

Advanced FinFET Process Technology

M. Masahara National Institute of AIST

Contents

- 1. Introduction
 - Merits and Issues of FinFET
- 2. Advanced FinFET Process Technology
 - Vth Tuning
 - Vth Variation
- 3. <u>Summary</u>

Multi-Gate FinFETs

✓ Proposed by AIST in 1980 (named "FinFET" by UCB in 1999)

- ✓ Ultrathin and undoped channel and self-aligned double gate
- ✓ Extremely high short channel effect (SCE) immunity

DIBL Benchmark

✓ FinFETs show the smallest DIBL (=highest SCE immunity)

Issues for Advanced FinFET

✓ However, several technological issues still exist...

1. Introduction

• Merits and Issues of FinFET

2. Advanced FinFET Process Technology

- Vth Tuning
- Vth Variation
- 3. <u>Summary</u>

AIST

National Institute of Advanced Industrial Science and Technology

V_{th} for **FinFETs**

✓ V_{th} has a linear relationship with Gate Workfunction ✓ For low V_{th} , dual metal gate (dual WF) is needed AIST

National Institute of Advanced Industrial Science and Technology

I_d-V_g for Poly- and TiN-Gate FinFET

 ✓ Almost symmetrical Vth's (normally off) are obtained thanks to the midgap work function of TiN (4.75 eV)

Dual Metal Gate Integration

Ta diffusion in Mo

- ✓ Ta diffuses in Mo and piles-up at Mo/SiO₂ interface after annealing
- ✓ Thus WF for NMOS is determined by Ta (4.25eV)

Features of Dual MG FinFETs

I-V for Mo and Ta/Mo FinFETs

✓ For NMOS, low V_{th} can be achieved by Ta diffusion in Mo
 ✓ For PMOS, low V_{th} can be achieved by Mo
 ✓ Off leakage → Negligible

Four-Terminal FinFET

4T-FinFET = Independent DG FinFET

✓ Vth for FinFET can be controlled flexibly and individually by separating the DG

DG Separation

SEM Image after CMP

Vth Tuning by Controlling Vg2

✓ Vth can be tuned from LSTP to HP flexibly by selecting a proper Vg2 (The Second Gate)

Contents

1. Introduction

• Merits and Issues of FinFET

2. Advanced FinFET Process Technology

- Vth Tuning
- Vth Variation

3. <u>Summary</u>

National Institute of Advanced Industrial Science and Technology

V_{th} Variation for MG FinFETs

Possible V_{th} Variation Sources

(1) Gate Length (L_g)

(2) Fin Thickness (T_{Si})

(3) Oxide Thickness (T_{ox})

(4) RDF

(5) Work Function WFV ($\Phi_{\rm m}$)

✓ FinFET variability sources were systematically analyzed

National Institute of Advanced Industrial Science and Technology

Main Cause of Vth Variation

- ✓ Dimension variation sources are negligible
- \checkmark Main cause of the V_{th} variation is the Workfunction Variation

AIST

National Institute of Advanced Industrial Science and Technology

Workfunction Variation

- Rough etched side wall causes randomly aligned metal grain and thus higher WF variation
- ✓ If side wall is flat, uniformly aligned metal grain and thus lower WF variation can be expected

Nano-Wet Etching Process

Etchant: 2.38% TMAH (Resist Developer) (Tetramethylammonium hydroxide)

$$\begin{pmatrix}
CH_{3} \\
\downarrow \\
CH_{3}-N-CH_{3} \\
\downarrow \\
CH_{3}
\end{pmatrix} + OH^{-}$$

AIST, IEDM 2006

✓ Extremely low ER of (111) in TMAH \rightarrow Flat (111) side wall

National Institute of Advanced Industrial Science and Technology

SEM and STEM images of FinFET AIST, VLSI Symp. 2010

- ✓ Min. L_g = 20 nm, T_{Si} = 17.8 nm, H_{Si} = 45 nm
- ✓ Nano-Wet-Etched FinFET
- ✓ Undoped channel
- \checkmark T_{ox}(CET) = 2.3 nm by C-V
- ✓ Gate Stack : PVD-TiN/SiO₂

National Institute of Advanced Industrial Science and Technology

Measured σV_{th} for Nano-Wet-Etched FinFET

AIST

AIST, VLSI Symp. 2010

 \checkmark A_{Vt} was significantly lowered by flattening the side channel

Avt Benchmark

✓ Obtained Avt meets 22-nm-node SRAM requirement
 ✓ For 15nm and beyond, Avt should be further reduced

Contents

- 1. Introduction
 - Merits and Issues of FinFET

2. Advanced FinFET Process Technology

- Vth Tuning
- Vth Variation

3. <u>Summary</u>

Summary

- By introducing Ta/Mo dual metal gate technology, low V_{th} (±0.2V) can be obtained for CMOS FinFETs.
- By separating the DG, Vth can be tuned from 0.2V to 0.4V flexibly.
- Flattening of Si-fin sidewall channel is very promising for reducing Vth variations.

This work was supported in part by NEDO