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Hardware Issues

• Number and Type of Processors

• Processor Control

• Memory Hierarchy

• I/O devices and Peripherals

• Operating System Support

• Applications Software Compatibility



Operating System Issues

• Allocating and Managing Resources

• Access to Hardware Features
– Multi-Processing

– Multi-Threading

• I/O Management

• Access to Peripherals

• Efficiency



Applications Issues

• Compiler/Linker Support

• Programmability

• OS/Hardware Feature Availability

• Compatibility

• Parallel Compilers
– Preprocessor

– Precompiler

– Parallelizing Compiler



Architecture Evolution

• Scalar Architecture

• Prefetch Fetch/Execute Overlap

• Multiple Functional Units

• Pipelining

• Vector Processors

• Lock-Step Processors

• Multi-Processor



Flynn’s Classification

• Consider Instruction Streams and Data
Streams Separately.

• SISD - Single Instruction, Single Data
Stream

• SIMD - Single Instruction, Multiple Data
Streams

• MIMD - Multiple Instruction, Multiple Data
Streams.

• MISD - (rare) Multiple Instruction, Single
Data Stream



SISD

• Conventional Computers.

• Pipelined Systems

• Multiple-Functional Unit Systems

• Pipelined Vector Processors

• Includes most computers encountered in
everyday life



SIMD

• Multiple Processors Execute a Single
Program

• Each Processor operates on its own data

• Vector Processors

• Array Processors

• PRAM Theoretical Model



MIMD

• Multiple Processors cooperate on a single
task

• Each Processor runs a different program

• Each Processor operates on different data

• Many Commercial Examples Exist



MISD

• A Single Data Stream passes through
multiple processors

• Different operations are triggered on
different processors

• Systolic Arrays

• Wave-Front Arrays



Programming Issues

• Parallel Computers are Difficult to Program

• Automatic Parallelization Techniques are
only Partially Successful

• Programming languages are few, not well
supported, and difficult to use.

• Parallel Algorithms are difficult to design.



Performance Issues

• Clock Rate / Cycle Time = τ
• Cycles Per Instruction (Average) = CPI

• Instruction Count = Ic
• Time, T = Ic × CPI × τ
• p = Processor Cycles, m = Memory Cycles,

k = Memory/Processor cycle ratio

• T = Ic × (p + m × k) × τ



Performance Issues II

• Ic & p affected by processor design and
compiler technology.

• m affected mainly by compiler technology

τ affected by processor design

• k affected by memory hierarchy structure
and design



Other Measures

• MIPS rate - Millions of instructions per
second

• Clock Rate for similar processors

• MFLOPS rate - Millions of floating point
operations per second.

• These measures are not neccessarily directly
comparable between different types of
processors.



Parallelizing Code

• Implicitly
– Write Sequential Algorithms

– Use a Parallelizing Compiler

– Rely on compiler to find parallelism

• Explicitly
– Design Parallel Algorithms

– Write in a Parallel Language

– Rely on Human to find Parallelism



Multi-Processors

• Multi-Processors generally share memory,
while multi-computers do not.
– Uniform memory model

– Non-Uniform Memory Model

– Cache-Only

• MIMD Machines



Multi-Computers

• Independent Computers that Don’t Share
Memory.

• Connected by High-Speed Communication
Network

• More tightly coupled than a collection of
independent computers

• Cooperate on a single problem



Vector Computers

• Independent Vector Hardware

• May be an attached processor

• Has both scalar and vector instructions

• Vector instructions operate in highly
pipelined mode

• Can be Memory-to-Memory or Register-to-
Register



SIMD Computers

• One Control Processor

• Several Processing Elements

• All Processing Elements execute the same
instruction at the same time

• Interconnection network between PEs
determines memory access and PE
interaction



The PRAM Model

• SIMD Style Programming

• Uniform Global Memory

• Local Memory in Each PE

• Memory Conflict Resolution
– CRCW - Common Read, Common Write

– CREW - Common Read, Exclusive Write

– EREW - Exclusive Read, Exclusive Write

– ERCW - (rare) Exclusive Read, Common Write



The VLSI Model

• Implement Algorithm as a mostly
combinational circuit

• Determine the area required for
implementation

• Determine the depth of the circuit
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