ADVANCED ENGINE TRENDS, CHALLENGES & OPPORTUNITIES

Alan Taub

Vice President, Global Research & Development, General Motors

MEGA TRENDS FOR FUTURE POWERTRAINS

ENERGY DIVERSITY

POWERTRAIN EFFICIENCY

ADVANCED PROPULSION TECHNOLOGY STRATEGY

ENERGY DIVERSITY – CNG AND LPG

BIOFUELS TECHNOLOGY ROADMAP

ADVANCED PROPULSION TECHNOLOGY STRATEGY

OUTLOOK FOR GLOBAL FUEL ECONOMY AND GREEN HOUSE GAS REQUIREMENTS

ADVANCED IC ENGINES

Achieve maximum fuel economy and minimum emissions potential for diverse range of application through synergistic integration of building block technologies

Charge Boosting, Charge Dilution, Active Sensing, and Electrification will be the focus in the future

DOWNSIZED TURBO GAS ENGINE

CHEVROLET CRUZE

1.4L TURBO ECOTEC

HOMOGENEOUS-CHARGE COMPRESSION-IGNITION (HCCI)

STOP-START SYSTEMS

Electric Auxiliary Pump Starter Motor

ADVANCED IC ENGINES

ONE POTENTIAL HIGH-EFFICIENCY DCDE MANIFESTATION

Different stages of the cycle can be separated into different working volumes

Possible to optimize each stage individually, potential for heat loss management and exhaust energy recuperation

Initial modeling shows potential for very high thermal efficiency

ADVANCED IC ENGINES

Operating points on brake thermal efficiency map (%)

DIESEL ENGINES – ACHIEVING THE LOWEST EMISSIONS

ADVANCED PROPULSION TECHNOLOGY STRATEGY

HYBRIDIZATION

BATTERY TECHNOLOGY IMPROVEMENTS

BATTERY TECHNOLOGY IMPROVEMENTS

Overcoming RANGE Anxiety

25-50 miles BATTERY Electric Driving

HUNDREDS of miles EXTENDED RANGE Driving

VOLTEC PROPULSION SYSTEM

APU MOTIVATION

¶ Why use an APU?

- Customer-utility
 - Reduce range-anxiety
 - Provide "limp-home" capability
 - Improve cold weather functions (cabin heating, windshield defrost)
- Reduce battery weight and cost
- ¶ Tradeoffs
 - ZEV capability (except fuel cell)
 - NVH
- ¶ Function
 - Dedicated onboard battery charger
 - No prime mover capability
 - Fixed power operation

UPPER-BOUND EFFICIENCY IMPROVEMENT (ESTIMATED)

Engine Speed (RPM)

Electrification of the vehicle adds opportunities for further combustion and engine optimization, energy diversity, different fuels, and novel IC engines

RESEARCH CHALLENGES

- ¶ Characterizing, predicting and controlling stochastic cycle-to-cycle variation in in-cylinder processes (flow, spray, combustion, emissions)
- ¶ Surface chemistry and physics to enable high-efficiency, low-temperature catalysis and filtration
- ¶ Experiments and modeling of dense *near-nozzle sprays* and nozzle internal flow regions
- ¶ High-pressure, dilute combustion
- ¶ Efficient, accurate *reduced chemical kinetic schemes*
- ¶ System integration tools using validated, reduced-order, reduced-complexity models for engine and aftertreament systems
 - Including real-time calibration, control and diagnostics

