Advanced Alkaline Electrolysis Richard Bourgeois, P.E. GE Global Research Center 16 May 2006

imagination at work

Project# PD8

This presentation does not contain any proprietary or confidential information

Overview

Timeline

Project start date 1 April 2004 Project end date 30 Dec. 2005 Percent complete 100%

Barriers addressed

Q. Capital Cost of Electrolysis Systems

T. Renewable Integration

Technical Targets:

2010: Electrolyzed Hydrogen @ \$2.85/ kg

Budget

Total project funding	M\$2.1
DOE share	M\$1.4
Contractor share	M\$0.7
Funding received in FY04	M\$1.05
Funding for FY05	M\$0.35

ecomagination^{**}

a GE commitment

SUNY Albany Nanotech

Objectives

- Develop a commercial strategy for low cost alkaline electrolysis
- Demonstrate a laboratory scale proof of concept

		Units	2010 DOE Target
Cell Stack	Efficiency	% (Voltage)	76% (1.6V)
	Cost	\$ / kg H2	\$0.39
Electricity (System)	Cost	\$ / kg H2	\$1.89
O&M	Cost	\$ / kg H2	\$0.38

ecomagination^{**}

a GE commitment

Approach

Quantify Market Requirements

Establish customer and mission profile

Determine target product size and configuration

Design System

> Set performance targets to meet customer requirements

Identify technical barriers in development path

Electrochemical Cell Analysis

- Develop and test materials for low cost electrolyzer stack
- > Optimize system cost, performance, and reliability

Bench Scale Testing

Build and test proof of concept system

Full Scale Installation Concept

Design reference plant

Optimizing H2 Cost Drives Tradeoffs

Voltage / Current Tradeoffs

Baseline IV curve

Lowest cost operating point varies with cost of electricity and specific cost of material

ecomagination"

a GE commitment

Technology Plan for Low Stack Cost

High surface area electrodes minimize stack size

Advanced materials enable low assembly costs

Electrode Concept Selection

Proof of Concept Plastic Stack

5 x 153 cm2 cells 500W input power 10 gph output Noryl plate / epoxy construction Wire arc Raney electrodes Dual inlets to eliminate shunts

First "true monolith" – design details per product concept

ecomagination** a GE commitment

"500W" Bench Scale System

Figure 5: Bench Scale Test Stand

ecomagination** a GE commitment

Bench Scale Test Results

Computational Study of Cell Performance

Highly non-linear problem requiring development of advanced models

- Multi-phase turbulent flow
- Porous media
- Electrochemical reactions
- Electron/Ion transport
- Dissolved species

Learning from Two Dimensional CFD

Experimental Validation

ecomagination** a GE commitment

Stack Scaleup to 1 kgph system

square cell elliptical

ecomagination" a GE commitment

Power Park Conceptual Design

Conceptual Design and Functional Modeling by Dr. Stephen Sanborn, GE

imagination at work

ecomagination" a GE commitment

Conceptual Designs

Rendered in 2-D Drawings & 3-D "Virtual Tour"

ecomagination^{**}

a GE commitment

imagination at work

H2 Power Park Functional Modeling

System Block Model

Wind Energy. Electricity and Fuel Demand Models

TRNSYS15 optimization code

Result: Optimized equipment selection for various scenarios

Additional Work: "1 kgph" System

Capabilities:

- 1 kg H2 / hr production rate
- High pressure operation
- Automated controls
- P, T, massflow, purity measurements
- Upgradeable compression / storage capability

Opportunity for total instrumentation Study operability & maintenance characteristics

Additional Work: Electrode Lifing

Multiple sample accelerated testing underway

350, 500, and 1000 mA/cm²

Nearing 40k hours with no failures

Electrode Test Apparatus

Future Work

First phase project has ended. Continuation of work with the 1 kgph system has been proposed to DOE and is pending.

Project Summary

Relevance: Provides a technical solution to the electrolysis capital cost problem.

Approach: Leverage GE expertise in advanced plastics and coating technology to dramatically reduce electrolyzer stack cost.

Progress: Demonstrated bench-scale proof of concept and scaled up to full size stack. Met efficiency target and projecting to meet 2010 cost target.

Technology Transfer:

Ready to consider demonstration projects.

Proposed Future Research:

System operations and reliability growth to prepare for demonstrations.

ecomagination^{**}

a GE commitment

Backup Slides

Alkaline Electrolyzer Design Basics

Publications

Advanced H2 sensor work by Dr. Michael Carpenter, SUNY Nanotech

 Zhou, Z. and Carpenter, M.A. :"Annealing Advanced Hydrogen Absorption in Nanocrystalline Pd/Au Sensing Films"; Journal of Applied Physics 97, 124301 (2005)
Zhou, Z *et. al*: "All Optical Hydrogen Sensor Based On a High Alloy Content Palladium Thin Film"; Sensors and Actuators B, March 2005

ecomagination^{**}

a GE commitment

Response to Reviewers' Comments

Rated as #PDP-10 : New York State Hi-Way Initiative

Strengths:

- Highly innovative
- Use of multiple GE technical capabilities
- Integrated GE team with skills and resources to "make this real"

Reviewer's Comments and Response

 Scope regarding New York's H2 infrastructure, sensors, etc. not aligned with HFCIT goals

— 2005 scope focused on electrolysis technology and scaleup.

- "Show path to achieving HFCIT targets... using standard assumptions" — H2A model analysis presented to DOE for all GE H2 program work.
- "Current demonstration is too small... 50 kW minimum

— GE has built and is testing a 50 kW system, and has applied to

imag**continue** the program with testing at that scale.

ecomagination" a GE commitment

Critical Assumptions and Issues

- Electricity must be available at 5 cents / kWh or lower. This requires off-peak / industrial wholesale electricity at first, and the long term requires a cheap power solution.
- 2) Electrolyzers can be commercially successful without "waiting for a hydrogen economy". The right sector of the existing hydrogen market must be targeted, and demonstrations arranged with the needs of this market in mind.
- 3) A unified set of codes and standards for electrolytic H2 production is necessary so that a standardized packaged product may be deployed anywhere.

