ADVANCED ALGEBRA II

CHAPTER 6 - RATIONAL EXPONENTS AND RADICAL FUNCTIONS

ADVANCED ALGEBRA II
CHAPTER 6 - RATIONAL EXPONENTS AND RADICAL FUNCTIONS
6.1 EVALUATE nth ROOTS AND USE RATIONAL EXPONENTS

WARM-UP / INTRODUCTION

CONCEPT DEVELOPMENT

REAL nth ROOTS OF a

Let n be an integer $(n>1)$ and let a be a real number.
n is an even integer
n is an odd integer

EXAMPLE 1: Find nth roots
A. $\mathrm{n}=3, \mathrm{a}=-125$
B. $\mathrm{n}=4, \mathrm{a}=81$
C. $n=6, a=-64$

RATIONAL EXPONENTS

RATIONAL EXPONENTS

Let $a^{1 / n}$ be an nth root of a, and let m be a positive integer.

EXAMPLE 2: Evaluate expressions with rational exponents
Evaluate each expression.
A. $16^{3 / 2}$
B. $(27)^{2 / 3}$
C. $32^{2 / 5}$
D. $(16)^{3 / 2}$
E. $16^{3 / 2}$
F. $\frac{27}{64} \div$
G. $8^{3 / 2}$
H. $9^{1 / 2}$
I. $\frac{1}{81^{3 / 4}}$

EXAMPLE 3: Approximate roots with a calculator
A. $9^{1 / 5}$
B. $(\sqrt[4]{12})^{3}$
C. $\sqrt[6]{1234}$
D. $25^{1 / 3}$

EXAMPLE 4: Solve equations using nth roots
Solve the equation.
A. $4 x^{5}=128$
B. $\left(\begin{array}{ll}x & 3\end{array}\right)^{4}=21$
C. $3 x^{2 / 3} 5=10$

EXAMPLE 5: Use nth roots in problem solving
SHOT PUT The shot used in men's shot put has a volume of about 905 cubic centimeters. Find the radius of the shot.

BOWLING A bowling ball has a surface area of about 232 square inches. Find the radius of the bowling ball.

HW 6.1A: p. 417 \# 3-24
HW 6.1B: p. 417 \# 25-32, $38-41,50-58,62,64$
MIXED REVIEW: p. 419 \# 69-82

ADVANCED ALGEBRA II
CHAPTER 6 - RATIONAL EXPONENTS AND RADICAL FUNCTIONS
6.2 APPLY PROPERTIES OF RATIONAL EXPONENTS

PROPERTIES OF RATIONAL EXPONENTS

Let a and b be real numbers and let m and n be rational numbers. The following properties have the same names as those listed earlier, but now apply to rational exponents as illustrated.

Property
 Example

1.
2.
3.
4.
5.
6.

EXAMPLE 1: Use properties of exponents
A. $5^{1 / 2} \times 5^{2 / 3}$
B. $\left(3^{1 / 2} \times 4^{2 / 3}\right)^{2}$
C. $\left(4^{5} \times 2^{5}\right)^{1 / 5}$
D. $\frac{6^{2 / 3}}{6^{1 / 5}}$
E. $\frac{42^{2 / 3}}{7^{2 / 3}} \div$
F. $\frac{3}{3^{1 / 4}}$

EXAMPLE 2: Apply properties of exponents
BIOLOGY A mammal's surface area S (in square centimeters) can be approximated by the model $S=k m^{2 / 3}$ where m is the mass (in grams) of the mammal and k is a constant. Approximate the surface area of the rabbit that has a mass of 3.410^{3} grams, if $k=9.75$.

PROPERTIES OF RADICALS

Product Property of Radicals

Quotient Property of Radicals

EXAMPLE 3: Use properties of radicals
Use the properties of radicals to simplify the expression.
A. $\sqrt[3]{12} \times \sqrt[3]{18}$
B. $\frac{\sqrt[4]{80}}{\sqrt[4]{5}}$

EXAMPLE 4: Write radicals in simplest form
Write the expression in simplest form.
A.
B.

LIKE RADICALS

EXAMPLE 5: Add and subtract like radicals and roots
Simplify the expression.
A.
B.
C.

VARIABLE EXPRESSIONS

When n is odd

When n is even

EXAMPLE 6: Simplify expressions involving variables
A.
B.
C.
D.

EXAMPLE 7: Write variable expressions in simplest form
A.
B.
C.
D.

EXAMPLE 8: Add and subtract expressions involving variables
A.
B.
C.
D.

ADDITIONAL NOTES / ACTIVITIES:

HW 6.2A: p. 424 \# 3-23
HW 6.2B: p. 424 \# 24-50 even
HW 6.2C: p. 425 \# 52-59, 60-80 even, 83, 84
MIXED REVIEW: p. 427 \# 91-106

ADVANCED ALGEBRA II
CHAPTER 6 - RATIONAL EXPONENTS AND RADICAL FUNCTIONS
6.3 PERFORM FUNCTION OPERATIONS AND COMPOSITION

OPERATIONS WITH FUNCTIONS

Let f and g be any two functions. A new function h can be defined by performing any of the four basic operations on f and g.
Operation Definition Example

Addition

Subtraction

Multiplication

Division

The domain of h consists of the x-values that are in the domains of both f and g. Additionally, the domain of the quotient does not include x-values for which $g(x)=0$.

POWER FUNCTIONS

EXAMPLE 1: Add and subtract functions

EXAMPLE 2: Multiply and divide functions

EXAMPLE 3: Solve a multi-step problem

COMPOSITION OF FUNCTIONS

EXAMPLE 4: Find compositions of functions

EXAMPLE 5: Find compositions of functions

EXAMPLE 6: Solve a multi-step problem

HW 6.3A: p. 432 \# 3-19 odd, 20, 22
HW 6.3B: p. 432 \# 23, 25, 27, $28-35,40-42,43$
MIXED REVIEW: p. 434 \# $48-53,58,60,62,64,66$

ADVANCED ALGEBRA II
CHAPTER 6 - RATIONAL EXPONENTS AND RADICAL FUNCTIONS 6.4 USE INVERSE FUNCTIONS

DEFINITIONS / INTRODUCTION

EXAMPLE 1: Find an inverse relation
Find an equation for the inverse of the relation $y=-4 x+3$.

INVERSE FUNCTIONS

EXAMPLE 2: Verify that functions are inverses
Verify that and are inverses functions.

EXAMPLE 4: Find the inverse of a power function

HORIZONTAL LINE TEST

EXAMPLE 5: Find the inverse of a cubic function

ADDITIONAL NOTES / ACTIVITIES

HW 6.4A: p. 442 \# 3-11 odd, 15-20
HW 6.4B: p. 443 \# 22 - 42 even, 48, 50
MIXED REVIEW: p. 445 \# 52-66

6.5 GRAPH SQUARE ROOT AND CUBE ROOT FUNCTIONS

THE TWO IMPORTANT RADICAL FUNCTIONS

$$
f(x)=\sqrt{x}=x^{1 / 2}
$$

Domain:
Range:

$$
f(x)=\sqrt[3]{x}=x^{1 / 3}
$$

Domain:

Range:

YOU WILL NEED TO MEMORIZE THESE GRAPHS!!!

Now, we will learn how to graph functions of the form $f(x)=a \sqrt{x \quad h}+k$ and $f(x)=a \sqrt[3]{x \quad h}+k$
EXAMPLE 1: Graph a square root function

TRANSLATIONS OF RADICAL FUNCTIONS

GRAPHS OF RADICAL FUNCTIONS

To graph $f(x)=a \sqrt{x \quad h}+k$ or $f(x)=a \sqrt[3]{x \quad h}+k$, follow these steps:
Step 1: Sketch the graph of $f(x)=a \sqrt{x}$ or $f(x)=\sqrt[3]{x}$
Step 2: Translate the graph horizontally h units and vertically k units

EXAMPLE 4: Graph a translated square root function

EXAMPLE 5: Graph a translated cube root function

HW 6.5A: p. 449 \# 3-15 odd, 35
HW 6.5B: p. 449 \# 16, 20, 22, 25, 28 - 33, 40 (Use Desmos)
MIXED REVIEW: p. 451 \# 41-58

SOLVING RADICAL EQUATIONS
To solve a radical equation, follow these steps:
Step 1: Isolate the radical on one side of the equation, if necessary.
Step 2: Raise each side of the equation to the same power to eliminate the radical and obtain a Linear, quadratic, or other polynomial equation.

Step 3: Solve the polynomial equation using techniques that you learned in previous chapters. Check your solution, strange things can happen!

EXAMPLE 1: Solve a radical equation
A.
B.
C.

EXAMPLE 2: Solve an equation with a rational exponent
A.
B.

GUIDED PRACTICE

Solve each equation. Check your solution.
A.
B.
C.
D.
E.
F.

EXAMPLE 3: Solve an equation with an extraneous solution

SQUARING TWICE

This is how extreme some of these problems can become, given the problem situation...

EXAMPLE 4: Solve an equation with two radicals

ADDITIONAL NOTES / ACTIVITIES

HW 6.6A: p. 456 \# 3 - 33 odd
HW 6.6B: p. 457 \# $34-42,45,47,49,51,53,56$
MIXED REVIEW: p. 459 \# 63-68, 75-80

ADVANCED ALGEBRA II
CHAPTER 6 - RATIONAL EXPONENTS AND RADICAL FUNCTIONS CHAPTER 6 REVIEW

In preparation for the Chapter 6 Examination, you should do the following things:

1. Study / Review Notes
2. Chapter 6 Review: p. 466 \# 1-32
3. Chapter 6 Test: p. 469 \# 1-38
4. Chapter 6 Standardized Test Preparation: p. 472 \# 1-20
5. Chapter 6 Extra Practice: p. 1015 \# 1-56
