Advanced DPF Sensors for Next Generation DPFs

Enabling Improved Fuel Economy and Filter Service Life

CLEERS Workshop

April 20, 2010

Alexander Sappok, Leslie Bromberg, Peter Koert Filter Sensing Technologies, Inc.

Jim Parks, Vitaly Prikhodko Oak Ridge National Laboratory

Many Factors Affect DPF Soot Load Estimation

State of DPF Changes with Time

- Ash build-up reduces PM storage capacity
- Ash alters soot distribution in DPF (local PM load)
- Ash may comprise > 80% of trapped mass after 150K miles*

© 2010 FST Inc.

DPFs Provide Challenge for Pressure Measurements

Models Compensate Pressure Measurements

Differential pressure sensors and predictive models

- Pressure drop affected by flow, temperature, distribution of material
- Significant efforts devoted to predictive model development
 - Models generally calibrated for specific engine and fuel
 - Current measurement systems relatively inflexible

DPF is never clean – Ash builds over service life

Requires means of compensating for ash effects in models

Measurement inaccuracies lead to inefficient operation

- Error can be 50% of pressure drop measurement/estimation*
- Implies DPFs regenerated up to ~ 2X more than necessary
- Large safety factors built into models

On-board diagnostic (OBD) requirements difficult to meet

Current methods provide indirect estimate of DPF loading

RF-DPF[™] Sensor Operation

Direct measurement of soot and ash in DPF

- Optimize DPF regeneration strategy, thermal management, ash cleaning
- Determine start and end of regeneration
- Direct measurement of soot distribution in DPF
 - Control regeneration based on local soot levels
- Potential to detect filter failures and malfunctions (OBD)

RF Measurement System Lay-Out

RF System Operation: Transmission

for the determination of spatial distribution of collected material.

Resonant Mode Electric Field Distribution

Filter Sensing Technologies, Inc.

Images: Adam, Stephen, F., Microwave Theory and Applications, Prentice Hall, Inc., Engelwood Cliffs, New Jersey, 1969.

Signal Sensitive to Soot Loading of Filter: Reflection

Filter resonant modes may also be established using one antenna to transmit and receive. Other configurations and detection methods also possible.

System Development Overview

Initial system performance matches laboratory measurement equipment

FST RF-DPF Development System

© 2010 FST Inc.

RF Sensor Studies at ORNL

FSI Inc

Oak Ridge National Laboratory

- RF-DPF[™] sensor prototype installed on 1.9L GM turbo diesel engine
- Steady-state and transient testing
- Various aftertreatment system configurations
- PM and gaseous emissions measured during testing

Research Highlights

- <u>Repeatability</u> steady-state loading and regeneration
- <u>Sensitivity</u> detect low-level soot emissions and accumulation
- <u>Dynamic Response</u> evaluation over modified FTP cycle

GM Engine Operation (Loading)

- High Engine-Out PM: 1500 rpm, 50 ft-lb
- Low Engine-Out PM: 1000 rpm, 15 ft-lb, 25 ft-lb

GM Engine Operation (Regeneration)

- Engine Speed 1500 rpm
- Engine Load 50 ft-lb
- Regeneration initiated via in-cylinder post-injection

Aftertreatment System Configuration

- DOC + C-DPF (separate cans)
- DPF Cordierite with Pt catalyst

Comparison with Pressure Drop (Steady-State)

© 2010 FST Inc.

Exhaust Conditions During Test Cycle

- Pressure drop directly affected by exhaust flow rate and temperature variations
- DPF inlet temperatures ranged from 400 ℃ to 700 ° C + over course of test
- Engine operated at high PM emissions condition for rapid DPF soot loading

RF Sensor Response to Low-Level PM Loading Rates

- RF sensor and pressure drop exhibit similar response to low-level soot loading
- RF sensor response more stable during regeneration events

GM Engine Operation (Loading)

• Ad Hoc FTP cycle simulation

GM Engine Operation (Regeneration)

- Engine Speed 1500 rpm
- Engine Load 50 ft-lb
- Regeneration initiated via in-cylinder post-injection

Aftertreatment System Configuration

- DOC + C-DPF (separate cans)
- DPF Cordierite with Pt catalyst

FST_{Inc}

Ad Hoc FTP Cycle Engine Operating Conditions

Condition (rpm-ft-lb)

Ad Hoc FTP Cycle Details and Exhaust Conditions

- Engine operating conditions varied every 30 to 60 seconds
- Large variation in DPF inlet and outlet temperatures and exhaust flow rates vary over duration of test cycle
- Test cycle repeated 3X consecutively on multiple days

FST_{Inc}

Tapered Element Oscillating Microbalance (TEOM)

Filter Sensing Technologies, Inc.

 Requires exhaust sampling system including mini-dilution tunnel and proper sample conditioning

Cumulative Soot Emissions Over Test Cycle (TEOM)

- TEOM measures total engine-out soot emissions over test cycle (mass)
- PM sampled between DOC outlet and DPF inlet
- Slope of TEOM measurements indicates soot emissions rate

FST RF Sensor Dynamic Response

- RF sensor accurately captures transient spikes in engine-out soot emissions over test cycle
- PM emissions simultaneously measured via TEOM, DMM, and gravimetric sampling

Comparison of RF Sensor and Delta P with PM

© 2010 FST Inc.

Comparison of RF Sensor with TEOM

- RF sensor prototype shows good agreement with TEOM measurements over cycle
- Possible passive soot oxidation on DPF during test cycle not captured by TEOM
- RF sensor accurately captures transient events

RF System Models Show Spatial Resolution

Resonant modes probe specific areas of DPF (localized measurements)

Model Validation (Axial Distribution) - Experiments

FST_{Inc}

Model Validation (Radial Distribution) - Experiments

DPF Sensor, RF-DPF[™], **Development**

- First-generation prototype system studied at ORNL
- Direct, real-time measurements of soot levels in DPF
- Applications for on-vehicle sensing

Prototype Testing Highlights

- Good repeatability over successive loading and regeneration events
- High sensitivity to detect even low rates of PM accumulation
- Dynamic response and sensor performance over ad hoc FTP cycle comparable to TEOM-type PM measurements
- RF system models developed to understand DPF electric field profiles
- Experiments confirm model results to monitor spatial distribution (localized loading) of material trapped on DPF

Acknowledgements

Massachusetts Institute of Technology

National Science Foundation

Oak Ridge National Laboratory

- Jim Parks
- Vitaly Prikhodko
- Ron Graves

US Department of Energy (TIAC)

alexander.sappok@dpfsensor.com

NSK

