
Advanced Computer Architecture

The Architecture of
Parallel Computers



Computer Systems

Hardware
Architecture

Operating
System

Application
SoftwareNo Component

Can be Treated
In Isolation
From the Others



Hardware Issues

• Number and Type of Processors

• Processor Control

• Memory Hierarchy

• I/O devices and Peripherals

• Operating System Support

• Applications Software Compatibility



Operating System Issues

• Allocating and Managing Resources

• Access to Hardware Features
– Multi-Processing

– Multi-Threading

• I/O Management

• Access to Peripherals

• Efficiency



Applications Issues

• Compiler/Linker Support

• Programmability

• OS/Hardware Feature Availability

• Compatibility

• Parallel Compilers
– Preprocessor

– Precompiler

– Parallelizing Compiler



Architecture Evolution

• Scalar Architecture

• Prefetch Fetch/Execute Overlap

• Multiple Functional Units

• Pipelining

• Vector Processors

• Lock-Step Processors

• Multi-Processor



Flynn’s Classification

• Consider Instruction Streams and Data
Streams Separately.

• SISD - Single Instruction, Single Data
Stream

• SIMD - Single Instruction, Multiple Data
Streams

• MIMD - Multiple Instruction, Multiple Data
Streams.

• MISD - (rare) Multiple Instruction, Single
Data Stream



SISD

• Conventional Computers.

• Pipelined Systems

• Multiple-Functional Unit Systems

• Pipelined Vector Processors

• Includes most computers encountered in
everyday life



SIMD

• Multiple Processors Execute a Single
Program

• Each Processor operates on its own data

• Vector Processors

• Array Processors

• PRAM Theoretical Model



MIMD

• Multiple Processors cooperate on a single
task

• Each Processor runs a different program

• Each Processor operates on different data

• Many Commercial Examples Exist



MISD

• A Single Data Stream passes through
multiple processors

• Different operations are triggered on
different processors

• Systolic Arrays

• Wave-Front Arrays



Programming Issues

• Parallel Computers are Difficult to Program

• Automatic Parallelization Techniques are
only Partially Successful

• Programming languages are few, not well
supported, and difficult to use.

• Parallel Algorithms are difficult to design.



Performance Issues

• Clock Rate / Cycle Time = τ
• Cycles Per Instruction (Average) = CPI

• Instruction Count = Ic
• Time, T = Ic × CPI × τ
• p = Processor Cycles, m = Memory Cycles,

k = Memory/Processor cycle ratio

• T = Ic × (p + m × k) × τ



Performance Issues II

• Ic & p affected by processor design and
compiler technology.

• m affected mainly by compiler technology

τ affected by processor design

• k affected by memory hierarchy structure
and design



Other Measures

• MIPS rate - Millions of instructions per
second

• Clock Rate for similar processors

• MFLOPS rate - Millions of floating point
operations per second.

• These measures are not neccessarily directly
comparable between different types of
processors.



Parallelizing Code

• Implicitly
– Write Sequential Algorithms

– Use a Parallelizing Compiler

– Rely on compiler to find parallelism

• Explicitly
– Design Parallel Algorithms

– Write in a Parallel Language

– Rely on Human to find Parallelism



Multi-Processors

• Multi-Processors generally share memory,
while multi-computers do not.
– Uniform memory model

– Non-Uniform Memory Model

– Cache-Only

• MIMD Machines



Multi-Computers

• Independent Computers that Don’t Share
Memory.

• Connected by High-Speed Communication
Network

• More tightly coupled than a collection of
independent computers

• Cooperate on a single problem



Vector Computers

• Independent Vector Hardware

• May be an attached processor

• Has both scalar and vector instructions

• Vector instructions operate in highly
pipelined mode

• Can be Memory-to-Memory or Register-to-
Register



SIMD Computers

• One Control Processor

• Several Processing Elements

• All Processing Elements execute the same
instruction at the same time

• Interconnection network between PEs
determines memory access and PE
interaction



The PRAM Model

• SIMD Style Programming

• Uniform Global Memory

• Local Memory in Each PE

• Memory Conflict Resolution
– CRCW - Common Read, Common Write

– CREW - Common Read, Exclusive Write

– EREW - Exclusive Read, Exclusive Write

– ERCW - (rare) Exclusive Read, Common Write



The VLSI Model

• Implement Algorithm as a mostly
combinational circuit

• Determine the area required for
implementation

• Determine the depth of the circuit



Advanced Computer Architecture

The Architecture of
Parallel Computers



Computer Systems

Hardware
Architecture

Operating
System

Application
SoftwareNo Component

Can be Treated
In Isolation
From the Others



Hardware Issues

• Number and Type of Processors

• Processor Control

• Memory Hierarchy

• I/O devices and Peripherals

• Operating System Support

• Applications Software Compatibility



Operating System Issues

• Allocating and Managing Resources

• Access to Hardware Features
– Multi-Processing

– Multi-Threading

• I/O Management

• Access to Peripherals

• Efficiency



Applications Issues

• Compiler/Linker Support

• Programmability

• OS/Hardware Feature Availability

• Compatibility

• Parallel Compilers
– Preprocessor

– Precompiler

– Parallelizing Compiler



Architecture Evolution

• Scalar Architecture

• Prefetch Fetch/Execute Overlap

• Multiple Functional Units

• Pipelining

• Vector Processors

• Lock-Step Processors

• Multi-Processor



Flynn’s Classification

• Consider Instruction Streams and Data
Streams Separately.

• SISD - Single Instruction, Single Data
Stream

• SIMD - Single Instruction, Multiple Data
Streams

• MIMD - Multiple Instruction, Multiple Data
Streams.

• MISD - (rare) Multiple Instruction, Single
Data Stream



SISD

• Conventional Computers.

• Pipelined Systems

• Multiple-Functional Unit Systems

• Pipelined Vector Processors

• Includes most computers encountered in
everyday life



SIMD

• Multiple Processors Execute a Single
Program

• Each Processor operates on its own data

• Vector Processors

• Array Processors

• PRAM Theoretical Model



MIMD

• Multiple Processors cooperate on a single
task

• Each Processor runs a different program

• Each Processor operates on different data

• Many Commercial Examples Exist



MISD

• A Single Data Stream passes through
multiple processors

• Different operations are triggered on
different processors

• Systolic Arrays

• Wave-Front Arrays



Programming Issues

• Parallel Computers are Difficult to Program

• Automatic Parallelization Techniques are
only Partially Successful

• Programming languages are few, not well
supported, and difficult to use.

• Parallel Algorithms are difficult to design.



Performance Issues

• Clock Rate / Cycle Time = τ
• Cycles Per Instruction (Average) = CPI

• Instruction Count = Ic
• Time, T = Ic × CPI × τ
• p = Processor Cycles, m = Memory Cycles,

k = Memory/Processor cycle ratio

• T = Ic × (p + m × k) × τ



Performance Issues II

• Ic & p affected by processor design and
compiler technology.

• m affected mainly by compiler technology

τ affected by processor design

• k affected by memory hierarchy structure
and design



Other Measures

• MIPS rate - Millions of instructions per
second

• Clock Rate for similar processors

• MFLOPS rate - Millions of floating point
operations per second.

• These measures are not neccessarily directly
comparable between different types of
processors.



Parallelizing Code

• Implicitly
– Write Sequential Algorithms

– Use a Parallelizing Compiler

– Rely on compiler to find parallelism

• Explicitly
– Design Parallel Algorithms

– Write in a Parallel Language

– Rely on Human to find Parallelism



Multi-Processors

• Multi-Processors generally share memory,
while multi-computers do not.
– Uniform memory model

– Non-Uniform Memory Model

– Cache-Only

• MIMD Machines



Multi-Computers

• Independent Computers that Don’t Share
Memory.

• Connected by High-Speed Communication
Network

• More tightly coupled than a collection of
independent computers

• Cooperate on a single problem



Vector Computers

• Independent Vector Hardware

• May be an attached processor

• Has both scalar and vector instructions

• Vector instructions operate in highly
pipelined mode

• Can be Memory-to-Memory or Register-to-
Register



SIMD Computers

• One Control Processor

• Several Processing Elements

• All Processing Elements execute the same
instruction at the same time

• Interconnection network between PEs
determines memory access and PE
interaction



The PRAM Model

• SIMD Style Programming

• Uniform Global Memory

• Local Memory in Each PE

• Memory Conflict Resolution
– CRCW - Common Read, Common Write

– CREW - Common Read, Exclusive Write

– EREW - Exclusive Read, Exclusive Write

– ERCW - (rare) Exclusive Read, Common Write



The VLSI Model

• Implement Algorithm as a mostly
combinational circuit

• Determine the area required for
implementation

• Determine the depth of the circuit


	Color
	Title
	Computer Systems
	Hardware Issues
	Operating System Issues
	Applications Issues
	Architecture Evolution
	Flynn’s Classification
	SISD
	SIMD
	MIMD
	MISD
	Programming Issues
	Performance Issues
	Performance Issues II
	Other Measures
	Parallelizing Code
	Multi- Processors
	Multi- Computers
	Vector Computers
	SIMD Computers
	The PRAM Model
	The VLSI Model

	Black and White
	Title
	Computer Systems
	Hardware Issues
	Operating System Issues
	Applications Issues
	Architecture Evolution
	Flynn’s Classification
	SISD
	SIMD
	MIMD
	MISD
	Programming Issues
	Performance Issues
	Performance Issues II
	Other Measures
	Parallelizing Code
	Multi- Processors
	Multi- Computers
	Vector Computers
	SIMD Computers
	The PRAM Model
	The VLSI Model


