

Paper TT12

Advance Tips for Manipulating Data in commonly used SAS Procedures

Raj Suligavi, HTC Global Services Inc., Bloomington, IL
Jyotheeswar N Yellanki, HTC Global Services Inc., Bloomington, IL

ABSTRACT
As a SAS programmer one is overwhelmed by the sheer size of the SAS options provided. It’s not only easy to finish your

task but to complete we must also think is this the only or the best efficient way to do. So as an expert programmer one always
thinks of efficient methods to code and apply successfully. With these scenarios in the background I’m discussing few tips as
an advanced SAS programmer that one stumbles in the job scenarios ;

• While working with large number of variables, is it really efficient to use DROP and KEEP variables? If so, which one
is preferred?

• How a DATA step statement works? How set option facilitates the data step? How to use ABORT and STOP
statement in data step.

• What’s the best way to subset data - IF and/or Where statement? Demoed by use of some PROC statements.
• Is it possible to make PROC steps more efficient?

This paper should help beginners and intermediate programmers to make more informed decisions. This paper discussion
steps through some examples of code and accompanying info to support these tips.

INTRODUCTION
SAS is a great language to learn and easy to play hands-on. As one codes and applies data and proc steps during

various projects one often refers and learns from SAS Publications and online help. What may seem like a fine program may in
fact be inefficient or lacks intuition, worse produce inaccurate results. One should have ample time and patience to code and
become a good programmer. It certainly takes consistent efforts to search and debug various programs referring SAS
documentation and SAS online help. This presentation is oriented towards discussing various examples to facilitate how SAS
data manipulation works and describe few useful techniques in commonly used procedures.

There have been many papers and work done to describe efficient programming in SAS. In order to present this
paper the techniques were first tested in SAS Windows in version 9 and use of SAS samples provided with SAS9 software.
The results reported in this paper and some pitfalls explained would facilitate the beginners and as well intermediate SAS
programmers to be aware of these traps.

DATA AND PROC STEP - BEGINNER’S TIPS

Data step is the heart of SAS program without it its’ impossible to manipulate data to meet the needs of analysis. As
known SAS can be used in either interactively in the windows environment or in batch mode. Any information written in log
window explains how a SAS process was executed. If no errors reported doesn’t mean that the program was ok and results
are good. One should always be cautious and observe the data all the time. If one is executing multiple data /proc steps then
one should not be satisfied considering only the last data/proc step but be watchful about problems/ inconsistencies seen in
the intermediate steps too. Having understood this point there are different methods to look at data - firstly PROC PRINT -
which prints every variable, every value, and every observation in the dataset. So when one needs to use this procedure use
an option (OBS=abc) and VAR to define only selected variables.

PROC PRINT DATA=PHARMA (OBS=50);

VAR HEIGHT WEIGHT AGE TOTAL; RUN;

Note in windowing environment we can also use VIEWTABLE or PROC FSVIEW to see the data in SAS data sets.

Not only methods are easy to use but also provide table-like display of the data and can allow various interactive mechanisms
to subset the data and/or select variables to be displayed.

It’s nice to know what data set statement and options are and how they can facilitate SAS processing intelligently.
Remember data set options can also be used in PROC steps. If no data manipulation required using the procedure would be
more efficient then creating an intermediate data set. A statement exists in either data or proc step and may affect all the data
sets involved in that step. A data set option is attached to specific data set and is active only for that particular data set.
Following example explains how data set options can be used on either input and/or output data set.

DATA PHARMA;
 SET SURVEY (OBS=10);

TOTAL = Weight1 + Weight2;
If TOTAL GT 350 THEN OUTPUT;

RUN;

PROC PRINT DATA=PHARMA (OBS=5);
 VAR SURVEYID TOTAL;
RUN;

So when you specify the FIRSTOBS= value, SAS begins to read at that observation and continues to read until SAS
reaches the observation number specified in the OBS= value. The OBS= option limits the number of observations or records
that a data step statement or proc step reads from an input file. For example, with the option OBS=1, it stops after reading only
1 observation or record. The value can be a whole number or the word MAX. The word MAX represents the idea of using all
available observations or records, but it actually indicates a large positive integer, such as 2147483647.

Use of KEEP/ DROP statements and data set options to select only those relevant variables needed for analysis. Its
certain that by select only valid variables for processing you would save CPU time and enable quick data analysis. Emphasized
here is data step keep statement affects the output data set where as data set keep option affects the input data set. Same
usage is possible with respect drop statement and drop data set options. Following example illustrates it.

DATA PHARMA;
 SET SURVEY (OBS=10);

TOTAL = Weight1 + Weight2;
 KEEP SURVEYID TOTAL WEIGHT1 WEIGHT2 AGE; /* Keep Statement */

RUN;
DATA PHARMA;

 SET SURVEY(KEEP= SURVEYID WEIGHT1 WEIGHT2 AGE); /* Keep data set option*/
TOTAL = Weight1 + Weight2;

RUN;

To facilitate sub setting data SAS has IF and WHERE statements. Both can be used in DATA step, while IF
statement cannot be used in PROC step. But WHERE can be used as both as a statement and also a data set option. Table
below shows the details of these two keywords.

Usage IF WHERE
DATA SET STATEMENT Yes Yes
DATA SET OPTION No Yes
PROC STATEMENT No Yes
WITH OBS= OPTION Yes No
WITH FIRST. Or LAST. Yes No

Note its proven that Where statement and data set options are more efficient than If statements. SAS provides a variety of
operators and functions that can be used in both IF and WHERE statements, but certain ones like BETWEEN-AND operators
are very useful and valid with where only. Its imperative that if a program contains a statement / option that accesses the data
by observation numbers like OBS= or FIRST.var, a WHERE statement or Option cannot be used.

DATA PHARMA;

 SET SURVEY (OBS=100);
WHERE PHTYPE=’SENIOR’;
KEEP SURVEYID PHTYPE AGE;

RUN;
LOG Message:
ERROR: A where clause may not be used with the FIRSTOBS or the OBS data set
options.

There are SAS language shortcuts to identify variables as lists. Commonly used operators are Dashes and Double Dashes to
list variables. Following examples illustrate the details.

PROC PRINT DATA=PHARMA;
 VAR UNITS1-UNITS4; /* Only the values of 4 variables are printed */
RUN;
DATA PHARMA;
 SET SURVEY;
 TOTAL=SUM (of UNITS1-UNITS4);
 UNITS5=Sum (UNITS2, UNITS4);
RUN;
PROC PRINT DATA=PHARMA (OBS=5);

VAR UNITS1-UNITS5; /* Displays all the values of UNITS variables, plus
the value for each variable located between UNITS1 and UNITS5 */

RUN;

On similar note usage of IN and OR operators is quite useful while selecting the observations from the list of
variables. But when these operators are used explicit assignment operation is must otherwise SAS errors out. Following
example describes it.

DATA PHARMA;
 SET SURVEY;
 IF PHTYPE=’SENIOR’ OR PHTYPE=’ONMED’ THEN OUTPUT;

Also can use --- IF PHTYPE in (‘SENIOR’,’ONMED’) THEN OUTPUT;
 RUN;
(If used as PHTYPE=’SENIOR’ OR ‘ONMED’ - SAS errors out. Same situation holds good for
Numeric values to).

If you do not instruct it to do otherwise, SAS writes all variables and all observations from input data sets to output
data sets. You can, however, control which variables and observations you want to read and write by using SAS statements,
data set options, and functions. The statements and data set options that you can use are listed in the following table.

Table: Statements and Options That Control Reading and Writing

Task Statements Data set options System options

Control variables DROP DROP=

 KEEP KEEP=

 RENAME RENAME=

Control observations WHERE WHERE= FIRSTOBS=

 sub setting IF FIRSTOBS= OBS=

 DELETE OBS=

 REMOVE

 OUTPUT

Use statements or data set options (such as KEEP= and DROP=) to control the variables and observations you want to write
to the output data set. The WHERE statement is an exception: it controls which observations are read into the program data
vector based on the value of a variable. You can use data set options (including WHERE=) on input or output data sets,
depending on their function and what you want to control. You can also use SAS system options to control your data.

USE OF ABORT AND STOP:

A DATA step that reads observations from a SAS data set with a SET statement that uses the POINT= option has no
way to detect the end of the input SAS data set. (This method is called direct or random access.) Such a DATA step usually
requires a STOP statement. A DATA step also stops when it executes a STOP or an ABORT statement. Some system options
and data set options, such as OBS=, can cause a DATA step to stop earlier than it would otherwise.

The STOP statement causes SAS to stop processing the current DATA step immediately and resume processing statements
after the end of the current DATA step. The STOP statement can be used alone or in an IF-THEN statement or SELECT
group.

Use STOP with any features that read SAS data sets using random access methods, such as the POINT= option in the SET
statement. Because SAS does not detect an end-of-file with this access method, you must include program statements to
prevent continuous processing of the DATA step.

• When you use a windowing environment or other interactive methods of operation, the ABORT statement and the
STOP statement both stop processing. The ABORT statement sets the value of the automatic variable _ERROR_ to
1, but the STOP statement does not.

• In batch or noninteractive mode, the two statements also have different effects. Use the STOP statement in batch or
noninteractive mode to continue processing with the next DATA or PROC step.

This example shows how to use STOP to avoid an infinite loop within a DATA step when you are using random access
methods:

Data sample;
 do sampleobs=1 to totalobs by 10;
 set master.research point=sampleobs
 nobs=totalobs;
 output;
 end;
 stop;
run;

If you specify no argument, the ABORT statement produces these results under the following methods of operation:

Batch mode and noninteractive mode

• stops processing the current DATA step and writes an error message to the SAS log. Data sets can contain
an incomplete number of observations or no observations, depending on when SAS encountered the
ABORT statement.

• sets the OBS= system option to 0.
• continues limited processing of the remainder of the SAS job, including executing macro statements,

executing system options statements, and syntax checking of program statements.
• creates output data sets for subsequent DATA and PROC steps with no observations.

Windowing environment
• stops processing the current DATA step
• creates a data set that contains the observations that are processed before the ABORT statement is

encountered
• prints a message to the log that an ABORT statement terminated the DATA step
• continues processing any DATA or PROC steps that follow the ABORT statement.

Interactive line mode

stops processing the current DATA step. Any further DATA steps or procedures execute normally.

ADVANCE DATA MANIPULATION TIPS:

USE OF PUT STATEMENT:
Use the PUT statement to write lines to the SAS log, to the SAS output window, or to an external location. If you do not
execute a FILE statement before the PUT statement in the current iteration of a DATA step, SAS writes the lines to the SAS
log. If you specify the PRINT option in the FILE statement, SAS writes the lines to the SAS output window. The PUT statement
can write lines that contain variable values, character strings, and hexadecimal character constants. With specifications in the
PUT statement, you specify what to write, where to write it, and how to format it.
Holding and Releasing Output Lines: This DATA step demonstrates how to hold and release an output line with a PUT
statement:

data _null_;
 input idno name $ startwght 3.;
 put name @;
 if startwght ne . then
 put @15 startwght;
 else put;
 datalines;
032 David 180
049 Amelia 145
126 Monica
219 Alan 210
;

In this example, the trailing @ in the first PUT statement holds the current output line after the value of NAME is

written if the condition is met in the IF-THEN statement, the second PUT statement writes the value of STARTWGHT and
releases the current output line. If the condition is not met, the second PUT never executes. Instead, the ELSE PUT statement
executes. This releases the output line and positions the output pointer at column 1 in the output buffer. The program writes
the following lines to the SAS log:*

----+----1----+----2
David 180
Amelia 145
Monica
Alan 210

Example : Writing the Current Input Record to the Log

When a value for ID is less than 1000, PUT _INFILE_ executes and writes the current input record to the SAS
log. The DELETE statement prevents the DATA step from writing the observation to the TEAM data set.

Data team;
 input id team $ score1 score2;
 if id le 1000 then
 do;
 put _infile_;

 delete;
 end;
 Datalines;
032 red 180 165
049 yellow 145 124
219 red 210 192
;

The program writes the following line to the SAS log:*
----+----1----+----2
219 red 210 192

INPUT STATEMENT WITH SPECIAL INFORMAT: The $VARYINGw. informat is a special SAS informat that enables you to read a
character value, which has a length that differs from record to record. General form, INPUT statement with the $VARYINGw.
informat:

INPUT variable $VARYINGw. length-variable; where
• variable is a character variable
• $VARYINGw. specifies the length of the variable

length-variable specifies a numeric variable that contains the actual width of the
character field in the current record.

Raw Data File Phonedat
>----+----10---+----20

1802JOHNSON2123
1803BARKER2142
1804EDMUNDSON2325
1805RIVERS2543
1806MASON2646
1807JACKSON2049
1808LEVY2856
1809THOMAS2222

It's important to understand how the $VARYINGw. informat is different from other character informats. This informat is
composed of two parts, the informat and the length variable.

INPUT variable $VARYINGw. length-variable;

The second INPUT statement uses the $VARYINGw. informat to read the values for Name from column 5 until the length is
specified by namelen. Then the values for PhoneExt are read.
 data perm.phones;
 infile phondat length=reclen;
 input ID 4. @;
 namelen=reclen-8;
 input Name $varying10. namelen
 PhoneExt;

MODIFIED LIST INPUT:
A more flexible version of list input, called modified list input, includes format modifiers. The following format modifiers enable
you to use list input to read nonstandard data by using SAS informats:

• The & (ampersand) format modifier enables you to read character values that contain embedded blanks with list input
and to specify a character informat. SAS reads until it encounters multiple blanks.

• The : (colon) format modifier enables you to use list input but also to specify an informat after a variable name,
whether character or numeric. SAS reads until it encounters a blank column.

• The ~ (tilde) format modifier enables you to read and retain single quotation marks, double quotation marks, and
delimiters within character values.

The following is an example of the : and ~ format modifiers:
data scores;
 infile datalines dsd;
 input Name : $9. Score1-Score3 Team ~ $25. Div $;
 datalines;
Smith,12,22,46,"Green Hornets, Atlanta",AAA
Mitchel,23,19,25,"High Volts, Portland",AAA
Jones,09,17,54,"Vulcans, Las Vegas",AA
;
proc print data=scores noobs;
run;

Output from Example with Format Modifiers
 Name Score1 Score2 Score3 Team Div
Smith 12 22 46 "Green Hornets, Atlanta" AAA
Mitchel 23 19 25 "High Volts, Portland" AAA
Jones 9 17 54 "Vulcans, Las Vegas" AA

USE OF WHERE AND IF EXPRESSION:

A “where” expression restricts processing on a data file to a subset of the observations. Using an index and a
WHERE expression together is called "optimizing the WHERE expression". See the conditions below for WHERE conditions
that can be optimized:

Table: Tasks Requiring Either WHERE Expression or Subsetting IF Statement

Task Method

Make the selection in a procedure without using a preceding DATA step WHERE expression

Take advantage of the efficiency available with an indexed data set WHERE expression

Use one of a group of special operators, such as BETWEEN-AND, CONTAINS, IS
MISSING or IS NULL, LIKE, SAME-AND, and Sounds-Like

WHERE expression

Base the selection on anything other than a variable value that already exists in a
SAS data set. For example, you can select a value that is read from raw data, or a
value that is calculated or assigned during the course of the DATA step

subsetting IF

Make the selection at some point during a DATA step rather than at the beginning subsetting IF

Execute the selection conditionally subsetting IF

When processing the WHERE expression, the SAS System decides whether to use the index or to read the data file
sequentially. First, the SAS System identifies the available indexes for use with the WHERE expression, if that expression can
be optimized. A composite index may be used for WHERE expression optimization only when the first key variable is a variable
in the WHERE expression.

Table: WHERE Conditions That Can Be Optimized

Condition Examples

comparison operators, which include
the EQ operator; directional
comparisons like less than or
greater than; and the IN operator

where empnum eq 3374;

where empnum < 2000;

where state in ('NC','TX')';

comparison operators with NOT where empnum ^= 3374;

where x not in (5, 10);

comparison operators with the colon
modifier

where lastname gt: 'Sm';

CONTAINS operator where lastname contains 'Sm';

fully-bounded range conditions
specifying both an upper and loser
limit, which includes the BETWEEN-
AND operator

where 1<x<10;

where empnum between 500 and 1000;

pattern-matching operators LIKE
and NOT LIKE

where firstname like '%Rob_%';

IS NULL or IS MISSING operator Where name is null;

where idnum is missing;

TRIM function where trim(state) = 'Texas';

WHERE SUBSTR(variable, position,
length)='string';

when the following conditions are
met:

position is equal to 1, length is less
than or equal to the length of
variable, and length is equal to the
length of string

where substr(name,1,3)='Mac' and
(city='Charleston' or city='Atlanta');

USING THE SCAN AND SUBSTR FUNCTION:

Suppose you want to produce an alphabetical list by last name, but your NAME variable contains FIRST, possibly a
middle initial, and LAST name. The SCAN function makes quick work of this. Note that the LAST_NAME variable in PROC
REPORT has the attribute of ORDER and NOPRINT, so that the list is in alphabetical order of last name but all that shows up
is the original NAME variable in First, Middle, and Last name order.

DATA FIRST_LAST;
 INPUT @1 NAME $20.
 @21 PHONE $13.;
 ***Extract the last name from NAME;
 LAST_NAME = SCAN(NAME,-1,' '); /* Scans from the right */

DATALINES;
Jeff W. Snoker (908)782-4382
Raymond Albert (732)235-4444
Steven J. Foster (201)567-9876
Jose Romerez (516)593-2377
;

 PROC REPORT DATA=FIRST_LAST NOWD;
 TITLE "Names and Phone Numbers in Alphabetical Order (by Last Name)";
 COLUMNS NAME PHONE LAST_NAME;
 DEFINE LAST_NAME / ORDER NOPRINT WIDTH=20;
 DEFINE NAME / DISPLAY 'Name' LEFT WIDTH=20;
 DEFINE PHONE / DISPLAY 'Phone Number' WIDTH=13 FORMAT=$13.;
 RUN;

Another example;
DATA PHARMA;
Firstvar= ‘WELCOME to PHARMASUG 2005’;
Finalword = SCAN (firstvar, -1);
Put Finalword=;

Results: Firstvar=WELCOME to PHARMASUG 2005 Finalword=2005

The following DATA step produces a SAS data set that contains only observations from data set CUSTOMER in which the
value of NAME begins with Mac and the value of variable CITY is Charleston or Atlanta:

Data testmacs;
 set customer;
 where substr (name,1,3) = 'Mac' and
 (city='Charleston' or city='Atlanta');
Run;

USING THE PROPCASE FUNCTION:
The "old" way to capitalize the first letter of words was to use LOWCASE, UPCASE, and the SUBSTR function, like

this:
DATA CAPITALIZE;
 INFORMAT FIRST LAST $30.;
 INPUT FIRST LAST;
 FIRST = LOWCASE(FIRST);
 LAST = LOWCASE(LAST);
 SUBSTR(FIRST,1,1) = UPCASE(SUBSTR(FIRST,1,1));
 SUBSTR(LAST,1,1) = UPCASE(SUBSTR(LAST,1,1));
DATALINES;
ronald cODy
THomaS eDISON
albert einstein
;
PROC PRINT DATA=CAPITALIZE NOOBS;
 TITLE "Listing of Data Set CAPITALIZE";
RUN;

With the PROPCASE function in SAS 9.1, it's much easier.
DATA PROPER;
 INPUT NAME $60.;
 NAME = PROPCASE(NAME);
DATALINES;
ronald cODy
THomaS eDISON
albert einstein
;
PROC PRINT DATA=PROPER NOOBS;
 TITLE "Listing of Data Set PROPER";
RUN;

COMPLEX CHARACTER COMPARISONS USING IN OPERATOR AND THE COLON (:) OPERATOR:
These two techniques are very versatile and handy during complex character comparisons. The use of colon (:) operator
modifier to truncate the length of the longer value. This eliminates the need for the substr function and /or creating additional
variables. Another technique the use of IN operator to accept character constants of different lengths. Following example
explains some details;

‘010’=ZIP_code compares as ‘010bb’=’01034’
 and
‘010’=: ZIP_code compares as ‘010’=’010’;

Also, data pharma; set survey;
 If surveyid in: (‘010’, ‘020’, ‘0130’, ‘0155’);

Using a wildcard in variable lists can save a lot of typing and make your code much more generic (in some instances).

In a variable list, you can specify all variables that begin with the same letters by specifying the letters followed by a colon.
Most SAS statements that accept a variable list allow this type of variable abbreviation, also known as wildcard notation. In this
example, only the variables that begin with BA are printed. Note that The colon must be at the end of the name, not embedded
within. And, it cannot be used in a SUM function in place of a list of variables.

data ZOO ;
 input BARACUDA BEAR CAT DOG BAT ;
proc print data=zoo ;
 var BA: ;
run ;

DO LOOP WITH LEAVE COMMAND:

The in operator allows a list of values to be tested. In the following example the value of the test procedure should not
be in that list of missing values. If indeed a missing value is encountered, the leave command causes the do loop to end.

DATA VERIFY;
Set Pharma;
Length test $5;
ARRAY testid(6) $ testid1-testid6;

Do I =1 to 6;
If testid(i) not in(‘ ‘,’000’, ‘0000’, ‘00000’) then do;
Test= testid(i);
Output;
End;

Else leave;
End;
Drop I;

Run;

USE OF MOD OPERATOR:
Example to select a third observation from the data set use this code.

Data Pharma;
 Set Pharma;
 If MOD (_N_,3)=1;
 run;

MANIPULATING DATA WITH PROC SQL:

This tip provides character alignment, concatenation and pattern matching while manipulating data. In explaining the
examples only SELECT statement was used thought there are other number of ways to accomplish the objectives. Here are
the types of operators and functions in PROC SQL: comparison operators, logical operators, arithmetic operators, character
string operators, and summary functions

Character Alignment and Concatenation

Usually, character string operators and functions are used with character data. These operators enable you to control
character alignment and string concatenation. The default alignment for character data is to the left. However, character
columns or expressions can also be aligned to the right. Two functions in PROC SQL are available for character alignment:
LEFT and RIGHT. The next example combines the concatenation operator || and the TRIM function with the LEFT function to
left align a character expression, and inserts blank spaces and a dash (-) between two character columns to create the subset
"PG-rated" from the table MOVIES.

Code: PROC SQL;
SELECT TRIM(LEFT(title) || " - " || category) AS Concatenation_Alignment

FROM movies
 WHERE rating = "PG";
 QUIT;
Results: Concatenation_Alignment

 Casablanca - Drama
 Jaws - Action Adventure
 Poltergeist - Horror
 Rocky - Action Adventure
 Star Wars - Action Sci-Fi
 The Hunt for Red October - Action Adventure

Phonetic Matching (Sounds-Like Operator, =*):

A technique for finding names that sound alike or names that have spelling variations is available in PROC SQL.
Although not technically a function, the sounds-like operator =* searches and selects character data based on two
expressions: the search value and the matched value. Anyone that has looked for a last name in a telephone directory is
quickly reminded of the possible phonetic variations. To show how the sounds-like operator works, we will search on the
column TITLE in the MOVIES table, using the string "Rucky", for all phonetic variations that are related to the movie title
"Rocky".

 PROC SQL;
 SELECT title, rating, category
 FROM movies
 WHERE title =* "Rucky";
 QUIT;

The results:
 Title Rating Category

 Rocky PG Action Adventure

Finding Patterns in a String (Pattern Matching, % and _):

Constructing specific search patterns in string expressions is a simple process with the LIKE predicate. The percent
sign (%) acts as a wildcard character that represents multiple characters, including any combination of uppercase or lowercase
characters. Combining the LIKE predicate with the percent sign (%) permits case-sensitive searches. It's a popular technique
used by savvy SQL programmers to find patterns in their data. The next example finds patterns in the CATEGORY column in
the MOVIE table that contains the uppercase character D in the first position, followed by any number of characters.

PROC SQL;
 SELECT title, rating, category

 FROM movies
 WHERE category LIKE 'D%';
QUIT;

The results:
 Title Rating Category
 __
 Casablanca PG Drama
 Forrest Gump PG-13 Drama
 Michael PG-13 Drama
 Dressed to Kill R Drama Mysteries
 Ghost PG-13 Drama Romance
 Titanic PG-13 Drama Romance
 Silence of the Lambs R Drama Suspense

SOME TIPS ON PROC SORT:

It's observed by SAS users that the SORT procedure is one of the easiest procedures to use and one of the most
abused. One important strategy frequently used when processing, and in particular sorting, large data sets is to first spend time
understanding what your objective is with the sort, and then spend a little more time planning how to best achieve that
objective. The trick to performing a successful sort is to first understand what your objective is, and then find out how to
achieve that objective. Here are a few guidelines to follow whenever you find yourself sorting a large data set.

• Determine if the data in a large data set is already in sorted order. If it is, then a sort may not be necessary.
• Determine whether the data is in a particular sort order by specifying the BY statement in a DATA or PROC step

(other than the SORT procedure). If the data isn't in the desired sort order specified in the BY statement, a runtime
error is produced.

• Specify the NOTSORTED option when the observations with the same BY value are grouped, but the observations
within the group are in unsorted order.

• Determine whether any installation or resource constraints (e.g., shortage of space, etc.) exist that could prevent a
data set from being sorted.

• Understand the requirements of the DATA or PROC step that you plan to use as he input data set. Many procedures,
including all of the summary procedures, don't need data in sorted order because they produce results in sorted order
after summaries are produced anyway.

• Consider using a tag sort if a sort is needed. When a data set is too large to fit in memory, then tag sorting may be
more efficient because it requires less temporary storage space and memory. Specify the TAGSORT option in the
SORT procedure statement.

• Consider only sorting the observations and variables that are needed to satisfy the conditions of the analysis.

SOME TIPS ON PROC REPORT:

It’s very difficult to force PROC REPORT to print all of the variables on the same page if there is not enough room to do
so. It may help to reduce the spacing between the columns, reduce the width of the columns and/or increase the line size.
However, the reduced space still has to be large enough to print out all of the variables on one page or PROC REPORT will
continue printing the remaining variables on the next physical page.

• To reduce the space between variables, set the SPACING= option to either 0 or 1 on the PROC REPORT statement.
This reduces the space between the variables from the default value of 2.

• To control spacing for a particular column, use the SPACING= option on the DEFINE statement within PROC
REPORT.

• You can change the report column width using the COLWIDTH= option on the PROC REPORT statement. Also, the
WIDTH= option on the DEFINE statement controls the width of a particular variable.

• Finally, the line size can be changed on the PROC REPORT statement (via the LS= option) or on an OPTIONS
statement before the PROC REPORT statement.

PROC REPORT in Base SAS software is an extremely flexible tool that combines formatting, summarization and analysis
features with report generation. Because it is powerful and easy -to use, it has become a favorite with many SAS software
users.

CONCLUSION:

Evaluating your raw data and choosing the most appropriate data style to manipulate and facilitate your analysis is a very
important task. You have probably should not only understand how and what data characteristics are but also actively think
what and where data need to be manipulated to achieve the required results. Hence as stated data manipulation is an evolving
skill expertise as one observes, understands and interprets data knowledge.

REFERENCES:
1. Simplifying complex character comparisons by using the IN operator and Colon (:) operator modifier by Paul Grant,

SAS Institute Inc.
2. Tips for manipulating data by Marge Scerbo - SUGI 27 Paper
3. Quicktip: Avoiding Problems Related to Sorting by Kirk Paul Lafler, Software Intelligence Corporation.
4. Power Indexing: A Guide to Using Indexes Effectively in Nashville Releases

By Diane Olson, SAS Institute Inc., Cary, NC.
5. "SAS Today! A Year of Terrific Tips" by Helen Carey and Ginger Carey
6. "In the Know… SAS Tips & Techniques From Around the World" by Phil Mason.
7. Array tutorial (2) - beginning intermediate - by Marge Scerbo, Sugi29 Paper.
8. SAS Institute Inc., SAS OnlineDoc9 ® http://v9doc.sas.com/sasdoc/
9. SAS Online Proceedings ® http://support.sas.com/usergroups/sugi/proceedings/index.html
10. Cody’s Data Cleaning Techniques using SAS software by Ron Cody.
11. The Little SAS Book - A Primer by L D Delwiche and S J Slaughter - Third Edition

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Raj Suligavi
Phone: 309-663-0858
Email: bsuliga@yahoo.com
&
Jyotheeswara Naidu Yellanki
Phone: 309-662-5163
Email: yjnaidu@hotmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

