reduces the
amount of time to download all the images. And by fetching results from the
CompletionService and rendering each image as soon as it is available, we can
give the user a more dynamic and responsive user interface. This implementation
is shown in Renderer in Listing 6.15.

public class Renderer {
private final ExecutorService executor;

Renderer(ExecutorService executor) { this.executor = executor; }

void renderPage(CharSequence source) {
List<ImageInfo> info = scanForImageInfo(source);
CompletionService<ImageData> completionService =

new ExecutorCompletionService<ImageData>(executor);
for (final ImageInfo imageInfo : info)

completionService.submit(new Callable<ImageData>() {
public ImageData call() {

return imageInfo.downloadImage();
}

});

renderText(source);

try {
for (int t = 0, n = info.size(); t < n; t++) {

Future<ImageData> f = completionService.take();
ImageData imageData = f.get();
renderImage(imageData);

}
} catch (InterruptedException e) {

Thread.currentThread().interrupt();
} catch (ExecutionException e) {

throw launderThrowable(e.getCause());
}

}
}

Listing 6.15. Using CompletionService to render page elements as they become
available.

Multiple ExecutorCompletionServices can share a single Executor, so it is

6.3. Finding exploitable parallelism 131

perfectly sensible to create an ExecutorCompletionService that is private to a
particular computation while sharing a common Executor. When used in this
way, a CompletionService acts as a handle for a batch of computations in much
the same way that a Future acts as a handle for a single computation. By remem-
bering how many tasks were submitted to the CompletionService and counting
how many completed results are retrieved, you can know when all the results for
a given batch have been retrieved, even if you use a shared Executor.

6.3.7 Placing time limits on tasks

Sometimes, if an activity does not complete within a certain amount of time, the
result is no longer needed and the activity can be abandoned. For example, a web
application may fetch its advertisements from an external ad server, but if the ad
is not available within two seconds, it instead displays a default advertisement so
that ad unavailability does not undermine the site’s responsiveness requirements.
Similarly, a portal site may fetch data in parallel from multiple data sources, but
may be willing to wait only a certain amount of time for data to be available
before rendering the page without it.

The primary challenge in executing tasks within a time budget is making
sure that you don’t wait longer than the time budget to get an answer or find
out that one is not forthcoming. The timed version of Future.get supports this
requirement: it returns as soon as the result is ready, but throws TimeoutExcep-
tion if the result is not ready within the timeout period.

A secondary problem when using timed tasks is to stop them when they run
out of time, so they do not waste computing resources by continuing to compute
a result that will not be used. This can be accomplished by having the task strictly
manage its own time budget and abort if it runs out of time, or by cancelling the
task if the timeout expires. Again, Future can help; if a timed get completes with
a TimeoutException, you can cancel the task through the Future. If the task is
written to be cancellable (see Chapter 7), it can be terminated early so as not to
consume excessive resources. This technique is used in Listings 6.13 and 6.16.

Listing 6.16 shows a typical application of a timed Future.get. It generates
a composite web page that contains the requested content plus an advertisement
fetched from an ad server. It submits the ad-fetching task to an executor, com-
putes the rest of the page content, and then waits for the ad until its time budget
runs out.8 If the get times out, it cancels9 the ad-fetching task and uses a default
advertisement instead.

6.3.8 Example: a travel reservations portal

The time-budgeting approach in the previous section can be easily generalized to
an arbitrary number of tasks. Consider a travel reservation portal: the user en-

8. The timeout passed to get is computed by subtracting the current time from the deadline; this may
in fact yield a negative number, but all the timed methods in java.util.concurrent treat negative
timeouts as zero, so no extra code is needed to deal with this case.
9. The true parameter to Future.cancel means that the task thread can be interrupted if the task is
currently running; see Chapter 7.

132 Chapter 6. Task Execution

Page renderPageWithAd() throws InterruptedException {
long endNanos = System.nanoTime() + TIME_BUDGET;
Future<Ad> f = exec.submit(new FetchAdTask());
// Render the page while waiting for the ad
Page page = renderPageBody();
Ad ad;
try {

// Only wait for the remaining time budget
long timeLeft = endNanos - System.nanoTime();
ad = f.get(timeLeft, NANOSECONDS);

} catch (ExecutionException e) {
ad = DEFAULT_AD;

} catch (TimeoutException e) {
ad = DEFAULT_AD;
f.cancel(true);

}
page.setAd(ad);
return page;

}

Listing 6.16. Fetching an advertisement with a time budget.

ters travel dates and requirements and the portal fetches and displays bids from
a number of airlines, hotels or car rental companies. Depending on the com-
pany, fetching a bid might involve invoking a web service, consulting a database,
performing an EDI transaction, or some other mechanism. Rather than have the
response time for the page be driven by the slowest response, it may be preferable
to present only the information available within a given time budget. For provi-
ders that do not respond in time, the page could either omit them completely or
display a placeholder such as “Did not hear from Air Java in time.”

Fetching a bid from one company is independent of fetching bids from an-
other, so fetching a single bid is a sensible task boundary that allows bid retrieval
to proceed concurrently. It would be easy enough to create n tasks, submit them
to a thread pool, retain the Futures, and use a timed get to fetch each result
sequentially via its Future, but there is an even easier way—invokeAll.

Listing 6.17 uses the timed version of invokeAll to submit multiple tasks to
an ExecutorService and retrieve the results. The invokeAll method takes a
collection of tasks and returns a collection of Futures. The two collections have
identical structures; invokeAll adds the Futures to the returned collection in the
order imposed by the task collection’s iterator, thus allowing the caller to associate
a Future with the Callable it represents. The timed version of invokeAll will
return when all the tasks have completed, the calling thread is interrupted, or
the timeout expires. Any tasks that are not complete when the timeout expires
are cancelled. On return from invokeAll, each task will have either completed
normally or been cancelled; the client code can call get or isCancelled to find

6.3. Finding exploitable parallelism 133

out which.

Summary

Structuring applications around the execution of tasks can simplify development
and facilitate concurrency. The Executor framework permits you to decouple
task submission from execution policy and supports a rich variety of execution
policies; whenever you find yourself creating threads to perform tasks, consider
using an Executor instead. To maximize the benefit of decomposing an applica-
tion into tasks, you must identify sensible task boundaries. In some applications,
the obvious task boundaries work well, whereas in others some analysis may be
required to uncover finer-grained exploitable parallelism.

134 Chapter 6. Task Execution

private class QuoteTask implements Callable<TravelQuote> {
private final TravelCompany company;
private final TravelInfo travelInfo;
...
public TravelQuote call() throws Exception {

return company.solicitQuote(travelInfo);
}

}

public List<TravelQuote> getRankedTravelQuotes(
TravelInfo travelInfo, Set<TravelCompany> companies,
Comparator<TravelQuote> ranking, long time, TimeUnit unit)
throws InterruptedException {

List<QuoteTask> tasks = new ArrayList<QuoteTask>();
for (TravelCompany company : companies)

tasks.add(new QuoteTask(company, travelInfo));

List<Future<TravelQuote>> futures =
exec.invokeAll(tasks, time, unit);

List<TravelQuote> quotes =
new ArrayList<TravelQuote>(tasks.size());

Iterator<QuoteTask> taskIter = tasks.iterator();
for (Future<TravelQuote> f : futures) {

QuoteTask task = taskIter.next();
try {

quotes.add(f.get());
} catch (ExecutionException e) {

quotes.add(task.getFailureQuote(e.getCause()));
} catch (CancellationException e) {

quotes.add(task.getTimeoutQuote(e));
}

}

Collections.sort(quotes, ranking);
return quotes;

}

Listing 6.17. Requesting travel quotes under a time budget.

This page intentionally left blank

Index

Symbols
64-bit operations

nonatomic nature of; 36

A
ABA problem; 336
abnormal thread termination

handling; 161–163
abort saturation policy; 174

See also lifecycle; termination;
abrupt shutdown

limitations; 158–161
triggers for; 164
vs. graceful shutdown; 153

AbstractExecutorService

task representation use; 126
abstractions

See models/modeling; representa-
tion;

AbstractQueuedSynchronizer

See AQS framework;
access

See also encapsulation; sharing; visi-
bility;

exclusive
and concurrent collections; 86

integrity
nonblocking algorithm use; 319

mutable state
importance of coordinating; 110

remote resource
as long-running GUI task; 195

serialized
WorkerThread example; 227li
vs. object serialization; 27fn

visibility role in; 33
AccessControlContext

custom thread factory handling; 177

acquisition of locks
See locks, acquisition;

action(s)
See also compound actions; condi-

tion, predicate; control flow;
task(s);

barrier; 99
JMM specification; 339–342
listener; 195–197

activity(s)
See also task(s);
cancellation; 135, 135–150
tasks as representation of; 113

ad-hoc thread confinement; 43
See also confinement;

algorithm(s)
See also design patterns; idioms; rep-

resentation;
comparing performance; 263–264
design role of representation; 104
lock-free; 329
Michael-Scott nonblocking queue;

332
nonblocking; 319, 329, 329–336

backoff importance for; 231fn
synchronization; 319–336
SynchronousQueue; 174fn

parallel iterative
barrier use in; 99

recursive
parallelizing; 181–188

Treiber’s
nonblocking stack; 331li

work stealing
deques and; 92

alien method; 40
See also untrusted code behavior;
deadlock risks posed by; 211
publication risks; 40

359

360 Index

allocation
advantages vs. synchronization; 242
immutable objects and; 48fn
object pool use

disadvantages of; 241
scalability advantages; 263

Amdahl’s law; 225–229
See also concurrent/concurrency;

performance; resource(s);
throughput; utilization;

lock scope reduction advantage; 234
qualitative application of; 227

analysis
See also instrumentation; measure-

ment; static analysis tools;
deadlock

thread dump use; 216–217
escape; 230
for exploitable parallelism; 123–133
lock contention

thread dump use; 240
performance; 221–245

annotations; 353–354
See also documentation;
for concurrency documentation; 6
@GuardedBy; 28, 354

synchronization policy docu-
mentation use; 75

@Immutable; 353
@NotThreadSafe; 353
@ThreadSafe; 353

AOP (aspect-oriented programming)
in testing; 259, 273

application(s)
See also frameworks(s); service(s);

tools;
-scoped objects

thread safety concerns; 10
frameworks, and ThreadLocal; 46
GUI; 189–202

thread safety concerns; 10–11
parallelizing

task decomposition; 113
shutdown

and task cancellation; 136
AQS (AbstractQueuedSynchronizer)

framework; 308, 311–317
exit protocol use; 306
FutureTask implementation

piggybacking use; 342

ArrayBlockingQueue; 89
as bounded buffer example; 292
performance advantages over

BoundedBuffer; 263
ArrayDeque; 92
arrays

See also collections; data struc-
ture(s);

atomic variable; 325
asymmetric two-party tasks

Exchanger management of; 101
asynchrony/asynchronous

events, handling; 4
I/O, and non-interruptable block-

ing; 148
sequentiality vs.; 2
tasks

execution, Executor framework
use; 117

FutureTask handling; 95–98
atomic variables; 319–336

and lock contention; 239–240
classes; 324–329
locking vs.; 326–329
strategies for use; 34
volatile variables vs.; 39, 324–326

atomic/atomicity; 22
See also invariant(s); synchroniza-

tion; visibility;
64-bit operations

nonatomic nature of; 36
and compound actions; 22–23
and multivariable invariants; 57,

67–68
and open call restructuring; 213
and service shutdown; 153
and state transition constraints; 56
caching issues; 24–25
client-side locking support for; 80
field updaters; 335–336
immutable object use for; 48
in cache implementation design; 106
intrinsic lock enforcement of; 25–26
loss

risk of lock scope reduction; 234
Map operations; 86
put-if-absent; 71–72
statistics gathering hooks use; 179
thread-safety issues

in servlets with state; 19–23

Index 361

AtomicBoolean; 325
AtomicInteger; 324

nonblocking algorithm use; 319
random number generator using;

327li
AtomicLong; 325
AtomicReference; 325

nonblocking algorithm use; 319
safe publication use; 52

AtomicReferenceFieldUpdater; 335
audit(ing)

See also instrumentation;
audit(ing) tools; 28fn
AWT (Abstract Window Toolkit)

See also GUI;
thread use; 9

safety concerns and; 10–11

B
backoff

and nonblocking algorithms; 231fn
barging; 283

See also fairness; ordering; synchro-
nization;

and read-write locks; 287
performance advantages of; 284

barrier(s); 99, 99–101
See also latch(es); semaphores; syn-

chronizers;
-based timer; 260–261
action; 99
memory; 230, 338
point; 99

behavior
See also activities; task(s);

bias
See testing, pitfalls;

bibliography; 355–357
binary latch; 304

AQS-based; 313–314
binary semaphore

mutex use; 99
Bloch, Joshua

(bibliographic reference); 69
block(ing); 92

bounded collections
semaphore management of; 99
testing; 248

context switching impact of; 230
interruptible methods and; 92–94
interruption handling methods; 138

methods
and interruption; 143

non-interruptable; 147–150
operations

testing; 250–252
thread pool size impact; 170

queues; 87–94
See also Semaphore;
and thread pool management;

173
cancellation, problems; 138
cancellation, solutions; 140
Executor functionality com-

bined with; 129
producer-consumer pattern and;

87–92
spin-waiting; 232
state-dependent actions; 291–308

and polling; 295–296
and sleeping; 295–296
condition queues; 296–308
structure; 292li

threads, costs of; 232
waits

timed vs. unbounded; 170
BlockingQueue; 84–85

and state-based preconditions; 57
safe publication use; 52
thread pool use of; 173

bound(ed)
See also constraints; encapsulation;
blocking collections

semaphore management of; 99
buffers

blocking operations; 292
scalability testing; 261
size determination; 261

queues
and producer-consumer pattern;

88
saturation policies; 174–175
thread pool use; 172
thread pool use of; 173

resource; 221
boundaries

See also encapsulation;
task; 113

analysis for parallelism; 123–133
broken multi-threaded programs

strategies for fixing; 16

362 Index

BrokenBarrierException

parallel iterative algorithm use; 99
buffer(s)

See also cache/caching;
bounded

blocking state-dependent opera-
tions with; 292

scalability testing; 261
size determination; 261

BoundedBuffer example; 249li
condition queue use; 297
test case development for; 248

BoundedBufferTest example; 250li
capacities

comparison testing; 261–263
testing; 248

bug pattern(s); 271, 271
See also debugging; design patterns;

testing;
detector; 271

busy-waiting; 295
See also spin-waiting;

C
cache/caching

See also performance;
atomicity issues; 24–25
flushing

and memory barriers; 230
implementation issues

atomic/atomicity; 106
safety; 104

misses
as cost of context switching; 229

result
building; 101–109

Callable; 126li
FutureTask use; 95
results handling capabilities; 125

callbacks
testing use; 257–259

caller-runs saturation policy; 174
cancellation; 135–150

See also interruption; lifecycle; shut-
down;

activity; 135
as form of completion; 95
Future use; 145–147
interruptible lock acquisition; 279–

281
interruption relationship to; 138

long-running GUI tasks; 197–198
non-standard

encapsulation of; 148–150
reasons and strategies; 147–150

points; 140
policy; 136

and thread interruption policy;
141

interruption advantages as im-
plementation strategy; 140

reasons for; 136
shutdown and; 135–166
task

Executor handling; 125
in timed task handling; 131

timed locks use; 279
CancellationException

Callable handling; 98
CAS (compare-and-swap) instructions;

321–324
See also atomic/atomicity, variables;
Java class support in Java 5.0; 324
lock-free algorithm use; 329
nonblocking algorithm use; 319, 329

cascading effects
of thread safety requirements; 28

cellular automata
barrier use for computation of; 101

check-then-act operation
See also compound actions;
as race condition cause; 21
atomic variable handling; 325
compound action

in collection operations; 79
multivariable invariant issues; 67–68
service shutdown issue; 153

checkpoint
state

shutdown issues; 158
checksums

safety testing use; 253
class(es)

as instance confinement context; 59
extension

strategies and risks; 71
with helper classes; 72–73

synchronized wrapper
client-side locking support; 73

thread-safe
and object composition; 55–78

Index 363

cleanup
See also lifecycle;
and interruption handling

protecting data integrity; 142
in end-of-lifecycle processing; 135
JVM shutdown hooks use for; 164

client(s)
See also server;
requests

as natural task boundary; 113
client-side locking; 72–73, 73

See also lock(ing);
and compound actions; 79–82
and condition queues; 306
class extension relationship to; 73
stream class management; 150fn

coarsening
See also lock(ing);
lock; 231, 235fn, 286

code review
as quality assurance strategy; 271

collections
See also hashtables; lists; set(s);
bounded blocking

semaphore management of; 99
concurrent; 84–98

building block; 79–110
copying

as alternative to locking; 83
lock striping use; 237
synchronized; 79–84

concurrent collections vs.; 84
Collections.synchronizedList

safe publication use; 52
Collections.synchronizedXxx

synchronized collection creation; 79
communication

mechanisms for; 1
compare-and-swap (CAS) instructions

See CAS;
comparison

priority-ordered queue use; 89
compilation

dynamic
and performance testing; 267–

268
timing and ordering alterations

thread safety risks; 7
completion; 95

See also lifecycle;
notification

of long-running GUI task; 198
service

Future; 129
task

measuring service time variance;
264–266

volatile variable use with; 39
CompletionService

in page rendering example; 129
composition; 73

See also delegation; encapsulation;
as robust functionality extension

mechanism; 73
of objects; 55–78

compound actions; 22
See also atomic/atomicity; concur-

rent/concurrency, collec-
tions; race conditions;

atomicity handling of; 22–23
concurrency design rules role; 110
concurrent collection support for; 84
examples of

See check-then-act operation;
iteration; navigation; put-
if-absent operation; read-
modify-write; remove-if-
equal operation; replace-if-
equal operation;

in cache implementation; 106
in synchronized collection class use

mechanisms for handling; 79–82
synchronization requirements; 29

computation
compute-intensive code

impact on locking behavior; 34
thread pool size impact; 170

deferred
design issues; 125

thread-local
and performance testing; 268

Concurrent Programming in Java; 42,
57, 59, 87, 94, 95, 98, 99, 101,
124, 201, 211, 279, 282, 304

concurrent/concurrency
See also parallelizing/parallelism;

safety; synchroniza-
tion/synchronized;

and synchronized collections; 84
and task independence; 113
annotations; 353–354
brief history; 1–2

364 Index

building blocks; 79–110
cache implementation issues; 103
collections; 84–98
ConcurrentHashMap locking strategy

advantages; 85
debugging

costs vs. performance optimiza-
tion value; 224

design rules; 110
errors

See deadlock; livelock; race con-
ditions; starvation;

fine-grained
and thread-safe data models; 201

modifying
synchronized collection prob-

lems with; 82
object pool disadvantages; 241
poor; 30
prevention

See also single-threaded;
single-threaded executor use;

172, 177–178
read-write lock advantages; 286–289
testing; 247–274

ConcurrentHashMap; 84–86
performance advantages of; 242

ConcurrentLinkedDeque; 92
ConcurrentLinkedQueue; 84–85

algorithm; 319–336
reflection use; 335
safe publication use; 52

ConcurrentMap; 84, 87li
safe publication use; 52

ConcurrentModificationException

avoiding; 85
fail-fast iterators use; 82–83

ConcurrentSkipListMap; 85
ConcurrentSkipListSet; 85
Condition; 307li

explicit condition object use; 306
intrinsic condition queues vs.

performance considerations; 308
condition

predicate; 299, 299–300
lock and condition variable rela-

tionship; 308
queues; 297

See also synchronizers;
AQS support for; 312

blocking state-dependent opera-
tions use; 296–308

explicit; 306–308
intrinsic; 297
intrinsic, disadvantages of; 306
using; 298

variables
explicit; 306–308

waits
and condition predicate; 299
canonical form; 301li
interruptible, as feature of Con-

dition; 307
uninterruptable, as feature of

Condition; 307
waking up from, condition

queue handling; 300–301
conditional

See also blocking/blocks;
notification; 303

as optimization; 303
subclassing safety issues; 304
use; 304li

read-modify-writer operations
atomic variable support for; 325

configuration
of ThreadPoolExecutor; 171–179
thread creation

and thread factories; 175
thread pool

post-construction manipulation;
177–179

confinement
See also encapsulation; single-

thread(ed);
instance; 59, 58–60
stack; 44, 44–45
thread; 42, 42–46

ad-hoc; 43
and execution policy; 167
in Swing; 191–192
role, synchronization policy

specification; 56
serial; 90, 90–92
single-threaded GUI framework

use; 190
ThreadLocal; 45–46

Connection

thread confinement use; 43
ThreadLocal variable use with; 45

Index 365

consistent/consistency
copy timeliness vs.

as design tradeoff; 62
data view timeliness vs.

as design tradeoff; 66, 70
lock ordering

and deadlock avoidance; 206
weakly consistent iterators; 85

constraints
See also invariant(s); post-conditions;

pre-conditions;
state transition; 56
thread creation

importance of; 116
construction/constructors

See also lifecycle;
object

publication risks; 41–42
thread handling issues; 41–42

partial
unsafe publication influence; 50

private constructor capture idiom;
69fn

starting thread from
as concurrency bug pattern; 272

ThreadPoolExecutor; 172li
post-construction customization;

177
consumers

See also blocking, queues; producer-
consumer pattern;

blocking queues use; 88
producer-consumer pattern

blocking queues and; 87–92
containers

See also collections;
blocking queues as; 94
scoped

thread safety concerns; 10
contention/contended

as performance inhibiting factor; 263
intrinsic locks vs. ReentrantLock

performance considerations;
282–286

lock
costs of; 320
measurement; 240–241
reduction impact; 211
reduction, strategies; 232–242
scalability impact; 232
signal method reduction in; 308

locking vs. atomic variables; 328
resource

and task execution policy; 119
deque advantages; 92

scalability under
as AQS advantage; 311

scope
atomic variable limitation of; 324

synchronization; 230
thread

collision detection help with; 321
latches help with; 95

throughput impact; 228
unrealistic degrees of

as performance testing pitfall;
268–269

context switching; 229
See also performance;
as cost of thread use; 229–230
condition queues advantages; 297
cost(s); 8
message logging

reduction strategies; 243–244
performance impact of; 221
reduction; 243–244
signal method reduction in; 308
throughput impact; 228

control flow
See also event(s); lifecycle; MVC

(model-view-controller) pat-
tern;

coordination
in producer-consumer pattern;

94
event handling

model-view objects; 195fg
simple; 194fg

latch characteristics; 94
model-view-controller pattern

and inconsistent lock ordering;
190

vehicle tracking example; 61
convenience

See also responsiveness;
as concurrency motivation; 2

conventions
annotations

concurrency documentation; 6
Java monitor pattern; 61

366 Index

cooperation/cooperating
See also concurrent/concurrency;

synchronization;
end-of-lifecycle mechanisms

interruption as; 93, 135
model, view, and controller objects

in GUI applications
inconsistent lock ordering; 190

objects
deadlock, lock-ordering; 212li
deadlock, possibilities; 211
livelock possibilities; 218

thread
concurrency mechanisms for; 79

coordination
See also synchronization/synchro-

nized;
control flow

producer-consumer pattern,
blocking queues use; 94

in multithreaded environments
performance impact of; 221

mutable state access
importance of; 110

copying
collections

as alternative to locking; 83
data

thread safety consequences; 62
CopyOnWriteArrayList; 84, 86–87

safe publication use; 52
versioned data model use

in GUI applications; 201
CopyOnWriteArraySet

safe publication use; 52
synchronized Set replacement; 86

core pool size parameter
thread creation impact; 171, 172fn

correctly synchronized program; 341
correctness; 17

See also safety;
testing; 248–260

goals; 247
thread safety defined in terms of; 17

corruption
See also atomic/atomicity; encapsu-

lation; safety; state;
data

and interruption handling; 142
causes, stale data; 35

cost(s)
See also guidelines; performance;

safety; strategies; tradeoffs;
thread; 229–232

context switching; 8
locality loss; 8

tradeoffs
in performance optimization

strategies; 223
CountDownLatch; 95

AQS use; 315–316
puzzle-solving framework use; 184
TestHarness example use; 96

counting semaphores; 98
See also Semaphore;
permits, thread relationships; 248
SemaphoreOnLock example; 310li

coupling
See also dependencies;
behavior

blocking queue handling; 89
implicit

between tasks and execution
policies; 167–170

CPU utilization
See also performance;
and sequential execution; 124
condition queues advantages; 297
impact on performance testing; 261
monitoring; 240–241
optimization

as multithreading goal; 222
spin-waiting impact on; 295

creation
See also copying; design; policy(s);

representation;
atomic compound actions; 80
class

existing thread-safe class reuse
advantages over; 71

collection copy
as immutable object strategy; 86

of immutable objects; 48
of state-dependent methods; 57
synchronizer; 94
thread; 171–172

explicitly, for tasks; 115
thread factory use; 175–177
unbounded, disadvantages; 116

thread pools; 120
wrappers

Index 367

during memoization; 103
customization

thread configuration
ThreadFactory use; 175

thread pool configuration
post-construction; 177–179

CyclicBarrier; 99
parallel iterative algorithm use; 102li
testing use; 255li, 260li

D
daemon threads; 165
data

See also state;
contention avoidance

and scalability; 237
hiding

thread-safety use; 16
nonatomic

64-bit operations; 36
sharing; 33–54

See also page renderer examples;
access coordination; 277–290, 319
advantages of threads; 2
shared data models; 198–202
synchronization costs; 8

split data models; 201, 201–202
stale; 35–36
versioned data model; 201

data race; 341
race condition vs.; 20fn

data structure(s)
See also collections; object(s);

queue(s); stack(s); trees;
handling

See atomic/atomicity; confine-
ment; encapsulation; itera-
tors/iteration; recursion;

protection
and interruption handling; 142

shared
as serialization source; 226

testing insertion and removal han-
dling; 248

database(s)
deadlock recovery capabilities; 206
JDBC Connection

thread confinement use; 43
thread pool size impact; 171

Date

effectively immutable use; 53
dead-code elimination

and performance testing; 269–270
deadline-based waits

as feature of Condition; 307
deadlock(s); 205, 205–217

See also concurrent/concurrency,
errors; liveness; safety;

analysis
thread dump use; 216–217

as liveness failure; 8
avoidance

and thread confinement; 43fn
nonblocking algorithm advan-

tages; 319, 329
strategies for; 215–217

cooperating objects; 211
diagnosis

strategies for; 215–217
dynamic lock order; 207–210
in GUI framework; 190
lock splitting as risk factor for; 235
locking during iteration risk of; 83
recovery

database capabilities; 206
polled and timed lock acquisi-

tion use; 279, 280
timed locks use; 215

reentrancy avoidance of; 27
resource; 213–215
thread starvation; 169, 168–169, 215

deadly embrace
See deadlock;

death, thread
abnormal, handling; 161–163

debugging
See also analysis; design; documenta-

tion; recovery; testing;
annotation use; 353
concurrency

costs vs. performance optimiza-
tion value; 224

custom thread factory as aid for; 175
JVM optimization pitfalls; 38fn
thread dump use; 216fn
thread dumps

intrinsic lock advantage over
ReentrantLock; 285–286

unbounded thread creation risks;
116

368 Index

decomposition
See also composition; delegation;

encapsulation;
producer-consumer pattern; 89
tasks-related; 113–134

Decorator pattern
collection class use for wrapper fac-

tories; 60
decoupling

of activities
as producer-consumer pattern

advantage; 87
task decomposition as represen-

tation of; 113
of interrupt notification from han-

dling in Thread interruption
handling methods; 140

task submission from execution
and Executor framework; 117

delayed tasks
See also time/timing;
handling of; 123

DelayQueue

time management; 123
delegation

See also composition; design; safety;
advantages

class extension vs.; 314
for class maintenance safety; 234

thread safety; 234
failure causes; 67–68
management; 62

dependencies
See also atomic/atomicity; invari-

ant(s); postconditions; pre-
conditions; state;

code
as removal, as producer-

consumer pattern advantage;
87

in multiple-variable invariants
thread safety issues; 24

state
blocking operations; 291–308
classes; 291
classes, building; 291–318
managing; 291–298
operations; 57
operations, condition queue han-

dling; 296–308

task freedom from, importance
of; 113

task
and execution policy; 167
thread starvation deadlock; 168

task freedom from
importance; 113

Deque; 92
deques

See also collections; data structure(s);
queue(s);

work stealing and; 92
design

See also documentation; guidelines;
policies; representation;
strategies;

class
state ownership as element of;

57–58
concurrency design rules; 110
concurrency testing; 250–252
condition queue encapsulation; 306
condition queues

and condition predicate; 299
control flow

latch characteristics; 94
execution policy

influencing factors; 167
GUI single-threaded use

rationale for; 189–190
importance

in thread-safe programs; 16
of thread-safe classes

guidelines; 55–58
parallelism

application analysis for; 123–133
parallelization criteria; 181
performance

analysis, monitoring, and im-
provement; 221–245

performance tradeoffs
evaluation of; 223–225

principles
simplicity of final fields; 48

producer-consumer pattern
decoupling advantages; 117
Executor framework use; 117

program
and task decomposition; 113–134

result-bearing tasks
representation issues; 125

Index 369

strategies
for InterruptedException; 93

thread confinement; 43
thread pool size

relevant factors for; 170
timed tasks; 131–133
tradeoffs

collection copying vs. locking
during iteration; 83

concurrent vs. synchronized
collections; 85

copy-on-write collections; 87
synchronized block; 34
timeliness vs. consistency; 62,

66, 70
design patterns

antipattern example
double-checked locking; 348–349

examples
See Decorator pattern; MVC

(model-view-controller) pat-
tern; producer-consumer
pattern; Singleton pattern;

destruction
See teardown;

dining philosophers problem; 205
See also deadlock;

discard saturation policy; 174
discard-oldest saturation policy; 174
documentation

See also debugging; design; good
practices; guidelines; pol-
icy(s);

annotation use; 6, 353
concurrency design rules role; 110
critical importance for conditional

notification use; 304
importance

for special execution policy re-
quirements; 168

stack confinement usage; 45
of synchronization policies; 74–77
safe publication requirements; 54

double-checked locking (DCL); 348–
349

as concurrency bug pattern; 272
downgrading

read-write lock implementation
strategy; 287

driver program
for TimedPutTakeTest example; 262

dynamic
See also responsiveness;
compilation

as performance testing pitfall;
267–268

lock order deadlocks; 207–210

E
EDT (event dispatch thread)

GUI frameworks use; 5
single-threaded GUI use; 189
thread confinement use; 42

Effective Java Programming Language
Guide; 46–48, 73, 166, 257,
292, 305, 314, 347

efficiency
See also performance;
responsiveness vs.

polling frequency; 143
result cache, building; 101–109

elision
lock; 231fn

JVM optimization; 286
encapsulation

See also access; atomic/atomicity;
confinement; safety; state;
visibility;

breaking
costs of; 16–17

code
as producer-consumer pattern

advantage; 87
composition use; 74
concurrency design rules role; 110
implementation

class extension violation of; 71
instance confinement relationship

with; 58–60
invariant management with; 44
locking behavior

reentrancy facilitation of; 27
non-standard cancellation; 148–150
of condition queues; 306
of lifecycle methods; 155
of synchronization

hidden iterator management
through; 83

publication dangers for; 39
state

370 Index

breaking, costs of; 16–17
invariant protection use; 83
ownership relationship with; 58
synchronizer role; 94
thread-safe class use; 23

synchronization policy
and client-side locking; 71

thread ownership; 150
thread-safety role; 55
thread-safety use; 16

end-of-lifecycle
See also thread(s);
management techniques; 135–166

enforcement
locking policies, lack of; 28

entry protocols
state-dependent operations; 306

Error

Callable handling; 97
error(s)

as cancellation reason; 136
concurrency

See deadlock; livelock; race con-
ditions;

escape; 39
analysis; 230
prevention

in instance confinement; 59
publication and; 39–42
risk factors

in instance confinement; 60
Ethernet protocol

exponential backoff use; 219
evaluation

See also design; measurement; test-
ing;

of performance tradeoffs; 223–225
event(s); 191

as cancellation reason; 136
dispatch thread

GUI frameworks use; 5
handling

control flow, simple; 194fg
model-view objects; 195fg
threads benefits for; 4

latch handling based on; 99
main event loop

vs. event dispatch thread; 5
notification

copy-on-write collection advan-
tages; 87

sequential processing
in GUI applications; 191

timing
and liveness failures; 8

example classes
AtomicPseudoRandom; 327li
AttributeStore; 233li
BackgroundTask; 199li
BarrierTimer; 261li
BaseBoundedBuffer; 293li
BetterAttributeStore; 234li
BetterVector; 72li
Big; 258li
BoundedBuffer; 248, 249li, 297, 298li
BoundedBufferTest; 250li
BoundedExecutor; 175
BoundedHashSet; 100li
BrokenPrimeProducer; 139li
CachedFactorizer; 31li
CancellableTask; 151li
CasCounter; 323li
CasNumberRange; 326li
CellularAutomata; 102li
Computable; 103li
ConcurrentPuzzleSolver; 186li
ConcurrentStack; 331li
ConditionBoundedBuffer; 308, 309li
Consumer; 256li
Counter; 56li
CountingFactorizer; 23li
CrawlerThread; 157li
DelegatingVehicleTracker; 65li,

201
DemonstrateDeadlock; 210li
Dispatcher; 212li, 214li
DoubleCheckedLocking; 349li
ExpensiveFunction; 103li
Factorizer; 109li
FileCrawler; 91li
FutureRenderer; 128li
GrumpyBoundedBuffer; 292, 294li
GuiExecutor; 192, 194li
HiddenIterator; 84li
ImprovedList; 74li
Indexer; 91li
IndexerThread; 157li
IndexingService; 156li
LazyInitRace; 21li
LeftRightDeadlock; 207li
LifecycleWebServer; 122li
LinkedQueue; 334li

Index 371

ListHelper; 73, 74li
LogService; 153, 154li
LogWriter; 152li
Memoizer; 103li, 108li
Memoizer2; 104li
Memoizer3; 106li
MonitorVehicleTracker; 63li
MutableInteger; 36li
MutablePoint; 64li
MyAppThread; 177, 178li
MyThreadFactory; 177li
Node; 184li
NoVisibility; 34li
NumberRange; 67li
OneShotLatch; 313li
OneValueCache; 49li, 51li
OutOfTime; 124li, 161
PersonSet; 59li
Point; 64li
PossibleReordering; 340li
Preloader; 97li
PrimeGenerator; 137li
PrimeProducer; 141li
PrivateLock; 61li
Producer; 256li
PutTakeTest; 255li, 260
Puzzle; 183li
PuzzleSolver; 188li
QueueingFuture; 129li
ReaderThread; 149li
ReadWriteMap; 288li
ReentrantLockPseudoRandom; 327li
Renderer; 130li
SafeListener; 42li
SafePoint; 69li
SafeStates; 350li
ScheduledExecutorService; 145li
SemaphoreOnLock; 310li
Sequence; 7li
SequentialPuzzleSolver; 185li
ServerStatus; 236li
SimulatedCAS; 322li
SingleThreadRenderer; 125li
SingleThreadWebServer; 114li
SleepyBoundedBuffer; 295, 296li
SocketUsingTask; 151li
SolverTask; 186li
StatelessFactorizer; 18li
StripedMap; 238li
SwingUtilities; 191, 192, 193li
Sync; 343li

SynchronizedFactorizer; 26li
SynchronizedInteger; 36li
TaskExecutionWebServer; 118li
TaskRunnable; 94li
Taxi; 212li, 214li
TestHarness; 96li
TestingThreadFactory; 258li
ThisEscape; 41li
ThreadDeadlock; 169li
ThreadGate; 305li
ThreadPerTaskExecutor; 118li
ThreadPerTaskWebServer; 115li
ThreeStooges; 47li
TimedPutTakeTest; 261
TimingThreadPool; 180li
TrackingExecutorService; 159li
UEHLogger; 163li
UnsafeCachingFactorizer; 24li
UnsafeCountingFactorizer; 19li
UnsafeLazyInitialization; 345li
UnsafeStates; 40li
ValueLatch; 184, 187li
VisualComponent; 66li
VolatileCachedFactorizer; 50li
WebCrawler; 160li
Widget; 27li
WithinThreadExecutor; 119li
WorkerThread; 227li

exceptions
See also error(s); interruption; lifecy-

cle;
and precondition failure; 292–295
as form of completion; 95
Callable handling; 97
causes

stale data; 35
handling

Runnable limitations; 125
logging

UEHLogger example; 163li
thread-safe class handling; 82
Timer disadvantages; 123
uncaught exception handler; 162–

163
unchecked

catching, disadvantages; 161
Exchanger

See also producer-consumer pattern;
as two-party barrier; 101
safe publication use; 53

372 Index

execute

submit vs., uncaught exception han-
dling; 163

execution
policies

design, influencing factors; 167
Executors factory methods; 171
implicit couplings between tasks

and; 167–170
parallelism analysis for; 123–133

task; 113–134
policies; 118–119
sequential; 114

ExecutionException

Callable handling; 98
Executor framework; 117li, 117–133

and GUI event processing; 191, 192
and long-running GUI tasks; 195
as producer-consumer pattern; 88
execution policy design; 167
FutureTask use; 97
GuiExecutor example; 194li
single-threaded

deadlock example; 169li
ExecutorCompletionService

in page rendering example; 129
Executors

factory methods
thread pool creation with; 120

ExecutorService

and service shutdown; 153–155
cancellation strategy using; 146
checkMail example; 158
lifecycle methods; 121li, 121–122

exhaustion
See failure; leakage; resource exhaus-

tion;
exit protocols

state-dependent operations; 306
explicit locks; 277–290

interruption during acquisition; 148
exponential backoff

and avoiding livelock; 219
extending

existing thread-safe classes
and client-side locking; 73
strategies and risks; 71

ThreadPoolExecutor; 179

external locking; 73

F
factory(s)

See also creation;
methods

constructor use with; 42
newTaskFor; 148
synchronized collections; 79, 171
thread pool creation with; 120

thread; 175, 175–177
fail-fast iterators; 82

See also iteration/iterators;
failure

See also exceptions; liveness, failure;
recovery; safety;

causes
stale data; 35

graceful degradation
task design importance; 113

management techniques; 135–166
modes

testing for; 247–274
precondition

bounded buffer handling of; 292
propagation to callers; 292–295

thread
uncaught exception handlers;

162–163
timeout

deadlock detection use; 215
fairness

See also responsiveness; synchroniza-
tion;

as concurrency motivation; 1
fair lock; 283
nonfair lock; 283
nonfair semaphores vs. fair

performance measurement; 265
queuing

intrinsic condition queues; 297fn
ReentrantLock options; 283–285
ReentrantReadWriteLock; 287
scheduling

thread priority manipulation
risks; 218

’fast path’ synchronization
CAS-based operations vs.; 324
costs of; 230

Index 373

feedback
See also GUI;
user

in long-running GUI tasks; 196li
fields

atomic updaters; 335–336
hot fields

avoiding; 237
updating, atomic variable ad-

vantages; 239–240
initialization safety

final field guarantees; 48
FIFO queues

BlockingQueue implementations; 89
files

See also data; database(s);
as communication mechanism; 1

final

and immutable objects; 48
concurrency design rules role; 110
immutability not guaranteed by; 47
safe publication use; 52
volatile vs.; 158fn

finalizers
JVM orderly shutdown use; 164
warnings; 165–166

finally block
See also interruptions; lock(ing);
importance with explicit locks; 278

FindBugs code auditing tool
See also tools;
as static analysis tool example; 271
locking failures detected by; 28fn
unreleased lock detector; 278fn

fire-and-forget event handling strategy
drawbacks of; 195

flag(s)
See mutex;
cancellation request

as cancellation mechanism; 136
interrupted status; 138

flexibility
See also responsiveness; scalability;
and instance confinement; 60
decoupling task submission from

execution, advantages for;
119

immutable object design for; 47
in CAS-based algorithms; 322
interruption policy; 142
resource management

as blocking queue advantage; 88
task design guidelines for; 113

task design role; 113
flow control

communication networks, thread
pool comparison; 173fn

fragility
See also debugging; guidelines; ro-

bustness; safety; scalability;
testing;

issues and causes
as class extension; 71
as client-side locking; 73
interruption use for non-

standard purposes; 138
issue; 43
piggybacking; 342
state-dependent classes; 304
volatile variables; 38

solutions
composition; 73
encapsulation; 17
stack confinement vs. ad-hoc

thread confinement; 44
frameworks

See also AQS framework; data struc-
ture(s); Executor framework;
RMI framework; Servlets
framework;

application
and ThreadLocal; 46

serialization hidden in; 227
thread use; 9
thread use impact on applications; 9
threads benefits for; 4

functionality
extending for existing thread-safe

classes
strategies and risks; 71

tests
vs. performance tests; 260

Future; 126li
cancellation

of long-running GUI task; 197
strategy using; 145–147

characteristics of; 95
encapsulation of non-standard can-

cellation use; 148
results handling capabilities; 125
safe publication use; 53
task lifecycle representation by; 125

374 Index

task representation
implementation strategies; 126

FutureTask; 95
AQS use; 316
as latch; 95–98
completion notification

of long-running GUI task; 198
efficient and scalable cache imple-

mentation with; 105
example use; 97li, 108li, 151li, 199li
task representation use; 126

G
garbage collection

as performance testing pitfall; 266
gate

See also barrier(s); conditional;
latch(es);

as latch role; 94
ThreadGate example; 304

global variables
ThreadLocal variables use with; 45

good practices
See design; documentation; encap-

sulation; guidelines; perfor-
mance; strategies;

graceful
degradation

and execution policy; 121
and saturation policy; 175
limiting task count; 119
task design importance; 113

shutdown
vs. abrupt shutdown; 153

granularity
See also atomic/atomicity; scope;
atomic variable advantages; 239–240
lock

Amdahl’s law insights; 229
reduction of; 235–237

nonblocking algorithm advantages;
319

serialization
throughput impact; 228

timer
measurement impact; 264

guarded
objects; 28, 54
state

locks use for; 27–29

@GuardedBy; 353–354
and documenting synchronization

policy; 7fn, 75
GUI (Graphical User Interface)

See also event(s); single-thread(ed);
Swing;

applications; 189–202
thread safety concerns; 10–11

frameworks
as single-threaded task execu-

tion example; 114fn
long-running task handling; 195–198
MVC pattern use

in vehicle tracking example; 61
response-time sensitivity

and execution policy; 168
single-threaded use

rationale for; 189–190
threads benefits for; 5

guidelines
See also design; documentation; pol-

icy(s); strategies;
allocation vs. synchronization; 242
atomicity

definitions; 22
concurrency design rules; 110
Condition methods

potential confusions; 307
condition predicate

documentation; 299
lock and condition queue rela-

tionship; 300
condition wait usage; 301
confinement; 60
deadlock avoidance

alien method risks; 211
lock ordering; 206
open call advantages; 213
thread starvation; 169

documentation
value for safety; 16

encapsulation; 59, 83
value for safety; 16

exception handling; 163
execution policy

design; 119
special case implications; 168

final field use; 48
finalizer precautions; 166
happens-before use; 346
immutability

Index 375

effectively immutable objects; 53
objects; 46
requirements for; 47
value for safety; 16

initialization safety; 349, 350
interleaving diagrams; 6
interruption handling

cancellation relationship; 138
importance of interruption pol-

icy knowledge; 142, 145
interrupt swallowing precau-

tions; 143
intrinsic locks vs. ReentrantLock;

285
invariants

locking requirements for; 29
thread safety importance; 57
value for safety; 16

lock
contention, reduction; 233
contention, scalability impact;

231
holding; 32
ordering, deadlock avoidance;

206
measurement

importance; 224
notification; 303
objects

stateless, thread-safety of; 19
operation ordering

synchronization role; 35
optimization

lock contention impact; 231
premature, avoidance of; 223

parallelism analysis; 123–133
performance

optimization questions; 224
simplicity vs.; 32

postconditions; 57
private field use; 48
publication; 52, 54
safety

definition; 18
testing; 252

scalability; 84
attributes; 222
locking impact on; 232

sequential loops
parallelization criteria; 181

serialization sources; 227

sharing
safety strategies; 16

sharing objects; 54
simplicity

performance vs.; 32
starvation avoidance

thread priority precautions; 218
state

consistency preservation; 25
managing; 23
variables, independent; 68

stateless objects
thread-safety of; 19

synchronization
immutable objects as replace-

ment for; 52
shared state requirements for; 28

task cancellation
criteria for; 147

testing
effective performance tests; 270
timing-sensitive data races; 254

this reference
publication risks; 41

threads
daemon thread precautions; 165
handling encapsulation; 150
lifecycle methods; 150
pools; 174
safety; 18, 55

volatile variables; 38

H
hand-over-hand locking; 282
happens-before

JMM definition; 340–342
piggybacking; 342–344
publication consequences; 244–249

hardware
See also CPU utilization;
concurrency support; 321–324
JVM interaction

reordering; 34
platform memory models; 338
timing and ordering alterations by

thread safety risks; 7
hashcodes/hashtables

See also collections;
ConcurrentHashMap; 84–86

performance advantages of; 242
Hashtable; 79

376 Index

safe publication use; 52
inducing lock ordering with; 208
lock striping use; 237

heap inspection tools
See also tools;
measuring memory usage; 257

Heisenbugs; 247fn
helper classes

and extending class functionality;
72–73

heterogeneous tasks
parallelization limitations; 127–129

hijacked signal
See missed signals;

Hoare, C. A. R.
Java monitor pattern inspired by

(bibliographic reference); 60fn
hoisting

variables
as JVM optimization pitfall; 38fn

homogeneous tasks
parallelism advantages; 129

hooks
See also extending;
completion

in FutureTask; 198
shutdown; 164

JVM orderly shutdown; 164–165
single shutdown

orderly shutdown strategy; 164
ThreadPoolExecutor extension; 179

hot fields
avoidance

scalability advantages; 237
updating

atomic variable advantages; 239–
240

HotSpot JVM
dynamic compilation use; 267

’how fast’; 222
See also GUI; latency; responsive-

ness;
vs. ’how much’; 222

’how much’; 222
See also capacity; scalability;

throughput;
importance for server applications;

223
vs. ’how fast’; 222

HttpSession

thread-safety requirements; 58fn

I
I/O

See also resource(s);
asynchronous

non-interruptable blocking; 148
message logging

reduction strategies; 243–244
operations

thread pool size impact; 170
sequential execution limitations; 124
server applications

task execution implications; 114
synchronous

non-interruptable blocking; 148
threads use to simulate; 4

utilization measurement tools; 240
idempotence

and race condition mitigation; 161
idioms

See also algorithm(s); conventions;
design patterns; documen-
tation; policy(s); protocols;
strategies;

double-checked locking (DCL)
as bad practice; 348–349

lazy initialization holder class; 347–
348

private constructor capture; 69fn
safe initialization; 346–348
safe publication; 52–53

IllegalStateException

Callable handling; 98
@Immutable; 7, 353
immutable/immutability; 46–49

See also atomic/atomicity; safety;
concurrency design rules role; 110
effectively immutable objects; 53
initialization safety guarantees; 51
initialization safety limitation; 350
objects; 46

publication with volatile; 48–49
requirements for; 47

role in synchronization policy; 56
thread-safety use; 16

implicit coupling
See also dependencies;
between tasks and execution poli-

cies; 167–170

Index 377

improper publication; 51
See also safety;

increment operation (++)
as non-atomic operation; 19

independent/independence; 25
See also dependencies; encapsula-

tion; invariant(s); state;
multiple-variable invariant lack of

thread safety issues; 24
parallelization use; 183
state variables; 66, 66–67

lock splitting use with; 235
task

concurrency advantages; 113
inducing lock ordering

for deadlock avoidance; 208–210
initialization

See also construction/constructors;
lazy; 21

as race condition cause; 21–22
safe idiom for; 348li
unsafe publication risks; 345

safety
and immutable objects; 51
final field guarantees; 48
idioms for; 346–348
JMM support; 349–350

inner classes
publication risks; 41

instance confinement; 59, 58–60
See also confinement; encapsulation;

instrumentation
See also analysis; logging; monitor-

ing; resource(s), manage-
ment; statistics; testing;

of thread creation
thread pool testing use; 258

potential
as execution policy advantage;

121
service shutdown use; 158
support

Executor framework use; 117
thread pool size requirements deter-

mination use of; 170
ThreadPoolExecutor hooks for; 179

interfaces
user

threads benefits for; 5

interleaving
diagram interpretations; 6
generating

testing use; 259
logging output

and client-side locking; 150fn
operation; 81fg
ordering impact; 339
thread

dangers of; 5–8
timing dependencies impact on

race conditions; 20
thread execution

in thread safety definition; 18
interrupted (Thread)

usage precautions; 140
InterruptedException

flexible interruption policy advan-
tages; 142

interruption API; 138
propagation of; 143li
strategies for handling; 93
task cancellation

criteria for; 147
interruption(s); 93, 135, 138–150

See also completion; errors; lifecycle;
notification; termination;
triggering;

and condition waits; 307
blocking and; 92–94
blocking test use; 251
interruption response strategy

exception propagation; 142
status restoration; 142

lock acquisition use; 279–281
non-cancellation uses for; 143
non-interruptable blocking

handling; 147–150
reasons for; 148

policies; 141, 141–142
preemptive

deprecation reasons; 135fn
request

strategies for handling; 140
responding to; 142–150
swallowing

as discouraged practice; 93
bad consequences of; 140
when permitted; 143

thread; 138
volatile variable use with; 39

378 Index

intransitivity
encapsulation characterized by; 150

intrinsic condition queues; 297
disadvantages of; 306

intrinsic locks; 25, 25–26
See also encapsulation; lock(ing);

safety; synchronization;
thread(s);

acquisition, non-interruptable block-
ing reason; 148

advantages of; 285
explicit locks vs.; 277–278
intrinsic condition queue relation-

ship to; 297
limitations of; 28
recursion use; 237fn
ReentrantLock vs.; 282–286
visibility management with; 36

invariant(s)
See also atomic/atomicity; post-

conditions; pre-conditions;
state;

and state variable publication; 68
BoundedBuffer example; 250
callback testing; 257
concurrency design rules role; 110
encapsulation

state, protection of; 83
value for; 44

immutable object use; 49
independent state variables require-

ments; 66–67
multivariable

and atomic variables; 325–326
atomicity requirements; 57, 67–

68
locking requirements for; 29
preservation of, as thread safety

requirement; 24
thread safety issues; 24

preservation of
immutable object use; 46
mechanisms and synchroniza-

tion policy role; 55–56
publication dangers for; 39
specification of

thread-safety use; 16
thread safety role; 17

iostat application
See also measurement; tools;
I/O measurement; 240

iterators/iteration
See also concurrent/concurrency;

control flow; recursion;
as compound action

in collection operations; 79
atomicity requirements during; 80
fail-fast; 82

ConcurrentModificationExcep-
tion exception with; 82–83

hidden; 83–84
locking

concurrent collection elimination
of need for; 85

disadvantages of; 83
parallel iterative algorithms

barrier management of; 99
parallelization of; 181
unreliable

and client-side locking; 81
weakly consistent; 85

J
Java Language Specification, The; 53,

218fn, 259, 358
Java Memory Model (JMM); 337–352

See also design; safety; synchroniza-
tion; visibility;

initialization safety guarantees for
immutable objects; 51

Java monitor pattern; 60, 60–61
composition use; 74
vehicle tracking example; 61–71

Java Programming Language, The; 346
java.nio package

synchronous I/O
non-interruptable blocking; 148

JDBC (Java Database Connectivity)
Connection

thread confinement use; 43
JMM (Java Memory Model)

See Java Memory Model (JMM);
join (Thread)

timed
problems with; 145

JSPs (JavaServer Pages)
thread safety requirements; 10

JVM (Java Virtual Machine)
See also optimization;
deadlock handling limitations; 206
escape analysis; 230–231
lock contention handling; 320fn

Index 379

nonblocking algorithm use; 319
optimization pitfalls; 38fn
optimizations; 286
service shutdown issues; 152–153
shutdown; 164–166

and daemon threads; 165
orderly shutdown; 164

synchronization optimization by;
230

thread timeout interaction
and core pool size; 172fn

thread use; 9
uncaught exception handling; 162fn

K
keep-alive time

thread termination impact; 172

L
latch(es); 94, 94–95

See also barriers; blocking;
semaphores; synchroniz-
ers;

barriers vs.; 99
binary; 304

AQS-based; 313–314
FutureTask; 95–98
puzzle-solving framework use; 184
ThreadGate example; 304

layering
three-tier application

as performance vs. scalability
illustration; 223

lazy initialization; 21
as race condition cause; 21–22
safe idiom for; 348li
unsafe publication risks; 345

leakage
See also performance;
resource

testing for; 257
thread; 161

Timer problems with; 123
UncaughtExceptionHandler

prevention of; 162–163
lexical scope

as instance confinement context; 59
library

thread-safe collections
safe publication guarantees; 52

Life cellular automata game
barrier use for computation of; 101

lifecycle
See also cancellation; completion;

construction/constructors;
Executor; interruption; shut-
down; termination; thread(s);
time/timing;

encapsulation; 155
Executor

implementations; 121–122
management strategies; 135–166
support

Executor framework use; 117
task

and Future; 125
Executor phases; 125

thread
performance impact; 116
thread-based service manage-

ment; 150
lightweight processes

See threads;
linked lists

LinkedBlockingDeque; 92
LinkedBlockingQueue; 89

performance advantages; 263
thread pool use of; 173–174

LinkedList; 85
Michael-Scott nonblocking queue;

332–335
nonblocking; 330

List

CopyOnWriteArrayList as concur-
rent collection for; 84, 86

listeners
See also event(s);
action; 195–197
Swing

single-thread rule exceptions;
190

Swing event handling; 194
lists

See also collections;
CopyOnWriteArrayList

safe publication use; 52
versioned data model use; 201

LinkedList; 85
List

CopyOnWriteArrayList as con-
current replacement; 84, 86

380 Index

Little’s law
lock contention corollary; 232fn

livelock; 219, 219
See also concurrent/concurrency,

errors; liveness;
as liveness failure; 8

liveness
See also performance; responsiveness

failure;
causes

See deadlock; livelock; missed
signals; starvation;

failure
avoidance; 205–220

improper lock acquisition risk of; 61
nonblocking algorithm advantages;

319–336
performance and

in servlets with state; 29–32
safety vs.

See safety;
term definition; 8
testing

criteria; 248
thread safety hazards for; 8

local variables
See also encapsulation; state; vari-

ables;
for thread confinement; 43
stack confinement use; 44

locality, loss of
as cost of thread use; 8

Lock; 277li, 277–282
and Condition; 307
interruptible acquisition; 148
timed acquisition; 215

lock(ing); 85
See also confinement; encapsulation;

@GuardedBy; safety; synchro-
nization;

acquisition
AQS-based synchronizer opera-

tions; 311–313
improper, liveness risk; 61
interruptible; 279–281
intrinsic, non-interruptable

blocking reason; 148
nested, as deadlock risk; 208
polled; 279
protocols, instance confinement

use; 60

reentrant lock count; 26
timed; 279

and instance confinement; 59
atomic variables vs.; 326–329
avoidance

immutable objects use; 49
building

AQS use; 311
client-side; 72–73, 73

and compound actions; 79–82
condition queue encapsulation

impact on; 306
stream class management; 150fn
vs. class extension; 73

coarsening; 231
as JVM optimization; 286
impact on splitting synchronized

blocks; 235fn
concurrency design rules role; 110
ConcurrentHashMap strategy; 85
ConcurrentModificationException

avoidance with; 82
condition variable and condition

predicate relationship; 308
contention

measurement; 240–241
reduction, guidelines; 233
reduction, impact; 211
reduction, strategies; 232–242
scalability impact of; 232

coupling; 282
cyclic locking dependencies

as deadlock cause; 205
disadvantages of; 319–321
double-checked

as concurrency bug pattern; 272
elision; 231fn

as JVM optimization; 286
encapsulation of

reentrancy facilitation; 27
exclusive

alternative to; 239–240
alternatives to; 321
inability to use, as Concurrent-

HashMap disadvantage; 86
timed lock use; 279

explicit; 277–290
interruption during lock acquisi-

tion use; 148
granularity

Amdahl’s law insights; 229

Index 381

reduction of; 235–237
hand-over-hand; 282
in blocking actions; 292
intrinsic; 25, 25–26

acquisition, non-interruptable
blocking reason; 148

advantages of; 285
explicit locks vs.; 277–278
intrinsic condition queue rela-

tionship to; 297
limitations of; 28
private locks vs.; 61
recursion use; 237fn
ReentrantLock vs., performance

considerations; 282–286
iteration

concurrent collection elimination
of need for; 85

disadvantages of; 83
monitor

See intrinsic locks;
non-block-structured; 281–282
nonblocking algorithms vs.; 319
open calls

for deadlock avoidance; 211–213
ordering

deadlock risks; 206–213
dynamic, deadlocks resulting

from; 207–210
inconsistent, as multithreaded

GUI framework problem; 190
private

intrinsic locks vs.; 61
protocols

shared state requirements for; 28
read-write; 286–289

implementation strategies; 287
reentrant

semantics; 26–27
semantics, ReentrantLock capa-

bilities; 278
ReentrantLock fairness options;

283–285
release

in hand-over-hand locking; 282
intrinsic locking disadvantages;

278
preference, in read-write lock

implementation; 287
role

synchronization policy; 56

scope
See also lock(ing), granularity;
narrowing, as lock contention

reduction strategy; 233–235
splitting; 235

Amdahl’s law insights; 229
as lock granularity reduction

strategy; 235
ServerStatus examples; 236li

state guarding with; 27–29
striping; 237

Amdahl’s law insights; 229
ConcurrentHashMap use; 85

stripping; 237
thread dump information about; 216
thread-safety issues

in servlets with state; 23–29
timed; 215–216
unreleased

as concurrency bug pattern; 272
visibility and; 36–37
volatile variables vs.; 39
wait

and condition predicate; 299
lock-free algorithms; 329
logging

See also instrumentation;
exceptions

UEHLogger example; 163li
service

as example of stopping a thread-
based service; 150–155

thread customization example; 177
ThreadPoolExecutor hooks for; 179

logical state; 58
loops/looping

and interruption; 143

M
main event loop

vs. event dispatch thread; 5
Map

ConcurrentHashMap as concurrent
replacement; 84

performance advantages; 242
atomic operations; 86

maximum pool size parameter; 172
measurement

importance for effective optimiza-
tion; 224

performance; 222

382 Index

profiling tools; 225
lock contention; 240

responsiveness; 264–266
strategies and tools

profiling tools; 225
ThreadPoolExecutor hooks for; 179

memoization; 103
See also cache/caching;

memory
See also resource(s);
barriers; 230, 338
depletion

avoiding request overload; 173
testing for; 257
thread-per-task policy issue; 116

models
hardware architecture; 338
JMM; 337–352

reordering
operations; 339

shared memory multiprocessors;
338–339

synchronization
performance impact of; 230–231

thread pool size impact; 171
visibility; 33–39

ReentrantLock effect; 277
synchronized effect; 33

Michael-Scott nonblocking queue;
332–335

missed signals; 301, 301
See also liveness;
as single notification risk; 302

model(s)/modeling
See also Java Memory Model

(JMM); MVC (model-view-
controller) design pattern;
representation; views;

event handling
model-view objects; 195fg

memory
hardware architecture; 338
JMM; 337–352

model-view-controller pattern
deadlock risk; 190
vehicle tracking example; 61

programming
sequential; 2

shared data
See also page renderer examples;
in GUI applications; 198–202

simplicity
threads benefit for; 3

split data models; 201, 201–202
Swing event handling; 194
three-tier application

performance vs. scalability; 223
versioned data model; 201

modification
concurrent

synchronized collection prob-
lems with; 82

frequent need for
copy-on-write collection not

suited for; 87
monitor(s)

See also Java monitor pattern;
locks

See intrinsic locks;
monitoring

See also instrumentation; perfor-
mance; scalability; testing;
tools;

CPU utilization; 240–241
performance; 221–245
ThreadPoolExecutor hooks for; 179
tools

for quality assurance; 273
monomorphic call transformation

JVM use; 268fn
mpstat application; 240

See also measurement; tools;
multiple-reader, single-writer locking

and lock contention reduction; 239
read-write locks; 286–289

multiprocessor systems
See also concurrent/concurrency;
shared memory

memory models; 338–339
threads use of; 3

multithreaded
See also safety; single-thread(ed);

thread(s);
GUI frameworks

issues with; 189–190
multivariable invariants

and atomic variables; 325–326
atomicity requirements; 57, 67–68
dependencies, thread safety issues;

24
locking requirements for; 29

Index 383

preservation of, as thread safety
requirement; 24

mutable; 15
objects

safe publication of; 54
state

managing access to, as thread
safety goal; 15

mutexes (mutual exclusion locks); 25
binary semaphore use as; 99
intrinsic locks as; 25
ReentrantLock capabilities; 277

MVC (model-view-controller) pattern
deadlock risks; 190
vehicle tracking example use of; 61

N
narrowing

lock scope
as lock contention reduction

strategy; 233–235
native code

finalizer use and limitations; 165
navigation

as compound action
in collection operations; 79

newTaskFor; 126li
encapsulating non-standard cancel-

lation; 148
nonatomic 64-bit operations; 36
nonblocking algorithms; 319, 329, 329–

336
backoff importance for; 231fn
synchronization; 319–336
SynchronousQueue; 174fn
thread-safe counter use; 322–324

nonfair semaphores
advantages of; 265

notification; 302–304
See also blocking; condition, queues;

event(s); listeners; notify;
notifyAll; sleeping; wait(s);
waking up;

completion
of long-running GUI task; 198

conditional; 303
as optimization; 303
use; 304li

errors
as concurrency bug pattern; 272

event notification systems

copy-on-write collection advan-
tages; 87

notify

as optimization; 303
efficiency of; 298fn
missed signal risk; 302
notifyAll vs.; 302
subclassing safety issues

documentation importance; 304
usage guidelines; 303

notifyAll

notify vs.; 302
@NotThreadSafe; 6, 353
NPTL threads package

Linux use; 4fn
nulling out memory references

testing use; 257

O
object(s)

See also resource(s);
composing; 55–78
condition

explicit; 306–308
effectively immutable; 53
guarded; 54
immutable; 46

initialization safety; 51
publication using volatile; 48–49

mutable
safe publication of; 54

pools
appropriate uses; 241fn
bounded, semaphore manage-

ment of; 99
disadvantages of; 241
serial thread confinement use; 90

references
and stack confinement; 44

sharing; 33–54
state; 55

components of; 55
Swing

thread-confinement; 191–192
objects

guarded; 28
open calls; 211, 211–213

See also encapsulation;
operating systems

concurrency use
historical role; 1

384 Index

operations
64-bit, nonatomic nature of; 36
state-dependent; 57

optimistic concurrency management
See atomic variables; CAS; nonblock-

ing algorithms;
optimization

compiler
as performance testing pitfall;

268–270
JVM

pitfalls; 38fn
strategies; 286

lock contention
impact; 231
reduction strategies; 232–242

performance
Amdahl’s law; 225–229
premature, avoidance of; 223
questions about; 224
scalability requirements vs.; 222

techniques
See also atomic variabless; non-

blocking synchronization;
condition queues use; 297
conditional notification; 303

order(ing)
See also reordering; synchronization;
acquisition, in ReentrantRead-

WriteLock; 317fn
checksums

safety testing use; 253
FIFO

impact of caller state depen-
dence handling on; 294fn

lock
deadlock risks; 206–213
dynamic deadlock risks; 207–210
inconsistent, as multithreaded

GUI framework problem; 190
operation

synchronization role; 35
partial; 340fn

happens-before, JMM definition;
340–342

happens-before, piggybacking;
342–344

happens-before, publication con-
sequences; 244–249

performance-based alterations in
thread safety risks; 7

total
synchronization actions; 341

orderly shutdown; 164
OutOfMemoryError

unbounded thread creation risk; 116
overhead

See also CPU utilization; measure-
ment; performance;

impact of
See performance; throughput;

reduction
See nonblocking algorithms; op-

timization; thread(s), pools;
sources

See blocking/blocks; contention;
context switching; multi-
threaded environments;
safety; suspension; synchro-
nization; thread(s), lifecycle;

ownership
shared; 58
split; 58
state

class design issues; 57–58
thread; 150

P
page renderer examples

See also model(s)/modeling, shared
data;

heterogenous task partitioning; 127–
129

parallelism analysis; 124–133
sequential execution; 124–127

parallelizing/parallelism
See also concurrent/concurrency;

Decorator pattern;
application analysis; 123–133
heterogeneous tasks; 127–129
iterative algorithms

barrier management of; 99
puzzle-solving framework; 183–188
recursive algorithms; 181–188
serialization vs.

Amdahl’s law; 225–229
task-related decomposition; 113
thread-per-task policy; 115

partial ordering; 340fn
happens-before

and publication; 244–249
JMM definition; 340

Index 385

piggybacking; 342–344
partitioning

as parallelizing strategy; 101
passivation

impact on HttpSession thread-
safety requirements; 58fn

perfbar application
See also measurement; tools;
CPU performance measure; 261
performance measurement use; 225

perfmon application; 240
See also measurement; tools;
I/O measurement; 240
performance measurement use; 230

performance; 8, 221, 221–245
See also concurrent/concurrency;

liveness; scalability; through-
put; utilization;

and heterogeneous tasks; 127
and immutable objects; 48fn
and resource management; 119
atomic variables

locking vs.; 326–329
cache implementation issues; 103
composition functionality extension

mechanism; 74fn
costs

thread-per-task policy; 116
fair vs. nonfair locking; 284
hazards

See also overhead; priority(s),
inversion;

JVM interaction with hardware
reordering; 34

liveness
in servlets with state; 29–32

locking
during iteration impact on; 83

measurement of; 222
See also capacity; efficiency; la-

tency; scalability; service
time; throughput;

locks vs. atomic variables; 326–
329

memory barrier impact on; 230
notifyAll impact on; 303
optimization

See also CPU utilization; piggy-
backing;

Amdahl’s law; 225–229
bad practices; 348–349

CAS-based operations; 323
reduction strategies; 232–242

page renderer example with Com-
pletionService

improvements; 130
producer-consumer pattern advan-

tages; 90
read-write lock advantages; 286–289
ReentrantLock vs. intrinsic locks;

282–286
requirements

thread-safety impact; 16
scalability vs.; 222–223

issues, three-tier application
model as illustration; 223

lock granularity reduction; 239
object pooling issues; 241

sequential event processing; 191
simplicity vs.

in refactoring synchronized
blocks; 34

synchronized block scope; 30
SynchronousQueue; 174fn
techniques for improving

atomic variables; 319–336
nonblocking algorithms; 319–336

testing; 247–274
criteria; 248
goals; 260
pitfalls, avoiding; 266–270

thread pool
size impact; 170
tuning; 171–179

thread safety hazards for; 8
timing and ordering alterations for

thread safety risks; 7
tradeoffs

evaluation of; 223–225
permission

codebase
and custom thread factory; 177

permits; 98
See also semaphores;

pessimistic concurrency management
See lock(ing), exclusive;

piggybacking; 344
on synchronization; 342–344

point(s)
barrier; 99
cancellation; 140

386 Index

poison
message; 219

See also livelock;
pill; 155, 155–156

See also lifecycle; shutdown;
CrawlerThread; 157li
IndexerThread; 157li
IndexingService; 156li
unbounded queue shutdown

with; 155
policy(s)

See also design; documentation;
guidelines; protocol(s);
strategies;

application
thread pool advantages; 120

cancellation; 136
for tasks, thread interruption

policy relationship to; 141
interruption advantages as im-

plementation strategy; 140
execution

design, influencing factors; 167
Executors, for ThreadPoolExec-

utor configuration; 171
implicit couplings between tasks

and; 167–170
parallelism analysis for; 123–133
task; 118–119
task, application performance

importance; 113
interruption; 141, 141–142
saturation; 174–175
security

custom thread factory handling;
177

sequential
task execution; 114

sharing objects; 54
synchronization; 55

requirements, impact on class
extension; 71

requirements, impact on class
modification; 71

shared state requirements for; 28
task scheduling

sequential; 114
thread pools; 117
thread pools advantages over

thread-per-task; 121
thread-per-task; 115

thread confinement; 43
polling

blocking state-dependent actions;
295–296

for interruption; 143
lock acquisition; 279

pool(s)
See also resource(s);
object

appropriate uses; 241fn
bounded, semaphore use; 99
disadvantages of; 241
serial thread confinement use; 90

resource
semaphore use; 98–99
thread pool size impact; 171

size
core; 171, 172fn
maximum; 172

thread; 119–121
adding statistics to; 179
application; 167–188
as producer-consumer design; 88
as thread resource management

mechanism; 117
callback use in testing; 258
combined with work queues, in

Executor framework; 119
configuration post-construction

manipulation; 177–179
configuring task queue; 172–174
creating; 120
deadlock risks; 215
factory methods for; 171
sizing; 170–171
uncaught exception handling;

163
portal

timed task example; 131–133
postconditions

See also invariant(s);
preservation of

mechanisms and synchroniza-
tion policy role; 55–56

thread safety role; 17
precondition(s)

See also dependencies, state; invari-
ant(s);

condition predicate as; 299
failure

bounded buffer handling of; 292

Index 387

propagation to callers; 292–295
state-based

in state-dependent classes; 291
management; 57

predictability
See also responsiveness;
measuring; 264–266

preemptive interruption
deprecation reasons; 135fn

presentation
See GUI;

primitive
local variables, safety of; 44
wrapper classes

atomic scalar classes vs.; 325
priority(s)

inversion; 320
avoidance, nonblocking algo-

rithm advantages; 329
thread

manipulation, liveness hazards;
218

when to use; 219
PriorityBlockingQueue; 89

thread pool use of; 173–174
PriorityQueue; 85
private

constructor capture idiom; 69fn
locks

Java monitor pattern vs.; 61
probability

deadlock avoidance use with timed
and polled locks; 279

determinism vs.
in concurrent programs; 247

process(es); 1
communication mechanisms; 1
lightweight

See threads;
threads vs.; 2

producer-consumer pattern
and Executor functionality

in CompletionService; 129
blocking queues and; 87–92
bounded buffer use; 292
control flow coordination

blocking queues use; 94
Executor framework use; 117
pathological waiting conditions;

300fn
performance testing; 261

safety testing; 252
work stealing vs.; 92

profiling
See also measurement;
JVM use; 320fn
tools

lock contention detection; 240
performance measurement; 225
quality assurance; 273

programming
models

sequential; 2
progress indication

See also GUI;
in long-running GUI task; 198

propagation
of interruption exception; 142

protocol(s)
See also documentation; policy(s);

strategies;
entry and exit

state-dependent operations; 306
lock acquisition

instance confinement use; 60
locking

shared state requirements for; 28
race condition handling; 21
thread confinement

atomicity preservation with
open calls; 213

pthreads (POSIX threads)
default locking behavior; 26fn

publication; 39
See also confinement; documenta-

tion; encapsulation; sharing;
escape and; 39–42
improper; 51, 50–51
JMM support; 244–249
of immutable objects

volatile use; 48–49
safe; 346

idioms for; 52–53
in task creation; 126
of mutable objects; 54
serial thread confinement use; 90

safety guidelines; 49–54
state variables

safety, requirements for; 68–69
unsafe; 344–346

388 Index

put-if-absent operation
See also compound actions;
as compound action

atomicity requirements; 71
concurrent collection support for; 84

puzzle solving framework
as parallelization example; 183–188

Q
quality assurance

See also testing;
strategies; 270–274

quality of service
measuring; 264
requirements

and task execution policy; 119
Queue; 84–85
queue(s)

See also data structures;
blocking; 87–94

cancellation, problems; 138
cancellation, solutions; 140
CompletionService as; 129
producer-consumer pattern and;

87–92
bounded

saturation policies; 174–175
condition; 297

blocking state-dependent opera-
tions use; 296–308

intrinsic; 297
intrinsic, disadvantages of; 306

FIFO; 89
implementations

serialization differences; 227
priority-ordered; 89
synchronous

design constraints; 89
thread pool use of; 173

task
thread pool use of; 172–174

unbounded
poison pill shutdown; 156

using; 298
work

in thread pools; 88, 119

R
race conditions; 7, 20–22

See also concurrent/concurrency,
errors; data, race; time/tim-
ing;

avoidance
immutable object use; 48
in thread-based service shut-

down; 153
in GUI frameworks; 189
in web crawler example

idempotence as mitigating cir-
cumstance; 161

random(ness)
livelock resolution use; 219
pseudorandom number generation

scalability; 326–329
test data generation use; 253

reachability
publication affected by; 40

read-modify-write operation
See also compound actions;
as non-atomic operation; 20

read-write locks; 286–289
ReadWriteLock; 286li

exclusive locking vs.; 239
reaping

See termination;
reclosable thread gate; 304
recovery, deadlock

See deadlock, recovery;
recursion

See also control flow; iterators/itera-
tion;

intrinsic lock acquisition; 237fn
parallelizing; 181–188

See also Decorator pattern;
reentrant/reentrancy; 26

and read-write locks; 287
locking semantics; 26–27

ReentrantLock capabilities; 278
per-thread lock acquisition; 26–27
ReentrantLock; 277–282

ReentrantLock

AQS use; 314–315
intrinsic locks vs.

performance; 282–286
Lock implementation; 277–282
random number generator using;

327li
Semaphore relationship with; 308

Index 389

ReentrantReadWriteLock

AQS use; 316–317
reentrant locking semantics; 287

references
stack confinement precautions; 44

reflection
atomic field updater use; 335

rejected execution handler
ExecutorService post-termination

task handling; 121
puzzle-solving framework; 187

RejectedExecutionException

abort saturation policy use; 174
post-termination task handling; 122
puzzle-solving framework use; 187

RejectedExecutionHandler

and saturation policy; 174
release

AQS synchronizer operation; 311
lock

in hand-over-hand locking; 282
intrinsic locking disadvantages;

278
preferences in read-write lock

implementation; 287
unreleased lock bug pattern; 271

permit
semaphore management; 98

remote objects
thread safety concerns; 10

remove-if-equal operation
as atomic collection operation; 86

reordering; 34
See also deadlock; optimization; or-

der(ing); ordering; synchro-
nization; time/timing;

initialization safety limitation; 350
memory

barrier impact on; 230
operations; 339

volatile variables warning; 38
replace-if-equal operation

as atomic collection operation; 86
representation

See also algorithm(s); design; docu-
mentation; state(s);

activities
tasks use for; 113

algorithm design role; 104
result-bearing tasks; 125
task

lifecycle, Future use for; 125
Runnable use for; 125
with Future; 126

thread; 150
request

interrupt
strategies for handling; 140

requirements
See also constraints; design; docu-

mentation; performance;
concrete

importance for effective perfor-
mance optimization; 224

concurrency testing
TCK example; 250

determination
importance of; 223

independent state variables; 66–67
performance

Amdahl’s law insights; 229
thread-safety impact; 16

synchronization
synchronization policy compo-

nent; 56–57
synchronization policy documenta-

tion; 74–77
resource exhaustion, preventing

bounded queue use; 173
execution policy as tool for; 119
testing strategies; 257
thread pool sizing risks; 170

resource(s)
See also CPU; instrumentation; mem-

ory; object(s); pool(s); utiliza-
tion;

accessing
as long-running GUI task; 195

bound; 221
consumption

thread safety hazards for; 8
deadlocks; 213–215
depletion

thread-per-task policy issue; 116
increase

scalability relationship to; 222
leakage

testing for; 257
management

See also instrumentation; testing;
dining philosophers prob-
lem;

390 Index

blocking queue advantages; 88
execution policy as tool for; 119
Executor framework use; 117
finalizer use and limitations; 165
graceful degradation, saturation

policy advantages; 175
long-running task handling; 170
saturation policies; 174–175
single-threaded task execution

disadvantages; 114
testing; 257
thread pools; 117
thread pools, advantages; 121
thread pools, tuning; 171–179
thread-per-task policy disadvan-

tages; 116
threads, keep-alive time impact

on; 172
timed task handling; 131

performance
analysis, monitoring, and im-

provement; 221–245
pools

semaphore use; 98–99
thread pool size impact; 171

utilization
Amdahl’s law; 225
as concurrency motivation; 1

response-time-senstive tasks
execution policy implications; 168

responsiveness
See also deadlock; GUI; livelock; live-

ness; performance;
as performance testing criteria; 248
condition queues advantages; 297
efficiency vs.

polling frequency; 143
interruption policy

InterruptedException advan-
tages; 142

long-running tasks
handling; 170

measuring; 264–266
page renderer example with Com-

pletionService
improvements; 130

performance
analysis, monitoring, and im-

provement; 221–245
poor

causes and resolution of; 219

safety vs.
graceful vs. abrupt shutdown;

153
sequential execution limitations; 124
server applications

importance of; 113
single-threaded execution disad-

vantages; 114
sleeping impact on; 295
thread

pool tuning, ThreadPoolExecut-
or use; 171–179

request overload impact; 173
safety hazards for; 8

restoring interruption status; 142
result(s)

-bearing latches
puzzle framework use; 184

cache
building; 101–109

Callable handling of; 125
Callable use instead of Runnable;

95
dependencies

task freedom from, importance
of; 113

Future handling of; 125
handling

as serialization source; 226
irrelevancy

as cancellation reason; 136, 147
non-value-returning tasks; 125
Runnable limitations; 125

retry
randomness, in livelock resolution;

219
return values

Runnable limitations; 125
reuse

existing thread-safe classes
strategies and risks; 71

RMI (Remote Method Invocation)
thread use; 9, 10

safety concerns and; 10
threads benefits for; 4

robustness
See also fragility; safety;
blocking queue advantages; 88
InterruptedException advantages;

142
thread pool advantages; 120

Index 391

rules
See also guidelines; policy(s); strate-

gies;
happens-before; 341

Runnable

handling exceptions in; 143
task representation limitations; 125

running
ExecutorService state; 121
FutureTask state; 95

runtime
timing and ordering alterations by

thread safety risks; 7
RuntimeException

as thread death cause; 161
Callable handling; 98
catching

disadvantages of; 161

S
safety

See also encapsulation; immutable
objects; synchronization;
thread(s), confinement;

cache implementation issues; 104
initialization

guarantees for immutable ob-
jects; 51

idioms for; 346–348
JMM support; 349–350

liveness vs.; 205–220
publication

idioms for; 52–53
in task creation; 126
of mutable objects; 54

responsiveness vs.
as graceful vs. abrupt shutdown;

153
split ownership concerns; 58
subclassing issues; 304
testing; 252–257

goals; 247
tradeoffs

in performance optimization
strategies; 223–224

untrusted code behavior
protection mechanisms; 161

saturation
policies; 174–175

scalability; 222, 221–245
algorithm

comparison testing; 263–264
Amdahl’s law insights; 229
as performance testing criteria; 248
client-side locking impact on; 81
concurrent collections vs. synchro-

nized collections; 84
ConcurrentHashMap advantages; 85,

242
CPU utilization monitoring; 240–241
enhancement

reducing lock contention; 232–
242

heterogeneous task issues; 127
hot field impact on; 237
intrinsic locks vs. ReentrantLock

performance; 282–286
lock scope impact on; 233
locking during iteration risk of; 83
open call strategy impact on; 213
performance vs.; 222–223

lock granularity reduction; 239
object pooling issues; 241
three-tier application model as

illustration; 223
queue implementations

serialization differences; 227
result cache

building; 101–109
serialization impact on; 228
techniques for improving

atomic variables; 319–336
nonblocking algorithms; 319–336

testing; 261
thread safety hazards for; 8
under contention

as AQS advantage; 311
ScheduledThreadPoolExecutor

as Timer replacement; 123
scheduling

overhead
performance impact of; 222

priority manipulation risks; 218
tasks

sequential policy; 114
thread-per-task policy; 115

threads as basic unit of; 3
work stealing

deques and; 92

392 Index

scope/scoped
See also granularity;
containers

thread safety concerns; 10
contention

atomic variable limitation of; 324
escaping

publication as mechanism for; 39
lock

narrowing, as lock contention
reduction strategy; 233–235

synchronized block; 30
search

depth-first
breadth-first search vs.; 184
parallelization of; 181–182

security policies
and custom thread factory; 177

Selector

non-interruptable blocking; 148
semantics

See also documentation; representa-
tion;

atomic arrays; 325
binary semaphores; 99
final fields; 48
of interruption; 93
of multithreaded environments

ThreadLocal variable considera-
tions; 46

reentrant locking; 26–27
ReentrantLock capabilities; 278
ReentrantReadWriteLock capa-

bilities; 287
undefined

of Thread.yield; 218
volatile; 39
weakly consistent iteration; 85
within-thread-as-if-serial; 337

Semaphore; 98
AQS use; 315–316
example use; 100li, 176li, 249li
in BoundedBuffer example; 248
saturation policy use; 175
similarities to ReentrantLock; 308
state-based precondition manage-

ment with; 57
semaphores; 98, 98–99

as coordination mechanism; 1
binary

mutex use; 99

counting; 98
permits, thread relationships;

248fn
SemaphoreOnLock example; 310li

fair vs. nonfair
performance comparison; 265

nonfair
advantages of; 265

sendOnSharedLine example; 281li
sequential/sequentiality

See also concurrent/concurrency;
asynchrony vs.; 2
consistency; 338
event processing

in GUI applications; 191
execution

of tasks; 114
parallelization of; 181

orderly shutdown strategy; 164
page renderer example; 124–127
programming model; 2
task execution policy; 114
tests, value in concurrency testing;

250
threads simulation of; 4

serialized/serialization
access

object serialization vs.; 27fn
timed lock use; 279
WorkerThread; 227li

granularity
throughput impact; 228

impact on HttpSession thread-
safety requirements; 58fn

parallelization vs.
Amdahl’s law; 225–229

scalability impact; 228
serial thread confinement; 90, 90–92
sources

identification of, performance
impact; 225

server
See also client;
applications

context switch reduction; 243–
244

design issues; 113
service(s)

See also applications; frameworks;
logging

Index 393

as thread-based service example;
150–155

shutdown
as cancellation reason; 136

thread-based
stopping; 150–161

servlets
framework

thread safety requirements; 10
threads benefits for; 4

stateful, thread-safety issues
atomicity; 19–23
liveness and performance; 29–32
locking; 23–29

stateless
as thread-safety example; 18–19

session-scoped objects
thread safety concerns; 10

set(s)
See also collection(s);
BoundedHashSet example; 100li
CopyOnWriteArraySet

as synchronized Set replace-
ment; 86

safe publication use; 52
PersonSet example; 59li
SortedSet

ConcurrentSkipListSet as con-
current replacement; 85

TreeSet
ConcurrentSkipListSet as con-

current replacement; 85
shared/sharing; 15

See also concurrent/concurrency;
publication;

data
See also page renderer examples;
access coordination, explicit lock

use; 277–290
models, GUI application han-

dling; 198–202
synchronization costs; 8
threads advantages vs. pro-

cesses; 2
data structures

as serialization source; 226
memory

as coordination mechanism; 1
memory multiprocessors

memory models; 338–339
mutable objects

guidelines; 54
objects; 33–54
split data models; 201–202
state

managing access to, as thread
safety goal; 15

strategies
ExecutorCompletionService

use; 130
thread

necessities and dangers in GUI
applications; 189–190

volatile variables as mechanism for;
38

shutdown
See also lifecycle;
abrupt

JVM, triggers for; 164
limitations; 158–161

as cancellation reason; 136
cancellation and; 135–166
ExecutorService state; 121
graceful vs. abrupt tradeoffs; 153
hooks; 164

in orderly shutdown; 164–165
JVM; 164–166

and daemon threads; 165
of thread-based services; 150–161
orderly; 164
strategies

lifecycle method encapsulation;
155

logging service example; 150–
155

one-shot execution service exam-
ple; 156–158

support
LifecycleWebServer example;

122li
shutdown; 121

logging service shutdown alterna-
tives; 153

shutdownNow; 121
limitations; 158–161
logging service shutdown alterna-

tives; 153
side-effects

as serialization source; 226
freedom from

importance for task indepen-
dence; 113

394 Index

synchronized Map implementations
not available from Concurrent-

HashMap; 86
signal

ConditionBoundedBuffer example;
308

signal handlers
as coordination mechanism; 1

simplicity
See also design;
Java monitor pattern advantage; 61
of modeling

threads benefit for; 3
performance vs.

in refactoring synchronized
blocks; 34

simulations
barrier use in; 101

single notification
See notify; signal;

single shutdown hook
See also hook(s);
orderly shutdown strategy; 164

single-thread(ed)
See also thread(s); thread(s), confine-

ment;
as Timer restriction; 123
as synchronization alternative; 42–46
deadlock avoidance advantages; 43fn
subsystems

GUI implementation as; 189–190
task execution

disadvantages of; 114
executor use, concurrency pre-

vention; 172, 177–178
Singleton pattern

ThreadLocal variables use with; 45
size(ing)

See also configuration; instrumenta-
tion;

as performance testing goal; 260
bounded buffers

determination of; 261
heterogeneous tasks; 127
pool

core; 171, 172fn
maximum; 172

task
appropriate; 113

thread pools; 170–171

sleeping
blocking state-dependent actions

blocking state-dependent ac-
tions; 295–296

sockets
as coordination mechanism; 1
synchronous I/O

non-interruptable blocking rea-
son; 148

solutions
See also interruption; results; search;

termination;
SortedMap

ConcurrentSkipListMap as concur-
rent replacement; 85

SortedSet

ConcurrentSkipListSet as concur-
rent replacement; 85

space
state; 56

specification
See also documentation;
correctness defined in terms of; 17

spell checking
as long-running GUI task; 195

spin-waiting; 232, 295
See also blocking/blocks; busy-

waiting;
as concurrency bug pattern; 273

split(ing)
data models; 201, 201–202
lock; 235

Amdahl’s law insights; 229
as lock granularity reduction

strategy; 235
ServerStatus examples; 236li

ownership; 58
stack(s)

address space
thread creation constraint; 116fn

confinement; 44, 44–45
See also confinement; encapsula-

tion;
nonblocking; 330
size

search strategy impact; 184
trace

thread dump use; 216
stale data; 35–36

improper publication risk; 51
race condition cause; 20fn

Index 395

starvation; 218, 218
See also deadlock; livelock; liveness;

performance;
as liveness failure; 8
locking during iteration risk of; 83
thread starvation deadlock; 169,

168–169
thread starvation deadlocks; 215

state(s); 15
See also atomic/atomicity; encapsu-

lation; lifecycle; representa-
tion; safety; visibility;

application
framework threads impact on; 9

code vs.
thread-safety focus; 17

dependent
classes; 291
classes, building; 291–318
operations; 57
operations, blocking strategies;

291–308
operations, condition queue han-

dling; 296–308
operations, managing; 291
task freedom from, importance

of; 113
encapsulation

breaking, costs of; 16–17
invariant protection use; 83
synchronizer role; 94
thread-safe class use; 23

lifecyle
ExecutorService methods; 121

locks control of; 27–29
logical; 58
management

AQS-based synchronizer opera-
tions; 311

managing access to
as thread safety goal; 15

modification
visibility role; 33

mutable
coordinating access to; 110

object; 55
components of; 55
remote and thread safety; 10

ownership
class design issues; 57–58

servlets with

thread-safety issues, atomicity;
19–23

thread-safety issues, liveness
and performance concerns;
29–32

thread-safety issues, locking;
23–29

space; 56
stateless servlet

as thread-safety example; 18–19
task

impact on Future.get; 95
intermediate, shutdown issues;

158–161
transformations

in puzzle-solving framework
example; 183–188

transition constraints; 56
variables

condition predicate use; 299
independent; 66, 66–67
independent, lock splitting; 235
safe publication requirements;

68–69
stateDependentMethod example; 301li
static

initializer
safe publication mechanism; 53,

347
static analysis tools; 271–273
statistics gathering

See also instrumentation;
adding to thread pools; 179
ThreadPoolExecutor hooks for; 179

status
flag

volatile variable use with; 38
interrupted; 138
thread

shutdown issues; 158
strategies

See also design; documentation;
guidelines; policy(s); rep-
resentation;

atomic variable use; 34
cancellation

Future use; 145–147
deadlock avoidance; 208, 215–217
delegation

vehicle tracking example; 64
design

396 Index

interruption policy; 93
documentation use

annotations value; 6
end-of-lifecycle management; 135–

166
InterruptedException handling; 93
interruption handling; 140, 142–150

Future use; 146
lock splitting; 235
locking

ConcurrentHashMap advantages;
85

monitor
vehicle tracking example; 61

parallelization
partitioning; 101

performance improvement; 30
program design order

correctness then performance; 16
search

stack size impact on; 184
shutdown

lifecycle method encapsulation;
155

logging service example; 150–
155

one-shot execution service exam-
ple; 156–158

poison pill; 155–156
split ownership safety; 58
thread safety delegation; 234–235
thread-safe class extension; 71

stream classes
client-side locking with; 150fn
thread safety; 150

String
immutability characteristics; 47fn

striping
See also contention;
lock; 237, 237

Amdahl’s law insights; 229
ConcurrentHashMap use; 85

structuring
thread-safe classes

object composition use; 55–78
subclassing

safety issues; 304
submit, execute vs.

uncaught exception handling; 163

suspension, thread
costs of; 232, 320
elimination by CAS-based concur-

rency mechanisms; 321
Thread.suspend, deprecation rea-

sons; 135fn
swallowing interrupts

as discouraged practice; 93
bad consequences of; 140
when permitted; 143

Swing
See also GUI;
listeners

single-thread rule exceptions;
192

methods
single-thread rule exceptions;

191–192
thread

confinement; 42
confinement in; 191–192
use; 9
use, safety concerns and; 10–11

untrusted code protection mecha-
nisms in; 162

SwingWorker

long-running GUI task support; 198
synchronization/synchronized; 15

See also access; concurrent/concur-
rency; lock(ing); safety;;

allocation advantages vs.; 242
bad practices

double-checked locking; 348–349
blocks; 25

Java objects as; 25
cache implementation issues; 103
collections; 79–84

concurrent collections vs.; 84
problems with; 79–82

concurrent building blocks; 79–110
contended; 230
correctly synchronized program; 341
data sharing requirements for; 33–39
encapsulation

hidden iterator management
through; 83

requirement for thread-safe
classes; 18

’fast path’
CAS-based operations vs.; 324
costs of; 230

Index 397

immutable objects as replacement;
52

inconsistent
as concurrency bug pattern; 271

memory
performance impact of; 230–231

memory visibility use of; 33–39
operation ordering role; 35
piggybacking; 342–344
policy; 55

documentation requirements;
74–77

encapsulation, client-side lock-
ing violation of; 71

race condition prevention with; 7
requirements, impact on class

extension; 71
requirements, impact on class

modification; 71
shared state requirements for; 28

ReentrantLock capabilities; 277
requirements

synchronization policy compo-
nent; 56–57

thread safety need for; 5
types

See barriers; blocking, queues;
FutureTask; latches;
semaphores;

uncontended; 230
volatile variables vs.; 38
wrapper

client-side locking support; 73
synchronizedList (Collections)

safe publication use; 52
synchronizer(s); 94, 94–101

See also Semaphore; CyclicBarrier;
FutureTask; Exchanger;
CountDownLatch;

behavior and interface; 308–311
building

with AQS; 311
with condition queues; 291–318

synchronous I/O
non-interruptable blocking; 148

SynchronousQueue; 89
performance advantages; 174fn
thread pool use of; 173, 174

T
task(s); 113

See also activities; event(s); lifecycle;
asynchronous

FutureTask handling; 95–98
boundaries; 113

parallelism analysis; 123–133
using ThreadLocal in; 168

cancellation; 135–150
policy; 136
thread interruption policy rela-

tionship to; 141
completion

as cancellation reason; 136
service time variance relation-

ship to; 264–266
dependencies

execution policy implications;
167

thread starvation deadlock risks;
168

execution; 113–134
in threads; 113–115
policies; 118–119
policies and, implicit couplings

between; 167–170
policies, application perfor-

mance importance; 113
sequential; 114

explicit thread creation for; 115
GUI

long-running tasks; 195–198
short-running tasks; 192–195

heterogeneous tasks
parallelization limitations; 127–

129
homogeneous tasks

parallelism advantages; 129
lifecycle

Executor phases; 125
ExecutorService methods; 121
representing with Future; 125

long-running
responsiveness problems; 170

parallelization of
homogeneous vs. heteroge-

neous; 129
post-termination handling; 121
queues

management, thread pool con-
figuration issues; 172–174

398 Index

thread pool use of; 172–174
representation

Runnable use for; 125
with Future; 126

response-time sensitivity
andexecution policy; 168

scheduling
thread-per-task policy; 115

serialization sources
identifying; 225

state
effect on Future.get; 95
intermediate, shutdown issues;

158–161
thread(s) vs.

interruption handling; 141
timed

handling of; 123
two-party

Exchanger management of; 101
TCK (Technology Compatibility Kit)

concurrency testing requirements;
250

teardown
thread; 171–172

techniques
See also design; guidelines; strate-

gies;
temporary objects

and ThreadLocal variables; 45
terminated

ExecutorService state; 121
termination

See also cancellation; interruption;
lifecycle;

puzzle-solving framework; 187
safety test

criteria for; 254, 257
thread

abnormal, handling; 161–163
keep-alive time impact on; 172
reasons for deprecation of; 135fn

timed locks use; 279
test example method; 262li
testing

See also instrumentation; logging;
measurement; monitoring;
quality assurance; statistics;

concurrent programs; 247–274
deadlock risks; 210fn
functionality

vs. performance tests; 260
liveness

criteria; 248
performance; 260–266

criteria; 248
goals; 260

pitfalls
avoiding; 266–270
dead code elimination; 269
dynamic compilation; 267–268
garbage collection; 266
progress quantification; 248
proving a negative; 248
timing and synchronization arti-

facts; 247
unrealistic code path sampling;

268
unrealistic contention; 268–269

program correctness; 248–260
safety; 252–257

criteria; 247
strategies; 270–274

testPoolExample example; 258li
testTakeBlocksWhenEmpty example;

252li
this reference

publication risks; 41
Thread

join
timed, problems with; 145

getState
use precautions; 251

interruption methods; 138, 139li
usage precautions; 140

thread safety; 18, 15–32
and mutable data; 35
and shutdown hooks; 164
characteristics of; 17–19
data models, GUI application han-

dling; 201
delegation; 62
delegation of; 234
in puzzle-solving framework; 183
issues, atomicity; 19–23
issues, liveness and performance;

29–32
mechanisms, locking; 23–29
risks; 5–8

thread(s); 2
See also concurrent/concurrency;

safety; synchronization;

Index 399

abnormal termination of; 161–163
as instance confinement context; 59
benefits of; 3–5
blocking; 92
confinement; 42, 42–46

See also confinement; encapsula-
tion;

ad-hoc; 43
and execution policy; 167
in GUI frameworks; 190
in Swing; 191–192
role, synchronization policy

specification; 56
stack; 44, 44–45
ThreadLocal; 45–46

cost
context locality loss; 8
context switching; 8

costs; 229–232
creation; 171–172

explicit creation for tasks; 115
unbounded, disadvantages; 116

daemon; 165
dumps; 216

deadlock analysis use; 216–217
intrinsic lock advantage over

ReentrantLock; 285
lock contention analysis use; 240

factories; 175, 175–177
failure

uncaught exception handlers;
162–163

forced termination
reasons for deprecation of; 135fn

interleaving
dangers of; 5–8

interruption; 138
shutdown issues; 158
status flag; 138

leakage; 161
testing for; 257
Timer problems with; 123
UncaughtExceptionHandler

prevention of; 162–163
lifecycle

performance impact; 116
thread-based service manage-

ment; 150
overhead

in safety testing, strategies for
mitigating; 254

ownership; 150
pools; 119–121

adding statistics to; 179
and work queues; 119
application; 167–188
as producer-consumer design; 88
as thread resource management

mechanism; 117
callback use in testing; 258
creating; 120
deadlock risks; 215
factory methods for; 171
post-construction configuration;

177–179
sizing; 170–171
task queue configuration; 172–

174
priorities

manipulation, liveness risks; 218
priority

when to use; 219
processes vs.; 2
queued

SynchronousQueue management
of; 89

risks of; 5–8
serial thread confinement; 90, 90–92
services that own

stopping; 150–161
sharing

necessities and dangers in GUI
applications; 189–190

single
sequential task execution; 114

sources of; 9–11
starvation deadlock; 169, 168–169
suspension

costs of; 232, 320
Thread.suspend, deprecation

reasons; 135fn
task

execution in; 113–115
scheduling, thread-per-task pol-

icy; 115
scheduling, thread-per-task pol-

icy disadvantages; 116
vs. interruption handling; 141

teardown; 171–172
termination

keep-alive time impact on; 172
thread starvation deadlocks; 215

400 Index

thread-local
See also stack, confinement;
computation

role in accurate performance
testing; 268

Thread.stop

deprecation reasons; 135fn
Thread.suspend

deprecation reasons; 135fn
ThreadFactory; 176li

customizing thread pool with; 175
ThreadInfo

and testing; 273
ThreadLocal; 45–46

and execution policy; 168
for thread confinement; 43
risks of; 46

ThreadPoolExecutor

and untrusted code; 162
configuration of; 171–179
constructor; 172li
extension hooks; 179
newTaskFor; 126li, 148

@ThreadSafe; 7, 353
throttling

as overload management mecha-
nism; 88, 173

saturation policy use; 174
Semaphore use in BoundedExecutor

example; 176li
throughput

See also performance;
as performance testing criteria; 248
locking vs. atomic variables; 328
producer-consumer handoff

testing; 261
queue implementations

serialization differences; 227
server application

importance of; 113
server applications

single-threaded task execution
disadvantages; 114

thread safety hazards for; 8
threads benefit for; 3

Throwable

FutureTask handling; 98
time/timing

See also deadlock; lifecycle; or-
der/ordering; race condi-
tions;

-based task
handling; 123
management design issues; 131–

133
barrier handling based on; 99
constraints

as cancellation reason; 136
in puzzle-solving framework;

187
interruption handling; 144–145

deadline-based waits
as feature of Condition; 307

deferred computations
design issues; 125

dynamic compilation
as performance testing pitfall;

267
granularity

measurement impact; 264
keep-alive

thread termination impact; 172
LeftRightDeadlock example; 207fg
lock acquisition; 279
lock scope

narrowing, as lock contention
reduction strategy; 233–235

long-running GUI tasks; 195–198
long-running tasks

responsiveness problem han-
dling; 170

measuring
in performance testing; 260–263
ThreadPoolExecutor hooks for;

179
performance-based alterations in

thread safety risks; 7
periodic tasks

handling of; 123
progress indication

for long-running GUI tasks; 198
relative vs. absolute

class choices based on; 123fn
response

task sensitivity to, execution
policy implications; 168

short-running GUI tasks; 192–195
thread timeout

core pool size parameter impact
on; 172fn

timed locks; 215–216

Index 401

weakly consistent iteration seman-
tics; 86

TimeoutException

in timed tasks; 131
task cancellation criteria; 147

Timer

task-handling issues; 123
thread use; 9

timesharing systems
as concurrency mechanism; 2

tools
See also instrumentation; measure-

ment;
annotation use; 353
code auditing

locking failures detected by; 28fn
heap inspection; 257
measurement

I/O utilization; 240
importance for effective perfor-

mance optimization; 224
performance; 230

monitoring
quality assurance use; 273

profiling
lock contention detection; 240
performance measurement; 225
quality assurance use; 273

static analysis; 271–273
transactions

See also events;
concurrent atomicity similar to; 25

transformations
state

in puzzle-solving framework
example; 183–188

transition
See also state;
state transition constraints; 56

impact on safe state variable
publication; 69

travel reservations portal example
as timed task example; 131–133

tree(s)
See also collections;
models

GUI application handling; 200
traversal

parallelization of; 181–182

TreeMap

ConcurrentSkipListMap as concur-
rent replacement; 85

TreeSet

ConcurrentSkipListSet as concur-
rent replacement; 85

Treiber’s nonblocking stack algorithm;
331li

trigger(ing)
See also interruption;
JVM abrupt shutdown; 164
thread dumps; 216

try-catch block
See also exceptions;
as protection against untrusted code

behavior; 161
try-finally block

See also exceptions;
and uncaught exceptions; 163
as protection against untrusted code

behavior; 161
tryLock

barging use; 283fn
deadlock avoidance; 280li

trySendOnSharedLine example; 281li
tuning

See also optimization;
thread pools; 171–179

U
unbounded

See also bounded; constraints;
queue(s);

blocking waits
timed vs., in long-running task

management; 170
queues

nonblocking characteristics; 87
poison pill shutdown use; 155
thread pool use of; 173

thread creation
disadvantages of; 116

uncaught exception handlers; 162–163
See also exceptions;

UncaughtExceptionHandler; 163li
custom thread class use; 175
thread leakage detection; 162–163

unchecked exceptions
See also exceptions;
catching

disadvantages of; 161

402 Index

uncontended
synchronization; 230

unit tests
for BoundedBuffer example; 250
issues; 248

untrusted code behavior
See also safety;
ExecutorService code protection

strategies; 179
protection mechanisms; 161

updating
See also lifecycle;
atomic fields; 335–336
immutable objects; 47
views

in GUI tasks; 201
upgrading

read-write locks; 287
usage scenarios

performance testing use; 260
user

See also GUI;
cancellation request

as cancellation reason; 136
feedback

in long-running GUI tasks; 196li
interfaces

threads benefits for; 5
utilization; 225

See also performance; resource(s);
CPU

Amdahl’s law; 225, 226fg
optimization, as multithreading

goal; 222
sequential execution limitations;

124
hardware

improvement strategies; 222

V
value(s)

See result(s);
variables

See also encapsulation; state;
atomic

classes; 324–329
locking vs.; 326–329
nonblocking algorithms and;

319–336
volatile variables vs.; 39, 325–326

condition

explicit; 306–308
hoisting

as JVM optimization pitfall; 38fn
local

stack confinement use; 44
multivariable invariant requirements

for atomicity; 57
state

condition predicate use; 299
independent; 66, 66–67
independent, lock splitting use

with; 235
object data stored in; 15
safe publication requirements;

68–69
ThreadLocal; 45–46
volatile; 38, 37–39

atomic variable class use; 319
atomic variable vs.; 39, 325–326
multivariable invariants prohib-

ited from; 68
variance

service time; 264
Vector

as safe publication use; 52
as synchronized collection; 79
check-then-act operations; 80li, 79–

80
client-side locking management of

compound actions; 81li
vehicle tracking example

delegation strategy; 64
monitor strategy; 61
state variable publication strategy;

69–71
thread-safe object composition de-

sign; 61–71
versioned data model; 201
views

event handling
model-view objects; 195fg

model-view-controller pattern
deadlock risks; 190
vehicle tracking example; 61

reflection-based
by atomic field updaters; 335

timeliness vs. consistency; 66, 70
updating

in long-running GUI task han-
dling; 201

with split data models; 201

Index 403

visibility
See also encapsulation; safety; scope;
condition queue

control, explicit Condition and
Lock use; 306

guarantees
JMM specification of; 338

lock management of; 36–37
memory; 33–39

ReentrantLock capabilities; 277
synchronization role; 33

volatile reference use; 49
vmstat application

See also measurement; tools;
CPU utilization measurement; 240
performance measurement; 230
thread utilization measurement; 241

Void

non-value-returning tasks use; 125
volatile

cancellation flag use; 136
final vs.; 158fn
publishing immutable objects with;

48–49
safe publication use; 52
variables; 38, 37–39

atomic variable class use; 319
atomic variable vs.; 39, 325–326
atomicity disadvantages; 320
multivariable invariants prohib-

ited from; 68
thread confinement use with; 43

W
wait(s)

blocking
timed vs. unbounded; 170

busy-waiting; 295
condition

and condition predicate; 299
canonical form; 301li
errors, as concurrency bug pat-

tern; 272
interruptible, as feature of Con-

dition; 307
uninterruptable, as feature of

Condition; 307
waking up from, condition

queue handling; 300–301
sets; 297

multiple, as feature of Condi-
tion; 307

spin-waiting; 232
as concurrency bug pattern; 273

waiting to run
FutureTask state; 95

waking up
See also blocking/blocks; condition,

queues; notify; sleep; wait;
condition queue handling; 300–301

weakly consistent iterators; 85
See also iterators/iteration;

web crawler example; 159–161
within-thread usage

See stack, confinement;
within-thread-as-if-serial semantics;

337
work

queues
and thread pools, as producer-

consumer design; 88
in Executor framework use; 119
thread pool interaction, size tun-

ing requirements; 173
sharing

deques advantages for; 92
stealing scheduling algorithm; 92

deques and; 92
tasks as representation of; 113

wrapper(s)
factories

Decorator pattern; 60
synchronized wrapper classes

as synchronized collection
classes; 79

client-side locking support; 73

	Advance praise forJava Concurrency in Practice
	Listings
	Preface
	How to use this book
	Code examples
	Acknowledgments

	6 Task Execution
	6.1 Executing tasks in threads
	6.2 The Executor framework
	6.3 Finding exploitable parallelism
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

