
Advanced Graphics Programming Using OpenGL

The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling
Series Editor: Brian A. Barsky University of California, Berkeley

This series publishes the finest works for the accomplished and aspiring graphics professional. The series includes intermediate
and advanced textbooks, graphics programming books, surveys of important new areas and methods, and reference works.

Advanced Graphics Programming Using OpenGL
Tom McReynolds and David Blythe

Digital Geometry Geometric Methods for Digital
Picture Analysis
Rienhard Klette and Azriel Rosenfeld

Digital Video and HDTV Algorithms and Interfaces
Charles Poynton

Real-Time Shader Programming
Ron Fosner

Complete Maya Programming:
An Extensive Guide to MEL and the C++ API
David Gould

MEL Scripting for Maya Animators
Mark R. Wilkins and Chris Kazmier

Digital Video and HDTV Algorithms and Interfaces
Charles Poynton

Texturing & Modeling:
A Procedural Approach, Third Edition
David S. Ebert, F. Kenton Musgrave, Darwyn Peachey,
Ken Perlin, and Steven Worley

Geometric Tools for Computer Graphics
Philip Schneider and David Eberly

Understanding Virtual Reality:
Interface, Application, and Design
William Sherman and Alan Craig

Jim Blinn’s Corner: Notation, Notation, Notation
Jim Blinn

Level of Detail for 3D Graphics:
David Luebke, Martin Reddy, Jonathan D. Cohen,
Amitabh Varshney, Benjamin Watson, and
Robert Huebner

Pyramid Algorithms: A Dynamic Programming
Approach to Curves and Surfaces for Geometric
Modeling
Ron Goldman

Non-Photorealistic Computer Graphics:
Modeling, Rendering, and Animation
Thomas Strothotte and Stefan Schlechtweg

Curves and Surfaces for CAGD: A Practical Guide,
Fifth Edition
Gerald Farin

Subdivision Methods for Geometric Design:
A Constructive Approach
Joe Warren and Henrik Weimer

Computer Animation: Algorithms and Techniques
Rick Parent

The Computer Animator’s Technical Handbook
Lynn Pocock and Judson Rosebush

Advanced RenderMan:
Creating CGI for Motion Pictures
Anthony A. Apodaca and Larry Gritz

Curves and Surfaces in Geometric Modeling:
Theory and Algorithms
Jean Gallier

Andrew Glassner’s Notebook:
Recreational Computer Graphics
Andrew S. Glassner

Warping and Morphing of Graphical Objects
Jonas Gomes, Lucia Darsa, Bruno Costa, and Luiz Velho

Jim Blinn’s Corner: Dirty Pixels
Jim Blinn

Rendering with Radiance:
The Art and Science of Lighting Visualization
Greg Ward Larson and Rob Shakespeare

Introduction to Implicit Surfaces
Edited by Jules Bloomenthal

Jim Blinn’s Corner:
A Trip Down the Graphics Pipeline
Jim Blinn

Interactive Curves and Surfaces:
A Multimedia Tutorial on CAGD
Alyn Rockwood and Peter Chambers

Wavelets for Computer Graphics:
Theory and Applications
Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin

Principles of Digital Image Synthesis
Andrew S. Glassner

Radiosity & Global Illumination
François X. Sillion and Claude Puech

Knotty: A B-Spline Visualization Program
Jonathan Yen

User Interface Management Systems:
Models and Algorithms
Dan R. Olsen, Jr.

Making Them Move: Mechanics, Control, and Animation
of Articulated Figures
Edited by Norman I. Badler, Brian A. Barsky, and
David Zeltzer

Geometric and Solid Modeling: An Introduction
Christoph M. Hoffmann

An Introduction to Splines for Use in Computer Graphics
and Geometric Modeling
Richard H. Bartels, John C. Beatty, and Brian A. Barsky

Advanced Graphics
Programming
Using OpenGL

T OM M c R E Y N O L D S

D A V I D B L Y T H E

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
MORGAN KAUFMANN PUBLISHERS IS AN IMPRINT OF ELSEVIER

Publishing Director: Diane Cerra
Publishing Services Manager: Simon Crump
Project Manager: Brandy Lilly
Editorial Coordinator: Mona Buehler
Cover Design: Dutton & Sherman Design
Text Design: Julio Esperas
Composition: Cepha Imaging Pvt. Ltd.
Illustrations: Dartmouth Publishing, Inc.
Copyeditor: Daril Bentley; Graphic World
Proofreader: Graphic World
Indexer: Graphic World
Interior printer: China Translation & Printing Services, Ltd.
Cover printer: China Tranalation & Printing Services, Ltd.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk. You
may also complete your request on-line via the Elsevier homepage (http://elsevier.com) by selecting
“Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application Submitted

ISBN: 1-55860-659-9

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in China
10 9 8 7 6 5 4 3 2 1

To my friends and colleagues from Silicon Graphics; it was a fabulous time and place to
learn about 3D graphics. – DB

To Ede Forney and Harry McGinnis; you were there when it counted. – TM

Contents

Preface xxiii

Acknowledgments xxvii

Biographies xxviii

PAR T I

Concepts 1

CHAP T ER 1

Geometry Representation and Modeling 3

1.1 Polygonal Representat ion 3

1.2 Decomposit ion and Tessel lat ion 4

1.3 Shading Normals 8
1.3.1 Smooth Shading 9
1.3.2 Vertex Winding Order 11

1.4 Tr iangle Str ipping 12
1.4.1 Greedy Tri-stripping 13

1.5 Vert ices and Vertex Arrays 14
1.5.1 Vertex Buffer Objects 15
1.5.2 Triangle Lists 16

1.6 Modeling vs. Rendering Revis i ted 17

vi

Con ten t s vii

CHAP T ER 2

3D Transformations 19

2.1 Data Representat ion 19

2.2 Overview of the Transformation Pipel ine 20
2.2.1 Object Space and the Modelview Transform 20
2.2.2 Eye Space and Projection Transform 21
2.2.3 Clip Space and Perspective Divide 22
2.2.4 NDC Space and the Viewport Transform 22
2.2.5 Window Space 23

2.3 Normal Transformation 23

2.4 Texture Coordinate Generat ion and Transformation 25
2.4.1 Texture Matrix 25
2.4.2 Texture Coordinate Generation 25

2.5 Modeling Transforms 27

2.6 Visual iz ing Transform Sequences 28

2.7 Project ion Transform 30

2.8 The Z Coordinate and Perspect ive Project ion 30
2.8.1 Z Coordinates and Fog 32

2.9 Vertex Programs 32

2.10 Summary 34

CHAP T ER 3

Color, Shading, and Lighting 35

3.1 Representing Color 35
3.1.1 Resolut ion and Dynamic Range 36
3.1.2 Gamma 37
3.1.3 Alpha 39
3.1.4 Color Index 39

3.2 Shading 40

3.3 Light ing 43
3.3.1 Intensities, Colors, and Materials 46
3.3.2 Light Source Properties 47

viii Con ten t s

3.3.3 Material Properties 49
3.3.4 Vertex and Fragment Lighting 50

3.4 Fixed-Point and Float ing-Point Ari thmetic 53
3.4.1 Biased Arithmetic 54

3.5 Summary 56

CHAP T ER 4

Digital Images and Image Manipulation 57

4.1 Image Representat ion 57

4.2 Digital F i l ter ing 60

4.3 Convolut ion 62

4.4 Images in OpenGL 63

4.5 Posit ioning Images 65

4.6 Pixel Store Operat ions 65

4.7 Pixel Transfer Operat ions 67
4.7.1 Scale and Bias 67
4.7.2 Pixel Mapping Operations 67

4.8 ARB Imaging Subset 68
4.8.1 Convolution 68
4.8.2 Color Matrix Transform 68
4.8.3 Histogram 69
4.8.4 MinMax 70
4.8.5 Color Tables 70
4.8.6 Blend Equation and Constant Color Blending 71

4.9 Off-Screen Processing 72

4.10 Summary 72

CHAP T ER 5

Texture Mapping 73

5.1 Loading Texture Images 73
5.1.1 Texture Borders 74
5.1.2 Internal Texture Formats 75

Con ten t s ix

5.1.3 Compressed Textures 76
5.1.4 Proxy Textures 77

5.2 Texture Coordinates 77
5.2.1 Texture Coordinate Generation and Transformation 79

5.3 Loading Texture Images from the Frame Buffer 79

5.4 Environment Mapping 80
5.4.1 Generating Environment Map Texture Coordinates 81
5.4.2 Texture Maps Used in Environment Mapping 82
5.4.3 Cube Mapping 83
5.4.4 Sphere Mapping 85

5.5 3D Texture 88
5.5.1 Using 3D Textures to Render Solid Materials 89

5.6 Fi l ter ing 90

5.7 Addit ional Control of Texture Level of Detai l 91

5.8 Texture Objects 93

5.9 Mult i texture 95
5.9.1 Multitexture Model 96
5.9.2 Multitexture Texture Environments 97

5.10 Texture Environment 98
5.10.1 Advanced Texture Environment Functionality 99
5.10.2 Fragment Programs 100

5.11 Summary 102

CHAP T ER 6

Rasterization and Fragment Processing 103

6.1 Raster izat ion 104
6.1.1 Rasterization Consistency 105
6.1.2 Z-Fighting 105
6.1.3 Bitmaps and Pixel Rectangles 107
6.1.4 Texture, Color, and Depth Interpolation 108
6.1.5 w Buffering 109

6.2 Fragment Operat ions 110
6.2.1 Multisample Operations 111
6.2.2 Alpha Test 111
6.2.3 Stencil Test 111

x Con ten t s

6.2.4 Blending 112
6.2.5 Logic Op 114

6.3 Framebuffer Operat ions 115
6.3.1 Accumulation Buffer 116

6.4 Summary 117

CHAP T ER 7

Window System and Platform Integration 119

7.1 Renderer and Window State 120

7.2 Address Space and Threads 121

7.3 Anatomy of a Window 122
7.3.1 Overlay and Underlay Windows 122
7.3.2 Multiple Displays 123

7.4 Off-Screen Rendering 124
7.4.1 GLX Pbuffers 125
7.4.2 WGL Pbuffers 126

7.5 Rendering to Texture Maps 126

7.6 Direct and Indirect Rendering 127

CHAP T ER 8

OpenGL Implementations 129

8.1 OpenGL Versions 129

8.2 OpenGL Extensions 131

8.3 OpenGL ES for Embedded Systems 131
8.3.1 Embedded Profiles 132
8.3.2 Common and Common-Lite Profiles 133
8.3.3 Safety Critical Profile 136
8.3.4 OpenGL ES Revisions 136

8.4 OpenGL Pipel ine Evolut ion 137

8.5 Hardware Implementat ions of the Pipel ine 138
8.5.1 Rasterization Acceleration 138
8.5.2 Primitive Setup Acceleration 141
8.5.3 Transform and Lighting Acceleration 141
8.5.4 Pipeline Balance 142

Con ten t s xi

8.5.5 Parallelism Opportunities 142
8.5.6 Reordering the Pipeline 149
8.5.7 Mixed Software and Hardware Implementations 150

8.6 The Future 151

PAR T II

Basic Techniques 153

CHAP T ER 9

Multiple Rendering Passes 155

9.1 Invar iance 155

9.2 Mult ipass Overview 156

9.3 The Mult ipass Toolbox 159
9.3.1 Arithmetic Operations 159
9.3.2 Arbitrary Functions 160
9.3.3 Conditionals 161
9.3.4 Variables 162
9.3.5 Parameters 163

9.4 Mult ipass Limitat ions 165

9.5 Mult ipass vs. Micropass 165
9.5.1 Multitexture 166

9.6 Deferred Shading 167

9.7 Summary 167

CHAP T ER 10

Antialiasing 169

10.1 Ful l-Scene Antial iasing 170

10.2 Supersampling 171
10.2.1 Supersampling by Overdrawing 172
10.2.2 Supersampling with the Accumulation Buffer 173
10.2.3 Multisample Antialiasing 175
10.2.4 Drawbacks 176

xii Con ten t s

10.3 Area Sampling 177

10.4 Line and Point Antial iasing 178

10.5 Antial iasing with Textures 180

10.6 Polygon Antial iasing 181

10.7 Temporal Antia l iasing 182
10.7.1 Motion Blur 183

10.8 Summary 184

CHAP T ER 1 1

Compositing, Blending, and Transparency 185

11.1 Combining Two Images 185
11.1.1 Compositing 186
11.1.2 Compositing Multiple Images 187
11.1.3 Alpha Division 190

11.2 Other Composit ing Operators 190

11.3 Keying and Matt ing 192

11.4 Blending Art i facts 192
11.4.1 Arithmetic Errors 192
11.4.2 Blending with the Accumulation Buffer 193
11.4.3 Approximation Errors 193
11.4.4 Gamma Correction Errors 193

11.5 Composit ing Images with Depth 194

11.6 Other Blending Operat ions 195

11.7 Dissolves 196

11.8 Transparency 199

11.9 Alpha-Blended Transparency 200
11.9.1 Dynamic Object Transparency 202
11.9.2 Transparency Mapping 203
11.9.3 Transparency Sorting 204
11.9.4 Depth Peeling 205

11.10 Screen-Door Transparency 205
11.10.1 Multisample Transparency 207

11.11 Summary 208

Con ten t s xiii

CHAP T ER 1 2

Image Processing Techniques 211

12.1 OpenGL Imaging Support 211

12.2 Image Storage 212

12.3 Point Operat ions 213
12.3.1 Color Adjustment 213
12.3.2 Interpolation and Extrapolation 213
12.3.3 Scale and Bias 215
12.3.4 Thresholding 215
12.3.5 Conversion to Luminance 216
12.3.6 Manipulating Saturation 216
12.3.7 Rotating Hue 218
12.3.8 Color Space Conversion 219

12.4 Region-based Operat ions 223
12.4.1 Contrast Stretching 224
12.4.2 Histogram Equalization 224

12.5 Reduct ion Operat ions 225

12.6 Convolut ion 227
12.6.1 Separable Filters 227
12.6.2 Convolutions Using the Accumulation Buffer 228
12.6.3 Convolution Using Extensions 230
12.6.4 Useful Convolution Filters 230
12.6.5 Correlation and Feature Detection 233

12.7 Geometr ic Operat ions 235
12.7.1 Pixel Zoom 235
12.7.2 Scaling Using Texture Mapping 236
12.7.3 Rotation Using Texture Mapping 237
12.7.4 Distortion Correction 237

12.8 Image-Based Depth of Field 238

12.9 High Dynamic Range Imaging 241
12.9.1 Dynamic Range 241
12.9.2 Tone Mapping 242
12.9.3 Modeling Adaptation 245

12.10 Summary 245

xiv Con ten t s

CHAP T ER 1 3

Basic Transform Techniques 247

13.1 Computing Inverse Transforms Eff ic ient ly 247

13.2 Stereo Viewing 249

13.3 Depth of Field 252

13.4 Image Ti l ing 254

13.5 Bil lboarding Geometry 257

13.6 Texture Coordinate vs. Geometr ic Transformations 261
13.6.1 Direct Vertex to Texture Coordinate Mapping 263
13.6.2 Overlaying an Entire Scene with a Texture 263
13.6.3 Overlaying a Scene with an Independent Texture

Projection 264

13.7 Interpolat ing Vertex Components through a Perspect ive

Transformation 265
13.7.1 Transforming Vertices in the Application 265
13.7.2 Interpolating Vertex Components 266
13.7.3 Computing LOD 267

13.8 Summary 268

CHAP T ER 1 4

Texture Mapping Techniques 269

14.1 Loading Texture Images into a Framebuffer 270

14.2 Optimiz ing Texture Coordinate Assignment 270

14.3 3D Textures 271

14.4 Texture Mosaics 274

14.5 Texture Ti l ing 277

14.6 Texture Paging 279
14.6.1 Texture Subimage Loading 282
14.6.2 Paging Images in System Memory 285
14.6.3 Hardware Support for Texture Paging 286

14.7 Prefi l tered Textures 287
14.7.1 Computing Texel Aspect Ratios 288

Con ten t s xv

14.8 Dual-Paraboloid Environment Mapping 291
14.8.1 The Mathematics of Dual-Paraboloid Maps 291
14.8.2 Using Dual-Paraboloid Maps 294
14.8.3 OpenGL Dual-Paraboloid Support 296

14.9 Texture Project ion 296

14.10 Texture Color Coding and Contouring 298

14.11 2D Image Warping 300

14.12 Texture Animation 302

14.13 Detai l Textures 306
14.13.1 Signed Intensity Detail Textures 309
14.13.2 Creating Detail Textures 311

14.14 Texture Sharpening 312

14.15 Mipmap Generat ion 313

14.16 Texture Map Limits 315

14.17 Summary 316

CHAP T ER 1 5

Lighting Techniques 317

15.1 Limitat ions in Vertex Lighting 317
15.1.1 Static and Adaptive Tessellation 319
15.1.2 Local Light and Spotlight Attenuation 320

15.2 Fragment Lighting Using Texture Mapping 321

15.3 Spotl ight Effects Using Project ive Textures 322

15.4 Specular Light ing Using Environment Maps 325
15.4.1 Multitexture 326

15.5 Light Maps 327
15.5.1 2D Texture Light Maps 327
15.5.2 3D Texture Light Maps 330

15.6 BRDF-based Lighting 332

15.7 Reflectance Maps 332
15.7.1 Gloss Maps 332
15.7.2 Emission Maps 334

xvi Con ten t s

15.8 Per-fragment Lighting Computat ions 334

15.9 Other Light ing Models 335
15.9.1 Fresnel Reflection 335
15.9.2 Gaussian Reflection 336
15.9.3 Anisotropic Lighting 337
15.9.4 Oren-Nayar Model 340
15.9.5 Cook-Torrance Model 342

15.10 Bump Mapping with Textures 343
15.10.1 Approximating Bump Mapping Using Texture 345
15.10.2 Tangent Space 346
15.10.3 Forward Differencing 347
15.10.4 Limitations 351

15.11 Normal Maps 352
15.11.1 Vector Normalization 352

15.12 Bump-mapped Reflect ions 353

15.13 High Dynamic Range Lighting 354
15.13.1 Bloom and Glare Effects 354

15.14 Global I l lumination 355
15.14.1 Virtual Light Technique 355
15.14.2 Combining OpenGL Lighting with Radiosity 356
15.14.3 Ambient Occlusion 357

15.15 Summary 359

PAR T III

Advanced Techniques 361

CHAP T ER 16

CAD and Modeling Techniques 363

16.1 Picking and Highl ight ing 363
16.1.1 OpenGL Selection 364
16.1.2 Object Tagging in the Color Buffer 365
16.1.3 Proxy Geometry 366
16.1.4 Mapping from Window to Object Coordinates 367
16.1.5 Other Picking Methods 367
16.1.6 Highlighting 367

Con ten t s xvii

16.1.7 XOR Highlighting 368
16.1.8 Foreground Object Manipulation 369

16.2 Cul l ing Techniques 369

16.3 Occlusion Cul l ing 370
16.3.1 Choosing Occluders 371
16.3.2 Building the Occlusion Map 371
16.3.3 Building the Depth Estimation Buffer 372
16.3.4 Occlusion Testing 372
16.3.5 Other Occlusion Testing Methods 373

16.4 Geometr ic Level of Detai l 373
16.4.1 Changing Detail 374
16.4.2 Transition Techniques 375

16.5 Visual iz ing Surface Orientat ion 377

16.6 Visual iz ing Surface Curvature 379

16.7 Line Rendering Techniques 380
16.7.1 Wireframe Models 381
16.7.2 Hidden Lines 382
16.7.3 Polygon Offset 384
16.7.4 Depth Range 384
16.7.5 Haloed Lines 385
16.7.6 Silhouette Edges 386
16.7.7 Preventing Antialiasing Artifacts 389
16.7.8 End Caps on Wide Lines 390

16.8 Coplanar Polygons and Decal ing 390

16.9 Capping Cl ipped Sol ids 392

16.10 Construct ive Sol id Geometry 393

CHAP T ER 1 7

Scene Realism 403

17.1 Reflect ions 404
17.1.1 Object vs. Image Techniques 404
17.1.2 Planar Reflectors 407
17.1.3 Curved Reflectors 411
17.1.4 Interreflections 419
17.1.5 Imperfect Reflectors 422

xviii Con ten t s

17.2 Refract ion 424
17.2.1 Refraction Equation 424
17.2.2 Planar Refraction 426
17.2.3 Texture Mapped Refraction 428
17.2.4 Environment Mapped Refraction 429
17.2.5 Modeling Multiple Refraction Boundaries 430
17.2.6 Clipping Refracted Objects 431

17.3 Creat ing Environment Maps 432
17.3.1 Creating Environment Maps with Ray Casting 433
17.3.2 Creating Environment Maps with Texture Warping 434
17.3.3 Cube Map Textures 437
17.3.4 Sphere Map Textures 440
17.3.5 Dual-paraboloid Maps 443
17.3.6 Updating Environment Maps Dynamically 448

17.4 Shadows 449
17.4.1 Projective Shadows 450
17.4.2 Shadow Volumes 452
17.4.3 Shadow Maps 459
17.4.4 Creating Soft Shadows 463

17.5 Summary 465

CHAP T ER 18

Natural Detail 467

18.1 Part ic le Systems 467
18.1.1 Representing Particles 469
18.1.2 Number of Particles 473
18.1.3 Modeling Particle Interactions 473
18.1.4 Updating and Rendering Particles 475
18.1.5 Applications 478

18.2 Dynamic Meshes 484

18.3 Procedural Texture Generat ion 487
18.3.1 Filtered Noise Functions 487
18.3.2 Generating Noise Functions 489
18.3.3 Filtering Using Texture Convolution 490
18.3.4 Optimizing the Convolution Process 492
18.3.5 Spectral Synthesis 495
18.3.6 Turbulence 496

Con ten t s xix

18.3.7 Random Image Warping 498
18.3.8 Generating 3D Noise 498

18.4 Summary 500

CHAP T ER 19

Illustration and Artistic Techniques 501

19.1 Project ions for I l lustrat ion 501
19.1.1 Axonometric Projection 502
19.1.2 Oblique Projection 503

19.2 Nonphotoreal ist ic L ight ing Models 505
19.2.1 Matte Surfaces 505
19.2.2 Metallic Surfaces 506

19.3 Edge Lines 507

19.4 Cutaway Views 508
19.4.1 Surface Texture 510

19.5 Depth Cuing 511

19.6 Patterns and Hatching 512
19.6.1 Cross Hatching and 3D Halftones 513
19.6.2 Halftoning 515

19.7 2D Drawing Techniques 516
19.7.1 Accuracy in 2D Drawing 516
19.7.2 Line Joins 517
19.7.3 2D Trim Curves 518

19.8 Text Rendering 520
19.8.1 Image-based Text 520
19.8.2 Geometry-based Text 523

19.9 Drawing and Paint ing 525
19.9.1 Undo and Resolution Independence 527
19.9.2 Painting in 3D 527
19.9.3 Painting on Images 529

19.10 Summary 530

CHAP T ER 20

Scientific Visualization 531

20.1 Mapping Numbers to Pictures 531

xx Con ten t s

20.2 Visual Cues and Perception 531

20.3 Data Character izat ion 532

20.4 Point Data Visual izat ion 534
20.4.1 Scatter Plots 534
20.4.2 Iconographic Display 535
20.4.3 Andrews Plots 536
20.4.4 Histograms and Charts 537

20.5 Scalar Field Visual izat ion 538
20.5.1 Line Graphs 538
20.5.2 Contour Lines 539
20.5.3 Annotating Metrics 539
20.5.4 Image Display 540
20.5.5 Surface Display 543
20.5.6 Isosurfaces 545
20.5.7 Volume Slicing 546
20.5.8 Volume Rendering 547
20.5.9 Texture Slicing 549
20.5.10 Splatting 556
20.5.11 Creating Volume Data 559

20.6 Vector Field Visual izat ion 560
20.6.1 Icons 561
20.6.2 Particle Tracing 561
20.6.3 Stream Lines 563
20.6.4 Illuminated Stream Lines 563
20.6.5 Line Integral Convolution 564

20.7 Tensor Field Visual izat ion 568
20.7.1 Hyperstreamlines 569

20.8 Summary 570

CHAP T ER 2 1

Structuring Applications for Performance 571

21.1 Structur ing Graphics Processing 571
21.1.1 Scene Graphs 572
21.1.2 Vertex Updates 575
21.1.3 Texture Updates 576

21.2 Managing Frame Time 577
21.2.1 Input Phase 579

Con ten t s xxi

21.2.2 Rendering Phase 579
21.2.3 Computation Phase 580
21.2.4 The Safety Margin 581

21.3 Appl icat ion Performance Tuning 581
21.3.1 Locating Bottlenecks 581
21.3.2 Finding Application Bottlenecks 583
21.3.3 Measuring Performance 587
21.3.4 Measuring Depth Complexity 589
21.3.5 Pipeline Interleaving 591

21.4 Summary 592

APP END I X A

Using OpenGL Extensions 593

A.1 How OpenGL Extensions are Documented 593

A.2 Finding OpenGL Extension Specif icat ions 594

A.3 How to Read an OpenGL Extension Specif icat ion 594
A.3.1 ARB Extensions 598

A.4 Portable Use of OpenGL Extensions 599

A.5 Using Extension Funct ion Pointers 602

APP END I X B

Equations 605

B.1 3D Vectors 605
B.1.1 Spherical Coordinates 606
B.1.2 Linear Interpolation of 3D Vectors 606
B.1.3 Barycentric Coordinates 607

B.2 Project ion Matr ices 607
B.2.1 Orthographic Projection 607
B.2.2 Perspective Projection 607
B.2.3 Perspective z-Coordinate Transformations 608
B.2.4 Alternative Perspective Projection 608

B.3 Viewing Transforms 608

B.4 Modeling Transforms 609
B.4.1 Scaling 609

xxii Con ten t s

B.4.2 Translation 609
B.4.3 Rotation 609

B.5 Paral le l and Perpendicular Vectors 610

B.6 Reflect ion Vector 610

B.7 Light ing Equations 610

B.8 Funct ion Approximations 612
B.8.1 Taylor Series Expansion 612
B.8.2 Newton-Raphson Method 612
B.8.3 Hypotenuse 613

Bibliography 615

Subject Index 629

Preface

Overview

Computer graphics has come a long way from the early days of line drawings and
light pens. Today anyone can run interactive and realistic graphics applications on the
hardware available on an affordable personal computer. While hardware progress has
been impressive, widespread gains in software expertise has been more elusive. There
are many computer graphics professionals and enthusiasts out there, but a compre-
hensive understanding of the accelerated graphics pipeline and how to exploit it is less
widespread.

This book attempts to bring the computer graphics enthusiast, whether professional
or amateur, beyond the basics covered in computer graphics texts, and introduce them to
a mix of more intense practical and theoretical discussion that is hard to obtain outside
of a professional computer graphics environment.

We emphasize the algorithmic side of computer graphics, with a practical appli-
cation focus. We try to strike a balance between useful examples and approachable
theory. We present usable techniques for real world problems, but support them
with enough theory and background so the reader can extend and modify the ideas
presented here.

This book is about graphics techniques, techniques that don’t require esoteric hard-
ware or custom graphics libraries, that are written in a comprehensible style, and do
useful things. This book will teach you some graphics, especially areas that are some-
times underrepresented in graphics texts. But it also goes further, showing you how to
apply those techniques in real world applications, filling real world needs.

Since there are already a number of excellent books that provide an introduction
to computer graphics (Foley, 1994; Watt, 1989; Rogers, 1997; Angel, 1997; Newman,
1973) and to OpenGL programming (Neider, 1997; Angel, 1997) we have been necessar-
ily brief in these areas. We assume that the reader is comfortable with these fundamentals;
however, we have included extra introductory material where we thought it would
improve understanding of later sections.

We also note that the computer graphics field has a lot of competing notation
and vocabulary. We have tried to be consistent with terminology and notation used
in the OpenGL specification and the “standard” OpenGL books while at the same time
providing some mention of alternative terminology when it is relevent.

xxiii

xxiv P re f a ce

OpenGL

We chose OpenGL as our base graphics language for a number of reasons. It is designed
to be full featured, to run efficiently on a wide range of graphics architectures, and is clean
and straightforward to use. It also dictates very little policy. It is easy to mix and match
graphics features in OpenGL to get new effects that may not have even been considered
when the language was designed. Its clear specification gives the application programmer
confidence that applications written in OpenGL will act predictably on many different
graphics hardware and driver implementations.

OpenGL is also widely available. It can be obtained for free on all the impor-
tant architectures today: Apple Machintosh, all flavors of Microsoft Windows, nearly
all Unix variants including Linux, and OS/2. Most commercial system and graphics
hardware vendors support OpenGL as well, and support for hardware accelerated imple-
mentations has grown rapidly, especially in the personal computer space. OpenGL runs
on a wide range of graphics hardware; from “big iron” compute clusters, to OpenGL ES,
which is designed to provide 3D graphics on embedded devices as small as a cell phone.

Given the broad applicability, scalability, and wide availability, OpenGL is an easy
choice as the basis for describing graphics algorithms. However, even if you don’t use
OpenGL, the graphics APIs in common use are conceptually similar enough that you
will still find this book useful. OpenGL remains an evolving specification. Through-
out the book we make references to various revisions of the specification (versions
1.0–1.5) and discuss both OpenGL architecture review board (ARB) extensions and
various vendor-specific extensions when we believe they enhance the discussion of a
particular subject. Rather than focus on the feature set of the most advanced versions
of OpenGL, we have included a broad range of algorithms with varying requirements.
For many techniques we describe algorithm variations that cover a range of earlier and
more advanced versions of OpenGL. We have followed this path since a wide range of
OpenGL versions are deployed across various environments including the burgeoning
embedded space.

Book Organization

This book is divided into three parts. We start with a conceptual overview of com-
puter graphics, emphasizing areas important to the techniques in this book, with extra
attention in some overlooked areas. Hand in hand with our introduction to computer
graphics, we’ll describe the OpenGL pipeline, with extra detail on the parts of the pipeline
most techniques rely on heavily: lighting, texture mapping, rasterization, and depth
buffering. We also use this opportunity to describe OpenGL system deployment, includ-
ing the platform embedding layer and an overview of common hardware acceleration
techniques for the pipeline.

P re f a ce xxv

With this foundation in place, Part II introduces a set of important basic tech-
niques. Useful by themselves, they help re-enforce the insights gleaned from the overview.
These sequences are also used as building blocks for more complex and sophisticated
techniques. To help tie them more tightly to the graphics concepts described in the pre-
vious part, these techniques are presented and organized with respect to the OpenGL
architecture.

The third and final part covers more sophisticated and complex techniques. These
techniques are categorized into application areas to help organize the material. The start
of each application section has an introduction to the problems and issues important for
that area, making these sections more interesting and useful to readers not well versed in
that particular field.

The book is heavily cross-referenced. Complex techniques reference the simple
ones they build upon, and both levels of technique reference the conceptual overview.
This allows the reader to use the book as a self-guided tutorial, learning more about
techniques and concepts of interest in greater depth.

Example Code

To avoid cluttering the text with large fragments of example code, code fragments are
used sparingly. Algorithms are usually described as a sequence of steps. However, since
details are often the difference between a working program and a black screen, we have
tried to include full blown example programs for most algorithms. This example code is
available for internet download from www.mkp.com/opengl.

Conventions

We use conventions and terminology similar to that found in the OpenGL specification
and in the “red-blue-green-white” series of OpenGL books. In addition, we use the
following conventions:

• Equations involving matrices, vectors, and points use single uppercase letters for
most variables. Vectors are emboldened (V), whereas points and matrices are not
(M, P). In rare occasions vectors or points are in lower case.

• Occasionally symbols are context specific, but generally the following meanings
hold:

– N - normal vector

– L - light vector

xxvi P re f a ce

– R - reflection vector

– T - tangent vector

– B - binormal vector

– s, t, r, q - texture coordinates

– x, y, z, w - vertex coordinates

– θ , ϕ - spherical coordinate angles

– RGBA - red, green, blue, and alpha components

– I - intensity

– C - color (usually RGB or RGBA)

– ‖V ‖ - length of vector V

– [n, m] a number between n and m including the end points

– A · B - inner product of vectors A and B

– A � B - max{0, A · B} – the clamped inner product

– A × B - cross product of vectors A and B

Acknowledgments

This book reflects a significant part of our collective experience in working with
OpenGL applications for the past 13 years. While the book couldn’t possibly cover
everything known about using OpenGL, we are pleased to provide this useful subset.
Of course, we didn’t figure it out all on our own; we are indebted to the many people
that helped us one way or the other: either by providing ideas, correcting misconcep-
tions, prototyping early algorithms, teasing us about taking so long to complete the
book, or providing the occasional encouraging word. Many people contributed to this
effort: any omissions from the list below are inadvertent.

The following people contributed directly to the original 1996–2000 SIGGRAPH
course notes that were the genesis for this book: Celeste Fowler, Brad Grantham, Mark
Kilgard, Scott Nelson, Simon Hui, and Paula Womack.

We had invaluable production help with the course notes over the years from
Dany Galgani (illustrations), Linda Rae Sande (production editing), Bob Brown, and
Chris Everett.

Bowen ‘Cheetah’ Goletz helped with the logistics of sharing the source mate-
rial over the internet. We are also indebted to those who have made tools such as
TeX/LaTeX, GhostScript/Ghostview, and cvs freely available on the three different
computing platforms that we used for preparing the original course notes.

The original notes benefited from the patient attention of an army of reviewers. They
include Dave Shreiner, Paul Strauss, David Yu, Hansong Zhang, Sharon Clay, Robert
Grzeszczuk, Phil Lacroute, Mark Peercy, Lena Petrovic, Allan Schaffer, Mark Stadler,
John Airey, Allen Akin, Brian Cabral, Tom Davis, Bob Drebin, Ben Garlick, Michael
Gold, Paul Haeberli, Michael Jones, Phil Keslin, Erik Lindholm, Mark Young, and
Mark Segal.

This book would not exist without the wealth of experience, cool ideas, tricks, hacks,
and wisdom generously provided to us. It is hard to acknowledge everyone properly. Here
is our attempt to do so: Kurt Akeley, Brian Cabral, Amy Gooch, Wolfgang Heidrich,
Detlev Stalling, Hansong Zhang, Luis Barcena, Angus Dorbie, Bob Drebin, Mark
Peercy, Nacho Sanz-Pastor Revorio, Chris Tanner, David Yu, John Airey, Remi Arnaud,
Greg Ward, Phil Lacroute, and Peter-Pike Sloan. We would also like to acknowledge
Atul Narkhede, Rob Wheeler, Nate Robbins, and Chris McCue for coding prototype
algorithms.

A number of people helped refine the raw material from the course notes into this
manuscript and have earned our gratitude: Ben Luna, Jeff Somers, Brandy Lilly, and
Jessica Meehan in particular. We are also greatly indebted to our reviewers: Ian Ashdown,
Dave Shreiner, Noah Gibbs, Brian Paul, and Clay Budin.

xxvii

Biographies

David Blythe
David Blythe has worked in the 3D graphics field professionally for the last 14 years,
including serving as Chief Engineer at Silicon Graphics, a representative on the OpenGL
Architecture Review Board, editor for the OpenGL ES 1.0 specification, and a fre-
quent SIGGRAPH course presenter. While at Silicon Graphics, David contributed to the
development of the RealityEngine and InfiniteReality graphics systems. He has worked
extensively on implementations of the OpenGL graphics library, OpenGL extension
specifications, and high-level toolkits built on top of OpenGL. David’s other industry
experience includes embedded and system-on-a-chip design, mobile devices, and wire-
less networking. David is currently a graphics architect in the Windows Graphics and
Gaming Technologies division at Microsoft working on DirectX and OpenGL graphics
technologies.

TomMcReynolds
Tom McReynolds has worked on 3D graphics at Sun Microsystems, Silicon Graphics,
Gigapixel, 3Dfx, and NVIDIA. He has worked in software organizations, writing graph-
ics libraries and drivers, and on the hardware side, writing simulators and verification
software for 3D hardware. He presented 3D graphics courses at a number of SIGGRAPH
conferences, as well as at a number of Silicon Graphics Developer conferences, an X
technical conference, and at Linux World. Tom is currently managing a development
team that writes 3D graphics drivers for embedded GPUs at NVIDIA, and contributing
to the evolution of OpenGL ES by participating in the Khronos working group.

xxviii

I
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

P
A
R
T

Concepts

1
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Geometry Representation

and Modeling

Two principal tasks are required to create an image of a three-dimensional scene: mod-
eling and rendering. The modeling task generates a model, which is the description of an
object that is going to be used by the graphics system. Models must be created for every
object in a scene; they should accurately capture the geometric shape and appearance
of the object. Some or all of this task commonly occurs when the application is being
developed, by creating and storing model descriptions as part of the application’s data.

The second task, rendering, takes models as input and generates pixel values for
the final image. OpenGL is principally concerned with object rendering; it does not
provide explicit support for creating object models. The model input data is left to
the application to provide. The OpenGL architecture is focused primarily on render-
ing polygonal models; it doesn’t directly support more complex object descriptions, such
as implicit surfaces. Because polygonal models are the central manner in which to define
an object with OpenGL, it is useful to review the basic ideas behind polygonal modeling
and how they relate to it.

1.1 Polygonal Representation

OpenGL supports a handful of primitive types for modeling two-dimensional (2D)
and three-dimensional (3D) objects: points, lines, triangles, quadrilaterals, and

3

4 C H A P T E R 1 Geomet ry Rep re sen ta t i on and Mode l i ng

(convex) polygons. In addition, OpenGL includes support for rendering higher-order
surface patches using evaluators. A simple object, such as a box, can be represented using
a polygon for each face in the object. Part of the modeling task consists of determining
the 3D coordinates of each vertex in each polygon that makes up a model. To provide
accurate rendering of a model’s appearance or surface shading, the modeler may also
have to determine color values, shading normals, and texture coordinates for the model’s
vertices and faces.

Complex objects with curved surfaces can also be modeled using polygons. A curved
surface is represented by a gridwork or mesh of polygons in which each polygon vertex
is placed on a location on the surface. Even if its vertices closely follow the shape of the
curved surface, the interior of the polygon won’t necessarily lie on the surface. If a larger
number of smaller polygons are used, the disparity between the true surface and the polyg-
onal representation will be reduced. As the number of polygons increases, the approxi-
mation improves, leading to a trade-off between model accuracy and rendering overhead.

When an object is modeled using polygons, adjacent polygons may share edges. To
ensure that shared edges are rendered without creating gaps between them, polygons that
share an edge should use identical coordinate values at the edge’s endpoints. The limited
precision arithmetic used during rendering means edges will not necessarily stay aligned
when their vertex coordinates are transformed unless their initial values are identical.
Many data structures used in modeling ensure this (and save space) by using the same
data structure to represent the coincident vertices defining the shared edges.

1.2 Decomposition and Tessellation

Tessellation refers to the process of decomposing a complex surface, such as a sphere,
into simpler primitives such as triangles or quadrilaterals. Most OpenGL implementations
are tuned to process triangles (strips, fans, and independents) efficiently. Triangles are
desirable because they are planar and easy to rasterize unambiguously. When an OpenGL
implementation is optimized for processing triangles, more complex primitives such as
quad strips, quads, and polygons are decomposed into triangles early in the pipeline.

If the underlying implementation is performing this decomposition, there is a per-
formance benefit in performing it a priori, either when the database is created or at
application initialization time, rather than each time the primitive is issued. Another
advantage of having the application decompose primitives is that it can be done consis-
tently and independently of the OpenGL implementation. OpenGL does not specify a
decomposition algorithm, so different implementations may decompose a given quadri-
lateral or polygon differently. This can result in an image that is shaded differently and has
different silhouette edges when drawn on two different OpenGL implementations. Most
OpenGL implementations have simple decomposition algorithms. Polygons are trivially
converted to triangle fans using the same vertex order and quadrilaterals are divided into
two triangles; one triangle using the first three vertices and the second using the first plus
the last two vertices.

S E C T I O N 1 . 2 Decompos i t i on and Tes se l l a t i on 5

These simple decomposition algorithms are chosen to minimize computation over-
head. An alternative is to choose decompositions that improve the rendering quality.
Since shading computations assume that a primitive is flat, choosing a decomposition
that creates triangles with the best match of the surface curvature may result in better
shading. Decomposing a quad to two triangles requires introducing a new edge along one
of the two diagonals.

A method to find the diagonal that results in more faithful curvature is to compare the
angles formed between the surface normals at diagonally opposing vertices. The angle
measures the change in surface normal from one corner to its opposite. The pair of
opposites forming the smallest angle between them (closest to flat) is the best candidate
diagonal; it will produce the flattest possible edge between the resulting triangles, as
shown in Figure 1.1. This algorithm may be implemented by computing the dot product
between normal pairs, then choosing the pair with the largest dot product (smallest angle).
If surface normals are not available, then normals for a vertex may be computed by taking
the cross products of the two vectors with origins at that vertex. Surface curvature isn’t the
only quality metric to use when decomposing quads. Another one splits the quadrilateral
into triangles that are closest to equal in size.

Tessellation of simple surfaces such as spheres and cylinders is not difficult.
Most implementations of the OpenGL Utility (GLU) library use a straightforward
latitude-longitude tessellation for a sphere. While this algorithm is easy to implement,
it has the disadvantage that the quads produced from the tessellation have widely

U

V

V = C × D

U = A × B

A

B

C
D

θ

F i g u r e 1.1 Quadrilateral decomposition.

6 C H A P T E R 1 Geomet ry Rep re sen ta t i on and Mode l i ng

F i g u r e 1.2 Latitude-longitude tessellation of a sphere.

F i g u r e 1.3 Triangle subdivision: starting octahedron.

varying sizes, as shown in Figure 1.2. The different sized quads can cause noticeable
artifacts, particularly if the object is lighted and rotating.

A better algorithm generates triangles with sizes that are more consistent. Octahedral
and icosahedral tessellations work well and are not very difficult to implement. An octahe-
dral tessellation starts by approximating a sphere with a single octahedron whose vertices
are all on the unit sphere, as shown in Figure 1.3. Since each face of the octahedron is a
triangle, they can each be easily split into four new triangles.

S E C T I O N 1 . 2 Decompos i t i on and Tes se l l a t i on 7

Starting octahedron Find midpoints of
each edge

Connect points to
form new triangles

Normalize points to
coincide with surface

of unit sphere

F i g u r e 1.4 Octahedron with each triangle being subdivided into four.

F i g u r e 1.5 Triangle subdivision: starting icosahedron.

Each triangle is split by creating a new vertex in the middle of each of the triangle’s
existing edges, then connecting them, forming three new edges. The result is that four
new triangles are created from the original one; the process is shown in Figure 1.4. The
coordinates of each new vertex are divided by the vertex’s distance from the origin,
normalizing them. This process scales the new vertex so that it lies on the surface of the
unit sphere. These two steps can be repeated as desired, recursively dividing all of the
triangles generated in each iteration.

The same algorithm can be used with an icosahedron as the base object, as shown
in Figure 1.5, by recursively dividing all 20 sides. With either algorithm, it may not be
optimal to split the triangle edges in half when tesselating. Splitting the triangle by other

8 C H A P T E R 1 Geomet ry Rep re sen ta t i on and Mode l i ng

amounts, such as by thirds, or even an arbitrary number, may be necessary to produce a
uniform triangle size when the tessellation is complete. Both the icosahedral and octahe-
dral algorithms can be coded so that triangle strips are generated instead of independent
triangles, maximizing rendering performance. Alternatively, indexed independent trian-
gle lists can be generated instead. This type of primitive may be processed more efficiently
on some graphics hardware.

1.3 Shading Normals

OpenGL computes surface shading by evaluating lighting equations at polygon vertices.
The most general form of the lighting equation uses both the vertex position and a vector
that is normal to the object’s surface at that position; this is called the normal vector.
Ideally, these normal vectors are captured or computed with the original model data, but
in practice there are many models that do not include normal vectors.

Given an arbitrary polygonal model without precomputed normals, it is easy to
generate polygon normals for faceted shading, but a bit more difficult to create correct
vertex normals when smooth shading is desired. Computing the cross-product of two
edges,

U = V0 − V1

V = V2 − V1

N = U × V =
⎛⎝UyVz − UzVy

UzVx − UxVz

UxVy − UyVx

⎞⎠
then normalizing the result,

N′ = N
‖N‖ = N√

N2
x + N2

y + N2
z

yields a unit-length vector, N′, called a facet normal. Figure 1.6 shows the vectors to
use for generating a triangle’s cross product (assuming counterclockwise winding for a
front-facing surface).

Computing the facet normal of a polygon with more than three vertices is more
difficult. Often such polygons are not perfectly planar, so the result may vary depending
on which three vertices are used. If the polygon is a quadrilateral, one good method is to
take the cross product of the vectors between opposing vertices. The two diagonal vectors
U = V0 − V2 and V = V3 − V1 used for the cross product are shown in Figure 1.7.

S E C T I O N 1 . 3 Shad ing No rma l s 9

V1

V2

V0

Vector V

Vector U

F i g u r e 1.6 Computing a surface normal from edge cross-product.

V1

V0

V2

V3

Vector V

V
ec

to
r

U

F i g u r e 1.7 Computing quadrilateral surface normal from vertex cross-product.

For polygons with more than four vertices it can be difficult to choose the best vertices
to use for the cross product. One method is to to choose vertices that are the furthest
apart from each other, or to average the result of several vertex cross products.

1.3.1 Smooth Shading

To smoothly shade an object, a given vertex normal should be used by all polygons
that share that vertex. Ideally, this vertex normal is the same as the surface normal at
the corresponding point on the original surface. However, if the true surface normal
isn’t available, the simplest way to approximate one is to add all (normalized) normals
from the common facets then renormalize the result (Gouraud, 1971). This provides
reasonable results for surfaces that are fairly smooth, but does not look good for surfaces
with sharp edges.

In general, the polygonal nature of models can be hidden by smoothing the transition
between adjacent polygons. However, an object that should have hard edges, such as a

10 C H A P T E R 1 Geomet ry Rep re sen ta t i on and Mode l i ng

Hard

edge

poly00

poly01

poly02

poly03

poly04

poly05

poly10

poly11

poly12

poly13

poly14

poly15

v6

v0

v1

v2

v3

v4

v5

F i g u r e 1.8 Splitting normals for hard edges.

cube, should not have its edges smoothed. If the model doesn’t specify which edges are
hard, the angle between polygons defining an edge, called the crease angle, may be used
to distinguish hard edges from soft ones.

The value of the angle that distinguishes hard edges from soft can vary from model
to model. It is fairly clear that a 90-degree angle nearly always defines a hard edge, but
the best edge type for a 45-degree crease angle is less clear. The transition angle can be
defined by the application for tuning to a particular model; using 45 degrees as a default
value usually produces good results.

The angle between polygons is determined using the dot product of the unit-length
facet normals. The value of the dot product is equal to the cosine of the angle between
the vectors. If the dot product of the two normals is greater than the cosine of the desired
crease angle, the edge is considered soft, otherwise it is considered hard. A hard edge
is created by generating separate normals for each side of the edge. Models commonly
have a mixture of both hard and soft edges, and a single edge may transition from hard
to soft. The remaining normals common to soft edges should not be split to ensure that
those soft edges retain their smoothness.

Figure 1.8 shows an example of a mesh with two hard edges in it. The three vertices
making up these hard edges, v2, v3, and v4, need to be split using two separate normals.
In the case of vertex v4, one normal would be applied to poly02 and poly03 while a
different normal would apply to poly12 and poly13. This ensures that the edge between
poly02 and poly03 looks smooth while the edge between poly03 and poly13 has a distinct
crease. Since v5 is not split, the edge between poly04 and poly14 will look sharper near
v4 and will become smoother as it gets closer to v5. The edge between v5 and v6 would
then be completely smooth. This is the desired effect.

S E C T I O N 1 . 3 Shad ing No rma l s 11

0

1

2 2

3
0

1

F i g u r e 1.9 Proper winding for shared edge of adjoining facets.

For an object such as a cube, three hard edges will share one common vertex. In this
case the edge-splitting algorithm needs to be repeated for the third edge to achieve the
correct results.

1.3.2 Vertex Winding Order

Some 3D models come with polygons that are not all wound in a clockwise or counter-
clockwise direction, but are a mixture of both. Since the polygon winding may be used
to cull back or front-facing triangles, for performance reasons it is important that models
are made consistent; a polygon wound inconsistently with its neighbors should have its
vertex order reversed. A good way to accomplish this is to find all common edges and
verify that neighboring polygon edges are drawn in the opposite order (Figure 1.9).

To rewind an entire model, one polygon is chosen as the seed. All neighbor-
ing polygons are then found and made consistent with it. This process is repeated
recursively for each reoriented polygon until no more neighboring polygons are found.
If the model is a single closed object, all polygons will now be consistent. However, if
the model has multiple unconnected pieces, another polygon that has not yet been
tested is chosen and the process repeats until all polygons are tested and made
consistent.

To ensure that the rewound model is oriented properly (i.e., all polygons are wound
so that their front faces are on the outside surface of the object), the algorithm begins
by choosing and properly orienting the seed polygon. One way to do this is to find the
geometric center of the object: compute the object’s bounding box, then compute its
mid-point. Next, select a vertex that is the maximum distance from the center point
and compute a (normalized) out vector from the center point to this vertex. One of the
polygons using that vertex is chosen as the seed. Compute the normal of the seed polygon,
then compute the dot product of the normal with the out vector. A positive result indicates
that seed is oriented correctly. A negative result indicates the polygon’s normal is facing
inward. If the seed polygon is backward, reverse its winding before using it to rewind the
rest of the model.

12 C H A P T E R 1 Geomet ry Rep re sen ta t i on and Mode l i ng

1.4 Triangle Stripping

One of the simplest ways to speed up an OpenGL program while simultaneously saving
storage space is to convert independent triangles or polygons into triangle strips. If the
model is generated directly from NURBS data or from some other regular geometry, it
is straightforward to connect the triangles together into longer strips. Decide whether
the first triangle should have a clockwise or counterclockwise winding, then ensure all
subsequent triangles in the list alternate windings (as shown in Figure 1.10). Triangle fans
must also be started with the correct winding, but all subsequent triangles are wound in
the same direction (Figure 1.11).

Since OpenGL does not have a way to specify generalized triangle strips, the user
must choose between GL_TRIANGLE_STRIP and GL_TRIANGLE_FAN. In general, the
triangle strip is the more versatile primitive. While triangle fans are ideal for large convex
polygons that need to be converted to triangles or for triangulating geometry that is
cone-shaped, most other cases are best converted to triangle strips.

0

1

2

3 5
7

4 6

8

9

F i g u r e 1.10 Triangle strip winding.

0

1

4

2
5

6

3

F i g u r e 1.11 Triangle fan winding.

S E C T I O N 1 . 4 T r i ang l e S t r i pp ing 13

Start of first strip

Start of second strip

Start of third strip

F i g u r e 1.12 A mesh made up of multiple triangle strips.

For regular meshes, triangle strips should be lined up side by side as shown in
Figure 1.12. The goal here is to minimize the number of total strips and try to avoid
“orphan” triangles (also known as singleton strips) that cannot be made part of a longer
strip. It is possible to turn a corner in a triangle strip by using redundant vertices and
degenerate triangles, as described in Evans et al. (1996).

1.4.1 Greedy Tri-str ipping

A fairly simple method of converting a model into triangle strips is often known as
greedy tri-stripping. One of the early greedy algorithms, developed for IRIS GL,1 allowed
swapping of vertices to create direction changes to the facet with the least neighbors.
In OpenGL, however, the only way to get behavior equivalent to swapping vertices is to
repeat a vertex and create a degenerate triangle, which is more expensive than the original
vertex swap operation was.

For OpenGL, a better algorithm is to choose a polygon, convert it to triangles, then
move to the polygon which has an edge that is shared with the last edge of the previous
polygon. A given starting polygon and starting edge determines the strip path. The strip
grows until it runs off the edge of the model or reaches a polygon that is already part
of another strip (Figure 1.13). To maximize the number of triangles per strip, grow the
strip in both directions from starting polygon and edge as far as possible.

A triangle strip should not cross a hard edge, since the vertices on that edge must
be repeated redundantly. A hard edge requires different normals for the two triangles
on either side of that edge. Once one strip is complete, the best polygon to choose for
the next strip is often a neighbor to the polygon at one end or the other of the previous
strip. More advanced triangulation methods do not try to keep all triangles of a polygon
together. For more information on such a method refer to Evans et al. (1996).

1. Silicon Graphics’ predecessor to OpenGL.

14 C H A P T E R 1 Geomet ry Rep re sen ta t i on and Mode l i ng

F i g u r e 1.13 “Greedy” triangle strip generation.

1.5 Vertices and Vertex Arrays

In addition to providing several different modeling primitives, OpenGL provides multi-
ple ways to specify the vertices and vertex attributes for each of the primitive types. There
are two reasons for this. The first is to provide flexibility, making it easier to match the
way the model data is transferred to the OpenGL pipeline with the application’s repre-
sentation of the model (data structure). The second reason is to create a more compact
representation, reducing the amount of data sent to the graphics accelerator to generate
the image — less data means better performance.

For example, an application can render a sphere tessellated into individual (inde-
pendent) triangles. For each triangle vertex, the application can specify a vertex position,
color, normal vector, and one or more texture coordinates. Furthermore, for each of these
attributes, the application chooses how many components to send (2 (x, y), 3 (x, y, z), or 4
(x, y, z, w) positions, 3 (r, g, b), or 4 (r, g, b, a) colors, and so on) and the representation for
each component: short integer, integer, single-precision floating-point, double-precision
floating-point.

If the application writer is not concerned about performance, they may always
specify all attributes, using the largest number of components (3 component vertices,
4 component colors, 3 component texture coordinates, etc.), and the most general com-
ponent representation. Excess vertex data is not a problem; in OpenGL it is relatively
straightforward to ignore unnecessary attributes and components. For example, if light-
ing is disabled (and texture generation isn’t using normals), then the normal vectors are
ignored. If three component texture coordinates are specified, but only two component
texture maps are enabled, then the r coordinate is effectively ignored. Similarly, effects
such as faceted shading can be achieved by enabling flat shading mode, effectively ignoring
the extra vertex normals.

However, such a strategy hurts performance in several ways. First, it increases the
amount of memory needed to store the model data, since the application may be storing

S E C T I O N 1 . 5 Ve r t i c e s and Ve r t e x A r r ays 15

attributes that are never used. Second, it can limit the efficiency of the pipeline, since the
application must send these unused attributes and some amount of processing must be
performed on them, if only to ultimately discard them. As a result, well written and tuned
applications try to eliminate any unused or redundant data.

In the 1.1 release of the OpenGL specification, an additional mechanism for speci-
fying vertices and vertex attributes, called vertex arrays, was introduced. The reason for
adding this additional mechanism was to improve performance; vertex arrays reduce the
number of function calls required by an application to specify a vertex and its attributes.
Instead of calling a function to issue each vertex and attribute in a primitive, the applica-
tion specifies a pointer to an array of attributes for each attribute type (position, color,
normal, etc.). It can then issue a single function call to send the attributes to the pipeline.
To render a cube as 12 triangles (2 triangles × 6 faces) with a position, color, and nor-
mal vector requires 108 (12 triangles × 3 vertices/triangle × 3 attributes/vertex) function
calls. Using vertex arrays, only 4 function calls are needed, 3 to set the vertex, color,
and normal array addresses and 1 to draw the array (2 more if calls to enable the color
and normal arrays are also included). Alternatively, the cube can be drawn as 6 triangle
strips, reducing the number of function calls to 72 for the separate attribute commands,
while increasing the number of calls to 6 for vertex arrays.

There is a catch, however. Vertex arrays require all attributes to be specified for each
vertex. For the cube example, if each face of the cube is a different color, using the the
function-per-attribute style (called the fine grain calls) results in 6 calls to the color func-
tion (one for each face). For vertex arrays, 36 color values must be specified, since color
must be specified for each vertex. Furthermore, if the number of vertices in the primitive is
small, the overhead in setting up the array pointers and enabling and disabling individual
arrays may outweigh the savings in the individual function calls (for example, if four
vertex billboards are being drawn). For this reason, some applications go to great lengths
to pack multiple objects into a single large array to minimize the number of array pointer
changes. While such an approach may be reasonable for applications that simply draw
the data, it may be unreasonable for applications that make frequent changes to it. For
example, inserting or removing vertices from an object may require extra operations to
shuffle data within the array.

1.5.1 Vertex Buffer Objects

The mechanisms for moving geometry and texture data to the rendering pipeline
continue to be an area of active development. One of the perennial difficulties in
achieving good performance on modern accelerators is moving geometry data into the
accelerator. Usually the accelerator is attached to the host system via a high speed
bus. Each time a vertex array is drawn, the vertex data is retrieved from application
memory and processed by the pipeline. Display lists offer an advantage in that the
opaque representation allows the data to be moved closer to the accelerator, includ-
ing into memory that is on the same side of the bus as the accelerator itself. This allows

16 C H A P T E R 1 Geomet ry Rep re sen ta t i on and Mode l i ng

implementations to achieve high-performance display list processing by exploiting this
advantage.

Unfortunately with vertex arrays it is nearly impossible to use the same technique,
since the vertex data is created and managed in memory in the application’s address
space (client memory). In OpenGL 1.5, vertex buffer objects were added to the speci-
fication to enable the same server placement optimizations that are used with display
lists. Vertex buffer objects allow the application to allocate vertex data storage that
is managed by the OpenGL implementation and can be allocated from accelerator
memory. The application can store vertex data to the buffer using an explicit transfer
command (glBufferData), or by mapping the buffer (glMapBuffer). The vertex
buffer data can also be examined by the application allowing dynamic modification
of the data, though it may be slower if the buffer storage is now in the accelerator.
Having dynamic read-write access allows geometric data to be modified each frame,
without requiring the application to maintain a separate copy of the data or explicitly
copy it to and from the accelerator. Vertex buffer objects are used with the vertex array
drawing commands by binding a vertex buffer object to the appropriate array bind-
ing point (vertex, color, normal, texture coordinate) using the array point commands
(for example, glNormalPointer). When an array has a bound buffer object, the
array pointer is interpreted relative to the buffer object storage rather than application
memory addresses.

Vertex buffer objects do create additional complexity for applications, but they
are needed in order to achieve maximum rendering performance on very fast hard-
ware accelerators. Chapter 21 discusses additional techniques and issues in achieving
maximum rendering performance from an OpenGL implementation.

1.5.2 Tr iangle Lists

Most of this chapter has emphasized triangle strips and fans as the optimal perform-
ing primitive. It is worth noting that in some OpenGL implementations there are other
triangle-based representations that perform well and have their own distinct advan-
tages. Using the glDrawElements command with independent triangle primitives
(GL_TRIANGLES), an application can define lists of triangles in which vertices are
shared. A vertex is shared by reusing the index that refers to it. Triangle lists have the
advantage that they are simple to use and promote the sharing of vertex data; the index
is duplicated in the index list, rather than the actual triangle.

In the past, hardware accelerators did not process triangle lists well. They often
transformed and lit a vertex each time it was encountered in the index list, even if it
had been processed earlier. Modern desktop accelerators can cache transformed ver-
tices and reuse them if the indices that refer to them are “close together” in the array.
More details of the underlying implementation are described in Section 8.2. With these
improvements in implementations, triangle lists are a viable high-performance represen-
tation. It is often still advantageous to use strip and fan structures, however, to provide
more optimization opportunities to the accelerator.

S E C T I O N 1 . 6 Mode l i ng v s . Rende r i ng Rev i s i t ed 17

1.6 Modeling vs. Rendering Revisited

This chapter began by asserting that OpenGL is primarily concerned with rendering, not
modeling. The interactivity of an application, however, can range from displaying a single
static image, to interactively creating objects and changing their attributes dynamically.
The characteristics of the application have a fundamental influence on how their geo-
metric data is represented, and how OpenGL is used to render the data. When speed is
paramount, the application writer may go to extreme lengths to optimize the data repre-
sentation for efficient rendering. Such optimizations may include the use of display lists
and vertex arrays, pre-computing the lighted color values at each vertex, and so forth.
However, a modeling application, such as a mechanical design program, may use a more
general representation of the model data: double-precision coordinate representation,
full sets of colors and normals for each vertex. Furthermore, the application may re-use
the model representation for non-rendering purposes, such as collision detection or finite
element computations.

There are other possibilities. Many applications use multiple representations: they
start with a single “master” representation, then generate subordinate representations
tuned for other purposes, including rendering, collision detection, and physical model
simulations. The creation of these subordinate representations may be scheduled using
a number of different techniques. They may be generated on demand then cached,
incrementally rebuilt as needed, or constructed over time as a background task. The
method chosen depends on the needs of the application.

The key point is that there isn’t a “one size fits all” recipe for representing model
data in an application. One must have a thorough understanding of all of the require-
ments of the application to find the representation and rendering strategy that best
suits it.

2
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

3D Transformations

OpenGL has a simple and powerful transformation model. Vertices can be created with
position, normal direction, and sets of texture coordinates. These values are manipu-
lated by a series of affine transformations (a linear combinations of translation, rotation,
scaling, and shearing) that are set by the application. The fundamental transformation
representation in OpenGL is the 4 × 4 matrix. Application-controlled transforms, along
with the perspective division functionality available in both positional and texture coordi-
nate pipelines, offer substantial control to the application program. This chapter describes
the OpenGL transformation pipeline, providing insights needed to use it effectively, and
discusses the transformation issues that can affect visual accuracy.

2.1 Data Representation

Before describing the transformation mechanisms, it is helpful to discuss some details
about representations of the transformed data. OpenGL represents vertex coordinates,
texture coordinates, normal vectors, and colors generically as tuples. Tuples can be
thought of as 4-component vectors. When working with the 1D, 2D, and 3D forms
of commands the tuples are implicitly expanded to fill in unspecified components (e.g.,
for vertex coordinates, an unspecified z coordinate is set to 0 and an unspecified w
is set to 1, etc.). OpenGL represents transforms as 4 × 4 matrices, plane equations as
4-component tuples, etc. When thinking about matrix and vector operations on these
tuples, it’s helpful to treat them as column vectors, so a point p is transformed by a
matrix M by writing it as Mp.

19

20 C H A P T E R 2 3D T r ans fo rma t i ons

Modelview
transform

Projection
transform

Perspective
divide

Scale and
translate

s
p
a
c
e

O
b
j
e
c
t

s
p
a
c
e

E
y
e

s
p
a
c
e

C
l
i
p

s
p
a
c
e

N
D
C

s
p
a
c
e

W
i
n
d
o
w

F i g u r e 2.1 OpenGL transformation pipeline.

2.2 Overview of the Transformation Pipeline

The OpenGL transformation pipeline can be thought of as a series of cartesian coor-
dinate spaces connected by transformations that can be directly set by the application
(Figure 2.1). Five spaces are used: object space, which starts with the application’s coor-
dinates, eye space, where the scene is assembled, clip space, which defines the geometry
that will be visible in the scene, NDC space, the canonical space resulting from per-
spective division, and window space, which maps to the framebuffer’s pixel locations.
The following sections describe each space in the pipeline, along with its controlling
transform, in the order in which they appear in the pipeline.

2.2.1 Object Space and the Modelview Transform

The pipeline begins with texture, vertex, and light position coordinates, along with nor-
mal vectors, sent down from the application. These untransformed values are said to
be in object space. If the application has enabled the generation of object space texture
coordinates, they are created here from untransformed vertex positions.

Object space coordinates are transformed into eye space by transforming them with
the current contents of the modelview matrix; it is typically used to assemble a series of
objects into a coherent scene viewed from a particular vantage. As suggested by its name,
the modelview matrix performs both viewing and modeling transformations.

A modeling transform positions and orients objects in the scene. It transforms all of
the primitives comprising an object as a group. In general, each object in the scene may
require a different modeling transform to correctly position it. This is done, object by
object, by setting the transform then drawing the corresponding objects. To animate an
object, its modeling transformation is updated each time the scene is redrawn.

A viewing transform positions and orients the entire collection of objects as a single
entity with respect to the “camera position” of the scene. The transformed scene is said
to be in eye space. The viewing part of the transformation only changes when the camera
position does, typically once per frame.

Since the modelview matrix contains both a viewing transform and a modeling
transform, it must be updated when either transform needs to be changed. The mod-
elview matrix is created by multiplying the modeling transform (M) by the viewing
transform (V), yielding VM. Typically the application uses OpenGL to do the multi-
plication of transforms by first loading the viewing transform, then multiplying by a

S E C T I O N 2 . 2 Ove r v i ew o f the T r ans fo rma t i on P ipe l i ne 21

modeling transform. To avoid reloading the viewing transform each time the composite
transform needs to be computed, the application can use OpenGL matrix stack opera-
tions. The stack can be used to push a copy of the current model matrix or to remove it.
To avoid reloading the viewing matrix, the application can load it onto the stack, then
duplicate it with a push stack operation before issuing any modeling transforms.

The net result is that modeling transforms are being applied to a copy of the viewing
transform. After drawing the corresponding geometry, the composite matrix is popped
from the stack, leaving the original viewing matrix on the stack ready for another push,
transform, draw, pop sequence.

An important use of the modelview matrix is modifying the parameters of OpenGL
light sources. When a light position is issued using the glLight command, the position
or direction of the light is transformed by the current modelview matrix before being
stored. The transformed position is used in the lighting computations until it’s updated
with a new call to glLight. If the position of the light is fixed in the scene (a lamp in a
room, for example) then its position must be re-specified each time the viewing transform
changes. On the other hand, the light may be fixed relative to the viewpoint (a car’s
headlights as seen from the driver’s viewpoint, for example). In this case, the position of
the light is specified before a viewing transform is loaded (i.e., while the current transform
is the identity matrix).

2.2.2 Eye Space and Project ion Transform

The eye space coordinate system is where object lighting is applied and eye-space tex-
ture coordinate generation occurs. OpenGL makes certain assumptions about eye space.
The viewer position is defined to be at the origin of the eye-space coordinate system.
The direction of view is assumed to be the negative z-axis, and the viewer’s up position
is the y-axis (Figure 2.2).

x

–y

z

–z

y

–x
Viewer

Viewing direction

F i g u r e 2.2 Eye space orientation.

22 C H A P T E R 2 3D T r ans fo rma t i ons

Normals are consumed by the pipeline in eye space. If lighting is enabled, they are
used by the lighting equation — along with eye position and light positions — to modify
the current vertex color. The projection transform transforms the remaining vertex and
texture coordinates into clip space. If the projection transform has perspective elements
in it, the w values of the transformed vertices are modified.

2.2.3 Cl ip Space and Perspective Divide

Clip space is where all objects or parts of objects that are outside the view volume are
clipped away, such that

−wclip ≤ xclip ≤ wclip

−wclip ≤ yclip ≤ wclip

−wclip ≤ zclip ≤ wclip

If new vertices are generated as a result of clipping, the new vertices will have
texture coordinates and colors interpolated to match the new vertex positions. The exact
shape of the view volume depends on the type of projection transform; a perspective trans-
formation results in a frustum (a pyramid with the tip cut off), while an orthographic
projection will create a parallelepiped volume.

A perspective divide — dividing the clip space x, y, and z coordinate of each point
by its w value — is used to transform the clipped primitives into normalized device coor-
dinate (NDC) space. The effect of a perspective divide on a point depends on whether
the clip space w component is 1 or not. If the untransformed positions have a w of one
(the common case), the value of w depends on the projection transform. An orthographic
transform leaves the w value unmodified; typically the incoming w coordinate is one, so
the post-transform w is also one. In this case, the perspective divide has no effect.

A perspective transform scales the w value as a function of the position’s z value;
a perspective divide on the resulting point will scale, x y, and z as a function of the
untransformed z. This produces the perspective foreshortening effect, where objects
become smaller with increasing distance from the viewer. This transform can also pro-
duce an undesirable non-linear mapping of z values. The effects of perspective divide
on depth buffering and texture coordinate interpolation are discussed in Section 2.8 and
Section 6.1.4, respectively.

2.2.4 NDC Space and the Viewport Transform

Normalized device coordinate or NDC space is a screen independent display coordinate
system; it encompasses a cube where the x, y, and z components range from −1 to 1.
Although clipping to the view volume is specified to happen in clip space, NDC space can
be thought of as the space that defines the view volume. The view volume is effectively
the result of reversing the divide by wclip operation on the corners of the NDC cube.

S E C T I O N 2 . 3 Norma l T r ans fo rma t i on 23

The current viewport transform is applied to each vertex coordinate to generate
window space coordinates. The viewport transform scales and biases xndc and yndc com-
ponents to fit within the currently defined viewport, while the zndc component is scaled
and biased to the currently defined depth range. By convention, this transformed z value
is referred to as depth rather than z. The viewport is defined by integral origin, width,
and height values measured in pixels.

2.2.5 Window Space

Window coordinates map primitives to pixel positions in the framebuffer. The integral
x and y coordinates correspond to the lower left corner of a corresponding pixel in the
window; the z coordinate corresponds to the distance from the viewer into the screen.
All z values are retained for visibility testing. Each z coordinate is scaled to fall within
the range 0 (closest to the viewer) to 1 (farthest from the viewer), abstracting away the
details of depth buffer resolution. The application can modify the z scale and bias so that
z values fall within a subset of this range, or reverse the mapping between increasing z
distance and increasing depth.

The term screen coordinates is also used to describe this space. The distinction is
that screen coordinates are pixel coordinates relative to the entire display screen, while
window coordinates are pixel coordinates relative to a window on the screen (assuming
a window system is present on the host computer).

2.3 Normal Transformation

OpenGL uses normal vectors for lighting computations and to generate texture coor-
dinates when environment mapping is enabled. Like vertices, normal vectors are
transformed from object space to eye space before being used. However, normal vectors
are different from vertex positions; they are covectors and are transformed differently
(Figure 2.3). Vertex positions are specified in OpenGL as column vectors; normals and
some other direction tuples are row vectors. Mathematically, the first is left-multiplied

90 degrees

Non-Uniform Scaling affects vectors and vertices differently; normal
vectors are no longer normal to surface after scaling by Sx = 2, Sy = 1

> 90 degrees

F i g u r e 2.3 Preserving vector and vertex orientation.

24 C H A P T E R 2 3D T r ans fo rma t i ons

m30

m00

m10

m20

m01

m11

m21

m31

m02

m12

m22

m32

M03

m13

m23

m33

m00

m10

m20

m01

m11

m21

m02

m12

m22

0

m′
10

m′
20

m′
11

m′
21

0

m′
01

m′
12

m′
22

0

m′
02 0

0

0

00 0 0

0

0

0

0 0

m′
01

m′
02

m′
00

m′
11

m′
12

0

m′
10

m′
21

m′
22

0

m′
20 0

0

0

0

Starting
Matrix

Only use
3 × 3

Inverse of
Matrix

Transpose
of Matrix

Order of last two
operations doesn’t

matter.

F i g u r e 2.4 Generating inverse transpose.

by a matrix, the other has the matrix on the right. If they are both to be transformed
the same way (which is commonly done to simplify the implementation code), the matrix
must be transposed before being used to transform normals.

⎛⎜⎜⎝
m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

⎞⎟⎟⎠
⎛⎜⎜⎝

v1
v2
v3
v4

⎞⎟⎟⎠ = (
v1v2v3v4

)⎛⎜⎜⎝
m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

⎞⎟⎟⎠
T

When transforming normals, it’s not enough to simply transpose the matrix. The
transform that preserves the relationship between a normal and its surface is created by
taking the transpose of the inverse of the modelview matrix (M−1)T , sometimes called
the adjoint transpose of M (Figure 2.4). That is, the transformed normal N′ is:

N′ = NM−1 =
(
(M−1)TNT

)T

For a “well-behaved” set of transforms consisting of rotations and translations, the
resulting modelview matrix is orthonormal.1 In this case, the adjoint transpose of M
is M and no work needs to be done.

However, if the modelview matrix contains scaling transforms then more is required.
If a single uniform scale s is included in the transform, then M = sI. Therefore
M−1 = (1/s)I and the transformed normal vector will be scaled by 1/s, losing its impor-
tant unit length property (N · N = 1). If the scale factor is non-uniform, then the
scale factor computation becomes more complicated (figure 2.3). If the scaling factor

1. Orthnormal means that MMT = I.

S E C T I O N 2 . 4 Tex tu re Coo rd ina te Gene ra t i on and T r ans fo rma t i on 25

is uniform, and the incoming normals started out with unit lengths, then they can be
restored to unit length by enabling GL_RESCALE_NORMAL. This option instructs the
OpenGL transformation pipeline to compute s and scale the transformed normal. This
is opposed to GL_NORMALIZE, which has OpenGL compute the length of each trans-
formed normal in order to normalize them to unit length. Normalize is more costly, but
can handle incoming vectors that aren’t of length one.

2.4 Texture Coordinate Generation

and Transformation

Texture coordinates have their own transformation pipeline (Figure 2.5), simpler than the
one used for geometry transformations. Coordinates are either provided by the applica-
tion directly, or generated from vertex coordinates or normal vectors. In either case,
the texture coordinates are transformed by a 4 × 4 texture transform matrix. Like
vertex coordinates, texture coordinates always have four components, even if only one,
two, or three components are specified by the application. The missing components are
assigned default values; 0 for s, t, and r values (these coordinates can be thought of as
x, y, and z equivalents in texture coordinate space) while the q coordinate (the equivalent
of w) is assigned the default value of 1.

2.4.1 Texture Matrix

After being transformed by the texture matrix, the transformed coordinates undergo
their own perspective divide, using q to divide the other components. Since texture maps
may use anywhere from one to four components, texture coordinate components that
aren’t needed to index a texture map are discarded at this stage. The remaining com-
ponents are scaled and wrapped (or clamped) appropriately before being used to index
the texture map. This full 4 × 4 transform with perspective divide applied to the coordi-
nates for 1D or 2D textures will be used as the basis of a number of techniques, such as
projected textures (Section 14.9) and volume texturing (Section 20.5.8), described later
in the book.

2.4.2 Texture Coordinate Generation

The texture coordinate pipeline can generate texture coordinates that are a function
of vertex attributes. This functionality, called texture coordinate generation (texgen),
is useful for establishing a relationship between geometry and its associated textures.
It can also be used to improve an application’s triangle rate performance, since explicit
texture coordinates don’t have to be sent with each vertex. The source (x, y, z, w) values
can be untransformed vertices (object space), or vertices transformed by the modelview
matrix (eye space).

26 C H A P T E R 2 3D T r ans fo rma t i ons

Modelview
transform

Inverse
modelview
transform

Eye space
texgen

Texture
transform

Projection
transform

Windowing
transform

Frame
buffer

Geometry
rasterization
and texture

filtering

rgba

Nx Ny Nz

xyzw

strq

Lighting
C

l

i

p

p

i

n

g

Object
space
texgen

Perspective
divide

F i g u r e 2.5 Texture coordinate transformation pipeline.

S E C T I O N 2 . 5 Mode l i ng T r ans fo rms 27

A great deal of flexibility is available for choosing how vertex coordinates are
mapped into texture coordinates. There are several categories of mapping functions in
core OpenGL; two forms of linear mapping, a version based on vertex normals, and
two based on reflection vectors (the last two are used in environment mapping). Linear
mapping generates each texture coordinate from the dot product of the vertex and an
application-supplied coefficient vector (which can be thought of as a plane equation).
Normal mapping copies the vertex normal vector components to s, t, and r. Reflection
mapping computes the reflection vector based on the eye position and the vertex and its
normal, assigning the vector components to texture coordinates. Sphere mapping also
calculates the reflection vector, but then projects it into two dimensions, assigning the
result to texture coordinates s and t.

There are two flavors of linear texgen; they differ on where the texture coordinates
are computed. Object space linear texgen uses the x, y, z, and w components of untrans-
formed vertices in object space as its source. Eye-space linear texgen uses the positional
components of vertices as its source also, but doesn’t use them until after they have been
transformed by the modelview matrix.

Textures mapped with object-space linear texgen appear fixed to their objects; eye-
space linear textures are fixed relative to the viewpoint and appear fixed in the scene.
Object space mappings are typically used to apply textures to the surface of an object
to create a specific surface appearance, whereas eye-space mappings are used to apply
texturing effects to all or part of the environment containing the object.

One of OpenGL’s more important texture generation modes is environment
mapping. Environment mapping derives texture coordinate values from vectors (such
as normals or reflection vectors) rather than points. The applied textures simulate effects
that are a function of one or more vectors. Examples include specular and diffuse reflec-
tions, and specular lighting effects. OpenGL directly supports two forms of environment
mapping; sphere mapping and cube mapping. Details on these features and their use are
found in Section 5.4.

2.5 Modeling Transforms

Modeling transforms are used to place objects within the scene. Modeling trans-
forms can position objects, orient them, change their size and shape through scaling
and shearing, assemble complex objects by proper placement and orientation of their
components, and animate objects by changing these attributes from frame to frame.

Modeling transforms can be thought of as part of an object’s description (Figure 2.6).
When an application defines a geometric primitive, it can include modeling transforms
to modify the coordinates of the primitive’s vertices. This is useful since it allows re-use
of objects. The same object can be used in another part of the scene, with a different size,
shape, position, or orientation. This technique can reduce the amount of geometry that

28 C H A P T E R 2 3D T r ans fo rma t i ons

rotate

scale

translate

rotate

scale

translate

rotate

scale

translate

y

y

x

x

Beam in
canonical
size and
orientation

F i g u r e 2.6 Modeling transform as part of model description.

the application has to store and send to the graphics pipeline, and can make the modeling
process simpler.

Modeling transforms are even more important if an object needs to be animated.
A modeling transform can be updated each frame to change the position, orientation,
and other properties of an object, animating it without requiring the application to
compute and generate new vertex positions each frame. The application can describe
a modeling transform parametrically (for example, the angle through which a wheel
should be rotated), update the parameter appropriately each frame, then generate a new
transform from the parametric description. Note that generating a new transform each
frame is generally better than incrementally updating a particular transformation, since
the latter approach can lead to large accumulation of arithmetic errors over time.

2.6 Visualizing Transform Sequences

Using transformations to build complex objects from simpler ones, then placing and
orienting them in the scene can result in long sequences of transformations concate-
nated together. Taking full advantage of transform functionality requires being able to
understand and accurately visualize the effect of transform combinations.

There are a number of ways to visualize a transformation sequence. The most basic
paradigm is the mathematical one. Each transformation is represented as a 4 × 4 matrix.
A vertex is represented as a 4 × 1 column vector. When a vertex is sent through the

S E C T I O N 2 . 6 V i sua l i z i ng T r ans fo rm Sequences 29

transformation pipeline, the vertex components are transformed by multiplying the col-
umn vector v by the current transformation M, resulting in a modified vector v′ that is
equal to Mv. An OpenGL command stream is composed of updates to the transformation
matrix, followed by a sequence of vertices that are modified by the current transform.
This process alternates back and forth until the entire scene is rendered.

Instead of applying a single transformation to each vertex, a sequence of transforma-
tions can be created and combined into a single 4 × 4 matrix. An ordered set of matrices,
representing the desired transform sequence, is multiplied together, and the result is mul-
tiplied with the vertices to be transformed. OpenGL provides applications with the means
to multiply a new matrix into the current one, growing a sequence of transformations
one by one.

In OpenGL, adding a matrix to a sequence means right multiplying the new matrix
with the current transformation. If the current transformation is matrix C, and the new
matrix is N, the result of applying the matrix will be a new matrix containing CN. The
matrices can be thought of acting from right to left: matrix N can be thought of as acting
on the vertex before matrix C. If the sequence of transforms should act in the order A,
then B, then C, they should be concatenated together as CBA, and issued to OpenGL in
the order C, then B, then A (Figure 2.7).

y

x

draw object

y

x

glRotate(45,0,0,1);
draw object

y

x

glRotate(45,0,0,1);
glTranslatef(3,3,0);
draw object

F i g u r e 2.7 Transform concatenation order.

30 C H A P T E R 2 3D T r ans fo rma t i ons

Perspective Parallel

–z
–z

F i g u r e 2.8 Perspective and parallel projections.

2.7 Projection Transform

The projection transform establishes which part of the modeled scene will be visible,
and what sort of projection will be applied. Although any transformation that can be
represented with a 4×4 matrix and a perspective divide can be modeled, most applications
will use either a parallel (orthographic) or a perspective projection (Figure 2.8).

The view volume of a parallel projection is parallelepiped (box shape). The viewer
position establishes the front and back of the viewing volume by setting the front and
back clipping planes. Objects both in front of and behind the viewer will be visible, as
long as they are within the view volume. The glOrtho command establishes a parallel
projection, or alternatively, a sequence of translations and scales can be concatenated
directly by the application.

A perspective projection changes the value of vertex coordinates being transformed,
so the perspective divide step will modify the vertex x, y, and z values. As mentioned
in the viewing section, the view volume is now a frustum (truncated pyramid), and
the view position relative to the objects in the scene is very important. The degree to
which the sides of the frustum diverge will determine how quickly objects change in
size as a function of their z coordinate. This translates into a more “wide angle” or
“telephoto” view.

2.8 The Z Coordinate and Perspective Projection

The depth buffer is used to determine which portions of objects are visible within the
scene. When two objects cover the same x and y positions but have different z values, the
depth buffer ensures that only the closer object is visible.

Depth buffering can fail to resolve objects whose z values are nearly the same value.
Since the depth buffer stores z values with limited precision, z values are rounded as
they are stored. The z values may round to the same number, causing depth buffering
artifacts.

Since the application can exactly specify the desired perspective transformation,
it can specify transforms that maximize the performance of the depth buffer. This can

S E C T I O N 2 . 8 The Z Coo rd ina te and Pe r spec t i v e P ro j e c t i on 31

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1:1

10:1

100:1

1000000:1

Distance from the near clip plane

W
in

do
w

 z
1

0.8

0.6

0.4

0.2

0

F i g u r e 2.9 Window z to eye z relationship for near/far ratios.

reduce the chance of depth buffer artifacts. For example, if the glFrustum call is used
to set the perspective transform, the properties of the z values can be tuned by changing
the ratio of the near and far clipping planes. This is done by adjusting the near and far
parameters of the function. The same can be done with the gluPerspective command,
by changing the values of zNear and zFar.

To set these values correctly, it is important to understand the characteristics of
the window z coordinate. The z value specifies the distance from the fragment to the
plane of the eye. The relationship between distance and z is linear in an orthographic
projection, but not in a perspective one. Figure 2.9 plots the window coordinate z value
vs. the eye-to-pixel distance for several ratios of far to near. The non-linearity increases
the resolution of the z values when they are close to the near clipping plane, increasing
the resolving power of the depth buffer, but decreasing the precision throughout the rest
of the viewing frustum. As a result, the accuracy of the depth buffer in the back part of
the viewing volume is decreased.

For an object a given distance from the eye, however, the depth precision is not as
bad as it looks in Figure 2.9. No matter how distant the far clip plane is, at least half
of the available depth range is present in the first “unit” of distance. In other words, if
the distance from the eye to the near clip plane is one unit, at least half of the z range is
used up traveling the same distance from the near clip plane toward the far clip plane.
Figure 2.10 plots the z range for the first unit distance for various ranges. With a million
to one ratio, the z value is approximately 0.5 at one unit of distance. As long as the data
is mostly drawn close to the near plane, the z precision is good. The far plane could be set
to infinity without significantly changing the accuracy of the depth buffer near the viewer.

To achieve the best depth buffer precision, the near plane should be moved as far
from the eye as possible without touching the object of interest (which would cause part
or all of it to be clipped away). The position of the near clipping plane has no effect

32 C H A P T E R 2 3D T r ans fo rma t i ons

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1:1

10:1

100:1

1000000:1

Distance from the near clip plane

W
in

do
w

 z
1

0.8

0.6

0.4

0.2

0

F i g u r e 2.10 Available window z depth values near/far ratios.

on the projection of the x and y coordinates, so moving it has only a minimal effect on
the image. As a result, readjusting the near plane dynamically shouldn’t cause noticeable
artifacts while animating. On the other hand, allowing the near clip plane to be closer to
the eye than to the object will result in loss of depth buffer precision.

2.8.1 Z Coordinates and Fog

In addition to depth buffering, the z coordinate is also used for fog computations.
Some implementations may perform the fog computation on a per-vertex basis, using
the eye-space z value at each vertex, then interpolate the resulting vertex colors.
Other implementations may perform fog computations per fragment. In the latter case,
the implementation may choose to use the window z coordinate to perform the fog
computation. Implementations may also choose to convert the fog computations into
a table lookup operation to save computation overhead. This shortcut can lead to
difficulties due to the non-linear nature of window z under perspective projections.
For example, if the implementation uses a linearly indexed table, large far to near ratios
will leave few table entries for the large eye z values. This can cause noticeable Mach
bands in fogged scenes.

2.9 Vertex Programs

Vertex programs, sometimes known as “Vertex Shaders”2 provide additional flexibility
and programmability to per-vertex operations. OpenGL provides a fixed sequence of

2. The name comes from the “shader” construct used in the RenderMan shading language.

S E C T I O N 2 . 9 Ve r t e x P rog rams 33

operations to perform transform, coordinate generation, lighting and clipping operations
on vertex data. This fixed sequence of operations is called the fixed-function pipeline.
The OpenGL 1.4 specification includes the ARB_vertex_program extension which
provides a restricted programming language for performing these operations and varia-
tions on them, sending the results as vertex components to the rest of the pipeline. This
programmable functionality is called the programmable pipeline. While vertex programs
provide an assembly language like interface, there are also a number of more “C”-like
languages. The OpenGL Shading Language3 (GLSL) [KBR03] and Cg [NVI04] are two
examples. Vertex programs not only provide much more control and generality when
generating vertex position, normal, texture, and color components per-vertex, but also
allow micropass sequences to be defined to implement per-vertex shading algorithms.

In implementations that support vertex programs, part of the transformation
pipeline can be switched between conventional transform mode and vertex program
mode. Switching between the two modes is controlled by enabling or disabling the
GL_VERTEX_PROGRAM_ARB state value. When enabled, vertex programs bypass the
traditional vertex and normal transform functionality, texture coordinate generation and
transformation, normal processing (such as renormalization) and lighting, clipping by
user-defined clip planes, and per-vertex fog computations. Transform and light exten-
sions, such as vertex weighting and separate specular color, are also replaced by vertex
program functionality when it is enabled. Figure 2.11 shows how the two modes are
related.

The vertex programming language capabilities are limited to allow efficient hardware
implementations: for example, there is no ability to control the flow of the vertex program;
it is a linear sequence of commands. The number and type of intermediate results and
input and output parameters are also strictly defined and limited. Nevertheless, vertex
programming provides a powerful tool further augmenting OpenGL’s use as a graphics
assembly language.

Lighting

Vertex program

vertex

raspos

texture
xform frustrum

clip

eye
texgen

eye
texgen

proj
xform

model
clip

MV
xform

F i g u r e 2.11 Vertex program and conventional transform modes.

3. An ARB extension in OpenGL 1.5.

34 C H A P T E R 2 3D T r ans fo rma t i ons

2.10 Summary

This chapter only provides an overview of vertex, normal, and texture coordinate trans-
formations and related OpenGL functionality. There are a number of texts that go into
these topics in significantly more depth. Beyond the classic computer graphics texts such
as that by Foley et al. (1990), there a number of more specialized texts that focus on
transformation topics, as well as many excellent linear algebra texts.

3
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Color, Shading,

and Lighting

In this chapter we cover the basics of color representation, lighting models, and shading
objects. Geometric modeling operations are responsible for accurately reproducing shape,
size, position, and orientation. Knowledge of the basics of color, lighting, and shading
are the next step in reproducing the visual appearance of an object.

3.1 Representing Color

To produce more realistic images, objects being rendered must be shaded with accurate
colors. Modern graphics accelerators can faithfully generate colors from a large, but
finite palette. In OpenGL, color values are specified to be represented with a triple of
floating-point numbers in the range [0, 1]. These values specify the amount of red, green,
and blue (RGB) primaries in the color. RGB triples are also used to store pixel colors in
the framebuffer, and are used by the video display hardware to drive a cathode ray tube
(CRT) or liquid crystal display (LCD) display.

A given color representation scheme is referred to as a color space. The RGB
space used by OpenGL is a cartesian space well suited for describing colors for dis-
play devices that emit light, such as color monitors. The addition of the three primary

35

36 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

colors mimics the mixing of three light sources. Other examples of color spaces
include:

Hue Saturation Value (HSV) model is a polar color space that is often used by artists
and designers to describe colors in a more intuitive fashion. Hue specifies the
spectral wavelength, saturation the proportion of the color present (higher
saturation means the color is more vivid and less gray), while value specifies the
overall brightness of the color.

Cyan Magenta Yellow blacK (CMYK) is a subtractive color space which mimics the
process of mixing paints. Subtractive color spaces are used in publishing, since the
production of colors on a printed medium involves applying ink to a substrate,
which is a subtractive process. Printing colors using a mixture of four inks is called
process color. In contrast, printing tasks that involve a small number of different
colors may use a separate ink for each color. These are referred to as spot colors.
Spot colors are frequently specified using individual codes from a color matching
system such as Pantone (2003).

YCbCr is an additive color space that models colors using a brightness (Y) component
and two chrominance components (Cb and Cr). Often the luminance signal is
encoded with more precision than the chrominance components. YCbCr1 is used
in digital video processing [Jac96].

sRGB is a non-linear color space that better matches the visual perception of brightness.
sRGB serves as a standard for displaying colors on monitors (CRT and LCD) with
the goal of having the same image display identically on different devices [Pac01].
Since it also matches human sensitivity to intensity, it allows colors to be more
compactly or efficiently represented without introducing perceptual errors.
For example, 8-bit sRGB values require 12-bit linear values to preserve accuracy
across the full range of values.

The choice of an RGB color space is not critical to the functioning of the OpenGL
pipeline; an application can use the rendering pipeline to perform processing on data
from other color spaces if done carefully.

3.1.1 Resolution and Dynamic Range

The number of colors that can be represented, or palette size, is determined by the number
of bits used to represent each of the R, G, and B color components. An accelerator that
uses 8 bits per component can represent 224 (about 16 million) different colors. Color
components are typically normalized to the range [0, 1], so an 8-bit color component

1. The term YCrCb is also used and means the same thing except the order of the two color difference
signals Cb and Cr is exchanged. The name may or may not imply something about the order of the
components in a pixel stream.

S E C T I O N 3 . 1 Rep re sen t i ng Co lo r 37

can represent or resolve changes in [0, 1] colors by as little as 1/256. For some types of
rendering algorithms it is useful to represent colors beyond the normal [0, 1] range. In
particular, colors in the range [−1, 1] are useful for subtractive operations. Natively rep-
resenting color values beyond the [−1, 1] range is becoming increasingly useful to support
algorithms that use high dynamic range intermediate results. Such algorithms are used to
achieve more realistic lighting and for algorithms that go beyond traditional rendering.

An OpenGL implementation may represent color components with different num-
bers of bits in different parts of the pipeline, varying both the resolution and the range. For
example, the colorbuffer may store 8 bits of data per component, but for performance rea-
sons, a texture map might store only 4 bits per component. Over time, the bit resolution
has increased; ultimately most computations may well be performed with the equivalent
of standard IEEE-754 32-bit floating-point arithmetic. Today, however, contemporary
consumer graphics accelerators typically support 32-bit float values when operating on
vertex colors and use 8 bits per component while operating on fragment (pixel) col-
ors. Higher end hardware increases the resolution (and range) to 10, 12, or 16 bits per
component for framebuffer and texture storage and as much as 32-bit floating-point for
intermediate fragment computations.

Opinions vary on the subject of how much resolution is necessary, but the human
eye can resolve somewhere between 10 and 14 bits per component. The sRGB represen-
tation provides a means to use fewer bits per component without adding visual artifacts.
It accomplishes this using a non-linear representation related to the concept of gamma.

3.1.2 Gamma

Gamma describes the relationship between a color value and its brightness on a particular
device. For images described in an RGB color space to appear visually correct, the display
device should generate an output brightness directly proportional (linearly related) to the
input color value. Most display devices do not have this property. Gamma correction is
a technique used to compensate for the non-linear display characteristics of a device.

Gamma correction is achieved by mapping the input values through a correction
function, tailored to the characteristics of the display device, before sending them to the
display device. The mapping function is often implemented using a lookup table, typically
using a separate table for each of the RGB color components. For a CRT display, the
relationship between the input and displayed signal is approximately2 D = Iγ , as shown
in Figure 3.1. Gamma correction is accomplished by sending the signal through the inverse
function I1/γ as shown in Figure 3.2.

The gamma value for a CRT display is somewhat dependent on the exact character-
istics of the device, but the nominal value is 2.5. The story is somewhat more complicated
though, as there is a subjective aspect to the human perception of brightness (actually
lightness), that is influenced by the viewing environment. CRTs are frequently used for

2. More correctly, the relationship is D = (I + ε)γ , where ε is a black level offset. The black level is
adjusted using the brightness control on a CRT. The gamma value is adjusted using the contrast control.

38 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

Pe
rc

ei
ve

d
in

te
ns

ity

Input intensity

Pe
rc

ei
ve

d
in

te
ns

ity

Input intensity

F i g u r e 3.1 Displayed ramp intensity without gamma correction.

Input intensity Output intensityCorrection function

Pe
rc

ei
ve

d
in

te
ns

ity

Pe
rc

ei
ve

d
in

te
ns

ity

Pe
rc

ei
ve

d
in

te
ns

ity

F i g u r e 3.2 Displayed ramp intensity with gamma correction.

viewing video in a dim environment. To provide a correct subjective response in this
environment, video signals are typically precompensated, treating the CRT as if it has a
gamma value of 2.2. Thus, the well-known 2.2 gamma value has a built-in dim view-
ing environment assumption [Poy98]. The sRGB space represents color values in an
approximate gamma 2.2 space.

Other types of display devices have non-linear display characteristics as well, but
the manufacturers typically include compensation circuits so that they appear to have a
gamma of 2.5. Printers and other devices also have non-linear characteristics and these
may or may not include compensation circuitry to make them compatible with moni-
tor displays. Color management systems (CMS) attempt to solve problems with variation
using transfer functions. They are controlled by a system of profiles that describes the char-
acteristics of a device. Application or driver software uses these profiles to appropriately
adjust image color values as part of the display process.

Gamma correction is not directly addressed by the OpenGL specification; it is usually
part of the native windowing system in which OpenGL is embedded. Even though gamma
correction isn’t part of OpenGL, it is essential to understand that the OpenGL pipeline

S E C T I O N 3 . 1 Rep re sen t i ng Co lo r 39

computations work best in a linear color space, and that gamma correction typically
takes place between the framebuffer and the display device. Care must be taken when
importing image data into OpenGL applications, such as texture maps. If the image
data has already been gamma corrected for a particular display device, then the linear
computations performed in the pipeline and a second application of gamma correction
may result in poorer quality images.

There are two problems that typically arise with gamma correction: not enough cor-
rection and too much correction. The first occurs when working with older graphics
cards that do not provide gamma correction on framebuffer display. Uncorrected scenes
will appear dark on such displays. To address this, many applications perform gamma
correction themselves in an ad hoc fashion; brightening the input colors and using com-
pensated texture maps. If the application does not compensate, then the only recourse
for the user is to adjust the monitor brightness and contrast controls to brighten the
image. Both of these lead to examples of the second problem, too much gamma correc-
tion. If the application has pre-compensated its colors, then the subsequent application of
gamma correction by graphics hardware with gamma correction support results in overly
bright images. The same problem occurs if the user has previously increased the monitor
brightness to compensate for a non-gamma-aware application. This can be corrected by
disabling the gamma correction in the graphics display hardware, but of course, there are
still errors resulting from computations such as blending and texture filtering that assume
a linear space.

In either case, the mixture of gamma-aware and unaware hardware has given rise
to a set of applications and texture maps that are mismatched to hardware and leads to
a great deal of confusion. While not all graphics accelerators contain gamma correction
hardware, for the purposes of this book we shall assume that input colors are in a linear
space and gamma correction is provided in the display subsystem.

3.1.3 Alpha

In addition to the red, green, and blue color components, OpenGL uses a fourth com-
ponent called alpha in many of its color computations. Alpha is mainly used to perform
blending operations between two different colors (for example, a foreground and a back-
ground color) or for modeling transparency. The role of alpha in those computations is
described in Section 11.8 . The alpha component also shares most of the computations
of the RGB color components, so when advantageous, alpha can also be treated as an
additional color component.

3.1.4 Color Index

In addition to operating on colors as RGBA tuples (usually referred to as RGB mode),
OpenGL also allows applications to operate in color index mode (also called pseudo-color
mode, or ramp mode). In index mode, the application supplies index values instead of

40 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

RGBA tuples to OpenGL. The indexes represent colors as references into a color lookup
table (also called a color map or palette). These index values are operated on by the
OpenGL pipeline and stored in the framebuffer. The conversion from index to RGB color
values is performed as part of display processing. Color index mode is principally used to
support legacy applications written for older graphics hardware. Older hardware avoided
a substantial cost burden by performing computations on and saving in framebuffer
memory a single index value rather than three color components per-pixel. Of course,
the savings comes at the cost of a greatly reduced color palette.

Today there are a very few reasons for applications to use color index mode. There
are a few performance tricks that can be achieved by manipulating the color map rather
than redrawing the scene, but for the most part the functionality of color index mode can
be emulated by texture mapping with 1D texture maps. The main reason index mode is
still present on modern hardware is that the native window system traditionally required
it and the incremental work necessary to support it in an OpenGL implementation is
usually minor.

3.2 Shading

Shading is the term used to describe the assignment of a color value to a pixel. For photo-
realistic applications — applications that strive to generate images that look as good as
photographs of a real scene — the goal is to choose a color value that most accurately cap-
tures the color of the light reflected from the object to the viewer. Photorealistic rendering
attempts to take into account the real world interactions between objects, light sources,
and the environment. It describes the interactions as a set of equations that can be eval-
uated at each surface point on the object. For some applications, photorealistic shading
is not the objective. For instance, technical illustration, cartoon rendering, and image
processing all have different objectives, but still need to perform shading computations
at each pixel and arrive at a color value.

The shading computation is by definition a per-pixel-fragment operation, but
portions of the computation may not be performed per-pixel. Avoiding per-pixel com-
putations is done to reduce the amount of processing power required to render a scene.
Figure 3.3 illustrates schematically the places in the OpenGL pipeline where the color for
a pixel fragment may be modified by parts of the shading computation.

There are five fundamental places where the fragment color can be affected: input
color, vertex lighting, texturing, fog, and blending. OpenGL maintains the concept of a
current color (with the caveat that it is undefined after a vertex array drawing command
has been issued), so if a new color is not issued with the vertex primitive, then the current
color is used. If lighting is enabled, then the vertex color is replaced with the result of the
vertex lighting computation.

There is some subtlety in the vertex lighting computation. While lighting uses
the current material definition to provide the color attributes for the vertex, if

S E C T I O N 3 . 2 Shad ing 41

Color
material
enabled

Current
color

Vertex
lighting

Texture
environment

Texture
lookup

Constant
texenv
color

Fog
color

Constant
blend color

Fog Framebuffer
blending

Lighting
enabled

Texture
enabled

FRAGMENT PROCESSINGVERTEX PROCESSING

Fog
enabled

Blending
enabled

Framebuffer

Material

F i g u r e 3.3 Color-processing path.

GL_COLOR_MATERIAL is enabled, then the current color updates the current material
definition before being used in the lighting computation.3

After vertex lighting, the primitive is rasterized. Depending on the shading model
(GL_FLAT or GL_SMOOTH), the resulting pixel fragments will have the color associated
with the vertex or a color interpolated from multiple vertex colors. If texturing is enabled,
then the color value is further modified, or even replaced altogether by texture environ-
ment processing. If fog is enabled, then the fragment color is mixed with the fog color,
where the proportions of the mix are controlled by the distance of the fragment from the
viewer. Finally, if blending is enabled, then the fragment color value is modified according
to the enabled blending mode.

By controlling which parts of the pipeline are enabled and disabled, some simple
shading models can be implemented:

Constant Shading If the OpenGL shading model is set to GL_FLAT and all other parts
of the shading pipeline disabled, then each generated pixel of a primitive has the
color of the provoking vertex of the primitive. The provoking vertex is a term that
describes which vertex is used to define a primitive, or to delineate the individual
triangles, quads, or lines within a compound primitive. In general it is the last
vertex of a line, triangle, or quadrilateral (for strips and fans, the last vertex to

3. Note that when color material is enabled, the current color updates the material definition.
In hindsight, it would have been cleaner and less confusing to simply use the current color in the lighting
computation, but not replace the current material definition as a side effect.

42 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

define each line, triangle or quadrilateral within the primitive). For polygons it
is the first vertex. Constant shading is also called flat or faceted shading.

Smooth Shading If the shading model is set to GL_SMOOTH, then the colors of each
vertex are interpolated to produce the fragment color. This results in smooth
transitions between polygons of different colors. If all of the vertex colors are the
same, then smooth shading produces the same result as constant shading. If vertex
lighting is combined with smooth shading, then the polygons are Gouraud shaded
[Gou71].

Texture Shading If the input color and vertex lighting calculations are ignored or
disabled, and the pixel color comes from simply replacing the vertex color with
a color determined from a texture map, we have texture shading. With texture
shading, the appearance of a polygon is determined entirely by the texture map
applied to the polygon including the effects from light sources. It is quite common
to decouple lighting from the texture map, for example, by combining vertex
lighting with texture shading by using a GL_MODULATE texture environment with
the result of computing lighting values for white vertices. In effect, the lighting
computation is used to perform intensity or Lambertian shading that modulates the
color from the texture map.

Phong Shading Early computer graphics papers and books have occasionally confused
the definition of the lighting model (lighting) from how the lighting model is
evaluated (shading). The original description of Gouraud shading applies a
particular lighting model to each vertex and linearly interpolates the colors
computed for each vertex to produce fragment colors. We prefer to generalize that
idea to two orthogonal concepts per-vertex lighting and smooth shading. Similarly,
Phong describes a more advanced lighting model that includes the effects of
specular reflection. This model is evaluated at each pixel fragment to avoid artifacts
that can result from evaluating the model at vertices and interpolating the colors.
Again, we separate the concept of per-pixel lighting from the Phong lighting
model.

In general, when Phong shading is discussed, it often means per-pixel lighting, or,
for OpenGL, it is more correctly termed per-fragment lighting. The OpenGL specifi-
cation does not define support for per-fragment lighting in the fixed-function pipeline,
but provides several features and OpenGL Architectural Review Board (ARB) exten-
sions, notably fragment programs, that can be used to evaluate lighting equations at each
fragment. Lighting techniques using these features are described in Chapter 15.

In principle, an arbitrary computation may be performed at each pixel to find the
pixel value. Later chapters will show that it is possible to use OpenGL to efficiently
perform a wide range of computations at each pixel. It is still useful, at least for the
photorealistic rendering case, to separate the concept of a light source and lighting model
as distinct classes of shading computation.

S E C T I O N 3 . 3 L i gh t i ng 43

Normal

Light vector

Tangent

Eye

Light
source

Reflection
vector (view)

View
vector

Reflection
vector
(light)

Half-angle
vector

Rl H N L

V Rv

Tp

Surface

F i g u r e 3.4 Lighting model components.

3.3 Lighting

In real-world environments, the appearance of objects is affected by light sources. These
effects can be simulated using a lighting model. A lighting model is a set of equations that
approximates (models) the effect of light sources on an object. The lighting model may
include reflection, absorption, and transmission of a light source. The lighting model
computes the color at one point on the surface of an object, using information about
the light sources, the object position and surface characteristics, and perhaps information
about the location of the viewer and the rest of the environment containing the object (such
as other reflective objects in the scene, atmospheric properties, and so on) (Figure 3.4).

Computer graphics and physics research have resulted in a number of lighting models
(Cook and Torrance, 1981; Phong, 1975; Blinn, 1977; Ward, 1994; Ashikhmin et al.,
2000). These models typically differ in how well they approximate reality, how much
information is required to evaluate the model, and the amount of computational power
required to evaluate the model. Some models may make very simple assumptions about
the surface characteristics of the object, for example, whether the object is smooth or
rough, while others may require much more detailed information, such as the index of
refraction or spectral response curves.

OpenGL provides direct support for a relatively simple lighting model called Phong
lighting [Pho75].4 This lighting model separates the contributions from the light sources
reflecting off the object into four intensity contributions — ambient, diffuse, specular,
and emissive (Itot = Iam + Idi + Isp + Iem) — that are combined with surface properties to
produce the shaded color.

The ambient term models directionless illumination coming from inter-object reflec-
tions in the environment. The ambient term is typically expressed as a constant value for

4. The name Phong lighting is a misnomer, the equations used in the OpenGL specification are from
Blinn [Bli77].

44 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

the scene, independent of the number of light sources, though OpenGL provides both
scene ambient and light source ambient contributions.

The diffuse term models the reflection of a light source from a rough surface. The
intensity at a point on the object’s surface is proportional to the cosine of the angle made
by a unit vector from the point to the light source, L, and the surface normal vector at
that point, N,

Idi = N · L.

If the surface normal is pointing away from the light source, then the dot product is
negative. To avoid including a negative intensity contribution, the dot product is clamped
to zero. In the OpenGL specification, the clamped dot product expression max(N · L, 0)
is written as N � L. This notation is used throughout the text.

As the discussion of a clamped dot product illustrates, considering lighting equations
brings up the notion of sideness to a surface. If the object is a closed surface (a sphere,
for example), then it seems clear that a light shining onto the top of the sphere should
not illuminate the bottom of the sphere. However, if the object is not a closed surface (a
hemisphere, for example), then the exterior should be illuminated when the light source
points at it, and the interior should be illuminated when the light source points inside. If
the hemisphere is modeled as a single layer of polygons tiling the surface of the hemisphere,
then the normal vector at each vertex can either be directed inward or outward, with the
consequence that only one side of the surface is lighted regardless of the location of the
light source.

Arguably, the solution to the problem is to not model objects with open surfaces, but
rather to force everything to be a closed surface as in Figure 3.5. This is, in fact, the rule
used by CAD programs to solve this and a number of related problems. However, since
this may adversely complicate modeling for some applications, OpenGL also includes
the notion of two-sided lighting. With two-sided lighting, different surface properties are
used and the direction of the surface normal is flipped during the lighting computation
depending on which side of a polygon is visible. To determine which side is visible, the
signed area of the polygon is computed using the polygon’s window coordinates. The
orientation of the polygon is give by the sign of the area computation.

Closed ClosedOpen

F i g u r e 3.5 Closed and open surface cross-sections.

S E C T I O N 3 . 3 L i gh t i ng 45

DIFFUSE
REFLECTION

L N

p p

SPECULAR
REFLECTION

L N R

F i g u r e 3.6 Diffuse and specular reflection patterns.

The specular term models the reflection of a light source from a smooth surface,
producing a highlight focused in the direction of the reflection vector. This behavior is
much different than the diffuse term, which reflects light equally in all directions, as shown
in Figure 3.6. Things get a little more complicated when light isn’t equally reflected in all
directions; the location of the viewer needs to be included in the equation. In the original
Phong formulation, the angle between the reflection of the light vector, Rl , and viewing
vector (a unit vector between the surface point and the viewer position, V) determines
amount of specular reflection in the direction of the viewer.5

In the Blinn formulation used in OpenGL, however, the angle between the surface
normal, and the unit bisector, H, of the light vector L, and the view vector V, is used.
This bisector is also called the half-angle vector. It produces an effect similar to V ·Rl , but
Blinn argues that it more closely matches observed behavior, and in some circumstances
is less expensive to compute.

To model surfaces of differing smoothness, this cosine term is raised to a power:

Isp =
(

(V + L)
‖V + L‖ � N

)n

The larger this shininess exponent, n, the more polished the surface appears, and the
more rapidly the contribution falls off as the reflection angle diverges from the reflection
of the light vector. In OpenGL the exponent is limited to the range [0, 128], but there is
least one vendor extension to allow a larger range.6

The specular term is also called the power function. OpenGL supports two different
positions for the viewer: at the origin of eye space and infinitely far away along the positive

5. V · Rl can equivalently be written as L · Rv, where Rv is the reflection of the view vector V.

6. NV_light_max_exponent

46 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

z-axis. If the viewer is at infinity, (0, 0, 1)T is used for the view vector. These two viewing
variations are referred to as local viewer and infinite viewer. The latter model makes the
specular computation independent of the position of the surface point, thereby making
it more efficient to compute. Note that this approximation is not really correct for large
objects in the foreground of the scene.

To ensure that the specular contribution is zero when the surface normal is pointing
away from the light source, the specular term is gated (multiplied) by a function derived
from the inner product of the surface normal and light vector: fgate = (0 if N � L = 0; 1
otherwise).

The specular term is an example of a bidirectional reflectance distribution function
or BRDF — a function that is described by both the angle of incidence (the light direction)
and angle of reflection (the view direction) ρ(θi, φi, θr, φr). The angles are typically defined
using spherical coordinates with θ , the angle with the normal vector, and φ, the angle in
the plane tangent to the normal vector. The function is also written as ρ(ωi, ωr). The BRDF
represents the amount of light (in inverse steradians) that is scattered in each outgoing
angle, for each incoming angle.

The emissive term models the emission of light from an object in cases where the
object itself acts as a light source. An example is an object that fluoresces. In OpenGL,
emission is a property of the object being shaded and does not depend on any light
source. Since neither the emissive or ambient terms are dependent on the location of the
light source, they don’t use a gating function the way the diffuse and specular terms do
(note that the diffuse term gates itself).

3.3.1 Intensit ies, Colors, and Materials

So far, we have described the lighting model in terms of producing intensity values for
each contribution. These intensity values are used to scale color values to produce a set
of color contributions. In OpenGL, both the object and light have an RGBA color, which
are multiplied together to get the final color value:

Cfinal = Materialam ∗ Sceneam

+ Materialam ∗ Lightam ∗ Iam

+ Materialdi ∗ Lightdi ∗ Idi

+ Materialsp ∗ Lightsp ∗ Isp

+ Materialem

The colors associated with the object are referred to as reflectance values or reflectance
coefficients. They represent the amount of light reflected (rather than absorbed or trans-
mitted) from the surface. The set of reflectance values and the specular exponent are
collectively called material properties. The color values associated with light sources are
intensity values for each of the R, G, and B components. OpenGL also stores alpha com-
ponent values for reflectances and intensities, though they aren’t really used in the lighting

S E C T I O N 3 . 3 L i gh t i ng 47

computation. They are stored largely to keep the application programming interface (API)
simple and regular, and perhaps so they are available in case there’s a use for them in
the future. The alpha component may seem odd, since one doesn’t normally think of
objects reflecting alpha, but the alpha component of the diffuse reflectance is used as the
alpha value of the final color. Here alpha is typically used to model transparency of the
surface. For conciseness, the abbreviations am, dm, sm, al , dl , and sl are used to represent
the ambient, diffuse, specular material reflectances and light intensities; em represents the
emissive reflectance (intensity), while asc represents the scene ambient intensity.

The interaction of up to 8 different light sources with the object’s material are
evaluated and combined (by summing them) to produce a final color.

3.3.2 Light Source Propert ies

In addition to intensity values, OpenGL also defines additional properties of the light
sources. Both directional (infinite lights) and positional (local lights) light sources can
be emulated. The directional model simulates light sources, such as the sun, that are so
distant that the lighting vector doesn’t change direction over the surface of the primitive.
Since the light vector doesn’t change, directional lights are the simplest to compute.
If both an infinite light source and an infinite viewer model are set, the half-angle vector
used in the specular computation is constant for each light source.

Positional light sources can show two effects not seen with directional lights. The first
derives from the fact that a vector drawn from each point on the surface to the light source
changes as lighting is computed across the surface. This leads to changes in intensity that
depend on light source position. For example, a light source located between two objects
will illuminate the areas that face the light source. A directional light, on the other hand,
illuminates the same regions on both objects (Figure 3.7). Positional lights also include
an attenuation factor, modeling the falloff in intensity for objects that are further away
from the light source:

attenuation = 1
kc + kld + kqd2

OpenGL distinguishes between directional and positional lights with the w coordi-
nate of the light position. If w is 0, then then the light source is at infinity, if it is non-zero
then it is not. Typically, only values of 0 and 1 are used. Since the light position is
transformed from object space to eye space before the lighting computation is performed
(when a light position is specified), applications can easily specify the positions of light
sources relative to other objects in the scene.

In addition to omnidirectional lights radiating uniformly in all directions (sometimes
called point lights), OpenGL also models spotlight sources. Spotlights are light sources
that have a cone-shaped radiation pattern: the illumination is brightest along the the axis
of the cone, decreases from the center to the edge of the cone, and drops to zero outside

48 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

Directional
light source

(infinitely far away)
Positional

light source

F i g u r e 3.7 Directional and positional light sources.

Direction

Cutoff angle

Spotlight

q

F i g u r e 3.8 Spotlight sources.

the cone (as shown in Figure 3.8). This radiation pattern is parameterized by the spotlight
direction (sd), cutoff angle (co), and spotlight exponent (se), controlling how rapidly the
illumination falls off between the center and the edge of the cone:

spot = (L � sd)se

S E C T I O N 3 . 3 L i gh t i ng 49

If the angle between the light vector and spot direction is greater than the cutoff angle
(dot product is less than the cosine of the cutoff angle), then the spot attenuation is set
to zero.

3.3.3 Material Propert ies

OpenGL provides great flexibility for setting material reflectance coefficients, light inten-
sities, and other lighting mode parameters, but doesn’t specify how to choose the proper
values for these parameters.

Material properties are modeled with four groups of reflectance coefficients (ambient,
diffuse, specular, and emissive) and a specular exponent. In practice, the emissive term
doesn’t play a significant role in modeling normal materials, so it will be ignored in this
discussion.

For lighting purposes, materials can be described by the type of material, and the
smoothness of its surface. Surface smoothness is simulated by the overall magnitude of
the three reflectances, and the value of the specular exponent. As the magnitude of the
reflectances get closer to one, and the specular exponent value increases, the material
appears to have a smoother surface.

Material type is simulated by the relationship between three of the reflectances (ambi-
ent, diffuse, and specular). For classification purposes, simulated materials can be divided
into four categories: dielectrics, metals, composites, and other materials.

Dielectrics This is the most common category. Dielectrics are non-conductive materials,
such as plastic or wood, which don’t have free electrons. As a result, dielectrics
have relatively low reflectivity; what reflectivity they do have is independent of
light color. Because they don’t strongly interact with light, some dielectrics are
transparent. The ambient, diffuse, and specular colors tend to have similar values
in dielectric materials.
Powdered dielectrics tend to look white because of the high surface area between
the powdered dielectric and the surrounding air. Because of this high surface area,
they also tend to reflect diffusely.

Metals Metals are conductive and have free electrons. As a result, metals are opaque
and tend to be very reflective, and their ambient, diffuse, and specular colors tend
to be the same. The way free electrons react to light can be a function of the light’s
wavelength, determining the color of the metal. Materials like steel and nickel have
nearly the same response over all visible wavelengths, resulting in a grayish
reflection. Copper and gold, on the other hand, reflect long wavelengths more
strongly than short ones, giving them their reddish and yellowish colors.

The color of light reflected from metals is also a function angle between the
incident or reflected light directions and the surface normal. This effect can’t be
modeled accurately with the OpenGL lighting model, compromising the
appearance of metallic objects. However, a modified form of environment mapping

50 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

(such as the OpenGL sphere mapping) can be used to approximate the angle
dependency. Additional details are described in Section 15.9.1.

Composite Materials Common composites, like plastic and paint, are composed of a
dielectric binder with metal pigments suspended in them. As a result, they combine
the reflective properties of metals and dielectrics. Their specular reflection is
dielectric, while their diffuse reflection is like metal.

Other Materials Other materials that don’t fit into the above categories are materials
such as thin films and other exotics. These materials are described further in
Chapter 15.

As mentioned previously, the apparent smoothness of a material is a function of how
strongly it reflects and the size of the specular highlight. This is affected by the overall
magnitude of the GL_AMBIENT, GL_DIFFUSE, and GL_SPECULAR parameters, and the
value of GL_SHININESS. Here are some heuristics that describe useful relationships
between the magnitudes of these parameters:

1. The spectral color of the ambient and diffuse reflectance parameters should be the
same.

2. The magnitudes of diffuse and specular reflectance should sum to a value close
to 1. This helps prevent color value overflow.

3. The value of the specular exponent should increase as the magnitude of specular
reflectance approaches 1.

Using these relationships, or the values in Table 3.1, will not result in a perfect imita-
tion of a given material. The empirical model used by OpenGL emphasizes performance,
not physical exactness. Improving material accuracy requires going beyond the OpenGL
lighting model to more sophisticated multipass techniques or use of the programmable
pipeline. For an excellent description of material properties see Hall (1989).

3.3.4 Vertex and Fragment Lighting

Ideally the lighting model should be evaluated at each point on the object’s surface.
When rendering to a framebuffer, the computation should be recalculated at each
pixel. At the time the OpenGL specification was written, however, the amount of pro-
cessing power required to perform these computations at each pixel was deemed too
expensive to be widely available. Instead the specification uses a basic vertex lighting
model.

This lighting model can provide visually appealing results with modest computation
requirements, but it does suffer from a number of drawbacks. One drawback related to
color representation occurs when combining lighting with texture mapping. To texture
a lighted surface, the intent is to use texture samples as reflectances for the surface.
This can be done by using vertex lighting to compute an intensity value at the vertex
color (by setting all of the material reflectance values to 1.0) then multiplying by the

S E C T I O N 3 . 3 L i gh t i ng 51

T ab l e 3.1 Parameters for Common Materials

Material GL_AMBIENT GL_DIFFUSE GL_SPECULAR GL_SHININESS

Brass 0.329412 0.780392 0.992157 27.8974
0.223529 0.568627 0.941176
0.027451 0.113725 0.807843
1.0 1.0 1.0

Bronze 0.2125 0.714 0.393548 25.6
0.1275 0.4284 0.271906
0.054 0.18144 0.166721
1.0 1.0 1.0

Polished Bronze 0.25 0.4 0.774597 76.8
0.148 0.2368 0.458561
0.06475 0.1036 0.200621
1.0 1.0 1.0

Chrome 0.25 0.4 0.774597 76.8
0.25 0.4 0.774597
0.25 0.4 0.774597
1.0 1.0 1.0

Copper 0.19125 0.7038 0.256777 12.8
0.0735 0.27048 0.137622
0.0225 0.0828 0.086014
1.0 1.0 1.0

Polished Copper 0.2295 0.5508 0.580594 51.2
0.08825 0.2118 0.223257
0.0275 0.066 0.0695701
1.0 1.0 1.0

Gold 0.24725 0.75164 0.628281 51.2
0.1995 0.60648 0.555802
0.0745 0.22648 0.366065
1.0 1.0 1.0

Polished Gold 0.24725 0.34615 0.797357 83.2
0.2245 0.3143 0.723991
0.0645 0.0903 0.208006
1.0 1.0 1.0

Pewter 0.105882 0.427451 0.333333 9.84615
0.058824 0.470588 0.333333
0.113725 0.541176 0.521569
1.0 1.0 1.0

continued

52 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

T ab l e 3.1 Parameters for Common Materials (Continued)

Material GL_AMBIENT GL_DIFFUSE GL_SPECULAR GL_SHININESS

Silver 0.19225 0.50754 0.508273 51.2
0.19225 0.50754 0.508273
0.19225 0.50754 0.508273
1.0 1.0 1.0

Polished Silver 0.23125 0.2775 0.773911 89.6
0.23125 0.2775 0.773911
0.23125 0.2775 0.773911
1.0 1.0 1.0

Emerald 0.0215 0.07568 0.633 76.8
0.1745 0.61424 0.727811
0.0215 0.07568 0.633
0.55 0.55 0.55

Jade 0.135 0.54 0.316228 12.8
0.2225 0.89 0.316228
0.1575 0.63 0.316228
0.95 0.95 0.95

Obsidian 0.05375 0.18275 0.332741 38.4
0.05 0.17 0.328634
0.06625 0.22525 0.346435
0.82 0.82 0.82

Pearl 0.25 1.0 0.296648 11.264
0.20725 0.829 0.296648
0.20725 0.829 0.296648
0.922 0.922 0.922

Ruby 0.1745 0.61424 0.727811 76.8
0.01175 0.04136 0.626959
0.01175 0.04136 0.626959
0.55 0.55 0.55

Turquoise 0.1 0.396 0.297254 12.8
0.18725 0.74151 0.30829
0.1745 0.69102 0.306678
0.8 0.8 0.8

Black Plastic 0.0 0.01 0.50 32
0.0 0.01 0.50
0.0 0.01 0.50
1.0 1.0 1.0

Black Rubber 0.02 0.01 0.4 10
0.02 0.01 0.4
0.02 0.01 0.4
1.0 1.0 1.0

S E C T I O N 3 . 4 F i xed-Po in t and F l oa t i ng-Po in t A r i t hme t i c 53

reflectance value from the texture map, using the GL_MODULATE texture environment.
This approach can have problems with specular surfaces, however. Only a single intensity
and reflectance value can be simulated, since texturing is applied only after the lighting
equation has been evaluated to a single intensity. Texture should be applied separately
to compute diffuse and specular terms.

To work around this problem, OpenGL 1.2 adds a mode to the vertex lighting model,
GL_SEPARATE_SPECULAR_COLOR, to generate two final color values — primary and
secondary. The first color contains the sum of all of the terms except for the specular
term, the second contains just the specular color. These two colors are passed into the
rasterization stage, but only the primary color is modified by texturing. The secondary
color is added to the primary after the texturing stage. This allows the application to use
the texture as the diffuse reflectance and to use the material’s specular reflectance settings
to define the object’s specular properties.

This mode and other enhancements to the lighting model are described in detail in
Chapter 15.

3.4 Fixed-Point and Floating-Point Arithmetic

There is more to color representation than the number of bits per color component.
Typically the transformation pipeline represents colors using some form of floating-point,
often a streamlined IEEE single-precision representation. This isn’t much of a burden since
the need for floating-point representation already exists for vertex, normal, and texture
coordinate processing. In the transformation pipeline, RGB colors can be represented
in the range [−1, 1]. The negative part of the range can be used to perform a limited
amount of subtractive processing in the lighting stage, but as the colors are passed to
the rasterization pipeline, toward their framebuffer destination (usually composed of
unsigned integers), they are clamped to the [0, 1] range.

Traditionally, the rasterization pipeline uses a fixed-point representation with the
requisite reduction in range and precision. The fixed-point representation requires care-
ful implementation of arithmetic operations to avoid artifacts. The principal complexity
comes from the difficulty in representing the number 1.0. A traditional fixed-point rep-
resentation using 8 bits might use the most significant bit as the integer part and the
remaining 7 bits as fraction. This straightforward interpretation can represent numbers
in the range [0, 1.9921875], which is [0, 1 + 127

128].
This representation wastes 1 bit, since it represents numbers almost up to 2, when

only 1 is required. Most rasterization implementations don’t use any integer bits, instead
they use a somewhat more complicated representation in which 1.0 is represented with
the “all ones” bit pattern. This means that an 8-bit number x in the range [0, 1] con-
verts to this representation using the formula f = x255. The complexity enters when
implementing multiplication. For example, the identity a ∗ 1 = a should be preserved,
but the naive implementation, using a multiplication and a shift, will not do so.

54 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

For example multiplying (255 ∗ 255) and shifting right produces 254. The correct
operation is (255 ∗ 255)/255, but the expensive division operation is often replaced with
a faster, but less accurate approximation.

Later revisions to OpenGL added the ability to perform subtractions at various stages
of rasterization and framebuffer processing (subtractive blend7, subtractive texture envi-
ronment8) using fixed-point signed values. Accurate fixed-point representation of signed
values is difficult. A signed representation should preserve three identities: a ∗ 1 = a,
a ∗ 0 = 0, and a ∗ −1 = −a. Fixed step sizes in value should result in equal step sizes in
the representation, and resolution should be maximized.

One approach is to divide the set of fixed-point values into three pieces: a 0 value,
positive values increasing to 1, and negative values decreasing to negative one. Unfor-
tunately, this can’t be done symmetrically for a representation with 2n bits. OpenGL
compromises, using the representation (2n × value − 1)/2. This provides a 0, 1, and
negative one value, but does so asymmetrically; there is an extra value in the negative
range.

3.4.1 Biased Arithmetic

Although the accumulation buffer is the only part of the OpenGL framebuffer that
directly represents negative colors, it is possible for an application to subtract color val-
ues in the framebuffer by scaling and biasing the colors and using subtractive operations.
For example, numbers in the range [−1, 1] can be mapped to the [0, 1] range by scaling
by 0.5 and biasing by 0.5. This effectively converts the fixed-point representation into
a sign and magnitude representation.9

Working with biased numbers requires modifying the arithmetic rules (Figure 3.9).
Assume a and b are numbers in the original representation and â and b̂ are in the biased

1 1

–1 –1

0

1 1

–1

–1

0

F i g u r e 3.9 Biased representation.

7. In the OpenGL 1.2 ARB imaging subset.

8. OpenGL 1.3.

9. In traditional sign and magnitude representation, the sign bit is 1 for a negative number; in ours a
sign bit of 0 represents a negative number.

S E C T I O N 3 . 4 F i xed-Po in t and F l oa t i ng-Po in t A r i t hme t i c 55

representation. The two representations can be converted back and forth with the
following equations:

â = a/2 + 1/2

a = 2(̂a − 1/2)

When converting between representations, the order of operations must be controlled
to avoid losing information when OpenGL clamps colors to [0, 1]. For example, when
converting from â to a, the value of 1/2 should be subtracted first, then the result should
be scaled by 2, rather than rewriting the equation as 2â − 1. Biased arithmetic can
be derived from these equations using substitution. Note that biased arithmetic values
require special treatment before they can be operated on with regular (2’s complement)
computer arithmetic; they can’t just be added and subtracted:

̂a + b = â + (̂b − 1/2)

̂a − b = â − (̂b − 1/2)

The equation â + (̂b − 1/2) is supported directly by the GL_COMBINE texture function
GL_ ADD_SIGNED.10

The following equations add or subtract a regular number with a biased number,
reducing the computational overhead of converting both numbers first:

̂a + b = â + b/2

̂a − b = â − b/2

This representation allows us to represent numbers in the range [−1, 1]. We can
extend the technique to allow us to increase the range. For example, to represent
a number in the range [−n, n], we use the equations:

â = a
2n

+ 1/2

a = 2n(̂a − 1/2)

10. OpenGL 1.3.

56 C H A P T E R 3 Co lo r , Shad ing , and L igh t i ng

and alter the arithmetic as above. The extended range need not be symmetric. We can
represent a number in the range [−m, n] with the formula:

â = a
n + m

+ m
n + m

a = (n + m)
(̂

a − m
n + m

)
and modify the the equations for addition and subtraction as before.

With appropriate choices of scale and bias, the dynamic range can be increased,
but this comes at the cost of precision. For each factor of 2 increase in range, 1 bit of
precision is lost. In addition, some error is introduced when converting back and forth
between representations. For an 8-bit framebuffer it isn’t really practical to go beyond
[−1, 1] before losing too much precision. With higher precision framebuffers, a little more
range can be obtained, but the extent to which the lost precision is tolerable depends on
the application. As the rendering pipeline evolves and becomes more programmable and
floating-point computation becomes pervasive in the rasterization stage of the pipeline,
many of these problems will disappear. However, the expansion of OpenGL implemen-
tations to an ever-increasing set of devices means that these same problems will remain
on smaller, less costly devices for some time.

3.5 Summary

This chapter provided an overview of the representation and manipulation of color values
in the OpenGL pipeline. It also described some of the computational models used to shade
an object, focusing on the vertex lighting model built into OpenGL. The next chapter
covers some of the principles and complications involved in representing an image as an
array of discrete color values.

4
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Digital Images and Image

Manipulation

Geometric rendering is, at best, half of a good graphics library. Modern rendering tech-
niques combine both geometric and image-based rendering. Texture mapping is only the
simplest example of this concept; later chapters in this book cover more sophisticated tech-
niques that rely both on geometry rendering and image processing. This chapter reviews
the characteristics of a digital image and outlines OpenGL’s image manipulation capa-
bilities. These capabilities are traditionally encompassed by the pipeline’s “pixel path”,
and the blend functionality in the “fragment operations” part of the OpenGL pipeline.

Even if an application doesn’t make use of sophisticated image processing, familiarity
with the basics of image representation and sampling theory guides the crafting of good
quality images and helps when fixing many problems encountered when rendering and
texture mapping.

4.1 Image Representation

The output of the rendering process is a digital image stored as a rectangular array of
pixels in the color buffer. These pixels may be displayed on a CRT or LCD display device,
copied to application memory to be stored or further manipulated, or re-used as a texture
map in another rendering task. Each pixel value may be a single scalar component, or a
vector containing a separate scalar value for each color component.

57

58 C H A P T E R 4 Dig i t a l Images and Image Man ipu l a t i on

Details on how a geometric primitive is converted to pixels are given in Chapter 6;
for now assume that each pixel accurately represents the average color value of the
geometric primitives that cover it. The process of converting a continuous function into
a series of discrete values is called sampling. A geometric primitive, projected into 2D,
can be thought of as defining a continuous function of its spatial coordinates x and y.

For example, a triangle can be represented by a function fcontinuous(x, y). It returns
the color of the triangle when evaluated within the triangle’s extent, then drops to zero
if evaluated outside of the triangle. Note that an ideal function has an abrupt change of
value at the triangle boundaries. This instantaneous drop-off is what leads to problems
when representing geometry as a sampled image. The output of the function isn’t limited
to a color; it can be any of the primitive attributes: intensity (color), depth, or texture
coordinates; these values may also vary across the primitive. To avoid overcomplicating
matters, we can limit the discussion to intensity values without losing any generality.

A straightforward approach to sampling the geometric function is to evaluate the
function at the center of each pixel in window coordinates. The result of this process is a
pixel image; a rectangular array of intensity samples taken uniformly across the projected
geometry, with the sample grid aligned to the x and y axes. The number of samples per
unit length in each direction defines the sample rate.

When the pixel values are used to display the image, a reproduction of the original
function is reconstructed from the set of sample values. The reconstruction process pro-
duces a new continuous function. The reconstruction function may vary in complexity;
for example, it may simply repeat the sample value across the sample period

freconstructed(x, y) = pixel[�x�][�y�]

or compute a weighted sum of pixel values that bracket the reconstruction point.
Figure 4.1 shows an example of image reconstruction.

When displaying a graphics image, the reconstruction phase is often implicit; the
reconstruction is part of the video display circuitry and the physics of the pixel display.
For example, in a CRT display, the display circuitry uses each pixel intensity value to
adjust the intensity of the electron beam striking a set of phosphors on the screen. This
reconstruction function is complex, involving not only properties of the video circuitry,
but also the shape, pattern, and physics of the phosphor on the screen. The accuracy of a

Ideal Sampled Filtered Filtered/resampled

F i g u r e 4.1 Example of image reconstruction.

S E C T I O N 4 . 1 Image Rep re sen ta t i on 59

Actual intensity

P1 P2

Sampled intensity

P3

F i g u r e 4.2 Undersampling: Intensity varies wildly between sample points P1 and P2.

reconstructed triangle may depend on the alignment of phosphors to pixels, how abruptly
the electron beam can change intensity, the linearity of the analog control circuitry, and
the design of the digital to analog circuitry. Each type of output device has a different
reconstruction process. However, the objective is always the same, to faithfully reproduce
the original image from a set of samples.

The fidelity of the reproduction is a critical aspect of using digital images. A fun-
damental concern of sampling is ensuring that there are enough samples to accurately
reproduce the desired function. The problem is that a set of discrete sample points cannot
capture arbitrarily complicated detail, even if we use the most sophisticated reconstruc-
tion function. This is illustrated by considering an intensity function that has the similar
values at two sample points P1 and P3, but between these points P2 the intensity varies
significantly, as shown in Figure 4.2. The result is that the reconstructed function doesn’t
reproduce the original function very well. Using too few sample points is called under-
sampling; the effects on a rendered image can be severe, so it is useful to understand the
issue in more detail.

To understand sampling, it helps to rely on some signal processing theory, in partic-
ular, Fourier analysis (Heidrich and Seidel, 1998; Gonzalez and Wintz, 1987). In signal
processing, the continuous intensity function is called a signal. This signal is traditionally
represented in the spatial domain as a function of spatial coordinates. Fourier analysis
states that the signal can be equivalently represented as a weighted sum of sine waves
of different frequencies and phase offsets. This is a bit of an oversimplification, but it
doesn’t affect the result. The corresponding frequency domain representation of a signal
describes the magnitude and phase offset of each sine wave component. The frequency
domain representation describes the spectral composition of the signal.

60 C H A P T E R 4 Dig i t a l Images and Image Man ipu l a t i on

Frequency domain Spatial domain

F i g u r e 4.3 Ideal reconstruction function.

The sine wave decomposition and frequency domain representation are tools that
help simplify the characterization of the sampling process. From sine wave decomposition,
it becomes clear that the number of samples required to reproduce a sine wave must be
twice its frequency, assuming ideal reconstruction. This requirement is called the Nyquist
limit. Generalizing from this result, to accurately reconstruct a signal, the sample rate must
be at least twice the rate of the maximum frequency in the original signal. Reconstructing
an undersampled sine wave results in a different sine wave of a lower frequency. This
low-frequency version is called an alias. An aliased signal stands in for the original, since
at the lower sampling frequency, the original signal and its aliases are indistinguishable.
Aliased signals in digital images give rise to the familiar artifacts of jaggies, or staircasing
at object boundaries. Techniques for avoiding aliasing artifacts during rasterization are
described in Chapter 10.

Frequency domain analysis also points to a technique for building a reconstruction
function. The desired function can be found by converting its frequency domain repre-
sentation to one in the spatial domain. In the frequency domain, the ideal function is
straightforward; the function that captures the frequency spectrum of the original image
is a comb function. Each “tooth” of the comb encloses the frequencies in the original
spectrum; in the interests of simplicity, the comb is usually replaced with a single “wide
tooth” or box that encloses all of the original frequencies (Figure 4.3). Converting this
box function to the spatial domain results in the sinc function. Signal processing theory
provides a framework for evaluating the fidelity of sampling and reconstruction in both
the spatial and frequency domain. Often it is more useful to look at the frequency domain
analysis since it determines how individual spectral components (frequencies) are affected
by the reconstruction function.

4.2 Digital Filtering

Consider again the original continuous function representing a primitive. The function
drops to zero abruptly at the edge of the polyon, representing a step function at the
polygon boundaries. Representing a step function in the frequency domain results in

S E C T I O N 4 . 2 Dig i t a l F i l t e r i ng 61

frequency components with non-zero values at infinite frequencies. Avoiding creating
undersampling artifacts when reconstructing a sampled step function requires changing
the input function, or the way it is sampled. In essence, the boundaries of the polygon
must be “smoothed” so that the transition can be represented by a bounded frequency
representation. The frequency bound is chosen so that it can be captured by the samples.
This process is an application of filtering.

As alluded to in the discussion above, filtering goes hand in hand with the concept of
sampling and reconstruction. Conceptually, filtering applies a function to an input signal
to produce a new one. The filter modifies some of the properties of the original signal, such
as removing frequency components above or below some threshold (low- and high-pass
filters). With digital images, filtering is often combined with reconstruction followed by
resampling. Reconstruction produces a continuous signal for the filter to operate on and
resampling produces a set of sample values from the filtered signal, possibly at a different
sample rate. The term filter is frequently used to mean all three parts: reconstruction,
filtering, and resampling. The objective of applying the filter is most often to transform
the spectral composition of the signal.

As an example, consider the steps to produce a new version of an image that is half the
size in the x and y dimensions. One way to generate the new image is to copy every second
pixel into the new image. This process can be viewed as a reconstruction and resampling
process. By skipping every other pixel (which represents a sample of the original image),
we are sampling at half the rate used to capture the original image. Reducing the rate is
a form of undersampling, and will introduces new signal aliases.

These aliased signals can be avoided by eliminating the frequency components that
cannot be represented at the new, lower sampling rate. This is done by applying a low-
pass filter during signal reconstruction, before the new samples are computed. There are
many useful low-pass filter functions; one of the simplest is the box filter. The 2×2-box
filter computes a new sample by taking an equally weighted average of four adjacent
samples. The effect of the box filter on the spectrum of the signal can be evaluated by
converting it to the frequency domain. Although simple, the box filter isn’t a terrific low-
pass filter, it corresponds to multiplying the spectrum by a sinc function in the frequency
domain (Figure 4.4). This function doesn’t cut off the high frequencies very cleanly, and
leads to its own set of artifacts.

Frequency domainSpatial domain

F i g u r e 4.4 Box filter in spatial and frequency domain.

62 C H A P T E R 4 Dig i t a l Images and Image Man ipu l a t i on

4.3 Convolution

Both the reconstruction and spectrum-shaping filter functions compute weighted sums
of surrounding sample values. These weights are values from a second function and the
computation of the weighted sum is called convolution. In one dimension, the convolution
of two continuous functions f (x) and g(x) produces a third function:

h(x) = f (x) � g(x) =
∫ +∞

−∞
f (τ)g(x − τ)dτ (4.1)

g(x) is referred to as the filter. The integral only needs to be evaluated over the range
where g(x − τ) is non-zero, called the support of the filter.

The discrete form of convolution operates on two arrays, the discretized signal F[x]
and the convolution kernel G[0...(width − 1)]. The value of width defines the support of
the filter and Equation 4.1 becomes:

H[x] =
width−1∑

i=0

F[x + i]G[i] (4.2)

The 1D discrete form is extended to two dimensions as:

H[x][y] =
height−1∑

j=0

width−1∑
i=0

F[x + i][y + j]G[i][j] (4.3)

As shown in Figure 4.5, a convolution kernel is positioned over each pixel in an
image to be convolved, and an output pixel is generated. The kernel can be thought of as
an array of data values; these values are applied to the input pixels that the convolution
kernel covers. Multiplying and summing the kernel against its footprint in the image
creates a new pixel value, which is used to update the convolved image. Note that the

Input

Input/output

Kernel

Filter

Kernel here sets this pixel

Input image

Output image

Image is smaller,
reduce mode

Filter covers area,
writes a pixel

F i g u r e 4.5 Convolution.

S E C T I O N 4 . 4 Images in OpenGL 63

results of a previous convolution step don’t affect any subsequent steps; each output pixel
is independent of the surrounding output pixels.

The formalization and use of the convolution operation isn’t accidental; it relates
back to Fourier analysis. The significance of convolution in the spatial domain is that it
is equivalent to multiplying the frequency domain representations of the two functions.
This means that a filter with some desired properties can be constructed in the frequency
domain and then converted to the spatial domain to perform the filtering. In some cases it
is more efficient to transform the signal to the frequency domain, perform the multiplica-
tion, and convert back to the spatial domain. Discussion of techniques for implementing
filters and of different types of filters is in Chapter 12. For the rest of this chapter we shall
describe the basic mechanisms OpenGL provides for operating on images.

4.4 Images in OpenGL

The OpenGL API contains a pixel pipeline for performing many traditional image process-
ing operations, such as scaling or rotating an image. The use of hybrid 3D rasterization
and image processing techniques has increased over recent years, giving rise to the term
image-based rendering [MB95, LH96, GGSC96] . More recent versions of OpenGL have
increased the power and sophistication of the pixel pipeline to match the demand for
these capabilities.

Image processing operations can be applied while loading pixel images and textures
into OpenGL, reading them back to the host, or copying them. The ability to modify
textures during loading operations and to modify framebuffer contents during copy opera-
tions provides high-performance paths for image processing operations. These operations
may be performed entirely within the graphics accelerator, so they can be independent of
the performance of the host.

OpenGL distinguishes between several types of images. Pixel images, or pixmaps are
transferred using the glDrawPixels command. Pixmaps can represent index or RGB
color values, depth values, or stencil values. Bitmap images are a special case of pixmaps
consisting of single-bit per-pixel images. When bitmaps are drawn they are expanded into
constant index or RGB colors. The glBitmap command is used to draw bitmaps and
includes extra support for adjusting the current drawing position so that text strings can be
efficiently rendered and positioned as bitmap glyphs. A third image type is texture images.
Texture images are virtually identical to pixmap images, but special commands are used
to transfer texture image data to texture objects. Texture maps are specialized to support
1D, 2D and 3D images as well as 6-sided cube maps. Texture maps also include support
for image pyramids (also called mipmaps), used to provide additional filtering support.

Figure 4.6 shows a block diagram of the base OpenGL pixel pipeline. The pipeline
is divided into two major blocks of operations: pixel storage operations that control
how pixels are read or written to application memory, and pixel transfer operations that
operate on streams of pixels in a uniform format inside the pipeline. At the end of the

64 C H A P T E R 4 Dig i t a l Images and Image Man ipu l a t i on

To rasterization pipeline

From framebuffer

From host

TRANSFERING PIXELS FROM THE HOST (DRAWPIXELS)

To host

TRANSFERING PIXELS TO THE HOST (READPIXELS)

PIXEL STORAGE
OPERATIONS

Convert
to float

Convert
to L

Clamp
to [0,1]

Clamp
to [0,1]

Mask to
2n–1

PIXEL TRANSFER
OPERATIONS

Scale
and bias

Shift and
offset

Shift and
offset

RGBA to RGBA
lookup

PIXEL TRANSFER
OPERATIONS

Histogram

PIXEL STORAGE
OPERATIONS

Scale
and bias

RGBA to RGBA
lookup

Index to RGBA
lookup

Index to RGBA
lookup

Index to
index lookup

Convert
L to RGB

Convert
to [0,1]

Pack

Unpack

Index to
index lookup

Mask to
[0,2n – 1]

F i g u r e 4.6 Basic pixel pipeline.

S E C T I O N 4 . 5 Pos i t i on ing Images 65

pixel pipeline is a pixel zoom operation that allow simple (unfiltered) scaling of images.
After the zoom operation, pixel images are converted into individual fragments, where the
fragments are processed in exactly the same way as fragments generated from geometry.

4.5 Positioning Images

Each of the image types (pixmaps, bitmaps, and textures) has slight variations in how they
are specified to the pipeline. Both pixmaps and bitmaps share the notion of the current
raster position defining the window coordinates of the bottom left corner of the image.
The raster position is specified and transformed as a 3D homogeneous point similar to
the vertices of other geometric primitives. The raster position also undergoes frustum clip
testing and the entire primitive is discarded if the raster position is outside the frustum. The
window coordinate raster position can be manipulated directly using the glWindowPos1

orglBitmap commands. Neither the absolute position of the window position command
or the result of adding the relative adjustment from the bitmap command are clip tested,
so they can be used to position images partially outside the viewport.

The texture image commands have undergone some evolution since OpenGL 1.0 to
allow incremental update to individual images. The necessary changes include commands
that include offsets within the texture map and the ability to use a null image to initialize
texture map with a size but no actual data.

4.6 Pixel Store Operations

OpenGL can read and write images with varying numbers, sizes, packings, and orderings
of pixel components into system memory. This diversity in storage formats provides a
great deal of control, allowing applications to fine tune storage formats to match external
representations and maximize performance or compactness. Inside the pipeline, images
are converted to a stream of RGBA pixels at an implementation-specific component res-
olution. There are few exceptions: depth, stencil, color index, and bitmap images are
treated differently since they don’t represent RGBA color values. OpenGL also distin-
guishes intensity and luminance images from RGBA ones. Intensity images are single
component images that are expanded to RGBA images by copying the intensity to each
of the R, G, B, and A components.2 Luminance images are also single component images,
but are expanded to RGB in the pipeline by copying the luminance to the R component
while setting the G and B components to zero.

1. OpenGL 1.4.

2. Intensity images are only used during texture mapping.

66 C H A P T E R 4 Dig i t a l Images and Image Man ipu l a t i on

ROW_LENGTH

ALIGNMENT

subimage height

width

SKIP_ROWS

SKIP_PIXELS

image
start

F i g u r e 4.7 2D image memory layout.

Pixel storage operations process an image as it is read or written into host memory,
converting to and from OpenGL’s internal representation and the application’s memory
format. The storage operations do not affect how the image is stored in the framebuffer;
that information is implementation-dependent. Pixel storage operations are divided into
two symmetric groups: the pack group, controlling how data is stored to host memory,
and the unpack group, controlling how image data is read from host memory.

2D images are stored in application memory as regularly spaced arrays, ordered so
they can be transfered one row at a time to form rectangular regions. The first row starts
at the lowest memory address and the first pixel corresponds to the bottom left pixel of
the image when rendered (assuming no geometric transforms). A 3D image is stored as
a series of these rectangles, stacked together to form a block of image data starting with
the slice nearest to the image pointer, progressively moving to the furthest.

In addition to component ordering and size, the pixel storage modes provide some
additional control over the layout of images in memory, including the ability to address a
subrectangle within a memory image. Figure 4.7 shows the layout of an image in memory
and the effect of the alignment and spacing parameters. Additional parameters facili-
tate portability between different platforms: byte swapping within individual component
representations and bit ordering for bitmaps.

From an application writer’s point of view, the pixel store operations provide an
opportunity for the OpenGL pipeline to efficiently accelerate common conversion oper-
ations, rather than performing the operations on the host. For example, if a storage
format operates with 16-bit (unsigned short) components, OpenGL can read and write
those directly. Similarly, if a very large image is to be operated on in pieces, OpenGL’s
ability to transfer a subrectangle can be exploited, avoiding the need to extract and
transfer individual rows of the subrectangle.

One feature that OpenGL does not provide is support for reading images directly
from files. There are several reasons for this: it would be difficult to support all the

S E C T I O N 4 . 7 P i xe l T r ans fe r Ope ra t i ons 67

existing image file formats, and keep up with their changes. Providing a simple file access
format for all PC architectures would probably not result in the maximum performance
implementation. It is also generally better for an application to control the I/O operations
themselves. Having no file format also keeps OpenGL cleanly separated from operating
system dependencies such as file I/O.

Even if a file interface was implemented, it wouldn’t be sufficient for some applica-
tions. In some cases, it can be advantageous to stream image data directly to the graphics
pipeline without first transferring the data into application memory. An example is
streaming live video from a video capture device. Some vendors have supported this by cre-
ating an additional window-like resource that acts as a proxy for the video stream as part
of the OpenGL embedding layer. The video source is bound as a read-only window and
pixel copy operations are used to read from the video source and push the stream through
the pixel pipeline. More details on the platform embedding layer are covered in Chapter 7.

For these reasons OpenGL has no native texture image format, external display list
format, or any entrenched dependency on platform capabilities beyond display resource
management.

4.7 Pixel Transfer Operations

Pixel transfer operations provide ways of operating on pixel values as they are moved
to, read from, or copied within the framebuffer; or as pixels are moved to texture maps.
In the base pipeline there are two types of transfer operations: scale and bias and pixel
mapping.

4.7.1 Scale and Bias

Scale operations multiply each pixel component by a constant scale factor. The bias
operation follows the scale and adds a constant value. RGBA and depth components
are operated on with floating-point scales and biases. Analogous operations for indexed
components (color index and stencil) use signed integer shift and offset values. Scale and
bias operations allow simple affine remapping of pixel components. One example of scale
and bias is changing the range of pixel values from [0, 1] to [0.5, 1] for later computations
using biased arithmetic. Pixel operations are performed using signed arithmetic and the
pixel storage modes support signed component representations; however, at the end of
the transfer pipeline component values are clamped to the [0, 1] range.

4.7.2 Pixel Mapping Operations

Pixel mapping operations apply a set of one-dimensional lookup tables to each pixel,
making it possible to remap its color components. There are multiple lookup tables, each
handling a specific color component. For RGBA colors, there are four maps for converting
each color component independently. For indexed colors, there is only one map. Four
maps are available for converting indexed colors to RGBA.

68 C H A P T E R 4 Dig i t a l Images and Image Man ipu l a t i on

A lookup table group applies an application-defined, non-linear transform to image
pixels at a specific point in the pixel pipeline. The contents of the lookup tables describe
the function; the size of the tables, also application-specified, sets the resolution of the
transform operation. Some useful lookup table transforms are: gamma correction, image
thresholding, and color inversion. Unfortunately, this feature has an important limitation:
a lookup applied to one component cannot change the value of any other component in
the pixel.

4.8 ARB Imaging Subset

The OpenGL ARB has defined an additional set of features to significantly enhance
OpenGL’s basic image processing capabilities. To preserve OpenGL’s role as an API
that can run well on a wide range of graphics hardware, these resource-intensive imaging
features are not part of core OpenGL, but grouped into an imaging extension, with the
label GL_ARB_imaging.

The imaging subset adds convolution, color matrix transform, histogram, and min-
max statistics to the pixel transfer block, connecting them with additional color lookup
tables. It also adds some additional color buffer blending functionality. Figure 4.8 shows
a block diagram of the extended pixel processing pipeline.

4.8.1 Convolution

The imaging subset defines 1D and 2D convolution operations, applied individually to
each color component. The maximum kernel width is implementation-dependent but is
typically in the range of 7 to 11 pixels. Convolution support includes additional modes for
separable 2D filters allowing the filter to be processed as two 1D filters. It also provides
different border modes allowing the application different ways of handling the image
boundary. Convolution operations, including methods for implementing them without
using the imaging subset, are described in more detail in Chapter 12.

A convolution filter is treated similarly to an OpenGL pixel image, except for
implementation-specific limitations on the maximum filter dimensions. A filter is loaded
by transferring an image to a special OpenGL target. Only pixel storage operations are
available to process a filter image while it is being loaded.

4.8.2 Color Matrix Transform

OpenGL’s color matrix provides a 4×4 matrix transform that operates on pixel color
components. Each color component can be modified as a linear function of the other
components in the pixel. This can’t be done with color lookup tables, since they operate
independently on each color component. The matrix is manipulated using the same
commands available for manipulating the modelview, texture, and projection matrices.

S E C T I O N 4 . 8 ARB Imag ing Subse t 69

To rasterization pipeline

From framebufferFrom host

TRANSFERING PIXELS FROM THE HOST (DRAWPIXELS)

To host

TRANSFERING PIXELS TO THE HOST (READPIXELS)

PIXEL STORAGE
OPERATIONS

Convert
to float

Convert
to L

Color table
lookup

PIXEL TRANSFER
OPERATIONS

Convolution
scale and bias

Color table
lookup

Color table
lookup

Min/max

Scale
and bias

Shift and
offset

Shift and
offset

Histogram

RGBA to RGBA
lookup

Color table
lookup

PIXEL TRANSFER
OPERATIONS

Convolution
scale and bias

Color table
lookup

Color table
lookup

Min/maxColor matrix
scale and bias

Histogram

PIXEL STORAGE
OPERATIONS

Scale
and bias

RGBA to RGBA
lookup

Index to RGBA
lookup

Index to RGBA
lookup

Color matrix
scale and bias

Index to
index lookup

Convert
L to RGB

Clamp
to [0,1]

Mask to
[0,2n – 1]

Convert
to [0,1]

Clamp
to [0,1]

Pack

Unpack

Index to
index lookup

Mask to
[0,2n – 1]

F i g u r e 4.8 Pixel pipeline with imaging extensions.

4.8.3 Histogram

The histogram operation divides each RGBA pixel in the image into four separate color
components. Each color component is categorized by its intensity and a counter in the
corresponding bin for that component is incremented. The results are kept in four arrays,

70 C H A P T E R 4 Dig i t a l Images and Image Man ipu l a t i on

one for each color component. Effectively, the arrays record the number of occurrences
of each intensity range. The size of each range or bin is determined by the length of
the application-specified array. For example, a 2-element array stores separate counts
for intensity ranges 0 ≤ i < 0.5 and 0.5 < i ≤ 1. The maximum size of the array is
implementation-dependent and can be determined using the proxy mechanism.

Histogram operations are useful for analyzing an image by measuring the distribution
of its component intensity values. The results can also be used as parameters for other
pixel operations. The image may be discarded after the histogram operation is performed,
if the image itself is not of interest.

4.8.4 MinMax

The minmax operation looks through all the pixels in an image, finding the largest and
smallest intensity value for each color component. The results are saved in a set of two-
element arrays, each array corresponding to a different color component. The application
can also specify that the image be discarded after minmax information is generated.

4.8.5 Color Tables

Color tables provide additional lookup tables in the OpenGL pixel transfer pipeline.
Although the capabilities of color tables and pixel maps are similar, color tables reflect
an evolutionary improvement over pixel maps, making them easier to use. Color tables
only operate on color components, including luminance and intensity (not color indices,
stencil, or depth). Color tables can be defined that affect only a subset of the color
components, leaving the rest unmodified.

Color tables are specified as images (like convolution filters). Specifying the complete
table at once enables better performance when updating tables often, compared to spec-
ifying pixel maps one component at a time. The capability to leave selected components
unchanged parallels a similar capability in texturing; this design is simpler than the cor-
responding functionality in pixel maps, which requires loading an identity map to leave
a component unmodified. Color tables don’t operate on depth, stencil, or color index
values since those operations don’t occur frequently in applications; the existing pixel
map functionality is adequate for these cases.

The additional tables are defined at places in the pipeline where a component nor-
malization operation is likely to be required: before convolution (GL_COLOR_TABLE),
after convolution (GL_POST_CONVOLUTION_COLOR_TABLE), and after the color
matrix operations (GL_POST_COLOR_MATRIX_COLOR_TABLE). Sometimes normaliza-
tion operation can be implemented more efficiently using scale and bias operations. To
support this, the latter two color tables are preceded by scale and bias operators which
may be used in conjunction with, or instead of, the corresponding color tables.

S E C T I O N 4 . 8 ARB Imag ing Subse t 71

Source weight
Destination

weight

Incoming fragment Pixel

Blend function Framebuffer

F i g u r e 4.9 Blend inputs and outputs.

4.8.6 Blend Equation and Constant Color Blending

Beyond the pixel path, OpenGL provides an opportunity for the application to manipu-
late the image in the fragment operations path. OpenGL’s blending function supports
additive operations, where scaled versions of the source and destination pixel are added
together:

C = CsS + CdD

In the equation above, S and D are the source and destination scale factors. Figure 4.9
shows the relationships between the source fragment, target pixel, and source and desti-
nation weighting factors. If the glBlendEquation command is supported,3 OpenGL
defines additional equations for generating the final pixel value from the source and
destination pixels. The new equations are:

subtract C = CsS − CdD
reverse subtract C = CdD − CsS
min C = min(Cs, Cd)
max C = max(Cs, Cd)

The ARB imaging extension includes an additional blending feature, constant color
blending, providing more ways to manipulate the image being blended. Constant color
blending adds an additional constant blending factor specified by the application. It
is usable as either a source or destination blending factor. This functionality makes it
possible for the application to introduce an additional color, set by glBlendColor,
that can be used to scale the source or destination image during blending.

Both the blend equation and constant color blending functionality were promoted to
the base standard in OpenGL 1.4, since they are useful in many other algorithms besides
those for image processing. As with texture mapping (see Section 5.14), OpenGL provides

3. glBlendEquation is an extension in OpenGL implementations before version 1.4.

72 C H A P T E R 4 Dig i t a l Images and Image Man ipu l a t i on

proxy support on convolution filters and lookup tables in the pixel pipeline. These are
needed to help applications work within the limits an implementation may impose for
these images.

4.9 Off-Screen Processing

Image processing or rendering operations don’t always have to produce a transient image
for display as part of an application. Some applications may generate images and save
them to secondary storage for later use. Batches of images may be efficiently processed
without need for operator intervention, for example, filtering an image sequence captured
from some other source. Also, some image processing operations may use multiple images
to generate the final one. For situations such as these, off-screen storage is useful for
holding intermediate images or for accumulating the final result. Support for off-screen
rendering is part of the platform embedding layer and is described in Section 7.4.

4.10 Summary

The OpenGL image pipeline is still undergoing evolution. With the transition to a more
programmable pipeline, some image manipulation operations can be readily expressed in
fragment processing, but many sophisticated operations still require specialized support
or more complex algorithms that will be described in Chapter 12.

Image representation and manipulation are essential to the rendering pipeline, not
only for generating the final image for viewing, but as part of the rendering process itself.
In the next chapter, we will describe the role of images in the texture mapping process.
All of the representation issues and the pipeline mechanisms for manipulating images play
an important part in the correct application of texture mapping.

5
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Texture Mapping

Texture mapping is a fundamental method for controlling the appearance of rendered
objects. A common use of texturing is to provide surface detail to geometry by modifying
surface color on a per-pixel basis. A digital image is used as a source of surface color
information. Texture mapping can do much more than this, however. It is a powerful
and general technique for combining images and geometry. To take advantage of its
capabilities, the application designer should understand texturing in depth. This chapter
reviews OpenGL’s texture mapping abilities with an emphasis on features important to
more complex rendering techniques.

5.1 Loading Texture Images

At the heart of a texture map are the map images, each an n-dimensional array of color
values. The individual elements of the array are called texels. The texture image array has
one, two, or three dimensions. Core OpenGL requires that the texture image have power-
of-two dimensions. The main reason for this is to simplify the computations required to
map texture coordinates to addresses of individual texels. This simplification comes at
a cost; non-power-of-two sized images need to be padded to a power-of-two size before
they can be used as a texture map. There are OpenGL extensions that remove this limit,
usually at the expense of some functionality; for example, there is an extension that allows
the creation of textures with arbitrary sizes, but restricts the parameter values that can
be bound to it, and prohibits mipmapped versions of the texture.1

1. ARB_texture_non_power_of_two.

73

74 C H A P T E R 5 Tex tu re Mapp ing

The glTexImage1D, glTexImage2D, and glTexImage3D commands load
a complete texture image, referencing the data in system memory that should be used
to create it. These commands copy the texture image data from the application’s address
space into texture memory. OpenGL pixel store unpack state describes how the texture
image is arranged in memory. Other OpenGL commands update rectangular subregions
of an existing texture image (subimage loads). These are useful for dynamically updat-
ing an existing texture; in many implementations re-using an existing texture instead of
creating a new one can save significant overhead.

The OpenGL pixel transfer pipeline processes the texture image data when texture
images are specified. Operations such as color space conversions can be performed dur-
ing texture image load. If optimized by the OpenGL implementation, the pixel transfer
operations can significantly accelerate common image processing operations applied to
texture data. Image processing operations are described in Chapter 12.

Texture images are referenced using texture coordinates. The coordinates of a texture
map, no matter what the image resolution, range from 0 to 1. Individual texels are
referenced by scaling the coordinate values by the texture dimensions. When a texture
coordinate is outside the [0, 1] range, OpenGL can be set to wrap the coordinate (use
the fractional part of the number), or clamp to the boundaries, based on the value of the
texture wrap mode.

5.1.1 Texture Borders

A useful (and sometimes misunderstood) feature of OpenGL is the texture border
(Figure 5.1). The border is used by certain wrapping modes to compute texel colors

Border textels

Interior textels

S: 0 –> 1

T
:1

–>
0

8 × 8 with 1 textel border

Sample point

Textels used for nearest filtering

Textels used for linear filtering

F i g u r e 5.1 Texture borders.

S E C T I O N 5 . 1 Load ing Tex tu re Images 75

needed by linear filtering when the edge of a texture image is sampled. By definition, the
texture border is outside the texture coordinate range of [0, 1]. Texture borders come
into play when a texture is sampled near the boundaries of the [0,1] range and the tex-
ture wrap mode is set to GL_CLAMP. Textures using GL_NEAREST filtering never sample
the border, since this filtering method always uses the nearest texel to the sample point,
which is always in the range of [0,1].

When the texture filter is GL_LINEAR, however, texture coordinates near the
extremes of 0 or 1 will generate texture colors which are a mix of the border and edge
texels of the texture image. This is because linear filtering samples the four texels closest
to the sample point. Depending on sample position, up to 3 of these texels may be in the
texture border.

The texture border can be specified as a one texel-wide ring of texels surrounding the
texture image or as a single color. Individual texels are supplied as part of a slightly bigger
texture image; the glTexImage command provides a border parameter to indicate that a
border is being supplied. If a border consisting of a single constant color is needed, no bor-
der is specified with glTexImage, instead GL_TEXTURE_BORDER_COLOR is specified
with the glTexParameter command.

Texture borders are very useful if multiple textures are being tiled together to form a
larger one. Without borders, the texture color at the edge of textures using GL_LINEAR
filtering would be improperly sampled, forming visible edges. This problem is solved by
using edge texels from adjacent textures in the border; each texture is then seamlessly
sampling its neighbor’s texels at the edges.

The texture border is one way of ensuring that there are no filtering artifacts at texture
boundaries. Another way to avoid filtering artifacts at the tile edges is to use a different
clamping mode, called clamp to edge. This mode, added in OpenGL 1.2 and set using
the texture parameter GL_CLAMP_TO_EDGE, restricts the sampled texture coordinates
so that the texture border is never sampled. The sample is displaced away from the edge
so that linear filtering only uses texels that are part of the texture image.

Unlike OpenGL’s standard texture clamping, the clamp to edge behavior is unable
to guarantee a consistent border appearance when used with mipmapping, because the
clamping range changes with each mipmap level. The clamping range is defined in terms
of the texture’s dimensions, which are different at each mipmap level. The clamp to edge
behavior is easier to implement in hardware than texture borders because the texture
dimensions are not augmented by additional border texels, so the dimensions are always
efficient powers of two. As a result, there are OpenGL implementations that support
clamp to edge well, but texture border poorly.

5.1.2 Internal Texture Formats

An application can make trade-offs between texel resolution, texture size, and load band-
width requirements by choosing the appropriate texture format. For example, choosing a
GL_LUMINANCE format instead of GL_RGB reduces texture memory usage to one third.

76 C H A P T E R 5 Tex tu re Mapp ing

A size-specific internal format such as GL_RGBA8 or GL_RGBA4 directs the OpenGL
implementation to store the texture with the specified resolution, if it’s supported. The
more general internal formats, such asGL_RGBA, leave the implementation free to pick the
“most appropriate” format for the particular implementation. If maintaining a particular
level of format resolution is important, select a size-specific internal format.

Not all OpenGL implementations support all the available internal texture formats.
Requesting GL_LUMINANCE12_ALPHA4, for example, does not guarantee that the tex-
ture will be stored in this format. The size-specific internal texture formats are merely
hints. The application can exercise more control by querying the OpenGL implementation
for supported formats using proxy textures, and picking the most appropriate one.

When choosing lower resolution color formats, some reduction in image quality
is unavoidable. Choosing the right trade-off between color resolution and size is not a
simple matter. Since textures are applied to particular surfaces, there is more flexibility
trading quality for size and load speed than when choosing framebuffer resolutions. For
example, a surface texture on an object that will never be close to the viewer, or whose
image is composed of similar, low contrast colors, will suffer less if the texture uses a
compact texel format. Even texture size is not the dominant issue when and how often
the texture will be loaded are also factors to consider. If the texture is static, and its load
time doesn’t affect overall performance, then there’s little motivation to improve load
bandwidth performance by going to a smaller texel format.

All of these trade-offs are necessarily highly dependent on the details of the appli-
cation. The best approach is to carefully analyze the use of texture in the application,
and use more texel resolution where it has the most impact and the fewest drawbacks.
In come cases, re-designing the layout of textures on the objects in the scene makes it
possible to get more leverage out of compact texel formats.

5.1.3 Compressed Textures

As another way to reduce the size of texture images, OpenGL includes infrastructure
to load texture images using more elaborate compression schemes.2 Reducing the res-
olution of components can be thought of as one type of compression technique, but
other image compression algorithms also exist. The characteristics of a good texture
compression algorithm are that it does not reduce the fidelity of an image too much and
that individual texels can be easily retrieved from the compressed representation. The
glCompressedTexImage commands allow other forms of compressed images to be
loaded as texture maps. The core OpenGL specification doesn’t actually define or require
any specific compression formats, largely because there isn’t a suitable publicly-available
standard format. However, there are some popular vendor-specific formats available as
extensions, for example, EXT_texture_compression_s3tc.

2. Added in OpenGL 1.3.

S E C T I O N 5 . 2 Tex tu re Coo rd ina te s 77

5.1.4 Proxy Textures

Texture memory is a limited resource on most graphics hardware; it is possible to run out
of it. It is not a trivial task for the application to manage it; the amount of texture memory
a particular texture will use is hard to predict and very implementation-dependent. Many
graphics applications are also very sensitive to texture load performance; there may be
an unacceptable performance penalty if the application simply tries to load the textures
that it needs, and executes a recovery scheme when the load fails.

To make it possible for an application to see if a texture will fit before it is loaded,
OpenGL provides a proxy texture scheme. The same texture load commands are used,
the difference is in the texture target: GL_PROXY_TEXTURE_1D is used in place of
GL_TEXTURE_1D, GL_PROXY_TEXTURE_2D in place of GL_TEXTURE_2D, and so on.
If these targets are used, the implementation doesn’t load any texture data. Instead it
does a “dry run”, indicating to the application whether the texture load would have
been successful. This approach may appear awkward, but upon close examination it is
actually a superior approach. It works well because of its flexibility; it can accurately
report back whether space is available for the texture specified regardless of the number
of texture loads that have already happened, what internal texture format the OpenGL
implementation has chosen, or details of the underlying graphics hardware.

If the load would not have succeeded, OpenGL doesn’t signal an error, but instead
sets all the texture state to zero. The application can read back any element of this state
to determine the success of the load request. A simple way to check for success is to
call glGetTexLevelParameter, again using the proxy texture target, the appropriate
level, and a state parameter that shouldn’t be zero, such as GL_TEXTURE_WIDTH. If the
width is zero, the texture load would have failed.

Determining whether there is space for a full mipmap array requires a subtle change.
Rather than loading the base image level, normally zero, a level greater than the base
level is loaded. This indicates to the proxy mechanism whether to calculate space for just
the base level or to compute it for the entire array, starting from the base level and ending
at the maximum array level.

Proxy texture requests don’t simply check for available space; they check the entire
texture state. A proxy texture command will fail if an invalid state is specified, even if
there is enough room for the texture. However, this type of failure shouldn’t occur for
debugged production programs.

5.2 Texture Coordinates

Texture coordinates associate positions on the texture image to the textured primitive’s
vertices. The per-vertex assignment of texture coordinates provide an overall mapping of
a texture image to rendered geometry. During rasterization, the texture coordinates of a
primitive’s vertices are interpolated over the primitive, assigning each rasterized fragment
its own texture coordinates.

78 C H A P T E R 5 Tex tu re Mapp ing

Texture coordinates Object coordinates

F i g u r e 5.2 Vertices with texture coordinates. Texture coordinates determine how a texture maps to the triangle.

In OpenGL, a vertex of any primitive (and the raster position of pixel images) can
have texture coordinates associated with it. Figure 5.2 shows how a primitive’s position
and texture coordinate values at each vertex establish a relationship between a texture
image and the primitive.

OpenGL generalizes the notion of a two-component texture coordinate (s,t) into a
four-component homogeneous texture coordinate (s,t,r,q). The q coordinate is analogous
to the w component found in vertex coordinates, making texture coordinates homoge-
neous. Homogeneous coordinates make correct texturing possible even if the texture
coordinates are perspectively projected. The r coordinate allows for 3D texturing in
implementations that support it.3 The r coordinate is interpolated in a manner similar to
s and t. OpenGL provides default values for both r (0) and q (1).

A primitive being rasterized may have w values that aren’t unity. This commonly
occurs when the projection matrix is loaded with a perspective projection. To apply a
texture map on such a primitive without perspective artifacts, the texture coordinates
must be interpolated with a method that works correctly with perspective projection.
A well-known method is to divide the texture coordinates at each vertex by the vertex’s
w component, interpolate the resulting values for each fragment, then divide the resulting
values by a 1/w component that has also been interpolated from 1/w values computed
at the vertices (Blinn, 1992). For a more detailed discussion of perspective correct vertex
interpolation see Section 6.1.4.

Since OpenGL supports a texture transform matrix, the texture coordinates them-
selves can be projected through a perspective transform. To avoid artifacts created by
projected texture coordinates, the texture values should also be scaled by the interpo-
lated q value. So rather than interpolating (s/w,t/w,r/w) at each fragment, then dividing
by 1/w, the division step becomes a division by q/w, where q/w is also interpolated to

3. 3D textures were available as an extension and later became part of the core standard in OpenGL 1.2.

S E C T I O N 5 . 3 Load ing Tex tu re Images f r om the F r ame Bu f fe r 79

the fragment position. Thus, in implementations that perform perspective correction,
there is no extra rasterization burden associated with processing q (Segal and Akeley,
2003).

OpenGL can apply a general 4×4 transformation matrix followed by a perspective
divide to texture coordinates before using them to apply the texture map. This transform
capability allows textures to be rotated, scaled, and translated on the geometry. It also
allows texture coordinates to be projected onto an arbitrary plane before being used
to map texture to geometry. Although the texture pipeline only has a single transform
matrix compared to the geometry pipeline’s two, the distinction can still be made between
modelview and projective transforms. The difference is now conceptual, however, since
all transforms must share a single matrix.

5.2.1 Texture Coordinate Generation and Transformation

An alternative to assigning texture coordinates explicitly is to have OpenGL generate
them. OpenGL texture coordinate generation (called texgen for short) generates texture
coordinates from other components in the vertex. Sources include position, normal vector,
or reflection vector (computed from the texture position and its normal). Texture coor-
dinates computed from vertex positions are created from a linear function of eye-space
or object-space coordinates. Texture coordinates computed from reflection vectors can
have three components, or be two-component coordinates produced from a projection
formula.

OpenGL provides a 4×4 texture matrix used to transform the texture coordinates,
whether supplied explicitly with each vertex, or implicitly through texture coordinate
generation. The texture matrix provides a means to rescale, translate, or even project
texture coordinates before the texture is applied during rasterization.

Figure 5.3 shows where texture coordinates are generated in the transforma-
tion pipeline and how they are processed by the texture transform matrix. Only
GL_OBJECT_LINEAR and GL_EYE_LINEAR modes are shown here. Note that the tex-
ture transformation matrix transforms the results, just like it does if texture coordinates
are sent explicitly.

5.3 Loading Texture Images from the Frame Buffer

Texture map images are created by storing bitmaps into a texture. The direct approach
is for the application to supply the image, then load it with glTexImage2D. A less
obvious but powerful approach is to create the texture dynamically instead; rendering
an image into the framebuffer, then copying it into a texture. Transferring an image from
the color buffer to a texture is a simple procedure in OpenGL. The image is rendered,
then the resulting image is read back into system memory buffer using glReadPixels.
The application can then use the buffer to load a texture with glTexImage2D.

80 C H A P T E R 5 Tex tu re Mapp ing

s′

t′

r′

q′

Texture
Transform
Matrix

q
m30 m31 m32

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m33

r

t

s

x

y

z

w

Rx
+
Ry
+
Rz
+

Rw

Tx
+
Ty
+
Tz
+

Tw

Sx
+
Sy
+
Sz
+

Sw

Qx
+

Qy
+
Qz
+

Qw

F i g u r e 5.3 Linear texture coordinate generation.

In later versions of OpenGL,4 the process was streamlined. A region of a framebuffer
image can now be copied directly into a texture using glCopyTexImage, bypassing the
glReadPixels step and improving performance. This technique is so useful that a WGL
extension, ARB_render_texture, makes the method even more efficient. It does away
with the copy step entirely, making it possible to render an image directly into a texture.
The new feature is not an extension of core OpenGL. It is an extension of the OpenGL
embedding layer (described in Chapter 7), adding the ability to configure a texture map
as a rendering target. OpenGL can be used to render to it, just as if it was a color
buffer. See Section 14.1 for more information on transferring images between textures
and framebuffers, and how it can be a useful building block for graphics techniques.

5.4 Environment Mapping

Scene realism can be improved by modeling the lighting effects that result from inter-
object reflections. OpenGL provides an ambient light term in its lighting equation, but
this is only the crudest approximation to the lighting environment that results from light
reflecting off of other objects. A more sophisticated approach is available through the use
of OpenGL texturing functionality. The term environment mapping describes a texturing
technique used to model some of the influences of the surrounding environment on an
object’s appearance.

4. Introduced in OpenGL 1.1.

S E C T I O N 5 . 4 Env i r onmen t Mapp ing 81

Environment mapping, like regular surface texturing, changes an object’s appearance
by applying a texture map to its surface. An environment texture map, however, takes
into account the surrounding view of the object’s environment. If the object’s surface has
high specularity, the texture map shows surrounding objects reflected off of the surface.
Objects with low specularity can be textured with an image approximating the radiance
coming from the surrounding environment.

The environment map, once created, must be properly applied to an object’s surface.
Since it is simulating a lighting effect, texels are selected as a function of the normal
vector or reflection vector at each point on the surface. These vectors are converted into
texture coordinates at each vertex, then interpolated to each point on the surface, as
they would for a regular surface texture. Using these vectors as inputs to the texture
generation function makes it possible to simulate the behavior of diffuse and specular
lighting artifacts.

5.4.1 Generating Environment Map Texture Coordinates

The OpenGL environment mapping functionality is divided into two parts: a set of texture
coordinate generation functions, and an additional texture map type called a cube map.
To maximize flexibility, the two groups are orthogonal; texture generation functions can
be used with any type of texture map, and cube map textures can be indexed normally
with three texture coordinates. There are three texture generation functions designed for
environment mapping; normal mapping, reflection vector mapping, and sphere mapping.
A function can be selected by setting the appropriate parameter to glTexGen command:
GL_NORMAL_MAP, GL_REFLECTION_MAP, or GL_SPHERE_MAP.

Normal vector texture generation makes it possible to apply a texture map onto a
surface based on the direction of the surface normals. It uses the three component vertex
normals as texture coordinates, mapping Nx, Ny, and Nz into s, t, and r, respectively.
Normal vectors are assumed to be unit length, so the generated texture coordinates range
from −1 to 1. This technique is useful for environment mapping an object’s diffuse
reflections; the surface color becomes a function of the surface’s orientation relative to
the light sources of its surroundings.

Reflection texture generation indexes a surface texture based on the component val-
ues of the reflection vector. The reflection vector is computed using the vertex normal
and an eye vector. The eye vector is of unit length, pointing from the eye position toward
the vertex. Both the eye vector U, and the reflection vector R, are computed in eye space.
The reflection vector is generated by applying the equation R = U − 2NT (U · N), where
N is the vertex normal transformed into eye space. The reflection equation used is the
standard for computing the reflection vector given a surface normal and incident vector.5

5. Many texts (Foley et al., 1990; Foley et al., 1994; Rogers, 1997) present this reflection vector formula
with a sign reversed, but it is the same fundamental formula. The difference is simply one of convention:
the OpenGL U vector points from the eye to the surface vertex (an eye-space position), while many texts
use a light vector pointing from the surface to the light.

82 C H A P T E R 5 Tex tu re Mapp ing

N

R

Origin

Ry

Rz

Rx

R

s

t

Reflection vector components scaled by m

Texture coordinates

Ry/m

Rx/m

Reflection vector

Reflection vector components

F i g u r e 5.4 Sphere map coordinate generation.

Once the reflection vector is computed, its components are converted to texture
coordinates, mapping Rx, Ry, and Rz to s, t, and r, respectively. Because N and U
are normalized, the resulting R is normalized as well, so the texture coordinates will
range from −1 to 1. This function is useful for modeling specular objects, whose lighting
depends on both object and viewer position.

Sphere map texture generation has been supported by OpenGL since version 1.0.
While the other two texture generation modes create three texture coordinates, sphere
map generation only produces two; s and t. It does this by generating a reflection vector,
as defined previously, then scaling the Rx and Ry components by a modified reflection

vector length, called m. The m length is computed as 2
√

R2
x + R2

y + (Rz + 1)2. Dividing

the Rx and Ry by this m length projects the two components into a vector describing a unit
circle in the Rz = 0 plane. When these scaled Rx and Ry vectors are scaled by 1

2 and biased
by 1

2 , they are bounded to a [0,1] range and can be used as s and t coordinates. While
the other texture generation modes create three texture coordinates, requiring a texture
map that can index them (usually a cube map), the sphere map generation function can
be used with a normal 2D texture (Figure 5.4).

5.4.2 Texture Maps Used in Environment Mapping

The following sections describe the two basic OpenGL environment mapping techniques:
sphere mapping and cube mapping (for a description of another environment mapping
method, dual paraboloid mapping, see Section 14.8).

We’ll consider the creation and application of environment textures, as well as the
limitations associated with their usage. In both cases, sampling issues are paramount. Any
functionality that converts normal vectors into texture coordinates will have sampling
issues. Since texture maps themselves are not spherical, any coordinate generation method

S E C T I O N 5 . 4 Env i r onmen t Mapp ing 83

will produce sampling rates that vary across the texture. Another important consideration
when evaluating environment maps is the effort required to create an environment map
texture. This issue looms larger when environment maps must be created dynamically,
or if the environment mapping technique is not view-independent.

5.4.3 Cube Mapping

From its first specification, OpenGL supported environment mapping, but only through
sphere map texture generation. With OpenGL 1.3, cube map textures, partnered with nor-
mal and reflection texture coordinate generation, have been added to augment OpenGL’s
environment mapping capabilities. A cube map texture is composed of six 2D texture
maps, which can be thought of as covering the six faces of an axis-aligned cube. The
s, t, and r texture coordinates form the components of a normalized vector emanating
from the cube’s center. Each component of the vector is bound to the range [−1, 1]. The
vector’s major axis, the axis of the vector’s largest magnitude component, is used to select
the texture map (cube face). The remaining two components index the texels used for
filtering. Since the components range from −1 to 1, the filtering step scales and biases the
values into the normal 0 to 1 range so they can be used to index into the cube face’s 2D
texture.

Cube map functionality has been added to the OpenGL in a very orthogonal manner,
so the OpenGL commands and methodology needed to use them should be familiar.
To use a cube map, the cube map textures must be loaded, configured, and enabled.
The appropriate texture coordinates must be set or generated (the latter is the more
common case) for each vertex. A cube map texture can be loaded with the usual OpenGL
functions, including glTexImage2D and glCopyTexImage2D. The target must be set
to one of the six cube map faces, listed in Table 5.1.

The OpenGL enumeration values are consecutive, and increase from the top to the
bottom of the table. This enumerant ordering makes it easier to load the images using a
loop construct in the application code. Cube map texturing is enabled using glEnable
with an argument of GL_TEXTURE_CUBE_MAP.

Each cube map face can be a single 2D texture level or a mipmap. The usual pro-
cedures apply; the only difference is in the texture target name. The appropriate texture

T ab l e 5.1 Cube Map Texture Targets

GL_TEXTURE_CUBE_MAP_POSITIVE_X
GL_TEXTURE_CUBE_MAP_NEGATIVE_X
GL_TEXTURE_CUBE_MAP_POSITIVE_Y
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
GL_TEXTURE_CUBE_MAP_POSITIVE_Z
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z

84 C H A P T E R 5 Tex tu re Mapp ing

target shown in Table 5.1 must be used in the place of GL_TEXTURE_2D. The same
caveats and limitations also apply; if the cube map does not have mipmapped faces, its
minification filter must be set to an appropriate type, such as GL_LINEAR. The minifica-
tion filter of GL_LINEAR_MIPMAP_LINEAR is the default minification value, just as it is
for 2D textures.

If the application enables multiple texture maps at the same time, cube map textures
take precedence over 1D, 2D, or 3D texture maps. If multitexturing is used, cube map
textures can be bound to one or more texture units. Multiple cube maps can also be
managed with texture objects.

As noted previously, a cube map can be indexed directly using texture coordinates.
A 3D set of texture coordinates must be applied to each vertex, using a command such as
glTexCoord3f. Although setting texture coordinates directly can be useful, especially
for debugging, the most common way to index cube map textures is with a texture
generation function. In this case, the texture generation function should create s, t, and
r components. To set the s coordinate to reflection texture generation, the glTexGen
function is set with the GL_S coordinate, the GL_TEXTURE_GEN_MODE parameter, and
the GL_REFLECTION_MAP value.

The combination of a texture generation function and a cube map can be thought of
as a programmable function that can take as input one of two types of 3D vectors.; the
texture map provides the filtered table lookup, while the texture coordinate generation
provides the input vector. The GL_EYE_LINEAR texgen provides the eye vector to the
vertex, GL_NORMAL_MAP provides the vertex’s normal, and GL_REFLECTION_MAP
provides its reflection vector.

Cube Map Texture Limitations

Although very powerful, cube map texturing has a number of important limitations.
Since the textures aren’t spherical, the sampling rate varies across each texture face.
The sample rate is best at the center of each texture face; a fixed angular change in
direction cuts through the smallest number of texels at this point. The ratio between the
best and worst sampling rates is signficant; although better than sphere maps, it is worse
than dual paraboloid maps.

Sampling across cube face boundaries can also be an issue. Since a cube texture
is composed of six non-overlapping pieces, creating textures that provide good border
sampling isn’t trivial. Cube map textures with borders must correctly sample texel values
from their neighbors; because of the cube geometry, simply using a strip of texels from
adjacent textures will result in slightly inaccurate sampling. The border texels must be
projected back along the line to the cube center to find the adjacent cube samples that
provide their colors.

Things get more complex if mipmapped textures with borders are used. Border texels
cover different areas, depending on the coarseness of the mipmap level. Mipmap textures
with borders handle texture coordinates generated from rapidly changing vertex vectors.
An example is a small triangle, covering only a few pixels on the screen, containing

S E C T I O N 5 . 4 Env i r onmen t Mapp ing 85

Angular distance to cover a single
border texel maps to a different
size on the adjacent texture

F i g u r e 5.5 Cube map texture border calculations.

three highly divergent vertex normals. Normal or reflection vector interpolation leads to
adjacent pixels sampled from different faces of the cube map; only good texture generation
will avoid aliasing artifacts in these conditions.

If a geometry primitive with antiparallel vectors is interpolated, the interpolated
vector may become degenerate. In this case, the sampled texel will be arbitrary. A cube
map with mipmapped face textures will reduce the chance of aliasing in this case. Such
interpolations have a large derivative value, and the coarse mipmap levels of the cube
faces tend to have similar texel colors. Cube map textures also consume lots of texture
memory. For any given texture resolution (which because of the sampling rate variations,
tend to be large to maintain quality), the texture memory usage must be multipled by six
to take into account all of the cube faces.

5.4.4 Sphere Mapping

Sphere mapping is the original environment mapping method for OpenGL; it has been a
core feature since OpenGL 1.0. A sphere map texture is a normal 2D texture with a spe-
cially distorted image on it. The sphere map image is inscribed in the interior of a circle in
the texture map with radius 1

2 centered at (1
2 , 1

2) in texture coordinates. The image within

86 C H A P T E R 5 Tex tu re Mapp ing

the circle can be visualized as the image of a chrome sphere reflecting its surroundings.
The silhouette edge of the sphere is seen as an extreme grazing reflection of whatever
is directly behind the sphere. Visualize the sphere as infinitely small; it doesn’t obscure
any objects, and its grazing reflection is of only one point behind it. This implies that,
ignoring sampling issues, every point on the circle’s edge of a properly generated sphere
map should be the same color. Properly normalized reflection vectors are guaranteed to
fall within the sphere map’s circle, so texels outside the circle will never be filtered.

Since sphere mapping requires only a single texture, configuring OpenGL for sphere
mapping is straightforward. The desired sphere map texture is made current, then tex-
turing is done in the usual manner. The sphere map texture image is designed to map
texture coordinates derived from reflection vectors at each vertex. Although regular tex-
ture coordinates can be used, OpenGL provides a special texture coordinate generation
mode that can be used to map texture coordinates from reflection vectors. Since a sphere
map texture is 2D, only the s and t coordinates need to be generated:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

As with any environment mapping technique, the combination of sphere map texture
and sphere map texture coordinate generation can be thought of as a 2D mapping function
converting reflection vector directions into color values.

Sphere Map Limitations

Although sphere mapping can be used to create convincing environment mapped objects,
sphere-mapped reflections are not physically correct. Most of the artifacts come from
the discrepancy between a sphere map image generation and its application onto tex-
tured geometry. A sphere map image is mapped as if its reflection vectors originate from
a single location. On the other hand, a sphere map texture is often applied over the
extended area of an object’s surface. As a result, sphere-mapped objects can’t accu-
rately reproduce the optical effect of reflecting a nearby object, or represent a reflective
object that is self-reflecting. Sphere mapping results are only completely accurate when
the assumption is made that all of the reflected surroundings are infinitely far from the
reflective object.

The variable sampling rate of sphere map can also lead to sampling artifacts. The
computed texture coordinates are perspective correct at the vertices, but linearly inter-
polated across each polygon. Unfortunately, a sphere map image is highly non-linear,
so this interpolation is not correct. This can lead to poor sampling rates for the parts of
the textured primitive that sample near the edge of the sphere map circle, with the usual
aliasing artifacts.

S E C T I O N 5 . 4 Env i r onmen t Mapp ing 87

Reasonably sampled polygons
that do not cross behind the
spere map

Reasonable: Intended environment
wrap through the sphere map
perimeter

Wrong: But 2D texturing hardware
simply crosses the environment
instead of wrapping

F i g u r e 5.6 The source of sphere mapping sparkles.

Additionally, the points at the edge of the sphere-map circle all map to the same
location. This can lead to multiple valid but varying interpolations for the same set of
vertex texture coordinates; interpolating within the sphere map circle, or interpolating
the “long way around,” across the sphere-map circle boundary. This type of interpolation
is necessary when the reflecting primitive is nearly edge on to the viewer. In these cases,
sphere map coordinates will be interpolated incorrectly, since they always interpolate
within the sphere map circle. Figure 5.6 illustrates this ambiguity.

The failure to wrap around the sphere map edge is responsible for an unsightly artifact
that appears as random “sparkles” or “dirt” at the silhouette edge of a sphere-mapped
object. The wrong texels are used to texture the polygons, causing the object to have
miscolored regions. Generally the incorrectly sampled polygons are small, causing the
artifacts to look like “dirt”. Because these grazing polygons are small in screen space,
the number of affected pixels is usually small. Still the effectively random sparkling can
be objectionable, particularly in animated scenes. Figure 5.7 shows a scene with sparkle
artifacts, a zoomed in section of the scene sparkles at the silhouette edge of the sphere-
mapped object.

This problem can be solved by careful splitting of silhouette polygons, forcing the
correct texels to be sampled in the resulting polygons. The polygons should be split
along the boundary of the polygon where the interpolated reflection vector is parallel to
the direction of view (and maps to the the sphere map edge). This can be an expensive
operation, however. It may be better to use a more robust technique such as cube mapping.

The final major limitation of sphere maps is that their construction assumes that the
center of the sphere map reflects directly back at the viewer. When constructing sphere
maps, the construction is based on a particular view orientation. The sphere map image is
view-dependent. This means unless the sphere map is regenerated for different views, the
sphere map will be incorrect as the viewer’s relationship to the textured object changes.

88 C H A P T E R 5 Tex tu re Mapp ing

(a) (b)

F i g u r e 5.7 Example showing sparkle artifacts.

To avoid artifacts, new sphere map texture images must be created and loaded as
the viewer/object relationship changes. If the environment mapped object is reflecting a
dynamic environment, this continuous updating may be required anyway. This require-
ment is a major limitation for using sphere maps in dynamic scenes with a moving
viewer.

5.5 3D Texture

An important point to note about 3D textures in OpenGL is how similar they are to
their 1D and 2D relatives. From the beginning, OpenGL texturing was designed to be
extensible. As a result, 3D textures are implemented as a straightforward extension of 2D
and 1D textures. Texture command parameters are similar; a GL_TEXTURE_3D target
is used in place of GL_TEXTURE_2D or GL_TEXTURE_1D.6 The texture environment
remains unchanged. 3D texture internal and external formats and types are the same,
although a particular OpenGL implementation may limit the availability of 3D texture
formats.

A 3D texture is indexed with s, t, and r texture coordinates instead of just s and t.
The additional texture coordinate complexity, combined with the common uses for 3D
textures, means texture coordinate generation is used more commonly for 3D textures

6. 3D textures were added to OpenGL 1.2; prior to 1.2 they are available as an extension.

S E C T I O N 5 . 5 3D Tex tu re 89

t

s

r

Image 3

Image 2

Image 1

Image 0

Images stacked
sequentially
from origin.

F i g u r e 5.8 3D Texture Maps.

than for 1D and 2D. Figure 5.8 shows a 3D texture, its 2D image components, and how
it is indexed with s, t, and r.

3D texture maps take up a large amount of texture memory, and are expensive to
change dynamically. This can affect the performance of multipass algorithms that require
multiple passes with different textures.

The texture matrix operates on 3D texture coordinates in the same way that it does
for 1D and 2D textures. A 3D texture volume can be translated, rotated, scaled, or
have any other combination of affine and perspective transforms applied to it. Applying
a transformation to the texture matrix is a convenient and high-performance way to
manipulate a 3D texture, especially when it is too expensive to alter the texel values
directly.

A clear distinction should be made between 3D textures and mipmapped 2D textures.
3D textures can be thought of as a solid block of texture, requiring a third texture
coordinate r, to access any given texel. A 2D mipmap is a series of 2D texture maps,
each filtered to a different resolution. Texels from the appropriate level(s) are chosen and
filtered, based on the relationship between texel and pixel size on the primitive being
textured.

Like 2D textures, 3D texture maps may be mipmapped. Instead of resampling a
2D image, at each level the entire texture volume is resampled down to an eighth of its
volume. This is done by averaging a group of eight adjacent texels on one level down
to a single texel on the next. Mipmapping serves the same purpose in both 2D and 3D
texture maps; it provides a means of accurately filtering when the projected texel size is
small relative to the pixels being rendered.

5.5.1 Using 3D Textures to Render Sol id Materials

A straightforward 3D texture application renders solid objects composed of heteroge-
neous material. A good example would be rendering an object made of solid marble
or wood. The object itself is composed of polygons or non-uniform rational B-splines
(NURBS) surfaces bounding the solid. Combined with proper texgen values, rendering

90 C H A P T E R 5 Tex tu re Mapp ing

the surface using a 3D texture of the material makes the object appear cut out of the mate-
rial. In contrast, with 2D textures, objects often appear to have the material laminated
on the surface. The difference can be striking when there are obvious 3D coherencies in
the material texture, especially if the object has sharp angles between its surfaces.

Creating a solid 3D texture starts with material data. The material color data
is organized as a three dimensional array. If mipmap filtering is desired, use
glBuild3DMipmaps to create the mipmap levels. Since 3D textures can use up a lot of
texture memory, many implementations limit their maximum allowed size. Verify that the
size of the texture to be created is supported by the system and there is sufficient texture
memory available for it by calling glTexImage3D with GL_PROXY_TEXTURE_3D to
find a supported size. Alternatively, glGet with GL_MAX_3D_TEXTURE_SIZE retrieves
the maximum allowed size of any dimension in a 3D texture for the OpenGL implemen-
tation, though the result may be more conservative than the result of a proxy query, and
doesn’t take into account the amount of available texture memory.

The key to applying a solid texture accurately on the surface is using the right texture
coordinates at the vertices. For a solid surface, using glTexGen to create the texture
coordinates is the easiest approach. Define planes for s, t, and r in object space to orient
the solid material to the object. Adjusting the scale has more effect on texture quality
than the position and orientation of the planes, since scaling affects the spacing of the
texture samples.

Texturing itself is straightforward. Using glEnable(GL_TEXTURE_3D) to enable
3D texture mapping and setting the texture parameters and texture environment appro-
priately is all that is required. Once properly configured, rendering with a 3D texture is
no different than other types of texturing. See Section 14.1 for more information on using
3D textures.

5.6 Filtering

While texture image is a discrete array of texels, texture coordinates vary continu-
ously (at least conceptually) as they are interpolated across textured primitives during
rendering. This creates a sampling problem. When rendering textured geometry, the dif-
ference between texture and geometric coordinates causes a pixel fragment to cover an
arbitrary region of the texture image (called the pixel footprint). Ideally, texture filter-
ing integrates weighted contributions from all the texels covered by the pixel footprint.
The discussions in Section 4.1 regarding digital image representation and sampling are
equally valid when applied to texture mapping. Texture mapping operations can intro-
duce aliasing artifacts if inadequate sampling is performed. In practice, texture mapping
doesn’t approach ideal sampling because of the large performance penalty incurred by
accessing and integrating all contributing sample values. In some circumstances, filtering
results can be improved using special techniques inside the application. For example,
Section 14.7 describes techniques for dealing with anisotropic footprints.

S E C T I O N 5 . 7 Add i t i ona l Con t r o l o f Tex tu re Leve l o f De ta i l 91

OpenGL provides a set of filtering methods for sampling and integrating texel values.
The available filtering choices depend on whether the texels are being magnified (when
the pixel footprint is smaller than a single texel) or minified (the pixel footprint is larger
than a single texel).

The simplest filter method is point sampling: only a single texel value, from the texel
nearest the texture coordinate’s sample point, is selected. This type of sampling, called
GL_NEAREST in OpenGL, is useful when an application requires access to unmodified
texel values (e.g., when a texture map is being used as a lookup table). Point sampling
seldom gives satisfactory results when used to add surface detail, often creating distracting
aliasing artifacts. Instead, most applications use an interpolating filter.

Bilinear texturing is the next step up for filtering texture images. It performs a
linear interpolation of the four texels closest to the sample point. In image process-
ing parlance, this is a tent or triangle filter using a 2×2 filter kernel. In OpenGL
this type of filtering is referred to as GL_LINEAR. For magnified textures, OpenGL
supports GL_LINEAR and GL_NEAREST filtering. For minification, OpenGL supports
GL_NEAREST and GL_LINEAR, as well as a number of different mipmapping (Williams,
1983) approaches. The highest quality (and most computationally expensive) mipmap
method core OpenGL supports is tri-linear mipmapping. This mipmapping method,
called GL_LINEAR_MIPMAP_LINEAR, performs bilinear filtering on the two closest
mipmap levels, then interpolates the resulting values based on the sample point’s level of
detail.

Some OpenGL implementations support an extension called
SGIS_texture_filter4. This is a texture filtering method that provides a larger
filter kernel. It computes the weighted sum of the 4×4 texel array closest to the sam-
ple point. Anisotropic texturing, which handles textures with a higher minification
value in a certain direction (this is common in textures applied to geometry that is
viewed nearly edge on), is also supported by some OpenGL implementations with the
EXT_texture_filter_anisotropic extension. Anisotropic texturing samples a
texture along the line of maximum minification. The number of samples depends on
the ratio between the maximum and minimum minification at that location.

5.7 Additional Control of Texture Level of Detail

In OpenGL 1.0 and 1.1, all of the mipmap levels of a texture must be specified and con-
sistent. To be consistent, every mipmap level of a texture must have half the dimensions
of the previous mipmap level of detail (LOD) until reaching a level having one or both
dimensions of length one, excluding border texels. In addition, all of a mipmap’s levels
must use the same internal format and border configuration (Figure 5.9).

If mipmap filtering is requested for a texture, but all the mipmap levels of a texture
are not present or are not consistent, OpenGL silently disables texturing. A common
pitfall for OpenGL programmers is to accidently supply an inconsistent or incomplete set

92 C H A P T E R 5 Tex tu re Mapp ing

Original texture

Pre-filtered mipmap textures

Magnified view of textures:
note how texels blur together
at coarser mip levels

1/4

1/16

1/64
1/256

…

F i g u r e 5.9 Multiple levels of texture detail using mipmaps.

of mipmap levels, resulting in polygons being rendered without texturing. For a common
example of this problem, consider an application that specifies a single texture level
without setting the minification filter setting. The default minification filter in OpenGL,
GL_LINEAR_MIPMAP_LINEAR, requires a consistent mipmap. As a result, the texture is
inconsistent with the minification filter being used, and texturing is disabled.

OpenGL 1.2 relaxes the texture consistency requirement by allowing the application
to specify a contiguous subset of mipmap levels to use. Only the levels specified must
exist and be consistent. For example, this feature permits an application to specify only
the 1×1 through 256×256 mipmap levels of a texture with a 1024×1024 level 0 texture,
and still mipmap with these levels, even if the 512×512 and 1024×1024 levels are not
loaded. The application can do this by setting the texture’s GL_TEXTURE_BASE_LEVEL
and GL_TEXTURE_MAX_LEVEL parameters appropriately. An OpenGL application will
not use texture levels outside the range specified by these values, even if the level of detail
parameter indicates that they are the most appropriate ones to use.

The level of detail parameter, λ, is used in the OpenGL specification to describe the
size relationship between a pixel in window space, and the corresponding texel(s) that
covers it. If the texture coordinates of a textured primitive were overlayed onto the prim-
itive in screen space, and the texture coordinates were scaled by the texture dimensions,
the ratio of these coordinates shows how the texels in the texture map correspond to the
pixels in the primitive. A ratio can be computed for each texture coordinate relative to the
x and y coordinates in window space. Taking log2 of the largest scale factor produces λ.
This parameter is measured to choose between minification and magnification filters, and
to select mipmap levels when mipmap minification is enabled.

Limiting OpenGL to a limited range of texture levels is useful if an application must
guarantee a constant update rate. From the previous example, if texture load bandwidth
is a bottleneck, the application might constrain the base and maximum LODs when it
doesn’t have enough time to load the 512×512 and 1024×1024 mipmap levels from disk.
In this case, the application chooses to settle for lower resolution LODs, possibly resulting

S E C T I O N 5 . 8 Tex tu re Ob je c t s 93

Levels still
being loaded

Base/Max levels

Min LOD
Incomplete levels

Recently

completed

level

Complete levels

Min LOD used to “sharpen up”
recently loaded level
Base/Max level limits texturing
to valid levels

F i g u r e 5.10 Loading a mipmap over multiple frames using LOD control.

in blurry textured surfaces, rather than not updating the image in time for the next frame.
On subsequent frames, when the application gets enough additional time to load the full
set of mipmap levels for the texture, it can load the finer levels, change the LOD limits,
and render with full texture quality. The OpenGL implementation can be configured to
use only the available levels by clamping the λ LOD value to the range of available ones.

OpenGL provides finer control over LOD than specifying a range of texture levels.
The minimum and maximum allowable LOD values themselves can be specified. The
OpenGL 1.2 GL_TEXTURE_MIN_LOD and GL_TEXTURE_MAX_LOD texture parameters
provide a further means to clamp the λ LOD value. The min and max values can be
fractional, allowing the application to control the blending of two mipmap levels.7 An
application can use the min and max values to gradually “sharpen up” to a finer mipmap
level over a number of frames, or gradually “blur down” to a coarser level.

This functionality can be used to make the use of finer texture levels as they become
available less abrupt and noticeable to the user. Section 14.6 applies this feature to the
task of texture paging. Figure 5.10 shows how texture level and LOD ranges can work
together to allow the application fine control over loading and using a mipmap. In this
example, a mipmap’s levels are being loaded over a number of frames. LOD control is
used to ensure that the mipmap can be put to use while the loading occurs, with minimal
visual artifacts.

5.8 Texture Objects

Most texture mapping applications switch among many different textures during the
course of rendering a scene. To facilitate efficient switching among multiple textures

7. This same functionality for controlling texture level of detail is also available through the
SGIS_texture_lod extension.

94 C H A P T E R 5 Tex tu re Mapp ing

and to facilitate texture management, OpenGL uses texture objects to maintain texture
state.8

The state of a texture object contains all of the texture images in the texture (including
all mipmap levels) and the values of the texturing parameters that control how tex-
els are accessed and filtered. Other OpenGL texture-related states, such as the texture
environment or texture coordinate generation modes, are not part of a texture object’s
state.

As with display lists, each texture object is identified by a 32-bit unsigned integer
which serves as the texture’s name. Like display list names, the application is free to
assign arbitrary unused names to new texture objects. The command glGenTextures
assists in the assignment of texture object names by returning a set of names guaranteed
to be unused. A texture object is bound, prioritized, checked for residency, and deleted by
its name. Each texture object has its own texture target type. The four supported texture
targets are:

• GL_TEXTURE_1D

• GL_TEXTURE_2D

• GL_TEXTURE_3D

• GL_TEXTURE_CUBE_MAP

The value zero is reserved to name the default texture of each texture target type. Calling
glBindTexture binds the named texture object, making it the current texture for the
specified texture target. Instead of always creating a new texture object, glBindTexture
creates a texture object only when a texture image or parameter is set to an unused texture
object name. Once created, a texture object’s target (1D, 2D, or 3D) can’t be changed.
Instead, the old object must be destroyed and a new one created.

TheglTexImage, glTexParameter, glGetTexParameter, glGetTexLevel-
Parameter, and glGetTexImage commands update or query the state of the currently
bound texture of the specified target type. Note that there are really four current textures,
one for each texture target type: 1D, 2D, 3D, and cube map. When texturing is enabled,
the current texture object (i.e., current for the highest priority enabled texture target)
is used for texturing. When rendering geometric objects using more than one texture,
glBindTexture can be used to switch among them.

Switching textures is a fairly expensive operation; if a texture is not already resident
in the accelerator texture memory, switching to a non-resident texture requires that the
texture be loaded into the hardware before use. Even if the texture is already loaded,
caches that maximize texture performance may be invalidated when switching textures.
The details of switching a texture vary with different OpenGL implementations, but

8. Texture objects were added in OpenGL 1.1.

S E C T I O N 5 . 9 Mul t i t e x tu r e 95

it’s safe to assume that an OpenGL implementation is optimized to maximize texturing
performance for the currently bound texture, and that switching textures should be
minimized.

Applications often derive significant performance gains sorting the objects they are
about to render by texture. The goal is to minimize the number of glBindTexture
commands required to draw the scene. Take a simple example: if a scene uses three
different tree textures to draw several dozen trees within a scene, it is a good idea to
group the trees by the texture they use. Then each group can be rendered in turn, binding
the group’s texture, then rendering all the group’s members.

5.9 Multitexture

OpenGL 1.3 extends core texture mapping capability by providing a framework to sup-
port multiple texture units. This allows two or more distinct textures to be applied to a
fragment in one texturing pass.9 This capability is generally referred to by the name multi-
texture. Each texture unit has the ability to access, filter, and supply its own texture color
to each rasterized fragment. Before multitexture, OpenGL only supported a single texture
unit. OpenGL’s multitexture support requires that every texture unit be fully functional
and maintain state that is independent of all other texture units. Each texture unit has its
own texture coordinate generation state, texture matrix state, texture enable state, and
texture environment state. However, each texture unit within an OpenGL context shares
the same set of texture objects.

Rendering algorithms that require multiple rendering passes can often be reimple-
mented to use multitexture and operate with fewer passes. Some effects, due to the number
of passes required or the need for high color precision, are only viable using multitexture.

Many games, such as Quake (id Software, 1999) and Unreal (Epic Games, 1999),
use light maps to improve the lighting quality within their scenes. Without multitexture,
light map textures must be modulated into the scene using a second blended rendering
pass, after the first pass renders the surface texture. With multitexture, the light maps
and surface texture can be rendered in a single rendering pass. This reduces the transfor-
mation overhead almost in half: rendering light maps as part of a single multitextured
rendering pass means the polygons are only transformed once. Framebuffer update over-
head is also lower when using multitexture to render light maps: when multitexture is
used, the overhead of blending in the second rendering pass is eliminated. The compu-
tation moves from the framebuffer blending part of the pipeline to the second texture
unit’s environment stage. This means the light maps only affect the processing of multi-
textured geometry, rather than the entire scene. Light maps are described in more detail in
Section 15.5.

9. This functionality was also available earlier as the ARB_multitexture extension.

96 C H A P T E R 5 Tex tu re Mapp ing

5.9.1 Multitexture Model

The multitexture API adds commands that control the state of one or more texture units.
The glActiveTexture command determines which texture unit will be affected by the
OpenGL texture commands that follow. For example, to enable 2D texturing on texture
unit 0 and 1D texturing on texture unit 1, issue the following OpenGL commands:

glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE1);
glEnable(GL_TEXTURE_1D);

Note that the state of each texture unit is completely independent. When multitex-
ture is supported, other texture commands such as glTexGen, glTexImage2D, and
glTexParameter affect the current active texture unit (as set by glActiveTexture).
Other commands, such as glDisable, glGetIntegerv, glMatrixMode,
glPushMatrix, and glPopMatrix, also operate on the current active texture unit
when updating or querying texture state.

The number of texture units available in a given OpenGL implementation can be
found by querying the implementation-dependent constant GL_MAX_TEXTURE_UNITS.
using glGetIntegerv. To be conformant with the OpenGL specification, implementa-
tions should support at least two units, but this may not always be the case. To be safe,
the application should query the number available before multitexturing.

OpenGL originally supported a single set of texture coordinates. With the addition
of multitexture, vertex attributes have been extended to include a number of texture
coordinate sets equal to the maximum number of texture units supported by the imple-
mentation. Rather than modifying the behavior of the existing glTexCoord command,
multitexture provides glMultiTexCoord commands for setting texture coordinates for
each texture unit. For example:

glMultiTexCoord2f(GL_TEXTURE0, s0, t0);
glMultiTexCoord4f(GL_TEXTURE1, s1, t1, r1, q1);
glMultiTexCoord1i(GL_TEXTURE2, s2);
glVertex3f(x, y, z);

The behavior of the glTexCoord family of routines is specified to update just texture
unit zero.

Multitexture also supports vertex arrays for multiple texture coordinate sets. In
this case, an active texture paradigm is used. Because vertex arrays are considered
client state, the glClientActiveTexture command is added to control which ver-
tex array texture coordinate set the glTexCoordPointer, glEnableClientState,
glDisableClientState, and glGetPointerv commands effect or query. To illus-
trate, this example code fragment provides no texture coordinates for texture unit

S E C T I O N 5 . 9 Mul t i t e x tu r e 97

zero, but provides an array pointing to the data in tex_array_ptr for texture
unit one:

glClientActiveTexture(GL_TEXTURE0);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glClientActiveTexture(GL_TEXTURE1);
glTexCoordPointer(2, GL_FLOAT, 0, tex_array_ptr);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);

Multitexturing also extends the current raster position to contain a distinct texture
coordinate set for each supported texture unit. Multitexture support was not provided
uniformly throughout OpenGL; evaluator and feedback functionality are not extended
to support multiple texture coordinate sets. Evaluators and feedback utilize only texture
coordinate set zero.

TheglPushAttrib, glPopAttrib, glPushClientAttrib, andglPopClient-
Attrib push and pop respectively all the respective server or client texture state of all
texture units when texture-related state is pushed or popped.

5.9.2 Multitexture Texture Environments

Much of the multitexture functionality, such as texture coordinate generation, texel
lookup, and texture filtering, can be thought of as operating independently in each texture
unit. But they must interact during the texture environment stage to provide a single
fragment color. The multitexture pipeline uses a cascade model to combine the incoming
fragment color with the fragment’s texture contribution from each texture unit. The first
enabled texture unit uses its state to control how to combine the incoming fragment color
with its corresponding texture color.

The resulting color is passed to the next enabled texture unit, where the process is
repeated. The texture unit uses its environment state to control how the incoming color
(which came from the previous active texture unit), is combined with the corresponding
texture color, then passes the resulting color to the next active unit.

This process continues until all the enabled texture units have modified the frag-
ment color. The texture units are accessed by increasing numerical order; texture unit 0
(if active), then texture unit 1 (if active), and so on. Figure 5.11 illustrates the multitexture
dataflow.

Multitexture with basic texture environment functionality is extremely useful for
streamlining multitexture algorithms such as light maps or environment mapping. But
modern multitexture hardware has evolved to support a substantially more flexible facility
for combining multiple textures. This evolution is reflected in a number of additions to the
texture environment functionality. Multitexturing techniques reach their fullest potential
when used with this more advanced version of texture environment. It is implemented
in OpenGL through the ARB_texture_env_combine, ARB_texture_env_dot3,
and ARB_texture_env_crossbar extensions. The first two extensions was added to

98 C H A P T E R 5 Tex tu re Mapp ing

TE1

C′f

TE2

TE3

TE0

Cf

CT0

CT1

CT2

CT3 Crossbar

F i g u r e 5.11 Multitexture texture environments. Four texture units are shown; however, the number of units available
depends on the implementation. The input fragment color is successively combined with each texture according to the
state of the corresponding texture environment, and the resulting fragment color passed as input to the next texture unit
in the pipeline.

core OpenGL 1.3, while the last is in OpenGL 1.4. The following section describes this
functionality in more detail.

5.10 Texture Environment

The texturing stage that computes the final fragment color value is called the texture
environment function (glTexEnv). This stage takes the filtered texel color (the texture
color) and the untextured color that comes from rasterizing the untextured polygon,
called the fragment color. In addition to these two input values, the application can also
supply an additional color value, called the environment color. The application chooses
a method to combine these colors to produce a final color. OpenGL provides a fixed set
of methods for the application to choose from.

Each of the methods provided by OpenGL produce a particular effect. One of the
most commonly used is the GL_MODULATE environment function. The modulate function
multiplies or modulates the polygon’s fragment color with the texel color. Typically,
applications generate polygons with per-vertex lighting enabled and then modulate the
texture image with the fragment’s interpolated lighted color value to produce a lighted,
textured surface.

The GL_REPLACE texture environment10 function is much simpler. It just replaces
the fragment color with the texture color. The replace function can be emulated in
OpenGL 1.0 by using the modulate environment with a constant white polygon color,
though the replace function has a lower computational cost.

The GL_DECAL environment function alpha-blends between the fragment color and
an RGBA texture’s texture color, using the texture’s alpha component to control the inter-
polation; for RGB textures it simply replaces the fragment color. Decal mode is undefined
for other texture formats (luminance, alpha, intensity). The GL_BLEND environment

10. Introduced by OpenGL 1.1.

S E C T I O N 5 . 1 0 Tex tu re Env i r onmen t 99

function is a little different. It uses the texture value to control the mixing of the fragment
color and the application-supplied texture environment color.

5.10.1 Advanced Texture Environment Functional i ty

Modern graphics hardware has undergone a substantial increase in power and flexibil-
ity, adding multiple texture units and new ways to combine the results of the lookup
operations. OpenGL has evolved to better use this functionality by adding multitexturing
functionality and by providing more flexible and powerful fixed-function texture environ-
ment processing. This evolution has culminated in transition from a fixed-function model
to a programmable model, adding an interface for programming texturing hardware
directly with a special shading language.

As of OpenGL 1.3, three more environment function extensions were added to the
core specification. The ARB_texture_env_add extension adds the GL_ADD texture
environment function in which the final color is produced by adding the fragment and
texture color. This functionality is useful to support additive detail, such as specular
highlights, and additive lightmaps.

The ARB_texture_env_combine extension provides a fine-grain orthogonal set
of fixed-function texture environment settings. This reorganization of texture environ-
ment functionality can take better advantage of programmable texturing hardware. When
GL_COMBINE is specified, two different texture environment functions can be specified;
one for the RGB components and one for the alpha components of the incoming col-
ors. Each environment function is chosen from a corresponding set of RGB and alpha
functions.

Unlike previous texture environment functions, the combine functions are generic;
they operate on three arguments, named Arg0, Arg1, and Arg2. These arguments are
specified with source and operand enumerants for each argument. Like the environ-
ment functions themselves, there are distinct sets of source and operand enumerants for
RGB and alpha color components. An argument source can be configured to be the
filtered texture color GL_TEXTURE, the application-specified texture environment color
GL_CONSTANT, the untextured fragment color from the primitive GL_PRIMARY_COLOR,
or the color from the previous texture stage GL_PREVIOUS. The components of the argu-
ment’s specified color are modified by the operand argument. An operand can choose the
RGB or alpha components of the source color, use them unchanged, or invert them
(apply a 1− color operation to each component). Figure 5.12 illustrates the relationships
between the components that make up the combine function.

Configuring this new functionality may become clearer with an example. It uses
the GL_COMBINE functionality to mimic the GL_MODULATE function. The following
command sequence will produce the same effect as GL_MODULATE on an RGB texture:

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PRIMARY_COLOR);

100 C H A P T E R 5 Tex tu re Mapp ing

Arg0 SRC

Arg0 OP

Arg1 SRC

Arg1 OP

RGB func

Arg2 SRC

Arg2 OP

Arg0 SRC

Arg0 OP

Arg1 SRC

Arg1 OP

Alpha func

RGB

Arg2 SRC

Arg2 OP

Texture
Constant
Color
Previous

SRC:

Value
1 – value

OP:

Arg0

Arg0 × Arg1
Arg0 + Arg1
Arg0 + Arg1 – .5
Arg0 × (Arg2) + Arg1 × (1 – Arg2)
Arg0 + Arg1

FUNC:

RGB Alpha

A

F i g u r e 5.12 The components of the combine texture function.

glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_COLOR);

The ARB_texture_env_dot3 extension augments the combine functionality, pro-
viding RGB and RGBA dot product RGB functions. Per-pixel dot product functions are
useful for a number of techniques, such as implementing a common bump mapping
technique.

With OpenGL 1.4 another extension was added to the core;
ARB_texture_env_crossbar. This extension also augments the combine interface.
Instead of restricting the source of a previously textured color value to the previous tex-
ture unit, the crossbar functionality makes it possible to use the output from any previous
active texture unit in the texturing chain. This makes texture environment sequences more
flexible; for example, a particular texture unit’s output can be used as input by multiple
texturing units. This functionality allows the fixed function combine interface to more
closely approximate a fully programmable one.

5.10.2 Fragment Programs

The evolution of texture environment functionality has progressed to the point
where OpenGL can support fully programmable texture (shading) hardware. The
ARB_fragment_program extension defines a programming language that can be
loaded in the pipeline through a set of new commands. Programs can be loaded, made
current, and have parameter values assigned.

S E C T I O N 5 . 1 0 Tex tu re Env i r onmen t 101

Color sum Fog

Fragment program

Rasterization
Primitive
assembly

Fragment
processing

Texturing

only one path can be active

F i g u r e 5.13 Fragment program functionality.

The programming language not only provides a fully programmable replacement for
texture environment operations (including support for depth textures), but also supplants
the color summation stage (for separate specular color) and fog computations, as shown
in Figure 5.13.

Besides a programming language, the fragment program extension provides addi-
tional commands for loading, selecting, and modifying fragment programs (which are
called program objects). The functionality provided is very similar to that used for texture
objects. The glProgramStringARB command loads a new fragment program; it can be
made current with glBindProgramARB; and deleted with glDeleteProgramsARB.
There are also queries and tests that can be used to retrieve a loaded program, or to check
for its existence.

Fragment programs can use environment and local variables, called parameters.
A local parameter can be thought of as a static variable, global to the program. Envi-
ronment parameters are variable values global to all programs in the implementation.
All parameters are an array of four floating-point values (eliminating a multitude of
dynamic range and precision problems in the fixed-function pipeline). These values can
be changed in a loaded program using various forms of glProgramEnvParameter
and glProgramLocalParameter. Since these parameters can be modified in a pro-
gram even after it is loaded, it makes it possible to use a parameterized program multiple
ways, without having to reload it.

Going into the details of the fragment programming language is beyond the scope of
this book, but some general comments can give some idea of its capabilities. The currently
active fragment program operates on fragments generated during rasterization. Fragment
programs appear like assembly language, having simple instructions and operands. The
instructions have a digital signal processor (DSP) flavor, supporting trigonometric opera-
tions such as sine and cosine, dot and cross products, exponentiation, and multiply-add.
Special instructions provide texture lookup capability. Instructions operate on vector
and scalar floating-point values, they can come from attributes of the rasterized frag-
ment, temporary variables in the program, or parameters that can be modified by the
application. There is built-in support for swizzling vector arguments as well as negation.

As mentioned previously, the base extension provides no flow control or looping
constructs, but there are conditional set instructions, and instructions that can be used
to “kill” (discard) individual fragments. These instructions, in concert with local and
environment parameters that can be changed after a program is loaded, make it possible
to control (i.e., parameterize) the behavior of a fragment program. The final result of the

102 C H A P T E R 5 Tex tu re Mapp ing

program execution is a color and depth value that is passed down to the remainder of the
fragment pipeline (scissor test, alpha test, etc.).

When available, this extension can replace a significant number of multipass oper-
ations with programmable micropass ones. See Section 9.5 for details on the difference
between multipass and micropass approaches to complex rendering.

Fragment program functionality is still evolving. There are extensions to this func-
tionality, such as providing conditionals and looping constructs in the language, as well
as a set of higher level languages that are “compiled” into fragment programs, such as Cg
(NVIDIA, 2004) and GLSL (Kessenich, 2003). Other possible extensions might increase
fragment program scope to control more of the fragment processing pipeline, for example,
manipulating stencil values. At this time neither fragment or vertex program function-
ality is part of core OpenGL, but both are expected to be part of OpenGL 2.0. For this
reason, and because there are other texts covering fragment and vertex programming,
we limit our discussion of them in this book. For detailed information on this extension,
look at the documentation on the ARB_fragment_program extension and the OpenGL
Shading Language at the opengl.org website.

5.11 Summary

Texture mapping is arguably the most important functionality in OpenGL, and is still
undergoing significant evolution. Texture mapping functionality, while complex, is well
worth the time to study thoroughly. This chapter describes the basic texture mapping
machinery, Chapter 14 describes several “building block” techniques, and many of the
other chapters make extensive use of texture mapping algorithms as key parts of the
overall technique.

6
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Rasterization and

Fragment Processing

OpenGL specifies a precise sequence of steps for converting primitives into patterns of
pixel values in the framebuffer. An in-depth understanding of this sequence is very useful;
proper manipulation of this part of the pipeline is essential to many of the techniques
described in this book. This chapter reviews the rasterization and fragment processing
parts of the OpenGL pipeline, emphasizing details and potential problems that affect
multipass rendering techniques.

OpenGL’s rasterization phase is divided into several stages, as shown in Figure 6.1.
This part of the pipeline can be broken into two major groups; rasterization and fragment
processing. Rasterization comes first: a primitive, described as a set of vertex coordinates,
associated colors and texture coordinates, is converted into a series of fragments. Here
the pixel locations covered by the primitive are determined, and the associated color and
depth values at these locations are computed. The current texturing and fog state are used
by the rasterizer to modify the fragments appropriately.

The result of the rasterization step is a set of fragments. A fragment is the part of
a primitive contained in (i.e. overlapping) a particular pixel; it includes color, window
coordinates, and depth information. After rasterization, the fragments undergo a series
of processing steps, called fragment operations. These steps include scissoring, alpha
test, depth, and stencil test and blending. At the end of fragment operations, the primi-
tive’s fragments have been used to update the framebuffer. If multisample antialiasing is
enabled, more complex fragments containing multiple color, texture coordinate, depth,
and stencil values are generated and processed for each pixel location the primitive covers.

103

104 C H A P T E R 6 Ras te r i z a t i on and F r agmen t P ro ce s s i ng

FogScan
conversion

Texture
lookup and

environment

BlendScissor
test

Depth/
stencil test

Color
sum

Alpha
test

Logic opDitherMultisample
ops

Rasterization

Fragment processing

F i g u r e 6.1 Rasterization pipeline.

6.1 Rasterization

OpenGL specifies a specific set of rules to determine which pixels a given primitive cov-
ers. Conceptually, the primitive is overlayed on the window space pixel grid. The pixel
coverage rules are detailed and vary per primitive, but all pixel coverage is determined by
comparing the primitive’s extent against one or more sample points in each pixel. This
point sampling method does not compute a primitive’s coverage area; it only computes
whether the primitive does or doesn’t cover each of the pixel’s sample points. This means
that a primitive can cover a significant portion of a pixel, yet still not affect its color, if
none of the pixel’s sample points are covered.

If multisampling is not being used, there is one sample point for each pixel, it is
located at the pixel center; in window coordinates this means a pixel at framebuffer
location (m, n) is sampled at (m + 1

2 , n + 1
2). When multisampling is enabled, the number

and location of sample points in each pixel is implementation-dependent. In addition to
some number of samples per-pixel, there is a single per-pixel coverage value with as many
bits as there are pixel samples. The specification allows the color and texture values to
be the same for all samples within a pixel; only the depth and stencil information must
represent the values at the sample point. When rasterizing, all sample information for a
pixel is bundled together into a single fragment. There is always exactly one fragment
per-pixel. When multisampling is disabled, two adjacent primitives sharing a common
edge also generate one fragment per-pixel. With multisampling enabled, two fragments
(one from each primitive) may be generated at pixels along the shared edge, since each
primitive may cover a subset of the sample locations within a pixel.

Irrespective of the multisample state, each sample holds color, depth, stencil, and
texture coordinate information from the primitive at the sample location. If multitexturing
is supported, the sample contains texture coordinates for each texture unit supported by
the implementation.

Often implementations will use the same color and texture coordinate values for
each sample position within a fragment. This provides a significant performance advan-
tage since it reduces the number of distinct sample values that need to be computed

S E C T I O N 6 . 1 Ras te r i z a t i on 105

and transmitted through the remainder of the fragment processing path. This form of
multisample antialiasing is often referred to as edge antialiasing, since the edges of geo-
metric primitives are effectively supersampled but interior colors and texture coordinates
are not. When fragments are evaluated at a single sample position, care must be taken in
choosing it. In non-multisampled rasterization, the color and texture coordinate values
are computed at the pixel center. In the case of multisampling, the color value must be
computed at a sample location that is within the primitive or the computed color value
may be out of range. However, texture coordinate values are sampled at the pixel center
since the wrapping behavior defined for texture coordinates will ensure that an in-range
value is computed. Two reasonable choices an implementation may use for the color sam-
ple location are the sample nearest the center of the pixel or the sample location closest
to the centroid of the sample locations (the average) within the primitive.

6.1.1 Rasterizat ion Consistency

The OpenGL specification does not dictate a specific algorithm for rasterizing a geometric
primitive. This lack of precision is deliberate; it allows implementors freedom to choose
the best algorithm for their graphics hardware and software. While good for the imple-
mentor, this lack of precision imposes restrictions on the design of OpenGL applications.
The application cannot make assumptions about exactly how a primitive is rasterized.
One practical implication: an application shouldn’t be designed to assume that a primi-
tive whose vertex coordinates don’t exactly match another primitive’s will still have the
same depth or color values. This can be restrictive on algorithms that require coplanar
polygons.

This lack of consistency also affects primitives that have matching vertices, but are
rendered with different rasterization modes. The same triangle drawn with GL_FILL
and GL_LINE rendering modes may not generate matching depth or color values, or
even cover the same pixels along its outer boundary.

OpenGL consistency guidelines do require that certain changes, such as changes
in vertex color, texture coordinate position, current texture, and a host of other state
changes, will not affect the depth or pixel coverage of a polygon. If these consistency
rules were not required, it would be very difficult or impossible to perform many of the
techniques described in this book. This is because many of the book’s techniques draw
an object multiple times, each time with different parameter settings. These multipass
algorithms combine the results of rendering objects multiple times in order to create a
desired effect (Figure 6.2).

6.1.2 Z-Fighting

One consequence of inconsistent rendering is depth artifacts. If the depth information of
multiple objects (or the same object rendered multiple times) does not match fragment for
fragment, the results of depth testing can create artifacts in the color buffer. This prob-
lem, commonly known as z-fighting, creates unwanted artifacts that have a “stitched”

106 C H A P T E R 6 Ras te r i z a t i on and F r agmen t P ro ce s s i ng

Polygon rasterized with different modes in red
and blue: blue version rasterizes extra pixels.

F i g u r e 6.2 Rasterization consistency.

Blue pixels from bottom triangle
bleed through coplanar red triangle.

F i g u r e 6.3 Coplanar z-fighting.

appearance. They appear where two objects are rasterized into fragments with depth
values that differ a very small amount, and were rendered using different algorithms.

Z-fighting can happen when attempting to position and draw two different objects
in the same plane. Because of differences in rasterization, the two coplanar objects may
not rasterize to the same depth values at all fragments. Figure 6.3 shows two triangles
drawn in the same plane. Some of the fragments from the farther triangle have replaced
fragments from the closer triangle. At these fragment locations, rasterization of the farther

S E C T I O N 6 . 1 Ras te r i z a t i on 107

triangle has generated a depth value that is smaller than the one generated by the closer
one. The depth test discards the fragments from the closer triangle, since it is configured
to keep fragments with smaller depth values. The problem is exacerbated when the scene
is animated, since different pixels may bleed through as the primitives change orientation.
These problems result from numerical rounding errors; they become significant because
the depth values for the fragments are so close together numerically.

There are a number of ways to avoid z-fighting. If two coplanar polygons are required,
the application can take care to use the same vertices for both of them, and set their states
to ensure that the same rasterization method is used on both of them. If this isn’t possible,
the application can choose to disable depth testing altogether, and use the stencil buffer
for any masking that is required (Section 16.8). Another approach is to displace one
of the two polygons toward the viewer, so the polygons are separated enough in depth
that rasterization differences won’t cause one polygon to “bleed through” another. Care
should be taken with this last approach, since the choice of polygon that should be
displaced toward the viewer may be orientation-dependent. This is particularly true if
back-facing polygons are used by the application.

OpenGL does provide a mechanism to make the displacement method more con-
venient, called polygon offset. Using the glPolygonOffset command allows the
programmer to set a displacement for polygons based on their slope and a bias value. The
current polygon offset can be enabled separately for points, lines and polygons, and the
bias and slope values are signed, so that a primitive can be biased toward or away from
the viewer. This relieves the application from the burden of having to apply the appropri-
ate offset to primitive vertices in object space, or adjusting the modelview matrix. Some
techniques using polygon offset are described in Section 16.7.2.

6.1.3 Bitmaps and Pixel Rectangles

Points, lines, and polygons are not the only primitives that are rasterized by OpenGL.
Bitmaps and pixel rectangles are also available. Since rasterized fragments require window
coordinates and texture coordinates as well as color values, OpenGL must generate the
x, y, and z values, as well as a set of texture coordinates for each pixel and bitmap
fragment. OpenGL uses the notion of a raster position to augment the pixel rectangles
and bitmaps with additional position information. A raster position corresponds to the
lower left corner of the rectangular pixel object. The glRasterPos command provides
the position of the lower left corner of the pixel rectangle; it is similar to the glVertex
call in that there are 2-, 3-, and 4-component versions, and because it binds the current
texture coordinate set and color to the pixel primitive.

The coordinates of a raster position can be transformed like any vertex, but only
the raster position itself is transformed; the pixel rectangle is always perpendicular to
the viewer. Its lower left corner is attached to the raster position, and all of its depth
values match the raster position’s z coordinate. Similarly, the set texture coordinates and
color associated with the raster position are used as the texture coordinates for all the
fragments in the pixel primitive.

108 C H A P T E R 6 Ras te r i z a t i on and F r agmen t P ro ce s s i ng

6.1.4 Texture, Color , and Depth Interpolat ion

Although it doesn’t define a specific algorithm, the OpenGL specification provides specific
guidelines on how texture coordinates, color values, and depth values are calculated for
each fragment of a primitive during rasterization. For example, rasterization of a polygon
involves choosing a set of fragments corresponding to pixels “owned” by the polygon,
interpolating the polygon’s vertex parameters to find their values at each fragment, then
sending these fragments down the rest of the pipeline. OpenGL requires that the algorithm
used to interpolate the vertex values must behave as if the parameters are calculated using
barycentric coordinates. It also stipulates that the x and y values used for the interpolation
of each fragment must be computed at the pixel center for that fragment.

Primitive interpolation generates a color, texture coordinates, and a depth value
for each fragment as a function of the x and y window coordinates for the fragment
(multiple depth values per-pixel may be generated if multisampling is active and mul-
tiple texture coordinates may be compared when multitexture is in use). Conceptually,
this interpolation is applied to primitives after they have been transformed into window
coordinates. This is done so pixel positions can be interpolated relative to the primitive’s
vertices. While a simple linear interpolation from vertices to pixel locations produces
correct depth values for each pixel, applying the same interpolation method to color val-
ues is problematic, and texture coordinates interpolated in this manner can cause visual
artifacts. A texture coordinate interpolated in window space may simply not produce
the same result as would interpolating to the equivalent location on the primitive in clip
space.

These problems occur if the transformation applied to the primitive to go from clip
space into window space contains a perspective projection. This is a non-linear transform,
so a linear interpolation in one space won’t produce the same results in the other. To get
the same results in both spaces, even if a perspective transform separates them, requires
using an interpolation method that is perspective invariant.

A perspective-correct method interpolates the ratio of the interpolants and a w term
to each pixel location, then divides out the w term to get the interpolated value. Values
at each vertex are transformed by dividing them by the w value at the vertex. Assume a
clip-space vertex a with associated texture coordinates sa and ta, and a w value of wa. In
order to interpolate these values, create new values at the vertex, sa

wa
, ta

wa
, and 1

wa
. Do this

for the values at each vertex in the primitive, then interpolate all the terms (including the
1
w values) to the desired pixel location. The interpolated texture coordinates ratios are

obtained by dividing the interpolated s
w and t

w values by the interpolated 1
w :

s
w
1
w

and
t
w
1
w

,

which results in a perspective-correct s and t.
Here is another example, which shows a simple interpolation using this method in

greater detail. A simple linear interpolation of a parameter f , between points a and b uses
the standard linear interpolation formula:

f = (1 − α)fa + αfb.

S E C T I O N 6 . 1 Ras te r i z a t i on 109

Interpolating in a perspective-correct manner changes the formula to :

f =
(1 − α) fa

wa
+ α

fb
wb

(1 − α) 1
wa

+ α 1
wb

(6.1)

The OpenGL specification strongly recommends that texture coordinates be calcu-
lated in a “perspective correct” fashion, while depth values should not be (depth values
will maintain their correct depth ordering even across a perspective transform). Whether
to use a perspective correct interpolation of per-fragment color values is left up to the
implementation. Recent improvements in graphics hardware make it possible for some
OpenGL implementations to efficiently perform the interpolation operations in clip space
rather than window space.

Finally, note that the texture coordinates are subjected to their own perspective
division by q. This is included, as part of the texture coordinate interpolation, changing
Equation 6.1 to:

f =
(1 − α) fa

wa
+ α

fb
wb

(1 − α) qa
wa

+ α
qb
wb

6.1.5 w Buffering

Although the OpenGL specification specifies the use of the zw fragment component for
depth testing, some implementations use a per-fragment w component instead. This may
be done to eliminate the overhead of interpolating a depth value; a per-pixel 1

w value must
be computed for perspective correct texturing, so per-pixel computation and bandwidth
can be reduced by eliminating z and using w instead. The w component also has some
advantages when used for depth testing. For a typical perspective transform (such as the
one generated by using glFrustum), the transformed w component is linearly related to
the pre-transformed z component. On the other hand, the post-transformed z is related to
the pre-transformed 1

z (see Section 2.8 for more details on how z coordinates are modified
by a perspective projection).

Using w instead of z results in a depth buffer with a linear range. This has the
advantage that precision is distributed evenly across the range of depth values. However,
this isn’t always an advantage since some applications exploit the improved effective
resolution present in the near range of traditional depth buffering in w Pleasure, w Fun
(1998), Jim Blinn analyzes the characteristics in detail). Furthermore, depth buffer reads
on an implementation using w buffering produces very implementation-specific values,
returning w values or possibly 1

w values (which are more “z-like”). Care should be taken
using an algorithm that depends on retrieving z values when the implementation uses w
buffering.

110 C H A P T E R 6 Ras te r i z a t i on and F r agmen t P ro ce s s i ng

6.2 Fragment Operations

A number of fragment operations are applied to rasterization fragments before they are
allowed to update pixels in the framebuffer. Fragment operations can be separated into
two categories, operations that test fragments, and operations that modify them. To
maximize efficiency, the fragment operations are ordered so that the fragment tests are
applied first. The most interesting tests for advanced rendering are: alpha test, stencil test,
and depth buffer test. These tests can either pass, allowing the fragment to continue, or
fail, discarding the fragment so it can’t pass on to later fragment operations or update
the framebuffer. The stencil test is a special case, since it can produce useful side effects
even when fragments fail the comparison.

All of the fragment tests use the same set of comparison operators: Never, Always,
Less, Less than or Equal, Equal, Greater than or Equal, Greater, and Not Equal. In each
test, a fragment value is compared against a reference value saved in the current OpenGL
state (including the depth and stencil buffers), and if the comparison succeeds, the test
passes. The details of the fragment tests are listed in Table 6.1.

The list of comparison operators is very complete. In fact, it may seem that some of the
comparison operations, such as GL_NEVER and GL_ALWAYS are redundant, since their
functionality can be duplicated by enabling or disabling a given fragment test. There is a
use for them, however. The OpenGL invariance rules require that invariance is maintained
if a comparison is changed, but not if a test is enabled or disabled. So if invariance must be
maintained (because the test is used in a multipass algorithm, for example), the application
should enable and disable tests using the comparison operators, rather than enabling or
disabling the tests themselves.

T ab l e 6.1 Fragment Test

Constant Comparison

GL_ALWAYS always pass

GL_NEVER never pass

GL_LESS pass if incoming< ref

GL_LEQUAL pass if incoming≤ ref

GL_GEQUAL pass if incoming≥ ref

GL_GREATER pass if incoming> ref

GL_EQUAL pass if incoming= ref

GL_NOTEQUAL pass if incoming
= ref

S E C T I O N 6 . 2 F r agmen t Ope ra t i ons 111

6.2.1 Multisample Operations

Multisample operations provide limited ways to affect the fragment coverage and alpha
values. In particular, an application can reduce the coverage of a fragment, or convert the
fragment’s alpha value to another coverage value that is combined with the fragment’s
value to further reduce it. These operations are sometimes useful as an alternative to
alpha blending, since they can be more efficient.

6.2.2 Alpha Test

The alpha test reads the alpha component value of each fragment’s color, and compares
it against the current alpha test value. The test value is set by the application, and can
range from zero to one. The comparison operators are the standard set listed in Table 6.1.
The alpha test can be used to remove parts of a primitive on a pixel by pixel basis. A
common technique is to apply a texture containing alpha values to a polygon. The alpha
test is used to trim a simple polygon to a complex outline stored in the alpha values of
the surface texture. A detailed description of this technique is available in Section 14.5.

6.2.3 Stenci l Test

The stencil test performs two tasks. The first task is to conditionally eliminate incoming
fragments based on a comparison between a reference value and stencil value from the
stencil buffer at the fragment’s destination. The second purpose of the stencil test is to
update the stencil values in the framebuffer. How the stencil buffer is modified depends
on the outcome of the stencil and depth buffer tests. There are three possible outcomes
of the two tests: the stencil buffer test fails, the stencil buffer test passes but the depth
buffer fails, or both tests fail. OpenGL makes it possible to specify how the stencil buffer
is updated for each of these possible outcomes.

The conditional elimination task is controlled with glStencilFunc. It sets the
stencil test comparison operator. The comparison operator can be selected from the list
of operators in Table 6.1.

Setting the stencil update requires setting three parameters, each one corresponding
to one of the stencil/depth buffer test outcomes. The glStencilOp command takes
three operands, one for each of the comparison outcomes (see Figure 6.4). Each operand
value specifies how the stencil pixel corresponding to the fragment being tested should
be modified. Table 6.2 shows the possible values and how they change the stencil pixels.

The stencil buffer is often used to create and use per-pixel masks. The desired stencil
mask is created by drawing geometry (often textured with an alpha pattern to produce a
complex shape). Before rendering this template geometry, the stencil test is configured to
update the stencil buffer as the mask is rendered. Often the pipeline is configured so that
the color and depth buffers are not actually updated when this geometry is rendered; this
can be done with the glColorMask and glDepthMask commands, or by setting the
depth test to always fail.

112 C H A P T E R 6 Ras te r i z a t i on and F r agmen t P ro ce s s i ng

T ab l e 6.2 Stencil Update Values

Constant Description

GL_KEEP stencil pixel← old value

GL_ZERO stencil pixel← 0

GL_REPLACE stencil pixel← reference value

GL_INCR stencil pixel← old value+ 1

GL_DECR stencil pixel← old value− 1

GL_INVERT stencil pixel← old value

Stencil comparison
operator

Stencil Test

Stencil comparison
operator

Depth Test

’Pass’ operator applied

’Depth Fail’ operator applied’Stencil Fail’ operator applied

F i g u r e 6.4 Stencil/depth test functionality.

Once the stencil mask is in place, the geometry to be masked is rendered. This time,
the stencil test is pre-configured to draw or discard fragments based on the current value
of the stencil mask. More elaborate techniques may create the mask using a combination
of template geometry and carefully chosen depth and stencil comparisons to create a mask
whose shape is influenced by the geometry that was previously rendered. There are are also
some extensions for enhancing stencil functionality. One allows separate stencil opera-
tions, reference value, compare mask, and write mask to be selected depending on whether
the polygon is front- or back-facing.1 A second allows the stencil arithmetic operations
to wrap rather than clamp, allowing a stencil value to temporarily go out of range, while
still producing the correct answer if the final answer lies within the representable range.2

6.2.4 Blending

One of the most useful fragment modifier operations supported by OpenGL is blending,
also called alpha blending. Without blending, a fragment that passes all the filtering

1. EXT_stencil_two_side

2. EXT_stencil_wrap

S E C T I O N 6 . 2 F r agmen t Ope ra t i ons 113

T ab l e 6.3 Blend Factors

Constant Used In Action

GL_ZERO src, dst scale each color element by zero

GL_ONE src, dst scale each element by one

GL_SRC_COLOR dst scale color with source color

GL_DST_COLOR src scale color with destination color

GL_ONE_MINUS_SRC_COLOR dst scale color with one minus source color

GL_ONE_MINUS_DST_COLOR dst scale color with one minus destination color

GL_SRC_ALPHA src, dst scale color with source alpha

GL_ONE_MINUS_SRC_ALPHA src, dst scale color with source alpha

GL_DST_ALPHA src, dst scale color with destination alpha

GL_ONE_MINUS_DST_ALPHA src, dst scale color with one minus destination alpha

GL_SRC_ALPHA_SATURATE
src scale color by minimum of source alpha and

destination alpha

GL_CONSTANT_COLOR src, dst scale color with application-specified color

GL_ONE_MINUS_CONSTANT_COLOR src, dst scalecolor with oneminus application-specifiedcolor

GL_CONSTANT_ALPHA src, dst scale color with alpha of application-specified color

GL_ONE_MINUS_CONSTANT_ALPHA
src, dst scale color with one minus alpha of

application-specified color

and modification steps simply replaces the appropriate color pixel in the framebuffer.
If blending is enabled, the incoming fragment, the corresponding target pixel, or an
application-defined constant color3 are combined using a linear equation instead. The
color components (including alpha) of both the fragment and the pixel are first scaled by
a specified blend factor, then either added or subtracted.4 The resulting value is used to
update the framebuffer.

There are two fixed sets of blend factors (also called weighting factors) for the
blend operation; one set is for the source argument, one for the destination. The entire
set is listed in Table 6.3; the second column indicates whether the factor can be used

3. In implementations supporting OpenGL 1.2 or newer.

4. In OpenGL 1.4 subtraction and min and max blend equations were moved from the ARB_imaging
extension to the core.

114 C H A P T E R 6 Ras te r i z a t i on and F r agmen t P ro ce s s i ng

T ab l e 6.4 Blend Equations

Operand Result

GL_ADD soruce+ destination

GL_SUBTRACT source− destination

GL_REVERSE_SUBTRACT destination− source

GL_MIN min(source, dest)

GL_MAX max(source, dest)

with a source, a destination, or both. These factors take a color from one of the three
inputs, the incoming fragment, the framebuffer pixel, or the application-specified color,
modify it, and insert it into the blending equation. The source and destination argu-
ments are used by the blend equation, one of GL_FUNC_ADD, GL_FUNC_SUBTRACT,
GL_FUNC_REVERSE_SUBTRACT, GL_MIN, or GL_MAX. Table 6.4 lists the operations.
Note that the result of the subtract equation depends on the order of the arguments,
so both subtract and reverse subtract are provided. In either case, negative results are
clamped to zero.

Some blend factors are used more frequently than others: GL_ONE is commonly
used when an unmodified source or destination color is needed in the equation. Using
GL_ONE for both factors, for example, simply adds (or subtracts) the source pixel and
destination pixel value. The GL_ZERO factor is used to eliminate one of the two colors.
The GL_SRC_ALPHA/GL_ONE_MINUS_ALPHA combination is used for a common trans-
parency technique, where the alpha value of the fragment determines the opacity of the
fragment. Another transparency technique uses GL_SRC_ALPHA_SATURATE instead; it
is particularly useful for wireframe line drawings, since it minimizes line brightening
where multiple transparent lines overlap.

6.2.5 Logic Op

As of OpenGL 1.1, a new fragment processing stage, logical operation,5 can be used
instead of blending (if both stages are enabled by the application, logic op takes prece-
dence, and blending is implicitly disabled). Logical operations are defined for both index
and RGBA colors; only the latter is discussed here. As with blending, logic op takes
the incoming fragment and corresponding pixel color, and performs an operation on it.
This bitwise operation is chosen from a fixed set by the application using the glLogicOp
command. The possible logic operations are shown in Table 6.5 (C-style logical operands
are used for clarity).

5. In OpenGL 1.0, the logic op stage operated in color index mode only.

S E C T I O N 6 . 3 F r amebu f fe r Ope ra t i ons 115

T ab l e 6.5 Logic Op Operations

Operand Result

GL_CLEAR 0

GL_AND source & destination

GL_AND_REVERSE source &∼destination

GL_COPY source

GL_AND_INVERTED ∼(source & destination)

GL_NOOP destination

GL_XOR source ˆ destination

GL_OR source | destination

GL_NOR ∼(source | destination)

GL_EQUIV ∼(source ˆ destination)

GL_INVERT ∼destination

GL_OR_REVERSE source |∼destination

GL_COPY_INVERTED ∼source

GL_OR_INVERTED ∼source | destination

GL_NAND ∼(source & destination)

GL_SET 1 (all bits)

Logic ops are applied separately for each color component. Color component updates
can be controlled per channel by using the glColorMask command. The default com-
mand is GL_COPY, which is equivalent to disabling logic op. Most commands are
self-explanatory, although the GL_EQUIV operation may lead to confusion. It can be
thought of as an equivalency test; a bit is set where the source and destination bits
match.

6.3 Framebuffer Operations

There are a set of OpenGL operations that are applied to the entire framebuffer at once.
The accumulation buffer is used in many OpenGL techniques and is described below.

116 C H A P T E R 6 Ras te r i z a t i on and F r agmen t P ro ce s s i ng

6.3.1 Accumulation Buffer

The accumulation buffer provides accelerated support for combining multiple rendered
images together. It is an off-screen framebuffer whose pixels have very high color resolu-
tion. The rendered frame and the accumulation buffer are combined by adding the pixel
values together, and updating the accumulation buffer with the results. The accumulation
buffer has a scale value that can be used to scale the pixels in the rendered frame before
its contents are merged with the contents of the accumulation buffer.

Accumulation operations allow the application to combine frames to generate high-
quality images or produce special effects. For example, rendering and combining multiple
images modified with a subpixel jitter can be used to generate antialiased images.

It’s important to understand that the accumulation buffer operations only take input
from the color buffer; the OpenGL specification provides no way to render directly to the
accumulation buffer. There are a number of consequences to this limitation; it is impos-
sible, for example, to replace part of the image, since there is no depth or stencil buffer
available to mask part of the image. The accumulation buffer is best thought of as a place
to do high-precision scaling, blending, and clamping of color images. Figure 6.5 shows
how multiple images rendered to the color buffer are transferred to the accumulation
buffer to be combined together.

Besides having limited access from the rendering pipeline, the accumulation buffer
differs from a generic off-screen framebuffer in a number of ways. First, the color repre-
sentation is different. The accumulation buffer represents color values with component
ranges from [−1, 1], not just [0, 1] as in a normal OpenGL framebuffer. As mentioned

Load Mult Accum Return

Color buffer

Accum buffer

Only images transferred;
no depth testing on return

F i g u r e 6.5 Accumulation buffer.

S E C T I O N 6 . 4 Summary 117

T ab l e 6.6 Accumulation Buffer Operations

Constant Description

GL_ACCUM scale the incoming image, add it to the accumulation buffer

GL_LOAD replace the accumulation buffer with the incoming scaled image

GL_ADD bias the accumulation buffer image

GL_MULT scale the accumulation buffer image

GL_RETURN copy the scaled and clamped accumulation buffer into the color buffer

previously, the color precision of the accumulation buffer is higher than a normal color
buffer, often increasing the number of bits representing each color component by a factor
of two or more (depending on the implementation). This enhanced resolution increases
the number of ways the images can be combined and the number of accumulations that
can be performed without degrading image quality.

The accumulation buffer also provides additional ways to combine and modify
images. Incoming and accumulation buffer images can be added together, and the
accumulation buffer image can be scaled and biased. The return operation, which copies
the accumulation buffer back into the framebuffer, also provides implicit image pro-
cessing functionality: the returned image can be scaled into a range containing negative
values, which will be clamped back to the [0, 1] range as it’s returned. Images that are
loaded or accumulated into the accumulation buffer can also be scaled as they are copied
in. The operations are summarized in Table 6.6.

Note that the accumulation buffer is often not well accelerated on commodity graph-
ics hardware, so care must be taken when using it in a performance-critical application.
There are techniques mentioned later in the book that maximize accumulation buffer
performance, and even a slow accumulation buffer implementation can be useful for gen-
erating images “off line”. For example, the accumulation buffer can be used to generate
high-quality textures and bitmaps to be stored as part of the application, and thus used
with no performance penalty.

6.4 Summary

The details of this section of the OpenGL pipeline have a large influence on the design
of a multipass algorithm. The rasterization and fragment processing operations provide
many mechanisms for modifying a fragment value or discarding it outright.

118 C H A P T E R 6 Ras te r i z a t i on and F r agmen t P ro ce s s i ng

Over the last several chapters we have covered the rendering pipeline from front to
back. In the remainder of this part of the book we will round out our understanding
of the pipeline by describing how the rendering pipeline is integrated into the native
platform window system, examining some of the evolution of the OpenGL pipeline, and
exploring some of the techniques used in implementing hardware and software versions
of the pipeline.

7
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Window System and

Platform Integration

The OpenGL API is primarily concerned with accepting procedural scene descriptions
and generating pixels corresponding to those descriptions. The OpenGL specification
per se doesn’t say where the generated pixels will end up. The final step of sending
pixels to their target, such as a window on the screen, is left up to the embedding or
platform layer. This layer defines how the OpenGL renderer attaches or binds onto the
output device or devices. There can be many possible window system targets; defining
this interface is the task of the window system, not the OpenGL rendering pipeline.
Most window systems have a specification that defines the OpenGL interaction. Some
of these specifications, like the OpenGL specification itself, include an extension mech-
anism; the specification can evolve over time to reflect the evolution of the underlying
window system. Here are embeddings of three of the most popular windows systems:
the X Window System embedding (Scheifler and Gettys, 1986), called GLX (Womaeck
and Leech, 1998); the embedding into the Win32 API (Microsoft, Inc., 2001b) used by
Microsoft’s Windows family of operating systems, called WGL (Microsoft, Inc., 2001a)
(pronounced wiggle); and the embedding connecting Apple’s Macintosh operating sys-
tem (MacOS) called AGL (Apple Computer, Inc., 2001). The OpenGL ES project (see
Section 8.3) also includes a more portable window system embedding layer called EGL
(Leech, 2003).

Of course, OpenGL isn’t limited to, or required to work with a window system.
It can just as readily render to a printer, a full screen video game console, or a linear

119

120 C H A P T E R 7 Window Sys tem and P l a t f o rm In teg ra t i on

array of memory in an application’s address space. Despite this flexibility, most of our
discussions will assume the presence of the most common target, a window system.
In particular, terms such as window space (described in Section 2.2.5), imply a window
system environment.

This chapter limits itself to describing aspects of window system embedding as useful
background for later chapters of the book. For more detailed information regarding using
GLX on UNIX systems and WGL on Windows systems, see the texts by Kilgard (1996)
and Fosner (1996).

7.1 Renderer and Window State

Since OpenGL is concerned with rendering and not display, we should clarify the roles
of the renderer and the window system. An application using OpenGL needs to main-
tain a bundle of OpenGL state, including the current color, normal, texture coordinate,
modelview matrix stack, projection matrix stack, and so forth. This collection of state
describes everything needed by an OpenGL renderer to convert a set of input primitives
into a set of output pixels. This collection of state is termed renderer state. The precise
definition and scope of OpenGL renderer state is described in the OpenGL specification.
The contents of the framebuffer (color, depth, stencil, and accumulation buffers), how-
ever, are not part of the renderer state. They are part of the window state. While renderer
state is governed by the OpenGL renderer, window state is controlled by the window sys-
tem. Ultimately, window state includes the position and size of the buffers on the display,
mapping which bits correspond to the OpenGL front and back buffer, color maps for
pseudo-color (color index) windows, gamma lookup tables that correct intensity levels
driving output displays, and so on.

The OpenGL renderer state is encapsulated by a context. The data types and meth-
ods for creating a context are specific to a particular window system embedding, for
example, glxCreateContext for GLX or wglCreateContext for WGL. To render
to a window, the context must be bound to that window using a method specific to the
window system binding API. This binding notion is not limited to attaching the OpenGL
context to a window; it also attaches the context to an application process or thread
(Figure 7.1). The exact details of a process or thread are specific to the platform (for
example, Windows or Unix). Application calls to OpenGL API methods modify the
contents of the current bound context and ultimately the current bound window.

This notion of binding a context to a thread is arguably a little unusual from an
API standpoint. One alternative is to pass a handle to the context to be updated as
a parameter to the API method. A C++ or Java API might define OpenGL operations
as methods of an OpenGL context object, making the context parameter implicit. The
downside of this approach is the extra overhead needed to call indirectly through a handle
to update the specified context. In the more stateful binding model, resolving information
about the target context is done once when the context is bound. There is less overhead

S E C T I O N 7 . 2 Add re s s Space and Th reads 121

window
X

DisplayApplication
program

thread
B

OpenGL
contexts

1

3

2

thread
A

F i g u r e 7.1 Thread A drawing through context 1 to window X.

involved at the cost of some additional complexity. The OpenGL designers considered
the performance savings to be worth the complexity trade-off.

Most applications need only a single OpenGL context to do all of their rendering.
The requirements for multiple contexts depend on the window system embedding. As a
general rule, a window needs a separate context if it is in a different stacking layer or using
a pixel format sufficiently different from the other OpenGL windows. This requirement
reduces the complexity of an OpenGL implementation and ensures sensible behavior for
the renderer state when it is moved from one window to another. Allowing a context to
be moved from an RGB window to a color index window presents numerous problems,
since the state representations for each of the context types is quite different. It makes
more sense to require each window to have a separate context.

7.2 Address Space and Threads

The embedding layer is platform-specific beyond the details of the window system. Data
transfers to and from the OpenGL pipeline rely on the (conventional) notion of a process
and an address space. When memory addresses are used in OpenGL commands they refer
to the address space of the application process. Most OpenGL platform embeddings
also support the concept of a thread. A thread is an execution context (a thread of
execution) and a process may have multiple threads executing within it. The threads
share the process’s address space. The OpenGL embedding layer supports the notion of
multiple thread-context-window triplets being current (active) simultaneously. However,
a context cannot be used with (current to) multiple threads concurrently. Conversely in the
GLX embedding, a window can be current to multiple thread-context pairs concurrently,
though this seldom provides real utility unless there are multiple accelerators present in
the system. In practice, the most useful multi-thread and multi-context scenarios involve
using a single thread for rendering and other threads for non-rendering tasks. Usually, it
only makes sense to use multiple rendering threads to render to different accelerators in
parallel.

122 C H A P T E R 7 Window Sys tem and P l a t f o rm In teg ra t i on

7.3 Anatomy of a Window

In its simplest form a window is a rectangular region on a display,1 described by an origin
and a size. From the rendering perspective, the window has additional attributes that
describe its framebuffer, color index vs. RGB, number of bits per-pixel, depth buffer size,
accumulation buffer size, number of color buffers (single buffered or double buffered),
and so forth. When the OpenGL context is bound to the window, these attributes are
used by the OpenGL renderer to determine how to render to it correctly.

7.3.1 Overlay and Underlay Windows

Some window systems include the concept of an overlay window. An overlay window
always lies on top of non-overlay windows, giving the contents of the overlay window
visual priority over the others. In some window systems, notably the X Window System,
the overlay window may be opaque or transparent. If the overlay window is opaque,
then all pixels in the overlay window have priority over pixels in windows logically
underneath the overlay window (below it in the window stacking order). Transparent
overlay windows have the property of controlling the visual priority of a pixel using the
overlay pixel’s color value. Therefore, pixels assigned a special transparent color have
lower priority, so the pixel of the window logically underneath this window can be visible.

Overlay windows are useful for implementing popup menus and other graphical user
interface components. They can also be useful for overlaying other types of annotations
onto a rendered scene. The principal advantage of using an overlay window rather than
drawing directly into the main window is that the two windows can be updated indepen-
dently — to change window annotations requires redrawing only the overlay window.
This assumes that overlay window independence is really implemented by the window
system and display hardware, and not simulated.2 Overlays become particularly useful
if the contents of the main window are expensive to regenerate. Overlay windows are
often used to display data decoded from a multimedia video source on top of other win-
dows with the hardware accelerator decoding the stream directly to a separate overlay
framebuffer.

Similar to the concept of overlays, there is the analogous concept of an underlay
window with the lowest visual priority. Such a window is only useful when the windows
logically above it contain transparent pixels. In general, the need for underlay windows
has been minimal; there are few OpenGL implementations that support them.

1. Some window systems support non-rectangular windows as well, but for our purposes we can use the
bounding rectangle.

2. Sometimes to indicate more clearly that this independence is reflected in the hardware
implementation, this support is referred to as hardware overlays.

S E C T I O N 7 . 3 Ana tomy o f a Window 123

Display 0

Display 1

Display 2

Application

Host computer

context

context

thread

Graphics
Accelerator

A

Graphics
Accelerator

B

F i g u r e 7.2 Three-display system using two accelerators.

7.3.2 Multiple Displays

Some operating system/window system combinations can support multiple displays. Some
configure multiple displays to share the same accelerator or, in the more general case,
multiple accelerators each drive multiple displays. In both cases the details of attaching
and using a context with windows on different displays becomes more complicated, and
depends on window system embedding details.

Figure 7.2 shows an example of a three-display system in which two of the displays
are driven from one graphics accelerator, while a third display is driven from a second
accelerator. To use all of the available displays typically involves the use of multiple
OpenGL contexts. Since an OpenGL context encapsulates the renderer state, and this
state may be contained inside hardware, it follows that each hardware accelerator needs
an independent context. If the two accelerators were built by different vendors, they
would likely use two different OpenGL implementations. A well-designed operating sys-
tem/window system embedding layer can allow both accelerators to be used from a single
application by creating a context corresponding to each accelerator/display combination.
For example, in a GLX-based system, the accelerator is identified by its DISPLAY name;
an application can create GLX contexts corresponding to the individual DISPLAY names.

Multiple display systems go by many different names (multimon, dual-head, Twin-
View are examples) but all are trying to achieve the same end. They all drive multiple
displays, monitors, or video channels from the same accelerator card. The simplest con-
figuration provides a large logical framebuffer from which individual rectangular video
or display channels are carved out (as shown in Figure 7.3). This is similar to the way win-
dows are allocated from a framebuffer on a single display. The amount of framebuffer
memory used by each channel depends on the resolution of the channel and the pixel
formats supported in each channel.

124 C H A P T E R 7 Window Sys tem and P l a t f o rm In teg ra t i on

Video channel
A

Video channel
B

F i g u r e 7.3 Two video channels allocated from one framebuffer.

7.4 Off-Screen Rendering

As mentioned previously, an OpenGL renderer isn’t limited to rendering to a window or
a video output display device; it can render to any device that implements some sort of
framebuffer storage. One technique that has gained popularity is rendering to accelerated
framebuffer memory that isn’t visible as part of the display. For example, in Figure 7.3 a
third of the framebuffer memory isn’t allocated as part of a visible video channel, but could
be useful for generating intermediate images used to construct a more complicated final
image. The back buffer in a double-buffered window can also be used for intermediate
storage, but the application is limited to a single back buffer, and the buffer contents
cannot persist across multiple frames. The OpenGL specification includes the notion of
auxiliary buffers (or auxbufs) that serve as additional persistent color buffers, but they
suffer from a number of limitations. Auxilliary buffers are the same dimensions as the
main color buffer, and they don’t provide a way to save the depth buffer. The concept of
more general off-screen windows overcomes many of these limitations.

Off-screen windows introduce their own problems, however. The first is how to move
data from an off-screen window to some place useful. Assuming that the off-screen image
is intended for use as a rendering step in an on-screen window, a mechanism is needed to
allow an OpenGL context to use the off-screen window in conjunction with an on-screen
window. The mechanism chosen to do this is to separate a window into two components:
a read window and a write window. In most situations the read and write window are
one and the same, but when it’s necessary to retrieve data from another window, the
source window is bound to the OpenGL context as a read window — all OpenGL read-
related operations (glReadPixels, glCopyPixels, and glCopyTexture) use the
read window as the read source. Note that the read window does not change the window
used for pixel-level framebuffer read operations, such as blending, depth test, stencil, or
accumulation buffer returns. Figure 7.4 illustrates a thread-context pair with a separate
off-screen read source and a visible write window. The accelerator memory is divided
between framebuffers for two displays and a third partition for off-screen surfaces.

To use an off-screen window as part of a complex rendering algorithm, the appli-
cation renders the relevant parts of the scene to the off-screen window, then binds the
context to both the visible window and the off-screen window. The off-screen window

S E C T I O N 7 . 4 Of f-Sc r een Rende r i ng 125

Display 0

Display 1

Application

Graphics
Accelerator

A

Visible window memory
on different displays

Host computer

context

Framebuffer
memory

Offscreen
window memory

thread

F i g u r e 7.4 Thread with on-screenwrite window and off-screen read window.

is bound as a read source, while the visible window is bound as a write source. Then the
application performs a pixel copy operation to merge the off-screen buffer contents with
the on-screen contents.

The second problem with using off-screen memory is managing the memory itself.
In the case of visible windows, the windows are allowed to overlap. The end user can
see where windows are being allocated and directly manage the “screen real-estate.”
For off-screen memory, the end user has no idea how much memory is available, the
“shape” of the memory, and whether there are implementation-specific constraints on
how the memory can be allocated. If the framebuffer memory can’t be treated as a one
dimensional array of bytes — this restriction is often true with sophisticated hardware
accelerators — the memory allocation and management problem becomes substantially
more complicated. In Figure 7.3 the off-screen part of framebuffer memory has an irreg-
ular shape that may affect the maximum allowed dimensions of an off-screen window.
If multiple off-screen memory allocation requests are made, the outcome of the requests
may depend on their order. The window system embedding layer attempts to provide a
90% solution to this problem as simply as possible, but doesn’t provide guarantees.

7.4.1 GLX Pbuffers

GLX provides support for rendering to off-screen memory as X Window System pixmaps.
However, X pixmaps are a little too general and don’t provide all of the necessary func-
tionality needed for efficient rendering. In fact, no known GLX+OpenGL implementation
supports accelerated rendering to pixmaps. To address the need for efficient off-screen
rendering, a form of off-screen drawable specifically for OpenGL rendering was added
to GLX 1.3. GLX calls these off-screen drawables pbuffers — short for pixel buffers.

To support the addition of pbuffers, substantial additions were made to the GLX 1.3
API. These changes separate the description of the framebuffer (bits per color component,

126 C H A P T E R 7 Window Sys tem and P l a t f o rm In teg ra t i on

depth buffer size, etc.) from the X Window System’s visual concept; instead, identifying a
framebuffer configuration description as an FBConfig rather than a visual. The end result
is that the original API using visuals can be layered on the new API using FBConfigs by
internally associating an FBConfig with each visual. This new API operates on the three
types of drawables: windows, pixmaps, and pbuffers. Windows and pixmaps are created
using X Window System commands, while pbuffers are created with a GLX-specific API.

The pbuffer creation command, glxCreatePbuffer, includes some additional
attributes that help with off-screen memory management. In addition to requesting a
pbuffer of specific dimension be created, the application can also specify that if that
request fails, a pbuffer of the largest available size should be allocated. This provides a
means of discovering the largest available pbuffer. The discovery routine also allocates the
pbuffer to avoid race conditions with other applications. The created pbuffer also includes
an attribute specifying whether the pbuffer is volatile; that is, whether the pbuffer contents
should be preserved. If the contents need not be preserved, then they may be damaged
by rendering operations on other drawables, in much the same way that the contents of
one window may be damaged by rendering to another overlapping window. When this
happens, the application can be notified by registering for GLX-specific buffer clobber
events. The idea is to provide a choice to application writers; if the contents of a pbuffer
can be regenerated easily or are transient, then volatile pbuffers are the best solution. If the
pbuffer contents cannot be easily regenerated, then the application can use a non-volatile
pbuffer and the system will save and restore the pbuffer contents when the resources are
needed by another drawable. Of course, the save and restore operations may slow the
application, so non-volatile pbuffers should only be used when absolutely necessary.

7.4.2 WGL Pbuffers

Pbuffers are also available on the Windows platform through the WGL_ARB_pbuffer,
WGL_ARB_pixel_format, and WGL_ARB_make_current_read extensions.

7.5 Rendering to Texture Maps

In many OpenGL implementations the storage for texture maps and the framebuffer
comes from the same physical pool of memory. Since they are in the same memory, it
suggests the opportunity to improve the efficiency of using the framebuffer contents as
a texture map (see Section 5.3) without copying the data from the framebuffer to the
texture map. The ARB_render_texture WGL extension provides a means to do this
using pbuffers.

An application using the extension creates a pbuffer, binds it to the context
using wglMakeCurrent, renders to it, then unbinds from it. Next, the application
binds to a new drawable and uses the extension command wglBindTexImageARB to
bind the pbuffer to the current texture. In an optimized implementation, subsequent

S E C T I O N 7 . 6 Di re c t and Ind i r e c t Rende r i ng 127

texture-mapped geometry will retrieve texel data directly from the pbuffer. The exten-
sion can still be implemented on pipeline implementations that don’t share texture and
framebuffer storage by simply copying the data from the pbuffer to the texture map. The
latter implementation is no worse than the application calling glCopyTexture directly,
and on implementations that share storage it is considerably more efficient. After using the
pbuffer as a texture, it is unbound from the texture (using wglReleaseTexImageARB)
and can again be used for rendering. The extension does not allow a pbuffer to
be used simultaneously for rendering and texturing since this can have unpredictable
implementation-specific behavior.

7.6 Direct and Indirect Rendering

Another factor that arises in a discussion of both the window system embedding and
the host operating system is the notion of direct and indirect rendering. For X Window
System embedding, these notions have a very precise meaning. Indirect rendering means
that each OpenGL command issued by a client application is encoded in the X11 protocol,
as defined by the GLX extension. The encoded stream is then decoded by the server
and sent to an OpenGL renderer. The advantage of indirect rendering is that it allows
OpenGL rendering to be used by any client that implements the client side of the GLX
protocol encoder. It can send rendering commands over a network to a remote server
and execute the rendering operations and display the results on the remote server. The
disadvantage is that the protocol encoding and decoding consumes extra processing and
memory resources that can limit the achievable performance. If both the client and server
are both on the same computer, then a more efficient mechanism to issue commands to
the hardware can be used — direct rendering.

GLX doesn’t specify a protocol for direct rendering; instead, it specifies a set of
ground rules that allow vendors some flexibility in doing their implementations, while
retaining indirect rendering compatibility. In a high-performance direct rendering imple-
mentation, once a context/window pair has been made current, the application issues
commands directly to the hardware mapped into the address space of the application.
There is no need to buffer commands or interact with device drivers or the operating
system kernel layer. The details for one such implementation are available in Graphics
Interface ’95 by Kilgard et al. (1995).

In other embeddings the notion of direct and indirect rendering is more vague. The
Windows platform does not provide native support for remote rendering, so it can be said
to only support direct rendering. However, mechanisms used to achieve direct rendering
may be radically different from those used on UNIX platforms.

8
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

OpenGL Implementations

The OpenGL specification offers considerable flexibility to implementors. The OpenGL
rendering pipeline is also an evolving design; as implementation technologies advance
and new ideas surface and are proven through trial and iteration, they become part of the
specification. This has both advantages and disadvantages. It ensures that the standard
remains relevant for new applications by embracing new functionality required by those
applications. At the same time it creates some fragmentation since different vendors may
ship OpenGL implementations that correspond to different versions of the specification.
This puts a greater burden on the application developer to understand the differences in
functionality between the different versions and also to understand how to take advantage
of the new functionality when it is available and how to do without in its absence.

In this chapter we will describe some ways in which OpenGL has evolved and is
currently evolving and also discuss some interesting aspects of implementing hardware
acceleration of the OpenGL pipeline.

8.1 OpenGL Versions

At the time of writing there are have been five revisions to the OpenGL specification (1.1
through 1.5). The version number is divided into a major and minor number. The change
in minor number indicates that these versions are backward-compatible; no pre-existing
functionality has been modified or removed. This means that applications written using
an older revision of OpenGL will continue to work correctly with a newer version.

129

130 C H A P T E R 8 OpenGL Imp lemen ta t i ons

When a new version of the specification is released, it includes enhancements that
either incorporate new ideas or that generalize some existing part of the pipeline. These
enhancements are added as it becomes practical to implement them on existing platforms
or platforms that will be available in the near future. Some examples of new functionality
are the addition of vertex arrays and texture objects in OpenGL 1.1 or the addition of
multitexture and multisample in OpenGL 1.3. In the case of vertex arrays and texture
objects they were additions that did not really reflect new technologies. They were for the
most part additions that helped improve the performance an application could achieve.
Multitexture is a generalization of the texturing operation that allows multiple texture
maps to be applied to a single primitive. Multisample is a new feature that introduces a
new technology (multiple samples per-pixel) to achieve full-scene antialiasing.

This short list of features helps illustrate a point. Features that require new tech-
nologies or modifications to existing technologies are unlikely to be well supported on
platforms that were created before the specification was defined. Therefore older plat-
forms, i.e., older accelerators are unlikely to be refitted with new versions of OpenGL or
when they do, they typically implement the new features using the host processor and are
effectively unaccelerated. This means that application writers may need to be cautious
when attempting to use the features from a new version of OpenGL on an older (previous
generation) platform. Rather than repeat caveat emptor and your mileage may vary each
time we describe an algorithm that uses a feature from a later version of OpenGL to avoid
clutter we’ll only state it once here.

A fairly complete list of features added in different versions of the OpenGL
specification is as follows:

OpenGL 1.1 Vertex array, polygon offset, RGB logic operation, texture image formats,
texture replace environment function, texture proxies, copy texture, texture
subimage, texture objects.

OpenGL 1.2 3D textures, BGRA pixel formats, packed pixel formats, normal rescaling,
separate specular color, texture coordinate edge clamping, texture LOD control,
vertex array draw element range, imaging subset.

OpenGL 1.3 Compressed textures, cube map textures, multisample, multitexture,
texture add environment function, texture combine environment function, texture
dot3 combine environment operation, texture coordinate border clamp, transpose
matrix.

OpenGL 1.4 Automatic mipmap generation, squaring blend function, constant blend
color (promoted from the imaging subset), depth textures, fog coordinate, multiple
draw arrays, point parameters, secondary color, stencil wrap, texture crossbar
environment mode, texture LOD bias, texture coordinate mirror repeat wrap
mode, window raster position.

OpenGL 1.5 Buffer objects, occlusion queries, and shadow functions.

S E C T I O N 8 . 3 OpenGL ES fo r Embedded Sys tems 131

8.2 OpenGL Extensions

To accommodate the rapid innovation in the field of computer graphics the OpenGL
design also allows an implementation to support additional features. Each feature is
packaged as a mini-specification that adds new commands, tokens, and state to the
pipeline. These extensions serve two purposes: they allow new features to be “field tested,”
and if they prove successful they are incorporated into a later version of the specification.
This also allows vendors to use their innovations as product differentiators: it provides a
mechanism for OpenGL implementation vendors to release new features as part of their
OpenGL implementation without having to wait for the feature to become mainstream
and go through a standardization process.

Over time it became useful to create standardized versions of some vendor-specific
extension specifications. The original idea was to promote an existing vendor-specific
extension to “EXT” status when multiple vendors (two or more) supported the extension
in their implementation and agreed on the specification. It turned out that this process
wasn’t quite rigorous enough, so it evolved into a new process where the Architecture
Review Board creates a version of specific extensions with their own seal of approval.
These “ARB” extensions often serve as previews of new features that will be added in a
subsequent version of the standard. For example, multitexture was an ARB extension at
the time of OpenGL 1.2 and was added to the base standard as part of OpenGL 1.3. An
important purpose of an ARB extension is that it acts as a mini-standard that OpenGL
implementation vendors can include in their products when they can support it well.
This reduces the pressure to add new features to the base standard before they can be
well supported by a broad set of implementation vendors, yet at the same time gives
application writers a strong specification and an evolutionary direction.

Sometimes an ARB extension reflects a set of capabilities that are more market-
specific. The ARB_imaging_subset is an example of such an extension. For this class
of extensions the demand is strong enough to create a rigorously defined specification
that multiple vendors can consistently implement, but the demand is not broad enough
and the features are costly enough to implement so as not to incorporate it into the base
standard.

As we stated in the book preface, our intent is to make full use of features available
in OpenGL versions 1.0 through 1.5 as well as ARB extensions. Occasionally we will also
describe a vendor-specific extension when it is helpful to a particular algorithm. More
information about using extensions is included in Appendix A.

8.3 OpenGL ES for Embedded Systems

As applications for 3D graphics have arisen in areas beyond the more traditional personal
computers and workstations, the success of the OpenGL standard has made it attractive
for use in other areas.

132 C H A P T E R 8 OpenGL Imp lemen ta t i ons

One rapidly growing area is 3D graphics for embedded systems. Embedded systems
range from mobile devices such as watches, personal digital assistants, and cellular hand-
sets; consumer appliances such as game consoles, settop boxes, and printers; to more
industrial aerospace, automotive, and medical imaging applications. The demands of
these systems also encompass substantial diversity in terms of processing power, memory,
cost, battery power, and robustness requirements. The most significant problem with the
range of potential 3D clients is that many of them can’t support a full “desktop” OpenGL
implementation. To solve this problem and address the needs of the embedded devices, in
2002 the Khronos Group created a group to work with Silicon Graphics (the owner of the
OpenGL trademark) and the OpenGL ARB (the overseer of the OpenGL specification)
to create a parallel specification for embedded devices called OpenGL ES. The operating
principles of the group are to oversee a standard for embedded devices based on a subset
of the existing desktop OpenGL standard. To handle the diverse requirements of all of the
different types of embedded devices the Khronos Group decided to create individualized
subsets that are tailored to the characteristics of a particular embedded market (Khronos
Group, 2002). These subsets are termed profiles.

8.3.1 Embedded Profi les

To date, the Khronos Group has completed version 1.0 and 1.1 of the specifications for
two profiles (Blythe, 2003) and is in the process of creating the specification for a third.
Profile specifications are created by working groups, comprised of Khronos members
experienced in creating OpenGL implementations and familiar with the profile’s target
market. Since a profile is intended to address a specific market, the definition of a profile
begins with a characterization of the market being addressed, analyzing the demands
and constraints of that market. The characterization is followed by draft proposals
of features from the desktop OpenGL specification that match the market characteri-
zation document. From the feature proposals a more detailed specification document
is created. It defines the exact subset of the OpenGL pipeline included in the profile,
detailing the commands, enumerants, and pipeline behavior. Similar to OpenGL ARB
extensions, an OpenGL ES profile specification may include new OES extensions that
are standardized versions of extensions useful to the particular embedded market. Like
desktop OpenGL implementations, implementations of OpenGL ES profiles may also
include vendor-specific extensions. The set of extensions include those already defined
for desktop OpenGL, as well as new extensions created specifically to address additional
market-specific needs of the profile’s target market.

A profile includes a strict subset of the desktop OpenGL specification as its base
and then adds additional extensions as either required or optional extensions. Required
extensions must be supported by an implementation and optional extensions are at the
discretion of the implementation vendor. Similar to desktop OpenGL, OpenGL ES pro-
files must pass a profile-specific conformance test to be described as an OpenGL ES
implementation. The conformance test is also defined and overseen by the Khronos
Group.

S E C T I O N 8 . 3 OpenGL ES fo r Embedded Sys tems 133

The two defined profiles are the Common and Common-Lite profiles. The third
profile design in progress is the Safety Critical profile.

8.3.2 Common and Common-Lite Profi les

The goal of the Common and Common-Lite profiles is to address a wide range of
consumer-related devices ranging from battery-powered hand-held devices such as mobile
phones and PDAs to line-powered devices such as kiosks and settop boxes. The require-
ments of these devices are small memory footprint, modest to medium processing power,
and a need for a wide range of 3D rendering features including lighted, texture mapped,
alpha blended, depth-buffered triangles, lines, and points.

To span this broad range of devices, there are two versions of the profile. The
Common profile effectively defines the feature subset of desktop OpenGL in the two
profiles. The Common-Lite profile further reduces the memory footprint and processing
requirements by eliminating the floating-point data type from the profile.

The version 1.0 Common profile subset is as follows: Only RGBA rendering is sup-
ported, color index mode is eliminated. The double-precision data type is dropped and
a new fixed-point data type called fixed (suffixed with ‘x’) is added. Desktop OpenGL
commands that only have a double-precision form, such as glDepthRange are replaced
with single-precision floating-point and fixed-point versions.

Only triangle, line, and point-based primitives are supported (not pixel images
or bitmaps). Geometry is drawn exclusively using vertex arrays (no support for
glBegin/glEnd). Vertex arrays are extended to include the byte data type.

The full transformation stack is retained, but the modelview stack minimum is
reduced to 16 elements, and the transpose forms of the load and multiply commands are
removed. Application-specified clipping planes and texture coordinate generation are also
eliminated. Vertex lighting is retained with the exception of secondary color, local viewer
mode, and distinct front and back materials (only the combined GL_FRONT_AND_BACK
material can be specified). The only glColorMaterial mode supported is the default
GL_AMBIENT_AND_DIFFUSE.

Rasterization of triangles, lines, and points are retained including flat and smooth
shading and face culling. However, polygon stipple, line stipple, and polygon mode
(point and line drawing styles) are not included. Antialiased line and point drawing is
included using glLineSmooth and glPointSmooth, but not glPolygonSmooth.
Full scene antialiasing is supported through multisampling, though it is an optional
feature.

The most commonly used features of texture mapping are included. Only 2D tex-
ture maps without borders using either repeat or edge clamp wrap modes are supported.
Images are loaded using glTexImage2D or glCopyTexture2D but the number of
external image type and format combinations is greatly reduced. Table 8.1 lists the sup-
ported combinations of formats and types. The infrastructure for compressed texture
images is also supported. The Common and Common-Lite profiles also introduce a sim-
ple paletted form of compression. The extension is defined so that images can either be

134 C H A P T E R 8 OpenGL Imp lemen ta t i ons

T ab l e 8.1 OpenGL ES Texture Image Formats and Types

Internal Format External Format Type

GL_RGBA GL_RGBA GL_UNSIGNED_BYTE

GL_RGB GL_RGB GL_UNSIGNED_BYTE

GL_RGBA GL_RGBA GL_UNSIGNED_SHORT_4_4_4_4

GL_RGBA GL_RGBA GL_UNSIGNED_SHORT_5_5_5_1

GL_RGB GL_RGB GL_UNSIGNED_SHORT_5_6_5

GL_LUMINANCE_ALPHA GL_LUMINANCE_ALPHA GL_UNSIGNED_BYTE

GL_LUMINANCE GL_LUMINANCE GL_UNSIGNED_BYTE

GL_ALPHA GL_ALPHA GL_UNSIGNED_BYTE

accelerated in their indexed form or expanded to their non-paletted form at load time
operating on them as regular images thereafter.

Multitexturing is supported, but only a single texture unit is required. Texture
objects are supported, but the set of texture parameters is reduced, leaving out sup-
port for texture priorities and level clamping. A subset of texture environments from
the OpenGL 1.3 version are supported: GL_MODULATE, GL_BLEND, GL_REPLACE,
GL_DECAL, and GL_ADD. The remainder of the pipeline: fog, scissor test, alpha test, sten-
cil/depth test, blend, dither, and logic op are supported in their entirety. The accumulation
buffer is not supported.

Support for operating on images directly is limited. Images can be loaded into texture
maps, and images can be retrieved to the host from the framebuffer or copied into a
texture map. The glDrawPixels, glCopyPixels, and glBitmap commands are not
supported.

More specialized functionality including evaluators, feedback, and selection are not
included. Display lists are also omitted because of their sizable implementation burden.
State queries are also substantially limited; only static state can be queried. Static state is
defined as implementation-specific constants such as the depth of a matrix stack, or depth
of color buffer components, but does not include state that can be directly or indirectly
set by the application. Examples of non-static state include the current blend function,
and the current value of the modelview matrix.

Fixed-Point Arithmetic

One of the more significant departures from desktop OpenGL in the Common profile
is the introduction of a fixed-point data type. The definition of this type is a 32-bit

S E C T I O N 8 . 3 OpenGL ES fo r Embedded Sys tems 135

representation with a 16-bit signed integer part and a 16-bit fraction part. Conver-
sions between a fixed-point representation, x, and a traditional integer or floating-point
representation, t, are accomplished with the formulas:

x = t ∗ 65536

t = x/65536,

which, of course, may use integer shift instructions in some cases to improve the efficiency
of the computation. The arithmetic rules for fixed-point numbers are:

add(a, b) = a + b

sub(a, b) = a − b

mul(a, b) = (a ∗ b)/65536

div(a, b) = (a ∗ 65536)/b

Note that the simple implementation of multiplication and division need to compute a
48-bit intermediate result to avoid losing information.

The motivation for adding the fixed-point data type is to support a variety of devices
that do not include native hardware support for floating-point arithmetic. Given this
limitation in the devices, the standard could either:

1. Continue to support single-precision floating-point only, assuming that software
emulation will be used for all floating-point operations (in the application and in
the profile implementation).

2. Require a floating-point interface but allow the profile implementation to use
fixed-point internally by relaxing some of the precision and dynamic range
requirements. This assumes that an application will use software floating-point, or
will use its own form of fixed-point within the application, and convert to
floating-point representation when using profile commands.

3. Support a fixed-point interface and internal implementation including relaxing the
precision and dynamic range requirements.

Each of the choices has advantages and disadvantages, but the path chosen was to include
a fixed-point interface in both the Common and Common-Lite profiles, while requir-
ing the Common profile to continue to support a dynamic range consistent with IEEE
single-precision floating-point. This allows an application to make effective use of either
the floating-point data types and command interface while retaining compatibility with
Common-Lite profile applications. The Common-Lite profile only supports fixed-point
and integer data types and at minimum must support a dynamic range consistent with
a straightforward fixed-point implementation with 16 bits each of integer and fraction
parts. However, a Common-Lite profile implementation may support larger dynamic
range, for example, using floating-point representations and operations internally.

136 C H A P T E R 8 OpenGL Imp lemen ta t i ons

This design decision places more burden on applications written using the fixed-
point interface to constrain the ranges of values used within the application, but
provides opportunities for efficient implementations across a much wider range of device
capabilities.

The principal application concern is avoiding overflow during intermediate calcu-
lations. This means that the combined magnitudes of values used to represent vertices
and modeling transformations must not exceed 215 − 1. Conversely, given the nature of
fixed-point arithmetic, values less than 1.0 will lose precision rapidly. Some useful rules
for avoiding overflow are:

Given a representation that supports numbers in the range [−X, X],
1. Data should start out within this range.

2. Differences between vertex components within a primitive (triangle or line) should
be within [−X, X].

3. For any pair of vertices q and p, |qi − pi| + |q3 − p3| < X, for i = 0 . . . 2 (the
subscript indices indicate the x, y, z, and w components).

These constraints need to be true for coordinates all the way through the transforma-
tion pipeline up to clipping. To check that this constraint is met for each object, examine
the composite transformation matrix (projection*modelview) and the components of the
object vertices. Take the absolute values of the largest scaling component from the upper
3 × 3 (s), the largest translational component from the 4th column (t), and the largest
component from the object vertices (c), and test that c ∗ s + t < X/2.

8.3.3 Safety Crit ical Profi le

The Safety Critical profile addresses the market for highly robust or mission critical 3D
graphics implementations. Typical applications for this market include avionics and auto-
motive displays. The principal driving factor behind the Safety Critical profile is providing
the minimum required 3D rendering functionality and nothing more. Unlike the Com-
mon profile, processing power, battery power, and memory footprint are not constraints.
Instead, minimizing the number of code paths that need to be tested is much more impor-
tant. For these reasons, the Safety Critical profile greatly reduces the number of supported
input data types, and will make more drastic cuts to existing desktop features to simplify
the testing burden.

8.3.4 OpenGL ES Revisions

The OpenGL ES embedded profiles promise to extend the presence of the OpenGL
pipeline and OpenGL applications from tens of millions of desktop computers to hun-
dreds of millions of special purpose devices. Similar to the OpenGL specification, the
ES profile specifications are also revised at regular intervals, nominally yearly, so that
important new features can be incorporated into the standard in a timely fashion.

S E C T I O N 8 . 4 OpenGL P ipe l i ne Evo l u t i on 137

8.4 OpenGL Pipeline Evolution

Looking at features added to new versions, the most significant changes in OpenGL
have occurred in the way data is managed and moved in and out of the pipeline (texture
objects, vertex arrays, vertex buffer objects, render-to-texture, pbuffers, packed pixels,
internal formats, subimages, etc.) and in the explosive improvement in the capabilities of
the texture mapping subsystem (cube maps, LOD control, multitexture, depth textures,
combine texture environment, crossbar environment, etc.). The first class of changes
reflect a better understanding of how applications manage data and an evolving strategy
to tune the data transfer model to the underlying hardware technologies. The second class
of changes reflect the desire for more advanced fragment shading capabilities.

However, these changes between versions only tell part of the story. The OpenGL
extensions serve as a harbinger of things to come. The most significant feature is the evolu-
tion from a fixed-function pipeline to a programmable pipeline. This evolution manifests
itself in two ways: vertex programs and fragment programs. Vertex programs allow an
application to tailor its own transform and lighting pipeline, enabling more sophisticated
modeling and lighting operations including morphing and skinning, alternate per-vertex
lighting models, and so on. Fragment programs bypass the increasingly complex multi-
texture pipeline API (combine and crossbar environments), replacing it with a complex
but much more expressive programming model allowing nearly arbitrary computation
and texture lookup to be performed at each fragment.

The two programmable stages of the pipeline continue to grow in sophistication, sup-
porting more input and computational resources. However, there is another evolutionary
stage just now appearing. The programmable parts of the pipeline are following the evo-
lution of traditional computing (to some extent), beginning with programs expressed in
a low-level assembly language and progressing through languages with increased expres-
siveness at a much higher level. These improvements are achieved through the greater
use of abstraction in the language. The programmable pipeline is currently making the
first transition from assembly language to a higher-level (C-like) language. This step is
embodied in the ARB_shading_language_100 extension, also called the OpenGL
Shading Language (Kessenich et al., 2003).

The transition to a higher-level shading language is unlikely to be the end of the
evolution, but it may signal a marked slow down in the evolution of the structure of the
pipeline and greater focus on supporting higher-level programming constructs. Regard-
less, the transition for devices to the programmable model will take some time, and in the
near term there will be devices that, for cost or other reasons, will be limited to earlier
versions of the OpenGL standard well after the programmable pipeline becomes part of
core OpenGL.1

The remainder of this chapter describes some of the details and technologies involved
in implementing hardware accelerators. Many of the techniques serve as a basis for

1. OpenGL 2.0

138 C H A P T E R 8 OpenGL Imp lemen ta t i ons

hardware-accelerated OpenGL implementations independent of the target cost of the
accelerator. Many of the techniques can be scaled down for low-cost or scaled up for
very high-performance implementations and the techniques are applicable to both the
fixed-function and programmable parts of the pipeline.

8.5 Hardware Implementations of the Pipeline

The speed of modern processors makes it possible to implement the entire OpenGL
pipeline in software on the host processor and achieve the performance required to process
millions of vertices per second and hundreds of millions of pixels per second. However,
the trend to increase realism by increasing the complexity of rendered scenes calls for the
use of hardware acceleration on at least some parts of the OpenGL pipeline to achieve
interactive performance.

At the time of this writing, hardware acceleration can enable performance levels in
the range of 100 to 300 million vertices per second for geometry processing and 100
million to 5 billion pixels per second for rasterization. The raw performance is typically
proportional to the amount of hardware acceleration present and this is in turn reflected
in the cost and feature set of the accelerator. OpenGL pipelines are being implemented
across a tremendous range of hardware and software. This range makes it difficult to
describe implementation techniques that are applicable across devices with differing price
and performance targets. Instead, the following sections provide an overview of some
acceleration techniques in order to provide additional insight into how the pipeline works
and how applications can use it more efficiently.

The OpenGL pipeline can be roughly broken into three stages: transform and light-
ing, primitive setup, and rasterization and fragment processing. Accelerators are usually
designed to accelerate one or more of these parts of the pipeline. Usually there is more
benefit in accelerating the later stages of the pipeline since there is more data to process.

8.5.1 Rasterizat ion Accelerat ion

Rasterization accelerators take transformed and lighted primitives and convert them to
pixels writing them to the framebuffer. The rasterization pipeline can be broken down
into several operations which are described in the following paragraphs.

Scan Conversion

Scan conversion generates the set of fragments corresponding to each primitive. Each
fragment contains window coordinates x, y, and z, a color value, and texture coor-
dinates. The fragment values are generated by interpolating the attributes provided at
each vertex in the primitive. Scan conversion is computationally intensive since multiple
attribute values must be computed for each fragment. Scan conversion computations can

S E C T I O N 8 . 5 Ha rdwa re Imp lemen ta t i ons o f t he P ipe l i ne 139

be performed using fixed-point arithmetic, but several of the computations must be per-
formed at high precision to avoid producing artifacts. For example, color computations
may use 4- or 8-bit (or more) computations and produce satisfactory results, whereas
window coordinates and texture coordinates need substantially higher precision. During
scan conversion the generated fragments are also tested against the scissor rectangle, and
fragments outside the rectangle are discarded.

Texture

Texture mapping uses texture coordinates to look up one or more texel values in a tex-
ture map. The texel values are combined together to produce a single color, which is
used to update the fragment color. The update method is determined by the current tex-
ture environment mode. The texturing operation can be both computationally expensive
and memory intensive, depending on the filtering mode. For example, an RGBA texture
map using a GL_LINEAR_MIPMAP_LINEAR minification filter retrieves 8 texel values
split between 2 texture images. These 8 texel values are combined together using roughly
10 multiplications and 4 additions per color component. The amount of memory band-
width required is dependent on the component number and depth of the texture map as
well as the type of filtering used. It is common for hardware accelerators to design around
compact texel representations, for example, 16-bit texels (textures with component sizes
summing to 16-bits or less such as GL_RGBA4, GL_RGB5_A1) or a compressed texture
representation.

Multitexture increases the bandwidth requirement in a linear way, in that each active
texture stage requires a similar set of operations to produce the filtered result and then
the result must be combined with those from other texture stages.

Fog and Alpha

This stage calculates an attenuation value, used to blend the fragment color with a fog
color. The attenuation computation is dependent on the distance between the eye and
the fragment and the current fog mode. Many hardware accelerators use the window z
coordinate as an approximation to the distance, evaluating the fog function using a table
lookup scheme rather than providing circuitry to evaluate the fog function directly.

The alpha function compares the fragment alpha against a reference value and per-
forms an interpolation between the alpha and selected color components of the fragment.
The color components selected depend on the current alpha function.

Depth and Stencil

The depth and stencil tests are memory intensive, since the depth and stencil values
must be retrieved from the framebuffer before the tests can be performed. The amount
of memory bandwidth required depends on the size of the depth and stencil buffers.
Accelerator implementations will often pack the depth and stencil storage together for
simultaneous access. For example, a 23-bit depth value and 1-bit stencil value are packed

140 C H A P T E R 8 OpenGL Imp lemen ta t i ons

into 3 bytes, or a 24-bit depth value and an 8-bit stencil value are packed into 4 bytes.
In the first example, the stencil operation may be no more expensive than the depth test
operation if memory is accessed in byte-units; but in the latter case the stencil operation
may cost an extra memory access, depending on the structure of the memory interface.

Blending

Framebuffer blending is also memory intensive since the contents of the color buffer
must be retrieved as part of the computation. If the blend function uses destination
alpha, additional memory bandwidth is required to retrieve the destination alpha value.
Depending on the blend function, a moderate number of multiplication and addition
operations may also be required. For example, for rendering of transparent surfaces, 6
multiplies and 3 adds are required for each fragment:

Rdst ← Rsrcα + (1 − α)Rdst

Gdst ← Gsrcα + (1 − α)Gdst

Bdst ← Bsrcα + (1 − α)Bdst

Framebuffer Operations

Rasterization accelerators typically accelerate some additional framebuffer operations
such as buffer clears and dithering. The clear operations are very memory intensive, since
every pixel within the window needs to be written. For example, a 1024 × 1024 window
requires 1 million memory operations to write each pixel in the window. If an application
is running at 85 frames per second, 85 million pixel writes per second are required just
to clear the window.

Accumulation buffer operations are also computation and memory intensive, but
frequently are not implemented directly in lower cost accelerators. The main reason
for this is that the accumulation buffer operations require larger multipliers and adders
to implement the higher precision arithmetic, but the cost is prohibitive for lower cost
accelerators.

The total number of rasterization computations performed for each pixel can exceed
100 operations. To support rasterization rates in excess of 100 million pixels per second
the rasterization pipeline must support as many as 1 billion operations per second or
more. This is why rasterization acceleration is found in all but the lowest-cost devices
that support 3D rendering.

OpenGL implementations that do not use an external accelerator may still take
advantage of special CPU instructions to assist with rasterization. For example, Intel’s
MMX (multimedia extensions) (Peleg et al., 1997) instructions allow the same operation
to be simultaneously applied to multiple data elements packed into a wide register. Such
instructions are particularly useful for computing all of the components of an RGBA color
value at once.

S E C T I O N 8 . 5 Ha rdwa re Imp lemen ta t i ons o f t he P ipe l i ne 141

8.5.2 Primit ive Setup Accelerat ion

Primitive setup refers to the set of computations that are required to generate input frag-
ments for the rasterization pipeline. In lowest cost accelerators, these computations are
performed on the host computer for each primitive and sent to the rasterizer. These com-
putations can easily become the bottleneck in the system, however, when a large number
of primitives are drawn. The computations require computing the edge equations for each
active parameter in a triangle’s vertices (color, depth, texture coordinates), performed at
high precision to avoid artifacts. There is a large amplification of the amount of data in
the pipeline, as each triangle generates a large number of fragments from three vertices.

8.5.3 Transform and Lighting Accelerat ion

Mid-range and high-end accelerators often provide hardware acceleration for the
OpenGL transform and lighting (also called geometry) operations. These operations
include the transformation of vertex coordinates to eye space, lighting computations, pro-
jection to window coordinates, clipping, texture coordinate generation, and transform.
These operations typically use IEEE-754 single-precision floating-point computations2

and require in excess of 90 operations per-vertex when lighting or texturing is enabled.
To achieve rates of 10 million triangles per second, more than 100 million floating-point
operations per second are necessary in addition to data movement and other operations.
High vertex rates preclude using the host CPU except in cost-sensitive applications.

Even with accelerator support, some operations need to be implemented carefully to
achieve good performance. For many computations, it is not necessary to evaluate the
result to full single-precision accuracy. For example, color computations may only need
8- or 12-bits of precision, and specular power and spotlight power functions are often
implemented using table lookup rather than direct function evaluation. The OpenGL
glRotate command may use limited precision polynomial approximations to evaluate
trigonometric functions. Division may be implemented using fast reciprocal approxima-
tions (Soderquist and Leeser, 1996) rather than a much more expensive divide operation.
The accelerator architecture may be tuned to compute inner product operations since
much of the transformation and lighting computations are composed of inner product
computations.

Implementations that support programmable vertex operations (vertex programs),
map or translate the application-specified vertex programs onto an internal instruction
set. This internal instruction set shares much in common with the operations required
to implement the fixed vertex pipeline: vector add, multiply, reciprocal, inner product,
matrix operations, limited conditional branching and looping, and miscellaneous opera-
tions to assist in computing some parts of the vertex lighting equation (e.g., attenuation or
specular power). Programmable fragment processing requires similar types of instructions

2. In practice, a subset of IEEE floating-point is used since some of the more expensive capabilities (e.g.,
support for different rounding modes), are unnecessary.

142 C H A P T E R 8 OpenGL Imp lemen ta t i ons

as well, particularly to support per-fragment lighting computations, only in the near-term
with lower precision and range requirements than those needed for vertex processing.

Over the past five years, it has become cost-effective to fit rasterization, setup,
and transform and lighting acceleration into a single chip, paving the way for low-cost
implementations to hardware accelerate the majority of the OpenGL pipeline. These
implementations range from desktop to handheld devices. High-end desktop versions are
capable of rendering hundreds of millions of triangles per second and billions of pix-
els per second, while low-power consumption, low-cost implementations for hand-held
devices are capable of hundreds of thousands of triangles and tens of millions of pixels
per second.3

8.5.4 Pipel ine Balance

The data explosion that occurs as vertices are processed and converted to pixels leads to
the notion of balancing the stages of the pipeline to match the increases in the amount of
data to be processed. An unbalanced pipeline leaves a bottleneck at one of the pipeline
stages, leaving earlier and later stages idle, wasting resources. The question arises on
how to determine the correct balance between pipeline stages. The difficulty is that the
correct answer is application-dependent. An application that generates large numbers
of very small triangles may require more power in the earlier transform, lighting, and
setup stages of the pipeline, whereas applications that generate smaller numbers of trian-
gles with larger areas may require more rasterization and pixel fill capabilities. Sometimes
application classes can be grouped into categories such as geometry-limited or fill-limited.
Generally CAD applications fit in the former category, whereas games and visual simula-
tion applications fit in the latter, so it is not uncommon for accelerator designers to bias
their implementations toward their target audience.

One way to describe the balance is in terms of the number of input triangles (or other
primitives) and the average area of the primitive. For example, 100 million triangles per
second with 10 pixels per triangle requires 1 billion pixels to be processed per second.
Similarly, 50 million 10-pixel aliased lines may require 500 million pixels per second, and
50 million antialiased lines where each antialiased pixel has a 3-pixel footprint requires
1.5 billion pixels per second. System designers will then assign properties to the primitives
and pixels, (e.g., a single infinite light; normal, color, one texture coordinate per-vertex;
average triangle strip length 10; 2 mipmapped textures; depth buffering; 8-bit RGBA
framebuffer; 24-bit depth buffer, etc.) and determine the raw processing requirements to
meet these objectives.

8.5.5 Paral lel ism Opportunit ies

The OpenGL specification allows the use of parallel processing to improve performance,
but imposes constraints on its use. The most important constraint requires that images are

3. In the year 2004.

S E C T I O N 8 . 5 Ha rdwa re Imp lemen ta t i ons o f t he P ipe l i ne 143

rendered as if their primitives were processed in the order they were received, through-
out the pipeline. This means that the fragments from one triangle shall not reach the
framebuffer before the fragments of a triangle that was sent to the pipeline earlier.
This constraint is essential for the correct operation of order-dependent algorithms such
as transparency. However, the specification does not prohibit primitives from being
processed out of order, as long as the end result isn’t changed.

Parallelism can be exploited in the transform and lighting stages by processing vertices
in parallel, that is, by processing two or more vertices simultaneously. Much of the vertex
processing can be performed completely in parallel (transforms, lighting, clip testing) and
the results accumulated for primitive assembly and rasterization. A parallel implementa-
tion can take several forms. Individual primitives can be sent to independent processors
for processing, and the resultant primitives merged back in order before rasterization,
as shown in Figure 8.1. In such an implementation, the incoming primitives are passed
through a distributor that determines to which geometry processor to send each primi-
tive. The distributor may choose processors in a round-robin fashion or implement a more
sophisticated load-balancing scheme to ensure that primitives are sent to idle processors.
The output of each geometry processor is sent to a recombiner that merges the processed
primitives in the order they were originally sent. This can be accomplished by tagging the
primitives in the distributor and then reassembling them in the order specified by the tags.

Using multiple-instruction-multiple-data (MIMD) processors, the processors can
run independently of one another. This allows different processors to process differ-
ing primitive types or lengths or even execute different processing paths, such as clipping
a primitive, in parallel. MIMD-based processing can support workloads with greater
variation, but incurs the extra cost of supporting a complete processor with instruction
sequencing and data processing. An alternative is to run the processors in lockstep using
a single instruction stream.

A single-instruction-multiple-data (SIMD) processor can be used to process the
vertices for a single primitive in parallel. For example, a SIMD processor with three

Mesh 1

Mesh 2

v v v v v v v v v v

Mesh 0 Transformed
primitives

Vertex
processor 0

Vertex
processor 1

F i g u r e 8.1 MIMD vertex processing.

144 C H A P T E R 8 OpenGL Imp lemen ta t i ons

Mesh 1

Mesh 2 Mesh 0 Transformed
primitives

Vertex
processor 0

Vertex
processor 1

Vertex
processor 2

v v v v v v v v v v

F i g u r e 8.2 SIMD vertex processing.

processors can simultaneously process the three vertices in an independent triangle, or
three vertices at a time from a triangle strip, as shown in Figure 8.2. Clipping compu-
tations are more difficult to process in parallel on an SIMD processor, so most SIMD
implementations use a single processor to clip a primitive.

In both these cases, difficulties arise from state changes, such as changing the mod-
elview matrix or the current color. These changes must be applied to the correct set of
primitives. One reason that OpenGL allows so few commands between glBegin/glEnd
sequences is to facilitate parallel processing without interference from state changes.

When there are no state changes between primitives, all of the vertices for the set
of primitives can be processed in the same way. This allows the simple SIMD model to
be extended to process vertices from multiple primitives at once, increasing the width
of the SIMD array. As the vertices are being processed, the information defining which
vertices are contained within each input primitive must be preserved and the primitives
re-assembled before clipping.

A single large SIMD array may not be effectively utilized if there are frequent state
changes between primitives, since that reduces the number of vertices that are processed
identically. One method to maintain efficiency is to utilize an MIMD array of smaller
SIMD processors where each MIMD element processes vertices with a particular set of
state. Multiple MIMD elements can work independently on different primitives, while
within each MIMD element, a SIMD array processes multiple vertices in parallel.

Vertex Efficiency

Most hardware accelerators are tuned to process connected primitives with no inter-
leaved state changes with maximum efficiency. Connected primitives, such as triangle

S E C T I O N 8 . 5 Ha rdwa re Imp lemen ta t i ons o f t he P ipe l i ne 145

strips, allow the cost of processing a vertex to be amortized over multiple primitives.
By avoiding state changes, the geometry accelerator is free to perform long sequences
of regular vector and matrix computations and make very efficient use of the arithmetic
logic in the accelerator. This an area where the use of vertex arrays can improve perfor-
mance, since state changes cannot be interspersed in the vertex data and the vertex array
semantics leave the current color, normal, and texture coordinate state undefined at the
end of the array.

Vertex Caching

Implicitly connected primitives such as strips and fans are not the only mechanism for
amortizing vertex computations. Vertex arrays can also be used to draw triangle lists, that
is, indexed arrays of triangles using the glDrawElements command. At first glance,
indexed arrays may seem inefficient since an index must first be fetched before the vertex
data can be fetched. However, if the index values are compact (16-bits) and can be
fetched efficiently by the accelerator, indexing allows more complex topologies than
strips and fans to be specified in a single rendering command. This allows meshes to
be specified in which more than two primitives can share each vertex. For example, a
regular rectangular grid of triangles will reuse each vertex in four triangles in the interior.
This means that the cost of fetching index values can be overcome by the savings from
avoiding re-transforming vertices. To realize the savings the accelerator needs to be able
to track the post-transform vertex data and re-use it.

With connected primitives the vertex data is re-used immediately as part of the next
primitive. However, with mesh data each triangle must be specified completely, so some
vertices must be re-specified. Fortunately, vertices are uniquely indexed by their index
value, so the index value can also be used to index a post-transform vertex cache to retrieve
already transformed values. This cache can be implemented as a software-managed cache
(for example, in implementations that do software vertex processing), or it can be imple-
mented directly in hardware. A relatively small cache of 8 to 16 entries, combined with
careful ordering of the individual primitives in the triangle list, can result in very good
vertex re-use, so this technique is commonly employed.

Rasterization

Parallelism can be exploited in the rasterization stage during fragment processing. Once
a fragment is generated during scan conversion, it can be processed independently of
other fragments as long as order is preserved. One way to accomplish this is to subdivide
the screen into regions and assign fragment processors to different regions as shown in
Figure 8.3. After scan conversion, each fragment is assigned to a processor according
to its window coordinates. A coarse screen subdivision may result in poor processor
utilization if the polygons are not evenly distributed among the subdivided regions. To
achieve better load balancing, the screen may be more finely subdivided and multiple
regions assigned to a single fragment processor. Scan-line interleave is one such form of

146 C H A P T E R 8 OpenGL Imp lemen ta t i ons

Processor 0

Processor 1

Processor 2

Processor 3

F i g u r e 8.3 Screen tiling.

Processor 0

Processor 1

F i g u r e 8.4 Scan line interleave.

fine-grain subdivision: each region is a scan line, and multiple scan lines are assigned to
a single processor using an interleaving scheme, as shown in Figure 8.4

Similar SIMD processing techniques can also be used for fragment processing. Since
all of the pixels of a primitive are subject to the identical processing, they can be processed
in parallel.

S E C T I O N 8 . 5 Ha rdwa re Imp lemen ta t i ons o f t he P ipe l i ne 147

One place where parallelism is particularly effective is in improving memory access
rates. Two places where external memories are heavily accessed are texture lookup and
framebuffer accesses. Rasterization bottlenecks often occur at the memory interfaces.
If external memory can’t keep up with the rest of the rasterizer, the pixel rate will be
limited by the rate at which memory can be accessed; that is, by the memory bandwidth.
Parallelism increases the effective memory bandwidth, by spreading the burden of memory
accesses over multiple memory interfaces. Since pixels can be processed independently, it
is straightforward to allocate memory interfaces to different pixel regions using the tiling
technique described previously.

For texture memory accesses, there are several ways of achieving some parallelism.
For mipmapping operations using GL_LINEAR_MIPMAP_LINEAR filtering, eight texel
values are retrieved from two mipmap levels. Rather than fetch the texel values serially,
waiting for each access to complete before starting the next one, the mipmap levels can
be distributed between multiple memories using a tiling pattern. Interleaving data across
multiple memory interfaces can benefit any texture filter that uses more than one sample.
In addition to interleaving, entire levels can also be replicated in independent memo-
ries, trading space for improved time by allowing parallel conflict-free access. Figure 8.5
illustrates an example where texture memory is replicated four ways and even and odd
mipmap levels are interleaved.

An alternative to multiple external texture memories is to use a hierarchical memory
system. This system has a single external interface, combined with an internal cache
memory, which allows either faster or parallel access. Hierarchical memory schemes rely
on coherency in the memory access pattern in order to re-use previous memory fetches.
Fortunately, mipmapping can exhibit a high level of coherency making caching effective.
The coherency can be further improved using texture compression to reduce the effective

Texture
filter

hardware

Level 0
texture A

Level 2
texture A

Level 4
texture A

Level 1
texture B

Level 3
texture B

Level 1
texture A

Level 3
texture A

Level 0
texture B

Level 2
texture B

F i g u r e 8.5 Mipmap levels replicated four ways and interleaved.

148 C H A P T E R 8 OpenGL Imp lemen ta t i ons

memory footprint for a texture at the cost of additional hardware to decompress the
texture samples during lookup. The organization of memory affects the performance
of the texturing subsystem in significant way; in older accelerators it was common for
mipmapping to be slower than linear or other filters in the absence of replication and
interleaving. In modern low-cost accelerators it is common for applications using mipmap
filters to achieve better performance than linear filters since small mipmap levels have
better cache coherency than larger linear maps.

A second way to increase parallelism can be exploited for multitexturing operations.
If multiple textures are active and the texture coordinates are independent of one another,
then the texel values can be retrieved in parallel. Again, rather than multiple external
memories, a single external memory can be used with a parallel or high-speed internal
cache. Like modern processor memory systems, the caching system used for texturing
can have multiple levels creating a hierarchy. This is particularly useful for supporting
the multiple texture image references generated by multitexturing and mipmapping.

Latency Hiding

One of the problems with using memory caching is that that the completion times for
memory reads become irregular and unpredictable. This makes it much more difficult to
interleave memory accesses and computations in such a way as to minimize the time spent
idle waiting for memory reads to complete. There can be substantial inefficiency in any
processing scheme if the processing element spends a lot of time idle while waiting for
memory references to complete. One way to improve efficiency is to use a technique called
hyperthreading. In hyperthreading, instead of having the processing element sit idle, the
processor state is saved and the processor executes another waiting task, called a thread.
If the second thread isn’t referencing memory and executes some amount of computation,
it can overlap the waiting time or latency, of the memory reference from the first thread.
When the memory reference for the first thread completes, that thread is marked as
“ready” and executes the next time the processing element stalls waiting for a memory
reference. The cost of using the hyperthreading technique is that extra hardware resources
are required to store the thread state and some extra work to stop and start a thread.

Hyperthreading works well with highly parallel tasks such as fragment processing.
As fragments are generated during rasterization, new threads corresponding to fragments
are constructed and are scheduled to run on the processing elements. Hyperthreading can
be mixed with SIMD processing, since a group of fragments equal to the SIMD array
width can be treated as a single thread. SIMD processing has the nice property that its
lockstep execution means that all fragments require memory reads at the same instant.
This means that its thread can be suspended once while its read requests for all of the
fragments are serviced.

Early-Z Processing

Another method for improving rasterization and fragment processing performance is to
try to eliminate fragments that are not visible before they undergo expensive shading

S E C T I O N 8 . 5 Ha rdwa re Imp lemen ta t i ons o f t he P ipe l i ne 149

operations. One way to accomplish this is to perform the depth test as fragments are
generated. If the fragment is already occluded then it is discarded immediately avoiding
texture mapping and other operations. To produce correct images, the early test must
produce identical results compared to depth testing at the end of the pipeline. This means
that when depth testing is disabled, or the depth function is modified, the early depth test
must behave correctly.

While early testing against the depth buffer can provide a useful optimization, it
still requires comparing each fragment against the corresponding depth buffer location.
In implementations with deep buffers of fragments traveling through the fragment pro-
cessing path on the way to the framebuffer, the test may be using stale depth data.
An alternative is to try to reject more fragments from a primitive in a single test, by using a
coarser depth buffer consisting of a single value for a tile or super-pixel. The coarser buffer
need only store information indicating whether the super-pixel is completely occluded and
if so, its min and max depth values in the area covered. Correspondingly large areas from
an incoming primitive are tested against the depth range stored in the super-pixel. The
results of the test: completely behind the super-pixel, completely in front of the super-
pixel, or intersects determine if the incoming block of pixels is discarded, or processed as
normal (with the depth range in the super-pixel updated as necessary).

Special cases arise when the incoming area intersects the depth range of the super-
pixel, or the incoming area is completely in front, but doesn’t completely cover the
super-pixel. In both cases the fragments in the incoming area proceeds through the rest
of the pipeline, but the super-pixel is invalidated since it isn’t completely covered by the
incoming primitive.

Despite the additional complexity of the coarser area approximation, it has two
advantages. First, it can reject larger groups of incoming fragments with few tests. Second,
if the areas are large enough (16×16), the buffer storing the depth range and valid flag for
the super-pixel becomes small enough to fit on-chip in a hardware accelerator, avoiding
additional delays retrieving values from memory. To further improve the efficiency of
rejection, the scheme can be extended to a hierarchy of tile sizes (Greene et al., 1993).

8.5.6 Reordering the Pipel ine

The early-Z processing mechanism is one of a number of places where processing steps
can be reordered to eliminate unnecessary work as a form of performance optimization.
The idea is to move work earlier in the pipeline to eliminate other potentially unnecessary
processing later in the pipeline. Some examples of this are trivial rejection of primitives
and backface culling. The logical order for processing primitives is to transform them to
eye-space; light them; project to clip space; clip or discard primitives outside the view
volume; perform the perspective division and viewport transformation. However, it can
be more efficient to defer the vertex lighting computation until after the trivial rejection
test, to avoid lighting vertices that will be discarded. Similarly, polygon face culling
logically happens as part of polygon rasterization, but it can be a significant performance
improvement to cull polygons first, before lighting them.

150 C H A P T E R 8 OpenGL Imp lemen ta t i ons

In the rasterization and fragment processing stages, it is similarly common to perform
the scissor test during rasterization. This ensures that fragments are discarded before
texture mapping or expensive shading operations. Early-Z and stencil processing are
perhaps the most complex examples, since all application-visible side effects must be
maintained. This is the key constraint with reordering the pipeline; it must be done in
such a way that the application is unaware of the ordering change; all side effects must
be preserved. Side effects might include updates to ancillary buffers, correct output of
feedback and selection tokens, and so forth.

The idea of eliminating work as early as possible isn’t limited to the internal imple-
mentation of the pipeline. It is also beneficial for applications to try to take similar steps,
for example, using alpha testing with framebuffer blending to discard “empty” fragments
before they reach the more expensive blending stage of the pipeline. Chapter 21 discusses
these additional performance optimization techniques.

8.5.7 Mixed Software and Hardware Implementations

As OpenGL continues to evolve, and this single standard is used to satisfy a wide range of
applications over an even larger range of performance levels, it is rare for implementations
to hardware accelerate all OpenGL primitives for every possible combination of OpenGL
states.

Instead, most implementations have a mixture of hardware accelerated and unaccel-
erated paths. The OpenGL specification describes pipelines of steps that primitives must
go through to be rendered. These pipelines may be implemented in software or accel-
erated in hardware. One can think of an implementation containing multiple pipelines,
each associated with a set of OpenGL state settings, called a state vector. Each one of
these pipeline/state combinations is a path.

A hardware designer may choose to hardware accelerate only a subset of all possible
OpenGL states to reduce hardware costs. If an application sets a combination of state set-
tings that aren’t accelerated, primitives processed under that state will be rendered using
software on the host processor. This concept gives rise to a number of notions, including
fast paths, slow paths, and fall back to software, to indicate whether an implementation
is or is not using a high-performance path for a particular combination of modes.

The existence of software and hardware paths has obvious performance implications,
but it also introduces some subtler issues. In Section 6.1.1 the importance of invariance in
rasterization for multipass algorithms was emphasized. As a practical matter, however,
it can be very difficult for an implementation with mixed software and hardware paths to
guarantee consistency between them. For example, if a new blending mode is introduced,
a software rasterization path may be added to the implementation to support the new
mode on legacy hardware. It may be difficult to use this mode in a multipass algorithm
since the software rasterizer is unlikely to rasterize triangles in the same way as the
hardware.

It may not be an entire path that is implemented in software, but just a single opera-
tion. For example, accumulation buffer operations are commonly performed on the host

S E C T I O N 8 . 6 The Fu tu re 151

processor, as the extended precision arithmetic is too expensive to implement in com-
modity hardware. Another example is texture borders. Texture borders, by their nature,
tend to complicate hardware texturing implementations and they are not used by many
applications;4 as a result, they are often relegated to software paths, or occasionally not
supported at all.

8.6 The Future

It’s difficult to predict exactly how the OpenGL pipeline will continue to evolve, but
some directions seem promising. In particular, the enhancement of the programmable
parts of the pipeline (vertex and fragment programs) will continue, adding storage and
computational resources, as well as enhanced arithmetic. Concurrently, new processing
structuring paradigms such as stream processing (Owens et al., 2000) may help scale
hardware accelerators to the next order of magnitude in performance improvement.
At the same time, interest continues in adding new functionality to the pipeline, such
as support for subdivision surfaces and displacement mapping (Lee et al., 2000). The
demand for efficient implementations of such features may see the evolution of the tradi-
tional polygon-based OpenGL rendering pipeline to other formulations such as REYES
(render everything you ever saw) (Cook et al., 1987; Owens et al., 2002) allowing hard-
ware accelerators to achieve the next level of interactive realism. In the meantime, the
software and hardware implementation techniques described here will enjoy continued
use across a variety of devices for the foreseeable future.

4. This is a catch-22, since lack of application support is a disincentive to accelerate a feature and vice
versa.

II
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

P
A
R
T

Basic Techniques

9
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Multiple Rendering Passes

One of the most powerful features of the OpenGL pipeline is the ability to render a prim-
itive multiple times using different modes, combining the results together to produce the
final image (Figure 9.1). This approach implements the equation Ifinal = I1op1I2op2 . . . In,
where opi represents an arbitrary combining operation. In essence, a multipass approach
combines the individual functional elements of OpenGL into a programming language,
increasing the power and generality of the implementation. An application can do more
computations than can be performed in OpenGL during a single pass over each primitive,
and can achieve a wide variety of additional effects.

Using multiple rendering passes to draw a single frame can significantly impact ren-
dering performance, which can lead to unacceptable frame rates. As the raw performance
of graphics hardware improves, however, applications can budget multiple rendering
passes to increase the frame quality, yet still maintain their desired frame rate. Investing
computation time on multipass algorithms can often yield more improvement to image
quality than applying it to increasing polygon counts. Many of the algorithms described in
the remainder of the book use multiple rendering passes to implement algorithms; becom-
ing familiar with these basic multipass principles provides the framework for modifying
and extending them.

9.1 Invariance

Section 6.1.1 describes the concept of invariance and how it applies to rasterization oper-
ations. The invariance rules are vital to ensure correct multipass rendering; without

155

156 C H A P T E R 9 Mul t i p l e Rende r i ng Pas se s

Basic geometry Basic geometry
and texture

Texgen texture Textured lighting

Pass 1 Pass 2 Pass 3

F i g u r e 9.1 Basic multipass concept: combine computations from multiple frames.

invariance there is no guarantee that a given primitive, re-rendered with different
attributes by a multipass algorithm, will render predictably and generate the desired
result. Application writers should be aware that sometimes the OpenGL invariance rules
can be subtle.

For example, a primitive doesn’t have to produce the same fragments if blending is
enabled and disabled, but it must do so if blending is effectively disabled by setting the
source and destination blend factors to GL_ONE and GL_ZERO. Since the invariance rules
allow for a lot of diversity between implementations, many vendor’s implementations may
be invariant even when a feature such as blending is explicitly enabled or disabled. While
convenient, this additional implementation-dependent invariance can lure application
writers into believing that this is the case for all implementations.

Table 9.1 lists methods for effectively disabling a particular feature that still maintains
invariance. These methods are guaranteed by the OpenGL specification; they should work
on any compliant implementation.

9.2 Multipass Overview

Each stage of a multipass algorithm splits into two steps: how to render one or more
primitives, and how the resulting image should be merged with the image from previous
steps. Care must be taken at each step, not only to ensure that the desired effect was
achieved, but also to ensure that all the buffers affected by this step contain the proper
values for the operations that follow.

S E C T I O N 9 . 2 Mul t i pa s s Ove r v i ew 157

T ab l e 9.1 Disabling Operations while Maintaining Invariance

State Enable Function Disable Arguments

GL_POLYGON_OFFSET_POINT glPolygonOffset factor = 0.0

GL_POLYGON_OFFSET_LINE units = 0.0

GL_POLYGON_OFFSET_FILL

GL_SCISSOR_TEST glScissor x = 0

y = 0

width =window width

height =window height

GL_ALPHA_TEST glAlphaFunc func = GL_ALWAYS

GL_DEPTH_TEST glDepthFunc func = GL_ALWAYS

GL_STENCIL_TEST glStencilOp zfail = GL_KEEP

zpass = GL_KEEP

glStencilFunc func = GL_ALWAYS

GL_COLOR_LOGIC_OP glLogicOp opcode = GL_COPY

GL_INDEX_LOGIC_OP

GL_BLEND glBlendFunc sfactor = GL_ONE

dfactor = GL_ZERO

A simple example that illustrates what must be considered when constructing mul-
tipass techniques is an implementation of separate specular color functionality. The
separate specular color is part of core OpenGL 1.2; it is described in Section 3.3.4.

The multipass implementation of this lighting mode requires two passes. In the first
pass, primitives are rendered with vertex lighting enabled, but with the material’s specular
reflectance set to zero. Zeroing the material specular component ensures that the color
from this pass doesn’t include a specular contribution. In the second pass, the primitives
are re-rendered, this time with the ambient, diffuse, and emissive reflectances set to zero,
and the specular reflectance set to the desired value. The result is two separate renderings
of the primitive; one with primary (diffuse), one with secondary (specular) colors.

In the specification of separate specular color, OpenGL computes the secondary color
separately, then adds it to the the fragment color after texturing. Since the secondary
color isn’t modified by texturing, our multipass algorithm can duplicate this algorithm
by disabling texturing during the second rendering pass. Adding together the primary

158 C H A P T E R 9 Mul t i p l e Rende r i ng Pas se s

and secondary light contributions can be done with blending. Blending is enabled during
the second pass, with both the source and destination blend factors set to GL_ONE.

This blending equation causes the fragment colors from the two computations to be
added together in the framebuffer. When blending two separate renderings of an object,
there are several details that must be considered. If depth testing is enabled for both passes,
the default depth function, GL_LESS, discards all of the fragments from the second pass
before blending. Changing the depth function to GL_EQUAL results in better behavior,
since fragments from the second pass with depth values equal to the visible fragments of
the first pass now pass the depth test and are blended.

For most situations this method is sufficient. If the rendered geometry is not well
behaved, however, multiple fragments might be rasterized to the same depth value as the
visible pixel. This effect would be invisible when blending isn’t enabled, but in this case
the extra fragments will be included in the blending computation, generating undesir-
able artifacts. One way around this problem is to render each image separately without
blending, trim to the geometry of interest (with stencil, for example), then blend the
color images in a separate step. In general, the complexity of the merge step can vary,
depending on details of the scene, the image quality required, and how the application
will use the modified buffers after the algorithm is finished.

To illustrate these trade-offs, consider the separate specular color example in more
detail. Care should be taken if the alpha component of the lighted polygon will be used
later by the application (for example, if the lighted geometry is being alpha tested or
a framebuffer containing alpha components is used to store the alpha components of
the pixels for use later on). There are some subtleties here; regular vertex lighting (and
therefore OpenGL’s separate specular color method) uses the alpha from the diffuse
material as the final alpha component of the lighted primitive; the alpha components of
the ambient, emissive, and specular reflectance are not used.

If the algorithm must compute the final alpha components correctly, we should con-
sider how these alpha values may be used. The requirement may be that only the final
alpha values stored in the framebuffer image must be correct. This could be done by ren-
dering the first, diffuse pass of the algorithm with the diffuse alpha components, and using
alpha values of zero for the second, specular pass. However, this approach doesn’t work
if the application is using alpha testing while the specular primitives are being rendered.
The specular components won’t have the correct alpha components, and the specular
highlights may be masked incorrectly by the alpha test.

To get both the correct final alpha values and the correct alpha test behavior, we
need to render both passes using the diffuse alpha components. If this is all we did, we
would get incorrect alpha values in the framebuffer; the blend equation we’re using
would add together the diffuse alpha values from both passes, doubling them. This
can be fixed by discarding the alpha component of the second blending pass with the
glColorMask(1,1,1,0). The first pass uses the diffuse alphas, producing proper
alpha test results, and updating the framebuffer with the proper alpha values. The second
pass would also be using the right alpha values, so the alpha test results for the specular
part of the image would be correct. The alpha results from this pass would be doubled

S E C T I O N 9 . 3 The Mu l t i pa s s Too lbox 159

by the blend, but then discarded by the color mask, leaving the proper alpha components
in the framebuffer.

So far, we have focused on creating the proper image in the color buffer. The color
buffer is a common target for multipass techniques, but not the only one. In some cases
the desired result of a rendering pass is not an updated color buffer, but changes in one
or more of the ancillary buffers: depth, stencil, or accumulation. These buffers may be
updated directly, or as a side effect of one or more multipass operations. For example,
updating the depth or stencil buffer is usually done as a side effect of rendering geometry.
Getting the final values of these buffers right (if they will be needed later) is part of the
algorithm design process.

9.3 The Multipass Toolbox

As the previous example illustrates, designing a good multipass algorithm requires atten-
tion to detail. But there is a more general framework that can be used to guide multipass
algorithm design. Here we provide a “toolbox” of building blocks within a programming
paradigm that is applicable to a wide range of algorithms.

A rendering algorithm or technique can be thought of as a specialized type of com-
puter algorithm. They can be expressed as a programming language, containing data
manipulation operations such as variable assignment, arithmetic and logic operations,
and control flow constructs such as loops and conditionals. The operations available in
the OpenGL pipeline itself can be mapped into constructs found in programming lan-
guages. This language can then be used to express rendering algorithms. From this more
general view of OpenGL, it becomes an easier task to map a rendering algorithm into a
sequence of OpenGL pipeline operations.

9.3.1 Arithmetic Operations

At every stage of the OpenGL pipeline some form of computation is performed. A few of
these stages can be controlled enough by applications so that general arithmetic operations
can be performed. In the two-pass specular lighting example, the arithmetic operations
available through blending were used. Using OpenGL 1.3 as a reference, the blending
functions provide operators for multiplication, addition, subtraction, minimum, and
maximum. The constant blending function in the ARB imaging subset provides efficient
operators for adding, subtracting, and multiplying by a constant. The logic op function
supplies bit-wise logical operations.

There are two difficulties with color buffer blending; the values are restricted to the
[0,1] range and the color precision available for each color component may be limited.
The use of scaled and biased arithmetic to work around the range limitation is described
in Section 3.4.1. The accumulation buffer also allows some arithmetic operations to be
performed with increased range and precision. The accumulation buffer doesn’t support
multiplication of a pixel color by another pixel color, but it does support multiplication by

160 C H A P T E R 9 Mul t i p l e Rende r i ng Pas se s

a constant. A disadvantage of the accumulation buffer is that it is not hardware accelerated
on some commodity hardware. Ultimately, this problem is solved on new implementa-
tions that support floating-point operations and programmable pipeline processing, but
for implementations without such support the problem is still cumbersome.

As OpenGL and hardware accelerators have evolved, the texture environment stage
has become increasingly sophisticated. With the advent of multitexture’s new texture
environment functions, many of the operators available for color buffer blending are
also available in texture environment functionality. OpenGL 1.3 provides important new
texture environment functionality: the texture environment function GL_COMBINE is a
generalization of texture environment functions, such as GL_MODULATE or GL_ADD.

The GL_COMBINE function supplies an orthogonal set of operations and sources for
texture functions. Sources, operators, and texgen functions can be selected separately
to provide a more orthogonal mix of possible texgen operations. RGB and alpha color
sources, operations, and texgen functions can be selected separately. Functionality in the
texgen stage of the OpenGL pipeline is important because of multitexturing. If the imple-
mentation supports multitexturing, chains of arithmetic operations can be performed in
a single pass, which can produce higher quality images and significant performance gains.
The implications of multitexturing are described in more detail in Section 9.5.1, later in
this chapter.

The GL_DOT3_RGB and GL_DOT3_RGBA texture environment functions go beyond
blending functionality by introducing dot product operations to the list of combine opera-
tions. Two types of dot products can be generated from a pair of color values; one operates
on RGB, the other on RGBA. As with the other GL_COMBINE functions, the alpha value
can be processed separately. See Section 5.10.1 for more details on texenv functionality.

If the OpenGL implementation supports the ARB imaging subset, some additional
powerful operators become available to the application. The color matrix function can
be used to perform affine operations on the components of a pixel, including swizzling
components from one channel to another. For example, the following matrix swaps the
R and G channels in an image: ⎛⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

R
G
B
A

⎞⎟⎟⎠
Note that this functionality is only available when loading or reading images or tex-
ture maps. The highest performance path that provides pixel operations is usually
glCopyTexImage2D and glCopyPixels, since they don’t read or write pixels to
system memory.

9.3.2 Arbitrary Functions

Notably missing from the standard arithmetic operators is division. Division can be emu-
lated to some degree by multiplying by the reciprocal of the divisor. One advantage of

S E C T I O N 9 . 3 The Mu l t i pa s s Too lbox 161

using reciprocals is that the reciprocal often fits within the [0,1] range constraint for color
and texture components. Going beyond division, it is also often desirable to apply other
functions such as sine, cosine, and so on.

One way to efficiently approximate arbitrary functions is to implement them as
lookup tables. OpenGL provides several types of lookup tables: pixel maps, color tables,
and texture maps. Pixel maps and color tables provide a way to map an input color value
to an output color value; in other words, evaluate y = f (x), where the domain and the
range of f are constrained to [0,1].

Texture maps can be treated in a similar way, except that 1-, 2-, and 3-input functions
can be implemented using 1-, 2-, and 3-D texture maps. The difficulty comes in providing
a more flexible way to provide input values: we would like to provide greater control over
the texture coordinate values used to index the texture maps. Texture coordinates can
be supplied as vertex parameters, generated automatically, and transformed using the
texture matrix. This makes it possible to use simple functions of the object or eye space
x, y, or z values, but makes it difficult to use the results of arithmetic operations on
individual pixels as the input to these functions.

The SGIS_pixel_texture extension solves this problem by providing a
means to interpret color values in pixel images as texture coordinates. Using
SGIS_pixel_texture, the first pass of an algorithm can generate an image I, and
then the resulting image can be copied over itself using glCopyPixels with texturing
enabled to compute f (I). The ARB_fragment_program extension also provides this
functionality, sometimes called dependent texturing, as part of a programmable texturing
interface. See Section 5.10.2 for more details on programmable texturing.

Using texel values to index into other textures doesn’t have to be enormously expen-
sive. If pixel colors are stored in the color buffer using 8-bit components, then the texture
memory requirements are modest for 1D and 2D functions, needing only 256 × 1 and
256 × 256 texture maps.

9.3.3 Condit ionals

The OpenGL pipeline performs conditional or selection operations at a number of stages
in the pipeline. One or more of these stages can be used together to implement simple
conditional operations in a multipass algorithm. Examples include the depth and alpha
tests. Alpha test performs per-fragment comparisons against a reference value and rejects
the fragments that fail the test. Even though the test only examines the alpha value, it can
be made more general by using other OpenGL operators to map RGBA colors that need
testing to specific alpha values. For example, to reject pixels that have 0 for both the R
and G components, use the color matrix to put the sum of R + G in the A component
and reject pixels with A = 0.

Using the stencil and depth buffer together provides powerful conditional logic.
Simple arithmetic and logical operations such as counting and exclusive-or, can be per-
formed in the stencil buffer and the result used to selectively update the color buffer.

162 C H A P T E R 9 Mul t i p l e Rende r i ng Pas se s

Additional blending functions such min/max and constant factors are also useful accel-
erators for conditional logic. Logic operations (expanded to include RGBA support in
OpenGL 1.1) provide a large set of bitwise boolean operators, including AND, OR, XOR,
COPY, SET, and inverted versions of these operations.

Conditional tests in earlier stages of the pipeline may prove useful as well. Culling
and clipping operations use the value of vertices to reject all or part of a primitive. With
appropriate transformation matrices, these tests can be used to reject primitives subject
to more complex conditions than ‘inside’ or ‘outside’ the viewing frustum. For example,
the diffuse and specular terms of the lighting equation are clamped to zero if the surface
normal points away from the light source. The resulting color can be used as a flag that
can be tested in later parts of the pipeline.

These examples may seem odd or even absurd; after all, OpenGL isn’t a general
purpose programming language. But our intent isn’t to promote obfuscated or general
purpose programming with OpenGL. Instead the goal is to consider various parts of the
pipeline and think of them as building blocks for multipass algorithms. We are using
OpenGL functionality in a more general way, being true to the spirit of OpenGL as a
graphics assembly language. We don’t have to limit the use of a pipeline feature to the
specific intent or algorithms the OpenGL designers may have had in mind.

9.3.4 Variables

Early on in the evolution of OpenGL, it became clear that it was useful to have additional
color buffers to temporarily hold parts of an image or scene. When constructing multipass
algorithms, these temporary buffers play a role analogous to temporary variables in
regular programming languages, since they both hold intermediate results. To store a
result, the application could copy the contents of the color buffer to system memory
until it is needed again. But the performance of an algorithm using this approach would
suffer. It is usually much faster if the temporary results are stored in buffers managed
by the graphics accelerator. For applications that can tolerate some visual distractions,
both the front and back buffers of a double-buffered window can be used. Double-
buffered stereo windows (also called quad-buffered) provide 4 buffers, but at the time
of this writing, implementations that accelerate double-buffered stereo windows are not
common. OpenGL defines additional color buffers called auxiliary or aux buffers, but
again very few accelerators support these. One difficulty with quad buffers and aux
buffers is that they are constrained to be the same dimensions as the window, whereas
the application may need either a smaller or larger buffer.

One straightforward solution to the problem is to use texture memory for temporary
buffers. The glCopyTexImage2D command added in OpenGL 1.1 provides an efficient
mechanism to copy the results of a computation to texture memory. The temporary value
can be “read” by drawing a textured quadrilateral with texture coordinates spanning the
texture, using the GL_REPLACE texture environment.

Though using textures as variable storage is a good general solution, there is another
more attractive location — off-screen memory. Even though off-screen memory (we will

S E C T I O N 9 . 3 The Mu l t i pa s s Too lbox 163

use the term drawables) may share the same location as texture memory in some accel-
erator implementations, there are still compelling reasons to expose it as a window-like
resource: drawables can have ancillary buffers such as depth and stencil, their dimensions
are not constrained to be a power of two, and they can be shared between multi-
ple applications more easily than textures.1 In GLX and WGL OpenGL specifications,
these off-screen drawables are called pixel buffers, or pbuffers for short. They are sim-
ilar to aux buffers, in that they are off-screen memory, but unlike aux buffers, their
access is accelerated by the graphics hardware. For more information on pbuffers see
Section 7.4.1.

9.3.5 Parameters

We can further augment the multipass paradigm by adding the notion of parameters. Just
as the parameters of a function call supply input to the body of the function, multipass
parameters supply data that a multipass algorithm uses as input. The most obvious source
of input data is the geometry’s vertex data and texture images supplied to the pixel
pipeline. Vertex position, normal direction, and color can all be used to supply data to
the pipeline executing a multipass algorithm. A problem may arise however: sometimes an
important input parameter, such as the normal vector for surface orientation, is discarded
early in the OpenGL pipeline but is needed by the algorithm in a later pipeline stage. The
general solution to this problem is simple; an input parameter can always be computed
in the application and sent down as a color or texture coordinate in order to reach later
pipeline stages.

However, this solution may lead to large amounts of computation being performed
on the host, or result in expensive pixel reads and writes to host memory. A better solution
is to use OpenGL to map the desired parameters into texture coordinates. OpenGL sup-
ports a number of ways to convert vertex positions and normals into texture coordinates.
Useful conversions include object or eye-space coordinates mapped to texture coordi-
nates or fragment colors; object- or eye-space normals mapped to texture coordinates;
eye reflection vector, light position, or light reflection vector, etc. mapped to texture
coordinates. Details on performing these conversions to make parameters available to
later pipeline stages are described below.

Vertex Coordinates Object coordinates enter the pipeline optionally with colors,
texture coordinates, and normals. Vertex coordinates may be mapped to texture
coordinates using texture-coordinate generation. Both object-space and eye-space
coordinates are available; it can be useful to use the latter to take advantage of the
transforms available with the modelview matrix. To avoid clamping, coordinates
need to be scaled and biased into the standard [0,1] texture coordinate range by
either folding the scaling operation into the texture-generation equations, or by

1. No OpenGL implementation known to the authors allows textures to be shared between independent
processes, though GLX and WGL both allow textures to be shared between threads in the same process.

164 C H A P T E R 9 Mul t i p l e Rende r i ng Pas se s

using the texture transform matrix. The texture matrix may also be used to project
the generated texture coordinates into two dimensions.
Mapping vertex coordinates to texture coordinates is a good way to generate
distance parameters. Such parameters include distance from the viewer, distance
from a light source, distances between objects, and so forth.

Vertex Normals Vertex normal vectors are discarded too early in the pipeline to be
useful in many algorithms. Normals can be converted into texture coordinates
within the application by issuing them directly as texture coordinates or as vertex
coordinates transformed by a texgen function. Normals issued as vertex
coordinates will be transformed by the modelview matrix directly, rather than the
adjoint transpose of the modelview as a normal vector would be (see Section 2.3 for
details).
The texture transform matrix can be used to apply a corrective transformation to
normal vectors processed as vertex, then texture values. A texture coordinate
standing in for a normal will have its components linearly interpolated during
rasterization. This isn’t the correct way to interpolate normals, but the discrepancy
may be acceptable if the surface triangles are small. Another approach is to apply a
mapping function using a texture map operation to create a more accurate
interpolation.
OpenGL 1.3 includes a more direct solution, the texture coordinate generation
function GL_NORMAL_MAP. This function uses the eye-coordinate normal vectors
as the texture coordinates. Again scaling and biasing using the texture matrix are
necessary to compress the range to [0, 1]. If the values should be in the range
[−1, 1], indexing a cube map with the generated texture coordinates may be a
better solution. It will use all three texture coordinates to choose a cube map face
and location within that face. It is a good solution if the length of the normal is not
important.

Eye Reflection Vector If the eye-space reflection vector is needed, sphere map texture
generation can be used to capture it as a set of texture coordinates. The sphere map
texture generation computes an eye-space reflection vector and projects it to a set of
2D texture coordinates.
Again, after noting the usefulness of the reflection vector, OpenGL 1.3 also
provides a more direct solution via the GL_REFLECTION_MAP texture coordinate
generation function. As with normals, indexing with a cube map makes it possible
to use all three direction components.

Light Position Light position or direction information is frequently used in illumination
model computations (see Section 3.3). To perform similar types of computations,
using a light position in other parts of the vertex processing or fragment processing
pipeline may be necessary. For example, N · L may be computed as part of
texture-coordinate processing in the geometry pipeline. This can be accomplished
by copying the vertex normals into texture coordinates, and storing the light

S E C T I O N 9 . 4 Mul t i pa s s v s . M i c r opas s 165

direction in the first row of the texture matrix, such that⎛⎜⎜⎝
s
t
r
q

⎞⎟⎟⎠
′

=

⎛⎜⎜⎝
Lx Ly Lz 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

s
t
r
q

⎞⎟⎟⎠
the resulting transform will compute the dot product of N and L and store the
result in s′. Similarly, the light vector may be used in color computations. This can
be done, for example, using the dot product texture environment function.

9.4 Multipass Limitations

Using multiple passes to implement rendering algorithms provides a very general way
to enhance the set of operations in the OpenGL pipeline. This process does incur per-
formance overhead; each pass requires re-issuing and re-rasterizing the object geometry.
If interactivity is an objective, then the amount of time available for rendering a frame at
the desired refresh rate places an upper bound on the number of passes that can be used.

Beyond the time limitation, there are also precision restrictions. The limited pre-
cision present in the color processing path of most hardware accelerators, particularly
fixed-function pipeline implementations, doesn’t allow a large number of passes with-
out introducing a substantial amount of error in the resulting image. The number of
passes that can be practically added to an interactive application typically will be less
than ten, limiting the opportunities for the application designer trying to minimize frame
rendering time.

Even without time and precision issues, it may be difficult to get exactly the set of
input parameters or derived parameters into the pipeline needed for further computation.
To work around this, the application may have to do additional processing on the host
computer, again limiting the speed of the algorithm. The evolution of the pipeline through
vertex and fragment programmability has improved the situation greatly, but OpenGL
needs to continue to evolve to make more operations and input parameters available to
the application.

9.5 Multipass vs. Micropass

One way to think about the multipass approach is to contrast it with an (perhaps hypo-
thetical) OpenGL implementation that allows the entire algorithm to be expressed in a
single pass. Each step must be expressible as a set of operations in the OpenGL pipeline
that occur in the correct sequence relative to the other steps. For example, the built-in

166 C H A P T E R 9 Mul t i p l e Rende r i ng Pas se s

secondary color support in OpenGL 1.2 makes it possible to add a specular contribution to
the texture computation without requiring a separate pass. When multiple computational
steps are performed within a single rendering pass, we refer to them as micropasses.

As OpenGL evolves, computational steps in popular multipass algorithms will
inevitably make their way into the OpenGL pipeline. This is one way to evolve the
pipeline in an incremental fashion. For example, rather than add all of the hardware
necessary to compute the entire Blinn lighting model per fragment, a more incremental
step might be to support part of the computation or to add functional blocks that can
be used to achieve the same result. For the case of fragment lighting, the secondary color
support is the first step to performing the entire lighting computation at each pixel.

Multitexture can be thought of as a similar incremental step: one texture map may
include the diffuse contribution and a second texture map may include the specular
contribution. Using texture maps as table lookup functions allows the application to
approximate simple illumination computations. Incremental improvements to the tex-
ture environments such as texture combine and texture dot product environment modes
are examples of small functional blocks that have been added to the fragment processing
pipeline and allow some parts of multipass algorithms to be converted to micropasses.
As we describe various multipass algorithms in later sections, we will point out steps that
can be converted to micropasses.

The clearest direction that OpenGL appears to be evolving is programmability. Both
vertex program and fragment program extensions have been accepted by the ARB, and
have been implemented in hardware by major graphics hardware vendors. These exten-
sions make parts of the the pipeline controlled by a programming language loaded by
the application. Programmability is expected to permeate more stages in the OpenGL
pipeline going forward, and these extensions will undoubtedly become an important part
of core OpenGL. See Section 2.9 and Section 5.10.2 for more details.

9.5.1 Multitexture

As mentioned previously, multitexture adds a form of programmable micropass support
to OpenGL. Multitexure provides the application with the ability to choose a sequence
of operations from a set of fixed choices, and chain them together. Texture maps are
used to pass in additional input data at each stage. The number of sequences in the
chain is limited to the number of texture units supported in the implementation. The
simple cascade of multitexture texture environments supports a fixed order of operations
starting with the fragment color and modifying it with a texture in each stage, Cfinal =
(((Cf op0 Ct0) op1 Ct1) . . . opn Ctn). The GL_COMBINE environment function, along
with its crossbar extension, provides greater flexibility in controlling the inputs for each
texture environment stage and includes most of the arithmetic operations of framebuffer
blending, plus several additional capabilities, such as dot product.

Note that a multitexture sequence can be more efficient than the equivalent multi-
pass one. A multitexture sequence only executes the post-texturing part of the OpenGL

S E C T I O N 9 . 6 Summary 167

pipeline once per sequence, reducing overhead. The hardware implementation may fur-
ther optimize the stages in a multitexture operation. It may parallelize texture operations,
for example, or cache the intermediate results between texture stages.

9.6 Deferred Shading

A general technique related to the idea of multipass processing, is deferred shading. In its
basic form, the idea behind deferred shading is to avoid performing expensive shading
computations until the visible pixels have been determined. One way to achieve this is to
render all of the geometry and store the attributes required to compute the shading values
at each pixel in the framebuffer with the pixel. After all of the geometry is rendered, a
second pass is done over the framebuffer pixels, computing the shading for each pixel
based on the saved attribute values.

There are several difficulties with this approach. The first is determining where to
store the attribute values. A small number of values can be stored in the color buffer and
later retrieved using a texture mapping operation. However, even with fragment programs
and complex packing of values into the color buffer it is difficult to store many attributes.
A second problem is aliasing of attribute values. Techniques such as multisampling and
area sampling (see Chapter 10) can be employed to solve some of the aliasing problems
during rendering, but these techniques operate on the final color and depth values and
are not suitable for merging multiple attribute values together. Super-sampling can be
used at some additional cost to store the high-resolution attribute samples.

An alternate two-pass approach is to draw the entire scene twice, relying on early-Z
processing (see Section 8.5) to eliminate extra work. In the first pass the geometry is
drawn without any shading computations with the objective of resolving the final depth
values for the scene. In the second pass the scene is drawn again, using the GL_EQUAL
depth comparison function and the shading computations enabled. The second pass relies
on early-Z processing to discard non-visible fragments before fragment shading computa-
tions are performed. This version can be very effective when complex fragment programs
are used in the programmable pipeline. It has the advantage of not requiring extra stor-
age at the cost of extra vertex processing and needing early-Z processing support in the
OpenGL implementation. Deferred techniques such as these and the compositing-based
techniques described in Chapter 11 are likely to see increased use in the future.

9.7 Summary

This chapter has provided some useful insights in thinking about OpenGL as a pro-
gramming language for implementing graphics algorithms. We have focused on general
approaches; it can be thought of as the theory supporting the practices demonstrated
elsewhere in this book.

10
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Antialiasing

Aliasing refers to the jagged edges and other rendering artifacts commonly associated with
computer-generated images. They are caused by simplifications incorporated in various
algorithms in the rendering pipeline, resulting in inaccuracies in the generated image.
Usually these simplifications are necessary to create a pipeline implementation that is low
in cost and capable of achieving good interactive frame rates. In this chapter we will
review some of the causes of aliasing artifacts and describe some of the techniques that
can be used to reduce or eliminate them.

Chapter 4 provides some of the background information regarding how images are
represented digitally; the ideas behind sampling and reconstructing the spatial signals
comprising an image; and some of the problems that can arise. The spatial aliasing
problem appears when the sample rate of the digital image is insufficient to represent
all of the high-frequency detail in the original image signal. In computer-generated or
synthetic images the problem is acute because the algebraic representation of primitives
can define arbitrarily high frequencies as part of an object description. One place where
these occur is at the edges of objects. Here the abrupt change in the signal that occurs
when crossing the edge of an object corresponds to infinitely high-frequency components.
When a simple point-sampling rasterization process tries to represent these arbitrarily high
frequencies, the result is aliasing artifacts.

Object edges aren’t the only place spatial aliasing artifacts appear. Aliasing artifacts
are also introduced when a texture image is projected to an area that is much smaller than
the original texture map. Mipmapping reduces the amount of aliasing by first creating
multiple, alias-free texture images of progressively smaller sizes as a pre-processing step.
During texture mapping, the projected area is used to determine the two closest texture
image sizes that bracket the exact size. A new image is then created by taking a weighted

169

170 C H A P T E R 10 An t i a l i a s i ng

sum of texels from the two images. This minimizes the more visually jarring artifacts
that can appear on moving objects that are textured without using mipmapping. This
aliasing problem is severe enough that mipmapping support is both defined and well-
implemented in most OpenGL implementations. Antialiasing for the edges of lines, points,
and polygons is also defined, but is traditionally less well supported by implementations.
In particular, polygon edge antialiasing using GL_POLYGON_SMOOTH is often poorly
implemented.

The simple solution to the aliasing problem is to not introduce frequency aliases
during rasterization — or at least minimize them. This requires either increasing the spa-
tial sampling rate to correctly represent the original signals, or removing the frequency
components that would otherwise alias before sampling (prefiltering). Increasing the sam-
pling rate, storing the resulting image, and reconstructing that image for display greatly
increases the cost of the system. The infinitely high-frequency contributions from edge
discontinuities would also imply a need for arbitrarily high sampling rates. Fortunately,
the magnitude of the contribution typically decreases rapidly with increasing frequency,
and these lower-magnitude, high-frequency contributions can be made much less notice-
able. As a result, most of the benefit of increasing the sampling rate can be attained
by increasing it by a finite amount. Despite this upper limit, it is still not very practi-
cal to double or quadruple the size of the framebuffer and enhance the display circuitry
to accommodate the higher sampling rate; increasing the sampling rate alone isn’t the
solution.

A second solution is to eliminate the high-frequency signal contributions before the
pixel samples are created. The distortions to the image resulting from eliminating the high-
frequency components, blurring, are much less objectionable compared to the distortions
from aliasing. The process of eliminating the high-frequency components is referred to as
band-limiting; the resulting image contains a more limited number of frequency bands.
The filtering required to accomplish the band-limiting requires more computations to be
performed during rasterization; depending on the specifics of the algorithm, it can be a
practical addition to the rendering implementation.

10.1 Full-Scene Antialiasing

Ideally, after rendering a scene, the image should be free of aliasing artifacts. As previously
described, the best way to achieve this is by eliminating as much of the aliased high-
frequency information as possible while generating the pixel samples to be stored in the
color buffer. First we will describe some general techniques that work on any type of
primitive. Then we will describe methods that take advantage of the characteristics of
polygons, lines, and points that allow them to be antialiased more effectively. Primitive-
independent methods may be applied to an entire scene. Primitive-dependent methods
require grouping the rendering tasks by primitive type, or choosing and configuring the
appropriate antialiasing method before each primitive is drawn.

S E C T I O N 1 0 . 2 Supe r samp l i ng 171

10.2 Supersampling

One popular class of antialiasing techniques samples the image at a much higher sampling
rate than the color buffer resolution (for example, by a factor of 4 or 8), then postfilters
these extra samples to produce the final set of pixel values. Only the postfiltered values
are saved in the framebuffer; the high-resolution samples are discarded after they are
filtered. This type of antialiasing method is called supersampling and the high-resolution
pixels are called supersamples.1

The net effect of supersampling is to eliminate some of the high-frequency detail
that would otherwise alias to low-frequency artifacts in the sample values. The process
does not eliminate all of the aliasing, since the supersamples themselves contain aliased
information from frequencies above the higher resolution sample rate. The aliasing arti-
facts from these higher frequencies are usually less noticeable, since the magnitude of the
high-frequency detail does diminish rapidly as the frequency increases. There is a limit to
the amount of useful supersampling. In practice, the most significant improvement comes
with 4 to 16 samples; beyond that the improvements diminish rapidly.

When designing a supersampling method, the first decision to make is selecting the
number of samples. After that there are two other significant choices to make: the choice
of supersample locations, which we will call the sample pattern, and the method for
filtering the supersamples.

The natural choice for supersample locations is a regular grid of sample points, with a
spacing equal to the new sample rate. In practice, this produces poor results, particularly
when using a small number of supersamples. The reason for this is that remaining aliasing
artifacts from a regularly spaced sample grid tend to occur in regular patterns. These
patterns are more noticable to the eye than errors with random spacings.

A remedy for this problem is to choose a more random sample pattern. This changes
the high-frequency aliasing to less noticeable uncorrelated noise in the image. Methods for
producing random sample patterns as described by Cook (1986) are part of a technique
called stochastic supersampling. Perhaps the most useful is jittered sample patterns. They
are constructed by displacing (jittering) the points on a regular super-grid with small,
random displacements.

A point sample reflects the value of a single point, rather than being representative of
all of the features in the pixel. Consider the case of a narrow, tall, vertical rectangle, 1

8 of a
pixel wide, moving horizontally from left to right across the window in 1/8th pixel steps.
Using the top left sample pattern (a) shown in Figure 10.1 and the normal point sampling
rules, the rectangle will alternately be sampled by the left-most two sample points, by no
sample points, and then by the right-most sample points. If the same exercise is repeated
using the top right sample pattern (c), at least some contribution from the rectangle will
be detected more often than with sample pattern (a), since the sample points include 4

1. The term subsamples is also frequently used.

172 C H A P T E R 10 An t i a l i a s i ng

a

d f

b

e

c

F i g u r e 10.1 Sample patterns for 4 and 8 subsamples.

distinct x positions rather than just 2. Although this example is engineered for a vertical
rectangle, it demonstrates some basic ideas for choosing better sample patterns:

• Use a subpixel grid that is at least 4 times the sample rate in each direction.

• Choose sample points that have unique x and y coordinates.

• Include one sample point close to the center of the pixel.

A further consideration that arises when choosing sample locations is whether to
use sample points beyond a pixel’s extent and into neighboring pixels. The idea of a
pixel as rectangle with rigid boundaries is no more than a useful conceptual tool; there
is nothing that forbids sampling outside of this region. The answer lies in the sampling
and reconstruction process. Since the final pixel value results from reconstructing the
signal from its supersamples, the choice of sample locations and reconstruction (postfilter)
functions are intertwined. Although the results vary depending on the sample locations
and filter function used, the short answer is that using overlapping supersampled regions
can result in a better image.

As described in Section 4.2, a number of different low-pass filters are available to
choose from to eliminate the high-frequency details. These can range from simple box or
triangle filters to more computationally intensive Gaussian or other filters.

10.2.1 Supersampling by Overdrawing

A simple way to implement supersampling is to render a scene in a larger window, then
postfilter the result. Although simple to implement, there are a few difficulties with this
solution. One issue is that the maximum window size will limit the number of samples
per-pixel, especially if the objective is to produce a large final image. The sample locations
themselves use the framebuffer pixel locations, which are on a regular grid, resulting in
regular patterns of aliasing artifacts.

S E C T I O N 1 0 . 2 Supe r samp l i ng 173

A second problem is finding an efficient method for implementing the reconstruction
filter. A simple solution is to implement the filter within the application code, but it is
generally faster to use texture mapping with blending or accumulation buffer hardware as
described in Section 6.3.1. Despite these limitations, the algorithm can be used effectively
in many applications, particularly those where rendering time is not an issue. Some
hardware accelerator vendors include this capability as an antialiasing feature that doesn’t
require any changes to an existing application. Once the feature is built into the OpenGL
implementation, it is often possible to support an irregular sampling pattern, further
improving the antialiasing effectiveness.

10.2.2 Supersampling with the Accumulation Buffer

An approach that offers better results than overdrawing uses the accumulation buffer.
It can be used very effectively to implement multipass supersampling. In each pass one
supersample from the sample pattern is computed for each pixel in the scene, followed
by one step of an incremental postfiltering algorithm using the accumulation buffer.

The supersamples are really just the normal pixel point samples taken at specific
subpixel sample locations. The subpixel sample is generated by modifying the projection
matrix with a translation corresponding to the difference between the original pixel center
and the desired subpixel position. Ideally the application modifies the window coordinates
by subpixel offsets directly; the most effective way to achieve this is by modifying the
projection matrix. Care must be taken to compute translations to shift the scene by the
appropriate amount in window coordinate space.

If a translation is multiplied onto the projection matrix stack after the projection
matrix has been loaded, then the displacements need to be converted to eye coordinates.
To convert a displacement in pixels to eye coordinates, multiply the displacement amount
by the dimension of the eye coordinate scene, and divide by the appropriate viewport
dimension:

dxeye = right − left
width

dxwindow

dyeye = top − bottom
height

dywindow

Eye coordinate displacements are incorporated into orthographic projections using
glOrtho, and into perspective projections using glFrustum:

glOrtho(left - dx, right - dx,
top - dy, bottom - dy, near, far);

glFrustum(left - dx, right - dx,
top - dy, bottom - dy, near, far);

Example subpixel jitter values, organized by the number of samples needed, are
taken from the OpenGL Programming Guide, and are shown in Table 10.1. (Note that

174 C H A P T E R 10 An t i a l i a s i ng

T ab l e 10.1 Subpixel Displacement Values

Count Values

2 {0.25, 0.75}, {0.75, 0.25}

3 {0.5033922635, 0.8317967229}, {0.7806016275, 0.2504380877},

{0.2261828938, 0.4131553612}

4 {0.375, 0.25}, {0.125, 0.75}, {0.875, 0.25}, {0.625, 0.75}

5 {0.5, 0.5}, {0.3, 0.1}, {0.7, 0.9}, {0.9, 0.3}, {0.1, 0.7}

6 {0.4646464646, 0.4646464646}, {0.1313131313, 0.7979797979},

{0.5353535353, 0.8686868686}, {0.8686868686, 0.5353535353},

{0.7979797979, 0.1313131313}, {0.2020202020, 0.2020202020}

8 {0.5625, 0.4375}, {0.0625, 0.9375}, {0.3125, 0.6875}, {0.6875, 0.8125},

{0.8125, 0.1875}, {0.9375, 0.5625}, {0.4375, 0.0625}, {0.1875, 0.3125}

9 {0.5, 0.5}, {0.1666666666, 0.9444444444}, {0.5, 0.1666666666},

{0.5, 0.8333333333}, {0.1666666666, 0.2777777777},

{0.8333333333, 0.3888888888}, {0.1666666666, 0.6111111111},

{0.8333333333, 0.7222222222}, {0.8333333333, 0.0555555555}

12 {0.4166666666, 0.625}, {0.9166666666, 0.875}, {0.25, 0.375},

{0.4166666666, 0.125}, {0.75, 0.125}, {0.0833333333, 0.125},

{0.75, 0.625}, {0.25, 0.875}, {0.5833333333, 0.375},

{0.9166666666, 0.375}, {0.0833333333, 0.625},

{0.583333333, 0.875}

16 {0.375, 0.4375}, {0.625, 0.0625}, {0.875, 0.1875}, {0.125, 0.0625},

{0.375, 0.6875}, {0.875, 0.4375}, {0.625, 0.5625}, {0.375, 0.9375},

{0.625, 0.3125}, {0.125, 0.5625}, {0.125, 0.8125}, {0.375, 0.1875},

{0.875, 0.9375}, {0.875, 0.6875}, {0.125, 0.3125}, {0.625, 0.8125}

some of these patterns are a little more regular horizontally and vertically than is
optimal.)

The reconstruction filter is defined by the sample locations and the scale factor used
in each accumulation operation. A box filter is implemented by accumulating each image

S E C T I O N 1 0 . 2 Supe r samp l i ng 175

with a scale factor equal to 1/n, where n is the number of supersample passes. More
sophisticated filters are implemented by using different weights for each sample location.

Using the accumulation buffer, it is easy to make trade-offs between quality and
speed. For higher quality images, simply increase the number of scenes that are accumu-
lated. Although it is simple to antialias the scene using the accumulation buffer, it is much
more computationally intensive and probably slower than the more specific antialiasing
algorithms that are described next.

10.2.3 Multisample Antial iasing

Multisampling is a form of single-pass supersampling that is directly supported in
OpenGL.2 When using hardware with this support, multisampling produces high-quality
results with less performance overhead, and requires minimal changes to an existing
application. It was originally available as an OpenGL extension and later added to the
core specification in version 1.3. The multisampling specification largely defines a set of
rules for adding supersampling to the rendering pipeline. The number of samples can
vary from implementation to implementation, but typically ranges between 2 and 8.

Each pixel fragment is extended to include a fixed number of additional texture coor-
dinates and color, depth, and stencil values. These sample values are stored in an extra
buffer called the multisample buffer. The regular color buffer continues to exist and con-
tains the resolved color — the postfiltered result. There are no equivalent resolved depth
and stencil buffers however; all depth and stencil values are part of the multisample buffer.
It is less useful to compute postfiltered depth or stencil results since they are typically used
for resolving visible surfaces, whereas the resolved color is used for display. Some imple-
mentations may defer computation of the resolved color values until the multisample
buffer is read for display or the color buffer is used as a source in another OpenGL oper-
ation, for example, glReadPixels. For the most part, multisampling doesn’t change
the operation of the rendering pipeline, except that each pipeline step operates on each
sample in the fragment individually.

A multisample fragment also differs from a non-multisample fragment because it
contains a bitmask value termed coverage. Each bit in the mask corresponds to a sample
location. The value of the bit indicates whether the primitive fragment intersects (covers)
that sample point. One way to think of the coverage value is as a mask indicating which
samples in the fragment correspond to part of the primitive and which do not. Those
that are not part of the primitive can be ignored in most of the pipeline processing. There
are many ways to make a multisample implementation more efficient. For example, the
same color value or texture coordinate may be used for all samples within a fragment.
The multisample buffer may store its contents with some form of compression to reduce
space requirements. For example, the multisample buffer contents may be encoded so as
to exploit coherence between samples within a pixel.

2. Introduced in OpenGL 1.3.

176 C H A P T E R 10 An t i a l i a s i ng

The OpenGL specification does not define the sample locations and they are not que-
riable by the application. The sample points may extend outside a pixel and the locations
may vary from pixel to pixel. This latter allowance makes it possible to implement some
form of stochastic sampling, but it also breaks the invariance rules, since the values
computed for a fragment are dependent on the pixel location.

As described in Section 6.1, implementations often use the same color and texture
coordinate values at all sample locations. This affords a substantial performance improve-
ment over true supersampling since color and texture coordinate values are evaluated once
per-pixel and the amount of data associated with a fragment is greatly reduced. How-
ever, distinct depth and stencil values are maintained for each sample location to ensure
that the edges of interpenetrating primitives are resolved correctly. A disadvantage of this
optimization is that interior portions of primitives may still show aliasing artifacts. This
problem becomes more apparent with the use of complex per-fragment shading compu-
tations in fragment programs. If the fragment program doesn’t filter the results of the
shading calculations, then aliasing artifacts may result.

Generally, multisampling provides a good full-scene (edge) antialiasing solution.
Most importantly, to use it only requires turning it on; other than that, there are no
changes required of the application. Using multisampling can be completely automatic. If
the application selects a multisample-capable framebuffer configuration, multisampling
is enabled by default. The OpenGL implementation pays the cost of extra storage for
the the multisample buffer and additional per-sample processing at each fragment, but
this cost will be reduced over time with advances in the state of the art. Some implemen-
tations may even combine multisampling with the brute force overdraw supersampling
technique to further increase the effective sampling rate. Unfortunately, supersampling
with a small number of samples (less than 16) is not an antialiasing panacea. By con-
trast, film-quality software renderers often use supersampling with considerably larger
numbers of samples, relying on adaptive sampling techniques to determine the number
of samples required within each pixel to reduce the computational requirements.

While supersampling with a small number of samples may produce good results, the
results for point and line primitives using primitive-specific methods may be substantially
better. Fortunately, these other techniques can be used in concert with multisampling.

10.2.4 Drawbacks

In some cases, the ability to automatically antialias the images rendered by an appli-
cation can be a drawback. Taking advantage of the flexibility of the approach, some
hardware vendors have provided methods for turning on full scene antialiasing without
requiring any support from the application. In some cases, this can cause problems for
an application not designed to be used with antialiasing.

For example, an application may use bitmapped fonts to display information to the
viewer. Quite often, this text will show artifacts if full scene antialiasing is applied to it,
especially if the text is moved across the screen. Sampling errors will make the text appear
“blotchy”; if the text is small enough, it can become unreadable. Since most antialiasing

S E C T I O N 1 0 . 3 Area Samp l i ng 177

implementations filter samples in different ways, it can be difficult for the application
developer to correct for this on all hardware. In the end, full scene antialiasing is not
always appropriate. Care must be taken to understand an application’s display techniques
before turning it on.

10.3 Area Sampling

Another class of antialiasing algorithms uses a technique called area sampling. The idea
behind area sampling is that the value of a pixel sample should be proportional to the
area of the pixel intersected by the primitive. This is in contrast to point sampling and
supersampling which derive a pixel value from the intensity of the primitive at one or
more infinitely small sample points. With area sampling, the contribution from a prim-
itive partially overlapping a pixel is always accounted for. In contrast, a point-sampled
primitive makes no contribution to a pixel if it doesn’t overlap a sample point.

Mathematically, area sampling is equivalent to sampling at infinitely many points
followed by filtering. The choice of point locations and filter types leads to several varia-
tions of area sampling. The simplest form, called unweighted area sampling, uses a box
filter to produce an average of the samples. A disadvantage of unweighted area sampling
is that moving objects can still generate pixel flicker, since a pixel sample can change
abruptly as a primitive moves in and out of the area associated with the pixel (as illus-
trated in Figure 10.2). The flicker can be corrected by overlapping sample areas with
adjacent pixels. The contributions from the neighboring pixels are given a lower weight
than contributions from within the pixel. This type of sampling is called weighted area
sampling. It is similar to using a supersampling approach that includes some supersam-
ples outside of the pixel followed by a triangle or Gaussian low-pass filter to perform the
reconstruction.

One of the main difficulties with area sampling techniques is computing the correct
result when multiple primitives overlap the same pixel. If two primitives overlap different

a

b

c

F i g u r e 10.2 Flicker artifacts with unweighted area sampling. A bright fragment 1/4th of a pixel in size moves
horizontally across the screen in successive rows.

178 C H A P T E R 10 An t i a l i a s i ng

parts of the pixel, then both should contribute to it. The pixel then becomes the area-
weighted sum of the two primitive colors. If part of one primitive is occluded by the other
primitive, then the correct approach becomes more complicated. Only the visible parts
of two overlapping primitives should contribute. Therein lies the problem — correctly
combining visible surface determination with area computations. The supersampling
algorithms described previously work correctly and automatically for interpenetrating
surfaces since each supersample is correctly depth-buffered before postfiltering. To render
an image correctly using area sampling, the visible surface and area sampling process-
ing must be performed together so that the weighted areas for the visible parts of each
primitive within each pixel can be computed correctly.

The processing implications of this approach can be severe. It requires that the visible
part of each primitive overlapping a pixel must be computed before the area can be
determined. There are several algorithms for doing this (Catmill, 1978; Carpenter, 1984);
typically one row of pixels (a scan line) or a small rectangular area of pixels, called a tile,
are processed one at a time. All primitives that intersect a pixel row or tile are processed
together. Fragments are computed at each pixel for each primitive, the fragments are
depth-sorted, and the visible areas of each fragment are determined. The normalized areas
are then used to compute the weighted sum of fragment colors to produce the pixel color.
The mathematically correct algorithm clips each fragment against every other fragment
in the pixel and sorts the results from front to back. Other algorithms trade off the pixel-
level clipping cost for approximations of coverage, using a supersampling-like subpixel
grid to track which parts of a pixel a fragment covers while retaining the area-based color
value.

In general, adding such an algorithm to the OpenGL pipeline requires considerable
effort. To implement the visible surface algorithm, the entire scene must be buffered
within the pipeline. Multipass algorithms become more complicated if the combined
results need to be antialiased. There is no depth buffer, since a different visible surface
algorithm is used. This requires reformulation of techniques that use the stencil and depth
buffers.

Nevertheless, the area sampling ideas are quite useful when applied in more specific
circumstances. Good candidates for this approach are antialiased lines and points. Their
area coverage is easier to compute analytically and the correctness of hidden surface
resolution is not as critical as it is for polygons.

10.4 Line and Point Antialiasing

Line and point antialiasing are often considered separately from polygon antialiasing,
since there are additional techniques that can be used specifically for these simpler prim-
itives. For certain applications, such as computer-aided design programs, line rendering
is pervasive enough that it is worth having special purpose hardware to improve the
rendering quality.

S E C T I O N 1 0 . 4 L i ne and Po in t An t i a l i a s i ng 179

Mathematically, a line is infinitely thin. Attempting to compute the percentage of a
pixel covered by an infinitely thin object would result in no coverage, so generally one of
the following two methods is used:

1. The line is modeled as a long, thin, single-pixel-wide quadrilateral. Area sampling
computes the percentage of pixel coverage for each pixel touching the line and this
coverage percentage is used as an alpha value for blending.

2. The line is modeled as an infinitely thin transparent glowing object. This method
treats a line as if it were drawn on a vector stroke display; these displays draw lines
by deflecting the electron beam along the length of the line. This approach requires
the implementation to compute the effective shape of a simulated beam that moves
across the CRT phosphors.

OpenGL has built-in support for antialiasing lines and points, selected by enabling
GL_POINT_SMOOTH or GL_LINE_SMOOTH. Quality hints are provided using glHint.
The hint parameter can be GL_FASTEST to indicate that the most efficient option should
be chosen, GL_NICEST to indicate the highest quality option should be chosen, or
GL_DONT_CARE to indicate no preference.

When antialiasing is enabled, OpenGL computes an alpha value representing either
the fraction of each pixel that is covered by the line or point or the beam intensity for
the pixel as a function of the distance of the pixel center from the line center. The setting
of the GL_LINE_SMOOTH and the GL_POINT_SMOOTH hints determines the accuracy of
the calculation used when rendering lines and points, respectively. When the hint is set
to GL_NICEST, a larger filter footprint may be applied, causing more fragments to be
generated and rendering to run more slowly.

Regardless of which line antialiasing method is used in a particular implementation
of OpenGL, it can be approximated by choosing the right blend equation. The critical
insight is realizing that antialiased lines and points are a form of transparent primitive (see
Section 11.8). This requires blending to be enabled so that each incoming pixel fragment
will be combined with the value already in the framebuffer, controlled by the alpha
value.

The best approximation of a one-pixel-wide quadrilateral is achieved by setting the
blending factors to GL_SRC_ALPHA (source) and GL_ONE_MINUS_SRC_ALPHA (desti-
nation). To best approximate the lines of a stroke display, use GL_ONE for the destination
factor. Note that this second blend equation only works well on a black background and
does not produce good results when drawn over bright objects.

As with all transparent primitives, antialiased lines and points should not be drawn
until all opaque objects have been drawn first. Depth buffer testing remains enabled, but
depth buffer updating is disabled using glDepthMask(GL_FALSE). This allows the
antialiased lines and points to be occluded by opaque objects, but not by one another.
Antialiased lines drawn with full depth buffering enabled produce incorrect line crossings
and can result in significantly worse rendering artifacts than with antialiasing disabled.
This is especially true when many lines are drawn close together.

180 C H A P T E R 10 An t i a l i a s i ng

Setting the destination blend mode to GL_ONE_MINUS_SRC_ALPHA may result in
order-dependent rendering artifacts if the antialiased primitives are not drawn in back
to front order. There are no order-dependent problems when using a setting of GL_ONE,
however. Pick the method that best suits the application.

Incorrect monitor gamma settings are much more likely to become apparent with
antialiased lines than with shaded polygons. Gamma should typically be set to 2.2, but
some workstation manufacturers use values as low as 1.6 to enhance the perceived con-
trast of rendered images. This results in a noticable intensity nonlinearity in displayed
images. Signs of insufficient gamma are “roping” of lines and moire patterns where many
lines come together. Too large a gamma value produces a “washed out” appearance.
Gamma correction is described in more detail in Section 3.1.2.

Antialiasing in color index mode can be tricky. A correct color map must be loaded
to get primitive edges to blend with the background color. When antialiasing is enabled,
the last four bits of the color index indicate the coverage value. Thus, 16 contiguous color
map locations are needed, containing a color ramp ranging from the background color
to the object’s color. This technique only works well when drawing wireframe images,
where the lines and points typically are blended with a constant background. If the lines
and/or points need to be blended with background polygons or images, RGBA rendering
should be used.

10.5 Antialiasing with Textures

Points and lines can also be antialiased using the filtering provided by texturing by using
texture maps containing only alpha components. The texture is an image of a circle
starting with alpha values of one at the center and rolling off to zero from the center to
the edge. The alpha texel values are used to blend the point or rectangle fragments with the
pixel values already in the framebuffer. For example, to draw an antialiased point, create
a texture image containing a filled circle with a smooth (antialiased) boundary. Then
draw a textured polygon at the point location making sure that the center of the texture
is aligned with the point’s coordinates and using the texture environment GL_MODULATE.
This method has the advantage that a different point shape may be accommodated by
varying the texture image.

A similar technique can be used to draw antialiased line segments of any width.
The texture image is a filtered line. Instead of a line segment, a texture-mapped rect-
angle, whose width is the desired line width, is drawn centered on and aligned with
the line segment. If line segments with squared ends are desired, these can be cre-
ated by using a one dimensional texture map aligned across the width of the rectangle
polygon.

This method can work well if there isn’t a large disparity between the size of the
texture map and the window-space size of the polygon. In essence, the texture image
serves as a pre-filtered, supersampled version of the desired point or line image. This

S E C T I O N 1 0 . 6 Po lygon An t i a l i a s i ng 181

means that the roll-off function used to generate the image is a filtering function and the
image can be generated by filtering a constant intensity line, circle or rectangle. The texture
mapping operation serves as a reconstruction filter and the quality of the reconstruction
is determined by the choice of texture filter. This technique is further generalized to the
concept of texture brushes in Section 19.9.

10.6 Polygon Antialiasing

Antialiasing the edges of filled polygons using area sampling is similar to antialiasing
points and lines. Unlike points and lines, however, antialiasing polygons in color index
mode isn’t practical. Object intersections are more prevalent, and OpenGL blending is
usually necessary to get acceptable results.

As with lines and points, OpenGL has built-in support for polygon antialiasing. It is
enabled using glEnable with GL_POLYGON_SMOOTH. This causes pixels on the edges
of the polygon to be assigned fractional alpha values based on their pixel coverage. The
quality of the coverage values are controlled with GL_POLYGON_SMOOTH_HINT.

As described in Section 10.3, combined area sampling and visibility processing is a
difficult problem. In OpenGL an approximation is used. To make it work, the application
is responsible for part of the visibility algorithm by sorting the polygons from front to back
in eye space and submitting them in that order. This antialiasing method does not work
without sorting. The remaining part of resolving visible surfaces is accomplished using
blending. Before rendering, depth testing is disabled and blending is enabled with the
blending factors GL_SRC_ALPHA_SATURATE (source) and GL_ONE (destination). The
final color is the sum of the destination color and the scaled source color; the scale factor
is the smaller of either the incoming source alpha value or one minus the destination alpha
value. This means that for a pixel with a large alpha value, successive incoming pixels
have little effect on the final color because one minus the destination alpha is almost zero.

At first glance, the blending function seems a little unusual. Section 11.1.2 describes
an algorithm for doing front-to-back compositing which uses a different set of blending
factors. The polygon antialiasing algorithm uses the saturate source factor to ensure that
surfaces that are stitched together from multiple polygons have the correct appearance.
Consider a pixel that lies on the shared edge of two adjacent, opaque, visible polygons
sharing the same constant color. If the two polygons together cover the entire pixel, then
the pixel color should be the polygon color. Since one of the fragments is drawn first,
it will contribute the value α1C. When the second contributing fragment is drawn, it
has alpha value α2. Regardless of whether α1 or α2 is larger, the resulting blended color
will be α1C + (1 − α1)C = C, since the two fragments together cover the entire pixel
α2 = 1 − α1.

Conversely, if the fragments are blended using a traditional compositing equation,
the result is α1C + (1−α1)α2C + (1−α1)(1−α2)Cbackground and some of the background
color “leaks” through the shared edge. The background leaks through because the second

182 C H A P T E R 10 An t i a l i a s i ng

fragment is weighted by (1 − α1)α2. Compare this to the first method that uses either α2
or (1 − α1), whichever is smaller (in this case they are equal). This blending equation
ensures that shared edges do not have noticable blending artifacts and it still does a
reasonable job of weighting each fragment contribution by its coverage, giving priority
to the fragments closest to the eye. More details regarding this antialiasing formula versus
the other functions that are available are described in Section 11.1.2. It useful to note
that A-buffer-related algorithms avoid this problem by tracking which parts of the pixel
are covered by each fragment, while compositing does not.

Since the accumulated coverage is stored in the color buffer, the buffer must be able
to store an alpha value for every pixel. This capability is called “destination alpha,” and
is required for this algorithm to work. To get a framebuffer with destination alpha, you
must request a visual or pixel format that has it. OpenGL conformance does not require
implementations to support a destination alpha buffer so an attempt to select this visual
may not succeed.

This antialiasing technique is often poorly supported by OpenGL implementations,
since the edge coverage values require extra computations and destination alpha is
required. Implementations that support multisample antialiasing can usually translate
the coverage mask into an alpha coverage value providing a low-resolution version of the
real coverage. The algorithm also doesn’t see much adoption since it places the sorting
burden on the application. However, it can provide very good antialiasing results; it is
often used by quality-driven applications creating “presentation graphics” for slide shows
and printing.

A variant polygon antialiasing algorithm that is frequently tried is outlining non-
antialiased polygons with antialiased lines. The goal is to soften the edges of the polygons
using the antialiased lines. In some applications it can be effective, but the results are
often of mixed quality since the polygon edges and lines are not guaranteed to rasterize
to the same set of pixel locations.

10.7 Temporal Antialiasing

Thus far, the focus has been on aliasing problems and remedies in the spatial domain.
Similar sampling problems also exist in the time domain. When an animation sequence
is rendered, each frame in the sequence represents a point in time. The positions of
moving objects are point-sampled at each frame; the animation frame rate defines the
sampling rate. An aliasing problem analogous to the spatial aliasing occurs when object
positions are changing rapidly and the motion sampling rate is too low to correctly cap-
ture the changes. This produces the familiar strobe-like temporal aliasing artifacts, such
as vehicle wheels appearing to spin more slowly than they should or even spinning back-
ward. Similar to pixel colors and attributes, the motion of each object can be thought
of as a signal, but in the time domain instead of the spatial one. These time domain sig-
nals also have corresponding frequency domain representations; aliasing artifacts occur

S E C T I O N 1 0 . 7 Tempo ra l An t i a l i a s i ng 183

when the high-frequency parts of the signal alias to lower frequency signals during signal
reconstruction.

The solutions for temporal aliasing are similar to those for spatial aliasing; the sam-
pling rate is increased to represent the highest frequency present, or the high-frequency
components are filtered out before sampling. Increasing the sampling rate alone isn’t
practical, since the reconstruction and display process is typically limited to the video
refresh rate, usually ranging between 30Hz and 120Hz. Therefore, some form of filter-
ing during sampling is used. The result of the filtering process is similar to the results
achieved in cinematography. When filming, during the time period when the shutter is
held open to expose the film, the motion of each object for the entire exposure period is
captured. This results in the film integrating an infinite number of time sample points over
the exposure time. This is analogous to performing a weighted average of point samples.
As with supersampling, there are quality vs. computation trade-offs in the choice of filter
function and number of sample points.

10.7.1 Motion Blur

The idea of generating a weighted average of a number of time samples from an animation
is called motion blur. It gets this name from the blurry image resulting from averaging
together several samples of a moving object, just as a camera with too low of a shutter
speed captures a blurred image of a moving object.

One simple way to implement motion blur is with the accumulation buffer. If the
display rate for an animation sequence is 30 frames per second and we wish to include 10
temporal samples for each frame, then the samples for time t seconds are generated from
the sequence of frames computed at t − 5x, t − 4x, t − 3x, . . . , t, t + 1x, t + 2x, . . . t + 4x,
where x = 1

300 . These samples are accumulated with a scale of 1
10 to apply a box filter.

As with spatial filtering, the sample sets for each frame may overlap to create a better
low-pass filter, but typically this is not necessary.

For scenes in which the moving objects are in front of the static ones, an optimization
can be performed. Only the objects that are moving need to be re-rendered at each sample.
All of the static objects are rendered and accumulated with full weight, then the objects
that are moving are drawn at each time sample and accumulated. For a single moving
object, the steps are:

1. Render the scene without the moving object, using glAccum(GL_LOAD, 1.0f).

2. Accumulate the scene n times, with the moving object drawn against a black
background, using glAccum(GL_ACCUM, 1.0f/n).

3. Copy the result back to the color buffer using glAccum(GL_RETURN, 1.0f).

This optimization is only correct if the static parts of the scene are completely
unchanging. If depth buffering is used, the visible parts of static objects may change
as the amount of occlusion by moving objects changes. A different optimization is to
store the contents of the color and depth buffer for the static scene in a pbuffer and then

184 C H A P T E R 10 An t i a l i a s i ng

restore the buffers before drawing the moving objects for each sample. Of course, this
optimization can only improve performance if the time to restore the buffers is small
relative to the amount of time it takes to draw the static parts of the scene.

The filter function can also be altered empirically to affect the perceived motion.
For example, objects can be made to appear to accelerate or decelerate by varying the
weight for each accumulation. If the weights are sequentially decreased for an object,
then the object appears to accelerate. The object appears to travel further in later samples.
Similarly, if the weights are increased, the object appears to decelerate.

10.8 Summary

In this chapter we reviewed supersampling and area sampling spatial antialiasing meth-
ods and how they are supported in the OpenGL pipeline. We also described temporal
antialiasing for animation, and its relationship to spatial antialiasing.

In the next chapter we look at how blending, compositing, and transparency are
supported in the pipeline. These ideas and algorithms are interrelated: they overlap with
some of the algorithms and ideas described for area sampling-based antialiasing.

11
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Compositing, Blending,

and Transparency

Blending and compositing describe the task of merging together disparate collections
of pixels that occupy the same locations in the output image. The basic task can be
described as combining the pixels from two or more input images to form a single output
image. In the general case, compositing results depend on the order in which the images
are combined. Compositing is useful in many areas of computer graphics. It makes it
possible to create complex scenes by rendering individual components of the scene, then
combining them. The combining process itself can also add complexity and interest to
images.

Semi-transparent surfaces reflect some light while allowing some light from other
surfaces to pass through them. Rendering semi-transparent objects is closely related to
the ideas used for compositing multiple images. The details of blending images or image
elements is an almost universal building block for the rendering techniques in this book,
so it is valuable to explore the operations in detail.

11.1 Combining Two Images

Given two input images A and B, an output image C can be expressed as a linear
combination of the two input images:

C = waA + wbB (11.1)

185

186 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

where wa and wb are weighting factors. Constant weighting factors are used to implement
simple effects such as cross fades or dissolves. For example, to cross fade from A to B,
set wb in terms of wa (wb = 1 − wa) and smoothly vary wa from 0 to 1.

Blending two source images (also called elements) with constant weights isn’t selective
enough to create certain effects. It’s more useful to be able to select an object or subregion
from element A and a subregion from element B to produce the output composite. These
subregions are arbitrary regions of pixels embedded in rectangular images. Distinguishing
an arbitrary shaped subregion in an image can be done by varying the weighting function
for each pixel in the image. This per-pixel weighting changes Equation 11.1 to

C[i, j] = wa[i, j]A[i, j] + wb[i, j]B[i, j] (11.2)

For convenience we will drop the indices [i, j] from this point on and assume the weights
are distinct for each pixel.

To select a subregion from image A, the pixels in the subregion are given a weight
of 1, while the pixels not in the subregion are given a weight of 0. This works well if
the edges of the subregion are sharp and end at pixel boundaries. However, antialiased
images often contain partially covered pixels at the boundary edges of objects. These
boundary pixels may contain color contributions from the background, or other objects
in the image in addition to the source object’s color (see the discussion of digital image
representation in Chapter 4). To correct for this, the per-pixel weighting factor for these
pixels is scaled to be proportional to the object’s contribution. This ensures that the
contribution in the final image is the same as in the input image.

OpenGL provides this weighted per-pixel merge capability through the framebuffer
blending operation. In framebuffer blending the weights are stored as part of the images
themselves. Both the alpha component and the R, G, and B color components can be
used as per-pixel weights or as parameters to a simple weight function, such as 1−alpha.
Framebuffer blending is often called alpha-blending since the alpha values are most often
used as the weights.

11.1.1 Composit ing

A common blending operation is to composite a background image, perhaps from a film
or video, with a computer-generated object. In this context, the word “composite” repre-
sents a very specific image-combining operation involving images whose pixels include an
α (alpha) value. The alpha value indicates either the transparency or the coverage of the
object intersecting the pixel. The most common type of composite is the over operator,
in which a foreground element is composited over a background element.

In traditional film technology, compositing a foreground and background image is
achieved using a matte: a piece of film, aligned with the foreground image, in which
areas of interest are transparent and the rest is opaque. The matte allows only the areas
of interest from the foreground image to pass through. Its complement, the holdout
matte, is used with digital images. A holdout matte is opaque in the areas of interest

S E C T I O N 1 1 . 1 Comb in ing Two Images 187

and transparent everywhere else. A digital holdout matte is the set of opacity α values
for the corresponding image pixels. To combine two pixels together, the source element
color is multiplied by the matte’s α value, and added to the corresponding color from the
background image, scaled by 1 − α. The resulting equation is Cnew = αf Cf + (1 − αf)Cb.
The entire contribution of the object in the source element α is transferred to the new
pixel while the background image contributes 1 − α, the remaining unclaimed portion of
the new pixel.

OpenGL can be used to composite geometry against a background image by loading
it into the framebuffer, then rendering the geometry on top of the background with
blending enabled. Set the source and destination blend factors to GL_SRC_ALPHA and
GL_ONE_MINUS_SRC_ALPHA, respectively, and assign α values of 1.0 to the rendered
primitives when they are sent to the OpenGL pipeline. If the geometry is opaque and there
is no antialiasing algorithm modifying the α values, the rasterized fragments will have α

values of 1.0, reducing the compositing operation to a simple selection process. Without
antialiasing, the computer-generated object will be composited with sharp silhouette
edges, making it look less realistic than the objects in the background image that have
softer edges.

The antialiasing algorithms described in Chapter 10 can be used to antialias the
geometry and correct this problem. They are often a good solution, even if they are
slower to generate, for compositing applications that do not need to be highly interactive
during the compositing process.

Transparent objects are also represented with fractional α values. These values may
come from the color assigned each vertex, the diffuse material specification, or a texture
map. The α value represents the amount of light reflected by the object and 1−α represents
the amount of light transmitted through the object. Transparency will be discussed later
in this chapter.

11.1.2 Composit ing Mult iple Images

The preceding algorithm is mathematically correct for compositing an arbitrary fore-
ground image with an opaque background. Problems arise, however, if it is used to
combine several elements together. If the background image is not opaque, then the
compositing equation should be:

Cnew = αf Cf + (1 − αf)αbCb

so that the background pixel is scaled by its α value to calculate its contribution correctly.
This new equation works correctly for compositing any two images together. There is a
subtlety when using both this equation and the opaque-background version; while the
input images are explicitly scaled by their α values as part of the compositing equation,
the resulting pixel value is implicitly scaled by the new composite α value. The equation
expects that the Cf and Cb inputs do not include a premultiplied alpha, but it creates a

188 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

Cnew that does. The corresponding α value for the composited pixel, αnew, is αf +
(1 − αf)αb. To undo the alpha scaling, Cnew should be divided by αnew.

This side effect of the compositing equation creates some confusion when discussing
the compositing of multiple images, especially if the input images and intermediate images
don’t consistently include a premultiplied alpha. To simplify the discussion, we use the
notation C̄x to indicate a color value with a premultiplied α value (C̄x = αxCx). Using
this notation, the compositing equation simplifies to:

C̄new = C̄f + (1 − αf)C̄b

and

αnew = αf + (1 − αf)αb

Now the case of compositing a foreground image with a background image where the
background is itself the result of compositing two images C1 and C2 becomes:

C̄new = C̄f + (1 − αf)
[
C̄1 + (1 − α1)C̄2

]
This is the algorithm for doing back-to-front compositing, in which the background
is built up by combining it with the element that lies closest to it to produce a new
background image. It can be generalized to include an arbitrary number of images by
expanding the innermost background term:

C̄ = C̄n + (1 − αn)
[
C̄n−1 + (1 − αn−1)

[
C̄n−2 + (1 − αn−2) [. . .]

]]
(11.3)

Notice that the OpenGL algorithm described previously for compositing geometry over a
pre-existing opaque image works correctly for an arbitrary number of geometry elements
rendered sequentially.

The algorithm is extended to work for a non-opaque background image in a num-
ber of ways. Either a background image whose color values are pre-multiplied by alpha
is loaded, or the premultiplication is performed as part of the image-loading operation.
This is done by clearing the color buffer to zero, enabling blending with GL_SRC_ALPHA,
GL_ZERO source and destination blend factors, and transferring an image containing both
color and α values to the framebuffer. If the OpenGL implementation supports frag-
ment programs, then the fragment program can perform the premultiplication operation
explicitly.

A sequence of compositing operations can also be performed front-to-back. Each
new input image is composited under the current accumulated image. Renumbering the
indices so that n becomes 0 and vice versa and expanding out the products, Equation 11.3

S E C T I O N 1 1 . 1 Comb in ing Two Images 189

becomes:

C̄ = C̄0 + (1 − α0)C̄1 + (1 − α0)(1 − α1)C̄2 + · · · + (1 − α0) . . . (1 − αn−1)C̄n

= C̄0 + w0C̄1 + w1C̄2 + · · · + wn−1C̄n

To composite from front to back, each image must be multiplied by its own alpha value
and the product of (1 − αk) of all preceding images. This means that the calculation used
to compute the color values isn’t the same as those used to compute the intermediate
weights. Considering only premultiplied alpha inputs, the intermediate result image is
C̄

′
j = C̄j−1

′ + wj−1C̄j and the running composite weight is wj = (1 − αj)wj−1. This
set of computations can be computed using OpenGL alpha blending by accumulating
the running weight in the destination alpha buffer. However, this also requires separate
specification of RGB color and alpha blend functions.1 If separate functions are supported,
then GL_DST_ALPHA and GL_ONE are used for the RGB source and destination factors
andGL_ZERO andGL_ONE_MINUS_SRC_ALPHA are used to accumulate the weights. For
non-premultiplied alpha images, a fragment program or multipass algorithm is required to
produce the correct result, since the incoming fragment must be weighted and multiplied
by both the source and destination α values. Additionally, if separate blend functions are
not supported, emulating the exact equations becomes more difficult.

The coverage-based polygon antialiasing algorithm described in Section 10.6 also
uses a front-to-back algorithm. The application sorts polygons from front to back,
blending them in that order. It differs in that the source and destination weights are
min(αs, 1−αd) and 1 rather than αd and 1. Like the front-to-back compositing algorithm,
as soon as the pixel is opaque, no more contributions are made to the pixel. The composit-
ing algorithm achieves this as the running weight wj stored in destination alpha reaches
zero, whereas polygon antialiasing achieves this by accumulating an approximation of the
α value for the resulting pixel in destination α converging to 1. These approaches work
because OpenGL defines separate blend functions for the GL_SRC_ALPHA_SATURATE
source factor. For the RGB components the factor is min(αs, 1 − αd); however, for the
α component the blend factor is 1. This means that the value computed in destination
α is αj = αs + αj−1 where αs is the incoming source α value. So, with the saturate
blend function, the destination α value increases while the contribution of each sample
decreases.

The principle reason for the different blend functions is that both the back-to-front
and front-to-back composition algorithms make a uniform opacity assumption. This
means the material reflecting or transmitting light in a pixel is uniformly distributed
throughout the pixel. In the absence of extra knowledge regarding how the geometry
fragments are distributed within the pixel, every sub-area of the pixel is assumed to
contain an equal distribution of geometry and empty space.

1. Added in OpenGL 1.4.

190 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

In the polygon antialiasing algorithm, the uniform opacity assumption is not appro-
priate for polygons that share a common edge. In those situations, the different parts of
the polygon don’t overlap, and rendering with the uniform assumption causes the poly-
gons under-contributing to the pixel, resulting in artifacts at the shared edges. The source
fragments generated from polygon antialiasing also need to be weighted by the source
α value (i.e., premultiplied). The saturate function represents a reasonable compromise
between weighting by the source alpha when it is small and weighting by the unclaimed
part of the pixel when its value is small. The algorithm effectively implements a com-
plementary opacity assumption where the geometry for two fragments within the same
pixel are assumed to not overlap and are simply accumulated. Accumulation is assumed
to continue until the pixel is completely covered. This results in correct rendering for
shared edges, but algorithms that use the uniform opacity assumption, such as rendering
transparent objects, are not blended correctly.

Note that the back-to-front algorithm accumulates the correct composite α value
in the color buffer (assuming destination alpha is available), whereas this front-to-back
method does not. The correct α term at each step is computed using the same equation
as for the RGB components α′

j = α′
j−1 + wj−1αj. The saturate function used for polygon

antialiasing can be used as an approximation of the functions needed for front-to-back
compositing, but it will introduce errors since it doesn’t imply uniform opacity. However,
the value accumulated in destination alpha is the matching α value for the pixel.

11.1.3 Alpha Division

Both the back-to-front and front-to-back compositing algorithms (and the polygon
antialiasing algorithm) compute an RGB result that has been premultiplied by the corre-
sponding α value; in other words, C̄ is computed rather than C. Sometimes it is necessary
to recover the original non-premultiplied color value. To compute this result, each color
value must be divided by the corresponding α value. Only the programmable frag-
ment pipeline supports division directly. However, a multipass algorithm can be used to
approximate the result in the absence of programmability. As suggested in Section 9.3.2,
a division operation can be implemented using pixel textures if they are supported.

11.2 Other Compositing Operators

Porter and Duff (1984) describe a number of operators that are useful for combining
multiple images. In addition to over, these operators include in, out, atop, xor, and plus,
as shown in Table 11.1. These operators are defined by generalizing the compositing
equation for two images, A and B to

C̄new = C̄AFA + C̄BFB

and substituting FA and FB with the terms from Table 11.1.

S E C T I O N 1 1 . 2 Othe r Compos i t i ng Ope ra to r s 191

T ab l e 11.1 Compositing Operators

operation FA FB

A over B 1 1− αA

B over A 1− αA 1

A in B αB 0

B in A 0 αA

A out B 1− αB 0

B out A 0 1− αA

A atop B αB 1− αA

B atop A 1− αB αA

A xor B 1− αB 1− αA

A plus B 1 1

This equation assumes that the two images A and B have been pre-multiplied by their
α values. Using OpenGL, these operators are implemented using framebuffer blending,
modifying the source and destination blend factors to match FA and FB. Assuming that
the OpenGL implementation supports a destination alpha buffer with double buffer-
ing, alpha premultiplication can be incorporated by first loading the front and back
buffers with the A and B images using glBlendFunc(GL_ONE, GL_ZERO) to do the
premultiplication. The blending factors are then changed to match the factors from
Table 11.1. glCopyPixels is used to copy image A onto image B. This simple and
general method can be used to implement all of the operators. Some of them, however,
may be implemented more efficiently. If the required factor from Table 11.1 is 0, for
example, the image need not be premultiplied by its α value, since only its α value is
required. If the factor is 1, the premultiplication by alpha can be folded into the same
blend as the operator, since the 1 performs no useful work and can be replaced with a
multiplication by α.

In addition to framebuffer blending, the multitexture pipeline can be used to perform
similar blending and compositing operations. The combine and crossbar texture environ-
ment functions enable a number of useful equations using source operands from texture
images and the source fragment. The fundamental difference is that results cannot be
directly accumulated into one of the texture images. However, using the render-to-texture
techniques described in Sections 5.3 and 7.5, a similar result can be achieved.

192 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

11.3 Keying and Matting

The term chroma keying has its roots in broadcast television. The principal subject is
recorded against a constant color background — traditionally blue. As the video signal is
displayed, the parts of the signal corresponding to the constant color are replaced with
an alternate image. The resulting effect is that the principal subject appears overlayed on
the alternate background image. The chroma portion of the video signal is used for the
comparison, hence the name. Over time the term has been generalized. It is now known
by a number of other names including color keying, blue and green screening, or just
plain keying, but the basic idea remains the same. More recently the same basic idea is
used, recording against a constant color background, but the keying operation has been
updated to use digital compositing techniques.

Most of the aspects of compositing using blending and the α channel also apply to
keying. The principal difference is that the opacity or coverage information is in one of the
color channels rather than in the α channel. The first step in performing keying digitally
is moving the opacity information into the alpha channel. In essence, a holdout matte is
generated from the information in the color channels. Once this is done, then the alpha
channel compositing algorithms can be used.

11.4 Blending Artifacts

A number of different types of artifacts may result when blending or compositing multiple
images together. In this section we group the sources of errors into common classes and
look at each individually.

11.4.1 Arithmetic Errors

The arithmetic operations used to blend pixels together can be a source of error in the final
image. Section 3.4 discusses the use of fixed-point representation and arithmetic in the
fragment processing pipeline and some of the inherent problems. When compositing a 2-
or 3- image sequence, there is seldom any issue with 8-bit framebuffer arithmetic. When
building up complex scenes with large numbers of compositing operations, however, poor
arithmetic implementations and quantization errors from limited precision can quickly
accumulate and result in visible artifacts.

A simple rule of thumb is that each multiply operation introduces at least 1
2 -bit

error when a 2 × n-bit product is reduced to n-bits. When performing a simple over
composite the αC term may, conservatively, be in error by as much as 1 bit. With 8-bit
components, this translates to roughly 0.4% error per compositing operation. After
10 compositing operations, this will be 4% error and after 100 compositing opera-
tions, 40% error. The ideal solution to the problem is to use more precision (deeper
color buffer) and better arithmetic implementations. For high-quality blending, 12-bit

S E C T I O N 1 1 . 4 B lend ing A r t i f a c t s 193

color components provide enough precision to avoid artifacts. Repeating the 1-bit error
example with 12-bit component resolution, the error changes to approximately 0.025%
after each compositing operation, 0.25% after 10 operations, and 2.5% after 100
operations.

11.4.2 Blending with the Accumulation Buffer

While the accumulation buffer is designed for combining multiple images with high pre-
cision, its ability to reduce compositing errors is limited. While the accumulation buffer
does act as an accumulator with higher precision than found in most framebuffers, it
only supports scaling by a constant value, not by a per-pixel weight such as α. This
means that per-pixel scaling must still be performed using blending; only the result can
be accumulated. The accumulation buffer is most effective at improving the precision
of multiply-add operations, where the multiplication is by a constant. The real value of
the accumulation buffer is that it can accumulate a large number of very small values,
whereas the normal color buffer likely does not have enough dynamic range to represent
both the end result and a single input term at the same time.

11.4.3 Approximation Errors

Another, more subtle, error can occur with the use of opacity to represent coverage at the
edges of objects. The assumption with coverage values is that the background color and
object color are uniformly spread across the pixel. This is only partly correct. In reality,
the object occupies part of the pixel area and the background (or other objects) covers
the remainder. The error in the approximation can be illustrated by compositing a source
element containing an opaque object with itself. Since the objects are aligned identically
and one is in front of the other, the result should be the source element itself. However, a
source element pixel where α is not equal to 1 will contribute C̄f + (1 − αf)C̄f to the new
pixel. The overall result is that the edges become brighter in the composite. In practice,
the problem isn’t as bad as it might seem since the equal-distribution assumption is valid
if there isn’t a lot of correlation between the edges in the source elements. This is one
reason why the polygon antialiasing algorithm described in Section 10.6 does not use the
regular compositing equations.

Alpha-compositing does work correctly when α is used to model transparency. If a
transparent surface completely overlaps a pixel, then the α value represents the amount of
light that is reflected from the surface and 1−α represents the amount of light transmitted
through the surface. The assumption that the ratios of reflected and transmitted light are
constant across the area of the pixel is reasonably accurate and the correct results are
obtained if a source element with a semi-transparent object is composited with itself.

11.4.4 Gamma Correct ion Errors

Another frequent source of error occurs when blending or compositing images with colors
that are not in a linear space. Blending operators are linear and assume that the operands

194 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

in the equations have a linear relationship. Images that have been gamma-corrected no
longer have a linear relationship between color values. To correctly composite two
gamma-corrected images, the images should first be converted back to linear space,
composited, then have gamma correction re-applied. Often applications skip the lin-
ear conversion and re-gamma correction step. The amount of error introduced depends
on where the input color values are on the gamma correction curve. In A Ghost in a
Snowstorm (1998a), Jim Blinn analyzes the various error cases and determines that the
worst errors occur with when mixing colors at opposite ends of the range, composit-
ing white over black or black over white. The resulting worst case error can be greater
than 25%.

11.5 Compositing Images with Depth

Section 11.1 discusses algorithms for compositing two images together using alpha val-
ues to control how pixels are merged. One drawback of this method is that only simple
visibility information can be expressed using mattes or masks. By retaining depth infor-
mation for each image pixel, the depth information can be used during the compositing
operation to provide more visible surface information. With alpha-compositing, elements
that occupy the same destination area rely on the alpha information and the back-to-front
ordering to provide visibility information. Objects that interpenetrate must be rendered
together to the same element using a hidden surface algorithm, since the back-to-front
algorithm cannot correctly resolve the visible surfaces.

Depth information can greatly enhance the applicability of compositing as a tech-
nique for building up a final image from separate elements (Duff, 1985). OpenGL allows
depth and color values to be read from the framebuffer using glReadPixels and saved
to secondary storage for later compositing. Similarly, rectangular images of depth or color
values can be independently written to the framebuffer using glDrawPixels. However,
since glDrawPixels works on depth and color images one at a time, some additional
work is required to perform a true 3D composite, in which the depth information is used
in the visibility test.

Both color and depth images can be independently saved to memory and later drawn
to the screen using glDrawPixels. This is sufficient for 2D style composites, where
objects are drawn on top of each other to create the final scene. To do true 3D compositing,
it is necessary to use the color and depth values simultaneously, so that depth testing can
be used to determine which surfaces are obscured by others.

The stencil buffer can be used to implement true 3D compositing as a two-pass oper-
ation. The color buffer is disabled for writing, the stencil buffer is cleared, and the saved
depth values are copied into the framebuffer. Depth testing is enabled, ensuring that only
depth values that are closer to the original can update the depth buffer. glStencilOp
is used to configure the stencil test so that the stencil buffer bit is set if the depth test
passes.

S E C T I O N 1 1 . 6 Othe r B l end ing Ope ra t i ons 195

The stencil buffer now contains a mask of pixels that were closer to the view than the
pixels of the original image. The stencil function is changed to accomplish this masking
operation, the color buffer is enabled for writing, and the color values of the saved image
are drawn to the framebuffer.

This technique works because the fragment operations, in particular the depth test
and the stencil test, are part of both the geometry and imaging pipelines in OpenGL. The
technique is described here in more detail. It assumes that both the depth and color values
of an image have been saved to system memory, and are to be composited using depth
testing to an image in the framebuffer:

1. Clear the stencil buffer using glClear with GL_STENCIL_BUFFER_BIT set in
the bitmask.

2. Disable the color buffer for writing with glColorMask.

3. Set stencil values to 1 when the depth test passes by calling
glStencilFunc(GL_ALWAYS, 1, 1), and glStencilOp(GL_KEEP,
GL_KEEP, GL_REPLACE).

4. Ensure depth testing is set; glEnable(GL_DEPTH_TEST), glDepthFunc
(GL_LESS).

5. Draw the depth values to the framebuffer with glDrawPixels, using
GL_DEPTH_COMPONENT for the format parameter.

6. Set the stencil buffer to test for stencil values of 1 with
glStencilFunc(GL_EQUAL, 1, 1) and glStencilOp(GL_KEEP,
GL_KEEP, GL_KEEP).

7. Disable the depth testing with glDisable(GL_DEPTH_TEST).

8. Draw the color values to the framebuffer with glDrawPixels, using GL_RGBA as
the format parameter.

At this point, both the depth and color values will have been merged, using the depth
test to control which pixels from the saved image update the framebuffer. Compositing
can still be problematic when merging images with coplanar polygons.

This process can be repeated to merge multiple images. The depth values of the
saved image can be manipulated by changing the values of GL_DEPTH_SCALE and
GL_DEPTH_BIASwith glPixelTransfer. This technique makes it possible to squeeze
the incoming image into a limited range of depth values within the scene.

11.6 Other Blending Operations

So far we have described methods that use the alpha component for weighting pixel values.
OpenGL blending supports additional source and destination blend factors which can be

196 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

used to implement other algorithms. A short summary of the more common operations
follows.

Summing Two Images Using GL_ONE as the source and destination blend factors, the
source image is added to the destination image. This operation is useful in
multipass sequences to combine the results of two rendering passes.

Modulating an Image In the alpha-blending discussion, each of the color components
have been weighted equally by a value in the alpha channel. Some applications
require scaling the color components by different amounts depending on their
relative contributions. For example, in the OpenGL lighting equation the lighting
computations may produce a different result for each color channel. To reproduce
the result of scaling an image by different light colors, each color component of the
image must be scaled separately. This can be done using either the GL_SRC_COLOR
destination or GL_DST_COLOR source factor to scale the current framebuffer
contents. For example, drawing a constant-colored window-sized rectangle with
GL_DST_COLOR and GL_ZERO as the source and destination factors scales the
color buffer contents by the color of the rectangle.

Constant Colors The ARB imaging subset and OpenGL 1.4 support constant blending
factors. These are useful to perform constant scaling operations, for example simple
cross fades.

Subtraction The ARB imaging subset also supports a subtraction equation (actually
both subtract and reverse subtract) in addition to the original addition operation.
These allow more general purpose arithmetic to be performed in the framebuffer,
most usefully as part of a multipass toolbox as described in Section 9.3.

Min/Max Arguably stretching the idea of blending a bit, the min and max functions
allow per-pixel computation of the minimum and maximum values for each
component for each pixel. These functions can be useful for a number of imaging
operations, as described in Chapter 12.

11.7 Dissolves

A common film technique is the “dissolve”, where one image or animated sequence is
replaced with another, in a smooth transition. One simple version alpha blends the two
images together, fading out the first image with α and fading in the second with 1−α. One
way to think about the dissolve sequence is as a dynamic mask that changes each frame
and is applied to the two target images. As discussed at the beginning of the chapter, the
masks may be simple selection operations in which the pixel is selected from either the first
or second image. A more general form is to take a weighted sum of the two pixels. For a
simple selection operation, there are additional methods for performing it. The alpha-test

S E C T I O N 1 1 . 7 Di s so l ve s 197

fragment operation can be used to discard fragments based on their alpha value. Often
dissolves are used to describe transitions between two static images, or sequences of pre-
generated images. The concept can be equally well applied to sequences of images that
are generated dynamically. For example, the approach can be used to dissolve between
two dynamically rendered 3D scenes.

Alpha testing can be used to implement very efficient selection operations, since it
discards pixels before depth and stencil testing and blending operations. One issue with
using alpha testing is generating the alpha values themselves. For a dissolve the mask is
usually independent and unrelated to the source image. One way to “tack on” a set of
alpha values during rasterization is to use an alpha texture. A linear texture coordinate
generation function is used to produce texture coordinates, indexing the texture map as a
screen-space matte. To achieve the dynamic dissolve, the texture is updated each frame,
either by binding different texture objects or by replacing the contents of the texture map.
An alpha-texture-based technique works well when multitexture is supported since an
unused texture unit may be available for the operation. The alpha-texture-based technique
works with both alpha-testing or alpha-blending style algorithms.

Another option for performing masking operations is the stencil buffer. The stencil
buffer can be used to implement arbitrary dissolve patterns. The alpha planes of the color
buffer and the alpha function can also be used to implement this kind of dissolve, but using
the stencil buffer frees up the alpha planes for motion blur, transparency, smoothing, and
other effects.

The basic approach to a stencil buffer dissolve is to render two different images, using
the stencil buffer to control where each image can draw to the framebuffer. This can be
done very simply by defining a stencil test and associating a different reference value with
each image. The stencil buffer is initialized to a value such that the stencil test will pass
with one of the images’ reference values, and fail with the other. An example of a dissolve
part way between two images is shown in Figure 11.1.

At the start of the dissolve (the first frame of the sequence), the stencil buffer is all
cleared to one value, allowing only one of the images to be drawn to the framebuffer.
Frame by frame, the stencil buffer is progressively changed (in an application-defined

First scene Pattern drawn in
stencil buffer

Second scene drawn with
glStencilFunc(GL_EQUAL, 1, 1)

Resulting image

1
1 1 1 0

0
0

0
0
0

0
0

0

0
0

0
0

0
0

000
0
0 0

0

0
0

0
0
00

0
0

0
0

1

1
1

1 1 1 1
111

1 1 1

1
11

11
1

1
1
1 1

1 1
1

1
1

F i g u r e 11.1 Using stencil to dissolve between images.

198 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

pattern) to a different value, one that passes only when compared against the second
image’s reference value. As a result, more and more of the first image is replaced by the
second.

Over a series of frames, the first image “dissolves” into the second under control of
the evolving pattern in the stencil buffer.

Here is a step-by-step description of a dissolve.

1. Clear the stencil buffer with glClear(GL_STENCIL_BUFFER_BIT).

2. Disable writing to the color buffer, using glColorMask(GL_FALSE,
GL_FALSE, GL_FALSE, GL_FALSE).

3. If the values in the depth buffer should not change, use
glDepthMask(GL_FALSE).

For this example, the stencil test will always fail, setting the stencil operation to write
the reference value to the stencil buffer. The application should enable stenciling before
beginning to draw the dissolve pattern.

1. Turn on stenciling: glEnable(GL_STENCIL_TEST).

2. Set stencil function to always fail: glStencilFunc(GL_NEVER, 1, 1).

3. Set stencil op to write 1 on stencil test failure: glStencilOp(GL_REPLACE,
GL_KEEP, GL_KEEP).

4. Write the dissolve pattern to the stencil buffer by drawing geometry or using
glDrawPixels.

5. Disable writing to the stencil buffer with glStencilMask(GL_FALSE).

6. Set stencil function to pass on 0: glStencilFunc(GL_EQUAL, 0, 1).

7. Enable color buffer for writing with glColorMask(GL_TRUE, GL_TRUE,
GL_TRUE, GL_TRUE).

8. If you’re depth testing, turn depth buffer writes back on with glDepthMask.

9. Draw the first image. It will only be written where the stencil buffer values are 0.

10. Change the stencil test so only values that equal 1 pass:
glStencilFunc(GL_EQUAL, 1, 1).

11. Draw the second image. Only pixels with a stencil value of 1 will change.

12. Repeat the process, updating the stencil buffer so that more and more stencil
values are 1. Use the dissolve pattern and redraw image 1 and 2 until the entire
stencil buffer has 1’s in it and only image 2 is visible.

If each new frame’s dissolve pattern is a superset of the previous frame’s pattern,
image 1 doesn’t have to be re-rendered. This is because once a pixel of image 1 is replaced
with image 2, image 1 will never be redrawn there. Designing the dissolve pattern with
this restriction can improve the performance of this technique.

S E C T I O N 1 1 . 8 T r anspa rency 199

11.8 Transparency

Accurate rendering of transparent objects is an important element of creating realistic
scenes. Many objects, both natural and artificial, have some degree of transparency.
Transparency is also a useful feature when visualizing the positional relationships of
multiple objects. Pure transparency, unless refraction is taken into account, is straight-
forward. In most cases, when a transparent object is desired, what is really wanted is a
partially transparent object. By definition, a partially transparent object has some degree
of opacity: it is measured by the percentage of light that won’t pass through an object.
Partially transparent objects don’t just block light; they also add their own color, which
modifies the color of the light passing through them.

Simulating transparency is not just a useful technique in and of itself. The blending
techniques used to create the most common form of transparency are also the basis of
many other useful graphics algorithms. Examples include material mapping, line antialias-
ing, billboarding, compositing, and volume rendering. This section focuses on basic
transparency techniques, with an emphasis on the effective use of blending techniques.

In computer graphics, transparent objects are modeled by creating an opaque ver-
sion of a transparent object, then modifying its transparency. The opacity of an object is
defined independently of its color and is expressed as a fraction between 0 and 1, where
1 means fully opaque. Sometimes the terms opacity and transparency are used inter-
changably; strictly speaking, transparency is defined as 1 − opacity; a fully transparent
object has an opacity of 0.

An object is made to appear transparent by rendering a weighted sum of the color
of the transparent object and the color of the scene obscured by the transparent object.
A fully opaque object supplies all of its color, and none from the background; a fully
transparent object does the opposite. The equation for computing the output color of a
transparent object, A, with opacity, oA, at a single point is:

CoutA = oACA + (1 − oA)Cbackground (11.4)

Applying this equation properly implies that everything behind the transparent object is
rendered already as Cbackground so that it is available for blending. If multiple transparent
objects obscure each other, the equation is applied repeatedly. For two objects A and B
(with A in front of B), the resulting color depends on the order of the transparent objects
relative to the viewer. The equation becomes:

CoutA = oACA + (1 − oA)CoutB

CoutB = oBCB + (1 − oB)Cbackground

CoutAB = oACA + (1 − oA)(oBCB + (1 − oB)Cbackground) (11.5)

The technique for combining transparent surfaces is identical to the back-to-front
compositing process described in Section 11.1. The simplest transparency model assumes

200 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

that a pixel displaying the transparent object is completely covered by a transparent
surface. The transparent surface transmits 1 − o of the light reflected from the objects
behind it and reflects o of its own incident light. For the case in which boundary pixels
are only partially covered by the transparent surface, the uniform distribution (uniform
opacity) assumption described in Section 11.1.2 is combined with the transparency model.

The compositing model assumes that when a pixel is partially covered by a surface,
pieces of the overlapping surface are randomly distributed across the pixel such that any
subarea of the pixel contains α of the surface. The two models can be combined such that
a pixel partially covered by a transparent surface can have its α and o values combined to
produce a single weight, αo. Like the compositing algorithm, the combined transparency
compositing process can be applied back-to-front or front-to-back with the appropriate
change to the equations.

11.9 Alpha-Blended Transparency

The most common technique used to draw transparent geometry is alpha blending. This
technique uses the alpha value of each fragment to represent the opacity of the object.
As an object is drawn, each fragment is combined with the values in the framebuffer
pixel (which is assumed to represent the background scene) using the alpha value of the
fragment to represent opacity:

Cfinal = αsrcCsrc + (1 − αsrc)Cdst

The resulting output color, Cfinal , is written to the frame buffer. Csrc and αsrc are
the fragment source color and alpha components. Cdst is the destination color, which
is already in the framebuffer. This blending equation is specified using glBlendFunc
with GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA as the source and destination
blend factors. The alpha blending algorithm implements the general transparency formula
(Equation 11.5) and is order-dependent.

An illustration of this effect is shown in Figure 11.2, where two pairs of triangles,
one pair on the left and one pair on the right, are drawn partially overlapped. Both pairs
of triangles have the same colors, and both have opacities of 15. In each pair, the triangle
on the left is drawn first. Note that the overlapped regions have different colors; they
differ because the yellow triangle of the left pair is drawn first, while the cyan triangle is
the first one drawn in the right pair.

As mentioned previously, the transparency blending equation is order-dependent,
so transparent primitives drawn using alpha blending should always be drawn after
all opaque primitives are drawn. If this is not done, the transparent objects won’t
show the color contributions of the opaque objects behind them. Where possible, the
opaque objects should be drawn with depth testing on, so that their depth relationships
are correct, and so the depth buffer will contain information on the opaque objects.

S E C T I O N 1 1 . 9 A lpha-B lended T r anspa rency 201

F i g u r e 11.2 Alpha transparency ordering.

When drawing transparent objects in a scene that has opaque ones, turning on depth
buffer testing will prevent transparent objects from being incorrectly drawn over the
opaque ones that are in front of them.

Overlapping transparent objects in the scene should be sorted by depth and drawn
in back-to-front order: the objects furthest from the eye are drawn first, those closest to
the eye are drawn last. This forces the sequence of blending operations to be performed
in the correct order.

Normal depth buffering allows a fragment to update a pixel only if the fragment is
closer to the viewer than any fragment before it (assuming the depth compare function
is GL_LESS). Fragments that are farther away won’t update the framebuffer. When the
pixel color is entirely replaced by the fragment’s color, there is no problem with this
scheme. But with blending enabled, every pixel from a transparent object affects the final
color.

If transparent objects intersect, or are not drawn in back to front order, depth
buffer updates will prevent some parts of the transparent objects from being drawn,
producing incorrect results. To prevent this, depth buffer updates can be disabled using
glDepthMask(GL_FALSE) after all the opaque objects are drawn. Note that depth
testing is still active, just the depth buffer updates are disabled. As a result, the depth
buffer maintains the relationship between opaque and transparent objects, but does not
prevent the transparent objects from occluding each other.

In some cases, sorting transparent objects isn’t enough. There are objects, such
as transparent objects that are lit, that require more processing. If the back and front
faces of the object aren’t drawn in back-to-front order, the object can have an “inside
out” appearance. Primitive ordering within an object is required. This can be difficult,
especially if the object’s geometry wasn’t modeled with transparency in mind. Sorting of
transparent objects is covered in more depth in Section 11.9.3.

If sorting transparent objects or object primitives into back-to-front order isn’t
feasible, a less accurate, but order-independent blending method can be used
instead. Blending is configured to use GL_ONE for the destination factor rather than
GL_ONE_MINUS_SRC_ALPHA. The blending equation becomes:

Cfinal = αsrcCsrc + Cdst (11.6)

202 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

This blending equation weights transparent surfaces by their opacity, but the accu-
mulated background color is not changed. Because of this, the final result is independent
of the surface drawing order. The multi-object blending equation becomes:

αACA + αBCB + αCCC + · · · + Cbackground.

There is a cost in terms of accuracy with this approach; since the background color
attenuation from Equation 11.5 has been eliminated, the resulting colors are too bright
and have too much contribution from the background objects. It is particularly noticeable
if transparent objects are drawn over a light-colored background or bright background
objects.

Alpha-blended transparency sometimes suffers from the misconception that the tech-
nique requires a framebuffer with alpha channel storage. For back-to-front algorithms,
the alpha value used for blended transparency comes from the fragments generated in the
graphics pipeline; alpha values in the framebuffer (GL_DST_ALPHA) are not used in the
blending equation, so no alpha buffer is required to store them.

11.9.1 Dynamic Object Transparency

It is common for an object’s opacity values to be configured while modeling its geometry.
Such static opacity can be stored in the alpha component of the vertex colors or in
per-vertex diffuse material parameters. Sometimes, though, it is useful to have dynamic
control over the opacity of an object. This might be as simple as a single value that
dynamically controls the transparency of the entire object. This setting is useful for fading
an object in or out of a scene (see Section 16.4 for one use of this capability). If the object
being controlled is simple, using a single color or set of material parameters over its entire
surface, the alpha value of the diffuse material parameter or object color can be changed
and sent to OpenGL before rendering the object each frame.

For complex models that use per-vertex reflectances or surface textures, a similar
global control can be implemented using constant color blending instead. The ARB
imaging subset provides an application-defined constant blend color that can be used
as the source or destination blend factor.2 This color can be updated each frame, and
used to modify the object’s alpha value with the blend value GL_CONSTANT_ALPHA
for the source and GL_ONE_MINUS_CONSTANT_ALPHA for the destination blend
factor.

If the imaging subset is not supported, then a similar effect can be achieved using
multitexure. An additional texture unit is configured with a 1D texture containing a single
component alpha ramp. The unit’s texture environment is configured to modulate the
fragment color, and the unit is chained to act on the primitive after the surface texturing
has been done. With this approach, the s coordinate for the additional texture unit is

2. Constant color blending is also present in OpenGL 1.4.

S E C T I O N 1 1 . 9 A lpha-B lended T r anspa rency 203

set to index the appropriate alpha value each time the object is drawn. This idea can
be extended to provide even finer control over the transparency of an object. One such
algorithm is described in Section 19.4.

11.9.2 Transparency Mapping

Because the key to alpha transparency is control of each fragment’s alpha component,
OpenGL’s texture machinery is a valuable resource as it provides fine control of alpha.
If texturing is enabled, the source of the alpha component is controlled by the texture’s
internal format, the current texture environment function, and the texture environ-
ment’s constant color. Many intricate effects can be implemented using alpha values
from textures.

A common example of texture-controlled alpha is using a texture with alpha to
control the outline of a textured object. A texture map containing alpha can define an
image of an object with a complex outline. Beyond the boundaries of the outline, the
texel’s alpha components can be zero. The transparency of the object can be controlled
on a per-texel basis by controlling the alpha components of the textures mapped on its
surface.

For example, if the texture environment mode is set to GL_REPLACE (or
GL_MODULATE, which is a better choice for lighted objects), textured geometry is
“clipped” by the texture’s alpha components. The geometry will have “invisible” regions
where the texel’s alpha components go to zero, and be partially transparent where they
vary between zero and one. These regions colored with alpha values below some thresh-
old can be removed with either alpha testing or alpha blending. Note that texturing using
GL_MODULATE will only work if the alpha component of the geometry’s color is one;
any other value will scale the transparency of the results. Both methods also require that
blending (or alpha test) is enabled and set properly.

This technique is frequently used to draw complicated geometry using texture-
mapped polygons. A tree, for example, can be rendered using an image of a tree texture
mapped onto a single rectangle. The parts of the texture image representing the tree itself
have an alpha value of 1; the parts of the texture outside of the tree have an alpha value
of 0. This technique is often combined with billboarding (see Section 13.5), a technique
in which a rectangle is turned to perpetually face the eye point.

Alpha testing (see Section 6.2.2) can be used to efficiently discard fragments with an
alpha value of zero and avoid using blending, or it can be used with blending to avoid
blending fragments that make no contribution. The threshold value may be set higher to
retain partially transparent fragments. For example the alpha threshold can be set to 0.5
to capture half of the semi-transparent fragements, avoiding the overhead of blending
while still getting acceptable results. An alternative is to use two passes with different
alpha tests. In the first pass, draw the opaque fragments with depth updates enabled
and transparent fragments discarded; in the second pass, draw the non-opaque parts
with blending enabled and depth updates disabled. This has the advantage of avoiding
blending operations for large opaque regions, at the cost of two passes.

204 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

11.9.3 Transparency Sort ing

The sorting required for proper alpha transparency can be complex. Sorting is done
using eye coordinates, since the back-to-front ordering of transparent objects must be
done relative to the viewer. This requires the application transform geometry to eye
space for sorting, then send the transparent objects in sorted order through the OpenGL
pipeline.

If transparent objects interpenetrate, the individual triangles comprising each object
should be sorted and drawn from back to front to avoid rendering the individual trian-
gles out of order. This may also require splitting interpenetrating polygons along their
intersections, sorting them, then drawing each one independently. This work may not be
necessary if the interpenetrating objects have similar colors and opacity, or if the results
don’t have to be extremely realistic. Crude sorting, or even no sorting at all, can give
acceptable results, depending on the requirements of the application.

Transparent objects can produce artifacts even if they don’t interpenetrate other
complex objects. If the object is composed of multiple polygons that can overlap, the
order in which the polygons are drawn may not end up being back to front. This case is
extremely common; one example is a closed surface representation of an object. A simple
example of this problem is a vertically oriented cylinder composed of a single tri-strip.
Only a limited range of orientations of the cylinder will result in all of the more distant
triangles being drawn before all of the nearer ones. If lighting, texturing, or the cylinder’s
vertex colors resulted in the triangles of the cylinder having significantly different colors,
visual artifacts will result that change with the cylinder’s orientation.

This orientation dependency is shown in Figure 11.3. A four-sided cylinder is ren-
dered with differing orientations in three rows. The top row shows the cylinder opaque.
The middle row shows a properly transparent cylinder (done with the front-and-back-
facing technique described in this chapter). The bottom row shows the cylinder made
transparent with no special sorting. The cylinder walls are rendered in the order magenta,

F i g u r e 11.3 Orientation sensitivity in transparency objects.

S E C T I O N 1 1 . 1 0 Sc reen-Doo r T r anspa rency 205

yellow, gray, and cyan. As long as the walls rendered earlier are obscured by walls ren-
dered later, the transparent cylinder is properly rendered, and the middle and bottom
rows match. When the cylinder rotates to the point were the render ordering doesn’t
match the depth ordering, the bottom row is incorrectly rendered. This begins happening
on the fifth column, counting from left to right. Since this cylinder has only four walls, it
has a range of rotations that are correct. A rounder cylinder with many facets of varying
colors would be much more sensitive to orientation.

If the scene contains a single transparent object, or multiple transparent objects which
do not overlap in screen space (i.e., each screen pixel is touched by at most one of the
transparent objects), a shortcut may be taken under certain conditions. If the transparent
objects are closed, convex, and can’t be viewed from the inside, backface culling can be
used. The culling can be used to draw the back-facing polygons prior to the front-facing
polygons. The constraints given previously ensure that back-facing polygons are farther
from the viewer than front-facing ones.

For this, or any other face-culling technique to work, the object must be modeled
such that all polygons have consistent orientation (see Section 1.3.1). Each polygon in
the object should have its vertices arranged in a counter-clockwise direction when viewed
from outside the object. With this orientation, the back-facing polygons are always farther
from the viewer. The glFrontFace command can be used to invert the sense of front-
facing for models generated with clockwise-oriented front-facing polygons.

11.9.4 Depth Peeling

An alternative to sorting is to use a multipass technique to extract the surfaces of interest.
These depth-peeling techniques dissect a scene into layers with narrow depth ranges,
then composite the results together. In effect, multiple passes are used to crudely sort
the fragments into image layers that are subsequently composited in back-to-front order.
Some of the original work on depth peeling suggested multiple depth buffers (Mammen,
1989; Diefenbach, 1996); however, in an NVIDIA technical report, Cass Everitt suggests
reusing fragment programs and texture depth-testing hardware, normally used to support
shadow maps, to create a mechanism for multiple depth tests, that in turn can be used to
do depth peeling.

11.10 Screen-Door Transparency

Another simple transparency technique is screen-door transparency. A transparent object
is created by rendering only a percentage of the object’s pixels. A bitmask is used to
control which pixels in the object are rasterized. A 1 bit in the bitmask indicates that
the transparent object should be rendered at that pixel; a 0 bit indicates the transparent
object shouldn’t be rendered there, allowing the background pixel to show through.

206 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

The percentage of bits in the bitmask which are set to 0 is equivalent to the transparency
of the object (Foley et al., 1990).

This method works because the areas patterned by the screen-door algorithm are
spatially integrated by the eye, making it appear as if the weighted sums of colors in
Equation 11.4 are being computed, but no read-modify-write blending cycles need to
occur in the framebuffer. If the viewer gets too close to the display, then the individual
pixels in the pattern become visible and the effect is lost.

In OpenGL, screen-door transparency can be implemented in a number of ways;
one of the simplest uses polygon stippling. The command glPolygonStipple defines
a 32×32 bit stipple pattern. When stippling is enabled (using glEnable with a
GL_POLYGON_STIPPLE parameter), it uses the low-order x and y bits of the screen
coordinate to index into the stipple pattern for each fragment. If the corresponding bit
of the stipple pattern is 0, the fragment is rejected. If the bit is 1, rasterization of the
fragment continues.

Since the stipple pattern lookup takes place in screen space, the stipple patterns for
overlapping objects should differ, even if the objects have the same transparency. If the
same stipple pattern is used, the same pixels in the framebuffer are drawn for each object.
Because of this, only the last (or the closest, if depth buffering is enabled) overlapping
object will be visible. The stipple pattern should also display as fine a pattern as possible,
since coarse features in the stipple pattern will become distracting artifacts.

One big advantage of screen-door transparency is that the objects do not need to be
sorted. Rasterization may be faster on some systems using the screen-door technique than
by using other techniques such as alpha blending. Since the screen-door technique oper-
ates on a per-fragment basis, the results will not look as smooth as alpha transparency.
However, patterns that repeat on a 2×2 grid are the smoothest, and a 50% transparent
“checkerboard” pattern looks quite smooth on most systems.

Screen-door transparency does have important limitations. The largest is the fact
that the stipple pattern is indexed in screen space. This fixes the pattern to the screen;
a moving object makes the stipple pattern appear to move across its surface, creating a
“crawling” effect. Large stipple patterns will show motion artifacts. The stipple pattern
also risks obscuring fine shading details on a lighted object; this can be particularly
noticeable if the stippled object is rotating. If the stipple pattern is attached to the object
(by using texturing and GL_REPLACE, for example), the motion artifacts are eliminated,
but strobing artifacts might become noticeable as multiple transparent objects overlap.

Choosing stipple patterns for multiple transparent objects can be difficult. Not only
must the stipple pattern accurately represent the transparency of the object, but it must
produce the proper transparency with other stipple patterns when transparent objects
overlap. Consider two 50% transparent objects that completely overlap. If the same
stipple pattern is used for both objects, then the last object drawn will capture all of the
pixels and the first object will disappear. The constraints in choosing patterns quickly
becomes intractable as more transparent objects are added to the scene.

The coarse pixel-level granularity of the stipple patterns severely limits the effective-
ness of this algorithm. It relies heavily on properties of the human eye to average out

S E C T I O N 1 1 . 1 0 Sc reen-Doo r T r anspa rency 207

the individual pixel values. This works quite well for high-resolution output devices such
as color printers (> 1000 dot-per-inch), but clearly fails on typical 100 dpi computer
graphics displays. The end result is that the patterns can’t accurately reproduce the trans-
parency levels that should appear when objects overlap and the wrong proportions of the
surface colors are mixed together.

11.10.1 Multisample Transparency

OpenGL implementations supporting multisampling (OpenGL 1.3 or later, or imple-
mentations supporting ARB_multisample) can use the per-fragment sample coverage,
normally used for antialiasing (see Section 10.2.3), to control object transparency as well.
This method is similar to screen-door transparency described earlier, but the masking is
done at each sample point within an individual fragment.

Multisample transparency has trade-offs similar to screen-door transparency. Sorting
transparent objects is not required and the technique may be faster than using alpha-
blended transparency. For scenes already using multisample antialiasing, a performance
improvement is more likely to be significant: multisample framebuffer blending opera-
tions use all of the color samples at each pixel rather than a single pixel color, and may
take longer on some implementations. Eliminating a blending step may be a significant
performance gain in this case.

To implement screen-door multisample transparency, the multisample coverage mask
at the start of the fragment processing pipeline must be modified (see Section 6.2) There
are two ways to do this. One method uses GL_SAMPLE_ALPHA_TO_COVERAGE. When
enabled, this function maps the alpha value of each fragment into a sample mask. This
mask is bitwise AND’ed with the fragment’s mask. Since the mask value controls how
many sample colors are combined into the final pixel color, this provides an automatic
way of using alpha values to control the degree of transparency. This method is useful
with objects that do not have a constant transparency value. If the transparency value
is different at each vertex, for example, or the object uses a surface texture containing a
transparency map, the per-fragment differences in alpha value will be transferred to the
fragment’s coverage mask.

The second transparency method provides more direct control of the sample coverage
mask. TheglSampleCoverage command updates theGL_SAMPLE_COVERAGE_VALUE
bitmask based on the floating-point coverage value passed to the command. This value
is constrained to range between 0 and 1. The coverage value bitmask is bitwise AND’ed
with each fragment’s coverage mask. The glSampleCoverage command provides an
invert parameter which inverts the computed value of GL_SAMPLE_COVERAGE_VALUE.
Using the same coverage value, and changing the invert flag makes it possible to create two
transparency masks that don’t overlap. This method is most useful when the transparency
is constant for a given object; the coverage value can be set once before each object is
rendered. The invert option is also useful for gradually fading between two objects; it
is used by some geometry level-of-detail management techniques (see Section 16.4 for
details).

208 C H A P T E R 11 Compos i t i ng , B l end ing , and T r anspa rency

Multisample screen-door techniques have the advantage over per-pixel screen-door
algorithms; that subpixel transparency masks generate fewer visible pixel artifacts. Since
each transparency mask pattern is contained within a single pixel, there is no pixel-level
pattern imposed on polygon surfaces. A lack of a visible pattern also means that moving
objects won’t show a pattern crawl on their surfaces. Note that it is still possible to
get subpixel masking artifacts, but they will be more subtle; they are limited to pixels
that are partially covered by a transparent primitive. The behavior of these artifacts are
highly implementation-dependent; the OpenGL specification imposes few restrictions on
the layout of samples within a fragment.

The multisample screen-door technique is constrained by two limitations. First, it is
not possible to set an exact bit pattern in the coverage mask: this prevents the application
from applying precise control over the screen-door transparency patterns. While this
restriction was deliberately placed in the OpenGL design to allow greater flexibility in
implementing multisample, it does remove some control from the application writer.
Second, the transparency resolution is limited by the number of samples available per
fragment. If the implementation supports only four multisamples, for example, each
fragment can represent at most five transparency levels (n+1), including fully transparent
and fully opaque. Some OpenGL implementations may try to overcome this restriction by
spatially dithering the subpixel masks to create additional levels. This effectively creates a
hybrid between subpixel-level and pixel-level screen-door techniques. The limited number
of per-fragment samples creates a limitation which is also found in the the per-pixel screen-
door technique: multisample transparency does not work well when many transparent
surfaces are stacked on top of one another.

Overall, the multisample screen-door technique is a significant improvement over the
pixel-level screen door, but it still suffers from problems with sample resolution. Using
sorting with alpha blending can generate better results; the alpha channel can usually
represent more opacity levels than sample coverage and the blending arithmetic computes
an exact answer at each pixel. However, for performance-critical applications, especially
when the transparent objects are difficult to sort, the multisample technique can be a
good choice. Best results are obtained if there is little overlap between transparent objects
and the number of different transparency levels represented is small.

Since there is a strong similarity between the principles used for modeling surface
opacity and compositing, the subpixel mask operations can also be used to perform some
of the compositing algorithms without using framebuffer blending. However, the limita-
tions with respect to resolution of mask values preclude using these modified techniques
for high-quality results.

11.11 Summary

In this chapter we described some of the underlying theory for image compositing and
transparency modeling. We also covered some common algorithms using the OpenGL

S E C T I O N 1 1 . 1 1 Summary 209

pipeline and the various advantages and limitations of these algorithms. Efficient render-
ing of semi-transparent objects without extra burdens on the application, such as sorting,
continues to be a difficult problem and will no doubt be a continuing area of investigation.
In the next chapter we examine using other parts of the pipeline for operating on images
directly.

12
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Image Processing

Techniques

A comprehensive treatment of image processing techniques is beyond the scope of this
book. However, since image processing is such a powerful tool, even a subset of image
processing techniques can be useful, and is a powerful adjunct to computer graphics
approaches. Some of the more fundamental processing algorithms are described here,
along with methods for accelerating them using the OpenGL pipeline.

12.1 OpenGL Imaging Support

Image processing is an important component of applications used in the publishing, satel-
lite imagery analysis, medical, and seismic imaging fields. Given its importance, image
processing functionality has been added to OpenGL in a number of ways. A bundle of
extensions targeted toward accelerating common image processing operations, referred
to as the ARB imaging subset, is defined as part of the OpenGL 1.2 and later speci-
fications. This set of extensions includes the color matrix transform, additional color
lookup tables, 2D convolution operations, histogram, min/max color value tracking,
and additional color buffer blending functionality. These extensions are described in
Section 4.8. While these extensions are not essential for all of the image processing
techniques described in this chapter, they can provide important performance advantages.

211

212 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

Since the imaging subset is optional, not all implementations of OpenGL support
them. If it is advertised as part of the implementation, the entire subset must be imple-
mented. Some implementations provide only part of this functionality by implementing a
subset of the imaging extensions, using the EXT versions. Important functionality, such
as the color lookup table (EXT_color_table) and convolution (EXT_convolution)
can be provided this way.

With the evolution of the fragment processing pipeline to support programmability,
many of the functions provided by the imaging subset can be implemented using fragment
programs. For example, color matrix arithmetic becomes simple vector operations on
color components, color lookup tables become dependent texture reads with multitexture,
convolution becomes multiple explicit texture lookup operations with a weighted sum.
Other useful extensions, such as pixel textures, are implemented using simple fragment
program instructions. However, other image subset operations such as histogram and
minmax don’t have direct fragment program equivalents; perhaps over time sufficient
constructs will evolve to efficiently support these operations.

Even without this extended functionality, the basic imaging support in OpenGL,
described in Chapter 4, provides a firm foundation for creating image processing
techniques.

12.2 Image Storage

The multipass concept described in Chapter 9 also applies to image processing. To com-
bine image processing elements into powerful algorithms, the image processing operations
must be coupled with some notion of temporary storage, or image variables, for interme-
diate results. There are three main locations for storing images: in application memory on
the host, in a color buffer (back, front, aux buffers, and stereo buffers), or in a texture.
A fourth storage location, off-screen memory in pbuffers, is available if the implemen-
tation supports them. Each of these storage areas can participate in image operations in
one form or another. The biggest difference occurs between images stored as textures
and those stored in the other buffers types. Texture images are manipulated by draw-
ing polygonal geometry and operating on the fragment values during rasterization and
fragment processing.

Images stored in host memory, color buffers, or pbuffers can be processed by the pixel
pipeline, as well as the rasterization and fragment processing pipeline. Images can be easily
transferred between the storage locations using glDrawPixels and glReadPixels to
transfer images between application memory and color buffers, glCopyTexImage2D
to copy images from color buffers to texture memory, and by drawing scaled textured
quadrilaterals to copy texture images to a color buffer. To a large extent the techniques
discussed in this chapter can be applied regardless of where the image is stored, but some
techniques may be more efficient if the image is stored in one particular storage area over
another.

S E C T I O N 1 2 . 3 Po in t Ope ra t i ons 213

If an image is to be used repeatedly as a source operand in an algorithm or by applying
the algorithm repeatedly using the same source, it’s useful to optimize the location of the
image for the most efficient processing. This will invariably require moving the image
from host memory to either texture memory or a color buffer.

12.3 Point Operations

Image processing operations are often divided into two broad classes: point-based and
region-based operations. Point operations generate each output pixel as a function of a
single corresponding input pixel. Point operations include functions such as thresholding
and color-space conversion. Region-based operations calculate a new pixel value using
the values in a (usually small) local neighborhood. Examples of region-based operations
include convolution and morphology operations.

In a point operation, each component in the output pixel may be a simple func-
tion of the corresponding component in the input pixel, or a more general function
using additional, non-pixel input parameters. The multipass toolbox methodology
outlined in Section 9.3, i.e., building powerful algorithms from a “programming lan-
guage” of OpenGL operations and storage, is applied here to implement the algorithms
outlined here.

12.3.1 Color Adjustment

A simple but important local operation is adjusting a pixel’s color. Although simple to do
in OpenGL, this operation is surprisingly useful. It can be used for a number of purposes,
from modifying the brightness, hue or saturation of the image, to transforming an image
from one color space to another.

12.3.2 Interpolat ion and Extrapolat ion

Haeberli and Voorhies (1994) have described several interesting image processing tech-
niques using linear interpolation and extrapolation between two images. Each technique
can be described in terms of the formula:

O = (1 − x)I0 + xI1 (12.1)

The equation is evaluated on a per-pixel basis. I0 and I1 are the input images, O is
the output image, and x is the blending factor. If x is between 0 and 1, the equa-
tions describe a linear interpolation. If x is allowed to range outside [0, 1], the result is
extrapolation.

214 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

In the limited case where 0 ≤ x ≤ 1, these equations may be implemented using
constant color blending or the accumulation buffer. The accumulation buffer version
uses the following steps:

1. Draw I0 into the color buffer.

2. Load I0, scaling by (1 − x): glAccum(GL_LOAD, (1-x)).

3. Draw I1 into the color buffer.

4. Accumulate I1, scaling by x: glAccum(GL_ACCUM,x).

5. Return the results: glAccum(GL_RETURN, 1).

It is assumed that component values in I0 and I1 are between 0 and 1. Since the accu-
mulation buffer can only store values in the range [−1, 1], for the case x < 0 or x > 1,
the equation must be implemented in a such a way that the accumulation operations stay
within the [−1, 1] constraint. Given a value x, equation Equation 12.1 is modified to
prescale with a factor such that the accumulation buffer does not overflow. To define a
scale factor s such that:

s = max(x, 1 − x)

Equation 12.1 becomes:

O = s
(

(1 − x)
s

I0 + x
s

I1

)
and the list of steps becomes:

1. Compute s.

2. Draw I0 into the color buffer.

3. Load I0, scaling by (1−x)
s : glAccum(GL_LOAD, (1-x)/s).

4. Draw I1 into the color buffer.

5. Accumulate I1, scaling by x
s : glAccum(GL_ACCUM, x/s).

6. Return the results, scaling by s: glAccum(GL_RETURN, s).

The techniques suggested by Haeberli and Voorhies use a degenerate image as I0
and an appropriate value of x to move toward or away from that image. To increase
brightness, I0 is set to a black image and x > 1. Saturation may be varied using a lumi-
nance version of I1 as I0. (For information on converting RGB images to luminance,
see Section 12.3.5.) To change contrast, I0 is set to a gray image of the average lumi-
nance value of I1. Decreasing x (toward the gray image) decreases contrast; increasing x
increases contrast. Sharpening (unsharp masking) may be accomplished by setting I0 to a
blurred version of I1. These latter two examples require the application of a region-based
operation to compute I0, but once I0 is computed, only point operations are required.

S E C T I O N 1 2 . 3 Po in t Ope ra t i ons 215

12.3.3 Scale and Bias

Scale and bias operations apply the affine transformation Cout = sCin + b to each pixel.
A frequent use for scale and bias is to compress the range of the pixel values to compensate
for limited computation range in another part of the pipeline or to undo this effect by
expanding the range. For example, color components ranging from [0, 1] are scaled to half
this range by scaling by 0.5; color values are adjusted to an alternate signed representation
by scaling by 0.5 and biasing by 0.5. Scale and bias operations may also be used to trivially
null or saturate a color component by setting the scale to 0 and the bias to 0 or 1.

Scale and bias can be achieved in a multitude of ways, from using explicit pixel
transfer scale and bias operations, to color matrix, fragment programs, blend operations
or the accumulation buffer. Scale and bias operations are frequently chained together in
image operations, so having multiple points in the pipeline where they can be performed
can improve efficiency significantly.

12.3.4 Thresholding

Thresholding operations select pixels whose component values lie within a specified range.
The operation may change the values of either the selected or the unselected pixels.
A pixel pattern can be highlighted, for example, by setting all the pixels in the pat-
tern to 0. Pixel maps and lookup tables provide a simple mechanism for thresholding
using individual component values. However, pixel maps and lookup tables only allow
replacement of one component individually, so lookup table thresholding is trivial only
for single component images.

To manipulate all of the components in an RGB pixel, a more general lookup table
operation is needed, such as pixel textures, or better still, fragment programs. The oper-
ation can also be converted to a multipass sequence in which individual component
selection operations are performed, then the results combined together to produce the
thresholded image. For example, to determine the region of pixels where the R, G, and
B components are all within the range [25, 75], the task can be divided into four sepa-
rate passes. The results of each component threshold operation are directed to the alpha
channel; blending is then used to perform simple logic operations to combine the results:

1. Load the GL_PIXEL_MAP_A_TO_A with a values that map components in the
range [0.25, 0.75] to 1 and everything else to 0. Load the other color pixel maps
with a single entry that maps all components to 1 and enable the color pixel map.

2. Clear the color buffer to (1, 1, 1, 0) and enable blending with source and
destination blend factors GL_SRC_ALPHA, GL_SRC_ALPHA.

3. Use glDrawPixels to draw the image with the R channel in the A position.

4. Repeat the previous step for the G and B channels.

5. At this point the color buffer has 1 for every pixel meeting the condition
0.25 ≤ x ≤ 0.75 for the three color components. The image is drawn one more

216 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

time with the blend function set to glBlendFunc(GL_DST_COLOR, GL_ZERO)
to modulate the image.

One way to draw the image with the R, G, or B channels in the A position is to use a
color matrix swizzle as described in Section 9.3.1. Another approach is to pad the begin-
ning of an RGBA image with several extra component instances, then adjust the input
image pointer to glDrawPixels by a negative offset. This will ensure that the desired
component starts in the A position. Note that this approach works only for 4-component
images in which all of the components are equal size.

12.3.5 Conversion to Luminance

A color image is converted to a luminance image (Figure 12.1) by scaling each component
by its weight in the luminance equation.

⎛⎜⎜⎝
L
L
L
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Rw Gw Bw 0
Rw Gw Bw 0
Rw Gw Bw 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

R
G
B
A

⎞⎟⎟⎠
The recommended weight values for Rw, Gw, and Bw are 0.2126, 0.7152, and 0.0722,
respectively, from the ITU-R BT.709-5 standard for HDTV. These values are identical
to the luminance component from the CIE XYZ conversions described in Section 12.3.8.
Some authors have used the values from the NTSC YIQ color conversion equation
(0.299, 0.587, and 0.114), but these values are inapproriate for a linear RGB color
space (Haeberli, 1993). This operation is most easily achieved using the color matrix,
since the computation involves a weighted sum across the R, G, and B color components.

In the absence of color matrix or programmable pipeline support, the equivalent
result can be achieved, albeit less efficiently, by splitting the operation into three passes.
With each pass, a single component is transferred from the host. The appropriate scale
factor is set, using the scale parameter in a scale and bias element. The results are summed
together in the color buffer using the source and destination blend factors GL_ONE,
GL_ONE.

12.3.6 Manipulat ing Saturation

The saturation of a color is the distance of that color from a gray of equal intensity (Foley
et al., 1990). Haeberli modifies saturation using the equation:

⎛⎜⎜⎝
R′
G′
B′
A

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a d g 0
b e h 0
c f i 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

R
G
B
A

⎞⎟⎟⎠

S E C T I O N 1 2 . 3 Po in t Ope ra t i ons 217

(a) (b)

(c)

F i g u r e 12.1 Image operations: original, sharpened, luminance.

218 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

where:

a = (1 − s) ∗ Rw + s

b = (1 − s) ∗ Rw

c = (1 − s) ∗ Rw

d = (1 − s) ∗ Gw

e = (1 − s) ∗ Gw + s

f = (1 − s) ∗ Gw

g = (1 − s) ∗ Bw

h = (1 − s) ∗ Bw

i = (1 − s) ∗ Bw + s

with Rw, Gw, and Bw as described in the previous section. Since the saturation of a color
is the difference between the color and a gray value of equal intensity, it is comforting to
note that setting s to 0 gives the luminance equation. Setting s to 1 leaves the saturation
unchanged; setting it to −1 takes the complement of the colors (Haeberli, 1993).

12.3.7 Rotating Hue

Changing the hue of a color can be accomplished by a color rotation about the gray
vector (1, 1, 1)t in the color matrix. This operation can be performed in one step using
the glRotate command. The matrix may also be constructed by rotating the gray vector
into the z-axis, then rotating around that. Although more complicated, this approach is
the basis of a more accurate hue rotation, and is shown later. The multistage rotation is
shown here (Haeberli, 1993):

1. Load the identity matrix: glLoadIdentity.

2. Rotate such that the gray vector maps onto the z-axis using the glRotate
command.

3. Rotate about the z-axis to adjust the hue: glRotate(<degrees>, 0, 0, 1).

4. Rotate the gray vector back into position.

Unfortunately, this naive application of glRotatewill not preserve the luminance of
an image. To avoid this problem, the color rotation about z can be augmented. The color
space can be transformed so that areas of constant luminance map to planes perpendicular
to the z-axis. Then a hue rotation about that axis will preserve luminance. Since the
luminance of a vector (R, G, B) is equal to:

(R, G, B) · (Rw, Gw, Bw)T

S E C T I O N 1 2 . 3 Po in t Ope ra t i ons 219

the plane of constant luminance k is defined by:

(R, G, B) · (Rw, Gw, Bw)T = k

Therefore, the vector (Rw, Gw, Bw) is perpendicular to planes of constant luminance. The
algorithm for matrix construction becomes the following (Haeberli, 1993):

1. Load the identity matrix.

2. Apply a rotation matrix M such that the gray vector (1, 1, 1)t maps onto the
positive z-axis.

3. Compute (R′
w, G′

w, B′
w)t = M(Rw, Gw, Bw)t . Apply a skew transform which maps

(R′
w, G′

w, B′
w)t to (0, 0, B′

w)t . This matrix is:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0
−R′

w

B′
w

0

0 1
−G′

w

B′
w

0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
4. Rotate about the z-axis to adjust the hue.

5. Apply the inverse of the shear matrix.

6. Apply the inverse of the rotation matrix.

It is possible to create a single matrix which is defined as a function of Rw, Gw, Bw, and
the amount of hue rotation required.

12.3.8 Color Space Conversion

CIE XYZ Conversion The CIE (Commission Internationale de L’Éclairage) color space
is the internationally agreed on representation of color. It consists of three spectral
weighting curves x̄, ȳ, z̄ called color matching functions for the CIE Standard
Observer. A tristimulus color is represented as an XYZ triple, where Y corresponds
to luminance and X and Z to the response values from the two remaining color
matching functions. The CIE also defines a representation for “pure” color, termed
chromaticity consisting of the two values

x = X
X + Y + Z

y = Y
X + Y + Z

A chromaticity diagram plots the chromaticities of wavelengths from 400 nm to
700 nm resulting in the inverted “U” shape shown in Figure 12.2. The shape

220 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

F i g u r e 12.2 The CIE (1931) (x,y) chromaticity diagram.

defines the gamut of visible colors. The CIE color space can also be plotted as a 3D
volume, but the 2D chromaticity projection provides some useful information. RGB
color spaces project to a triangle on the chromaticity diagram, and the triangle
defines the gamut of the RGB color space. Each of the R, G, and B primaries form a
vertex of the triangle. Different RGB color spaces map to different triangles in the
chromaticity diagram. There are many standardized RGB color space definitions,
each with a different purpose. Perhaps the most important is the ITU-R BT.709-5
definition. This RGB color space defines the RGB gamut for digital video signals
and roughly matches the range of color that can be reproduced on CRT-like display
devices. Other RGB color spaces represent gamuts of different sizes. For example,
the Adobe RGB (1998) color space projects to a larger triangle and can represent a
large range of colors. This can be useful for transfer to output devices that are
capable of reproducing a larger gamut. Note that with a finite width color
representation, such as 8-bit RGB color components, there is a trade-off between

S E C T I O N 1 2 . 3 Po in t Ope ra t i ons 221

the representable range of colors and the ability to differentiate between distinct
colors. That is, there is a trade-off between dynamic range and precision.

To transform from BT.709 RGB to the CIE XYZ color space, use the following
matrix: ⎛⎜⎜⎝

X
Y
Z
A

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0.412391 0.357584 0.180481 0
0.212639 0.715169 0.072192 0
0.019331 0.119193 0.950532 0
0.000000 0.000000 0.000000 1

⎞⎟⎟⎠
⎛⎜⎜⎝

R
G
B
A

⎞⎟⎟⎠
The XYZ values of each of the R, G, and B primaries are the columns of the
matrix. The inverse matrix is used to map XYZ to RGBA (Foley et al., 1990). Note
that the CIE XYZ space can represent colors outside the RGB gamut. Care should
be taken to ensure the XYZ colors are “clipped” as necessary to produce
representable RGB colors (all components lie within the 0 to 1 range).

⎛⎜⎜⎝
R
G
B
A

⎞⎟⎟⎠ =

⎛⎜⎜⎝
3.240970 −1.537383 −0.498611 0

−0.969244 1.875968 0.041555 0
0.055630 −0.203977 1.056972 0
0.000000 0.000000 0.000000 1

⎞⎟⎟⎠
⎛⎜⎜⎝

X
Y
Z
A

⎞⎟⎟⎠
Conversion between different RGB spaces is achieved by using the CIE XYZ space
as a common intermediate space. An RGB space definition should include CIE
XYZ values for the RGB primaries. Color management systems use this as one of
the principles for converting images from one color space to another.

CMY Conversion The CMY color space describes colors in terms of the subtractive
primaries: cyan, magenta, and yellow. CMY is used for hardcopy devices such as
color printers, so it is useful to be able to convert to CMY from RGB color space.
The conversion from RGB to CMY follows the equation (Foley, et al., 1990):⎛⎝C

M
Y

⎞⎠ =
⎛⎝1

1
1

⎞⎠ −
⎛⎝R

G
B

⎞⎠
CMY conversion may be performed using the color matrix or as a scale and bias
operation. The conversion is equivalent to a scale by −1 and a bias by +1. Using
the 4 × 4 color matrix, the equation can be restated as:

⎛⎜⎜⎝
C
M
Y
1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1 0 0 1

0 −1 0 1
0 0 −1 1
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

R
G
B
1

⎞⎟⎟⎠

222 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

To produce the correct bias from the matrix multiply, the alpha component of
the incoming color must be equal to 1. If the source image is RGB, the 1 will be
added automatically during the format conversion stage of the pipeline.

A related color space, CMYK, uses a fourth channel (K) to represent black.
Since conversion to CMYK requires a min() operation, it cannot be done using the
color matrix.

The OpenGL extension EXT_CMYKA adds support for CMYK and CMYKA
(CMYK with alpha). It provides methods to read and write CMYK and CMYKA
values stored in system memory (which also implies conversion to RGB and RGBA,
respectively).

YIQ Conversion The YIQ color space was explicitly designed to support color
television, while allowing backwards compatibility with black and white TVs. It is
still used today in non-HDTV color television broadcasting in the United States.
Conversion from RGBA to YIQA can be done using the color matrix:⎛⎜⎜⎝

Y
I
Q
A

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0.299 0.587 0.114 0
0.596 −0.275 −0.321 0
0.212 −0.523 0.311 0
0.000 0.000 0.000 1

⎞⎟⎟⎠
⎛⎜⎜⎝

R
G
B
A

⎞⎟⎟⎠
(Generally, YIQ is not used with an alpha channel so the fourth component is
eliminated.) The inverse matrix is used to map YIQ to RGBA (Foley et al., 1990):⎛⎜⎜⎝

R
G
B
A

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1.0 0.956 0.621 0
1.0 −0.272 −0.647 0
1.0 −1.105 1.702 0
0.0 0.000 0.000 1

⎞⎟⎟⎠
⎛⎜⎜⎝

Y
I
Q
A

⎞⎟⎟⎠
HSV Conversion The hue saturation value (HSV) model is based on intuitive color

characteristics. Saturation characterizes the purity of the color or how much white
is mixed in, with zero white being the purest. Value characterizes the brightness of
the color. The space is defined by a hexicone in cylindrical coordinates, with hue
ranging from 0 to 360 degrees (often normalized to the [0, 1] range), saturation
from 0 to 1 (purest), and value from 0 to 1 (brightest). Unlike the other color space
conversions, converting to HSV can’t be expressed as a simple matrix transform.
It can be emulated using lookup tables or by directly implementing the formula:

V = max(R, G, B)

� = V − min(R, G, B)

S =
{

�/V if V
= 0

0 if V = 0

S E C T I O N 1 2 . 4 Reg ion-based Ope ra t i ons 223

h =

⎧⎪⎨⎪⎩
0 + 60(G − B)/� if R =V

120 + 60(B − R)/� if G =V

240 + 60(R − G)/� if B =V

H =

⎧⎪⎨⎪⎩
0 if S = 0

h if h ≥ 0

h + 360 if h < 0

The conversion from HSV to RGB requires a similar strategy to implement the
formula:

sector = floor(H/60)

frac = (H/60) − sector

o = V(1 − S)

p = V(1 − S frac)

q = V(1 − S(1 − frac))

(
R G B

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
V V V

)
if S = 0(

V q o
)

if sector = 0(
p V o

)
if sector = 1(

o V q
)

if sector = 2(
o p V

)
if sector = 3(

q o V
)

if sector = 4(
V o p

)
if sector = 5

12.4 Region-based Operations

A region-based operation generates an output pixel value from multiple input pixel values.
Frequently the input value’s spatial coordinates are near the coordinates of the output
pixel, but in general an output pixel value can be a function of any or all of the pixels in
the input image. An example of such a function is the minmax operation, which computes
the minimum and maximum component values across an entire pixel image. This class
of image processing operations is very powerful, and is the basis of many important
operations, such as edge detection, image sharpening, and image analysis.

OpenGL can be used to create several toolbox functions to make it easier to per-
form non-local operations. For example, once an image is transferred to texture memory,

224 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

texture mapped drawing operations can be used to shift the texel values to arbitrary
window coordinates. This can be done by manipulating the window or texture coordi-
nates of the accompanying geometry. If fragment programs are supported, they can be
used to sample from arbitrary locations within a texture and combine the results (albeit
with limits on the number of instructions or samples). Histogram and minmax operations
can be used to compute statistics across an image; the resulting values can later be used
as weighting factors.

12.4.1 Contrast Stretching

Contrast stretching is a simple method for improving the contrast of an image by linearly
scaling (stretching) the intensity of each pixel by a fixed amount. Images in which the
intensity values are confined to a narrow range work well with this algorithm. The linear
scaling equation is:

Iout =
(

Iin − min(Iin)
max(Iin) − min(Iin)

)
where min(Iin) and max(Iin) are the minimum and maximum intensity values in the input
image. If the intensity extrema are already known, the stretching operation is really a
point operation using a simple scale and bias. However, the search operation required to
find the extrema is a non-local operation. If the imaging subset is available, the minmax
operation can be used to find them.

12.4.2 Histogram Equalizat ion

Histogram equalization is a more sophisticated technique, modifying the dynamic range
of an image by altering the pixel values, guided by the intensity histogram of that image.
Recall that the intensity histogram of an image is a table of counts, each representing
a range of intensity values. The counts record the number of times each intensity value
range occurs in the image. For an RGB image, there is a separate table entry for each
of the R, G, and B components. Histogram equalization creates a non-linear mapping,
which reassigns the intensity values in the input image such that the resultant images
contain a uniform distribution of intensities, resulting in a flat (or nearly flat) histogram.
This mapping operation is performed using a lookup table. The resulting image typically
brings more image details to light, since it makes better use of the available dynamic
range.

The steps in the histogram equalization process are:

1. Compute the histogram of the input image.

2. Normalize the resulting histogram to the range [0, 1].
3. Transfer the normalized histogram to a color table.

4. Transfer the input image through the lookup table.

S E C T I O N 1 2 . 5 Reduc t i on Ope ra t i ons 225

12.5 Reduction Operations

The minmax and histogram computations are representative of a class of reduction oper-
ations in which an entire image is scanned to produce a small number of values. For
minmax, two color values are computed and for luminance histograms, an array of
counts is computed corresponding to the luminance bins. Other examples include com-
puting the average pixel value, the sum of all the pixel values, the count of pixel values
of a particular color, etc. These types of operations are difficult for two reasons. First,
the range of intermediate or final values may be large and not easily representable using
a finite width color value. For example, an 8-bit color component can only represent 256
values. However, with increasing support for floating-point fragment computations and
floating-point colors, this limitation disappears.

The second problem is more architectural. The reduction algorithms can be thought
of as taking many inputs and producing a single (or small number of) outputs. The
vertex and fragment processing pipelines excel at processing large numbers of inputs
(vertices or fragments) and producing a large number of outputs. Parallel processing is
heavily exploited in hardware accelerator architectures to achieve significant process-
ing speed increases. Ideally a reduction algorithm should try to exploit this parallel
processing capability. One way to accomplish this is by using recursive folding oper-
ations to successively reduce the size of the input data. For example, an n × n image is
reduced to an n/2 × n/2 image of min or max values of neighbor pixels (texels) using
texture mapping and a fragment program to compute the minmax of neighboring values.
This processing continues by copying the previous result to a texture map and repeat-
ing the steps. This reduces the generated image size by 2 along each dimension in each
pass until a 1 × 1 image is left. For an n × n image it takes 1 + log2 n� passes to
compute the final result, or for an n × m image it takes 1 + [log2(max{n, m})] passes
(Figure 12.3).

As the intermediate result reduces in size, the degree of available parallelism
decreases, but large gains can still be achieved for the early passes, typically until
n = 4. When n is sufficiently small, it may be more efficient to transfer the data

8 × 8 4 × 4 2 × 2 1 × 1

F i g u r e 12.3 Recursive 2-way folding.

226 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

to the host and complete the computation there if that is the final destination for
the result. However, if the result will be used as the input for another OpenGL
operation, then it is likely more efficient to complete the computation within the
pipeline.

If more samples can be computed in the fragment program, say k × k, then the
image size is reduced by k in each dimension at each pass and the number of passes is
1+[logk(max{n, m})]. The logical extreme occurs when the fragment program is capable
of indexing through the entire image in a single fragment program instance, using con-
ditional looping. Conditional looping support is on the horizon for the programmable
pipeline, so in the near future the single pass scenario becomes viable. While this may
seem attractive, it is important to note that executing the entire algorithm in a single
fragment program eliminates all of the inherent per-pixel parallelism. It is likely that
maintaining some degree of parallelism throughout the algorithm makes more effective
use of the hardware resources and is therefore faster.

Other reduction operations can be computed using a similar folding scheme. For
example, the box-filtered mipmap generation algorithm described later in Section 14.15
is the averaging reduction algorithm in disguise. Futhermore, it doesn’t require a fragment
program to perform the folding computations. Other reduction operations may also be
done using the fixed-function pipeline if they are simple sums or counts.

The histogram operation is another interesting reduction operation. Assuming that
a luminance histogram with 256 bins is desired, the computation can be performed by
using a fragment program to target one bin at a time. A single texel is sampled at a
time, generating 0 or 1 for the texel sample depending on whether it is outside or inside
the bin range. Framebuffer blending with GL_ONE, GL_ONE factors is used to sum the
results. This requires n × n × 256 passes to process the entire image. To improve upon
the parallelism, a 256 × 1 quad can be drawn to sample one texel and compare it against
all 256 bins at a time. The window x coordinate is used to determine which bin to
compare the texel value against. This reduces the number of passes to n × n. To further
reduce the number of passes, the fragment program can be modified to sample some
small number of texels at a time, for example 4 to 16. This reduces the number of passes
to (n × n)/k.

Ideally we would like to achieve the same logarithmic reduction in passes as with
the folding scheme. A final improvement to the strategy is to process all rows of the
image in parallel, drawing a 256 × n quad to index all of the image rows. Multiple rows
of output bins are aligned vertically and the y window coordinate chooses the correct
row of bins. This leaves a result that is distributed across the multiple rows of bins, so
another set of passes is required to reduce the n rows to a single row. This uses the same
folding scheme to pairwise sum two rows, one pair of bins, per fragment program. This
reduces the number of rows by two in each pass. The end result is an algorithm requiring
(1 + [log2 n])n/k passes. Figure 12.4 illustrates the algorithm for a 4-bin histogram on
an 8 × 8 image. Eight rows of bins are simultaneously computed across the columns of
the image, producing the final 8 rows of bins. Three sets of folded sums are computed
reducing the number of rows of bins by 2 at each step, culminating in the single row of
bins on the right.

S E C T I O N 1 2 . 6 Convo lu t i on 227

8 x 8 image 4 bins x 8 rows

Recursive
folded sum

22 2
8

7 0
2

2

25
3 3

11
1 1

11
11
1

1 0

0–
63

64
–1

27
12

8–
19

1
19

2–
25

5

24 617 17

00 0
0
0

0

4

4 3
6

…
F i g u r e 12.4 Multi-row histogram and folded sum.

12.6 Convolution

Convolution is used to perform many common image processing operations. These oper-
ations include sharpening, blurring, noise reduction, embossing, and edge enhancement.
The mathematics of the convolution operation are described in Section 4.3. This section
describes two ways to perform convolutions using OpenGL: with the accumulation buffer
and using the convolution operation in the imaging subset.

12.6.1 Separable Fi l ters

Section 4.3 briefly describes the signal processing motivation and the equations behind
the general 2D convolution. Each output pixel is the result of the weighted sum of its
neighboring pixels. The set of weights is called the filter kernel; the width and height of
the kernel determines the number of neighbor pixels (width×height) included in the sum.

In the general case, a 2D convolution operation requires (width×height) multiplica-
tions for each output pixel. Separable filters are a special case of general convolution in
which the horizontal and vertical filtering components are orthogonal. Mathematically,
the filter

G[0..(width − 1)][0..(height − 1)]

can be expressed in terms of two vectors

Grow[0..(width − 1)]Gcol[0..(height − 1)]

such that for each (i, j)ε([0..(width − 1)], [0..(height − 1)])

G[i][j] = Grow[i] ∗ Gcol[j]

This case is important; if the filter is separable, the convolution operation may be per-
formed using only (width + height) multiplications for each output pixel. Applying the

228 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

separable filter to Equation 4.3 becomes:

H[x][y] =
height−1∑

j=0

width−1∑
i=0

F[x + i][y + j]Grow[i]Gcol[j]

Which simplifies to:

H[x][y] =
height−1∑

j=0

Gcol[j]
width−1∑

i=0

F[x + i][y + j]Grow[i]

To apply the separable convolution to an image, first apply Grow as though it were a
width × 1 filter. Then apply Gcol as though it were a 1 × height filter.

12.6.2 Convolutions Using the Accumulation Buffer

Instead of using the ARB imaging subset, the convolution operation can be imple-
mented by building the output image in the accumulation buffer. This allows the
application to use the important convolution functionality even with OpenGL imple-
mentations that don’t support the subset. For each kernel entry G[i][j], translate the
input image by (−i, −j) from its original position, then accumulate the translated image
using the command glAccum(GL_ACCUM, G[i][j]). This translation can be per-
formed by glCopyPixels but an application may be able to redraw the image shifted
using glViewport more efficiently. Width × height translations and accumulations
(or width + height if the filter is separable) must be performed.

An example that uses the accumulation buffer to convolve with a Sobel filter, com-
monly used to do edge detection is shown here. This filter is used to find horizontal
edges: ⎛⎝−1 −2 −1

0 0 0
1 2 1

⎞⎠
Since the accumulation buffer can only store values in the range [−1, 1], first modify the
kernel such that at any point in the computation the values do not exceed this range
(assuming the input pixel values are in the range [0, 1]):

⎛⎝−1 −2 −1
0 0 0
1 2 1

⎞⎠ = 4

⎛⎜⎜⎜⎜⎝
−1

4
−2

4
−1

4
0 0 0

1
4

2
4

1
4

⎞⎟⎟⎟⎟⎠

S E C T I O N 1 2 . 6 Convo lu t i on 229

To apply the filter:

1. Draw the input image.

2. glAccum(GL_LOAD, 1/4)

3. Translate the input image left by one pixel.

4. glAccum(GL_ACCUM, 2/4)

5. Translate the input image left by one pixel.

6. glAccum(GL_ACCUM, 1/4)

7. Translate the input image right by two pixels and down by two pixels.

8. glAccum(GL_ACCUM, -1/4)

9. Translate the input image left by one pixel.

10. glAccum(GL_ACCUM, -2/4)

11. Translate the input image left by one pixel.

12. glAccum(GL_ACCUM, -1/4)

13. Return the results to the framebuffer: glAccum(GL_RETURN, 4).

In this example, each pixel in the output image is the combination of pixels in the 3 × 3
pixel square whose lower left corner is at the output pixel. At each step, the image is
shifted so that the pixel that would have been under a given kernel element is under the
lower left corner. An accumulation is then performed, using a scale value that matches
the kernel element. As an optimization, locations where the kernel value is equal to zero
are skipped.

The scale value 4 was chosen to ensure that intermediate results cannot go outside the
range [−1, 1]. For a general kernel, an upper estimate of the scale value is computed by
summing all of the positive elements of kernel to find the maximum and all of the negative
elements to find the minimum. The scale value is the maximum of the absolute value of
each sum. This computation assumes that the input image pixels are in the range [0, 1]
and the maximum and minimum are simply partial sums from the result of multiplying
an image of 1’s with the kernel.

Since the accumulation buffer has limited precision, more accurate results can be
obtained by changing the order of the computation, then recomputing scale factor. Ideally,
weights with small absolute values should be processed first, progressing to larger weights.
Each time the scale factor is changed the GL_MULT operation is used to scale the current
partial sum. Additionally, if values in the input image are constrained to a range smaller
than [0, 1], the scale factor can be proportionately increased to improve the precision.

For separable kernels, convolution can be implemented using width + height image
translations and accumulations. As was done with the general 2D filter, scale factors for
the row and column filters are determined, but separately for each filter. The scale values

230 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

should be calculated such that the accumulation buffer values will never go out of the
accumulation buffer range.

12.6.3 Convolution Using Extensions

If the imaging subset is available, convolutions can be computed directly using the convo-
lution operation. Since the pixel transfer pipeline is calculated with extended range and
precision, the issues that occur when scaling the kernels and reordering the sums are not
applicable. Separable filters are supported as part of the convolution operation as well;
they result in a substantial performance improvement.

One noteworthy feature of pipeline convolution is that the filter kernel is
stored in the pipeline and it can be updated directly from the framebuffer using
glCopyConvolutionFilter2D. This allows an application to compute the convolu-
tion filter in the framebuffer and move it directly into the pipeline without going through
application memory.

If fragment programs are supported, then the weighted samples can be computed
directly in a fragment program by reading multiple point samples from the same tex-
ture at different texel offsets. Fragment programs typically have a limit on the number
of instructions or samples that can be executed, which will in turn limit the size of a
filter that can be supported. Separable filters remain important for reducing the total
number of samples that are required. To implement separable filters, separate passes are
required for the horizontal and vertical filters and the results are summed using alpha
blending or the accumulation buffer. In some cases linear texture filtering can be used to
perform piecewise linear approximation of a particular filter, rather than point sampling
the function. To implement this, linear filtering is enabled and the sample positions are
carefully controlled to force the correct sample weighting. For example, the linear 1D
filter computes αT0 + (1 − α)T1, where α is determined by the position of the s texture
coordinate relative to texels T0 and T1. Placing the s coordinate midway between T0 and
T1 equally weights both samples, positioning s 3/4 of the way between T0 and T1 weights
the texels by 1/4 and 3/4. The sampling algorithm becomes one of extracting the slopes
of the lines connecting adjacent sample points in the filter profile and converting those
slopes to texture coordinate offsets.

12.6.4 Useful Convolution Fi l ters

This section briefly describes several useful convolution filters. The filters may be applied
to an image using either the convolution extension or the accumulation buffer technique.
Unless otherwise noted, the kernels presented are normalized (that is, the kernel weights
sum to zero).

Keep in mind that this section is intended only as a very basic reference. Numerous
texts on image processing provide more details and other filters, including Myler and
Weeks (1993).

S E C T I O N 1 2 . 6 Convo lu t i on 231

Line detection Detection of lines one pixel wide can be accomplished with the following
filters:

Horizontal Edges Vertical Edges⎛⎝−1 −1 −1
2 2 2

−1 −1 −1

⎞⎠ ⎛⎝−1 2 −1
−1 2 −1
−1 2 −1

⎞⎠
Left Diagonal Edges Right Diagonal Edges⎛⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞⎠ ⎛⎝−1 −1 2
−1 2 −1

2 −1 −1

⎞⎠

Gradient Detection (Embossing) Changes in value over 3 pixels can be detected using
kernels called gradient masks or Prewitt masks. The filter detects changes in
gradient along limited directions, named after the points of the compass (with
north equal to the up direction on the screen). The 3 × 3 kernels are shown here:

North West⎛⎝−1 −2 −1
0 0 0
1 2 1

⎞⎠ ⎛⎝−1 0 1
−2 0 2
−1 0 1

⎞⎠
East South⎛⎝1 0 −1

2 0 −2
1 0 −1

⎞⎠ ⎛⎝ 1 2 1
0 0 0

−1 −2 −1

⎞⎠
Northeast Southwest⎛⎝0 −1 −2

1 0 −1
2 1 0

⎞⎠ ⎛⎝ 0 1 2
−1 0 1
−2 −1 0

⎞⎠

Smoothing and Blurring Smoothing and blurring operations are low-pass spatial filters.
They reduce or eliminate high-frequency intensity or color changes in an image.

Arithmetic Mean The arithmetic mean simply takes an average of the pixels in the
kernel. Each element in the filter is equal to 1 divided by the total number of

232 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

elements in the filter. Thus, the 3 × 3 arithmetic mean filter is:⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Basic Smooth These filters approximate a Gaussian shape.

3 × 3 (not normalized) 5 × 5 (not normalized)

⎛⎝1 2 1
2 4 2
1 2 1

⎞⎠
⎛⎜⎜⎜⎜⎝

1 1 1 1 1
1 4 4 4 1
1 4 12 4 1
1 4 4 4 1
1 1 1 1 1

⎞⎟⎟⎟⎟⎠
High-pass Filters A high-pass filter enhances the high-frequency parts of an image by

reducing the low-frequency components. This type of filter can be used to sharpen
images.

Basic High-Pass Filter: 3 × 3 Basic High-Pass Filter: 5 × 5

⎛⎝−1 −1 −1
−1 9 −1
−1 −1 −1

⎞⎠
⎛⎜⎜⎜⎜⎝

0 −1 −1 −1 0
−1 2 −4 2 −1
−1 −4 13 −4 −1
−1 2 −4 2 −1

0 −1 −1 −1 0

⎞⎟⎟⎟⎟⎠
Laplacian Filter The Laplacian filter enhances discontinuities. It outputs brighter pixel

values as it passes over parts of the image that have abrupt changes in intensity, and
outputs darker values where the image is not changing rapidly.

3 × 3 5 × 5

⎛⎝ 0 −1 0
−1 4 −1

0 −1 0

⎞⎠
⎛⎜⎜⎜⎜⎝

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 24 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1

⎞⎟⎟⎟⎟⎠
Sobel Filter The Sobel filter consists of two kernels which detect horizontal and

vertical changes in an image. If both are applied to an image, the results can be

S E C T I O N 1 2 . 6 Convo lu t i on 233

used to compute the magnitude and direction of edges in the image. Applying
the Sobel kernels results in two images which are stored in the arrays
Gh[0..(height-1][0..(width-1)] and
Gv[0..(height-1)][0..(width-1)]. The magnitude of the edge passing
through the pixel x, y is given by:

Msobel[x][y] =
√

Gh[x][y]2 + Gv[x][y]2 ≈ ∣∣Gh[x][y]∣∣ + ∣∣Gv[x][y]∣∣
(Using the magnitude representation is justified, since the values represent the
magnitude of orthogonal vectors.) The direction can also be derived from Gh
and Gv:

φsobel[x][y] = tan−1
(

Gv[x][y]
Gh[x][y]

)
The 3×3 Sobel kernels are:

Horizontal Vertical⎛⎝−1 −2 −1
0 0 0
1 2 1

⎞⎠ ⎛⎝−1 0 1
−2 0 2
−1 0 1

⎞⎠

12.6.5 Correlat ion and Feature Detect ion

Correlation is useful for feature detection; applying correlation to an image that possibly
contains a target feature and an image of that feature forms local maxima or pixel value
“spikes” in candidate positions. This is useful in detecting letters on a page or the position
of armaments on a battlefield. Correlation can also be used to detect motion, such as the
velocity of hurricanes in a satellite image or the jittering of an unsteady camera.

The correlation operation is defined mathematically as:

h(x) = f (x) ◦ g(x) =
∫ +∞

−∞
f ∗(τ)g(x + τ)dτ (12.2)

The f ∗(τ) is the complex conjugate of f (τ), but since this section will limit discussion
to correlation for signals which only contain real values, f (τ) can be substituted instead.

For 2D discrete images, Equation 4.3, the convolution equation, may be used to
evaluate correlation. In essence, the target feature is stored in the convolution kernel.
Wherever the same feature occurs in the image, convolving it against the same image in
the kernel will produce a bright spot, or spike.

Convolution functionality from the imaging subset or a fragment program may be
used to apply correlation to an image, but only for features no larger than the maximum

234 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

(a) (b)

(c)

F i g u r e 12.5 Convolution operations: original, edge detect, emboss.

S E C T I O N 1 2 . 7 Geomet r i c Ope ra t i ons 235

available convolution kernel size (Figure 12.5). For larger images or for implementation
without convolution functionality, convolve with the accumulation buffer technique. It
may also be worth the effort to consider an alternative method, such as applying a multi-
plication in the frequency domain (Gonzalez and Wintz, 1987) to improve performance,
if the feature and candidate images are very large.

After applying convolution, the application will need to find the “spikes” to deter-
mine where features have been detected. To aid this process, it may be useful to apply
thresholding with a color table to convert candidate pixels to one value and non-candidate
pixels to another, as described in Section 12.3.4.

Features can be found in an image using the method described below:

1. Draw a small image containing just the feature to be detected.

2. Create a convolution filter containing that image.

3. Transfer the image to the convolution filter using
glCopyConvolutionFilter2D.

4. Draw the candidate image into the color buffers.

5. Optionally configure a threshold for candidate pixels:

• Create a color table using glColorTable.

• glEnable(GL_POST_CONVOLUTION_COLOR_TABLE).

6. glEnable(GL_CONVOLUTION_2D).

7. Apply pixel transfer to the candidate image using glCopyPixels.

8. Read back the framebuffer using glReadPixels.

9. Measure candidate pixel locations.

If features in the candidate image are not pixel-exact, for example if they are rotated
slightly or blurred, it may be necessary to create a blurry feature image using jittering
and blending. Since the correlation spike will be lower when this image matches, it is
necessary to lower the acceptance threshold in the color table.

12.7 Geometric Operations

12.7.1 Pixel Zoom

An application may need to magnify an image by a constant factor. OpenGL provides a
mechanism to perform simple scaling by replicating or discarding fragments from pixel
rectangles with the pixel zoom operation. Zoom factors are specified usingglPixelZoom
and they may be non-integer, even negative. Negative zoom factors reflect the image about

236 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

the window coordinate x- and y-axis. Because of its simple operation, an advantage in
using pixel zoom is that it is easily accelerated by most implementations. Pixel zoom oper-
ations do not perform filtering on the result image, however. In Section 4.1 we described
some of the issues with digital image representation and with performing sampling and
reconstruction operations on images. Pixel zoom is a form of sampling and reconstruc-
tion operation that reconstructs the incoming image by replicating pixels, then samples
these values to produce the zoomed image. Using this method to increase or reduce the
size of an image introduces aliasing artifacts, therefore it may not provide satisfactory
results. One way to minimize the introduction of artifacts is to use the filtering available
with texture mapping.

12.7.2 Scal ing Using Texture Mapping

Another way to scale an image is to create a texture map from the image and then apply it
to a quadrilateral drawn perpendicular to the viewing direction. The interpolated texture
coordinates form a regular grid of sample points. With nearest filtering, the resulting
image is similar to that produced with pixel zoom. With linear filtering, a weighted average
of the four nearest texels (original image pixels) is used to compute each new sample. This
triangle filter results in significantly better images when the scale factors are close to unity
(0.5 to 2.0) and the performance should be good since texture mapping is typically well
optimized. If the scale factor is exactly 1, and the texture coordinates are aligned with
texel centers, the filter leaves the image undisturbed. As the scale factors progress further
from unity the results become worse and more aliasing artifacts are introduced. Even with
its limitations, overall it is a good general technique. An additional benefit: once a texture
map has been constructed from the image, texture mapping can be used to implement
other geometric operations, such as rotation.

Using the convolution techniques, other filters can be used for scaling operations.
Figure 12.6 illustrates 1D examples of triangle, box, and a 3-point Gaussian filter approx-
imation. The triangle filter illustrates the footprint of the OpenGL linear filter. Filters
with greater width will yield better results for larger scale factors. For magnification
operations, a bicubic (4 × 4 width) filter provides a good trade-off between quality and
performance. As support for the programmable fragment pipeline increases, implement-
ing a bicubic filter as a fragment program will become both straightforward and achieve
good performance.

Triangle Box Gaussian

F i g u r e 12.6 Triangle, box, and 3-point Gaussian filters.

S E C T I O N 1 2 . 7 Geomet r i c Ope ra t i ons 237

12.7.3 Rotation Using Texture Mapping

There are many algorithms for performing 2D rotations on an image. Conceptually, an
algebraic transform is used to map the coordinates of the center of each pixel in the
rotated image to its location in the unrotated image. The new pixel value is computed
from a weighted sum of samples from the original pixel location. The most efficient algo-
rithms factor the task into multiple shearing transformations (Foley et al., 1990) and filter
the result to minimize aliasing artifacts. Image rotation can be performed efficiently in
OpenGL by using texture mapping to implement the simple conceptual algorithm. The
image is simply texture mapped onto geometry rotated about its center. The texture coor-
dinates follow the rotated vertex coordinates and supply that mapping from rotated pixel
position to the original pixel position. Using linear filtering minimizes the introduction
of artifacts.

In general, once a texture map is created from an image, any number of geometric
transformations can be performed by either modifying the texture or the vertex coordi-
nates. Section 14.11 describes methods for implementing more general image warps using
texture mapping.

12.7.4 Distort ion Correct ion

Distortion correction is a commonly used geometric operation. It is used to correct dis-
tortions resulting from projections through a lens, or other optically active medium. Two
types of distortion commonly occur in camera lenses: pincushion and barrel distortion.
Pincushion distortion causes horizontal and vertical lines to bend in toward the center of
the image and commonly occurs with zoom or telephoto lenses. Barrel distortion cause
vertical and horizontal lines to bend outwards from the center of the image and occurs
with wide angle lenses (Figure 12.7).

Distortion is measured as the relative difference of the distance from image center
to the distorted position and to the correct position, D = (h′ − h)/h. The relationship
is usually of the form D = ah2 + bh4 + ch6 + The coefficient a is positive for
pincushion and negative for barrel distortion. Usually the quadratic term dominates the

h

(a) pincushion (b) none (c) barrel

h′

F i g u r e 12.7 Pincushion and barrel distortion.

238 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

other terms, so approximating with the quadratic term alone often provides good results.
The algorithm to correct a pincushion or barrel distortion is as follows:

1. Construct a high-resolution rectangular 2D mesh that projects to a screen-space
area the size of the input image. The mesh should be high-enough resolution so that
the pixel spacing between mesh points is small (2–3 pixels).

2. Each point in the mesh corresponds to a corrected position in virtual image
coordinates ranging from [−1, 1] in each direction. For each correct position, (x, y),
compute the corresponding uncorrected position, h′(x, y), where h′ = a(

√
x2 + y2)2.

3. Assign the uncorrected coordinates as s and t texture coordinates, scaling and
biasing to map the virtual coordinate range [−1, 1] to [0, 1].

4. Load the uncorrected image as a 2D texture image and map it to the mesh using
linear filtering. When available, a higher order texture filter, such as a bicubic
(implemented in a fragment program), can be used to produce a high-quality result.

A value for the coefficient a can be determined by trial and error; using a calibration
image such as a checkerboard or regular grid can simplify this process. Once the coefficient
has been determined, the same value can be used for all images acquired with that lens.
In practice, a lens may exhibit a combination of pincushion and barrel distortion or
the higher order terms may become more important. For these cases, a more complex
equation can be determined by using an optimization technique, such as least squares, to
fit a set of coefficients to calibration data. Large images may exceed the maximum texture
size of the OpenGL implementation. The tiling algorithm described in Section 14.5 can
be used to overcome this limitation. This technique can be generalized for arbitrary image
warping and is described in more detail in Section 14.11.

12.8 Image-Based Depth of Field

Section 13.3 describes a geometric technique for modeling the effects of depth of field,
that is, a method for simulating a camera with a fixed focal length. The result is that
there is a single distance from the eye where objects are in perfect focus and as objects
approach the viewer or receed into the distance they appear increasingly blurry.

The image-based methods achieve this effect by creating multiple versions of the
image of varying degrees of blurriness, then selecting pixels from the image based on
the distance from the viewer of the object corresponding to the pixel. A simple, but
manual, method for achieving this behavior is to use the texture LOD biasing1 to select
lower resolution texture mipmap levels for objects that are further away. This method is
limited to a constant bias for each object, whereas a bias varying as a function of focal
plane to object distance is more desirable.

1. A core feature in OpenGL 1.4 or as the EXT_texture_lod_bias extension.

S E C T I O N 1 2 . 8 Image-Based Dep th o f F i e l d 239

A generalization of this technique, using the programmable pipeline, renders the
scene using a texture coordinate to interpolate the distance to the viewer (or focal plane)
at each pixel and uses this value to look up a blurriness interpolation coefficient. This
coefficient is stored in destination alpha with the rest of the scene. In subsequent passes
the blurred versions of the image are created, using the techniques described previously
and in Section 14.15. In the final pass a single quadrilateral the size of the window is
drawn, with the orginal and blurred images bound as textures. As the quad is drawn,
samples are selected from each of the bound textures and merged using the interpolation
coefficient. Since the interpolation coeffecient was originally rendered to the alpha channel
of the scene, it is in the alpha channel of the unblurred texture. A blurred version of the
coefficient is also computed along with the RGB colors of the scene in each of the blurred
texture maps. The actual blur coefficient used for interpolation is computed by averaging
the unblurred and most-blurred versions of the coefficient.

If a single blurry texture is used, then a simple interpolation is done between the
unblurred and blurry texture. If multiple blurrier textures are used, then the magnitude
of the interpolation coefficient is used to select between two of the textures (much like
LOD in mipmapping) and the samples from the two textures are interpolated.

So far, we have described how to compute the resulting image based on an interpo-
lated bluriness coefficient, but haven’t shown how to derive the coefficient. The lens and
aperture camera model described by Potmesil and Chakravarty (1981) develops a model
for focus that takes into account the focal length and aperture of the lens. An in-focus
point in 3D projects to a point on the image plane. A point that is out of focus maps to a
circle, termed the circle of confusion, where the diameter is proportional to the distance
from the plane of focus. The equation for the diameter depends on the distance from the
camera to the point z, the lens focal length F, the lens aperature number n, and the focal
distance (distance at which the image is in perfect focus), zf :

c(z) = α
|z − zf |

z
where α = F2

n(zf − F)

Circles of diameter less than some threshold dmin are considered in focus. Circles
greater than a second threshold dmax are considered out of focus and correspond to the
blurriest texture. By assigning a texture coordinate with the distance from the viewer, the
interpolated coordinate can be used to index an alpha texture storing the function:

c(z) − dmin

dmax − dmin

This function defines the [0, 1] bluriness coefficient and is used to interpolate between
the RGB values in the textures storing the original version of the scene and one or more
blurred versions of the scene as previously described (Figure 12.8).

The main advantage of this scheme over a geometric scheme is that the orignal scene
only needs to be rendered once. However, there are also some shortcommings. It requires

240 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

Sharp image

Blurred image

Destination alpha
selecting sharp image

(interpolation coefficient lookup
table in red rectangle)

Destination alpha
selecting blurred image

Blurred component of
final image

Sharp component
of final image

Final image showing
depth of field

F i g u r e 12.8 Depth of field effect.

S E C T I O N 1 2 . 9 High-Dynami c Range Imag ing 241

fragment program support to implement the multiway interpolation, the resolution of the
interpolation coefficient is limited by the bit-depth of the alpha buffer, and the fidelity is
limited by the number of blurry textures used (typically 2 or 3). Some simple variations
on the idea include using a fragment-program-controlled LOD bias value to alter which
texture level is selected on a per-fragment basis. The c(z) value can be computed in a
similar fashion and be used to control the LOD bias.

12.9 High-Dynamic Range Imaging

Conventional 8-bit per component RGB color representations can only represent two
orders of magnitude in luminance range. The human eye is capable of resolving image
detail spanning 4 to 5 orders of magnitude using local adaptation. The human eye, given
several minutes to adjust (for example, entering a dark room and waiting), can span
9 orders of magnitude (Ward, 2001). To generate images reproducing that range requires
solving two problems: enabling computations that can capture this much larger dynamic
range, and mapping a high-dynamic range image to a display device with a more limited
gamut.

12.9.1 Dynamic Range

One way to solve the dynamic range computation problem is to use single-precision
floating-point representations for RGB color components. This can solve the problem
at the cost of increased computational, storage, and bandwidth requirements. In the
programmable pipeline, vertex and fragment programs support floating-point processing
for all computations, although not necessarily with full IEEE-754 32-bit precision.2 While
supporting single-precision floating-point computation in the pipeline is unlikely to be an
issue for long, the associated storage and bandwidth requirements for 96-bit floating-
point RGB colors as textures and color buffers can be more of an issue. There are several,
more compact representations that can be used, trading off dynamic range and precision
for compactness. The two most popular representations are the “half-float” and “shared-
exponent” representations.

Half Float

The half-float representation uses a 16-bit floating representation with 5 bits of exponent,
10 bits of significand (mantissa), and a sign bit. Like the IEEE-754 floating-point formats,
normalized numbers have an implied or hidden most significant mantissa bit of 1, so the
mantissa is effectively 11 bits throughout most of the range. The range of numbers that
can be represented is roughly [2−16, 216] or about 10 orders of magnitude with 11 bits of
precision. This representation captures the necessary dynamic range while maintaining

2. Hardware implementations make various cost vs. accuracy vs. performance trade-offs and fragment
processing representations may be limited to 24-bit or even 16-bit floating point precision.

242 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

s

1

16-bit half-float representation

Exponent

5

8 8 8 8

Red

32-bit shared exponent representation

Green Blue Exponent

Significand

10

F i g u r e 12.9 Half-float and RGBE HDR representations.

good accuracy, at a cost of twice the storage and bandwidth of an 8-bit per-component
representation. This format is seeing moderate adoption as an external image represen-
tation and rapid adoption in graphics accelerators as a texture and color buffer format.

Shared Exponent

Shared exponent representations reduce the number of bits by sharing a single exponent
between all three of the RGB color components. The name RGBE is often used to describe
the format. A typical representation uses a shared 8-bit exponent with three 8-bit signifi-
cands for a total of 32 bits. Since the exponent is shared, the exponent from the component
with largest magnitude is chosen and the mantissas of the remaining two components are
scaled to match the exponent. This results in some loss of accuracy for the remaining two
components if they do not have similar magnitudes to the largest component.

The RGBE representation, using 8-bit for significands and exponent, is convenient
to process in an application since each element fits in a byte, but it is not an optimal
distribution of the available bits for color representation. The large exponent supports a
dynamic range of 76 orders of magnitude, which is much larger than necessary for color
representation; the 8-bit mantissa could use more bits to retain accuracy, particularly
since the least significant bits are truncated to force two of the components to match
the exponent. An example of an alternative distribution of bits might include a 5-bit
exponent, like the half-float representation, and a 9-bit significand (Figure 12.9).

The shared-exponent format does a good job of reducing the overall storage and
bandwidth requirements. However, the extra complexity in examining a set of 3 color
components, determining the exponent and adjusting the components makes the rep-
resentation more expensive to generate. Furthermore, to minimize visual artifacts from
truncating components the neighboring pixel values should also be examined. This extra
cost results in a trend to use the representation in hardware accelerators as a read-only
source format, for example, in texture maps, rather than a more general writable color
buffer format.

12.9.2 Tone Mapping

Once we can represent high-dynamic range (HDR) images, we are still left with the
problem of displaying them on low-dynamic range devices such as CRTs and LCD panels.

S E C T I O N 1 2 . 9 High-Dynami c Range Imag ing 243

One way to accomplish this is to mimic the human eye. The eye uses an adaptation process
to control the range of values that can be resolved at any given time. This amounts to
controlling the exposure to light, based on the incoming light intensity. This adaptation
process is analogous to the exposure controls on a camera in which the size of the lens
aperture and exposure times are modified to control the amount of light that passes to
the film or electronic sensor.

Note that low-dynamic range displays only support two orders of magnitude of
range, whereas the eye accommodates four to five orders before using adaptation. This
means that great care must be used in mapping the high-dynamic range values. The
default choice is to clamp the gamut range, for example, to the standard OpenGL [0, 1]
range, losing all of the high-intensity and low-intensity detail. The class of techniques for
mapping high-dynamic range to low-dynamic range is termed tone mapping; a specific
technique is often called a tone mapping operator. Other classes of algorithms include:

1. Uniformly scaling the image gamut to fit within the display gamut, for example, by
scaling about the average luminance of the image.

2. Scaling colors on a curve determined by image content, for example, using a global
histogram (Ward Larson et al., 1997).

3. Scaling colors locally based on nearby spatial content. In a photographic context,
this corresponds to dodging and burning to control the exposure of parts of a
negative during printing (Chui et al., 1993).

Luminance Scaling

The first mapping method involves scaling about some approximation of the neutral scene
luminance or key of the scene. The log-average luminance is a good approximation of
this and is defined as:

Lavg = exp

⎛⎝ 1
N

∑
x,y

log(δ + L(x, y))

⎞⎠
The δ value is a small bias included to allow log computations of pixels with zero lumi-
nance. The log-average luminance is computed by summing the log-luminance of the
pixel values of the image. This task can be approximated by sparsely sampling the image,
or operating on an appropriately resampled smaller version of the image. The latter can
be accomplished using texture mapping operations to reduce the image size to 64 × 64
before computing the sum of logs. If fragment programs are supported, the 64×64 image
can be converted to log-luminance directly, otherwise color lookup tables can be used
on the color values. The average of the 64 × 64 log-luminance values is also computed
using successive texture mapping operations to produce 16×16, 4×4, and 1×1 images,
finally computing the antilog of the 1 × 1 image.

244 C H A P T E R 12 Image P ro ce s s i ng Te chn iques

The log-average luminance is used to compute a per-pixel scale factor

Lscale(x, y) = a
Lavg

L(x, y)

where a is a value between [0, 1] and represents the key of the scene, typically about 0.18.
By adjusting the value of a, the linear scaling controls how the parts of the high-dynamic
range image are mapped to the display. The value of a roughly models the exposure
setting on a camera.

Curve Scaling

The uniform scaling operator can be converted to the non-linear operator (Reinhard,
2002)

Ld(x, y) = Lscale(x, y)
1 + Lscale(x, y)

which compresses high-luminace regions by 1
L while leaving low-luminace regions

untouched. It is applied as a scale factor to the color components of each image pixel.
It can be modified to allow high luminances to burn out:

Ld(x, y) =
Lscale(x, y)

(
1 + Lscale(x, y)

L2
white

)
1 + Lscale(x, y)

where Lwhite is the smallest luminance value to be mapped to white. These methods
preserve some detail in low-contrast areas while compressing the high luminances into
a displayable range. For very high-dynamic range scenes detail is lost, leading to a need
for a local tone reproduction operator that considers the range of luminance values in a
local neighborhood.

Local Scaling

Local scaling emulates the photographic techniques of dodging and burning with a
spatially varying operator of the form

Ld(x, y) = Lscale(x, y)
1 + V(x, y, s(x, y))

where V is the spatially varying function evaluated over the region s. Contrast is measured
at multiple scales to determine the size of the region. An example is taking the difference
between two images blurred with Gaussian filters. Additional details on spatially varying
operators can be found in Reinhard et al. (2002).

S E C T I O N 1 2 . 1 0 Summary 245

12.9.3 Modeling Adaptation

The adaption process of the human visual system can be simulated by varying the tone
operator over time. For example, as the scene changes in response to changes to the
viewer position one would normally compute a new average scene luminance value for
the new scene. To model the human adaptation process, a transition is made from the
current adaption level to the new scene average luminance. After a length of time in the
same position the current adaption level converges to the scene average luminance value.
A good choice for weighting functions is an exponential function.

12.10 Summary

This chapter describes a sampling of important image processing techniques that can
be implemented using OpenGL. The techniques include a range of point-based, region-
based, and geometric operations. Although it is a useful addition, the ARB imaging
subset is not required for most of the techniques described here. We also examine the
use of the programmable pipeline for image processing techniques and discuss some of
the strengths and weaknesses of this approach. Several of the algorithms described here
are used within other techniques described in later chapters. We expect that an increas-
ing number of image processing algorithms will become important components of other
rendering algorithms.

13
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Basic Transform

Techniques

OpenGL’s transformation pipeline is a powerful component for building rendering algo-
rithms; it provides a full 4×4 transformation and perspective division that can be applied
to both geometry and texture coordinates. This general transformation ability is very
powerful, but OpenGL also provides complete orthogonality between transform and ras-
terization state. Being able to pick and choose the values of both states makes it possible
to freely combine transformation and rasterization techniques.

This chapter describes a toolbox of basic techniques that use OpenGL’s transfor-
mation pipeline. Some of these techniques are used in many applications, others show
transform techniques that are important building blocks for advanced transformation
algorithms. This chapter also focuses on transform creation, providing methods for effi-
ciently building special transforms needed by many of the techniques described later.
These techniques are applicable for both the fixed-function pipeline and for vertex
programs. With vertex programs it may be possible to further optimize some of the
computations to match the characteristics of the algorithm, for example, using a subset
of a matrix.

13.1 Computing Inverse Transforms Efficiently

In general, when geometry is transformed by a 4×4 matrix, normals or other vectors
associated with that geometry have to be transformed by the inverse transpose of that

247

248 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

matrix. This is done to preserve angles between vectors and geometry (see Section 2.3
for details). Finding the inverse transpose of a general 4×4 matrix can be an expensive
computation, since it requires inverting a full 4×4 matrix. The general procedure is shown
below; a matrix M is inverted to M′, then transposed.⎛⎜⎜⎝

m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

⎞⎟⎟⎠ ⇒

⎛⎜⎜⎝
m′

11 m′
12 m′

13 m′
14

m′
21 m′

22 m′
23 m′

24
m′

31 m′
32 m′

33 m′
34

m′
41 m′

42 m′
43 m′

44

⎞⎟⎟⎠ ⇒

⎛⎜⎜⎝
m′

11 m′
21 m′

31 m′
41

m′
12 m′

22 m′
32 m′

42
m′

13 m′
23 m′

33 m′
43

m′
14 m′

24 m′
34 m′

44

⎞⎟⎟⎠
OpenGL performs this computation for the application as part of the transform

pipeline, which provides the functionality needed for basic lighting, texture coordinate
generation, and environment operations. There are times when an application may need
to construct more complex transforms not provided in the pipeline. Some techniques
require a special per-vertex vector, such as the bi-normal vector used in bump mapping
(Section 15.10) and anisotropic lighting (Section 15.9.3). Other algorithms, such as those
modeling curved reflectors (Section 17.1.3) subdivide surfaces based on the values of
adjacent normal or reflection vectors. In these, and many other algorithms, an efficient
way to compute vector transform matrices is needed.

Although finding the inverse of a general 4×4 matrix is expensive, many graph-
ics applications use only a small set of matrix types in the modelview matrix, most of
which are relatively easy to invert. A common approach, used in some OpenGL imple-
mentations, is to recognize the matrix type used in the modelview matrix (or tailor the
application to limit the modelview matrix to a given type), and apply an appropriate
shortcut. Matrix types can be identified by tracking the OpenGL commands used to cre-
ate them. This can be simple if glTranslate, glScale, and glRotate commands are
used. If glLoadMatrix or glMultMatrix are used, it’s still possible to rapidly check
the loaded matrix to see if it matches one of the common types. Once the type is found,
the corresponding inverse can be applied. Some of the more common matrix types and
inverse transpose shortcuts are described below.

An easy (and common) case arises when the transform matrix is composed of only
translates and rotates. A vector transformed by the inverse transpose of this type of matrix
is the same as the vector transformed by the original matrix, so no inverse transpose
operation is needed.

If uniform scale operations (a matrix M with elements m11 = m22 = m33 = s) are
also used in the transform, the length of the transformed vector changes. If the vector
length doesn’t matter, no inverse is needed. Otherwise, renormalization or rescaling
is required. Renormalization scales each vector to unit length. While renormalization
is computationally expensive, it may be required as part of the algorithm anyway (for
example, if unit normals are required and the input normals are not guaranteed to be
unit length). Rescaling applies an inverse scaling operation after the transform to undo its
scaling effect. Although it is less expensive than renormalization, it won’t produce unit
vectors unless the untransformed vectors were already unit length. Rescaling uses the

S E C T I O N 1 3 . 2 S te reo V i ew ing 249

T ab l e 13.1 Inverse Transpose of Upper 3×3 of Simple
Transforms

Transform Inverse-Transpose
translate (T−1)T T (discard elements)
rotate (R(θ)−1)T R(θ)
uniform scale (S−1)T 1

s I
composite ((ABC)−1)T (A−1)T(B−1)T (C−1)T

inverse of the transform’s scaling factor, creating a new matrix S−1 = 1
s I; the diagonal

element’s scale factor is inverted and used to scale the matrix.
Table 13.1 summarizes common shortcuts. However, it’s not always practical to

characterize the matrix and look up its corresponding inverse shortcut. If the modelview
transform is constructed of more than translates, rotates, and uniform scales, computing
the inverse transpose is necessary to obtain correct results. But it’s not always necessary
to find the full inverse transpose of the composited transform.

An inverse transpose of a composite matrix can be built incrementally. The elements
of the original transform are inverted and transposed individually. The resulting matrices
can then be composed, in their original order, to construct the inverse transpose of the
original sequence. In other words, given a composite matrix built from matrices A, B,
and C, ((ABC)−1)T is equal to (A−1)T (B−1)T (C−1)T . Since these matrices are transposed,
the order of operations doesn’t change. Many basic transforms, such as pure translates,
rotates, and scales, have trivial special case inversions, as shown previously. The effort of
taking the inverse transpose individually, then multiplying, can be much less in these cases.

If the transform is built from more complex pieces, such as arbitrary 4×4 matrices,
then using an efficient matrix inversion algorithm may become necessary. Even in this
case, trimming down the matrix to 3×3 (all that is needed for transforming vectors)
will help.

13.2 Stereo Viewing

Stereo viewing is used to enhance user immersion in a 3D scene. Two views of the scene
are created, one for the left eye, one for the right. To display stereo images, a special
display configuration is used, so the viewer’s eyes see different images. Objects in the
scene appear to be at a specific distance from the viewer based on differences in their
positions in the left and right eye views. When done properly, the positions of objects in
the scene appear more realistic, and the image takes on a solid feeling of “space”.

OpenGL natively supports stereo viewing by providing left and right versions of the
front and back buffers. In normal, non-stereo viewing, the default buffer is the left one for
both front and back. When animating stereo, both the left and right back buffers are used,

250 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

Fusion distance

Angle

IOD

F i g u r e 13.1 Stereo viewing geometry.

and both must be updated each frame. Since OpenGL is window system independent,
there are no interfaces in OpenGL for stereo glasses or other stereo viewing devices. This
functionality is part of the OpenGL / Window system interface library; the extent and
details of this support are implementation-dependent and varies widely.

A stereo view requires a detailed understanding of viewer/scene relationship
(Figure 13.1). In the real world, a viewer sees two separate views of the scene, one
for each eye. The computer graphics approach is to create a transform to represent each
eye’s view, and change other parameters for each view as needed by the stereo display
hardware. Since a real viewer will shift view direction to focus on an object of interest,
an OpenGL application does the same. Ideally, the eye transforms are updated based on
the object the user of the stereo application is looking at, but this requires some method
of tracking the viewer’s focus of attention.

A less ambitious technique uses the viewing direction instead, and stereo parameters
that describe the position of the left and right eyes. The model requires that both eye views
are aimed at a single point along the line of sight; another stereo parameter is added to
represent the distance to that point from the eye point. This parameter is called the fusion
distance (FD). When the two scenes are rendered together to form a stereo image, objects
at this distance will appear to be embedded in the front surface of the display (“in the
glass”). Objects farther than the fusion distance from the viewer will appear to be “behind
the glass” while objects in front will appear to float in front of the display. The latter
effect can be hard to maintain, since objects visible to the viewer beyond the edge of the
display tend to destroy the illusion.

To compute the left and right eye views, the scene is rendered twice, each with the
proper eye transform. These transforms are calculated so that the camera position, view,
direction and up direction correspond to the view from each of the viewer’s two eyes.
The normal viewer parameters are augmented by additional information describing the
position of the viewer’s eyes, usually relative to the traditional OpenGL eye point. The
distance separating the two eyes is called the interocular distance or IOD. The IOD is
chosen to give the proper spacing of the viewer’s eyes relative to the scene being viewed.

S E C T I O N 1 3 . 2 S te reo V i ew ing 251

The IOD value establishes the size of the imaginary viewer relative to the objects in the
scene. This distance should be correlated with the degree of perspective distortion present
in the scene in order to produce a realistic effect.

To formalize the position and direction of views, consider the relationship between
the view direction, the view up vector, and the vector separating the two eye views.
Assume that the view direction vector, the eye position vector (a line connecting both eye
positions), and the up vectors are all perpendicular to each other. The fusion distance is
measured along the view direction. The position of the viewer can be defined to be at one
of the eye points, or halfway between them. The latter is used in this description. In either
case, the left and right eye locations can be defined relative to it.

Using the canonical OpenGL view position, the viewer position is at the origin in eye
space. The fusion distance is measured along the negative z-axis (as are the near and far
clipping planes). Assuming the viewer position is halfway between the eye positions, and
the up vector is parallel to the positive y-axis, the two viewpoints are on either side of
the origin along the x-axis at (−IOD/2, 0, 0) and (IOD/2, 0, 0).

Given the spatial relationships defined here, the transformations needed for correct
stereo viewing involve simple translations and off-axis projections (Deering, 1992). The
stereo viewing transforms are the last ones applied to the normal viewing transforms.
The goal is to alter the transforms so as to shift the viewpoint from the normal viewer
position to each eye. A simple translation isn’t adequate, however. The transform must
also aim each to point at the spot defined by view vector and the fusion distance.

The stereo eye transformations can be created using the gluLookAt command for
each eye view. The gluLookAt command takes three sets of three-component param-
eters; an eye position, a center of attention, and an up vector. For each eye view, the
gluLookAt function receives the eye position for the current eye (±IOD/2, 0, 0), an up
vector (typically 0, 1, 0), and the center of attention position (0, 0, FD). The center of
attention position should be the same for both eye views. gluLookAt creates a com-
posite transform that rotates the scene to orient the vector between the eye position and
center of view parallel to the z-axis, then translates the eye position to the origin.

This method is slightly inaccurate, since the rotation/translation combination moves
the fusion distance away from the viewer slightly. A shear/translation combination is
more correct, since it takes into account differences between a physical stereo view and
the properties of a perspective transform. The shear orients the vector between the eye
and the center of attention to be parallel to the z-axis. The shear should subtract from x
values when the x coordinate of the eye is negative, and add to the x values when the x
component of the eye is positive. More precisely, it needs to shear x± IOD

2 when z equals

the −FD. The equation is x ±
(

IOD
2

) (z
FD

)
. Converting this into a 4×4 matrix becomes:⎛⎜⎜⎜⎜⎝

1 0
IOD
2FD

0

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠

252 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

Compositing a transform to move the eye to the origin completes the transform.
Note that this is only one way to compute stereo transforms; there are other popular
approaches in the literature.

13.3 Depth of Field

The optical equivalent to the standard viewing transforms is a perfect pinhole camera:
everything visible is in focus, regardless of how close or how far the objects are from the
viewer. To increase realism, a scene can be rendered to vary focus as a function of viewer
distance, more accurately simulating a camera with a fixed focal length. There is a single
distance from the eye where objects are in perfect focus. Objects farther and nearer to
the viewer become increasingly fuzzy.

The depth-of-field problem can be seen as an extension of stereo viewing. In both
cases, there are multiple viewpoints, with all views converging at a fixed distance from
the viewer on the direction of view vector. Instead of two eye views, the depth of field
technique creates a large number of viewpoints that are scattered in a plane perpendicular
to the view direction. The images generated from each view rendered are then blended
together.

Rendering from these viewpoints generates images which show objects in front of
and behind the fusion distance shifted from their normal positions. These shifts vary
depending on how far the viewpoint is shifted from the eye position. Like the eye views in
stereo viewing, all viewpoints are oriented so their view directions are aimed at a single
point located on the original direction of view. As a result, the farther an object is from
this aim point, the more the object is shifted from its original position.

Blending these images together combines each set of shifted objects, creating a single
blurry one. The closer an object is to the aim point (focal) distance, the less it shifts,
and the sharper it appears. The field of view can be expanded by reducing the average
amount of viewpoint shift for a given fusion distance. If viewpoints are closer to the
original eye point, objects have to be farther from the fusion distance in order to be
shifted significantly.

Choosing a set of viewpoints and blending them together can be seen as modeling a
physical lens — blending together pinhole views sampled over the lens’ area. Real lenses
have a non-zero area, which causes only objects within a limited range of distances to be
in perfect focus. Objects closer or farther from the camera focal length are progressively
more blurred.

To create depth of field blurring, both the perspective and modelview transforms are
changed together to create an offset eye point. A shearing transform applied along the
direction of view (-z-axis) is combined into the perspective transform, while a translate is
added to the modelview. A shear is chosen so that the changes to the transformed objects
are strictly a function of distance from the viewer (the blurriness shouldn’t change based
on the perpendicular distance from the view direction), and to ensure that distance of the
objects from the viewer doesn’t change.

S E C T I O N 1 3 . 3 Dep th o f F i e l d 253

Normal (non-jittered) view

Jittered to point A

View from eye

Jittered to point B

A

B

A

B

A

B

View from eye

F i g u r e 13.2 Jittered eye points.

These transform changes can be implemented easily using glFrustum to change the
perspective transform, and glTranslate to change the modelview matrix. Given jitter
variables xoff and yoff , and a focal length focus, the parameters for the commands are
given in Table 13.2.

The jitter translation should be the last transform applied in the current modelview
sequence, so glTranslate should be called first in the modelview transform code. The
final issue to consider is the the number of jitter positions to use, and how to choose
those positions. These choices are similar to many other jittering problems. A pattern
of irregular positions causes sampling artifacts to show up as noise, rather than more
noticeable image patterns. The jitter values shown in Section 10.1 provide good results.

The number of jittered images will be limited to the color resolution available for
blending. See Section 11.4.1 for a discussion of blending artifacts and how to calculate
blend error. A deep color buffer or accumulation buffer allows more images to be blended
together while minimizing blending errors. If the color resolution allows it, and there is
time available in the frame to render more images, more samples results in smoother

254 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

T ab l e 13.2 Jittering Eye Position to Produce Depth of Field

Command Parameter Value
glFrustum left left− (xoff)(near)

focus

right right− (xoff)(near)
focus

top top− (yoff)(near)
focus

bottom bottom− (yoff)(near)
focus

near near

far far

glTranslate x −xoff

y −yoff

blurring of out of focus objects. Extra samples may be necessary if there are objects
close to the viewer and far from the fusion point. Very blurry large objects require more
samples in order to hide the fact that they are made of multiple objects.

13.4 Image Tiling

When rendering a scene in OpenGL, the maximum resolution of the image is normally
limited to the workstation screen size. For interactive applications screen resolution is usu-
ally sufficient, but there may be times when a higher resolution image is needed. Examples
include color printing applications and computer graphics images being recorded to film.
In these cases, higher resolution images can be divided into tiles that fit within the frame-
buffer. The image is rendered tile by tile, with the results saved into off-screen memory
or written to a file. The image can then be sent to a printer or film recorder, or undergo
further processing, such as using down-sampling to produce an antialiased image.

Rendering a large image tile by tile requires repositioning the image to make different
tiles visible in the framebuffer. A straightforward way to do this is to manipulate the
parameters to glFrustum. The scene can be rendered repeatedly, one tile at a time, by
changing the left, right, bottom, and top parameters of glFrustum for each tile.

Computing the argument values is straightforward. Divide the original width and
height range by the number of tiles horizontally and vertically, and use those values to
parametrically find the left, right, top, and bottom values for each tile.

tile(i, j); i : 0 → nTileshoriz, j : 0 → nTilesvert

S E C T I O N 1 3 . 4 Image T i l i ng 255

righttiled(i) = leftorig + rightorig − leftorig

nTileshoriz
∗ (i + 1)

lefttiled(i) = leftorig + rightorig − leftorig

nTileshoriz
∗ i

toptiled(j) = bottomorig + toporig − bottomorig

nTilesvert
∗ (j + 1)

bottomtiled(j) = bottomorig + toporig − bottomorig

nTilesvert
∗ j

In these equations each value of i and j corresponds to a tile in the scene. If the original
scene is divided into nTileshoriz by nTilesvert tiles, then iterating through the combinations
of i and j generate the left, right, top, and bottom values for glFrustum to create the
tile. Since glFrustum has a shearing component in the matrix, the tiles stitch together
seamlessly to form the scene, avoiding artifacts that result from changing the viewpoint.
This technique must be modified if gluPerspective or glOrtho is used instead of
glFrustum.

There is a better approach than changing the perspective transform, however. Instead
of modifying the transform command directly, apply tiling transforms after the perspec-
tive one. A subregion of normalized device coordinate (NDC) space corresponding to
the tile of interest can be translated and scaled to fill the entire NDC cube. Work-
ing in NDC space instead of eye space makes finding the tiling transforms easier, and
is independent of the type of projection transform. Figure 13.3 summarizes the two
approaches.

For the transform operations to take place after the projection transform, the
OpenGL commands must happen before it. A typical sequence of operations is:

Transform without tiling Tiling with perspective tranforms

Tiling with post-perspective transforms

Modelview Perspective

Modelview Perspective

Modelview Perspective
transforms

NDC
transforms

F i g u r e 13.3 Image tiling transforms.

256 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
/* scale is applied last */
glScalef(xScale, yScale);
glTranslatef(xOffset, yOffset, 0.f);
/* projection occurs before translate and scale */
setProjectionTransform();

The scale factors xScale and yScale scale the tile of interest to fill the the entire scene:

xScale = sceneWidth
tileWidth

yScale = sceneHeight
tileHeight

The offsets xOffset and yOffset are used to offset the tile so it is centered about the
z-axis. In this example, the tiles are specified by their lower left corner relative to their
position in the scene, but the translation needs to move the center of the tile into the
origin of the x-y plane in NDC space:

xOffset = −2∗left
sceneWidth

+
(

1− 1
nTileshoriz

)
yOffset = −2∗bottom

sceneHeight
+
(

1− 1
nTilesvert

)
Like the previous example, nTileshoriz is the number of tiles that span the scene

horizontally, while nTilesvert is the number of tiles that span the scene vertically. Some
care should be taken when computing left, bottom, tileWidth, and tileHeight values.
It is important that each tile is abutted properly with its neighbors. This can be ensured by
guarding against round-off errors. The following code shows an example of this approach.
Note that parameter values are computed so that left+tileWidth is guaranteed to be equal
to right and equal to left of the next tile over, even if tileWidth has a fractional component.
If the frustum technique is used, similar precautions should be taken with the left, right,
bottom, and top parameters to glFrustum.

/* tileWidth and tileHeight are GLfloats */
GLint bottom, top;
GLint left, right;
GLint width, height;
for(j = 0; j < num_vertical_tiles; j++) {

for(i = 0; i < num_horizontal_tiles; i++) {
left = i * tileWidth;
right = (i + 1) * tileWidth;
bottom = j * tileHeight;
top = (j + 1) * tileHeight;
width = right - left;
height = top - bottom;
/* compute xScale, yScale, xOffset, yOffset */

}
}

S E C T I O N 1 3 . 5 B i l l boa rd ing Geomet ry 257

It is worth noting that primitives with sizes that are specified in object space dimen-
sions automatically scale in size. If the scene contains primitives with sizes that are
implicitly defined in window space dimensions, such as point sizes, line widths, bitmap
sizes and pixel-rectangle, dimensions remain the same in the tiled image. An application
must do extra work to scale the window space dimensions for these primitives when
tiling.

13.5 Billboarding Geometry

A common shortcut used to reduce the amount of geometry needed to render a scene is to
billboard the objects in the scene that have one or more axes of symmetry. Billboarding
is the technique of orienting a representation of a symmetrical object toward the viewer.
The geometry can be simplified to approximate a single view of an object, with that view
always facing the viewer.

This technique works if the object being billboarded has an appearance that doesn’t
change significantly around its axis of symmetry. It is also helpful if the objects being
billboarded are not a central item in the scene. The principle underlying billboarding is
that complexity of an object representation is reduced in a way that is not noticeable.
If successful, this approach can reduce the rendering time while maintaining image quality.
Good examples of billboarded objects are trees, which have cylindrical symmetry, and
clouds which have spherical symmetry. Billboarding can also be a useful technique on
its own. For example, text used to annotate objects in a 3D scene can be billboarded to
ensure that the text always faces the viewer and is legible.

While simplifying the geometry of an object being billboarded, it is desirable to
retain its (possibly complex) outline in order to maintain a realistic result. One way to
do this is to start with simple geometry such as a quadrilateral, then apply a texture
containing colors that capture the surface detail and alpha components that match the
object’s outline. If the texture is rendered with alpha testing or alpha blending enabled, the
pattern of alpha values in the texture can control which parts of the underlying geometry
are rendered. The alpha texture acts as a per-pixel template, making it possible to cut out
complex outlines from simple geometry. For additional details regarding using alpha to
trim outlines see Section 11.9.2.

The billboarding technique is not limited to simple texture-mapped geometry though.
Billboarding can also be used to draw a tessellated hemisphere, giving the illusion that a
full sphere is being drawn. A similar result can be accomplished using backface culling to
eliminate rasterization of the back of the sphere, but the vertices for the entire sphere are
processed first. Using billboarding, only half of the sphere is transformed and rendered;
however, the correct orienting transform must be computed for each hemisphere.

The billboard algorithm uses the object’s modeling transform (modelview transform)
to position the geometry, but uses a second transform to hold the object’s orientation fixed

258 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

with respect to the viewer. The geometry is always face-on to the viewer, presenting a
complex image and outline with its surface texture. Typically, the billboard transform
consists of a rotation concatenated to the object’s modelview transform, reorienting it.
Using a tree billboard as an example, an object with roughly cylindrical symmetry, an
axial rotation is used to rotate the simple geometry supporting the tree texture, usually a
quadrilateral, about the vertical axis running parallel to the tree trunk.

Assume that the billboard geometry is modeled so that it is already oriented properly
with respect to the view direction. The goal is to find a matrix R that will rotate the
geometry back into its original orientation after it is placed in the scene by the modelview
transform M. This can be done in two steps. Start with the eye vector, representing
the direction of view, and apply the inverse of M to it. This will transform the viewing
direction vector into object space. Next, find the angle the transformed vector makes
relative to canonical view direction in eye space (usually the negative z-axis) and construct
a transform that will rotate the angle back to zero, putting the transformed vector into
alignment with the view vector.

If the viewer is looking down the negative z-axis with an up vector aligned with
the positive y-axis, the view vector is the negative z-axis. The angle of rotation can be
determined by computing the vector after being transformed by the modelview matrix M

Veye = M−1

⎛⎜⎜⎜⎝
0

0

−1

0

⎞⎟⎟⎟⎠
Applying the correction rotation means finding the angle θ needed to rotate the trans-
formed vector (and the corresponding geometry) into alignment with the direction of
view. This can be done by finding the dot product between the transformed vector and
the two major axes perpendicular to the axis of rotation; in this case the x and z axes.

cos θ = Veye · Vfront

sin θ = Veye · Vright

where

Vfront = (0, 0, 1)

Vright = (1, 0, 0)

The sine and cosine values are used to construct a rotation matrix R representing
this rotation about the y-axis (Vup). Concatenate this rotation matrix with the modelview

S E C T I O N 1 3 . 5 B i l l boa rd ing Geomet ry 259

matrix to make a combined matrix MR. This combined matrix is the transform applied
to the billboard geometry.

To handle the more general case of an arbitrary billboard rotation axis, compute
an intermediate alignment rotation A to rotate the billboard axis into the Vup vector.
This algorithm uses the OpenGL glRotate command to apply a rotation about an
arbitrary axis as well as an angle. This transform rotates the billboard axis into the
vertical axis in eye space. The rotated geometry can then be rotated again about the
vertical axis to face the viewer. With this additional rotation,

axis = Vup × Vbillboard

cos θ = Vup · Vbillboard

sin θ = ‖axis‖

the complete matrix transformation is MAR. Note that these calculations assume that
the projection matrix contains no rotational component.

Billboarding is not limited to objects that are cylindrically symmetric. It is also useful
to billboard spherically symmetric objects such as smoke, clouds, and bushes. Spher-
ical symmetry requires a billboard to rotate around two axes (up/down and left/right),
whereas cylindrical behavior only requires rotation around a single axis (usually up/down)
(Figure 13.4). Although it is more general, spherically symmetric billboarding is not suited
for all objects; trees, for example, should not bend backward to face a viewer whose
altitude increases.

Spherically symmetric objects are rotated about a point to face the viewer. This adds
another degree of freedom to the rotation computation. Adding an additional alignment
constraint can resolve this degree of freedom, such as one that keeps the object oriented
consistently (e.g., constraining the object to remain upright).

This type of constraint helps maintain scene realism. Constraining the billboard
to maintain its orientation in object space ensures that the orientation of a plume of
smoke doesn’t change relative to the other objects in a scene from frame to frame.
A constraint can also be enforced in eye coordinates. An eye coordinate constraint can
maintain alignment of an object relative to the screen (e.g., keeping text annotations
aligned horizontally).

The computations for a spherically symmetric billboard are a minor extension of
those used for the arbitrarily aligned cylindrical one (Figure 13.5). There is still a billboard
axis, as there was in the cylindrical case, but now that axis is rotated to vertical alignment
before it is used as an axis for the second rotation. An alignment transformation, A,
rotates about a vector perpendicular to the billboard’s transformed alignment axis and
the up direction. The up direction is either transformed by the modelview matrix, or left
untransformed, depending on whether eye-space or object-space alignment is required.

Usually the billboard axis is modeled to be parallel with a major axis in the untrans-
formed geometry. If this is the case, A’s axis of rotation is computed by taking the cross
product of the billboard axis and the up vector. In the more general case, if the billboard

260 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

x

y

z

F i g u r e 13.4 Billboard with cylindrical symmetry.

First rotation aligns billboard
with eye space vertical; in general

not aligned with rotation axis

Second rotation rotates geometry
around vertical to face viewer

Completed rotation

F i g u r e 13.5 Transforming a billboard with spherical symmetry.

S E C T I O N 1 3 . 6 Tex tu re Coo rd ina te v s . Geomet r i c T r ans fo rma t i ons 261

axis is arbitrary, the transformed billboard axis must be processed before use in the cross
product. Project the billboard axis to remove any component parallel to the transformed
eye vector, as shown in the following equation.

The sine and cosine of the angle of rotation are computed like they were in the
cylindrical case. Cosine is derived from the dot product; sine from the length of the cross
product.

A is computed as:

axis = Vup × Valignment

cos θ = Vup · Valignment

sin θ = ‖axis‖

where Valignment is the billboard alignment axis with the component in the direction of
the eye direction vector removed:

Valignment = Vbillboard − (Veye · Vbillboard)Veye

Rotation by the A matrix doesn’t change the calculations needed to rotate about
the now vertical axis. This means the left/right rotation about the up vector can still
be computed from the original modelview transform in exactly the same way as a basic
cylindrical billboard.

To compute the A and R matrices, it is necessary to use elements of the geome-
try’s modelview transform. Retrieving transformation matrices using glGet introduces
a large performance penalty on most OpenGL implementations and should be avoided.
The application should either read the transformation once per frame, or shadow the
current modelview transform to avoid reading it back from OpenGL altogether. For-
tunately, it is fairly simple to duplicate the standard OpenGL transform commands in
software and provide some simple vector and matrix operations. Matrix equivalents
for glTranslate, glRotate, and glScale operations are described in Appendix B.
Computing the inverse for each of these three operations is trivial; see Section 13.1 for
details.

13.6 Texture Coordinate vs. Geometric

Transformations

The texture coordinate pipeline has a significant amount of transformation power. There
is a single transformation matrix (called the texture transformation matrix), but it is a full
4×4 matrix with perspective divide functionality. Even if the target is a 2D texture, the
perspective divide capability makes the fourth texture coordinate, q, a useful tool, while

262 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

a 3D texture target can make use of all four coordinates. The texture transform pipeline
has nearly the same transformation capabilities as the geometry pipeline, only lacking
the convenience of two independent transform matrices and an independent viewport
transform.

The texture coordinate path has an additional benefit, automatic texture coordi-
nate generation, which allows an application to establish a linear mapping between
vertex coordinates in object or eye space and texture coordinates. The environment map-
ping functionality is even more powerful, allowing mappings between vertex normals or
reflection vectors and texture coordinates.

Geometric transforms are applied in a straightforward way to texture coordi-
nates; a texture coordinate transform can be assembled and computed in the same
way it is done in the geometry pipeline. Convenience functions such as glFrustum,
glOrtho, and gluLookAt, are available, as well as the basic matrix commands such
as glLoadMatrix. Since there is only one matrix to work with, some understanding of
matrix composition is necessary to produce the same effects the modelview and projection
matrices do in the geometry pipeline. It’s also important to remember that NDC space,
the result of these two transformations, ranges from −1 to 1 in three dimensions, while
texture coordinates range from 0 to 1. This usually implies that a scale and bias term
must be added to texture transforms to ensure the resulting texture coordinates map to
the texture map.

To apply a geometric transform into texture coordinates, the transformations for
texture coordinates are applied in the same order as they are in the vertex coordinate
pipeline: modelview, projection, and scale and bias (to convert NDC to texture space).
A summary of the steps to build a typical texture transformation using geometry pipeline
transforms is as follows:

1. Select the texture matrix: glMatrixMode(GL_TEXTURE).

2. Load the identity matrix: glLoadIdentity().

3. Load the bias: glTranslatef(.5f, .5f, 0.f).

4. Load the scale: glScalef(.5f, .5f, 1.f).

5. Set the perspective transform: glFrustum(...).

6. Set the modelview transform: gluLookAt(...).

With the texture transform matrix set, the last step is to choose the values for the
input texture coordinates. As mentioned previously, it’s possible to map certain vertex
attributes into texture coordinates. The vertex position, normal, or reflection vector
(see Section 5.4), is transformed, then used as the vertex’s texture coordinate. This
functionality, called texture generation (or texgen), is a branch point for creating tex-
ture coordinates. Texture coordinate generation can take place in object or eye space.
After branching, the texture coordinates and the vertex attributes that spawned them are
processed by the remainder of the vertex pipeline.

S E C T I O N 1 3 . 6 Tex tu re Coo rd ina te v s . Geomet r i c T r ans fo rma t i ons 263

The following sections illustrate some texgen/texture coordinate transform tech-
niques. These are useful building block techniques as well as useful solutions to some
common texture coordinate problems.

13.6.1 Direct Vertex to Texture Coordinate Mapping

If the projection and modelview parts of the matrix are defined in terms of eye space
(where the entire scene is assembled), a basic texture coordinate generation method is to
create a one-to-one mapping between eye-space and texture space. The s, t, and r values
at a vertex must be the same as the x, y, and z values of the vertex in eye space. This is
done by enabling eye-linear texture generation and setting the eye planes to a one-to-one
mapping:

Seye = (1, 0, 0, 0)

Teye = (0, 1, 0, 0)

Reye = (0, 0, 1, 0)

Qeye = (0, 0, 0, 1)

Instead of mapping to eye space, an object-space mapping can be used. This is useful if
the texture coordinates must be created before any geometric transformations have been
applied.

When everything is configured properly, texture coordinates matching the x, y, and
z values transformed by the modelview matrix are generated, then transformed by the
texture matrix. This method is a good starting point for techniques such as projective
textures; see Section 14.9 for details.

13.6.2 Overlaying an Entire Scene with a Texture

A useful technique is overlaying a texture map directly onto a scene rendered with a
perspective transform. This mapping establishes a fixed relationship between texels in
the texture map and every pixel on the viewport; the lower left corner in the scene
corresponds to the lower left corner of the texture map; the same holds true for the upper
right corner. The relative size of the pixels and texels depends on the relative resolutions
of the window and the texture map. If the texture map has the same resolution as the
window, the texel to pixel relationship is one to one.

When drawing a perspective view, the near clipping plane maps to the viewport in
the framebuffer. To overlay a texture, a texture transformation must be configured so
that the near clipping plane maps directly to the [0, 1] texture map range. That is, find a
transform that maps the x, y, and z values to the appropriate s and t values. As mentioned
previously, it is straightforward to map NDC space to texture space. All coordinates in

264 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

NDC space range from [−1, 1] and texture coordinates range from [0, 1]. Given a texgen
function that maps x, y NDC values into s, t texture coordinate values, all that is required
is to add a scale and translate into the texture matrix. The NDC-space z values are unused
since they do not affect the x, y position on the screen.

1. Use texgen to map from NDC space to texture coordinates.

2. Set up translate and scale transforms in the texture matrix to map from −1 to 1 to
0 to 1.

Unfortunately, OpenGL doesn’t provide texgen function to map vertex coordinates
to NDC space. The closest available is eye-space texgen. Translating from eye space to
NDC space can be done using an additional transform in the texture transformation
pipeline, emulating the remainder of the vertex transformation pipeline. This is done by
concatenating the projection transform, which maps from eye space to NDC space in
the geometry transform pipeline. This transform is then composited with the translate
and scale transforms needed to convert from NDC to texture coordinates, ordering the
transforms such that the projection matrix transform is applied to the texture coordinates
first. Summing up the steps in order results in the following:

1. Configure texgen to generate texture coordinates from eye-space geometry.

2. Set the texture transform matrix to translate and scale the range −1 to 1 to 0 to 1.

3. Concatenate the contents of the projection matrix onto the texture transform
matrix.

13.6.3 Overlaying a Scene with an Independent

Texture Project ion

The previous technique can be seen as a simplified version of the more general problem;
how to map objects as seen from one viewpoint to a full scene texture but using a different
viewpoint to render the objects. To accomplish this, texture coordinates need to be gen-
erated from vertices earlier in the geometry pipeline: texgen is applied in untransformed
object space. The x, y, z positions are converted into s, t, r values before any transforms
are applied; the texture coordinates can then be transformed completely separately from
the geometric coordinates. Since texgen is happening earlier, mapping the texture coor-
dinates to the near clip plane, as described previously, requires transforming the texture
coordinates with a modelview and projection transform (including a perspective divide)
to go from object space all the way to NDC space, followed by the scale and bias necessary
to get to texture space.

Doing the extra transform work in the texture matrix provides extra flexibility: the
texture coordinates generated from the vertices can be transformed with one set of mod-
elview (and perspective) transforms to create one view, while the original geometry can
be transformed using a completely separate view.

S E C T I O N 1 3 . 7 I n t e rpo l a t i ng Ve r t e x Componen t s 265

To create the proper texture transformation matrix, both the modelview and projec-
tion matrices are concatenated with the scale and bias transforms. Since the modelview
matrix should be applied first, it should be multiplied into the transform last.

1. Configure texgen to map to texture coordinates from eye-space geometry.

2. Set the texture transform matrix to translate and scale the range −1 to 1 to 0 to 1.

3. Concatenate the contents of the projection matrix with the texture transform
matrix.

4. Concatenate a (possibly separate) modelview matrix with the texture transform
matrix.

When using the geometry pipeline’s transform sequence from a modelview or per-
spective transform to build a transform matrix, be sure to strip any glLoadIdentity
commands from projection and modelview commands. This is required since all the
transforms are being combined into a single matrix. This transform technique is a key
component to techniques such as shadow mapping, a texture-based method of creating
inter-object shadows. This technique is covered in Section 17.4.3.

13.7 Interpolating Vertex Components through a

Perspective Transformation

The rasterization process interpolates vertex attributes in window space and sometimes
it’s useful to perform similar computations within the application. Being able to do so
makes it possible to efficiently calculate vertex attributes as a function of pixel position.
For example, these values can be used to tessellate geometry as a function of screen cov-
erage. Differences in texture coordinates between adjacent pixels can be used to compute
LOD and texture coordinate derivatives

(
∂u
∂x , ∂u

∂y , ∂v
∂x , ∂v

∂y

)
as a function of screen position.

Techniques that require this functionality include detail textures (Section 14.13.2), tex-
ture sharpening (Section 14.14), and using prefiltered textures to do anisotropic texturing
(Section 14.7).

Interpolating a vertex attribute to an arbitrary location in window space is a two-
step process. First the vertex coordinates to be interpolated are transformed to window
coordinates. Then the attributes of interest are interpolated to the desired pixel location.
Since the transform involves a perspective divide, the relationship between object and
window coordinates isn’t linear.

13.7.1 Transforming Vert ices in the Applicat ion

Finding the transformed values of the vertex coordinates can be done using feedback
mode, but this path is slow on most OpenGL implementations. Feedback also doesn’t

266 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

provide all the information that will be needed to compute vertex attributes, such as
texture coordinate values, efficiently. Instead an application can transform and (option-
ally) clip vertices using the proper values of the modelview, projection, and viewport
transforms.

The current modelview and perspective transforms can be shadowed in the applica-
tion, so they don’t have to be queried from OpenGL (which can be slow). The viewport
transformation can be computed from the current values of the glViewport command’s
parameters xo, yo, width, and height. The transformation equations for converting xndc
and yndc from NDC space into window space is:

xwin =
(

width
2

)
xndc + xo

ywin =
(

height
2

)
yndc + yo

zwin =
(

f − n
2

)
zndc +

(
n + f

2

)

where n and f are near and far depth range values; the default values are 0 and 1,
respectively. If only texture values are being computed, the equation for computing zwin

is not needed. The equations can be further simplified for texture coordinates since the
viewport origin doesn’t affect these values either; all that matters is the size ratio between
texels and pixels:

xwin =
(

width
2

)
xndc

ywin =
(

height
2

)
yndc

(13.1)

13.7.2 Interpolat ing Vertex Components

Finding vertex locations in screen space solves only half of the problem. Since the vertex
coordinates undergo a perspective divide as they are transformed to window space, the
relationship between object or eye space and window space is non-linear. Finding the
values of a vertex attribute, such as a texture coordinate, at a given pixel takes a special
approach. It is not accurate to simply transform the vertex coordinates to window space,
then use their locations on the screen to linearly interpolate attributes of interest to a
given pixel.

In order to interpolate attributes on the far side of the perspective divide accu-
rately, the interpolation must be done hyperbolically, taking interpolated w values into
account. Blinn (1992) describes an efficient interpolation and transformation method.
We’ll present the results here within the context of OpenGL.

S E C T I O N 1 3 . 7 I n t e rpo l a t i ng Ve r t e x Componen t s 267

To interpolate a vertex attribute hyperbolically, every attribute of interest must be
scaled before interpolation. The attributes must be divided by the transformed w attribute
of the vertex. This w value, which we’ll call w′, has had all of its geometry transforms
applied, but hasn’t been modified by a perspective divide yet. Each attribute in the vertex
to be interpolated is divided by w′. The value of 1/w′ is also computed and stored for
each vertex. To interpolate attributes, the vertex’s scaled attributes and its 1/w′ are all
interpolated independently.

If the interpolation needs to be done to a particular location in window space, each
vertex’s x and y values are transformed and perspective divided to transform into window
space first. The relationship between the desired pixel position and the vertex’s xwin and
ywin values are used to compute the correct interpolation parameters.

Once the vertex attributes are interpolated, they are divided by the interpolated value
of 1/w′, yielding the correct attribute values at that window space location.

13.7.3 Computing LOD

As an example, consider finding an LOD value for a particular location on a triangle in
object space. An LOD value measures the size ratio between texel and pixel at a given
location. First, each vertex’s transformed texture coordinates (s and t) are divided by
the vertex coordinates’ post-transform w′ value. The s/w′, t/w′, and the 1/w′ values are
computed at the triangle vertices. All three attributes are interpolated to the location of
interest. The interpolated s/w′ and t/w′ values (s̃, t̃) are divided by the interpolated 1/w′
value (1̃), which produces the proper s and t values.

To find the LOD at window-space location, the texture coordinate derivatives must
be computed. This means finding ∂s/∂x, ∂t/∂x, ∂s/∂y, and ∂t/∂y in window space. These
derivatives can be approximated using divided differences. One method of doing this is
to find the s and t values one pixel step away in the x and y directions in window space,
then compute the differences. Finding these values requires computing new interpola-
tion parameters for window space positions. This is done by computing the xwin and
ywin values for the vertices of the triangle, then using the xwin and ywin at the locations
of interest to compute barycentric interpolation parameters. These new interpolation
parameters are used to hyperbolically interpolate s and t coordinates for each point and
then to compute the differences.

Using s and t values directly won’t produce usable texture derivatives. To compute
them, texture coordinates s and t must be converted to texel coordinates u and v. This is
done by scaling s and t by the width and height of the texture map. With these values in
place, the differences in u and v relative to xwin and ywin will reflect the size relationship
between pixels and texels. To compute the LOD, the differences must be combined to
provide a single result. An accurate way to do this is by applying the formula:

ρ = max

⎧⎨⎩
√(

∂u
∂x

)2

+
(

∂v
∂x

)2

,

√(
∂u
∂y

)2

+
(

∂v
∂y

)2
⎫⎬⎭ (13.2)

268 C H A P T E R 13 Bas i c T r ans fo rm Techn iques

Other methods that are less accurate but don’t require as much computation can also
be used (and may be used in the OpenGL implementation). These methods include choos-
ing the largest absolute value from the four approximated derivative values computed in
Equation 13.2.

Once a single value is determined, the LOD is computed as log2 of that value.
A negative LOD value indicates texture magnification; a positive one, minification.

Combining Transforms

The transforms applied to the vertex values can be concatenated together for efficiency.
Some changes are necessary: the perspective divide shouldn’t change the w value of the
vertex, since the transformed w will be needed to interpolate the texture coordinates
properly. Since the post-divide w won’t be 1, the viewport transform should be based
on Equation 13.1 so it is independent of w values. If the exact window positions are
necessary, the results can be biased by the location of the window center.

Window Space Clipping Shortcuts

In some cases, the clipping functionality in the transformation pipeline must also be
duplicated by the application. Generalized primitive clipping can be non-trivial, but there
are a number of shortcuts that can be used in some cases. One is to simply not clip
the primitive. This will work as long as the primitive doesn’t go through the eye point,
resulting in w′ values of zero. If it does, clipping against the near clip plane is required.
If the primitive doesn’t go through the viewpoint and simplified clipping is needed for
efficiency, the clipping can be applied in window space against the viewport rectangle.
If this is done, care should be taken to ensure that the perspective divide doesn’t destroy
the value of w′. The vertex attributes should be hyperbolically interpolated to compute
their values on new vertices created by clipping.

13.8 Summary

This chapter describes a number of viewing, projection, and texture transformations
frequently employed in other techniques. The algorithms described are representative
of a broad range of techniques that can be implemented within the OpenGL pipeline.
The addition of the programmable vertex pipeline greatly increases the flexibility of the
transformation pipeline but these basic transformation algorithms remain important as
building blocks for other techniques. The remaining chapters incorporate and extend
several of these basic ideas as important constituents of more complex techniques.

14
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Texture Mapping

Techniques

Texture mapping is a powerful building block of graphics techniques. It is used in a
wide range of applications, and is central to many of the techniques used in this book.
The basics of texture mapping have already been covered in Chapter 5 and serves as a
background reference for texture-related techniques.

The traditional use of texture mapping applies images to geometric surfaces. In this
chapter we’ll go further, exploring the use of texture mapping as an elemental tool and
building block for graphics effects. The techniques shown here improve on basic texture
mapping in two ways. First, we show how to get the most out of OpenGL’s native
texturing support, presenting techniques that allow the application to maximize basic
texture mapping functionality. Examples of this include rendering very large textures
using texture paging, prefiltering textures to improve quality, and using image mosaics
(or atlases) to improve texture performance.

We also re-examine the uses of texture mapping, looking at texture coordinate gen-
eration, sampling, and filtering as building blocks of functionality, rather than just a way
of painting color bitmaps onto polygons. Examples of these techniques include texture
animation, billboards, texture color coding, and image warping. We limit our scope to
the more fundamental techniques, focusing on the ones that have potential to be used
to build complex approaches. More specialized texturing techniques are covered in the
chapters where they are used. For example, texture mapping used in lighting is covered

269

270 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

in Chapter 15. Volumetric texturing, a technique for visualizing 3D datasets, is presented
in Section 20.5.8.

14.1 Loading Texture Images into a Framebuffer

Although there is no direct OpenGL support for it, it is easy to copy an image from a
texture map into the framebuffer. It can be done by drawing a rectangle of the desired
size into the framebuffer, applying a texture containing the desired texture image. The
rectangle’s texture coordinates are chosen to provide a one-to-one mapping between texels
and pixels. One side effect of this method is that the depth values of the textured image
will be changed to the depth values of the textured polygon. If this is undesirable, the
textured image can be written back into the framebuffer without disturbing existing depth
buffer values by disabling depth buffer updates when rendering the textured rectangle.
Leaving the depth buffer intact is very useful if more objects need to be rendered into the
scene with depth testing after the texture image has been copied into the color buffer.

The concept of transferring images back and forth between a framebuffer and texture
map is a useful building block. Writing an image from texture memory to the framebuffer
is often faster than transferring it from system memory using glDrawPixels. If an image
must be transferred to the framebuffer more than once, using a texture can be the high-
performance path. The texture technique is also very general, and can be easily extended.
For example, when writing an image back into the framebuffer with a textured polygon,
the texture coordinates can be set to arbitrarily distort the resulting image. The distorted
image could be the final desired result, or it could be transferred back into the texture,
providing a method for creating textures with arbitrarily warped images.

14.2 Optimizing Texture Coordinate Assignment

Rather than using it to create special effects, in some cases distorting a texture image can
be used to improve quality. Sloan et al. (1997) have explored optimizing the assignment
of texture coordinates based on an “importance map” that can encode both intrinsic
texture properties as well as user-guided highlights. This approach highlights the fact
that texture images can have separate “interesting” regions in them. These can be areas
of high contrast, fine detail, or otherwise draw the viewer’s attention based on its content.
A simple example is a light map containing a region of high contrast and detail near the
light source with the rest of the texture containing a slowly changing, low-contrast image.

A common object modeling approach is to choose and position vertices to represent
an object accurately, while maintaining a “vertex budget” constraint to manage geometry
size and load bandwidth. As a separate step, the surface is parameterized with texture

S E C T I O N 1 4 . 3 3D Tex tu re s 271

coordinates so surface textures can be applied. Adding the notion of textures with regions
of varying importance can lead to changes in this approach.

The first step is to distort a high-resolution version of the texture image so the regions
of interest remain large but the remainder shrinks. The resulting texture image is smaller
than the original, which had high-image resolution everywhere, even where it wasn’t
needed. The technique described in Section 5.3 can be used to generate the new image.
The parameterization of the geometry is also altered, mapping the texture onto the surface
so that the high and low importance regions aren’t distorted, but instead vary in texel
resolution. This concept is shown in Figure 14.1.

To do this properly both the texture, with its regions of high and low interest, and the
geometry it is applied to must be considered. The tessellation of the model may have to be
changed to ensure a smooth transition between high- and low-resolution regions of the
texture. At least two rows of vertices are needed to transition between a high-resolution
scaling to a low-resolution one; more are needed if the transition region requires fine
control.

The idea of warping the texture image and altering the texture coordinate assign-
ment can be thought of as a general approach for improving texture appearance without
increasing texture size. If the OpenGL implementation supports multitexturing, a sin-
gle texture can be segmented into multiple textures with distinct low and high interest
regions.

14.3 3D Textures

The classic application of 3D texture maps is to to use them to represent the visual
appearance of a solid material. One example would be to procedurally generate a solid
representation of marble, then apply it to an object, so that the object appears to be
carved out of the stone. Although this 3D extension of the surface mapping application
is certainly valuable, 3D texture maps can do more. Put in a more general context, 3D
textures can be thought of as a 2D texture map that varies as a function of its r coordinate
value. Since the 3D texture filters in three dimensions, changing the r value smoothly will
linearly blend from one 2D texture image slice to the next (Figure 14.2). This technique
can be used to create animated 2D textures and is described in more detail in Section 14.12.

Two caveats should be considered when filtering a 3D texture. First, OpenGL doesn’t
make any distinction between dimensions when filtering; if GL_LINEAR filtering is cho-
sen, both the texels in the r direction, and the ones in the s and t directions, will be linearly
filtered. For example, if the application uses nearest filtering to choose a specific slice,
the resulting image can’t be linearly filtered. This lack of distinction between dimensions
also leads to the second caveat. When filtering, OpenGL will choose to minify or magnify
isotropically based on the size ratio between texel and pixel in all dimensions. It’s not
possible to stretch an image slice and expect minification filtering to be used for sampling
in the r direction.

272 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

High resolution texture
with region of interest

Distortion function applies to
image; area surrounding region
of interest shrunk and distorted

Inverse of distortion function
(applied to texture coordinates)

Texture coordinates invert
distortion function applied

to image; areas surrounding
region of interest are

low resolution

F i g u r e 14.1 Segmenting a texture into resolution regions.

S E C T I O N 1 4 . 3 3D Tex tu re s 273

r

t

2D texture varies
as a function of r

s

F i g u r e 14.2 3D textures as 2D textures varying with R.

The safest course of action is to set GL_TEXTURE_MIN_FILTER and
GL_TEXTURE_MAG_FILTER to the same values. It is also prudent to use GL_LINEAR
instead of GL_NEAREST. If a single texture slice should be used, compute r to index
exactly to it: the OpenGL specification is specific enough that the proper r value is com-
putable, given the texture dimensions. Finally, note that using r for the temporal direction
in a 3D texture is arbitrary; OpenGL makes no distinction, the results depend solely on
the configuration set by the application.

3D textures can also be parameterized to create a more elaborate type of billboard.
A common billboard technique uses a 2D texture applied to a polygon that is oriented
to always face the viewer. Billboards of objects such as trees behave poorly when the
object is viewed from above. A 3D texture billboard can change the textured image as a
function of viewer elevation angle, blending a sequence of images between side view and
top view, depending on the viewer’s position.

If the object isn’t seen from above, but the view around the object must be made
more realistic, a 3D texture can be composed of 2D images taken around the object. An
object, real or synthetic, can be imaged from viewpoints taken at evenly spaced locations
along a circle surrounding it. The billboard can be textured with the 3D texture, and the
r coordinate can be selected as a function of viewer position. This sort of “azimuth bill-
board” will show parallax motion cues as the view moves around the billboard, making
it appear that the billboard object has different sides that come into view. This technique
also allows a billboard to represent an object that isn’t as cylindrically symmetric about
its vertical access.

274 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

This technique has limits, as changes in perspective are created by fading between
still images taken at different angles. The number of views must be chosen to minimize
the differences between adjacent images, or the object itself may need to be simplified.
Using a billboard of any variety works best if the object being billboarded isn’t the focus
of the viewer’s attention. The shortcuts taken to make a billboard aren’t as noticeable if
billboards are only used for background objects.

The most general use of 3D textures is to represent a 3D function. Like the 2D version,
each texel stores the result of evaluating a function with a particular set of parameter
values. It can be useful to process the s, t, and r values before they index the texture,
to better represent the function. This processing can be done with texgen or a texture
transform matrix functionality. As with the previous two methods, using GL_LINEAR
makes it possible to interpolate between arbitrary sample points. A non-linear function
is often approximately linear between two values, if the function values are sampled at
close enough intervals.

14.4 Texture Mosaics

Many complex scenes have a large number of “odds and ends” textures. These low-
resolution textures are used to add diversity and realism to the scene’s appearance.
Additionally, many small textures are often needed for multipass and multitexture sur-
faces, to create light maps, reflectance maps, and so forth. These “surface realism”
textures are often low resolution; their pattern may be replicated over the surface to
add small details, or stretched across a large area to create a slowly changing surface
variation.

Supporting such complex scenes can be expensive, since rendering many small,
irregularly sized textures requires many texture binds per scene. In many OpenGL imple-
mentations the cost of binding a texture object (making it the currently active texture) is
relatively high, limiting rendering performance when a large number of textures are being
used in each rendered frame. If the implementation supports multitexturing, the binding
and unbinding of each texture unit can also incur a high overhead.

Beyond binding performance, there are also space issues to consider. Most imple-
mentations restrict texture map sizes to be powers of two to support efficient addressing
of texels in pipeline implementations. There are extensions that generalize the addressing
allowing non-power-of-two sizes, such as ARB_texture_non_power_of_two and
EXT_texture_rectangle. Nevertheless, to meet a power-of-two restriction, small
texture images may have to be embedded in a larger texture map, surrounded by a large
boundary. This is wasteful of texture memory, a limited resource in most implementa-
tions. It also makes it more likely that fewer textures in the scene fit into texture memory
simultaneously, forcing the implementation to swap textures in and out of the graphics
hardware’s texture memory, further reducing performance.

S E C T I O N 1 4 . 4 Tex tu re Mosa i c s 275

Each image in
separate texture

Images combined
into single texture

F i g u r e 14.3 Texture mosaicing.

Both the texture binding and space overhead of many small textured images
can be reduced by using a technique called texture mosaicing (or sometimes texture
atlasing) (Figure 14.3). In this technique, many small texture images are packed together
into a single texture map. Binding this texture map makes all of its texture images avail-
able for rendering, reducing the number of texture binds needed. In addition, less texture
memory is wasted, since many small textures can be packed together to form an image
close to power-of-two dimensions.

Texture mosaicing can also be used to reduce the overhead of texture environment
changes. Since each texture often has a specific texture environment associated with it, a
mosaic can combine images that use the same texture environment. When the texture is
made current, the texture environment can be held constant while multiple images within
the texture map are used sequentially. This combining of similar texture images into a
single texture map can also be used to group textures that will be used together on an
object, helping to reduce texture binding overhead.

The individual images in the mosaic must be separated enough so that they do not
interfere with each other during filtering. If two images are textured using nearest filter-
ing, then they can be adjacent, but linear filtering requires a one-pixel border around each
texture, so the adjacent texture images do not overlap when sampled near their shared
boundaries.

276 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

asdfsdfsdf

0,0 1,0

1,1

0,0 1,0

1,1

0,0

1,1

0,0 1,0

1,1

0,0

1,1

bx,by

bx,by

ax,ay

ax,ay bx,ay

F i g u r e 14.4 Texture mosaicing.

Mosaicing mipmapped textures requires greater separation between images. If a
series of mipmap layers contain multiple images, then each image must be enclosed in
a power-of-two region, even if the image doesn’t have a power-of-two resolution. This
avoids sampling of adjacent images when coarse mipmap levels are used. This space-
wasting problem can be mitigated somewhat if only a subset of the mipmap levels (LODs)
are needed. OpenGL 1.2 supports texture LOD clamping which constrains which LODs
are used and therefore which levels need to be present. Blending of coarse images also
may not be a problem if the adjacent textures are chosen so that their coarser layers are
very similar in appearance. In that case, the blending of adjacent images may not be
objectionable.

A primitive textured using mosaiced textures must have its texture coordinates mod-
ified to access the proper region of the mosaic texture map. Texture coordinates for an
unmosaiced texture image will expect the texture image to range from 0 to 1. These values
need to be scaled and biased to match the location of desired image in the mosaic map
(Figure 14.4). The scaled and biased texture coordinates can be computed once, when the
objects in the scene are modeled and the mosaiced textures created, or dynamically, by
using OpenGL’s texgen or texture matrix functions to transform the texture coordinates
as the primitives are rendered. It is usually better to set the coordinates at modeling time,
freeing texgen for use in other dynamic effects.

S E C T I O N 1 4 . 5 Tex tu re T i l i ng 277

14.5 Texture Tiling

There is an upper limit to the size of a texture map that an implementation can support.
This can make it difficult to define and use a very large texture as part of rendering a
high-resolution image. Such images may be needed on very high-resolution displays or
for generating an image for printing. Texture tiling provides a way of working around
this limitation. An arbitrarily large texture image can be broken up into a rectangular
grid of tiles. A tile size is chosen that is supported by the OpenGL implementation. This
texture tiling method is related to texture paging, described in Section 14.6.

OpenGL supports texture tiling with a number of features. One is the strict specifi-
cation of the texture minification filters. On conformant implementations, this filtering
is predictable, and can be used to seamlessly texture primitives applied one at a time to
adjacent regions of the textured surface.

To apply a texture to these regions, a very large texture is divided into multiple tiles.
The texture tiles are then loaded and used to texture in several passes. For example, if a
1024×1024 texture is broken up into four 512×512 images, the four images correspond
to the texture coordinate ranges (0 → 1

2 , 0 → 1
2), (1

2 → 1, 0 → 1
2), (0 → 1

2 , 1
2 →0), and

(1
2 → 1, 1

2 → 1).
As each tile is loaded, only the portions of the geometry that correspond to the

appropriate texture coordinate ranges for a given tile should be drawn. To render a
single triangle whose texture coordinates are (0.1, 0.1), (0.1, 0.7), and (0.8, 0.8), the
triangle must be clipped against each of the four tile regions in turn. Only the clipped
portion of the triangle — the part that intersects a given texture tile — is rendered, as
shown in Figure 14.5. As each piece is rendered, the original texture coordinates must
be adjusted to match the scaled and translated texture space represented by the tile. This
transformation is performed by loading the appropriate scale and translation onto the
texture matrix.

(0.,1.)

(0.,0.)

(1.,0.)

(.1,.1)

(.1,.7)

(.8,.1)

(1.,1.)

F i g u r e 14.5 Texture tiling.

278 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

Normally clipping the geometry to the texture tiles is performed as part of the mod-
eling step. This can be done when the relationship between the texture and geometry is
known in advance. However, sometimes this relationship isn’t known, such as when a
tiled texture is applied to arbitrary geometry. OpenGL does not provide direct support
for clipping the geometry to the tile. The clipping problem can be simplified, however, if
the geometry is modeled with tiling in mind. For a trivial example, consider a textured
primitive made up of quads, each covered with an aligned texture tile. In this case, the
clipping operation is easy. In the general case, of course, clipping arbitrary geometry to
the texture tile boundaries can involve substantially more work.

One approach that can simplify the clipping stage of texture tiling is to use stenciling
(Section 6.2.3) and transparency mapping (Section 11.9.2) to trim geometry to a texture
tile boundary. Geometry clipping becomes unnecessary, or can be limited to culling
geometry that doesn’t intersect a given texture tile to improve performance. The central
idea is to create a stencil mask that segments the polygons that is covered by a given
texture tile from the polygons that aren’t. The geometry can be rendered with the proper
tile texture applied, and the stencil buffer can be set as a side effect of rendering it. The
resulting stencil values can be used in a second pass to only render the geometry where it
is textured with the tile (Figure 14.6).

Creating the stencil mask itself can be done by using a “masking” texture. This
texture sets an alpha value only where it’s applied to the primitive. Alpha test can then
be used to discard anything not drawn with that alpha value (see Section 6.2.2). The
undiscarded fragments can then be used with the proper settings of stencil test and stencil
operation to create a stencil mask of the region being textured. Disabling color and depth
buffer updates, or setting the depth test to always fail will ensure that only the stencil
buffer is updated.

One area that requires care is clamping. Since the tiling scenario requires applying a
masking texture that only covers part of the primitive, what happens outside the texture

Texture tile

Geometry
to clip

Tile sized alpha
texture applied to

geometry
Polygon rendered
with texture tile

Results
set stencil

Stencil buffer
clips polygon
to tile

Rendered geometry
clipped to texture tile

F i g u r e 14.6 Clipping geometry to tile with alpha texture and stencil.

S E C T I O N 1 4 . 6 Tex tu re Pag ing 279

coordinate range of [0, 1] must be considered. One approach is to configure the masking
texture to use the GL_CLAMP_TO_BORDERwrap mode, so all of the geometry beyond the
applied texture will be set to the border color. Using a border color with zero components
(the default) will ensure that the geometry not covered by the texture will have a different
alpha value.

Here is a procedure that puts all of these ideas together:

1. Create a texture of internal type GL_ALPHA. It can have a single texel if desired.

2. Set the parameters so that GL_NEAREST filtering is used, and set the wrap mode
appropriately.

3. Set the texture environment to GL_REPLACE.

4. Apply the texture using the same coordinate, texgen, and texture transform matrix
settings that will be used in the actual texture tile.

5. Enable and set alpha testing to discard all pixels that don’t have an alpha value
matching the masking texture.

6. Set up the stencil test to set stencil when the alpha value is correct.

7. Render the primitive with the masking texture applied. Disable writes to the color
and depth buffer if they should remain unchanged.

8. Re-render the geometry with the actual tiled texture, using the new stencil mask to
prevent any geometry other than the tiled part from being rendered.

If the tiled textures are applied using nearest filtering, the procedure is complete. In the
more common case of linear or mipmap filtered textures, there is additional work to do.
Linear filtering can generate artifacts where the texture tiles meet. This occurs because a
texture coordinate can sample beyond the edge of the texture. The simple solution to this
problem is to configure a one-texel border on each texture tile. The border texels should
be copied from the adjacent edges of the neighboring tiles.

A texture border ensures that a texture tile which samples beyond its edges will
sample from its neighbors texels, creating seamless boundaries between tiles. Note that
borders are only needed for linear or mipmap filtering. Clamp-to-edge filtering can also be
used instead of texture borders, but will produce lower quality results. See Section 5.1.1
for more information on texture borders.

14.6 Texture Paging

As applications simulate higher levels of realism, the amount of texture memory they
require can increase dramatically. Texture memory is a limited, expensive resource, so
directly loading a high-resolution texture is not always feasible. Applications are often
forced to resample their images at a lower resolution to make them fit in texture memory,

280 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

with a corresponding loss of realism and image quality. If an application must view the
entire textured image at high resolution, this, or a texture tiling approach (as described
in Section 14.5) may be the only option.

But many applications have texture requirements that can be structured so that only
a small area of large texture has to be shown at full resolution. Consider a flight simula-
tion example. The terrain may be modeled as a single large triangle mesh, with texture
coordinates to map it to a single, very large texture map, possibly a mipmap. Although
the geometry and the texture are large, only terrain close to the viewer is visible in high
detail. Terrain far from the viewer must be textured using low-resolution texture levels to
avoid aliasing, since a pixel corresponding to these areas covers many texels at once. For
similar reasons, many applications that use large texture maps find that the maximum
amount of texture memory in use for any given viewpoint is bounded.

Applications can take advantage of these constraints through a technique called tex-
ture paging. Rather than loading complete levels of a large image, only the portion of
the image closest to the viewer is kept in texture memory. The rest of the image is stored
in system memory or on disk. As the viewer moves, the contents of texture memory are
updated to keep the closest portion of the image loaded.

Two different approaches can be used to implement this technique. The first is to use
a form of texture tiling. The texture is subdivided into fixed sized tiles. Textured geometry
is matched up with the tiles that cover it, and segmented to match the tile boundaries.
This segmentation can happen when the geometry is modeled, by re-tessellating it into
tile-sized pieces (with its texture coordinates changed to map the tile properly) or it can be
done at runtime through clipping combined with texgen or the texture transform matrix.

When tiled geometry is rendered, it is rendered one tile at a time, with texture coor-
dinates set appropriately to apply the tile to the surface. Texture memory is reloaded
when a new tile is needed. For geometry that is farther from the viewer, tiles containing
lower resolution texture levels are used to avoid aliasing artifacts. Figure 14.7 shows a

Large texture Texture broken
into tiles

Terrain geometry Terrain geometry

0 1
0

1

0 1
0

1

0 1
0

1

0 .5 1
0

.5

1

0 1
0

1

F i g u r e 14.7 Modeling a large texture as a grid of tiles.

S E C T I O N 1 4 . 6 Tex tu re Pag ing 281

texture broken up into tiles, and its geometry tessellated and texture coordinates changed
to match.

The tiling technique is conceptually straightforward, and is used in some form by
nearly all applications that need to apply a large texture to geometry (see Section 14.5).
There are some drawbacks to using a pure tiling approach, however. The part of the
technique that requires segmenting geometry to texture tiles is the most problematic. Seg-
menting geometry requires re-tessellating it to match tile boundaries, or using techniques
to clip it against the current tile. In addition, the geometry’s texture coordinates must be
adjusted to properly map the texture tile to the geometry segment.

For linear filtering, tile boundaries can be made invisible by carefully clipping or
tessellating the geometry so that the texture coordinates are kept within the tile’s [0.0,
1.0] range, and using texture borders containing a strip of texels from each adjacent tile
(see Section 5.1.1 for more details on texture borders). This ensures that the geometry
is textured properly across the edge of each tile, making the transition seamless. A clean
solution is more elusive when dealing with the boundary between tiles of different texture
resolution, however. One approach is to blend the two resolutions at boundary tiles, using
OpenGL’s blend functionality or multitexturing. Figure 14.8 shows how tiles of different
resolution are used to approximate mipmapping, and how tiles on each LOD boundary
can be blended. Alternatively, linear filtering with mipmapping handles the border edges,
at the expense of loading a full mipmap pyramid rather than a single level.

The process of clipping or re-tessellating dynamic geometry to match each image tile
itself is not always easy. An example of dynamic geometry common to visual simulation
applications is dynamic terrain tessellation. Terrain close to the viewer is replaced with
more highly tessellated geometry to increase detail, while geometry far from the viewer
is tessellated more coarsely to improve rendering performance. In general, forcing a

LOD 0

Viewer position

50% LOD 0 + 50% LOD 1

LOD 1

LOD 2

Texture paging approximates mipmapping: coarser resolution
tiles as distance from the viewer increases. Tiles can blend
LOD levels.

F i g u r e 14.8 Tiling a large texture with different LOD levels.

282 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

correspondence between texture and geometry beyond what is established by texture
coordinates should be avoided, since it increases complication and adds new visual quality
issues that the application has to cope with.

Given sufficient texture memory, geometry segmentation can be avoided by com-
bining texture tiles into a larger texture region, and applying it to the currently visible
geometry. Although it uses more texture memory, the entire texture doesn’t need to be
loaded, only the region affecting visible geometry. Clipping and tessellation is avoided
because the view frustum itself does the clipping. To avoid explicitly changing the geom-
etry’s texture coordinates, the texture transform matrix can be used to map the texture
coordinates to the current texture region.

To allow the viewer to move relative to the textured geometry, the texture memory
region must be updated. As the viewer moves, both the geometry and the texture can be
thought of as scrolling to display the region closest to the viewer. In order to make the
updates happen quickly, the entire texture can be stored in system memory, then used to
update the texture memory when the viewer moves.

Consider a single level texture. Define a viewing frustum that limits the amount of
visible geometry to a small area, — small enough that the visible geometry can be easily
textured. Now imagine that the entire texture image is stored in system memory. As the
viewer moves, the image in texture memory can be updated so that it exactly corresponds
to the geometry visible in the viewing frustum:

1. Given the current view frustum, compute the visible geometry.

2. Set the texture transform matrix to map the visible texture coordinates into 0 to 1
in s and t.

3. Use glTexImage2D to load texture memory with the appropriate texel data, using
GL_SKIP_PIXELS and GL_SKIP_ROWS to index to the proper subregion.

This technique remaps the texture coordinates of the visible geometry to match tex-
ture memory, then loads the matching system memory image into texture memory using
glTexImage2D.

14.6.1 Texture Subimage Loading

While the technique described previously works, it is a very inefficient use of texture load
bandwidth. Even if the viewer moves a small amount, the entire texture level must be
reloaded to account for the shift in texture. Performance can be improved by loading
only the part of the texture that’s newly visible, and somehow shifting the rest.

Shifting the texture can be accomplished by taking advantage of texture coordinate
wrapping (also called torroidal mapping). Instead of completely reloading the contents of
texture memory, the section that has gone out of view from the last frame is loaded with
the portion of the image that has just come into view with this frame. This technique works
because texture coordinate wrapping makes it possible to create a single, seamless texture,
connected at opposite sides. When GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T

S E C T I O N 1 4 . 6 Tex tu re Pag ing 283

are set to GL_REPEAT (the default), the integer part of texture coordinates are discarded
when mapping into texture memory. In effect, texture coordinates that go off the edge
of texture memory on one side, and “wrap around” to the opposite side. The term
“torrodial” comes from the fact that the wrapping happens across both pairs of edges.
Using subimage loading, the updating technique looks like this:

1. Given the current and previous view frustum, compute how the range of texture
coordinates have changed.

2. Transform the change of texture coordinates into one or more regions of texture
memory that need to be updated.

3. Use glTexSubImage to update the appropriate regions of texture memory, use
GL_SKIP_PIXELS and GL_SKIP_ROWS to index into the system memory image.

When using texture coordinate wrapping, the texture transform matrix can be used
to remap texture coordinates on the geometry. Instead of having the coordinates range
from zero to one over the entire texture, they can increase by one unit when moving
across a single tile along each major axis. Texture matrix operations are not needed if
the geometry is modeled with these coordinate ranges. Instead, the updated relationship
between texture and geometry is maintained by subimage loading the right amount of
new texture data as the viewer moves. Depending on the direction of viewer movement,
updating texture memory can take from one to four subimage loads. Figure 14.9 shows
how the geometry is remodeled to wrap on tile boundaries.

On most systems, texture subimage loads can be very inefficient when narrow regions
are being loaded. The subimage loading method can be modified to ensure that only
subimage loads above a minimum size are allowed, at the cost of some additional texture
memory. The change is simple. Instead of updating every time the view position changes,
ignore position changes until the accumulated change requires a subimage load above the
minimum size. Normally this will result in some out of date texture data being visible

Large texture Texture broken
into tiles

Terrain geometry

0 .5 1
0

.5

1

Text coordinates
changed to match

tiles on texture

0 1 2
0

1

2

F i g u r e 14.9 Modeling geometry to use texture wrapping.

284 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

Texture coordinates wrap around 0 and 1

Viewer moving in direction of arrow

Visible tiles

Invisible tiles

Tiles about to
become visible

Visible region.
Outside of square is
“invalid region”

0 1

F i g u r e 14.10 A wrapped texture with an invalid region.

around the edges of the textured geometry. To avoid this, an invalid region is specified
around the periphery of the texture level, and the view frustum is adjusted so the that
geometry textured from the texels from the invalid region are never visible. This technique
allows updates to be cached, improving performance. A wrapped texture with its invalid
region is shown in Figure 14.10.

The wrapping technique, as described so far, depends on only a limited region of the
textured geometry being visible. In this example we are depending on the limits of the view
frustum to only show properly textured geometry. If the view frustum was expanded, we
would see the texture image wrapping over the surrounding geometry. Even with these
limitations, this technique can be expanded to include mipmapped textures.

Since OpenGL implementations (today) typically do not transparently page mipmaps,
the application cannot simply define a very large mipmap and not expect the
OpenGL implementation to try to allocate the texture memory needed for all the
mipmap levels. Instead the application can use the texture LOD control functional-
ity in OpenGL 1.2 (or the EXT_texture_lod extension) to define a small number
of active levels, using the GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_MAX_LEVEL,
GL_TEXTURE_MIN_LOD, and GL_TEXTURE_MAX_LOD with the glTexParameter
command. An invalid region must be established and a minimum size update must be
set so that all levels can be kept in sync with each other when updated. For example, a
subimage 32 texels wide at the top level must be accompanied by a subimage 16 texels
wide at the next coarser level to maintain correct mipmap filtering. Multiple images at
different resolutions will have to be kept in system memory as source images to load
texture memory.

If the viewer zooms in or zooms out of the geometry, the texturing system may
require levels that are not available in the paged mipmap. The application can avoid this
problem by computing the mipmap levels that are needed for any given viewer position,

S E C T I O N 1 4 . 6 Tex tu re Pag ing 285

and keeping a set of paged mipmaps available, each representing a different set of LOD
levels. The coarsest set could be a normal mipmap for use when the viewer is very far
away from that region of textured geometry.

14.6.2 Paging Images in System Memory

Up to this point, we’ve assumed that the texel data is available as a large contiguous image
in system memory. Just as texture memory is a limited resource that must be rationed, it
also makes sense to conserve system memory. For very large texture images, the image
data can be divided into tiles, and paged into system memory from disk. This paging
can be kept separate from the paging going on from system memory to texture memory.
The only difference will be in the offsets required to index the proper region in system
memory to load, and an increase in the number of subimage loads required to update
texture memory. A sophisticated system can wrap texture image data in system memory,
using modulo arithmetic, just as texture coordinates are wrapped in texture memory.

Consider the case of a 2D image roam, illustrated in Figure 14.11, in which the view
is moving to the right. As the view pans to the right, new texture tiles must be added to
the right edge of the current portion of the texture and old tiles are discarded from the
left edge. Since texture wrapping connects these two edges together, the discarding and
replacing steps can be combined into a single update step on the tiles that are no longer
visible on the left edge, which are about to wrap around and become visible on the right.

The ability to load subregions within a texture has other uses besides these paging
applications. Without this capability textures must be loaded in their entirety and their
widths and heights must be powers of two. In the case of video data, the images are typi-
cally not powers of two, so a texture of the nearest larger power-of-two can be created and
only the relevant subregion needs to be loaded. When drawing geometry, the texture coor-
dinates are simply constrained to the fraction of the texture which is occupied with valid
data. Mipmapping cannot easily be used with non-power-of-two image data, since the
coarser levels will contain image data from the invalid region of the texture. If it’s required,
mipmapping can be implemented by padding the non-power-of-two images up to the

Tiles

Visible
region

Roam

(0,0)

(1,1)

t

s

Toroidal
wrapping

F i g u r e 14.11 2D image roam.

286 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

next power-of-two size, or by using one of the non-power-of-two OpenGL extensions,
such as ARB_texture_non_power_of_two, if it is supported by the implementation.
Note that not all non-power-of-two extensions support mipmappped non-power-of-two
textures.

14.6.3 Hardware Support for Texture Paging

Instead of having to piece together the components of a mipmapped texture paging solu-
tion using torroidal mapping, some OpenGL implementations help by providing this
functionality in hardware.

Tanner et al. (1998) describe a hardware solution called clip mapping for supporting
extremely large textures. The approach is implemented in SGI’s InfiniteReality graphics
subsystem. The basic clip mapping functionality is accessed using the SGIX_clipmap
extension. In addition to requiring hardware support, the system also requires significant
software management of the texture data as well. In part, this is simply due to the massive
texture sizes that can be supported. While the clip map approach has no inherent limit to
its maximum resolution, the InfiniteReality hardware implementation supports clip map
textures to sizes up to 32, 768 × 32, 768 (Montrym et al., 1997).

The clip map itself is essentially a dynamically updatable partial mipmap. Highest
resolution texture data is available only around a particular point in the texture called the
clip center. To ensure that clip-mapped surfaces are shown at the highest possible texture
resolution, software is required to dynamically reposition the clip center as necessary.
Repositioning the clip center requires partial dynamic updates of the clip map texture
data. With software support for repositioning the clip center and managing the off-disk
texture loading and caching required, clip mapping offers the opportunity to dynamically
roam over and zoom in and out of huge textured regions. The technique has obvious
applications for applications that use very large, detailed textures, such as unconstrained
viewing of high-resolution satellite imagery at real-time rates.

Hüttner (1998) describes another approach using only OpenGL’s base mipmap func-
tionality to support very high-resolution textures, similar to the one described previously.
Hüttner proposes a data structure called a MIPmap pyramid grid or MP-grid. The MP-
grid is essentially a set of mipmap textures arranged in a grid to represent an aggregate
high-resolution texture that is larger than the OpenGL implementation’s largest supported
texture. For example, a 4 × 4 grid of 1024 × 1024 mipmapped textures could be used
to represent a 4096 × 4096 aggregate texture. Typically, the aggregate texture is terrain
data intended to be draped over a polygonal mesh representing the terrain’s geometry.
Before rendering, the MP-grid algorithm first classifies each terrain polygon based on
which grid cells within the MP-grid the polygon covers. During rendering, each grid cell
is considered in sequence. Assuming the grid cell is covered by polygons in the scene, the
mipmap texture for the grid cell is bound. Then, all the polygons covering the grid cell
are rendered with texturing enabled. Because a polygon may not exist completely within
a single grid cell, care must be taken to intersect such polygons with the boundary of all
the grid cells that the polygon partially covers.

S E C T I O N 1 4 . 7 P re f i l t e r ed Tex tu re s 287

Hüttner compares the MP-grid scheme to the clip map scheme and notes that the MP-
grid approach does not require special hardware and does not depend on determining a
single viewer-dependent clip center, as needed in the clip map approach. However, the
MP-grid approach requires special clipping of the surface terrain mesh to the MP-grid.
No such clipping is required when clip mapping. Due to its special hardware support,
the clip mapping approach is most likely better suited for the support of the very largest
high-resolution textures.

Although not commonly supported at the time of this writing, clip mapping may be
an interesting prelude to OpenGL support for dynamically updatable cached textures in
future implementations.

14.7 Prefiltered Textures

Currently, some OpenGL implementations still provide limited or no support beyond
4-texel linear isotropic filtering.1 Even when mipmapping, the filtering of each mipmap
level is limited to point-sampled (GL_NEAREST) or linear (GL_LINEAR) filtering. While
adequate for many uses, there are applications that can greatly benefit from a better
filter kernel. One example is anisotropic filtering. Textured geometry can be rendered so
that the ideal minification is greater in one direction than another. An example of this is
textured geometry that is viewed nearly edge-on. Normal isotropic filtering will apply the
maximum required minification uniformly, resulting in excessive blurring of the texture.

If anisotropic texturing is not supported by the implementation,2 the application
writer can approach anisotropic sampling by generating and selecting from a series of
prefiltered textures. The task of generating and using prefiltered textures is greatly sim-
plified if the application writer can restrict how the texture will be viewed. Prefiltered
textures can also be useful for other applications, where the texel footprint isn’t square.
If textures are used in such a way that the texel footprints are always the same shape,
the number of prefiltered textures needed is reduced, and the approach becomes more
attractive.

The technique can be illustrated using anisotropic texturing as an example. Suppose
a textured square is rendered as shown in the left of Figure 14.12. The primitive and a
selected fragment are shown on the left. The fragment is mapped to a normal mipmapped
texture on the upper right, and a prefiltered one on the lower right. In both cases, the
ideal texture footprint of the fragment is shown with a dark inner region.

In the upper right texture, the isotropic minification filter forces the actual texture
footprint to encompass the square enclosing the dark region. A mipmap level is chosen in
which this square footprint is properly filtered for the fragment. In other words, a mipmap

1. The vendor specific extension, SGIS_texture_filter4, allows an application-defined 4 × 4
sample filter, but it has very limited availability.

2. There is an EXT_texture_filter_anisotropic extension.

288 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

Level 0

Level 1

Fragment

Fragment Level 0

Level 1

F i g u r e 14.12 Pixel footprint on anisotropically scaled texture.

level is selected in which the size of this square is closest to the size of the fragment. The
resulting mipmap is not level 0 but level 1 or higher. Hence, at that fragment more
filtering is needed along t than along s, but the same amount of filtering is done in both.
The resulting texture will be more blurred than the ideal.

To avoid this problem, the texture can be prefiltered. In the lower right texture of
Figure 14.12, extra filtering is applied in the t direction when the texture is created. The
aspect ratio of the texture image is also changed, giving the prefiltered texture the same
width but only half the height of the original. The footprint now has a squarer aspect
ratio; the enclosing square no longer has to be much larger, and is closer to the size to
the fragment. Mipmap level 0 can now be used instead of a higher level. Another way to
think about this concept: using a texture that is shorter along t reduces the amount of
minification required in the t direction.

The closer the filtered mipmap’s aspect ratio matches the projected aspect ratio of the
geometry, the more accurate the sampling will be. The application can minimize excessive
blurring at the expense of texture memory by creating a set of resampled mipmaps with
different aspect ratios (Figure 14.13).

14.7.1 Computing Texel Aspect Ratios

Once the application has created a set of prefiltered textures, it can find the one that most
closely corresponds to the current texture scaling aspect ratio, and use that texture map
to texture the geometry (Figure 14.14). This ratio can be quickly estimated by computing

S E C T I O N 1 4 . 7 P re f i l t e r ed Tex tu re s 289

F i g u r e 14.13 Creating a set of anisotropically filtered images.

F i g u r e 14.14 Geometry orientation and texture aspect ratio.

the angle between the viewer’s line of sight and a plane representing the orientation of
the textured geometry. Using texture objects, the application can switch to the mipmap
that will provide the best results. Depending on performance requirements, the texture
selection process can be applied per triangle or applied to a plane representing the average
of a group of polygons can be used.

In some cases, a simple line of sight computation isn’t accurate enough for the appli-
cation. If the textured surface has a complex shape, or if the texture transform matrix
is needed to transform texture coordinates, a more accurate computation of the texture
coordinate derivatives may be needed. Section 13.7.2 describes the process of computing
texture coordinate derivatives within the application. In the near future the programmable
pipeline will be capable of performing the same computations efficiently in the pipeline
and be able to select from one of multiple-bound texture maps.

Since most OpenGL implementations restrict texture levels to have power-of-two
dimensions, it would appear that the only aspect ratios that can be anisotropically pre-
filtered are 1:4, 1:2, 1:1, 2:1, 4:1, etc. Smaller aspect ratio step sizes are possible, however,
by generating incomplete texture images, then using the texture transform matrix to scale

290 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

the texture coordinates to fit. For a ratio of 3:4, for example, fill a 1:1 ratio mipmap with
prefiltered 3:4 texture images partially covering each level (the rest of the texture image is
set to black). The unused part of the texture (black) should be along the top (maximum
t coordinates) and right (maximum s coordinates) of the texture image. The prefiltered
image can be any size, as long as it fits within the texture level. Other than prefiltering
the images, the mipmap is created in the normal way.

Using this mipmap for textured geometry with a 3:4 ratio results in an incorrect
textured image. To correct it, the texture transform matrix is used to rescale the narrower
side of the texture (in our example in the t direction) by 3/4 (Figure 14.15). This will
change the apparent size ratio between the pixels and textures in the texture filtering
system, making them match, and producing the proper results. This technique would not
work well with a repeated texture; in our example, there will be a discontinuity in the
image if filtered outside the range of 0 to 1 in t. However, the direction that isn’t scaled
can be wrapped; in our example, wrapping in s would work fine.

Generalizing from the previous example, the prefiltering procedure can be broken
down as follows:

1. Look for textures that have elongated or distorted pixel footprints.

2. Determine the range of pixel footprint shapes on the texture of interest to
determine the number of prefiltered images needed.

3. Using convolution or some other image processing technique (see Chapter 12),
prefilter the image using the footprint shape as a filter kernel. The prefiltered
images should be filtered from higher resolution images to preserve image
quality.

4. Generate a range of prefiltered textures matching the range of footprint shapes.

5. Design an algorithm to choose the most appropriate prefiltered image for the
texture’s viewing conditions.

6. The texture transform matrix can be used to change the relationship between
texture and geometric coordinates to support a wider range of prefiltered images.

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

3/4

Pixel buffer Texture matrix Texture map

F i g u r e 14.15 Non-power-of-two aspect ratio using texture matrix.

S E C T I O N 1 4 . 8 Dua l -Pa r abo lo i d Env i r onmen t Mapp ing 291

Prefiltered textures are a useful tool but have limitations compared to true anisotropic
texturing. Storing multiple prefiltered images consumes a lot of texture memory; the
algorithm is most useful in applications that only need a small set of prefiltered images
to choose from. The algorithm for choosing a prefiltered texture should be simple to
compute; it can be a performance burden otherwise, since it may have to be run each
time a particular texture is used in the scene. Prefiltered images are inadequate if the pixel
footprint changes significantly while rendering a single texture; segmenting the textured
primitive into regions of homogeneous anisotropy is one possible solution, although this
can add still more overhead. Dynamically created textures are a difficult obstacle. Unless
they can be cached and reused, the application may not tolerate the overhead required to
prefilter them on the fly.

On the other hand, the prefiltered texture solution can be a good fit for some applica-
tions. In visual simulation applications, containing fly-over or drive-through viewpoints,
prefiltering the terrain can lead to significant improvements in quality without high over-
head. The terrain can be stored prefiltered for a number of orientations, and the algorithm
for choosing the anisotropy is a straightforward analysis of the viewer/terrain orientation.
The situation is further simplified if the viewer has motion constraints (for example, a
train simulation), which reduce the number of prefiltered textures needed.

Hardware anisotropic filtering support is a trade-off between filtering quality and
performance. Very high-quality prefiltered images can be produced if the pixel footprint
is precisely known. A higher-quality image than what is achievable in hardware can also
be created, making it possible to produce a software method for high-quality texturing
that discards all the speed advantages of hardware rendering. This approach might be
useful for non-real-time, high-quality image generation.

14.8 Dual-Paraboloid Environment Mapping

An environment map parameterization different from the ones directly supported by
OpenGL (see Section 5.4) was proposed by Heidrich and Seidel (1998b). It avoids many
of the disadvantages of sphere mapping. The dual-paraboloid environment mapping
approach is view-independent, has better sampling characteristics, and, because the sin-
gularity at the edge of the sphere map is eliminated, there are no sparkling artifacts
at glancing angles. The view-independent advantage is important because it allows the
viewer, environment-mapped object, and the environment to move with respect to each
other without having to regenerate the environment map.

14.8.1 The Mathematics of Dual-Paraboloid Maps

The principle that underlies paraboloid maps is the same one that underlies a parabolic
lens or satellite dish. The geometry of a paraboloid can focus parallel rays to a point.

292 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

F i g u r e 14.16 Two paraboloids.

The paraboloid used for dual-paraboloid mapping is:

f (x, y) = 1
2

− 1
2

(x2 + y2), x2 + y2 ≤ 1

Figure 14.16 shows how two paraboloids can focus the entire environment surrounding
a point into two images.

Unlike the sphere-mapping approach, which encodes the entire surrounding envi-
ronment into a single texture, the dual-paraboloid mapping scheme requires two textures
to store the environment, one texture for the “front” environment and another texture
for the “back”. Note that the sense of “front” and “back” is completely independent of
the viewer orientation. Figure 14.17 shows an example of two paraboloid maps. Because
two textures are required, the technique must be performed in two rendering passes.

S E C T I O N 1 4 . 8 Dua l -Pa r abo lo i d Env i r onmen t Mapp ing 293

F i g u r e 14.17 Example of dual-paraboloid texture map images.

If multitexturing is supported by the implementation, the passes can be combined into a
single rendering pass using two texture units.

Because the math for the paraboloid is all linear (unlike the spherical basis of the
sphere map), Heidrich and Seidel observe that an application can use the OpenGL tex-
ture matrix to map an eye-coordinate reflection vector R into a 2D texture coordinate
(s, t) within a dual-paraboloid map. The necessary texture matrix can be constructed as
follows:

⎛⎜⎜⎝
s
t
1
1

⎞⎟⎟⎠ = A · P · S · (Ml)
−1 ·

⎛⎜⎜⎝
Rx

Ry

Rz

1

⎞⎟⎟⎠
where

A =

⎛⎜⎜⎜⎝
1
2 0 0 1

2

0 1
2 0 1

2

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
is a matrix that scales and biases a 2D coordinate in the range [−1, 1] to the texture image
range [0, 1]. This matrix

P =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

⎞⎟⎟⎠

294 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

is a projective transform that divides by the z coordinate. It serves to flatten a 3D vector
into 2D. This matrix

S =

⎛⎜⎜⎝
−1 0 0 Dx

0 −1 0 Dy

0 0 1 Dz

0 0 0 1

⎞⎟⎟⎠
subtracts the supplied 3D vector from an orientation vector D that specifies a view direc-
tion. The vector is set to D either (0, 0, −1)T or (0, 0, 1)T depending on whether the front
or back paraboloid map is in use, respectively. Finally, the matrix (Ml)−1 is the inverse
of the linear part (the upper 3 × 3) of the current (affine) modelview matrix. The matrix
(Ml)−1 transforms a 3D eye-space reflection vector into an object-space version of the
vector.

14.8.2 Using Dual-Paraboloid Maps

For the rationale for these transformations, consult Heidrich and Siedel (1998b). Since all
the necessary component transformations can be represented as 4×4 matrices, the entire
transformation sequence can be concatenated into a single 4 × 4 projective matrix and
then loaded into OpenGL’s texture matrix. The per-vertex eye-space reflection normal
can be supplied as a vertex texture coordinate via glTexCoord3f or computed from
the normal vector using the GL_REFLECTION_MAP texture coordinate generation mode.3

When properly configured this 3D vector will be transformed into a 2D texture coordinate
in a front or back paraboloid map, depending on how D is oriented.

The matrix M−1
l is computed by retrieving the current modelview matrix, replacing

the outer row and column with the vector (0, 0, 0, 1), and inverting the result. Section
13.1 discusses methods for computing the inverse of the modelview matrix.

Each dual-paraboloid texture contains an incomplete version of the environment.
The two texture maps overlap as shown in Figure 14.17 at the corner of each image.
The corner regions in one map are distorted so that the other map has better sampling
of the same information. There is also some information in each map that is simply
not in the other; for example, the information in the center of each map is not shared.
Figure 14.18 shows that each map has a centered circular region containing texels with
better sampling than the corresponding texels in the other map. This centered region of
each dual-paraboloid map is called the sweet circle.

The last step is to segregate transformed texture coordinates, applying them to
one of the two paraboloid maps. The decision criteria are simple; given the projec-
tive transformation discussed earlier, if a reflection vector falls within the sweet circle

3. In OpenGL 1.3.

S E C T I O N 1 4 . 8 Dua l -Pa r abo lo i d Env i r onmen t Mapp ing 295

F i g u r e 14.18 The sweet circles of a dual-paraboloid map.

of one dual-paraboloid map, it will be guaranteed to fall outside the sweet circle of the
opposite map.

Using OpenGL’s alpha testing capability, we can discard texels outside the sweet
circle of each texture. The idea is to encode in the alpha channel of each dual-paraboloid
texture an alpha value of 1.0 if the texel is within the sweet circle and 0.0 if the texel is
outside the sweet circle. To avoid artifacts for texels that land on the circle edges, the
circle ownership test should be made conservative.

In the absence of multitexture support, a textured object is rendered in two passes.
First, the front dual-paraboloid texture is bound and the D value is set to (0, 0, −1)T when
constructing the texture matrix. During the second pass, the back texture is bound and a D
value of (0, 0, 1)T is used. During both passes, alpha testing is used to eliminate fragments
with an alpha value less than 1.0. The texture environment should be configured to
replace the fragment’s alpha value with the texture’s alpha value. The result is a complete
dual-paraboloid mapped object.

When multiple texture units are available, the two passes can be collapsed into a
single multitextured rendering pass. Since each texture unit has an independent texture
matrix, the first texture unit uses the front texture matrix, while the second texture unit
uses the back one. The first texture unit uses a GL_REPLACE texture environment while
the second texture unit should use GL_BLEND. Together, the two texture units blend
the two textures based on the alpha component of the second texture. A side benefit
of the multitextured approach is that the transition between the two dual-paraboloid
map textures is less noticeable. Even with simple alpha testing, the seam is quite difficult
to notice.

If a programmable vertex pipeline is supported, the projection operation can be
further optimized by implementing it directly in a vertex program.

296 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

14.8.3 OpenGL Dual-Paraboloid Support

Although OpenGL doesn’t include direct support for dual-paraboloid maps, OpenGL
1.3 support for reflection mapping and multitexture allows efficient implementation by
an application. The view independence, good sampling characteristics, and ease of gen-
eration of maps makes dual-paraboloid maps attractive for many environment mapping
applications.

Besides serving as an interesting example of how OpenGL functionality can be used
to build up an entirely new texturing technique, dual-paraboloid mapping is also a useful
approach to consider when the OpenGL implementation doesn’t support cube mapping.
This technique provides some clear advantages over sphere mapping; when the latter isn’t
adequate, and the rendering resources are available, dual-paraboloid mapping can be a
good high-performance solution.

14.9 Texture Projection

Projected textures (Segal et al., 1992) are texture maps indexed by texture coordinates
that have undergone a projective transform. The projection is applied using the texture
transform matrix, making it possible to apply a projection to texture coordinates that is
independent of the geometry’s viewing projection. This technique can be used to simulate
slide projector or spotlight illumination effects, to apply shadow textures (Section 17.4.3),
create lighting effects (Section 15.3), and to re-project an image onto an object’s geometry
(Section 17.4.1).

Projecting a texture image onto geometry uses nearly the same steps needed to project
the rendered scene onto the display. Vertex coordinates have three transformation stages
available for the task, while texture coordinates have only a single 4 × 4 transformation
matrix followed by a perspective divide operation. To project a texture, the texture
transform matrix contains the concatenation of three transformations:

1. A modelview transform to orient the projection in the scene.

2. A projective transform (e.g., perspective or parallel).

3. A scale and bias to map the near clipping plane to texture coordinates, or put
another way, to map the [−1, 1] normalized device coordinate range to [0, 1].
When choosing the transforms for the texture matrix, use the same transforms used

to render the scene’s geometry, but anchored to the view of a “texture light”, the point
that appears to project the texture onto an object, just as a light would project a slide onto
a surface. A texgen function must also be set up. It creates texture coordinates from the
vertices of the target geometry. Section 13.6 provides more detail and insight in setting up
the proper texture transform matrix and texgen for a given object/texture configuration.

Configuring the texture transformation matrix and texgen function is not enough.
The texture will be projected onto all objects rendered with this configuration; in

S E C T I O N 1 4 . 9 Tex tu re P ro j e c t i on 297

order to produce an “optical” projection, the projected texture must be “clipped” to
a single area.

There are a number of ways to do this. The simplest is to only render polygons
that should have the texture projected on them. This method is fast, but limited; it only
clips the projected texture to the boundaries defined by individual polygons. It may be
necessary to limit the projected image within a polygon. Finer control can be achieved
by using the stencil buffer to control which parts of the scene are updated by a projected
texture. See Section 14.6 for details.

If the texture is non-repeating and is projected onto an untextured surface, clipping
can be done by using the GL_MODULATE environment function with a GL_CLAMP texture
wrap mode and a white texture border color. As the texture is projected, the surfaces
beyond the projected [0, 1] extent are clamped and use the texture border color. They
end up being modulated with white, leaving the areas textured with the border color
unchanged. One possible problem with this technique is poor support of texture borders
on some OpenGL implementations. This should be less of a problem since the borders are
a constant color. There are other wrap modes, such as GL_CLAMP_TO_BORDER, which
can be used to limit edge sampling to the border color.

The parameters that control filtering for projective textures are the same ones control-
ling normal texturing; the size of the projected texels relative to screen pixels determines
minification or magnification. If the projected image is relatively small, mipmapping may
be required to get good quality results. Using good filtering is especially important if the
projected texture is being applied to animated geometry, because poor sampling can lead
to scintillation of the texture as the geometry moves.

Projecting a texture raises the issue of perspective correct projection. When texture
coordinates are interpolated across geometry, use of the transformed w coordinate is
needed to avoid artifacts as the texture coordinates are interpolated across the primitive,
especially when the primitive vertices are projected in extreme perspective. When the
texture coordinates themselves are projected, the same “perspective correct” issue (see
Section 6.1.4) must be dealt with (Figure 14.19).

The problem is avoided by interpolating the transformed q coordinate, along with
the other texture coordinates. This assures that the texture coordinates are interpo-
lated correctly, even if the texture image itself is projected in extreme perspective. For
more details on texture coordinate interpolation see Section 5.2. Although the specifica-
tion requires it, there may be OpenGL implementations that do not correctly support
this interpolation. If an implementation doesn’t interpolate correctly, the geometry
can be more finely tessellated to minimize the difference in projected q values between
vertices.

Like viewing projections, a texture projection only approximates an optical projec-
tion. The geometry affected by a projected texture won’t be limited to a region of space.
Since there is no implicit texture-space volume clipping (as there is in the OpenGL view-
ing pipeline), the application needs to explicitly choose which primitives to render when
a projected texture is enabled. User-defined clipping planes, or stencil masking may be
required if the finer control over the textured region is needed.

298 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

Geometry is face on to the viewer, no perspective distortion.

Texture is highly distorted by projection of texture coordinates and
may show perspective artifacts if geometry is not tessellated and
texture coordinates are not interpolated using q/w.

F i g u r e 14.19 Texture projected with perspective.

14.10 Texture Color Coding and Contouring

Texture coordinate generation allows an application to map a vertex position or vector to
a texture coordinate. For linear transforms, the transformation is texcoord = f (x, y, z, w),
where texcoord can be any one of s, t, r, or q, and f (x, y, z, w) = Ax + By + Cz + Dw,
where the coefficients are set by the application. The generation can be set to happen
before or after the modelview transform has been applied to the vertex coordinates. See
Section 5.2.1 for more details on texture coordinate generation.

One interesting texgen application is to use generated texture coordinates as mea-
surement units. A texture with a pattern or color coding can be used to delimit changes in
texture coordinate values. A special texture can be applied to target geometry, marking
the texture coordinate changes across its surface visible. This approach makes it possi-
ble to annotate target geometry with measurement information. If relationships between
objects or characteristics of the entire scene need to be measured, the application can

S E C T I O N 1 4 . 1 0 Tex tu re Co lo r Cod ing and Con tou r i ng 299

create and texture special geometry, either solid or semitransparent, to make these values
visible.

One or more texture coordinates can be used simultaneously for measurement. For
example, a terrain model can be colored by altitude using a 1D texture map to hold the
coloring scheme. The texture can map s as the distance from the plane y = 0, for example.
Generated s and t coordinates can be mapped to the x = 0 and z = 0 planes, and applied
to a 2D texture containing tick marks, measuring across a 2D surface.

Much of the flexibility of this technique comes from choosing the appropriate mea-
suring texture. In the elevation example, a 1D texture can be specified to provide different
colors for different elevations, such as that used in a topographic map. For example, if ver-
tex coordinates are specified in meters, distances less than 50 meters can be colored blue,
from 50 to 800 meters in green, and 800 to 1000 meters in white. To produce this effect, a
1D texture map with the first 5% blue, the next 75% green, and the remaining 20% of tex-
els colored white is needed. A 64- or 128-element texture map provides enough resolution
to distinguish between levels. Specifying GL_OBJECT_LINEAR for the texture generation
mode and an GL_OBJECT_PLANE equation of (0, 1/1000, 0, 0) for the s coordinate will
set s to the y value of the vertex scaled by 1/1000 (i.e., s = (0, 1/1000, 0, 0) · (x, y, z, w)).

Different measuring textures provide different effects. Elevation can be shown as
contour lines instead of color coding, using a 1D texture map containing a back-
ground color, marked with regularly spaced tick marks. Using a GL_REPEAT wrap
mode creates regularly repeating lines across the object being contoured. Choosing
whether texture coordinate generation occurs before or after the modelview transform
affects how the measuring textures appear to be anchored. In the contour line exam-
ple, a GL_OBJECT_LINEAR generation function anchors the contours to the model
(Figure 14.20). A GL_EYE_LINEAR setting generates the coordinates in eye space, fixing
the contours in space relative to the viewer.

–z

–x
–y

x

y

z

s mapped
to z

1D texture image

0 1

F i g u r e 14.20 Contour generation usingglTexGen.

300 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

Textures can do more than measure the relative positions of points in 3D space;
they can also measure orientation. A sphere or cube map generation function with an
appropriately colored texture map can display the orientation of surface normals over a
surface. This functionality displays the geometry’s surface orientation as color values on
a per-pixel basis. Texture sampling issues must be considered, as they are for any tex-
turing application. In this example, the geometry should be tessellated finely enough that
the change in normal direction between adjacent vertices are limited enough to produce
accurate results; the texture itself can only linearly interpolate between vertices.

14.11 2D Image Warping

OpenGL can warp an image by applying it to a surface with texturing. The image is
texture mapped onto planar geometry, using non-uniform texture coordinates to distort
it. Image warping takes advantage of OpenGL’s ability to establish an arbitrary relation-
ship between texture coordinates and vertex coordinates. Although any geometry can
be used, a common technique is to texture onto a uniform polygonal mesh, adjusting
the texture coordinates at each vertex on the mesh. This method is popular because the
mesh becomes a regular sampling grid, and the changes in texture coordinates can be
represented as a function of the texture coordinate values. The interpolation of texture
coordinates between vertices gives the warp a smooth appearance, making it possible to
approximate a continuous warping function.

Warping may be used to change the framebuffer image (for example, to create a fish-
eye lens effect), or as part of preprocessing of images used in texture maps or bitmaps.
Repeated warping and blending steps can be concatenated to create special effects, such
as streamline images used in scientific visualization (see Section 20.6.3). Warping can also
be used to remove distortion from an image, undoing a preexisting distortion, such as
that created by a camera lens (see Section 12.7.4).

A uniform mesh can be created by tessellating a 2D rectangle into a grid of vertices. In
the unwarped form, texture coordinates ranging from zero to one are distributed evenly
across the mesh. The number of vertices spanning the mesh determines the sampling rate
across the surface. Warped texture coordinates are created by applying the 2D warping
function warp(s, t) = (s + �s, t + �t) to the unwarped texture coordinates at each vertex
in the mesh. The density of vertices on the mesh can be adjusted to match the amount of
distortion applied by the warping function; ideally, the mesh should be fine enough that
the change in the warped coordinate is nearly linear from point to point (Figure 14.21).
A sophisticated scheme might use non-linear tessellation of the surface to ensure good
sampling. This is useful if the warping function produces a mixture of rapidly changing
and slowly changing warp areas.

The warped texture coordinates may be computed by the application when the mesh
is created. However, if the warp can be expressed as an affine or projective transform,
a faster method is to modify the texture coordinates with the texture transform matrix.

S E C T I O N 1 4 . 1 1 2D Image Warp ing 301

m

m+1

n n+1

n+1n

m m+1

(ds, dt) = f(s,t)

dt = f(s,t)

ds = f(s,t)

Warp function offsetting texture coordinates at a grid square

Warp function sampled at grid points; offsets texture coordinates

F i g u r e 14.21 Distortion function.

This takes advantage of the OpenGL implementation’s acceleration of texture coordinate
transforms. An additional shortcut is possible; texgen can be configured to generate the
unwarped texture coordinate values. How the image is used depends on the intended
application.

By rendering images as textured geometry, warped images are created in the
framebuffer (usually the back buffer). The resultant image can be used as-is in a scene,
copied into a texture using glCopyTexImage2D, or captured as an application memory
image using glReadPixels.

The accuracy of the warp is a function of the texture resolution, the resolution of the
mesh (ratio of the number of vertices to the projected screen area), and the filtering func-
tion used with the texture. The filtering is generally GL_LINEAR, since it is a commonly

302 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

accelerated texture filtering mode, although mipmapping can be used if the distortion
creates regions where many texels are to be averaged into a single pixel color.

The size of the rendered image is application-dependent; if the results are to be used
as a texture or bitmap, then creating an image larger than the target size is wasteful;
conversely, too small an image leads to coarse sampling and pixel artifacts.

14.12 Texture Animation

Although movement and change in computer graphics is commonly done by modify-
ing geometry, animated surface textures are also a useful tool for creating dynamic
scenes. Animated textures make it possible to add dynamic complexity without addi-
tional geometry. They also provide a flexible method for integrating video and other
dynamic image-based effects into a scene. Combining animated images and geometry can
produce extremely realistic effects with only moderate performance requirements. Given
a system with sufficient texture load and display performance, animating texture maps is
a straightforward process.

Texture animation involves continuously updating the image used to texture a sur-
face. If the updates occur rapidly enough and at regular intervals, an animated image is
generated on the textured surface. The animation used for the textures may come from
a live external source, such as a video capture device, a pre-recorded video sequence, or
pre-rendered images.

There are two basic animation approaches. The first periodically replaces the contents
of the texture map by loading new texels. This is done using the glTexSubImage2D
command. The source frames are transfered from an external source (typically disk or
video input) to system memory, then loaded in sequence into texture memory. If the
source frames reside on disk, groups of source frames may be read into memory. The
memory acts as a cache, averaging out the high latency of disk transfers, making it possible
to maintain the animation update rate.

The second animation approach is useful if the number of animated images is small
(such as a small movie loop). A texture map containing multiple images is created; the
texture is animated by regularly switching the image displayed. A particular image is
selected by changing the texture coordinates used to map the texture onto the image.
This can be done explicitly when sending the geometry, or by using texgen or the texture
transform matrix.

When discussing animation update rates, there are two parameters to consider: the
rate at which an animated texture is updated, and the frame rate at which the graphics
application updates the scene. The two are not necessarily the same. The animation frame
rate may be higher or lower than the scene frame rate. Ideally, the updates to the texture
map should occur at the scene frame rate. If the source animation was recorded at a
different rate, it needs to be resampled to match the scene’s rate.

S E C T I O N 1 4 . 1 2 Tex tu re An ima t i on 303

Video
updates:
15 fps

Texture
frames:
20 fps

0/6 1/6 2/6 3/6 4/6 5/6 6/6

Blend of
second and
third texture

frame

F i g u r e 14.22 Resampling animation frames.

If the animation rate is an even multiple of each other, then the resampling algorithm
is trivial. If for example, the animation rate is one half of the frame rate, then resampling
means using each source animation image twice per frame. If the animation rates do not
have a 1/n relationship, then the texture animation may not appear to have a constant
speed.

To improve the update ratios, the animation sequence can be resampled by linearly
interpolating between adjacent source frames (Figure 14.22). The resampling may be
performed as a preprocessing step or be computed dynamically while rendering the scene.
If the resampling is performed dynamically, texture environment or framebuffer blending
can be used to accelerate the interpolation.

Note that resampling must be done judiciously to avoid reducing the quality of the
animation. Interpolating between two images to create a new one does not produce the
same image that would result from sampling an image at that moment in time. Interpo-
lation works best when the original animation sequence has only small changes between
images. Trying to resample an animation of rapidly changing, high-contrast objects with
interpolation can lead to objects with “blurry” or “vibrating” edges.

Choosing the optimal animation method depends on the number of frames in the
animation sequence. If the number of frames is unbounded, such as animation from a
streaming video source, continuously loading new frames will be necessary. However,
there is a class of texture animations that use a modest, fixed number of frames. They are
played either as an endless loop or as a one-shot sequence. An example of the first is a
movie loop of a fire applied to a texture for use in a torch. An example one-shot sequence
is a short animation of an explosion. If the combined size of the frames is small enough,
the entire sequence can be captured in a single texture.

Even when space requirements prohibit storing the entire image sequence, it can still
be useful to store a group of images at a time in a single texture. Batching images this
way can improve texture load efficiency and can facilitate resampling of frames before
they are displayed.

There are two obvious approaches to storing multiple frames in a single texture
map. A direct method is to use a 3D texture map. The 3D texture is created from a

304 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

stack of consecutive animation frames. The s and t coordinates index the horizontal and
vertical axis of each image; the r coordinate represents the time dimension. Creating a
3D texture from stack of images is simple; load the sequence of images into consecutive
locations in memory, then use glTexImage3D to create the 3D texture map from the
data. OpenGL implementations limit the maximum dimensions and may restrict other
3D texture parameters, so the usual caveats apply.

Rendering from the 3D texture is also simple. The texture is mapped to the target
geometry using s and t coordinates as if it’s a 2D texture. The r coordinate is set to a fixed
value for all vertices in the geometry representing the image. The r value specifies a moment
in time in the animation sequence (Figure 14.23). Before the next frame is displayed, r is
incremented by an amount representing the desired time step between successive frames.
3D textures have an inherent benefit; the time value doesn’t have to align with a specific
image in the texture. If GL_LINEAR filtering is used, an r value that doesn’t map to an
exact animation frame will be interpolated from the two frames bracketing that value,
resampling it. Resampling must be handled properly when a frame must sample beyond
the last texture frame in the texture or before the first. This can happen when displaying

r coordinate
(indexing and

interpolating frames)

t coordinate

s coordinate

s and t vary across
polygon, r held

constant per texture frame

F i g u r e 14.23 Animation with 3D textures.

S E C T I O N 1 4 . 1 2 Tex tu re An ima t i on 305

an animation loop. Setting the GL_TEXTURE_WRAP_R parameter to GL_REPEAT ensures
that the frames are always interpolating valid image data.

Although animating with 3D textures is conceptually simple, there are some sig-
nificant limitations to this approach. Some implementations don’t support 3D texture
mapping (it was introduced in OpenGL 1.2), or support it poorly, supporting only very
small 3D texture maps. Even when they are supported, 3D textures use up a lot of space
in texture memory, which can limit their maximum size. If more frames are needed than
fit in a 3D texture, another animation method must be used, or the images in the 3D tex-
ture must be updated dynamically. Dynamic updates involve using the glTexSubImage
command to replace one or more animation frames as needed. In some implementations,
overall bandwidth may improve if subimage loads take place every few frames and load
more than one animation frame at a time. However, the application must ensure that all
frames needed for resampling are loaded before they are sampled.

A feature of 3D texture mapping that can cause problems is mipmap filtering. If
the animated texture requires mipmap filtering (such as an animated texture display on
a surface that is nearly edge on to the viewer), a 3D texture map can’t be used. A 3D
texture mipmap level is filtered in all three dimensions (isotropically). This means that
a mipmapped 3D texture uses much more memory than a 2D mipmap, and that LODs
contain data sampled in three dimensions. As a result, 3D texture LOD levels resample
frames, since they will use texels along the r-axis.

Another method for storing multiple animation frames is to mosaic the frames into a
single 2D texture. The texture map is tiled into a mosaic of images, each frame is loaded
into a specific region. To avoid filtering artifacts at the edges of adjacent images, some
basic spacing restrictions must be obeyed (see Section 14.4 for information on image
mosaicing). The texture is animated by adjusting the texture coordinates of the geometry
displaying the animation so that it references a different image each frame. If the texture
has its animation frames arranged in a regular grid, it becomes simple to select them using
the texture matrix. There are a number of advantages to the mosaic approach: individual
animation frames do not need to be padded to be a power-of-two, and individual frames
can be mipmapped (assuming the images are properly spaced (Figure 14.24). The fact
than any OpenGL implementation can support mosaicing, and that most implementations
can support large 2D textures, are additional advantages.

Texture mosaicing has some downsides. Since there is no explicit time dimension,
texturing the proper frame requires more texture coordinate computation than the 3D
texture approach does. Texture mosaicing also doesn’t have direct support for dynamic
frame resampling, requiring more work from the application. It must index the two
closest images that border the desired frame time, then perform a weighted blend of
them to create the resampled one, using weighting factors derived from the resampled
frame’s relationship with the two parent images. The blending itself can be done using a
multitexture or a multipass blend technique (see Section 5.4 and Section 6.2.4 for details
on these approaches).

Even when using 2D textures, the amount of space required for the animation frames
may exceed the capacity of the texture map. In this case, dynamic updates of the images in

306 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

Multiple frames placed in a single picture

Texture frames can
be mipmapped

F i g u r e 14.24 Animation with texture mosaics.

the texture are necessary. When incremental updates are required, and the animation uses
frame resampling, care should be taken to ensure that all images required for resampling
are completely loaded before they are displayed. In general, one texture (or two if frames
are being resampled) is in use at any time during animation. If dynamic updates are
required, it is important to only replace images that aren’t being used for texturing. To
do this, a double buffering or multibuffering approach can be implemented. The images
in the texture are grouped into two or more blocks, and only blocks not being used for
texturing are candidates for updating. Again, care must be taken to ensure that an inactive
block of images won’t be accessed before the load completes. In some cases, it can help
to duplicate images at the borders of the blocks to ease load requirements at the cost of
some additional texture memory.

14.13 Detail Textures

Textures, even mipmapped ones, appear unrealistic under strong magnification. When
the viewer is close to a texture surface, a single texel color is filtered over multiple pixels.
Under this strong magnification, linear filtering results in an unrealistically smoothed
image with little surface detail. Not only do the magnified images look unrealistic, but
the lack of high-frequency spatial information on the surface makes it difficult for a viewer
to get realistic distance and motion cues when moving near the surface.

S E C T I O N 1 4 . 1 3 De ta i l T e x tu re s 307

Ideally, a mipmapped texture will have enough high-resolution levels that any nor-
mal view of the textured surface will always have sufficient high-frequency spatial data.
But providing extra high-resolution levels is expensive; they take up a disproportionate
amount of texture memory. With mipmapping, each fine level requires four times as many
texels as the next coarser one. In addition to the texture memory overhead, obtaining
the high-resolution data can be expensive. For some applications, it is worth the effort.
Finer levels may contain valuable visual details; they can provide useful information or
add realism to the surface.

In many cases, however, the close-up details are not significant. A very high-
resolution surface image will contain details, but these details may be of little value.
An example may be a close-up view of an asphalt highway; the imperfections revealed
may be of little interest to the viewer. Detail at this level can also be very self-similar; in
our roadside example, one section of asphalt detail may look very similar to any other.
Although the details may not be visually interesting, some fine level detail can provide
important visual cues about the viewer’s distance and velocity relative to the surface, and
keep the surface from looking blurry.

A detail texture can be a useful approach in these circumstances (Figure 14.25).
Instead of making more high-resolution levels, a texture is created that contains only
high-frequency details from the surface. The detail texture is not an entire high-resolution
level, however. Instead a smaller image is used, and replicated across the surface to cover
it. This approach takes advantage of some features of high-frequency details; the details
are often self-similar, so a small patch can be replicated across the surface without looking
too uniform. Since the detail texture contains only high-frequency image features, they
change rapidly across the texture. There are no low-frequency components that would
generate tiling artifacts when the texture is repeated.

The pairing of a base mipmap with the appropriate detail texture is a powerful com-
bination. The mipmapped texture contains levels that provide a realistic representation of
the surface, but does not contain the highest frequency detail. The detail texture provides

Detail texture

F i g u r e 14.25 Detail textures.

308 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

fine, high-frequency features, which are only needed when the viewer is close to the tex-
tured surface. When the viewer gets close enough, both textures are applied; the detail
texture is scaled up to become more prominent as the viewer approaches.

The extra work in implementing detail textures comes from the controlled application
of base and detail texture images. Detail textures should not contribute anything when
the base texture is not magnifying. The high-frequency component intensity should be a
function of the base texture’s magnification level.

The relative texture intensities can be implemented by blending, either by alpha
blending fragments, or by using multitexturing. The relative intensities should be a
function of base texture magnification. A less computationally expensive approach is
is to estimate the magnification level by computing it as a function of viewer distance.
Constraints specific to the application can simplify the problem in some cases. A flight
simulator, for example, may use the height above ground and a precomputed scaling
factor to estimate the texture magnification level of the terrain (Figure 14.26). If the sim-
ulator’s view frustum brings the entire visible textured surface into view at nearly the
same magnification, this approximation will be sufficiently accurate to provide a realistic
effect.

In the general case, however, computing texture magnification can be difficult. An
accurate computation of texture magnification must consider the visible vertices of the
textured surface, the texture coordinate scaling resulting from the current modelview
and projection transformations, the current texture coordinate generation settings, and
the values of the texture transformation matrix. Section 13.7.2 discusses the steps in
the computation in more detail. The best place to perform these computations is in

Texture magnification is easy to compute in this view;
magnification is a function of height above ground.

λ = f(h)

h

F i g u r e 14.26 Special case texture magnification.

S E C T I O N 1 4 . 1 3 De ta i l T e x tu re s 309

the OpenGL implementation; to some extent this can be achieved in the programmable
pipeline within a fragment program. There is also a vendor-specific detail texture exten-
sion SGIS_detail_texture. This extension blends in the detail texture as a function
of magnification, and allows the detail texture either to add to or modulate the base
texture. Unfortunately, it’s unlikely to see widespread adoption, but the ideas present in
it are or will be supportable using fragment programs.

14.13.1 Signed Intensity Detai l Textures

Signed detail textures can be applied accurately without necessarily using separate tex-
ture magnification computations. A detail texture image is created that contains signed
intensity values. The values are chosen so that the average value of the texel elements are
zero. When combined with the base texture, the detail texture modifies its color values,
adding high-frequency components to the textured image. Since the detail texture values
average to zero intensity, a minified detail texture doesn’t contribute to the overall image.
This feature makes the fade in of texture detail “automatic”, so no special computations
are needed to selectively blend in detail.

The detail texture is applied to the same geometry as the base texture. The texture
coordinates applied to both textures are adjusted so that the detail texture minifies if the
base texture is not magnifying. The minification filtering will cause the signed intensity
components to blend together. One way of making the detail texture “average out” is to
make a mipmap out of it. The coarser mipmap levels of the detail texture will average
more of its components, causing it to gradually fade out. As both the detail and base
texture are zoomed, the detail texture will filter to its finer LOD levels, and the signed
intensity values stop canceling each other out.

The fixed-function OpenGL pipeline doesn’t support signed texture color com-
ponents, but only values ranging from [0, 1]. To implement signed arithmetic, the
implementation must use a representation of signed numbers that are biased (and pos-
sibly scaled) to remain in the [0, 1] range (Section 3.4.1). The detail texture is added to
the base texture using either multiple texture units or multiple passes and framebuffer
blending.

In the multipass solution, the surface is first rendered with the base texture. The
texture is applied as normal; configured to modulate the polygon color to capture vertex
lighting detail, for example. The second step applies the detail texture. Since the detail tex-
ture is smaller than the base texture, and is generally applied using GL_REPEATwrapping,
the texture coordinates used differ from those used with the base texture. This change in
mapping can be accomplished by using a separate set of per-vertex texture coordinates,
generating coordinates using texgen, or by modifying the texture transformation matrix.

Neither the texture environment nor alpha blend stages support signed values; in both
cases, the color and alpha component values are expected to range from [0, 1]. Despite
this limitation, both stages can be configured to handle signed quantities, by representing
the signed numbers in a biased format. Besides offering only a limited range, OpenGL
only supports a limited (implementation-dependent) precision for the color component

310 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

values. Care must be taken not to overly reduce this precision while processing colors. For
whatever color format is chosen, the algebra for combining textures must follow certain
rules in order to produce the desired results. When the base texture color is modified
by a signed detail texture color, a detail color of zero should not change the base color,
while a positive or negative detail color should increase or decrease the intensity of the
base color, respectively. If the resulting base color goes out of its [0, 1] range, it will be
clamped.

Since the detail texture’s values are meant to modify the base color, there is some
flexibility in specifying its range. The ideal range is [−1, 1], since that allows a detail
texture color component to drive the base color component over the entire range of
values, regardless of the base texture’s color. Mathematically, the detail texture’s [0, 1]
range is scaled by 2 and biased by −1 to put its values in the range [−1, 1]. This value is
then added to the unmodified base texture, and the results are clamped to [0, 1]. These
operations can be condensed to the equation:

Tresult = Tbase + 2Tdetail − 1

Note that this approach assumes that intermediate results are not clamped to [0, 1], which
is not generally true in all OpenGL implementations.

For many applications, the detail texture does not need to be able to drive the base
texture to an arbitrary value, since the goal of the detail texture is to only pattern the
base texture with detail, not replace it. In many cases, a more limited range of [−1

2 , 1
2]

is sufficient. This range is particularly useful, since it can be derived from the normal
[0, 1] texture representation without scaling. The detail needs only to be biased by −1

2 .
Mathematically, the two textures are combined with:

Tresult = Tbase + Tdetail − 1
2

As before, this approach runs into problems if intermediate results are clamped to
[0, 1]. However, the GL_COMBINE texture environment function supports the [−1

2 , 1
2]

range detail texture representation directly, with the GL_ADD_SIGNED texture function.
It implements the equation Arg0+Arg1−0.5, and doesn’t clamp the intermediate results.
This allows the signed detail sum to be implemented in a single pass using two texture
units. The first unit applies the base texture to the geometry, the second adds the detail
texture using the GL_ADD_SIGNED operation.

Modulating Detail

A useful variation of the signed detail texture approach is to modulate rather than add
the detail texture component to the base texture. This amplifies variation by scaling
rather than adding and subtracting variation. Signed values aren’t very useful for the
modulation case; instead, the detail texture values are greater than or less than one.
A simple implementation uses a range of [0, 2], which can be derived from OpenGL

S E C T I O N 1 4 . 1 3 De ta i l T e x tu re s 311

texture values in the range [0, 1] with a scale value of two. This range of values makes it
possible to force the base texture to a reasonable range of values. Note that detail texture
values of 1

2 are scaled to one, which will not modify the base texture. The detail texture
should average out to this value, in order to fade out under minification.

As with additive detail textures, a modulating detail texture can be implemented with
texture environment functionality partnered with multitexturing. The multitexturing case
is straightforward. Unit 0 applies the base texture to the surface, unit 1 modulates the
base by the detail texture, then scales the result by two using GL_RGB_SCALE. The results
are implicitly clamped to the range [0, 1] after scaling.

Implementing this algorithm using framebuffer blending is awkward but possible.
The base textured geometry, once rendered to the framebuffer, can be modulated by the
detail texture using a blending function of GL_ZERO, GL_SRC_COLOR. Since there is no
support for a scale factor greater than one, the results of combining the base and detail
textures must be added to the framebuffer twice. This can be done by reading back the
framebuffer, then blending it in again, using a blend function of GL_ONE, GL_ONE.

Modulating detail textures are very useful when the base texture modulates vertex-
lighted geometry. Modulating ensures that the detail texture changes follow the shading
imposed by the lighting model, just as the base texture does. Additive detail textures do
not take base texture value changes into account and will appear unlighted.

14.13.2 Creating Detai l Textures

While a detail texture can contain a high-frequency pattern that is independent of the base
texture, the best results are obtained when it contains the high-frequency components
derived from the original image. The first step toward extracting detail texture data is to
obtain a high-resolution version of the base texture. This image need only be a subregion
of the base texture, since the detail texture will be replicated over the surface.

Once the high-resolution image is obtained, the next step is to choose the size of the
detail texture and select a region of the detailed image that contains high-frequency details
representative of the entire image. Now the high-frequency components of the region are
extracted. One method starts by removing the high-frequency components from a copy of
the region by blurring it (Figure 14.27). This can be done with various image processing

Original image

– =

Blurred image Detail image

F i g u r e 14.27 Subtracting out low frequencies.

312 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

algorithms (see Chapter 12), or by using gluScaleImage to scale the image down, then
up again.

Once a blurred version of the high-resolution image has been created, the high-
frequency components are extracted by subtracting the blurred image from the unpro-
cessed one. The subtraction can be done using a subtractive blend mode, the accumulation
buffer, or the appropriate texture environment function. The result is an image with
signed color components that contains the high-frequency elements of the image. The
input images must be scaled and biased so that the result of the subtraction is limited to
the [0, 1] range, since negative pixel values will be clamped when the image is used as a
texture. Checking the range of color values in the images makes it possible to maximize
the range of the resulting subtracted image. If the implementation supports the imaging
subset, the minmax function can be used to find the range of pixel values in both the
high resolution and blurred copies of the detail texture image. The values can be used
to scale and bias the inputs to the subtract operation to maximize the dynamic range
of the resulting image. When the image is created, it should be biased so that the sum
of the color values equals 1

2 . This is necessary so that the detail texture will make no
contribution when it’s minified.

14.14 Texture Sharpening

Like detail textures, texture sharpening is another method for enhancing high-frequency
detail on a magnified texture. Rather than creating a separate detail texture, however, tex-
ture sharpening augments high-frequency information by applying a sharpening operation
to the texture similar to unsharp masking. This operation, a staple of image processing,
increases the contrast of small details in the magnified texture. It has an advantage over
detail textures in that is doesn’t require creating and applying a detail texture as a separate
step. It does require that the magnified texture be mipmapped, since it combines multiple
mipmap levels of the texture to create the sharpened image.

The sharpening operation computes the difference between the magnified finest level
(level 0) and the next coarser level (level 1). A weighted version of the result is added to
the magnified finest image to produce the sharpened result. The result is an extrapolation
from the level 1 image to the level 0 image. The weighting factor applied to the difference,
f , is a function of the magnification factor f (LOD). The equation to compute the texel
color T from the top two texture levels and current magnification is:

Tsharp = (1 + f (LOD))T0 − f (LOD)T1

where Tsharp is the new texel color, T0 is the magnified texel color at level 0, and T1 is
the magnified texel color at level 1. The f (LOD) function takes an LOD value (which
will be negative, since sharpening is only applied to magnified textures) and produces a
weighting factor between 0 and 1. The resulting Tsharp color components are clamped to

S E C T I O N 1 4 . 1 5 Mipmap Gene ra t i on 313

the range [0, 1]. Note that computing the T0 − T1 result is essentially the same technique
used to create a signed intensity detail texture.

The texture sharpening functionality is available in some OpenGL implementations
through the SGIS_sharpen_texture extension. Unfortunately, support for this exten-
sion is not widespread. At the time of this writing, there is no equivalent EXT or ARB
extension, nor is texture sharpening supported as core functionality in any OpenGL spec-
ification. However, given the ability to approximate f (LOD) in a fragment program, the
sharpening functionality can be readily implemented in the programmable pipeline.

Texture sharpening can be implemented at the application level using multitexture
or multiple passes with the same caveats that apply to computing per-fragment values
of f (LOD). If the LOD is constant across the polygon, the application can compute the
constant f (LOD) value. One way to compute an approximate f (LOD) at each fragment
is to create a mipmap texture with the values of f at each level. Texturing with this
map generates a filtered version of f (LOD). The resulting image can be used as a weight
within a multitexture operation or with framebuffer blending. Section 13.7.2 describes
the steps in the LOD calculation in more detail. Section 12.3.2 describes a version of the
extrapolation algorithm for still images using the accumulation buffer and framebuffer
blending.

14.15 Mipmap Generation

OpenGL supports a modest collection of filtering algorithms, the highest quality filter
being GL_LINEAR_MIPMAP_LINEAR, which does trilinear mipmapping. Mipmap filter-
ing requires that the mipmap levels needed for filtering be loaded into texture memory.
OpenGL does not specify a method for generating these individual mipmap level of
details. Each level can be loaded individually; it is possible, but generally not desir-
able, to use a different filtering algorithm to generate each mipmap level. OpenGL 1.4
adds functionality to the pipeline to generate mipmaps automatically from the base level
(GENERATE_MIPMAP), but does not precisely specify the filter algorithm.4

The OpenGL utility library (GLU) provides a simple command
(gluBuild2DMipmaps) for generating all of the levels required for mipmapping a 2D
or 1D texture. The algorithm employed by most implementations is a box filter. A box
filter is a pragmatic choice; it is simple, efficient, and can be repeatedly applied to an LOD
level to generate all coarser levels required in a mipmap. A frequency domain analysis
shows, however, that the box filter has poor filtering characteristics, which can lead to
excessive blurring and aliasing artifacts. A common example of these limitations occurs
if a texture contains very narrow image features (such as narrow lines). Aliasing artifacts
can be very pronounced in this case.

4. A 2×2 box filter is recommended as a fast, but low quality, default.

314 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

Although the limitations of box filtering are well known, finding the best mipmap
filtering function is less obvious. The choice of filter is dependent on the manner in which
the texture will be used and is somewhat subjective. The choice of filter is burdened with
additional trade-offs if the mipmap must be generated at run time, and therefore must be
filtered quickly. One possibility is the use of a bicubic filter — a weighted sum of 16 pixels
for 2D images. Mitchell and Netravali (1988) propose a family of cubic filters for general
image reconstruction which can be used for mipmap generation. The advantage of the
cubic filter over the box filter is that the cubic filter can have negative side lobes (weights)
which help maintain sharpness while reducing the image size. This can help reduce some
of the blurring effect of filtering with mipmaps.

When crafting a new filtering algorithm for mipmap generation, it is important to
keep a few guidelines in mind. To minimize accumulated error, the highest resolution
(finest) image of the mipmap (level 0) should always be used as the input image source
for each level to be generated. For the box filter, a particular level can be produced by
repeating the filter to the results of the previous filtering operation. This works because
the box filter can produce the correct result for a given level by using the preceding level as
input. The filter parameters are independent of LOD level. This invariance is not always
true for other filter functions. Each time a new (coarser) level is generated, the filter
footprint may need to be scaled to four times its previous size.

Another constraint is that mipmap levels must maintain strict factor of two reductions
in each dimension when filtering to a coarser level. Filters with input widths wider than
two will be forced to sample outside the boundaries of the input image. Providing input
values outside of the input image is commonly handled by using the value of the nearest
edge pixel when sampling. This algorithm should be adjusted, however, if the mipmapped
texture will be applied using the GL_REPEAT wrap mode. In this case, the levels will be
filtered more accurately if sample values requested from outside the image should be
wrapped to the appropriate texel from the opposite edge, effectively filtering from a
repeating image.

While mipmaps can always be generated using the host processor, the OpenGL
pipeline can be used to accelerate the process by performing the filtering operations. For
example, the GL_LINEAR minification filter can be used to draw an image of exactly half
the width and height of an image loaded into texture memory. This is done by drawing a
rectangle with the appropriate transformation; it is sized so its pixel dimensions in screen
space are exactly one half of the texture image’s dimensions. The rendered image produced
has effectively been filtered to half of its dimensions using a box filter. The resulting image
can then be read from the color buffer back to host memory for later use as a level. The
read step can be eliminated and the the image can be copied directly into the texture using
glCopyTexImage. If the implementation supports ARB_render_texture, even the
copy step can be removed. The filtering process can be repeated using the newly generated
mipmap level to produce the next level. The process can be continued until the coarsest
level has been generated.

If the texture LOD extension SGIS_texture_lod (which became part of the core
in OpenGL 1.2) is available, a further optimization to this process is possible. By clamping

S E C T I O N 1 4 . 1 6 Tex tu re Map L im i t s 315

the mipmap to only the LOD levels that have been created, the mipmap can be built in
place. The mipmap can be created with only level 0 in place. That level can be used to
render an image for level 1, which can be used as the new texture source. This makes it
possible to build up the mipmap texture without having to switch between two texture
objects.

Although this method is very efficient, it is limited to creating new levels using the
existing texture filters. There are other mechanisms within the OpenGL pipeline that
can be used to produce higher-quality filtering. Convolution filtering can be implemented
using the accumulation buffer (this discussed in detail in Section 12.6.2). An arbitrary filter
kernel can be constructed using a special texture image applied to a rectangular geometry
of the proper size and position. The texel color to be filtered is applied to geometry itself;
the special texture modulates that color over the geometry. The accumulation buffer
combines multiple passes with this technique to produce the final image. Combining
point-sampled texturing with the accumulation buffer allows the application of nearly
arbitrary filter kernels. This method does not handle the problem of sampling outside the
image well, however, which limits its usefulness for wide filter kernels.

Convolution filters may also be implemented directly within fragment programs pro-
viding substantial flexibility in the types of filtering that can be performed within the
pipeline. Typically custom fragment programs are written for each filter type. OpenGL
implementations supporting the imaging subset also directly implement convolution
operations in the pixel pipeline.

14.16 Texture Map Limits

Texture mapping is a versatile component for building graphics effects, but its very desir-
ability can be its downside. It is common for an ambitious application to run into the
limits to available texture memory. Most OpenGL implementations hardware accelerate
texture mapping, but only if they are located within a finite texture memory storage area.
OpenGL implementations often attempt to mitigate the finite size problem by virtualizing
the texture memory resource. This allows an application to create an arbitrarily large set
of texture maps; however, this virtualization isn’t free. As the texture memory resource
becomes oversubscribed, performance will degrade. For the developer of an application
that makes extensive use of texture, there is a tension between rationing available texture
memory to maximize performance, and using texture lavishly to improve image quality.

The practical result of this limitation is that a well-designed application creates
textures no larger than they need to be to meet image quality goals. An application
designer needs to anticipate how textures will be used in each scene to determine the
appropriate resolution to use. Using textures efficiently is always important. Where pos-
sible, images should be crafted to minimize wasted texels. For example, when faced
with an image that doesn’t have power-of-two dimensions, the best choice is usually

316 C H A P T E R 14 Tex tu re Mapp ing Te chn iques

not simply rounding the texture size up to the next power-of-two. Besides such stan-
dard techniques as image tiling and mosaicing, many implementations support a special
texture version that doesn’t require power-of-two dimensions. Vendor-specific exten-
sions, such as NV_texture_rectangle and more widely adopted extensions such
as ARB_texture_non_power_of_two, provide this functionality, although there are
often limitations on the range of wrap modes or filtering that can be applied to such tex-
tures. Even the standard power-of-two dimension limitation doesn’t mean a texture has
to be square. If a texture is typically used with an object that is projected to a non-square
aspect ratio, then the aspect ratio of the texture can be scaled appropriately to make more
efficient use of the available storage.

14.17 Summary

Texture mapping is undoubtedly the most powerful component in a graphics library. At
least part of the reason is its ability to marry image-based and geometry-based processing
with great flexibility. This chapter only provides a sampling of some of building block
algorithms used to create sophisticated techniques. A survey of graphics “tricks and
techniques” books, such as Graphics Gems (Goldman, 1990) and GPU Gems (Fernando,
2004), will reveal more ideas and are valuable references.

The best approach, however, is to have a through understanding of texture mapping.
Nothing can replace a careful reading of the OpenGL core and extension specifica-
tions, augmented with some well-crafted test applications. With a deep understanding
of OpenGL’s texture mapping capabilities, many opportunities for novel applications
become apparent.

15
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Lighting Techniques

This section discusses various ways of improving and refining the lighted appearance of
objects. There are several approaches to approving the fidelity of lighting. The process of
computing lighting can be decomposed into separate subtasks. One is capturing the mate-
rial properties of an object, reflectances, roughness, transparency, subsurface properties,
and so on. A second is the direct illumination model; the manner in which the surface
interacts with the light striking the target object. The third is light transport, which takes
into account the overall path of light, including light passing through other mediums such
as haze or water on its way to the target object. Light transport also includes indirect
illumination, wherein the light source is light reflected from another surface. Computing
this requires taking into account how light rays are blocked by other objects, or by parts
of the target object itself, creating shadows on the target object.

Lighting is a very broad topic and continues to rapidly evolve. In this chapter we
consider various algorithms for improving the quality and character of the direct illumi-
nation model and material modeling. We end by considering restricted-light-transport
modeling problems, such as ambient occlusion.

15.1 Limitations in Vertex Lighting

OpenGL uses a simple per-vertex lighting facility to incorporate lighting into a scene.
Section 3.3.4 discusses some of the shortcomings of per-vertex lighting. One problem is
the location in the pipeline where the lighting terms are summed for each vertex. The
terms are combined at the end of the vertex processing, causing problems with using
texture maps as the source for diffuse reflectance properties. This problem is solved

317

318 C H A P T E R 15 L i gh t i ng Te chn iques

directly in OpenGL 1.2 with the addition of a separate (secondary) color for the specular
term, which is summed after texturing is applied. A second solution, using a two-pass
algorithm, is described in Section 9.2. This second technique is important because it
represents a general class of techniques in which the terms of the vertex lighting equation
are computed separately, then summed together in a different part of the pipeline.

Another problem described in Section 3.3.4 is that the lighting model is evaluated
per-vertex rather than per-pixel. Per-vertex evaluation can be viewed as another form
of sampling (Section 4.1); the sample points are the eye coordinates of the vertices
and the functions being sampled are the various subcomponents of the lighting equation.
The sampled function is partially reconstructed, or resampled, during rasterization as
the vertex attributes are (linearly) interpolated across the face of a triangle, or along the
length of a line.

Although per-vertex sampling locations are usually coarser than per-pixel, assuming
that this results in poorer quality images is an oversimplification. The image quality
depends on both the nature of the function being sampled and the set of sample points
being used. If the sampled function consists of slowly varying values, it does not need as
high a sample rate as a function containing rapid transitions. Reexamining the intensity
terms in the OpenGL lighting equation1

Iam = 1

Idi = N · L

Isp = (H · N)n

Iem = 1

shows that the ambient and emissive terms are constants and the diffuse term is fairly
well behaved. The diffuse term may change rapidly, but only if the surface normal also
does so, indicating that the surface geometry is itself rapidly changing. This means that
per-vertex evaluation of the diffuse term doesn’t introduce much error if the underly-
ing vertex geometry reasonably models the underlying surface. For many situations the
surface can be modeled accurately enough with polygonal geometry such that diffuse
lighting gives acceptable results. An interesting set of surfaces for which the results are
not acceptable is described in Sections 15.9.3 and 15.10.

Accurate specular component sampling becomes more challenging to sample when
the specular exponent (shininess) is greater than 1. The specular function — a cosine
power function — varies rapidly when evaluated with large exponents. Small changes in
the surface normal results in large changes in the specular contribution. Figure 15.1 shows
the result of exponentiating the cosine function for several different exponent values.
This, of course, is the desired effect for the specular term. It models the rapid fall-off
of a highlight reflected from a polished surface. This means that shiny surfaces must be
modeled with greater geometric accuracy to correctly capture the specular contribution.

1. Recall that A · B = max(0, A · B) is the clamped inner product as described in Section3.3

S E C T I O N 1 5 . 1 L im i t a t i ons i n Ve r t e x L i gh t i ng 319

–80 –60 –40–100

A
tte

nu
at

io
n

θ
–20 0 20 40 60 80 100

1

0.8

0.6

0.4

0.2

0

1
2

10
50

128

cosn θ

F i g u r e 15.1 Cosine power function.

15.1.1 Static and Adaptive Tessel lat ion

We’ve seen that highly specular surfaces need to be modeled more accurately than diffuse
surfaces. We can use this information to generate better models. Knowing the intended
shininess of the surface, the surface can be tessellated until the difference between (H ·N)n

at triangle vertices drops below a predetermined threshold. An advantage of this technique
is that it can be performed during modeling; perferably as a preprocessing step as models
are converted from a higher-order representation to a polygonal representation. There
are performance versus quality trade-offs that should also be considered when deciding
the threshold. For example, increasing the complexity (number of triangles) of a modeled
object may substantially affect the rendering performance if:

• The performance of the application or system is already vertex limited: geometry
processing, rather than fragment processing, limits performance.

• The model has to be clipped against a large number of application-defined clipping
planes.

• The model has tiled textures applied to it.

The previous scheme statically tessellates each object to meet quality requirements.
However, because the specular reflection is view dependent only a portion of the object
needs to be tessellated to meet the specular quality requirement. This suggests a scheme
in which each model in the scene is adaptively tessellated. Then only parts of each surface
need to be tessellated. The difficulty with such an approach is that the cost of retessellat-
ing each object can be prohibitively expensive to recompute each frame. This is especially

320 C H A P T E R 15 L i gh t i ng Te chn iques

F i g u r e 15.2 Undersampled specular lighting.

true if we also want to avoid introducing motion artifacts caused by adding or removing
object vertices between frames.

For some specific types of surfaces, however, it may be practical to build this idea
into the modeling step and generate the correct model at runtime. This technique is very
similar to the geometric level of detail techniques described in Section 16.4 . The difference
is that model selection uses specular lighting (see Figure 15.2) accuracy as the selection
criterion, rather than traditional geometric criteria such as individual details or silhouette
edges.

15.1.2 Local Light and Spotl ight Attenuation

Like specular reflection, a vertex sampling problem occurs when using distance-based
and spotlight attenuation terms. With distance attenuation, the attenuation function is
not well behaved because it contains reciprocal terms:

1
kc + kld + kqd2

Figure 15.3 plots values of the attenuation function for various coefficients. When the
linear or quadratic coefficients are non-zero, the function tails off very rapidly. This
means that very fine model tessellation is necessary near the regions of rapid change, in
order to capture the changes accurately.

With spotlights, there are two sources of problems. The first comes from the cutoff
angle defined in the spotlight equation. It defines an abrupt cutoff angle that creates
a discontinuity at the edge of the cone. Second, inside the cone a specular-like power
function is used to control intensity drop-off:(

Lp · Ld
)nspot

S E C T I O N 1 5 . 2 F r agmen t L i gh t i ng Us ing Tex tu re Mapp ing 321

10 20 300 40 50 60 70 80 90 100

1.2

0.8

0.6

0.4

0.2

0

c = 1, l = 0, q = 0
c = 1, l = .25, q = 0
c = 1, l = .50, q = 0
c = 1, l = 1.0, q = 0
c = 1, l = 1.0, q = 2.0

1

A
tte

nu
at

io
n

Distance d

1

(c + ld + qd2)

F i g u r e 15.3 Attenuation function.

When the geometry undersamples the lighting model, it typically manifests itself as a dull
appearance across the illuminated area (cone), or irregular or poorly defined edges at the
perimeter of the illuminated area. Unlike the specular term, the local light and spotlight
attenuation terms are a property of the light source rather than the object. This means that
solutions involving object modeling or tessellation require knowing which objects will be
illuminated by a particular light source. Even then, the sharp cutoff angle of a spotlight
requires tessellation nearly to pixel-level detail to accurately sample the cutoff transition.

15.2 Fragment Lighting Using Texture Mapping

The preceding discussion and Section 3.3.4 advocate evaluating lighting equations at each
fragment rather than at each vertex. Using the ideas from the multipass toolbox discussed
in Section 9.3, we can efficiently approximate a level of per-fragment lighting computa-
tions using a combination of texture mapping and framebuffer blending. If multitexture,
the combine texture environment, and vertex and fragment program features are avail-
able,2 we can implement these algorithms more efficiently or use more sophisticated ones.
We’ll start by presenting the general idea, and then look at some specific techniques.

2. Multitexture and the combine texture environment are part of OpenGL 1.3 or available as
extensions. Vertex and fragment programs are available as the extensions ARB_vertex_program
and ARB_fragment_program.

322 C H A P T E R 15 L i gh t i ng Te chn iques

Abstractly, the texture-mapping operation may be thought of as a function evalu-
ation mechanism using lookup tables. Using texture mapping, the texture-matrix and
texture-coordinate generation functions can be combined to create several useful map-
ping algorithms. The first algorithm is a straightforward 1D and 2D mapping of f (s)
and f (s, t). The next is the projective mappings described in Section 14.9: f (s, t, r, q). The
third uses environment and reflection mapping techniques with sphere and cube maps to
evaluate f (R).

Each mapping category can evaluate a class of equations that model some form of
lighting. Taking advantage of the fact that lighting contributions are additive — and using
the regular associative, commutative, and distributive properties of the underlying color
arithmetic — we can use framebuffer blending in one of two ways. It can be used to sum
partial results or to scale individual terms. This means that we can use texture mapping
and blending as a set of building blocks for computing lighting equations. First, we
will apply this idea to the problematic parts of the OpenGL lighting equation: specular
highlights and attenuation terms. Then we will use the same ideas to evaluate some
variations on the standard (traditional) lighting models.

15.3 Spotlight Effects Using Projective Textures

The projective texture technique (described in Section 14.9) can be used to generate a
number of interesting illumination effects. One of them is spotlight illumination. The
OpenGL spotlight illumination model provides control over a cutoff angle (the spread of
the light cone), an intensity exponent (concentration across the cone), the direction of the
spotlight, and intensity attenuation as a function of distance. The core idea is to project a
texture map from the same position as the light source that acts as an illumination mask,
attenuating the light source. The mask is combined with a point light source placed at the
spotlight’s position. The texture map captures the cutoff angle and exponent, whereas
the vertex light provides the rest of the diffuse and specular computation. Because the
projective method samples the illumination at each pixel, the undersampling problem is
greatly reduced.

The texture is an intensity map of a cross section of the spotlight’s beam. The same
exponent parameters used in the OpenGL model can be incorporated, or an entirely
different model can be used. If 3D textures are available, attenuation due to distance
can also be approximated using a texture in which the intensity of the cross section is
attenuated along the r dimension. As geometry is rendered with the spotlight projection,
the r coordinate of the fragment is proportional to the distance from the light source.

To determine the transformation needed for the texture coordinates, it helps to con-
sider the simplest case: the eye and light source are coincident. For this case, the texture
coordinates correspond to the eye coordinates of the geometry being drawn. The coor-
dinates could be explicitly computed by the application and sent to the pipeline, but a
more efficient method is to use an eye-linear texture generation function.

S E C T I O N 1 5 . 3 Spo t l i gh t E f f e c t s Us ing P ro j e c t i v e Tex tu re s 323

The planes correspond to the vertex coordinate planes (e.g., the s coordinate is the
distance of the vertex coordinate from the y-z plane, and so on). Since eye coordinates are
in the range [−1.0, 1.0] and the texture coordinates need to be in the range [0.0, 1.0], a
scale and bias of 0.5 is applied to s and t using the texture matrix. A perspective spotlight
projection transformation can be computed using gluPerspective and combined into
the texture transformation matrix.

The transformation for the general case, when the eye and light source are not in
the same position, can be computed by compositing an additional transform into the
texture matrix. To find the texture transform for a light at an arbitrary location, the new
transform should be the inverse of the transformations needed to move the light source
from the eye position to the location. Once the texture map has been created, the method
for rendering the scene with the spotlight illumination (see Figure 15.4) is:

1. Initialize the depth buffer.

2. Clear the color buffer to a constant value representing the scene ambient
illumination.

3. Drawing the scene with depth buffering enabled and color buffer writes disabled
(pass 1).

4. Load and enable the spotlight texture, and set the texture environment to
GL_MODULATE.

F i g u r e 15.4 Spotlight projection.

324 C H A P T E R 15 L i gh t i ng Te chn iques

5. Enable the texture generation functions, and load the texture matrix.

6. Enable blending and set the blend function to GL_ONE, GL_ONE.

7. Disable depth buffer updates and set the depth function to GL_EQUAL.

8. Draw the scene with the vertex colors set to the spotlight color (pass 2).

9. Disable the spotlight texture, texgen, and texture transformation.

10. Set the blend function to GL_DST_COLOR.

11. Draw the scene with normal diffuse and specular illumination (pass 3).

There are three passes in the algorithm. At the end of the first pass the ambient illumina-
tion has been established in the color buffer and the depth buffer contains the resolved
depth values for the scene. In the second pass, the illumination from the spotlight is accu-
mulated in the color buffer. By using the GL_EQUAL depth function, only visible surfaces
contribute to the accumulated illumination. In the final pass the scene is drawn with the
colors modulated by the illumination accumulated in the first two passes to compute the
final illumination values.

The algorithm does not restrict the use of texture on objects, because the spotlight
texture is only used in the second pass; only the scene geometry is needed in this one.
The second pass can be repeated multiple times with different spotlight textures and
projections to accumulate the contributions of multiple spotlight sources.

There are some caveats to consider when implementing this technique. Texture
projection along the negative line-of-sight of the texture (back projection) can con-
tribute undesired illumination to the scene. This can be eliminated by positioning a
clip plane at the near plane of the projection line-of-site. The clip plane is enabled dur-
ing the spotlight illumination pass, and oriented to remove objects rendered behind the
spotlight.

OpenGL encourages but does not guarantee invariance when arbitrary modes are
enabled or disabled. This can manifest itself in undesirable ways during multipass algo-
rithms. For example, enabling texture coordinate generation may cause fragments with
different depth values to be generated compared to the one generated when texture coor-
dinate generation is not enabled. This problem can be overcome by reestablishing the
depth buffer values between the second and third pass. Do this by redrawing the scene
with color buffer updates disabled and depth buffering configured as it was during the
first pass.

Using a texture wrap mode of GL_CLAMPwill keep the spotlight pattern from repeat-
ing. When using a linear texture filter, use a black texel border to avoid clamping artifacts;
or, if available, use the GL_CLAMP_TO_EDGE wrap mode.3

3. Added in OpenGL 1.2.

S E C T I O N 1 5 . 4 Specu l a r L i gh t i ng Us ing Env i r onmen t Maps 325

15.4 Specular Lighting Using Environment Maps

The appearance of the OpenGL per-vertex specular highlight can be improved by using
environment mapping to generate a higher-quality per-pixel highlight. A sphere map
containing only a Phong highlight (Phong, 1975) is applied to the object and the result is
summed with the object’s per-vertex ambient and diffuse lighting contributions to create
the final, lighted color (see Figure 15.5). The environment map uses the eye reflection
vector, Rv, to index the texture map, and thus it can be used like a lookup table to
compute the specular term:

f (Rv, L) = (L · Rv)n = (V · Rl)
n

For each polygon in the object, the reflection vector is computed at each vertex. This
technique interpolates the sphere-mapped coordinates of the reflection vector instead of
the highlight itself, and thus a much more accurate sampling of the highlight is achieved.
The sphere map image for the texture map of the highlight is computed by rendering a
highly tessellated sphere, lighted with a specular highlight. Using the OpenGL pipeline
to compute the specular color produces a Blinn (rather than Phong) specular function. If
another function is required, the application can evaluate the specular function at each
vertex and send the result to the pipeline as a vertex color. The bidirectional function,
f (L, R), is reduced to a function of a single direction by encoding the direction of the light
(L) relative to the view direction into the texture map. Consequently, the texture map
needs to be recomputed whenever the light or viewer position is changed. Sphere mapping
assumes that the view direction is constant (infinite viewer) and the environment (light)
direction is infinitely far away. As a result, the highlight does not need to be changed
when the object moves. Assuming a texture map is also used to provide the object’s
diffuse reflectance, the steps in the two-pass method are:

1. Define the material with appropriate diffuse and ambient reflectance, and zero for
the specular reflectance coefficients.

F i g u r e 15.5 Environment-mapped highlight.

326 C H A P T E R 15 L i gh t i ng Te chn iques

2. Define and enable lights.

3. Define and enable texture to be combined with diffuse lighting.

4. Define modulate texture environment.

5. Draw the lighted, textured object into the color buffer.

6. Disable lighting.

7. Load the sphere map texture, and enable the sphere map texgen function.

8. Enable blending, and set the blend function to GL_ONE, GL_ONE.

9. Draw the unlighted, textured geometry with vertex colors set to the specular
material color.

10. Disable texgen and blending.

15.4.1 Multitexture

If a texture isn’t used for the diffuse color, then the algorithm reduces to a single pass using
the add texture environment (see Figure 15.5) to sum the colors rather than framebuffer
blending. For this technique to work properly, the specular material color should be
included in the specular texture map rather than in the vertex colors. Multiple texture
units can also be used to reduce the operation to a single pass. For two texture units, the
steps are modified as follows:

1. Define the material with appropriate diffuse and ambient reflectance, and zero for
the specular reflectance coefficients.

2. Define and enable lights.

3. Define and enable texture to be combined with diffuse lighting in unit 0.

4. Set modulate texture environment for unit 0.

5. Load the sphere map texture, and enable the sphere map texgen function for unit 1.

6. Set add texture environment for unit 1.

7. Draw the lighted, textured object into the color buffer.

As with the separate specular color algorithm, this algorithm requires that the spec-
ular material reflectance be premultiplied with the specular light color in the specular
texture map.

With a little work the technique can be extended to handle multiple light sources.
The idea can be further generalized to include other lighting models. For example, a more
accurate specular function could be used rather than the Phong or Blinn specular terms. It
can also include the diffuse term. The algorithm for computing the texture map must be
modified to encompass the new lighting model. It may still be useful to generate the map
by rendering a finely tessellated sphere and evaluating the lighting model at each vertex

S E C T I O N 1 5 . 5 L i gh t Maps 327

within the application, as described previously. Similarly, the technique isn’t restricted
to sphere mapping; cube mapping, dual-paraboloid mapping, and other environment or
normal mapping formulations can be used to yield even better results.

15.5 Light Maps

A light map is a texture map applied to an object to simulate the distance-related attenua-
tion of a local light source. More generally, light maps may be used to create nonisotropic
illumination patterns. Like specular highlight textures, light maps can improve the appear-
ance of local light sources without resorting to excessive tessellation of the objects in the
scene. An excellent example of an application that uses light maps is the Quake series
of interactive PC games (id Software, 1999). These games use light maps to simulate the
effects of local light sources, both stationary and moving, to great effect.

There are two parts to using light maps: creating a texture map that simulates the
light’s effect on an object and specifying the appropriate texture coordinates to position
and shape the light. Animating texture coordinates allows the light source (or object) to
move. A texture map is created that simulates the light’s effect on some canonical object.
The texture is then applied to one or more objects in the scene. Appropriate texture
coordinates are applied using either object modeling or texture coordinate generation.
Texture coordinate transformations may be used to position the light and to create moving
or changing light effects. Multiple light sources can be generated with a combination of
more complex texture maps and/or more passes to the algorithm.

Light maps are often luminance (single-component) textures applied to the object
using a modulate texture environment function. Colored lights are simulated using an
RGB texture. If texturing is already used for the material properties of an object, either
a second texture unit or a multipass algorithm is needed to apply the light map. Light
maps often produce satisfactory lighting effects using lower resolution than that normally
needed for surface textures. The low spatial resolution of the texture usually does not
require mipmapping; choosing GL_LINEAR for the minification and magnification filters
is sufficient. Of course, the quality requirements for the lighting effect are dependent on
the application.

15.5.1 2D Texture Light Maps

A 2D light map is a 2D luminance map that modulates the intensity of surfaces within a
scene. For an object and a light source at fixed positions in the scene, a luminance map
can be calculated that exactly matches a surface of the object. However, this implies that
a specific texture is computed for each surface in the scene. A more useful approximation
takes advantage of symmetry in isotropic light sources, by building one or more canonical
projections of the light source onto a surface. Translate and scale transformations applied
to the texture coordinates then model some of the effects of distance between the object

328 C H A P T E R 15 L i gh t i ng Te chn iques

and the light source. The 2D light map may be generated analytically using a 2D quadratic
attenuation function, such as

I = 1
kc + kld + kqd2 , where d =

√
s2 + t2

This can be generated using OpenGL vertex lighting by drawing a high-resolution mesh
with a local light source positioned in front of the center of the mesh. Alternatively,
empirically derived illumination patterns may be used. For example, irregularly shaped
maps can be used to simulate patterns cast by flickering torches, explosions, and so on.

A quadratic function of two inputs models the attenuation for a light source at
a fixed perpendicular distance from the surface. To approximate the effect of varying
perpendicular distance, the texture map may be scaled to change the shape of the map.
The scaling factors may be chosen empirically, for example, by generating test maps
for different perpendicular distances and evaluating different scaling factors to find the
closest match to each test map. The scale factor can also be used to control the overall
brightness of the light source. An ambient term can also be included in a light map by
adding a constant to each texel value. The ambient map can be a separate map, or in
some cases combined with a diffuse map. In the latter case, care must be taken when
applying maps from multiple sources to a single surface.

To apply a light map to a surface, the position of the light in the scene must be
projected onto each surface of interest. This position determines the center of the projected
map and is used to compute the texture coordinates. The perpendicular distance of the
light from the surface determines the scale factor. One approach is to use linear texture
coordinate generation, orienting the generating planes with each surface of interest and
then translating and scaling the texture matrix to position the light on the surface. This
process is repeated for every surface affected by the light.

To repeat this process for multiple lights (without resorting to a composite multilight
light map) or to light textured surfaces, the lighting is done using multiple texture units
or as a series of rendering passes. In effect, we are evaluating the equation

Cfinal = Cobject(I1 + I2 + · · · + In)

The difficulty is that the texture coordinates used to index each of the light maps
(I1, . . . , In) are different because the light positions are different. This is not a prob-
lem, however, because multiple texture units have independent texture coordinates and
coordinate generation and transformation units, making the algorithm using multiple
texture units straightforward. Each light map is loaded in a separate texture unit, which
is set to use the add environment function (except for the first unit, which uses replace).
An additional texture unit at the end of the pipeline is used to store the surface detail
texture. The environment function for this unit is set to modulate, modulating the result

S E C T I O N 1 5 . 5 L i gh t Maps 329

of summing the other textures. This rearranges the equation to

Cfinal = (I1 + I2 + · · · + In)Cobject

where Cobject is stored in a texture unit. The original fragment colors (vertex colors) are
not used. If a particular object does not use a surface texture, the environment function
for the last unit (the one previously storing the surface texture) is changed to the combine
environment function with the GL_SOURCE0_RGB and GL_SOURCE0_ALPHA parame-
ters set to GL_PRIMARY_COLOR. This changes the last texture unit to modulate the sum
by the fragment color rather than the texture color (the texture color is ignored).

If there aren’t enough texture units available to implement a multitexture algorithm,
there are several ways to create a multipass algorithm instead. If two texture units are
available, the units can be used to hold a light map and the surface texture. In each
pass, the surface texture is modulated by a different light map and the results summed in
the framebuffer. Framebuffer blending with GL_ONE as the source and destination blend
factors computes this sum. To ensure visible surfaces in later passes aren’t discarded, use
GL_LEQUAL for the depth test. In the simple case, where the object doesn’t have a surface
texture, only a single texture unit is needed to modulate the fragment color.

If only a single texture unit is available, an approximation can be used. Rather than
computing the sum of the light maps, compute the product of the light maps and the
object.

Cfinal = (I1 I2 . . . In)Cobject

This allows all of the products to be computed using framebuffer blending with source
and destination factors GL_ZERO and GL_SRC_COLOR. Because the multiple products
rapidly attenuate the image luminance, the light maps are pre-biased or brightened to
compensate. For example, a biased light map might have its range transformed from
[0.0, 1.0] to [0.5, 1.0]. An alternative, but much slower, algorithm is to have a separate
color buffer to compute each CobjectIj term using framebuffer blending, and then adding
this separate color buffer onto the scene color buffer. The separate color buffer can be
added by using glCopyPixels and the appropriate blend function. The visible surfaces
for the object must be correctly resolved before the scene accumulation can be done.
The simplest way to do this is to draw the entire scene once with color buffer updates
disabled. Here is summary of the steps to support 2D light maps without multitexture
functionality:

1. Create the 2D light maps. Avoid artifacts by ensuring the intensity of the light map
is the same at all edges of the texture.

2. Define a 2D texture, using GL_REPEAT for the wrap values in s and t. Minification
and magnification should be GL_LINEAR to make the changes in intensity
smoother.

3. Render the scene without the light map, using surface textures as appropriate.

330 C H A P T E R 15 L i gh t i ng Te chn iques

4. For each light in the scene, perform the following.
For each surface in the scene:

(a) Cull the surface if it cannot “see” the current light.

(b) Find the plane of the surface.

(c) Align the GL_EYE_PLANE for GL_S, and GL_T with the surface plane.

(d) Scale and translate the texture coordinates to position and size the light on
the surface.

(e) Render the surface using the appropriate blend function and light map
texture.

If multitexture is available, and assuming that the number of light sources is less
than the number of available texture units, the set of steps for each surface
reduces to:

(a) Determine set of lights affecting surface; cull surface if none.

(b) Bind the corresponding texture maps.

(c) Find the plane of the surface.

(d) For each light map, align the GL_EYE_PLANE for GL_S and GL_T with the
surface plane.

(e) For each light map, scale and translate the texture coordinates to position and
size the light on the surface.

(f) Set the texture environment to sum the light map contributions and modulate
the surface color (texture) with that sum.

(g) Render the surface.

15.5.2 3D Texture Light Maps

3D textures may also be used as light maps. One or more light sources are represented as
3D luminance data, captured in a 3D texture and then applied to the entire scene. The
main advantage of using 3D textures for light maps is that it is simpler to approximate
a 3D function, such as intensity as a function of distance. This simplifies calculation of
texture coordinates. 3D texture coordinates allow the textured light source to be posi-
tioned globally in the scene using texture coordinate transformations. The relationship
between light map texture and lighted surfaces doesn’t have to be specially computed to
apply texture to each surface; texture coordinate generation (glTexGen) computes the
proper s, t, and r coordinates based on the light position.

As described for 2D light maps, a useful approach is to define a canonical light volume
as 3D texture data, and then reuse it to represent multiple lights at different positions and

S E C T I O N 1 5 . 5 L i gh t Maps 331

sizes. Texture translations and scales are applied to shift and resize the light. A moving
light source is created by changing the texture matrix. Multiple lights are simulated by
accumulating the results of each light source on the scene. To avoid wrapping artifacts
at the edge of the texture, the wrap modes should be set to GL_CLAMP for s, t, and r and
the intensity values at the edge of the volume should be equal to the ambient intensity of
the light source.

Although uncommon, some lighting effects are difficult to render without 3D tex-
tures. A complex light source, whose brightness pattern is asymmetric across all three
major axes, is a good candidate for a 3D texture. An example is a “glitter ball” effect
in which the light source has beams emanating out from the center, with some beams
brighter than others, and spaced in a irregular pattern. A complex 3D light source can
also be combined with volume visualization techniques, allowing fog or haze to be added
to the lighting effects. A summary of the steps for using a 3D light map follows.

1. Create the 3D light map. Avoid artifacts by ensuring the intensity of the light map
is the same at all edges of the texture volume.

2. Define a 3D texture, using GL_REPEAT for the wrap values in s, t, and r.
Minification and magnification should be GL_LINEAR to make the changes in
intensity smoother.

3. Render the scene without the light map, using surface textures as appropriate.

4. Define planes in eye space so that glTexGen will cause the texture to span the
visible scene.

5. If the lighted surfaces are textured, adding a light map becomes a multitexture or
multipass technique. Use the appropriate environment or blending function to
modulate the surface color.

6. Render the image with the light map, and texgen enabled. Use the appropriate
texture transform to position and scale the light source correctly.

With caveats similar to those for 2D light maps, multiple 3D light maps can be applied
to a scene and mixed with 2D light maps.

Although 3D light maps are more expressive, there are some drawbacks too.
3D textures are often not well accelerated in OpenGL implementation, so applications
may suffer serious reductions in performance. Older implementations may not even sup-
port 3D textures, limiting portability. Larger 3D textures use substantial texture memory
resources. If the texture map has symmetry it may be exploited using a mirrored repeat
texture wrap mode.4 This can reduce the amount of memory required by one-half per
mirrored dimension. In general, though, 2D textures make more efficient light maps.

4. A core feature in OpenGL 1.4 and available as the ARB_texture_mirrored_repeat extension.

332 C H A P T E R 15 L i gh t i ng Te chn iques

15.6 BRDF-based Lighting

The methods described thus far have relied largely on texture mapping to perform table
lookup operations of a precomputed lighting environment, applying them at each frag-
ment. The specular environment mapping technique can be generalized to include other
bidirectional reflectance distribution functions (BRDFs), with any form of environment
map (sphere, cube, dual-paraboloid). However, the specular scheme only works with a
single input vector, whereas BRDFs are a function of two input vectors (L and R), or
in spherical coordinates a function of four scalars f (θi, φi, θr, φr). The specular technique
fixes the viewer and light positions so that as the object moves only the reflection vector
varies.

Another approach decomposes or factors the 4D BRDF function into separate func-
tions of lower dimensionality and evaluates them separately. Each factor is stored in a
separate texture map and a multipass or multitexture algorithm is used to linearly com-
bine the components (Kautz, 1999; McCool, 2001). While a detailed description of the
factorization algorithm is beyond the scope of this book, we introduce the idea because
the method described by McCool et al. (McCool, 2001) allows a BRDF to be decom-
posed to two 2D environment maps and recombined using framebuffer (or accumulation
buffer) blending with a small number of passes.

15.7 Reflectance Maps

The techniques covered so far have provided alternative methods to represent light source
information or the diffuse and ambient material reflectances for an object. These methods
allow better sampling without resorting to subdividing geometry. These benefits can
be extended to other applications by generalizing lighting techniques to include other
material reflectance parameters.

15.7.1 Gloss Maps

Surfaces whose shininess varies — such as marble, paper with wet spots, or fabrics that
are smoothed only in places — can be modeled with gloss maps. A gloss map is a texture
map that encodes a mask of the specular reflectance of the object. It modulates the result
of the specular lighting computation, but is ignored in the diffues and other terms of the
lighting computation (see Figure 15.6).

This technique can be implemented using a two-pass multipass technique. The dif-
fuse, ambient, and emissive lighting components are drawn, and then the specular lighting
component is added using blending.

In the first pass, the surface is drawn with ambient and diffuse lighting, but no
specular lighting. This can be accomplished by setting the specular material reflectance
to zero. In the second pass, the surface is drawn with the specular color restored and

S E C T I O N 1 5 . 7 Re f l e c t an ce Maps 333

F i g u r e 15.6 Gloss map.

the diffuse, ambient, and emissive colors set to zero. The surface is textured with a
texture map encoding the specular reflectance (gloss). The texture can be a one-component
alpha texture or a two- or four-component texture with luminance or color components
set to one.

Typically the alpha component stores the gloss map value directly, with zero indi-
cating no specular reflection and one indicating full specular reflection. The second pass
modulates the specular color — computed using vertex lighting, with the alpha value
from the texture map — and sums the result in the framebuffer. The source and desti-
nation blend factors GL_SRC_ALPHA and GL_ONE perform both the modulation and
the sum. The second pass must use the standard methods to allow drawing the same
surface more than once, using either GL_EQUAL for the depth function or stenciling
(Section 9.2).

The net result is that we compute one product per pass of Cfinal = MdId + MsIs,
where Mi is the material reflectance, stored as a texture, and Ij is the reflected light inten-
sity computed using vertex lighting. Trying to express this as single-pass multitexture
algorithm with the cascade-style environment combination doesn’t really work. The sep-
arate specular color is only available post-texture, and computing the two products and
two sums using texture maps for Md and Ms really requires a multiply-add function to
compute a product and add the previous sum in a single texture unit. This functionality

334 C H A P T E R 15 L i gh t i ng Te chn iques

is available in vendor-specific extensions. However, using an additional texture map to
compute the specular highlight (as described in Section 15.4) combined with a fragment
program provides a straightforward solution. The first texture unit stores Md and com-
putes the first product using the result of vertex lighting. The alpha component of Md also
stores the gloss map (assuming it isn’t needed for transparency). The second texture unit
stores the specular environment map and the two products are computed and summed
in the fragment program.

15.7.2 Emission Maps

Surfaces that contain holes, windows, or cracks that emit light can be modeled using
emission maps. Emission maps are similar to the gloss maps described previously, but
supply the emissive component of the lighting equation rather than the specular part.
Since the emissive component is little more than a pass-through color, the algorithm
for rendering an emission map is simple. The emission map is an RGBA texture; the
RGB values represent the emissive color, whereas the alpha values indicate where the
emissive color is present. The emissive component is accumulated in a separate draw-
ing pass for the object using a replace environment function and GL_SRC_ALPHA and
GL_ONE for the source and destination blend factors. The technique can easily be com-
bined with the two-pass gloss map algorithm to render separate diffuse, specular, and
emissive contributions.

15.8 Per-fragment Lighting Computations

Rather than relying entirely on texture mapping as a simple lookup table for supplying
precomputed components of the lighting equation, we can also use multitexture environ-
ments and fragment programs to directly evaluate parts of the lighting model. OpenGL 1.3
adds the combine environment and the DOT3 combine function, along with cube map-
ping and multitexture. These form a powerful combination for computing per-fragment
values useful in lighting equations, such as N·L. Fragment programs provide the capability
to perform multiple texture reads and arithmetic instructions enabling complex equations
to be evaluated at each fragment. These instructions include trignometric, exponential,
and logarithmic functions — virtually everything required for evaluating many lighting
models.

One of the challenges in evaluating lighting at each fragment is computing the cor-
rect values for various vector quantities (for example, the light, half-angle, and normal
vectors). Some vector quantities we can interpolate across the face of a polygon. We can
use the cube mapping hardware to renormalize a vector (described in Section 15.11.1).

Sometimes it can be less expensive to perform the computation in a different coor-
dinate system, transforming the input data into these coordinates. One example is
performing computations in tangent space. A surface point can be defined by three

S E C T I O N 1 5 . 9 Othe r L i gh t i ng Mode l s 335

perpendicular vectors: the surface normal, tangent, and binormal. The binormal and
tangent vector form a plane that is tangent to the surface point. In tangent space, the
surface normal is aligned with the z axis and allows a compact representation. Lighting
computations are performed in tangent space by transforming (rotating) the view and
light vectors. Transforming these vectors into tangent space during vertex processing
can make the per-fragment lighting computations substantially simpler and improve per-
formance. Tangent space computations and the transformation into tangent space are
described in more detail in Section 15.10.2.

15.9 Other Lighting Models

Up to this point we have largely discussed the Blinn lighting model. The diffuse and
specular terms for a single light are given by the following equation.

dmdlN · L + smsl(H · N)n

Section 15.4 discusses the use of sphere mapping to replace the OpenGL per-vertex spec-
ular illumination computation with one performed per-pixel. The specular contribution
in the texture map is computed using the Blinn formulation given previously. However,
the Blinn model can be substituted with other bidirectional reflectance distribution func-
tions to achieve other lighting effects. Since the texture coordinates are computed using
an environment mapping function, the resulting texture mapping operation accurately
approximates view-dependent (specular) reflectance distributions.

15.9.1 Fresnel Reflect ion

A useful enhancement to the lighting model is to add a Fresnel reflection term, Fλ (Hall,
1989), to the specular equation:

dmdlN · L + Fλsmsl(H · N)n

The Fresnel term specifies the ratio of the amount of reflected light to the amount of
transmitted (refracted) light. It is a function of the angle of incidence (θi), the relative
index of refraction (nλ) and the material properties of the object (dielectric, metal, and
so on, as described in Section 3.3.3).

Fλ(θi) = 1(g − c)2

2(g + c)2

(
1 + (c(g + c) − 1)2

(c(g − c) + 1)2

)
c = cos θ

g =
√

n2
λ + c2 − 1

336 C H A P T E R 15 L i gh t i ng Te chn iques

Here, θ is the angle between V and the halfway vector H (cos θ = H ·V). The effect of the
Fresnel term is to attenuate light as a function of its incident and reflected directions as well
as its wavelength. Dielectrics (such as glass) barely reflect light at normal incidence, but
almost totally reflect it at glancing angles. This attenuation is independent of wavelength.
The absorption of metals, on the other hand, can be a function of the wavelength. Copper
and gold are good examples of metals that display this property. At glancing angles, the
reflected light color is unaltered, but at normal incidence the light is modulated by the
color of the metal.

Since the environment map serves as a table indexed by the reflection vector, the
Fresnel effects can be included in the map by simply computing the specular equation with
the Fresnel term to modulate and shift the color. This can be performed as a postprocessing
step on an existing environment map by computing the Fresnel reflection coefficient at
each angle of incidence and modulating the sphere or cube map. Environment mapping,
reflection, and refraction and are discussed in more detail in Sections 5.4 and 17.1.

Alternatively, for direct implementation in a fragment program an approximating
function can be evaluated in place of the exact Fresnel term. For example, Schlick proposes
the function (Schlick, 1992)

Fλ(θ) = Cλ + (1 − Cλ)(1 − cos θ)5

where Cλ = (n1 − n2)2/(n1 + n2)2 and n1 is the index of refraction of the medium the
incident ray passes through (typically air) and n2 the index of refraction of the material
reflecting the light. Other proposed approximations are:

Fλ(θ) = (1 − cos θ)4

Fλ(θ) = 1
(1 + cos θ)7

15.9.2 Gaussian Reflect ion

The Phong lighting equation, with its cosine raised to a power term for the specular com-
ponent, is a poor fit to a physically accurate specular reflectance model. It’s difficult to map
measured physical lighting properties to its coefficient, and at low specularity it doesn’t
conserve incident and reflected energy. The Gaussian BRDF is a better model, and with
some simplifications can be approximated by modifying parameters in the Phong model.
The specular Phong term Kscos(θ)spec is augmented by modifying the Ks and spec param-

eters to a more complex and physically accurate form: .0398(1.999 1
α2)Kscos(θ)(1.999 1

α2),
where α is a material parameter. See Diefenbach (1997) or Ward (1992) for details on
this equation’s derivation, limits to its accuracy, and material properties modeled by
the α parameter. This model can be implemented either using the specular environment
mapping technique described in Section 15.4 or using a fragment program.

S E C T I O N 1 5 . 9 Othe r L i gh t i ng Mode l s 337

15.9.3 Anisotropic Lighting

Traditional lighting models approximate a surface as having microscopic facets that are
uniformly distributed in any direction on the surface. This uniform distribution of facets
serves to randomize the direction of reflected light, giving rise to the familiar isotropic
lighting behavior.

Some surfaces have a directional grain, made from facets that are formed with a direc-
tional bias, like the grooves formed by sanding or machining. These surfaces demonstrate
anisotropic lighting properties, which depend on the rotation of the surface around its
normal. At normal distances, the viewer does not see the facets or grooves, but only the
resulting lighting effect. Some everyday surfaces that have anisotropic lighting behavior
are hair, satin Christmas tree ornaments, brushed alloy wheels, CDs, cymbals in a drum
kit, and vinyl records.

Heidrich and Seidel (Heidrich 1998a) present a technique for rendering surfaces with
anisotropic lighting, based on the scientific visualization work of Zöckler et al. (Zöckler,
1997). The technique uses 2D texturing to provide a lighting solution based on a “most
significant” normal to a surface at a point.

The algorithm uses a surface model with infinitely thin fibers running across the
surface. The tangent vector T, defined at each vertex, can be thought of as the direction
of a fiber. An infinitely thin fiber can be considered to have an infinite number of surface
normals distributed in the plane perpendicular to T, as shown in Figure 15.7. To evaluate
the lighting model, one of these candidate normal vectors must be chosen for use in the
lighting computation.

F i g u r e 15.7 Normals to a fiber.

338 C H A P T E R 15 L i gh t i ng Te chn iques

N (L projected into
normal plane)

Fiber

Normal plane

L

F i g u r e 15.8 Projecting light vector to maximize lighting contribution.

As described in Stalling (1997), the normal vector that is coplanar to the tangent
vector T and light vector L is chosen. This vector is the projection of the light vector onto
the normal plane as shown in Figure 15.8.

The diffuse and specular lighting factors for a point based on the view vector V,
normal N, light reflection vector Rl , light direction L, and shininess exponent s are:

Idiffuse = N · L

Ispecular = (V · Rl)
s

To avoid calculating N and Rl, the following substitutions allow the lighting calculation
at a point on a fiber to be evaluated with only L, V, and the fiber tangent T (anisotropic
bias).

N · L =
√

1 − (L · T)2

V · Rl =
√

1 − (L · T)2 ∗
√

1 − (V · T)2 − (L · T)(V · T)

If V and L are stored in the first two rows of a transformation matrix, and T is transformed
by this matrix, the result is a vector containing L · T and V · T. After applying this
transformation, L · T is computed as texture coordinate s and V · T is computed as t, as
shown in Equation 15.1. A scale and bias must also be included in the matrix in order to
bring the dot product range [−1, 1] into the range [0, 1]. The resulting texture coordinates

S E C T I O N 1 5 . 9 Othe r L i gh t i ng Mode l s 339

are used to index a texture storing the precomputed lighting equation.

1
2

⎛⎜⎜⎝
Lx Ly Lz 1
Vx Vy Vz 1
0 0 0 0
0 0 0 2

⎞⎟⎟⎠
⎛⎜⎜⎝

Tx

Ty

Tz

1

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
2 (L · T) + 1
1
2 (V · T) + 1

0
1

⎞⎟⎟⎟⎠ (15.1)

If the following simplifications are made — the viewing vector is constant (infinitely far
away) and the light direction is constant — the results of this transformation can be used
to index a 2D texture to evaluate the lighting equation based solely on providing T at
each vertex.

The application will need to create a texture containing the results of the lighting
equation (for example, the OpenGL model summarized in Appendix B.7). The s and t
coordinates must be scaled and biased back to the range [−1, 1], and evaluated in the
previous equations to compute N · L and V · Rl .

A transformation pipeline typically transforms surface normals into eye space by
premultiplying by the inverse transpose of the viewing matrix. If the tangent vector (T)
is defined in model space, it is necessary to query or precompute the current modeling
transformation and concatenate the inverse transpose of that transformation with the
transformation matrix in equation 15.1.

The transformation is stored in the texture matrix and T is issued as a per-vertex
texture coordinate. Unfortunately, there is no normalization step in the OpenGL texture
coordinate generation system. Therefore, if the modeling matrix is concatenated as men-
tioned previously, the texture coordinates representing vectors may be transformed so
that they are no longer unit length. To avoid this, the coordinates must be transformed
and normalized by the application before transmission.

Since the anisotropic lighting approximation given does not take the self-occluding
effect of the parts of the surface facing away from the light, the texture color needs to be
modulated with the color from a saturated per-vertex directional light. This clamps the
lighting contributions to zero on parts of the surface facing away from the illumination
source.

This technique uses per-vertex texture coordinates to encode the anisotropic direc-
tion, so it also suffers from the same sampling-related per-vertex lighting artifacts found
in the isotropic lighting model. If a local lighting or viewing model is desired, the appli-
cation must calculate L or V, compute the entire anisotropic lighting contribution, and
apply it as a vertex color.

Because a single texture provides all the lighting components up front, changing any
of the colors used in the lighting model requires recalculating the texture. If two textures
are used, either in a system with multiple texture units or with multipass, the diffuse
and specular components may be separated and stored in two textures. Either texture
may be modulated by the material or vertex color to alter the diffuse or specular base
color separately without altering the maps. This can be used, for example, in a database
containing a precomputed radiosity solution stored in the per-vertex color. In this way,

340 C H A P T E R 15 L i gh t i ng Te chn iques

the diffuse color can still depend on the orientation of the viewpoint relative to the tangent
vector but only changes within the maximum color calculated by the radiosity solution.

15.9.4 Oren-Nayar Model

The Lambertian diffuse model assumes that light reflected from a rough surface is depen-
dent only on the surface normal and light direction, and therefore a Lambertian surface
is equally bright in all directions. This model conflicts with the observed behavior for
diffuse surfaces such as the moon. In nature, as surface roughness increases the object
appears flatter; the Lambertian model doesn’t capture this characteristic.

In 1994, Oren and Nayar (Oren, 1994) derived a physically-based model and val-
idated it by comparing the results of computations with measurements on real objects.
In this model, a diffuse surface is modeled as a collection of “V-cavities” as proposed
by Torrance and Sparrow (Torrance, 1976). These cavities consist of two long, narrow
planar facets where each facet is modeled as a Lambertian reflector. Figure 15.9 illustrates
a cross-section of a surface modeled as V-cavities. The collection of cavity facets exhibit
complex interactions, including interreflection, masking of reflected light, and shadowing
of other facets, as shown in Figure 15.10.

The projected radiance for a single facet incorporating the effects of masking and
shadowing can be described using the geometrical attenuation factor (GAF). This factor

a

N

θ

F i g u r e 15.9 Surface modeled as a collection of V-cavities.

(a) Interreflection (b) Masking (c) Shadowing

F i g u r e 15.10 Interreflection, masking, and shadowing.

S E C T I O N 1 5 . 9 Othe r L i gh t i ng Mode l s 341

is a function of the surface normal, light direction, and the facet normal (a), given by the
formula

GAF = min
[
1, max

[
0,

2(N · a)(N · V)
(V · a)

,
2(N · a)(N · L)

(V · a)

]]
In addition, the model includes an interreflection factor (IF), modeling up to two bounces
of light rays. This factor is approximated using the assumption that the cavity length l
is much larger than the cavity width w, treating the cavity as a one-dimensional shape.
The interreflection component is computed by integrating over the cross section of the
one-dimensional shape. The limits of the integral are determined by the masking and
shadowing of two facets: one facet that is visible to the viewer with width mv and a second
adjacent facet that is illuminated by the interreflection, with width ms. The solution for
the resulting integral is

π

2

[
d(1,

mv

w
) + d(1,

ms

w
) − d(

ms

w
,

mv

w
) − d(1, 1)

]
,

where d(x, y) =
√

x2 + 2xy cos(2θa) + y2

To compute the reflection for the entire surface, the projected radiance from both shad-
owing/masking and interreflection is integrated across the surface. The surface is assumed
to comprise a distribution of facets with different slopes to produce a slope-area distri-
bution D. If the surface roughness is isotropic, the distribution can be described with a
single elevation parameter θa, since the azimuth orientation of the facets φa is uniformly
distributed. Oren and Nayar propose a Gaussian function with zero mean µ = 0 and
variance σ for the isotropic distribution, D(θa, µ, σ) = Ce−θ2

a /2σ2
. The surface roughness

is then described by the variance of the distribution. The integral itself is complex to
evaluate, so instead an approximating function is used. In the process of analyzing the
contributions from the components of the functional approximation, Oren and Nayar
discovered that the contributions from the interreflection term are less significant than the
shadowing and masking term. This leads to a qualitative model that matches the overall
model and is cheaper to evaluate. The equation for the qualitative model is

L(θr, θi, φr − φi; σ) = ρ

π
E0 cos θi(A + B max[0, cos(φr − φi)] sin α tan β)

A = 1.0 − 0.5
σ 2

σ 2 + 0.33

B = 0.45
σ 2

σ 2 + 0.09

α = max(θr, θi)

β = min(θr, θi)

342 C H A P T E R 15 L i gh t i ng Te chn iques

where θr and θi are the angles of reflection and incidence relative to the surface normal
(the viewer and light angles) and φr and φi are the corresponding reflection and incidence
angles tangent to the surface normal. Note that as the surface roughness σ approaches
zero the model reduces to the Lambertian model.

There are several approaches to implementing the Oren-Nayer model using the
OpenGL pipeline. One method is to use an environment map that stores the precomputed
equation L(θr, θi, φr −φi; σ), where the surface roughness σ and light and view directions
are fixed. This method is similar to that described in Section 15.4 for specular lighting
using an environment map. Using automatic texture coordinate generation, the reflection
vector is used to index the corresponding part of the texture map. This technique, though
limited by the fixed view and light directions, works well for a fixed-function OpenGL
pipeline.

If a programmable pipeline is supported, the qualitative model can be evalu-
ated directly using vertex and fragment programs. The equation can be decomposed
into two pieces: the traditional Lambertian term cos θi and the attenuation term
A + B max[0, cos(φr − φi)] sin α tan β. To compute the attentuation term, the light and
view vectors are transformed to tangent space and interpolated across the face of the
polygon and renormalized. The normal vector is retrieved from a tangent-space normal
map. The values A and B are constant, and the term cos(φr−φi) is computed by projecting
the view and light vectors onto the tangent plane of N, renormalizing, and computing
the dot product

Vprj = V − N(N · V)

Lprj = L − N(N · L)

cos(φr − φi) = Vprj

||Vprj|| · Lprj

||Lprj||

Similarly, the product of the values α and β is computed using a texture map to implement
a 2D lookup table F(x, y) = sin(x) tan(y). The values of cos θi and cos θr are computed by
projecting the light and view vectors onto the normal vector,

cos θi = N · L

cos θr = N · V

and these values are used in the lookup table rather than θi and θr.

15.9.5 Cook-Torrance Model

The Cook-Torrance model (Cook, 1981) is based on a specular reflection model by
Torrance and Sparrow (Torrance, 1976). It is a physically based model that can be used
to simulate metal and plastic surfaces. The model accurately predicts the directional dis-
tribution and spectral composition of the reflected light using measurements that capture

S E C T I O N 1 5 . 1 0 Bump Mapp ing w i th Tex tu re s 343

spectral energy distribution for a material and incident light. Similar to the Oren-Nayar
model, the Cook-Torrance model incorporates the following features.

• Microfacet distribution

• Geometric attenuation factor for micro-facet masking and self-shadowing

• Fresnel reflection with color shift

The model uses the Beckmann facet slope distribution (surface roughness) function
(Beckmann, 1963), given by

DBeckmann = 1
π2 cos4 α

e
tan2 α

m2

where m is a measure of the mean facet slope. Small values of m approximate a smooth
surface with gentle facet slopes and larger values of m a rougher surface with steeper
slopes. α is the angle between the normal and halfway vector (cos α = N · H). The
equation for the entire model is

L = Fλ

π

DBeckmann

N · L
GAF
N · V

To evaluate this model, we can use the Fresnel equations from Section 15.9.1 and the GAF
equation described for the Oren-Nayar model in Section 15.9.4. This model can be applied
using a precomputed environment map, or it can be evaluated directly using a fragment
program operating in tangent space with a detailed normal map. To implement it in a
fragment program, we can use one of the Fresnel approximations from Section 15.9.1, at
the cost of losing the color shift. The Beckmann distribution function can be approximated
using a texture map as a lookup table, or the function can be evaluated directly using the
trigonometric identity

tan2 α = 1 − cos2 α

cos2 α
= 1 − (N · H)2

N · H

The resulting specular term can be combined with a tradition diffuse term or the value
computed using the Oren-Nayar model. Figure 15.11 illustrates objects illuminated with
the Oren-Nayar and Cook-Torrance illumination models.

15.10 Bump Mapping with Textures

Bump mapping (Blinn, 1978), like texture mapping, is a technique to add more realism
to synthetic images without adding of geometry. Texture mapping adds realism by
attaching images to geometric surfaces. Bump mapping adds per-pixel surface relief

344 C H A P T E R 15 L i gh t i ng Te chn iques

σ = 0 σ = 0.40 σ = 0.60

Blinn, n = 40 m = 0.20 m = 0.15

F i g u r e 15.11 Oren-Nayar and Cook-Torrance reflection models.

shading, increasing the apparent complexity of the surface by perturbing the surface nor-
mal. Surfaces that have a patterned roughness are good candidates for bump mapping.
Examples include oranges, strawberries, stucco, and wood.

An intuitive representation of surface bumpiness is formed by a 2D height field array,
or bump map. This bump map is defined by the scalar difference F(u, v) between the
flat surface P(u, v) and the desired bumpy surface P′(u, v) in the direction of normal
N at each point u, v. Typically, the function P is modeled separately as polygons or
parametric patches and F is modeled as a 2D image using a paint program or other image
editing tool.

Rather than subdivide the surface P′(u, v) into regions that are locally flat, we note
that the shading perturbations on such a surface depend more on perturbations in the
surface normal than on the position of the surface itself. A technique perturbing only the
surface normal at shading time achieves similar results without the processing burden of
subdividing geometry. (Note that this technique does not perturb shadows from other
surfaces falling on the bumps or shadows from bumps on the same surface, so such
shadows will retain their flat appearance.)

The normal vector N′ at u, v can be calculated by the cross product of the partial
derivatives of P′ in u and v. (The notational simplification P′

u is used here to mean the
partial derivative of P′ with respect to u, sometimes written ∂P′

∂u). The chain rule can be
applied to the partial derivatives to yield the following expression of P′

u and P′
v in terms

of P, F, and derivatives of F.

P′
u = Pu + Fu

N
||N|| + F

∂
N

||N||
∂u

S E C T I O N 1 5 . 1 0 Bump Mapp ing w i th Tex tu re s 345

P′
v = Pv + Fv

N
||N|| + F

∂
N

||N||
∂v

If F is assumed to be sufficiently small, the final terms of each of the previous expressions
can be approximated by zero:

P′
u ≈ Pu + Fu

N
||N||

P′
v ≈ Pv + Fv

N
||N||

Expanding the cross product P′
u × P′

v gives the following expression for N′.

N′ = (Pu + Fu
N

||N||) × (Pv + Fv
N

||N||)

This evaluates to

N′ = Pu × Pv + Fu(N × Pv)
||N|| + Fv(Pu × N)

||N|| + FuFv(N × N)
||N||2

Since Pu ×Pv yields the normal N, N ×N yields 0, and A ×B = −(B×A), we can further
simplify the expression for N′ to:

N′ = N + Fu(N × Pv)
||N|| − Fv(N × Pu)

||N||

The values Fu and Fv are easily computed through forward differencing from the 2D
bump map, and Pu and Pv can be computed either directly from the surface definition or
from forward differencing applied to the surface parameterization.

15.10.1 Approximating Bump Mapping Using Texture

Bump mapping can be implemented in a number of ways. Using the programmable
pipeline or even with the DOT3 texture environment function it becomes substantially
simpler than without these features. We will describe a method that requires the least
capable hardware (Airey, 1997; Peercy, 1997). This multipass algorithm is an extension
and refinement of texture embossing (Schlag, 1994). It is relatively straightforward to
modify this technique for OpenGL implementations with more capabilities.

346 C H A P T E R 15 L i gh t i ng Te chn iques

15.10.2 Tangent Space

Recall that the bump map normal N′ is formed by Pu×Pv. Assume that the surface point
P is coincident with the x-y plane and that changes in u and v correspond to changes
in x and y, respectively. Then F can be substituted for P′, resulting in the following
expression for the vector N′.

N′ =

⎛⎜⎜⎜⎜⎝
−∂F

∂u

−∂F
∂v
1

⎞⎟⎟⎟⎟⎠
To evaluate the lighting equation, N′ must be normalized. If the displacements in the
bump map are restricted to small values, however, the length of N′ will be so close
to one as to be approximated by one. Then N′ itself can be substituted for N without
normalization. If the diffuse intensity component N·L of the lighting equation is evaluated
with the value presented previously for N′, the result is the following.

N′ · L = −∂F
∂u

Lx − ∂F
∂v

Ly + Lz (15.2)

This expression requires the surface to lie in the x-y plane and that the u and v parameters
change in x and y, respectively. Most surfaces, however, will have arbitrary locations
and orientations in space. To use this simplification to perform bump mapping, the view
direction V and light source direction L are transformed into tangent space.

Tangent space has three axes: T, B and N. The tangent vector, T, is parallel to
the direction of increasing texture coordinate s on the surface. The normal vector, N, is
perpendicular to the surface. The binormal, B, is perpendicular to both N and T, and
like T lies in the plane tangent to the surface. These vectors form a coordinate system
that is attached to and varies over the surface.

The light source is transformed into tangent space at each vertex of the polygon (see
Figure 15.12). To find the tangent space vectors at a vertex, use the vertex normal for N
and find the tangent axis T by finding the vector direction of increasing s in the object’s
coordinate system. The direction of increasing t may also be used. Find B by computing
the cross product of N and T. These unit vectors form the following transformation.

⎛⎜⎜⎝
x′
y′
z′
w′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Tx Ty Tz −Vx

Bx By Bz −Vy

Nx Ny Nz −Vz

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

x
y
z
w

⎞⎟⎟⎠ (15.3)

S E C T I O N 1 5 . 1 0 Bump Mapp ing w i th Tex tu re s 347

N
B

T
T

N

B

B

N T

F i g u r e 15.12 Tangent space defined at polygon vertices.

This transformation brings coordinates into tangent space, where the plane tangent to
the surface lies in the x-y plane and the normal to the surface coincides with the z axis.
Note that the tangent space transformation varies for vertices representing a curved sur-
face, and so this technique makes the approximation that curved surfaces are flat and the
tangent space transformation is interpolated from vertex to vertex.

15.10.3 Forward Differencing

The first derivative of the height values of the bump map in a given direction s′, t′ can be
approximated by the following process (see Figure 15.13 1(a) to 1(c)):

1. Render the bump map texture.

2. Shift the texture coordinates at the vertices by s′, t′.

3. Rerender the bump map texture, subtracting from the first image.

Consider a 1D bump map for simplicity. The map only varies as a function of s. Assuming
that the height values of the bump map can be represented as a height function F(s), then
the three-step process computes the following: F(s) − F(s + �s)/�s. If the delta is one
texel in s, then the resulting texture coordinate is F(s)−F(s+ 1

w), where w is the width of
the texture in texels (see Figure 15.14). This operation implements a forward difference
of F, approximating the first derivative of F if F is continuous.

In the 2D case, the height function is F(s, t), and performing the forward difference
in the directions of s′ and t′ evaluates the derivative of F(s, t) in the directions s′ and t′.
This technique is also used to create embossed images.

This operation provides the values used for the first two addends shown in
Equation 15.2. In order to provide the third addend of the dot product, the process
needs to compute and add the transformed z component of the light vector. The tan-
gent space transform in Equation 15.3 implies that the transformed z component of
L′ is simply the inner product of the vertex normal and the light vector, L′

z = N · L.

348 C H A P T E R 15 L i gh t i ng Te chn iques

(1c)

(1b)

(1a)

(2c)

(2b)

(2a)

Building diffuse
component of bumpmap

Building specular
component of bumpmap

(2e)

Diffuse bump map Specular bump map

+

−

=

(1d)

+

−

=

Raise to the
power n

+

F i g u r e 15.13 Bump mapping: shift and subtract image.

S E C T I O N 1 5 . 1 0 Bump Mapp ing w i th Tex tu re s 349

A

B

A – B

F i g u r e 15.14 Shifting a bump map to perform forward differencing.

Therefore, the z component can be computed using OpenGL to evaluate the diffuse light-
ing term at each vertex. This computation is performed as a second pass, adding to the
previous results. The steps for diffuse bump mapping are summarized:

1. Render the polygon with the bump map texture, modulating the polygon color. The
polygon color is set to the diffuse reflectance of the surface. Lighting is disabled.

2. Find N, T, and B at each vertex.

3. Use the vectors to create a transformation.

4. Use the matrix to rotate the light vector L into tangent space.

5. Use the rotated x and y components of L to shift the s and t texture coordinates at
each polygon vertex.

6. Rerender the bump map textured polygon using the shifted texture coordinates.

7. Subtract the second image from the first.

8. Render the polygon with smooth shading, with lighting enabled, and texturing
disabled.

9. Add this image to the result.

Using the accumulation buffer can provide reasonable accuracy. The bump-mapped
objects in the scene are rendered with the bump map, rerendered with the shifted bump
map, and accumulated with a negative weight (to perform the subtraction). They are
then rerendered using Gouraud shading and no bump map texture, and accumulated
normally.

350 C H A P T E R 15 L i gh t i ng Te chn iques

The process can also be extended to find bump-mapped specular highlights. The
process is repeated using the halfway vector (H) instead of the light vector. The halfway
vector is computed by averaging the light and viewer vectors L+V

2 . The combination of
the forward difference of the bump map in the direction of the tangent space H and the
z component of H approximate N · H. The steps for computing N · H are as follows.

1. Render the polygon with the bump map textured on it.

2. Find N, T, and B at each vertex.

3. Use the vectors to create a rotation matrix.

4. Use the matrix to rotate the halfway vector H into tangent space.

5. Use the rotated x and y components of H to shift the s and t texture coordinates at
each polygon vertex.

6. Rerender the bump-map-textured polygon using the shifted texture coordinates.

7. Subtract the second image from the first.

8. Render the polygon Gouraud shaded with no bump map texture. This time use H
instead of L as the light direction. Set the polygon color to the specular light
color.

The resulting N·H must be raised to the shininess exponent. One technique for performing
this exponential is to use a color table or pixel map to implement a table lookup of
f (x) = xn. The color buffer is copied onto itself with the color table enabled to perform
the lookup. If the object is to be merged with other objects in the scene, a stencil mask can
be created to ensure that only pixels corresponding to the bump-mapped object update
the color buffer (Section 9.2). If the specular contribution is computed first, the diffuse
component can be computed in place in a subsequent series of passes. The reverse is not
true, since the specular power function must be evaluated on N · H by itself.

Blending

If the OpenGL implementation doesn’t accelerate accumulation buffer operations, its
performance may be very poor. In this case, acceptable results may be obtainable using
framebuffer blending. The subtraction step can produce intermediate results with negative
values. To avoid clamping to the normal [0, 1] range, the bump map values are scaled
and biased to support an effective [−1, 1] range (Section 3.4.1). After completion, of the
third pass, the values are converted back to their original 0 to 1 range. This scaling and
biasing, combined with fewer bits of color precision, make this method inferior to using
the accumulation buffer.

Bumps on Surfaces Facing Away from the Light

Because this algorithm doesn’t take self-occlusion into account, the forward differencing
calculation will produce “lights” on the surface even when no light is falling on the

S E C T I O N 1 5 . 1 0 Bump Mapp ing w i th Tex tu re s 351

surface. Use the result of L · N to scale the shift so that the bump effect tapers off slowly
as the surface becomes more oblique to the light direction. Empirically, adding a small
bias (.3 in the authors’ experiments) to the dot product (and clamping the result) is more
visibly pleasing because the bumps appear to taper off after the surface has started facing
away from the light, as would actually happen for a displaced surface.

15.10.4 Limitat ions

Although this technique does closely approximate bump mapping, there are limitations
that impact its accuracy.

Bump Map Sampling

The bump map height function is not continuous, but is sampled into the texture. The
resolution of the texture affects how faithfully the bump map is represented. Increasing
the size of the bump map texture can improve the sampling of high-frequency height
components.

Texture Resolution

The shifting and subtraction steps produce the directional derivative. Since this is a for-
ward differencing technique, the highest frequency component of the bump map increases
as the shift is made smaller. As the shift is made smaller, more demands are made of the
texture coordinate precision. The shift can become smaller than the texture filtering imple-
mentation can handle, leading to noise and aliasing effects. A good starting point is to
size the shift components so that their vector magnitude is a single texel.

Surface Curvature

The tangent coordinate axes are different at each point on a curved surface. This tech-
nique approximates this by finding the tangent space transforms at each vertex. Texture
mapping interpolates the different shift values from each vertex across the polygon. For
polygons with very different vertex normals, this approximation can break down. A solu-
tion would be to subdivide the polygons until their vertex normals are parallel to within
an error limit.

Maximum Bump Map Slope

The bump map normals used in this technique are good approximations if the bump
map slope is small. If there are steep tangents in the bump map, the assumption that
the perturbed normal is length one becomes inaccurate, and the highlights appear too
bright. This can be corrected by normalizing in fourth pass, using a modulating texture
derived from the original bump map. Each value of the texel is one over the length of the

perturbed normal: 1
/√ ∂f

∂u

2 + ∂f
∂v

2 + 1.

352 C H A P T E R 15 L i gh t i ng Te chn iques

15.11 Normal Maps

Normal maps are texture maps that store a per-pixel normal vector in each texel. The
components of the normal vector are stored in the R, G, and B color components. The
normal vectors are in the tangent space of the object (see Section 15.10.2). Relief shading,
similar to bump mapping, can be performed by computing the dot product N · L using
the texture combine environment function. Since the computation happens in the texture
environment stage, the colors components are fixed point numbers in the range [0, 1]. To
support computations of inputs negative components, the dot product combine operation
assumes that the color components store values that are scaled and biased to represent
the range [−1, 1]. The dot product computation is

4 ((CR − 0.5)(TR − 0.5) + (CG − 0.5)(TG − 0.5) + (CB − 0.5)(TB − 0.5)) ,

producing a result that is not scaled and biased. If the dot product is negative, the regular
[0, 1] clamping sets the result to 0, so the dot product is N · L rather than N · L.

To use normal maps to perform relief shading, first a tangent-space biased normal
map is created. To compute the product N · L, the tangent space light vector L is sent
to the pipeline as a vertex color, using a biased representation. Since interpolating the
color components between vertices will not produce correctly interpolated vectors, flat
shading is used. This forces the tangent-space light vector to be constant across the face of
each primitive. The texture environment uses GL_COMBINE for the texture environment
function and GL_DOT3_RGB for the RGB combine operation. If multiple texture units
are available, the resulting diffuse intensity can be used to modulate the surface’s diffuse
reflectance stored in a successive texture unit. If there isn’t a texture unit available, a two-
pass method can be used. The first pass renders the object with diffuse reflectance applied.
The second pass renders the object with the normal map using framebuffer blending to
modulate the stored diffuse reflectance with the computed diffuse light intensity.

If programmable pipeline support is available, using normal maps becomes simple.
Direct diffuse and specular lighting model computations are readily implemented inside
a fragment program. It also provides an opportunity to enhance the technique by adding
parallax to the scene using offset mapping (also called parallax mapping) (Welsh, 2004).
This adds a small shift to the texture coordinates used to look up the diffuse surface color,
normal map, or other textures. The offset is in the direction of the viewer and is scaled and
biased by the height of the bump, using a scale and bias of approximately 0.04 and 0.02.

15.11.1 Vector Normalizat ion

For a curved surface, the use of a constant light vector across the face of each primitive
introduces visible artifacts at polygon boundaries. To allow per-vertex tangent-space light
vector to be correctly interpolated, a cube map can be used with a second texture unit.
The light vector is issued as a set of (s, t, r) texture coordinates and the cube map stores
the normalized light vectors. Vectors of the same direction index the same location in the

S E C T I O N 1 5 . 1 2 Bump-mapped Re f l e c t i ons 353

texture map. The faces of the cube map are precomputed by sequencing the two texture
coordinates for the face through the integer coordinates [0, M−1] (where M is the texture
size) and computing the normalized direction. For example, for the positive X face at each
y, z pair,

F =
(

M
2

,
M
2

− y,
M
2

− z
)T

N = F
||F||

and the components of the normalized vector N are scaled and biased to the [0, 1] texel
range. For most applications 16×16 or 32×32 cube map faces provide sufficient accuracy.

An alternative to a table lookup cube map for normalizing a vector is to directly com-
pute the normalized value using a truncated Taylor series approximation. For example,
the Taylor series expansion for N′ = N/||N|| is

N′ = N(1 − 1
2

(N · N − 1) + 3
8

(N · N − 1)2 − 5
16

(N · N − 1)3 + · · ·)

≈ N + N
2

(1 − N · N)

which can be efficiently implemented using the combine environment function with
two texture units if the GL_DOT3_RGB function is supported. This approximation
works best when interpolating between unit length vectors and the deviation between
the two vectors is less than 45 degrees. If the programmable pipeline is supported by
the OpenGL implementation, normalization operations can be computed directly with
program instructions.

15.12 Bump-mapped Reflections

Bump mapping can be combined with environment mapping to provide visually inter-
esting perturbed reflections. If the bump map is stored as displacements to the normal
(∂F
∂u and ∂F

∂u) rather than a height field, the displacements can be used as offsets added to
the texture coordinates used in a second texture. This second texture represents the light-
ing environment, and can be the environment-mapped approximation to Phong lighting
discussed in Section 15.4 or an environment map approximating reflections from the
surface (as discussed in Section 17.3.4).

The displacements in the “bump map” are related to the displacements to the nor-
mal used in bump mapping. The straightforward extension is to compute the reflection
vector from displaced normals and use this reflection vector to index the environment
map. To simplify hardware design, however, the displaced environment map coordinates

354 C H A P T E R 15 L i gh t i ng Te chn iques

are approximated by applying the bump map displacements after the environment map
coordinates are computed for the vertex normals. With sphere mapping, the error intro-
duced by this approximation is small at the center of the sphere map, but increases as the
mapped normal approaches the edge of the sphere map. Images created with this tech-
nique look surprisingly realistic despite the crudeness of the approximation. This feature
is available through at least one vendor-specific extension ATI_envmap_bumpmap.

15.13 High Dynamic Range Lighting

In Section 12.9 we introduced the idea of high dynamic range images (HDR images).
These images are capable of storing data over a much larger range than a typical 8-bit per-
component color buffer. The section also describes the process of tone mapping, which
maps the components of an HDR image to the component resolutions of a typical display
device. A natural outgrowth of being able to capture and store an HDR image is to gener-
ate scenes with HDR lighting. This facilitates the implementation of physically based ren-
dering using spectral radiance for real llumination sources. Alternatively, HDR scenes can
also be rendered using image-based lighting derived from HDR images (Debevec, 2002).

The simplest way to implement HDR image-based lighting is to capture the envi-
ronment as an HDR environment map, called a radiance map. Sphere map environment
maps of HDR data are termed light probes and can be captured with a fish-eye lens or by
photographing a chrome ball from a distance, just like a sphere environment map. Special
processing is required to recover the HDR values; it is described in detail by Paul Debevec
in (Debevec, 1997) and (Debevec, 2002). Lighting a scene with the HDR environment is
similar to other environment mapping techniques; the system must be capable of process-
ing HDR color values, however, so fragment programs and HDR texture image formats
and color buffers are required. The end result is an HDR image that must be tone mapped
to map the HDR pixel values to a displayable range, as described in Section 12.9.2.

15.13.1 Bloom and Glare Effects

The human visual system response to high-luminance sources results in several visible
effects, including glare, lenticular halos, and bloom (Spencer, 1995). Some of these
effects can be simulated as part of an HDR rendered scene. They are performed as a
postprocess on the HDR rendered scene, called a “bright pass.”

The first step uses the tone-mapping operator to segment the scene into bright and
dim parts. To extract the bright part of the scene, the curve-based tone mapping operator
from Section 12.9.2 is modified and applied in pieces. First, the log-average luminance
is computed and colors are scaled by the a/Lavg, and then the dim pixels are subtracted
away using a threshold value of 5, clamping the result to zero. Finally, the remaining
“bright” values are scaled by 1/(10 + Lscale(x, y)) to isolate the light sources. The values
of 5 and 10 are empirically chosen, with 5 representing the threshold luminance for dark
areas and the offset value 10 defining the degree of separation between light and dark

S E C T I O N 1 5 . 1 4 G loba l I l l um ina t i on 355

areas. Once the bright image is computed, it is blurred using a Gaussian or other filter
and the result is added to the tone-mapped scene.

The bright image can be used for other glare or halo effects by locating the positions
of the light source and sampling specific patterns (circles, crosses, and so on) and smearing
them along the pattern. The result is added back to the orginal scene.

15.14 Global Illumination

The lighting models described thus far have been growing progressively more sophisti-
cated. However, capturing the effects of complex interreflections, area light sources, and
so on is increasingly difficult using individual light sources. Environment maps capture
some of the information in a more complex environment, but the subtleties of real lighting
are often better captured using a global illumination model. Global illumination models
using radiosity or ray tracing are generally too computationally complex to perform in
real time. However, if the objects and light sources comprising the environment are static,
it is possible to perform the global illumination calculations as a preprocessing step and
then display the results interactively. Such an approach is both practical and useful for
applications such as architectural walkthroughs. The technique is typically employed for
diffuse illumination solutions since view-independent (ideal) diffuse illumination can be
represented as a single value (color) at each object vertex.

Many of the techniques for the display of precomputed global illumination param-
eterize the radiance transfer with a set of basis functions such as wavelets or spherical
harmonics. This allows the lighting contribution to be factored out, so that at display
time a dynamic lighting environment projected onto the same basis can be used to light
the scene efficiently. This computation is usually with an N dimensional dot product,
where N ≤ the number of basis functions used to parameterize the solution. Details for
these techniques are beyond the scope of this book, but we will outline some methods
that do not require an extended mathematical discussion.

15.14.1 Virtual Light Technique

Walter et al. (Walter, 1997) describe a method for rendering global illumination solutions
that contain view-independent directionally variant lighting effects. The specular term in
the OpenGL lighting model is used to approximate the directionally varying lighting
information, and the emissive term is used to approximate the directionally invariant
illumination (diffuse illumination). In this method, a set of OpenGL lights is treated as a
set of basis functions that are summed together, whereas the object is rendered to yield a
more general directional distribution. The OpenGL light parameters, such as position or
intensity coefficients, have no relationship to the light sources in the original model, but
instead serve as a compact representation for the directional illumination of an object.
Each rendered object has its own set of lights, called virtual lights.

The method works on a global illumination solution, which stores a number of sam-
ples of the directionally varying illumination at each object vertex. The parameters for

356 C H A P T E R 15 L i gh t i ng Te chn iques

the virtual lights of a particular object are determined using a fitting procedure consisting
of a number of heuristics. The main idea is to produce a set of solutions for a num-
ber of specular exponent values and then choose the exponent value that minimizes the
mean-squared error using a least squares method. A solution at a given exponent value
is determined as follows.

1. Choose a specular exponent value.

2. Find the vertex on the object with the largest directional radiance.

3. Choose a light direction to align the specular lobe with this brightest direction.

4. Choose an intensity coefficient to match the radiance at the point on the object.

5. Compute the specular contribution at other points on the object and subtract from
the radiance.

6. Repeat steps 2 through 5 using updated object radiance until all lights have been
used.

7. At each vertex, compute the specular and emission coefficients using a least
squares fit.

Once the lighting parameters have been determined, the model is rendered using the
glLight and glMaterial commands to set the directional light parameters and spec-
ular exponent for each object. The glMaterial command is used to set the specular
reflectance and emitted intensity at each vertex. The rendering speed for the model is
limited by its geometric complexity and of the OpenGL implementation’s ability to
deal with multiple light sources and material changes at each vertex. Rendering per-
formance may be improved by rendering in multiple passes to limit the number of
active lights or the number of material parameter changes in each pass. For example,
use glColorMaterial and glColor to change only the emitted intensity or specular
reflectance in each pass and framebuffer blending can then be used to sum the results
together.

15.14.2 Combining OpenGL Lighting with Radiosity

Radiosity solutions produce accurate global illumination solutions for diffuse reflections
(Cohen, 1993). While the solutions are view independent, they are computationally
expensive, so their usefulness tends to be limited to static scenes. They have another
limitation, they can’t model specular reflections, so separate processing must be done to
add them. The hardware lighting equations supported by OpenGL are fast, and provide
adequate realism for direct lighting of objects. A hybrid solution can combine the best
of both radiosity and OpenGL lighting. This technique creates realistic scenes with both
diffuse and specular reflections that are viewer dependent and insensitive to small changes
in object position.

Computing radiosity is a recursive process. Each step consists of processing each
surface, computing the incoming radiosity from each visible surface in the scene, then

S E C T I O N 1 5 . 1 4 G loba l I l l um ina t i on 357

updating the emitted radiosity of the surface. This process is repeated until the radiosity
values of the surfaces converge. The first step of this process consists of setting the radiosity
of the illumination sources of the room. Thus, the first radiosity iteration computes the
contributions of surfaces directly illuminated from the scene’s light sources.

The hybrid approach computes the radiosity equation, then subtracts out the radios-
ity contributes from this first step. What’s left is the indirect illumination caused by
object interreflection. The objects in the scene are colored using this radiosity result, then
lighted using standard OpenGL lighting techniques. The OpenGL lighting provides the
missing direct illumination to the scene. The lighting equation is parameterized to pro-
vide no ambient illumination, since the radiosity computations supply a more accurate
solution.

This technique has several advantages. Since normal OpenGL lighting provides the
direct specular and diffuse lighting, the viewer-dependent parts of the scene can be ren-
dered quickly, once the initial radiosity computations have been completed. The radiosity
results themselves are more robust, since they only contribute lighting effects from object
interreflections. Viewed as light sources, objects in the scene tend to have large areas, so
the amount of incident light falling on any given object is fairly insensitive to its position
in the scene. These effects are also a smaller percentage of the total lighting contribution,
so they will still “look right” longer as the object moves, since the direct part of the
lighting contribution is taking object position into account.

As a scene is dynamically updated, at some point the radiosity errors will become
noticeable, requiring that the radiosity equations be recomputed. Since these errors accu-
mulate slowly, this cost can be amortized over a large number of frames. Small objects can
move significantly without large error, especially if they are not very near large objects
in the scene. Other techniques mentioned in this book can be combined with this one
to improve the realism of OpenGLs direct illumination, since the radiosity contribution
and the direct illumination contribution are orthogonal. See (Diefenbach, 1997) for more
details on this technique.

15.14.3 Ambient Occlusion

Ambient occlusion is a scalar value recorded at every surface point indicating the average
amount of self-occlusion occurring at the point on the surface. It measures the extent to
which a location on the surface is obscured from surrounding light sources. It is used
to approximate self-shadowing and adds realism to lighting by mimicking the effects of
indirect light sources such as sky, ground, walls, and so on.

To use ambient occlusion in interactive rendering, the occlusion term is computed
as a preprocessing step and relies on the geometry being rigid and the lighting constant
to avoid recomputing the occlusion information. Like other light transport modeling
methods, this one is restricted to diffuse surfaces; i.e. view-independent lighting. Ambient
occlusion is computed for each object independently, not for the entire scene, so objects
can undergo separate rigid transformations such as rotation and translation while using
the same ambient occlusion map.

358 C H A P T E R 15 L i gh t i ng Te chn iques

N

F i g u r e 15.15 Cross section showing hemispherical visibility sampling.

Conceptually, the ambient occlusion at a surface point is computed by casting rays
sampling the hemisphere over the surface point (see Figure 15.15). The rays themselves are
used to compute visibility. The point is partially occluded if the ray interesects another
part of the object geometry as it extends outward toward a hemisphere bounding the
object.

If the rays are uniformly distributed across the hemisphere; the single ambient occlu-
sion value is a weighted average of the visibility results (Vp(ω)) using hemispherical
integration.

OAp = 1
π

∫
�

Vp(ω)(N · ω)dω

One method for weighting the samples uses the cosine of the angle between the surface
normal at the point and the direction of the sample ray. This can be computed more
efficiently by using a cosine distribution of sample rays, summing the results directly
(Monte Carlo integration).

OAo = 1
n

n∑
i=1

Vp(s1)

The results of computing the occlusion value at different sample points are combined to
form an ambient occlusion map. Like other lighting techniques, ambient occlusion maps
may be sampled at different frequencies (for example, at each vertex, or at regular points
on the object surface). The goal is to have the sample rate match the rate of change of the
occlusion detail on the object.

S E C T I O N 1 5 . 1 5 Summary 359

Without ambient occlusion With ambient occlusion

F i g u r e 15.16 Ambient occlusion.

The ambient occlusion map is applied during rendering by modulating the result
of diffuse lighting computations with the ambient occlusion term. For occlusion values
sampled at vertices, the occlusion term can be included in the material reflectance for the
vertex (using color material or a vertex program). High-density occlusion maps are used as
textures and also modulate the result of the diffuse lighting computation. An additional
improvement to the scheme replaces the surface normal with a “bent normal” — the
average unoccluded direction. Figure 15.16 illustrates a per-pixel occlusion map applied
to a sample object.

Incorporating ambient occlusion enhances flat illumination by adding extra defini-
tion. It is efficient and relatively low cost techique to add to the rendering step. The only
downside is the requirement for precomputation of the map. With some cleverness, how-
ever, the precomputation can also be hardware accelerated using the OpenGL pipeline
(Whitehurst, 2003; Hill, 2004; Fernando, 2004).

15.15 Summary

Lighting continues to be one of the most actively researched areas in computer graphics.
New lighting models and methods for emulating surface characteristics and light transport
continue to be developed. Texture mapping combined with the programmable fragment
pipeline greatly increases the range of lighting models that can be implemented within the
OpenGL pipeline. This chapter covers only a subset of frequently used lighting algorithms.
They represent different trade-offs in terms of visual quality and computational cost; their
applicability is dependent on both the needs of the application and the capabilities of the
OpenGL implementation.

III
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

P
A
R
T

Advanced Techniques

16
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

CAD and Modeling

Techniques

In previous chapters, many of the underlying principles for faithful rendering of models
have been described. In this chapter, we extend those techniques with additional algo-
rithms that are particularly useful or necessary for interactive modeling applications such
as those used for computer-aided design (CAD). The geometric models use complex rep-
resentations such as NURBS surfaces and geometric solids that are typically converted to
simpler representations for display. Representations for even relatively simple real-world
objects can involve millions of primitives. Displaying and manipulating large models both
efficiently and effectively is a considerable challenge. Besides the display of the model,
CAD applications must also supply other information such as labels and annotations
that can also challenge efficient display. CAD applications often include a variety of anal-
ysis and other tools, but we are primarily concerned with the display and interactive
manipulation parts of the application.

16.1 Picking and Highlighting

Interactive selection of objects, including feedback, is an important part of modeling
applications. OpenGL provides several mechanisms that can be used to perform object
selection and highlighting tasks.

363

364 C H A P T E R 16 CAD and Mode l i ng Te chn iques

16.1.1 OpenGL Select ion

OpenGL supports an object selection mechanism in which the object geometry is trans-
formed and compared against a selection subregion (pick region) of the viewport. The
mechanism uses the transformation pipeline to compare object vertices against the view
volume. To reduce the view volume to a screen-space subregion (in window coordinates)
of the viewport, the projected coordinates of the object are transformed by a scale and
translation transform and combined to produce the matrix

T =

⎛⎜⎜⎜⎜⎜⎜⎝

px

dx
0 0 px − 2

qx − ox

dx

0
py

dy
0 py − 2

qy − oy

dy

0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
where ox, oy, px, and py are the x and y origin and width and height of the viewport,
and qx, qy, dx, and dy are the origin and width and height of the pick region.

Objects are identified by assigning them integer names using glLoadName. Each
object is sent to the OpenGL pipeline and tested against the pick region. If the test
succeeds, a hit record is created to identify the object. The hit record is written to the
selection buffer whenever a change is made to the current object name. An application
can determine which objects intersected the pick region by scanning the selection buffer
and examining the names present in the buffer.

The OpenGL selection method determines that an object has been hit if it intersects
the view volume. Bitmap and pixel image primitives generate a hit record only if a raster
positioning command is sent to the pipeline and the transformed position lies within
the viewing volume. To generate hit records for an arbitrary point within a pixel image
or bitmap, a bounding rectangle should be sent rather than the image. This causes the
selection test to use the interior of the rectangle. Similarly, wide lines and points are
selected only if the equivalent infinitely thin line or infinitely small point is selected. To
facilitate selection testing of wide lines and points, proxy geometry representing the true
footprint of the primitive is used instead.

Many applications use instancing of geometric data to reduce their memory footprint.
Instancing allows an application to create a single representation of the geometric data for
each type of object used in the scene. If the application is modeling a car for example, the
four wheels of the car may be represented as instances of a single geometric description
of a wheel, combined with a modeling transformation to place each wheel in the correct
location in the scene. Instancing introduces extra complexity into the picking operation.
If a single name is associated with the wheel geometry, the application cannot determine
which of the four instances of the wheel has been picked. OpenGL solves this problem
by maintaining a stack of object names. This allows an application, which represents
models hierarchically, to associate a name at each stage of its hierarchy. As the car is

S E C T I O N 1 6 . 1 P i c k i ng and H igh l i gh t i ng 365

Wheel Wheel

Back left
Front left

Frame transform

Frame

Front right
transform

Wheel Wheel

Front left
transform

Back right
transform

Drawing hierarchyScene

Frame

Back left
transform

Front right
Back right

F i g u r e 16.1 Instancing of four wheels.

being drawn, new names are pushed onto the stack as the hierarchy is descended and old
names are popped as the hierarchy is ascended. When a hit record is created, it contains
all names currently in the name stack. The application determines which instance of an
object is selected by looking at the content of the name stack and comparing it to the
names stored in the hierarchical representation of the model.

Using the car model example, the application associates an object name with the
wheel representation and another object name with each of the transformations used to
position the wheel in the car model. The application determines that a wheel is selected
if the selection buffer contains the object name for the wheel, and it determines which
instance of the wheel by examining the object name of the transformation. Figure 16.1
shows an illustration of a car frame with four wheels drawn as instances of the same
wheel model. The figure shows a partial graph of the model hierarchy, with the car frame
positioned in the scene and the four wheel instances positioned relative to the frame.

When the OpenGL pipeline is in selection mode, the primitives sent to the pipeline
do not generate fragments to the framebuffer. Since only the result of vertex coordinate
transformations is of interest, there is no need to send texture coordinates, normals, or
vertex colors, or to enable lighting.

16.1.2 Object Tagging in the Color Buffer

An alternative method for locating objects is to write integer object names as color val-
ues into the framebuffer and read back the framebuffer data within the pick region

366 C H A P T E R 16 CAD and Mode l i ng Te chn iques

to reconstruct the object names. For this to work correctly, the application relies on
being able to write and read back the same color value. Texturing, blending, dither-
ing, lighting, and smooth shading should be disabled so that fragment color values are
not altered during rasterization or fragment processing. The unsigned integer forms of
the color commands (such as glColor3ub) are used to pass in the object names. The
unsigned forms are defined to convert the values in such a way as to preserve the b most
significant bits of the color value, where b is the number of bits in the color buffer.
To limit selection to visible surfaces, depth testing should be enabled. The back color
buffer can be used for the drawing operations to keep the drawing operations invisible to
the user.

A typical RGB color buffer, storing 8-bit components, can represent 24-bit object
names. To emulate the functionality provided by the name stack in the OpenGL selection
mechanism, the application can partition the name space represented by a color value to
hold instancing information. For example, a four level hierarchy can subdivide a 24-bit
color as 4, 4, 6, and 10 bits. Using 10 bits for the lowest level of the hierarchy creates a
larger name space for individual objects.

One disadvantage of using the color buffer is that it can only hold a single identifier
at each pixel. If depth buffering is used, the pixel will hold the object name correspond-
ing to a visible surface. If depth buffering is not used, a pixel holds the name of the
last surface drawn. The OpenGL selection mechanism can return a hit record for all
objects that intersect a given region. The application is then free to choose one of the
intersecting objects using a separate policy. A closest-to-viewer policy is simple using
either OpenGL selection or color buffer tags. Other policies may need the complete
intersection list, however. If the number of potential objects is small, the complete list
can be generated by allocating nonoverlapping names from the name space. The objects
are drawn with bitwise OR color buffer logic operations to produce a composite name.
The application reconstructs the individual objects names from the composite list. This
algorithm can be extended to handle a large number of objects by partitioning objects
into groups and using multiple passes to determine those groups that need more detailed
interrogation.

16.1.3 Proxy Geometry

One method to reduce the amount of work done by the OpenGL pipeline during pick-
ing operations (for color buffer tagging or OpenGL selection) is to use a simplified
form of the object in the picking computations. For example, individual objects can
be replaced by geometry representing their bounding boxes. The precision of the pick-
ing operation is traded for increased speed. The accuracy can be restored by adding a
second pass in which the objects, selected using their simplified geometry, are reprocessed
using their real geometry. The two-pass scheme improves performance if the combined
complexity of the proxy objects from the first pass and the real objects processed in
the second pass is less than the complexity of the set of objects tested in a single-pass
algorithm.

S E C T I O N 1 6 . 1 P i c k i ng and H igh l i gh t i ng 367

16.1.4 Mapping from Window to Object Coordinates

For some picking algorithms it is useful to map a point in window coordinates
(xw, yw, zw)T to object coordinates (xo, yo, zo)T . The object coordinates are computed
by transforming the window coordinates by the inverse of the viewport V , projection P,
and modelview M transformations:⎛⎜⎜⎝

xo

yo

zo

wo

⎞⎟⎟⎠ = M−1P−1V−1

⎛⎜⎜⎝
xw

yw

zw

1

⎞⎟⎟⎠ = (PM)−1V−1

⎛⎜⎜⎝
xw

yw

zw

1

⎞⎟⎟⎠
This procedure isn’t quite correct for perspective projections since the inverse of the per-
spective divide is not included. Normally, the w value is discarded after the perspective
divide, so finding the exact value for wclip may not be simple. For applications using
perspective transformations generated with the glFrustum and gluPerspective
commands, the resulting wclip is the negative eye-space z coordinate, −ze. This value
can be computed from zw using the viewport and projection transform parameters as
described in Appendix B.2.3.

In some situations, however, only the window coordinate x and y values are available.
A 2D window coordinate point maps to a 3D line in object coordinates. The equation of
the line can be determined by generating two object-space points on the line, for example
at zw = 0 and zw = 1. If the resulting object-space points are Po and Qo, the parametric
form of the line is

t(Qo − Po) + Po

16.1.5 Other Picking Methods

For many applications it may prove advantageous to not use the OpenGL pipeline at all
to implement picking. For example, an application may choose to organize its geometric
data spatially and use a hierarchy of bounding volumes to efficiently prune portions of
the scene without testing each individual object (Rohlf, 1994; Strauss, 1992).

16.1.6 Highlighting

Once the selected object has been identified, an application will typically modify the
appearance of the object to indicate that it has been selected. This action is called highlight-
ing. Appearance changes can include the color of the object, the drawing style (wireframe
or filled), and the addition of annotations. Usually, the highlight is created by re-rendering
the entire scene, using the modified appearance for the selected object.

In applications manipulating complex models, the cost of redrawing the entire scene
to indicate a selection may be prohibitive. This is particularly true for applications that
implement variations of locate-highlight feedback, where each object is highlighted as the

368 C H A P T E R 16 CAD and Mode l i ng Te chn iques

cursor passes over or near it to indicate that this object is the current selection target. An
extension of this problem exists for painting applications that need to track the location
of a brush over an object and make changes to the appearance of the object based on the
current painting parameters (Hanrahan, 1990).

An alternative to redrawing the entire scene is to use overlay windows (Section 7.3.1)
to draw highlights on top of the existing scene. One difficulty with this strategy is that
it may be impossible to modify only the visible surfaces of the selected object; the depth
information is present in the depth buffer associated with the main color buffer and is not
shared with the overlay window. For applications in which the visible surface information
is not required, overlay windows are an efficient solution. If visible surface information is
important, it may be better to modify the color buffer directly. A depth-buffered object can
be directly overdrawn by changing the depth test function to GL_LEQUAL and redrawing
the object geometry with different attributes (Section 9.2). If the original object was drawn
using blending, however, it may be difficult to un-highlight the object without redrawing
the entire scene.

16.1.7 XOR Highl ighting

Another efficient highlighting technique is to overdraw primitives with an XOR logic
operation. An advantage of using XOR is that the highlighting and restoration operations
can be done independently of the original object color. The most significant bit of each of
the color components can be XORed to produce a large difference between the highlight
color and the original color. Drawing a second time restores the original color.

A second advantage of the XOR method is that depth testing can be disabled to
allow the occluded surfaces to poke through their occluders, indicating that they have
been selected. The highlight can later be removed without needing to redraw the occluders.
This also solves the problem of removing a highlight from an object originally drawn with
blending. While the algorithm is simple and efficient, the colors that result from XORing
the most significant component bits may not be aesthetically pleasing, and the highlight
color will vary with the underlying object color.

One should also be careful of interactions between the picking and highlighting meth-
ods. For example, a picking mechanism that uses the color or depth buffer cannot be
mixed with a highlighting algorithm that relies on the contents of those buffers remaining
intact between highlighting operations.

A useful hybrid scheme for combining color buffer tagging with locate-highlight on
visible surfaces is to share the depth buffer between the picking and highlighting opera-
tions. It uses the front color buffer for highlighting operations and the back color buffer
for locate operations. Each time the viewing or modeling transformations change, the
scene is redrawn, updating both color buffers. Locate-highlight operations are performed
using these same buffers until another modeling or viewing change requires a redraw. This
type of algorithm can be very effective for achieving interactive rates for complex models,
since very little geometry needs to be rendered between modeling and viewing changes.

S E C T I O N 1 6 . 2 Cu l l i ng Te chn iques 369

16.1.8 Foreground Object Manipulat ion

The schemes for fast highlighting can be generalized to allow limited manipulation of a
selected depth-buffered object (a foreground object) while avoiding full scene redraws as
the object is moved. The key idea is that when an object is selected the entire scene is
drawn without that object, and copies of the color and depth buffer are created. Each
time the foreground object is moved or modified, the color buffer and depth buffer are
initialized using the saved copies. The foreground object is drawn normally, depth tested
against the saved depth buffer.

This image-based technique is similar to the algorithm described for compositing
images with depth in Section 11.5. To be usable, it requires a method to efficiently save
and restore the color and depth images for the intermediate form of the scene. If aux
buffers or stereo color buffers are available, they can be used to store the color buffer
(using glCopyPixels) and the depth buffer can be saved to the host. If off-screen
buffers (pbuffers) are available, the depth (and color) buffers can be efficiently copied to
and restored from the off-screen buffer. Off-screen buffers are described in more detail in
Section 7.4.1. It is particularly important that the contents of the depth buffer be saved
and restored accurately. If some of the depth buffer values are truncated or rounded dur-
ing the transfer, the resulting image will not be the same as that produced by drawing the
original scene. This technique works best when the geometric complexity of the scene is
very large — so large that the time spent transferring the color and depth buffers is small
compared to the amount of time that would be necessary to re-render the scene.

16.2 Culling Techniques

One of the central problems in rendering an image is determining which parts of each
object are visible. Depth buffering is the primary method supported within the OpenGL
pipeline. However, there are several other methods that can be used to determine, earlier
in the pipeline, whether an object is invisible, allowing it to be rejected or culled. If parts
of an object can be eliminated earlier in the processing pipeline at a low enough cost, the
entire scene can be rendered faster. There are several culling algorithms that establish the
visibility of an object using different criteria.

• Back-face culling eliminates the surfaces of a closed object that are facing away
from the viewer, since they will be occluded by the front-facing surfaces of the
same object.

• View-frustum culling eliminates objects that are outside the viewing frustum. This
is typically accomplished by determining the position of an object relative to the
planes defined by the six faces of the viewing frustum.

• Portal culling (Luebke, 1995) subdivides indoor scenes into a collection of closed
cells, marking the “holes” in each cell formed by doors and windows as portals.

370 C H A P T E R 16 CAD and Mode l i ng Te chn iques

Each cell is analyzed to determine the other cells that may be visible through
portals, resulting in a network of potentially visible sets (PVS) describing the set of
cells that must be drawn when the viewer is located in a particular cell.

• Occlusion culling determines which objects in the scene are occluded by other large
objects in the scene.

• Detail culling (like geometric LOD) determines how close an object is to the viewer
and adds or removes detail from the object as it approaches or recedes from the
viewer.

A substantial amount of research is available on all of these techniques. We will examine
the last two techniques in more detail in the following sections.

16.3 Occlusion Culling

Complex models with high depth complexity render many pixels that are ultimately dis-
carded during depth testing. Transforming vertices and rasterizing primitives that are
occluded by other polygons reduces the frame rate of the application while adding noth-
ing to the visual quality of the image. Occlusion culling algorithms attempt to identify
such nonvisible polygons and discard them before they are sent to the rendering pipeline
(Coorg, 1996; Zhang, 1998). Occlusion culling algorithms are a form of visible surface
determination algorithm that attempts to resolve visible (or nonvisible surfaces) at larger
granularity than pixel-by-pixel testing.

A simple example of an occlusion culling algorithm is backface culling. The surfaces
of a closed object that are facing away from the viewer are occluded by the surfaces facing
the viewer, so there is no need to draw them. Many occlusion culling algorithms operate
in object space (Coorg, 1996; Luebke, 1995) and there is little that can be done with the
standard OpenGL pipeline to accelerate such operations. However, Zhang et al. (1997)
describe an algorithm that computes a hierarchy of image-space occlusion maps for use
in testing whether polygons comprising the scene are visible.

An occlusion map is a 2D array of values; each one measures the opacity of the image
plane at that point. An occlusion map (see Figure 16.2) corresponding to a set of geometry
is generated by rendering the geometry with the polygon faces colored white. The occlu-
sion map is view dependent. In Zhang’s algorithm the occlusion map is generated from a
target set of occluders. The occlusion map is accompanied by a depth estimation buffer
that provides a conservative estimate of the maximum depth value of a set of occluders
at each pixel. Together, the occlusion map and depth estimation buffer are used to deter-
mine whether a candidate object is occluded. A bounding volume for the candidate object
is projected onto the same image plane as the occlusion map, and the resulting projection
is compared against the occlusion map to determine whether the occluders overlap the
portion of the image where the object would be rendered. If the object is determined to be

S E C T I O N 1 6 . 3 Occ l u s i on Cu l l i ng 371

F i g u r e 16.2 Occluded torus: front and top views.

overlapped by the occluders, the depth estimation buffer is tested to determine whether
the candidate object is behind the occluder geometry. A pyramidal hierarchy of occlusion
maps (similar to a mipmap hierarchy) can be constructed to accelerate the initial overlap
tests.

16.3.1 Choosing Occluders

Choosing a good set of occluders can be computationally expensive, as it is approximating
the task of determining the visible surfaces. Heuristic methods can be used to choose likely
occluders based on an estimation of the size of the occluder and distance from the eye.
To maintain interactive rendering it may be useful to assign a fixed polygon budget to
the list of occluders. Temporal coherence can be exploited to reduce the number of new
occluders that needs to be considered each frame.

16.3.2 Building the Occlusion Map

Once the occluders have been selected they are rendered to the framebuffer with lighting
and texturing disabled. The polygons are colored white to produce values near or equal
to 1.0 in opaque areas. OpenGL implementations that do not support some form of
antialiasing will have pixels values that are either 0.0 or 1.0. A hierarchy of reduced
resolution maps is created by copying this map to texture memory and performing bilinear
texture filtering on the image to produce one that is one-quarter size. Additional maps are
created by repeating this process. This procedure is identical to the mipmap generation
algorithm using texture filtering described in Section 14.15.

The size of the highest resolution map and the number of hierarchy levels created is
a compromise between the amount of time spent rendering, copying, and reading back
the images and the accuracy of the result. Some of the lower-resolution images may be
more efficiently computed on the host processor, as the amount of overhead involved
in performing copies to the framebuffer or pixel readback operation dominates the time
spent producing the pixels. It may be more efficient to minimize the number of transfers
back to the host by constructing the entire hierarchy in a single large (off-screen) color
buffer.

372 C H A P T E R 16 CAD and Mode l i ng Te chn iques

Occlusion map Depth estimation buffer

F i g u r e 16.3 Occlusion map and depth estimation buffer.

16.3.3 Building the Depth Estimation Buffer

Zhang (1997) suggests building a depth estimation buffer by computing the farthest depth
value in the projected bounding box for an occluder and using this value throughout the
occluder’s screen-space bounding rectangle. The end result is a tiling of the image plane
with a set of projected occluders, each representing a single depth value, as shown in
Figure 16.3. The computation is kept simple to avoid complex scan conversion of the
occluder and to simplify the depth comparisons against a candidate occluded object.

16.3.4 Occlusion Testing

The algorithm for occlusion testing consists of two steps. First, the screen-space bounding
rectangle of the candidate object is computed and tested for overlap against the hierarchy
of occlusion maps. If the occluders overlap the candidate object, a conservative depth
value (minimum depth value) is computed for the screen-space bounding rectangle of
the candidate object. This depth value is tested against the depth estimation buffer to
determine whether the candidate is behind the occluders and is therefore occluded.

An opacity value in a level in the occlusion map hierarchy corresponds to the coverage
of the corresponding screen region. In the general case, the opacity values range between
0.0 and 1.0; values between these extrema correspond to screen regions that are partially
covered by the occluders. To determine whether a candidate object is occluded, the
overlap test is performed against a map level using the candidate’s bounding rectangle. If
the region corresponding to the candidate is completely opaque in the occlusion map, the
candidate is occluded if it lies behind the occluders (using the depth estimation buffer).
The occlusion map hierarchy can be used to accelerate the testing process by starting at the
low-resolution maps and progressing to higher-resolution maps when there is ambiguity.

Since the opacity values provide an estimation of coverage, they can also be used
to do more aggressive occlusion culling by pruning candidate objects that are not com-
pletely occluded using a threshold opacity value. Since opacity values are generated using
simple averaging, the threshold value can be correlated to a bound on the largest hole in
the occluder set. The opacity value is a measure of the number of nonopaque pixels and
provides no information on the distribution of those pixels. Aggressive culling is advan-
tageous for scenes with a large number of occluders that do not completely cover the
candidates (for example, a wall of trees). However, if there is a large color discontinuity
between the culled objects and the background, distracting popping artifacts may result
as the view is changed and the aggressively culled objects disappear and reappear.

S E C T I O N 1 6 . 4 Geomet r i c Le ve l o f De ta i l 373

16.3.5 Other Occlusion Testing Methods

Zhang’s algorithm maintains the depth estimation buffer using simplified software scan
conversion and uses the OpenGL pipeline to optimize the computation of the occlusion
maps. All testing is performed on the host, which has the advantage that the testing can
be performed asynchronously from the drawing operations and the test results can be
computed with very low latency. Another possibility is to maintain the occlusion buffer
in the hardware accelerator itself. To be useful, there must be a method for testing the
screen-space bounding rectangle against the map and efficiently returning the result to
the application.

The OpenGL depth buffer can be used to do this with some additional exten-
sions. Occluders are selected using the heuristics described previously and rendered to
the framebuffer as regular geometry. Following this, bounding geometry for candidate
objects are rendered and tested against the depth buffer without changing the contents
of the color buffer or depth buffer. The result of the depth test is then returned to the
application, preferably reduced to a single value rather than the results of the depth test
for every fragment generated. The results of the tests are used to determine whether
to draw the candidate geometry or discard it. Extensions for performing the occlusion
test and returning the result have been proposed and implemented by several hardware
vendors (Hewlett Packard, 1998; Boungoyne,1999; NVIDIA, 2002), culminating in the
ARB_occlusion_query extension.1

An application uses this occlusion query mechanism by creating one or more occlu-
sion query objects. These objects act as buffers, accumulating counts of fragments that
pass the depth test. The commands glBeginQuery and glEndQuery activate and
deactivate a query. One occlusion query object can be active at a time. When a query is
activated, the pass count is initialized to zero. With the query is deactivated the count is
copied to a result buffer. The results are retrieved using glGetQueryObject. The mech-
anism supports pipelined operation by separating the active query object from the retrieval
mechanism. This allows the application to continue occlusion testing with another query
object while retrieving the results from a previously active object. The mechanism also
allows the application to do either blocking or nonblocking retrieval requests, providing
additional flexibility in structuring the application.

16.4 Geometric Level of Detail

When rendering a scene with a perspective view, objects that are far away become smaller.
Since even the largest framebuffer has a limited resolution, objects that are distant become
small enough that they only cover a small number of pixels on the screen. Small objects
reach this point when they are only a moderate distance from the viewer.

1. Added as a core feature in OpenGL 1.4.

374 C H A P T E R 16 CAD and Mode l i ng Te chn iques

T ab l e 16.1 Geometric LOD Changes

Change Description

Shading Disable reflections, bump maps, etc.
Details Remove small geometric details
Texture Don’t texture surfaces
Shape Simplify overall geometry
Billboard Replace object with billboard

It’s wasteful to render a small object with a lot of detail, since the polygonal and
texture detail cannot be seen. This is true even if multisample antialiasing is used with
large numbers of samples per-pixel. With antialiasing, the extra detail simply wastes
performance that could be used to improve the visual quality of objects closer to the
viewer. Without antialiasing support, lots of polygons projected to a small number of
pixels results in distracting edge aliasing artifacts as the object moves.

A straightforward solution to this problem is to create a geometric equivalent to the
notion of texture level of detail (LOD). A geometric object is rendered with less detail
as it covers a smaller area on the screen. This can be considered yet another form of
visibility culling, by eliminating detail that isn’t visible to the viewer. Changes are made
to an object based on visibility criteria – when the presence or absence of an object detail
doesn’t change the image, it can be removed. A less stringent criteria can also be used to
maximize performance. If the modification doesn’t change the image significantly, it can
be removed. Metrics for significant changes can include the percentage of pixels changed
between the simplified and normal image, or the total color change between the two
images, averaging the color change across all pixels in the object. If done carefully, the
changes in detail can be made unnoticeable to the viewer.

There are a number of ways to reduce geometric detail (they are summarized in
Table 16.1). Since a major purpose of geometric LOD is to improve performance, the
reductions in detail can be ordered to maximize performance savings. Special shading
effects — such as environment mapping, bump mapping, or reflection algorithms — can
be disabled. The overall polygon count can be reduced quickly by removing small detail
components on a complex object. The object’s geometry can be rendered untextured,
using a base color that matches the average texture color. This is the same as the color of
the coarsest 1×1 level on a mipmapped texture.

The geometry itself can be simplified, removing vertices and shifting others to main-
tain the same overall shape of the object, but with less detail. Ultimately, the entire object
can be replaced with a single billboarded polygon. The billboard is textured when the
object covers a moderate number of pixels, and untextured (using the average object
color) when it covers a few pixels.

16.4.1 Changing Detai l

When creating a list of detail changes for an object, a simple computation for deciding
when to switch to a different LOD is needed. An obvious choice is the size of the object in

S E C T I O N 1 6 . 4 Geomet r i c Le ve l o f De ta i l 375

screen space. For an object of a given size, the screen extent depends on two factors: the
current degree of perspective distortion (determined by the current perspective transform)
and the distance from the viewer to the object.

In eye space, the projection changes the size of an object (scaling the x and y values)
as a function of distance from the viewer (ze). The functions xscale(ze) and yscale(ze) define
the ratios of the post-projection (and post-perspective divide) coordinates to the pre-
projection ones. For a projection transform created using glFrustum, assuming an
initial w value of one, and ignoring the sign change (which changes to a left-handed
coordinate system), the xscale and yscale functions are

xscale(ze) = 1

ze

(
r − l
2n

)
yscale(ze) = 1

ze

(
t − b
2n

)
The distance from viewpoint to object is simply the z distance to a representative point
on the object in eye space. In object space, the distance vector can be directly computed,
and its length found. The scale factor for x and y can be used in either coordinate system.

Although the ideal method for changing level of detail is to delay switching LOD
until the object change is not visible at the current object size, this can be impractical for
a number reasons. In practice, it is difficult to compute differences in appearance for an
object at all possible orientations. It can be expensive to work through all the possible
geometry and attribute changes, finding how they would affect LOD change. Often a
more practical, heuristic approach is taken.

Whatever the process, the result is a series of transition points that are set to occur at
a set of screen sizes. These screen sizes are mapped into distances from the viewer based
on the projection scale factor and viewport resolution.

16.4.2 Transit ion Techniques

The simplest method for transitioning between goemetric LOD levels is to simply switch
between them. This abrupt transition can be noticeable to the viewer unless the resulting
pixel image changes very little. Finding these ideal transitions can be difficult in practice,
as seen previously. They can also be expensive; an LOD change delayed until the object is
small reduces its potential for improving performance. An LOD change of a much larger
object may be unnoticeable if the transition can be made gradually.

One direct method of creating a gradual transition is to fade between two repre-
sentations of the object. The object is rendered twice, first at one LOD level, then
the other. The images are combined using blending. A parameter t is used to control
the percentage visibility of each object: tLODa + (1 − t)LODa+1. The advantage of this
method is that it’s simple, since constant object LOD representations are used. If the

376 C H A P T E R 16 CAD and Mode l i ng Te chn iques

Object smoothly morphs towards simpler geometry, no texture

Same object shown morphing with size change

Fine LOD Coarse LOD

F i g u r e 16.4 Morphing transition.

ARB imaging subset is supported, the blend function can use GL_CONSTANT_COLOR
and GL_ONE_MINUS_CONSTANT_COLOR2 to blend the two images setting the grayscale
constant color to t. Otherwise, the alpha-blending techniques described in Section 11.9
can be used.

The disadvantage of a blended transition is rendering overhead. The object has to
be drawn twice, doubling the pixel fill requirements for the object during transitions.
This leads to more overhead for a technique that is being used to improve perfor-
mance, reducing its benefit. If multisampling is supported, the sample coverage control
glSampleCoverage can be used to perform the fade without requiring framebuffer
blending, but with a reduced number of transition values for t (Section 11.10.1).

A more sophisticated transition technique is morphing. During a morphing transi-
tion the object is smoothly changed from one LOD level to another (see Figure 16.4).
For a geometric morph, vertices are ultimately removed. The vertices that are being
removed smoothly move toward ones that are being retained, until they are co-incident.
A mipmapped surface texture can be gradually coarsened until it is a single color, or
stretched into a single texel color by smoothly reducing the difference in texture coordi-
nates across the surface. When the vertex is coincident with another, it can be removed
without visible change in the object. In the same way, a surface texture can transition
to a single color, and then texturing can be disabled. Using morphing, small geometric
details can smoothly shrink to invisibility.

This technique doesn’t incur pixel fill overhead, since the object is always drawn once.
It does require a more sophisticated modeling of objects in order to parameterize their
geometry and textures. This can be a nontrivial exercise for complex models, although
there is more support for such features in current modeling systems. Also, morphing
requires extra computations within the application to compute the new vertex positions,

2. Core functionality in OpenGL 1.4.

S E C T I O N 1 6 . 5 V i sua l i z i ng Su r f a ce O r i en t a t i on 377

so there is a trade-off of processing in the rendering pipeline for some extra processing
on the CPU during transitions.

16.5 Visualizing Surface Orientation

Styling and analysis applications often provide tools to help visualize surface curvature.
In addition to aesthetic properties, surface curvature can also affect the manufacturability
of a particular design. Not only the intrinsic surface curvature, but the curvature relative
to a particular coordinate system can determine the manufacturability of an object. For
example, some manufacturing processes may be more efficient if horizontally oriented
surfaces are maximized, whereas others may require vertically oriented ones (or some
other constraint). Bailey and Clark (Bailey, 1997) describe a manufacturing process in
which the object is constructed by vertically stacking (laminating) paper cutouts corre-
sponding to horizontal cross sections of the object. This particular manufacturing process
produces better results when the vertical slope (gradient) of the surface is greater than
some threshold.

Bailey and Clark describe a method using 1D texture maps to encode the vertical slope
of an object as a color ramp. The colors on the object’s surfaces represent the vertical
slope of the surface relative to the current orientation. Since the surface colors dynamically
display the relative slope as the object’s orientation is modified, a (human) operator can
interactively search for the orientation that promises the best manufacturability.

For simplicity, assume a coordinate space for surface normals with the z axis per-
pendicular to the way the paper sheets are stacked. If the object’s surface normals are
transformed to this coordinate space, the contour line density, d, is a function of the z
component of the surface normal. Figure 16.5 shows a simplified surface with normal
vector N and slope angle θ and the similar triangles relationship formed with the second
triangle with sides N and Nz,

d = �v
k�h

= tan θ

k
= sin θ

k cos θ
=

√
1 − N2

z

kNz

∆h

θ

N
θ

∆v

Eye

F i g u r e 16.5 Vertical surface slope and surface normal.

378 C H A P T E R 16 CAD and Mode l i ng Te chn iques

where k is the (constant) paper layer thickness (in practice, approximately 0.0042
inches).

The possible range of density values, based on known manufacturing rules, can be
color-coded as a red-yellow-green spectrum (using an HSV color space), and these values
can in turn be mapped to the range of Nz values. For their particular case, Bailey and
Clark found that a density below 100/inch causes problems for the manufacturing process.
Therefore, the 1D texture is set up to map a density below 100 to red.

Typically, per-vertex surface normals are passed to OpenGL using glNormal3f
calls, and such normals are used for lighting. For this rendering technique, however,
the normalized per-vertex surface normal is passed to glTexCoord3f to serve as a 3D
texture coordinate. The texture matrix is used to rotate the per-vertex surface normal
to match the assumed coordinate space, where the z axis is perpendicular to the paper
faces. A unit normal has an Nz component varying from [−1, 1], so the rotated Nz

component must be transformed to the [0, 1] texture coordinate range and swizzled to the
s coordinate for indexing the 1D texture. The rotation and scale and bias transformations
are concatenated as

⎛⎜⎜⎝
s
0
0
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 0 0.5 0.5
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

r1 r2 r3 0
r4 r5 r6 0
r7 r8 r9 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

Nx

Ny

Nz

1

⎞⎟⎟⎠

The composition of the rotation and scale and bias matrices can be computed by load-
ing the scale and bias transform into the texture matrix first, followed by glRotate to
incorporate the rotation. Once the 1D texture is loaded and enabled, the surface colors
will reflect the current manufacturing orientation stored in the texture matrix. To reren-
der the model with a different orientation for the manufacturing process, the rotation
component in the texture matrix must be adjusted to match the new orientation.

Note that there is no way to normalize a texture coordinate in the way that
the OpenGL fixed-function pipeline supports GL_NORMALIZE for normalizing normals
passed to glNormal3f. If rendering the model involves modelview matrix changes,
such as different modeling transformations, these modelview matrix changes must also
be incorporated into the texture matrix by multiplying the texture matrix by the inverse
transpose of the modeling transformation.

OpenGL 1.3 alleviates both of these problems with the GL_NORMAL_MAP texture
coordinate generation function. If the implementation supports this functionality, the
normal vector can be transferred to the pipeline as a regular normal vector and then
transferred to the texture coordinate pipeline using the texture generation function. Since
the normal map function uses the eye-space normal vector, it includes any modeling
transformations in effect. However, since the modelview transformation includes the
viewing transformation, too, the inverse of this transformation should be included in the
texture matrix.

S E C T I O N 1 6 . 6 V i sua l i z i ng Su r f a ce Cu r va tu re 379

This technique was designed to solve a particular manufacturing problem, but the
ideas can be generalized. Surface normal vectors contain information about the surface
gradient at that point. Various functions of the gradient can be color-coded and mapped
to the surface geometry to provide additional information. The most general form of the
encoding can use cube environment maps to create an arbitrary function of a 3D surface
normal.

16.6 Visualizing Surface Curvature

Industrial designers are often concerned as much with how the shape of a surface reflects
light as the overall shape of the surface. In many situations it is useful to render object
surfaces with lighting models that provide information about surface reflection. One
of the most useful techniques to simulate more realistic reflection is to use reflection
mapping techniques. The sphere mapping, dual paraboloid, and cube mapping techniques
described in Section 17.3 can all be used to varying degrees to realistically simulate surface
reflection from a general environment.

In some styling applications, simulating synthetic environments can provide useful
aesthetic insights. One such environment consists of a hemi-cylindrical room with an
array of regularly spaced linear light sources (fluorescent lamps) illuminating the object.
The object is placed on a turntable and can be rotated relative to the orientation of the
light sources. The way the surfaces reflect the array of light sources provides intuitive
information regarding how the surface will appear in more general environments.

The environment can be approximated as an object enclosed in a cylinder with the
light sources placed around the cylinder boundary, aligned with the longitudinal axis
(as shown in Figure 16.6). The symmetry in the cylinder allows the use of a cylinder
reflection mapping technique. Cylinder mapping techniques parameterize the texture map
along two dimensions, θ , l, where θ is the rotation around the circumference of the
cylinder and l is the distance along the cylinder’s longitudinal axis. The reflection mapping
technique computes the eye reflection vector about the surface normal and the intersection
of this reflection vector with the cylindrical map. Given a point P, reflection vector R and
cylinder of radius r, with longitudinal axis parallel to the z axis, the point of intersection
Q is P + kR, with the constraint Q2

x + Q2
y = r2. This results in the quadratic equation

(R2
x + R2

y)k2 + 2(PxRx + PyRy)k + (P2
x + P2

y − r2) = 0

with solution

k =
−2(PxRx + PyRy) ±

√
4(PxRx + PyRy)2 − 4(R2

x + R2
y)(P2

x + P2
y − r2)

2(R2
x + R2

y)

380 C H A P T E R 16 CAD and Mode l i ng Te chn iques

P

Eye

y

x

Light
sources

N

R

z

Q

F i g u r e 16.6 Hemicylinder environment map.

With k determined, the larger (positive) solution is chosen, and used to calculate Q. The
x and y components of Q are used to determine the angle, θ , in the x − y plane that the
intersection makes with the x axis, tan θ = Qy/Qx. The parametric value l is Qz.

Since each light source extends from one end of the room to the other, the texture
map does not vary with the l parameter, so the 2D cylinder map can be simplified to a
1D texture mapping θ to the s coordinate. To map the full range of angles [−π , π] to the
[0, 1] texture coordinates, the mapping s = [atan(Qy/Qx)/π + 1]/2 is used. A luminance
map can be used for the 1D texture map, using regularly spaced 1.0 values against 0.0
background values. The texture mapping can result in significant magnification of the
texture image, so better results can be obtained using a high-resolution texture image.
Similarly, finer tessellations of the model geometry reduces errors in the interpolation of
the angle θ across the polygon faces.

To render using the technique, the s texture coordinate must be computed for each
vertex in the model. Each time the eye position changes, the texture coordinates must be
recomputed. If available, a vertex program can be used to perform the computation in
the transformation pipeline.

16.7 Line Rendering Techniques

Many design applications provide an option to display models using some form of
wireframe rendering using lines rather than filled polygons. Line renderings may be

S E C T I O N 1 6 . 7 L i ne Rende r i ng Te chn iques 381

generated considerably faster if the application is fill limited, line renderings may be used
to provide additional insight since geometry that is normally occluded may be visible in a
line rendered scene. Line renderings can also provide a visual measure of the complexity
of the model geometry. If all of the edges of each primitive are drawn, the viewer is given
an indication of the number of polygons in the model. There are a number of useful line
rendering variations, such as hidden line removal and silhouette edges, described in the
following sections.

16.7.1 Wireframe Models

To draw a polygonal model in wireframe, there are several methods available, ordered
from least to most efficient to render.

1. Draw the model as polygons in line mode using glBegin(GL_POLYGON) and
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE).
This method is the simplest if the application already displays the model as a
shaded solid, since it involves a single mode change. However, it is likely to be
significantly slower than the other methods because more processing usually occurs
for polygons than for lines and because every edge that is common to two polygons
will be drawn twice. This method is undesirable when using antialiased lines as
well, since lines drawn twice will be brighter than any lines drawn just once. The
double-edge problem can be eliminated by using an edge flag to remove one of the
lines at a common edge. However, to use edge flags the application must keep track
of which vertices are part of common edges.

2. Draw the polygons as line loops using glBegin(GL_LINE_LOOP).
This method is almost as simple as the first, requiring only a change to each
glBegin call. However, except for possibly eliminating the extra processing
required for polygons it has all of the other undesirable features as well. Edge flags
cannot be used to eliminate the double edge drawing problem.

3. Extract the edges from the model and draw as independent lines using
glBegin(GL_LINES).
This method is more work than the previous two because each edge must be
identified and all duplicates removed. However, the extra work need only be done
once and the resulting model will be drawn much faster.

4. Extract the edges from the model and connect as many as possible into long line
strips using glBegin(GL_LINE_STRIP).
For just a little bit more effort than the GL_LINES method, lines sharing common
endpoints can be connected into larger line strips. This has the advantage of
requiring less storage, less data transfer bandwidth, and makes most efficient use of
any line drawing hardware.

When choosing amongst these alternative methods there are some additional factors
to consider. One important consideration is the choice of polygonal primitives used

382 C H A P T E R 16 CAD and Mode l i ng Te chn iques

in the model. Independent triangles, quads, and polygons work correctly with edge
flags, whereas triangle strips, triangle fans, and quad strips do not. Therefore, algo-
rithms that use edge flags to avoid showing interior edges or double-stroking shared
edges will not work correctly with connected primitives. Since connected primitives are
generally more efficient than independent primitives, they are the preferred choice when-
ever possible. This means that the latter two explicit edge drawing algorithms are a better
choice.

Conversely, glPolygonMode provides processing options that are important to
several algorithms; both face culling and depth offsetting can be applied to polygons
rendered as lines, but not to line primitives.

16.7.2 Hidden Lines

This section describes techniques to draw wireframe objects with their hidden lines
removed or drawn in a style different from the ones that are visible. This technique can
clarify complex line drawings of objects, and improve their appearance (Herrell, 1995;
Attarwala, 1988).

The algorithm assumes that the object is composed of polygons. The algorithm first
renders the object as polygons, and then in the second pass it renders the polygon edges
as lines. During the first pass, only the depth buffer is updated. During the second pass,
the depth buffer only allows edges that are not obscured by the object’s polygons to be
rendered, leaving the previous content of the framebuffer undisturbed everywhere an edge
is not drawn. The algorithm is as follows:

1. Disable writing to the color buffer with glColorMask.

2. Set the depth function to GL_LEQUAL.

3. Enable depth testing with glEnable(GL_DEPTH_TEST).

4. Render the object as polygons.

5. Enable writing to the color buffer.

6. Render the object as edges using one of the methods described in Section 16.7.1.

Since the pixels at the edges of primitives rendered as polygons and the pixels from the
edges rendered as lines have depth values that are numerically close, depth rasterization
artifacts from quantization errors may result. These are manifested as pixel dropouts
in the lines wherever the depth value of a line pixel is greater than the polygon edge
pixel. Using GL_LEQUAL eliminates some of the problems, but for best results the lines
should be offset from the polygons using either glPolygonOffset or glDepthRange
(described in more detail shortly).

The stencil buffer may be used to avoid the depth-buffering artifacts for convex
objects drawn using non-antialiased (jaggy) lines all of one color. The following technique
uses the stencil buffer to create a mask where all lines are (both hidden and visible). Then
it uses the stencil function to prevent the polygon rendering from updating the depth

S E C T I O N 1 6 . 7 L i ne Rende r i ng Te chn iques 383

buffer where the stencil values have been set. When the visible lines are rendered, there
is no depth value conflict, since the polygons never touched those pixels. The modified
algorithm is as follows:

1. Disable writing to the color buffer with glColorMask.

2. Disable depth testing: glDisable(GL_DEPTH_TEST).

3. Enable stenciling: glEnable(GL_STENCIL_TEST).

4. Clear the stencil buffer.

5. Set the stencil buffer to set the stencil values to 1 where pixels are drawn:
glStencilFunc(GL_ALWAYS, 1, 1) and
glStencilOp(GL_REPLACE, GL_REPLACE GL_REPLACE).

6. Render the object as edges.

7. Use the stencil buffer to mask out pixels where the stencil value is 1:
glStencilFunc(GL_EQUAL, 1, 1) and
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP).

8. Render the object as polygons.

9. Disable stenciling: glDisable(GL_STENCIL_TEST).

10. Enable writing to the color buffer.

11. Render the object as edges.

Variants of this algorithm may be applied to each convex part of an object, or, if the
topology of the object is not known, to each individual polygon to render well-behaved
hidden line images.

Instead of removing hidden lines, sometimes it’s desirable to render them with a
different color or pattern. This can be done with a modification of the algorithm:

1. Change the depth function to GL_LEQUAL.

2. Leave the color depth buffer enabled for writing.

3. Set the color and/or pattern for the hidden lines.

4. Render the object as edges.

5. Disable writing to the color buffer.

6. Render the object as polygons.

7. Set the color and/or pattern for the visible lines.

8. Render the object as edges using one of the methods described in Section 16.7.1.

In this technique, all edges are drawn twice: first with the hidden line pattern, then with
the visible one. Rendering the object as polygons updates the depth buffer, preventing
the second pass of line drawing from affecting the hidden lines.

384 C H A P T E R 16 CAD and Mode l i ng Te chn iques

16.7.3 Polygon Offset

To enhance the preceding methods, the glPolygonOffset command can be used to
move the lines and polygons relative to each other. If the edges are drawn as lines using
polygon mode, glEnable(GL_POLYGON_OFFSET_LINE) can be used to offset the
lines in front of the polygons. If a faster version of line drawing is used (as described
in Section 16.7.1), glEnable(GL_POLYGON_OFFSET_FILL) can be used to move the
polygon surfaces behind the lines. If maintaining correct depth buffer values is necessary
for later processing, surface offsets may not be an option and the application should use
line offsets instead.

Polygon offset is designed to provide greater offsets for polygons viewed more edge-
on than for polygons that are flatter (more parallel) relative to the screen. A single constant
value may not work for all polygons, since variations resulting from depth interpolation
inaccuracies during rasterization are related to the way depth values change between frag-
ments. The depth change is the z slope of the primitive relative to window-space x and y.

The depth offset is computed as ow = factor∗m+r∗units, where m =
√

(∂zw
∂xw

)2 + (∂zw
∂yw

)2.

The value of m is often approximated with the maximum of the absolute value of the
x and y partial derivatives (slopes), since this can be computed more efficiently. The
maximum slope value is computed for each polygon and is scaled by factor. A constant
bias is added to deal with polygons that have very small slopes. When polygon offset
was promoted from an extension to a core feature (OpenGL 1.1), the bias value was
changed from an implementation-dependent value to a normalized scaling factor, units,
in the range [0, 1]. This value is scaled by the implementation-dependent depth buffer
minimum resolvable difference value, r, to produce the final value. This minimum resolv-
able difference value reflects the precision of the rasterization system and depth buffer
storage. For a simple n-bit depth buffer, the value is 2−n, but for implementations that
use compressed depth representations the derivation of the value is more complicated.

Since the slope offset must be computed separately for each polygon, the extra pro-
cessing can slow down rendering. Once the parameters have been tuned for a particular
OpenGL implementation, however, the same unmodified code should work well on other
implementations.

16.7.4 Depth Range

An effect similar to the constant term of polygon offset can be achieved using
glDepthRange with no performance penalty. This is done by displacing the near value
from 0.0 by a small amount, ε, while setting the far value to 1.0 for all surface draw-
ing. Then when the edges are drawn the near value is set to 0.0 and the far value is
displaced by the same amount. Since the NDC depth value, zd, is transformed to window
coordinates as

zw = [(f − n)zd + (n + f)]
2

S E C T I O N 1 6 . 7 L i ne Rende r i ng Te chn iques 385

surfaces drawn with a near value of n + ε are displaced by

ow = [−εzd + ε]
2

and lines with a far value of f − ε are displaced by

ow = [−εzd − ε]
2

The resulting relative displacement between an edge and surface pixel is ε. Unlike the
polygon offset bias, the depth range offset is not scaled by the implementation-specific
minimum resolvable depth difference. This means that the application must determine the
offset value empirically and that it may vary between different OpenGL implementations.
Values typically start at approximately 0.00001. Since there is no slope-proportionate
term, the value may need to be significantly larger to avoid artifacts with polygons that
are nearly edge on.

16.7.5 Haloed Lines

Haloing lines can make it easier to understand a wireframe drawing. Lines that pass
behind other lines stop short before passing behind, making it clearer which line is in
front of the other.

Haloed lines can be drawn using the depth buffer. The technique uses two passes.
The first pass disables updates to the color buffer, updating only the content of the
depth buffer. The line width is set to be greater than the normal line width and the
lines are rendered. This width determines the extent of the halos. In the second pass,
the normal line width is reinstated, color buffer updates are enabled, and the lines are
rendered a second time. Each line will be bordered on both sides by a wider “invisible
line” in the depth buffer. This wider line will mask other lines that pass beneath it, as
shown in Figure 16.7 The algorithm works for antialiased lines, too. The mask lines

This line drawn second

Depth buffer
changed

Depth buffer
values

This line drawn first

F i g u r e 16.7 Haloed line.

386 C H A P T E R 16 CAD and Mode l i ng Te chn iques

should be drawn as aliased lines and be as least as wide as the footprint of the antialiased
lines.

1. Disable writing to the color buffer.

2. Enable the depth buffer for writing.

3. Increase line width.

4. Render lines.

5. Restore line width.

6. Enable writing to the color buffer.

7. Ensure that depth testing is on, passing on GL_LEQUAL.

8. Render lines.

This method will not work where multiple lines with the same depth meet. Instead of
connecting, all of the lines will be “blocked” by the last wide line drawn. There can also
be depth buffer rasterization problems when the wide line depth values are changed by
another wide line crossing it. This effect becomes more pronounced if the narrow lines
are widened to improve image clarity.

If the lines are drawn using polygon mode, the problems can be alleviated by using
polygon offset to move narrower visible lines in front of the wider obscuring lines. The
minimum offset should be used to avoid lines from one surface of the object “popping
through” the lines of an another surface separated by only a small depth value.

If the vertices of the object’s faces are oriented to allow face culling, it can be used to
sort the object surfaces and allow a more robust technique: the lines of the object’s back
faces are drawn, obscuring wide lines of the front face are drawn, and finally the narrow
lines of the front face are drawn. No special depth buffer techniques are needed.

1. Cull the front faces of the object.

2. Draw the object as lines.

3. Cull the back faces of the object.

4. Draw the object as wide lines in the background color.

5. Draw the object as lines.

Since the depth buffer isn’t needed, there are no depth rasterization problems. The back-
face culling technique is fast and works well. However, it is not general since it doesn’t
work for multiple obscuring or intersecting objects.

16.7.6 Silhouette Edges

Sometimes it can be useful for highlighting purposes to draw a silhouette edge around a
complex object. A silhouette edge defines the outer boundaries of the object with respect
to the viewer (as shown in Figure 16.8).

S E C T I O N 1 6 . 7 L i ne Rende r i ng Te chn iques 387

F i g u r e 16.8 Shaded solid image, silhouette edges, silhouette and boundary edges.

The stencil buffer can be used to render a silhouette edge around an object. With
this technique, the application can render either the silhouette alone or the object with a
silhouette around it (Rustagi, 1989).

The object is drawn four times, each time displaced by one pixel in the x or y direction.
This offset must be applied to the window coordinates. An easy way to do this is to change
the viewport coordinates each time, changing the viewport origin. The color and depth
values are turned off, so only the stencil buffer is affected. Scissor testing can be used to
avoid drawing outside the original viewport.

Every time the object covers a pixel, it increments the pixel’s stencil value. When
the four passes have been completed, the perimeter pixels of the object will have stencil
values of 2 or 3. The interior will have values of 4, and all pixels surrounding the object
exterior will have values of 0 or 1. A final rendering pass that masks everything but pixels
with stencil values of 2 or 3 produces the silhouette. The steps in the algorithm are as
follows:

1. Render the object (skip this step if only the silhouette is needed).

2. Clear the stencil buffer to zero.

3. Disable color and depth buffer updates using glColorMask.

4. Set the stencil function to always pass, and set the stencil operation to increment.

5. Translate the object by +1 pixel in y, using glViewport and render the object.

6. Translate the object by −2 pixels in y, using glViewport and render the object.

7. Translate by +1 pixel x and +1 pixel in y and render the object.

8. Translate by −2 pixels in x and render the object.

9. Translate by +1 pixel in x, bringing the viewport back to the original position.

10. Enable color and depth buffer updates.

11. Set the stencil function to pass if the stencil value is 2 or 3. Since the possible
values range from 0 to 4, the stencil function can pass if stencil bit 1 is set
(counting from 0).

388 C H A P T E R 16 CAD and Mode l i ng Te chn iques

12. Render a rectangle that covers the screen-space area of the object, or the size of
the viewport to render the silhouette.

One of the bigger drawbacks of this image-space algorithm is that it takes a large number
of drawing passes to generate the edges. A somewhat more efficient algorithm suggested
by Akeley (1998) is to use glPolygonOffset to create an offset depth image and then
draw the polygons using the line polygon mode. The stencil buffer is again used to count
the number of times each pixel is written. However, instead of counting the absolute
number of writes to a pixel the stencil value is inverted on each write. The resulting
stencil buffer will have a value of 1 wherever a pixel has been drawn an odd number
of times. This ensures that lines drawn at the shared edges of polygon faces have stencil
values of zero, since the lines will be drawn twice (assuming edge flags are not used).
While this algorithm is a little more approximate than the previous algorithm, it only
requires two passes through the geometry.

The algorithm is sensitive to the quality of the line rasterization algorithm used by
the OpenGL implementation. In particular, if the line from p0 to p1 rasterizes differently
from the line drawn from p1 to p0 by more than just the pixels at the endpoints, artifacts
will appear along the shared edges of polygons.

The faster algorithm does not generate quite the same result as the first algorithm
because it counts even and odd transitions and relies on the depth image to ensure that
other nonvisible surfaces do not interfere with the stencil count. The differences arise
in that boundary edges within one object that are in front of another object will be
rendered as part of the silhouette image. By boundary edges we mean the true edges of
the modeled geometry, but not the interior shared-face edges. In many cases this artifact
is useful, as silhouette edges by themselves often do not provide sufficient information
about the shape of objects. It is possible to combine the algorithm for drawing silhouettes
with an additional step in which all of the boundary edges of the geometry are drawn
as lines. This produces a hidden line drawing displaying boundary edges plus silhouette
edges, as shown in Figure 16.8. The steps of the combined algorithm are as follows:

1. Clear the depth and color buffers and clear the stencil buffer to zero.

2. Disable color buffer writes.

3. Draw the depth buffered geometry using glPolygonOffset to offset the object
surfaces toward the far clipping plane.

4. Disable writing to the depth buffer and glPolygonOffset.

5. Set the stencil function to always pass and set the stencil operation to invert.

6. Enable face culling.

7. Draw the geometry as lines using glPolygonMode.

8. Enable writes to the color buffer, disable face culling.

9. Set the stencil function to pass if the stencil value is 1.

S E C T I O N 1 6 . 7 L i ne Rende r i ng Te chn iques 389

10. Render a rectangle that fills the entire window to produce the silhouette image.

11. Draw the true edges of the geometry.

12. Enable writes to the depth buffer.

Since the algorithm uses an offset depth image, it is susceptible to minor artifacts from
the interaction of the lines and the depth image similar to those present when using
glPolygonOffset for hidden line drawings. Since the algorithm mixes lines drawn in
polygon mode with line primitives, the surfaces must be offset rather than the lines. This
means that the content of the depth buffer will be offset from the true geometry and may
need to be reestablished for later processing.

16.7.7 Preventing Antial iasing Art ifacts

When drawing a series of wide smoothed lines that overlap, such as an outline composed
of a GL_LINE_LOOP, more than one fragment may be produced for a given pixel. Since
smooth line rendering uses framebuffer blending, this may cause the pixel to appear
brighter or darker than expected where fragments overlap.

The stencil buffer can be used to allow only a single fragment to update the pixel.
When multiple fragments update a pixel, the one chosen depends on the drawing order.
Ideally the fragment with the largest alpha value should be retained rather than one at
random. A combination of the stencil test and alpha test can be used to pass only the
fragments that have the largest alpha, and therefore contribute the most color to a pixel.
Repeatedly drawing and applying alpha test to pass fragments with decreasing alpha,
while using the stencil buffer to mark where fragments previously passed, results in a
brute-force algorithm that has the effect of sorting fragments by alpha value.

1. Clear the stencil buffer and enable stencil testing.

2. Set the stencil function to test for not equal: glStencilFunc(GL_NOTEQUAL,
1, 0xff).

3. Set the stencil operation to replace stencil values that pass the stencil test and depth
test and keep the others.

4. Enable line smoothing and blending.

5. Enable alpha testing.

6. Loop over alpha reference values from 1.0 − step to 0, setting the alpha function to
pass for alpha greater than the reference value and draw the lines. The number of
passes is determined by step.

Speed can be traded for quality by increasing the step size or terminating the loop at a
larger threshold value. A step of 0.02 results in 50 passes and very accurate rendering.
However, good results can still be achieved with 10 or fewer passes by favoring alpha
values closer to 1.0 or increasing the step size as alpha approaches 0. At the opposite

390 C H A P T E R 16 CAD and Mode l i ng Te chn iques

extreme, it is possible to iterate through every possible alpha value, and pass only the
fragments that match each specific one, using step = 1/2GL_ALPHA_BITS.

16.7.8 End Caps on Wide Lines

If wide lines form a loop, such as a silhouette edge or the outline of a polygon, it may be
necessary to fill regions where one line ends and another begins to give the appearance of a
rounded joint. Smooth wide points can be drawn at the ends of the line segments to form
an end cap. The preceding overlap algorithm can be used to avoid blending problems
where the point and line overlap.

16.8 Coplanar Polygons and Decaling

Using stenciling to control pixels drawn from a particular primitive can help solve
important problems, such as the following:

1. Drawing depth-buffered coplanar polygons without z-buffering artifacts.

2. Decaling multiple textures on a primitive.

Values are written to the stencil buffer to create a mask for the area to be decaled. Then
this stencil mask is used to control two separate draw steps: one for the decaled region
and one for the rest of the polygon.

A useful example that illustrates the technique is rendering coplanar polygons. If one
polygon must be rendered directly on top of another (runway markings, for example). The
depth buffer cannot be relied upon to produce a clean separation between the two. This
is due to the quantization of the depth buffer. Since the polygons have different vertices,
the rendering algorithms can produce z values that are rounded to the wrong depth
buffer value, so some pixels of the back polygon may show through the front polygon
(Section 6.1.2). In an application with a high frame rate, this results in a shimmering
mixture of pixels from both polygons, commonly called “z-fighting.” An example is
shown in Figure 16.9.

To solve this problem, the closer polygons are drawn with the depth test disabled,
on the same pixels covered by the farthest polygons. It appears that the closer polygons
are “decaled” on the farther polygons. Decaled polygons can be drawn via the following
steps:

1. Turn on stenciling: glEnable(GL_STENCIL_TEST).

2. Set stencil function to always pass: glStencilFunc(GL_ALWAYS, 1, 1).

3. Set stencil op to set 1 if depth test passes: 0 if it fails: glStencilOp(GL_KEEP,
GL_ZERO, GL_REPLACE).

4. Draw the base polygon.

S E C T I O N 1 6 . 8 Cop l ana r Po lygons and Deca l i ng 391

Rendered directly Decaled using stencil

F i g u r e 16.9 Using stencil to render co-planar polygons.

5. Set stencil function to pass when stencil is 1: glStencilFunc(GL_EQUAL,
1, 1).

6. Disable writes to stencil buffer: glStencilMask(GL_FALSE).

7. Turn off depth buffering: glDisable(GL_DEPTH_TEST).

8. Render the decal polygon.

The stencil buffer does not have to be cleared to an initial value; the stencil values are
initialized as a side effect of writing the base polygon. Stencil values will be 1 where the
base polygon was successfully written into the framebuffer and 0 where the base polygon
generated fragments that failed the depth test. The stencil buffer becomes a mask, ensuring
that the decal polygon can only affect the pixels that were touched by the base polygon.
This is important if there are other primitives partially obscuring the base polygon and
decal polygons.

There are a few limitations to this technique. First, it assumes that the decal
polygon does not extend beyond the edge of the base polygon. If it does, the entire
stencil buffer must be cleared before drawing the base polygon. This is expensive on
some OpenGL implementations. If the base polygon is redrawn with the stencil opera-
tions set to zero out the stencil after drawing each decaled polygon, the entire stencil
buffer only needs to be cleared once. This is true regardless of the number of decaled
polygons.

Second, if the screen extents of multiple base polygons being decaled overlap, the
decal process must be performed for one base polygon and its decals before proceeding

392 C H A P T E R 16 CAD and Mode l i ng Te chn iques

to another. This is an important consideration if the application collects and then sorts
geometry based on its graphics state, because the rendering order of geometry may be
changed as a result of the sort.

This process can be extended to allow for a number of overlapping decal poly-
gons, with the number of decals limited by the number of stencil bits available for the
framebuffer configuration. Note that the decals do not have to be sorted. The procedure
is similar to the previous algorithm, with the following extensions.

A stencil bit is assigned for each decal and the base polygon. The lower the number,
the higher the priority of the polygon. The base polygon is rendered as before, except
instead of setting its stencil value to one, it is set to the largest priority number. For
example, if there are three decal layers the base polygon has a value of 8.

When a decal polygon is rendered, it is only drawn if the decal’s priority number is
lower than the pixels it is trying to change. For example, if the decal’s priority number is
1 it is able to draw over every other decal and the base polygon using glStencilFunc
(GL_LESS, 1, 0) andglStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE).

Decals with the lower priority numbers are drawn on top of decals with higher
ones. Since the region not covered by the base polygon is zero, no decals can write to it.
Multiple decals can be drawn at the same priority level. If they overlap, however, the last
one drawn will overlap the previous ones at the same priority level.

Multiple textures can be drawn onto a polygon using a similar technique. Instead of
writing decal polygons, the same polygon is drawn with each subsequent texture and an
alpha value to blend the old pixel color and the new pixel color together.

16.9 Capping Clipped Solids

When working with solid objects it is often useful to clip the object against a plane
and observe the cross section. OpenGL’s application-defined clipping planes (sometimes
called model clip planes) allow an application to clip the scene by a plane. The stencil
buffer provides an easy method for adding a “cap” to objects that are intersected by the
clipping plane. A capping polygon is embedded in the clipping plane and the stencil buffer
is used to trim the polygon to the interior of the solid.

If some care is taken when modeling the object, solids that have a depth complexity
greater than 2 (concave or shelled objects) and less than the maximum value of the stencil
buffer can be rendered. Object surface polygons must have their vertices ordered so that
they face away from the interior for face culling purposes.

The stencil buffer, color buffer, and depth buffer are cleared, and color buffer writes
are disabled. The capping polygon is rendered into the depth buffer, and then depth buffer
writes are disabled. The stencil operation is set to increment the stencil value where the
depth test passes, and the model is drawn with glCullFace(GL_BACK). The stencil
operation is then set to decrement the stencil value where the depth test passes, and the
model is drawn with glCullFace(GL_FRONT).

S E C T I O N 1 6 . 1 0 Cons t r u c t i v e So l i d Geomet ry 393

At this point, the stencil buffer is 1 wherever the clipping plane is enclosed by the
front-facing and back-facing surfaces of the object. The depth buffer is cleared, color
buffer writes are enabled, and the polygon representing the clipping plane is now drawn
using whatever material properties are desired, with the stencil function set to GL_EQUAL
and the reference value set to 1. This draws the color and depth values of the cap into
the framebuffer only where the stencil values equal 1. Finally, stenciling is disabled, the
OpenGL clipping plane is applied, and the clipped object is drawn with color and depth
enabled.

16.10 Constructive Solid Geometry

Constructive solid geometry (CSG) models are constructed through the intersection (∩),
union (∪), and subtraction (−) of solid objects, some of which may be CSG objects
themselves (Goldfeather, 1986). The tree formed by the binary CSG operators and their
operands is known as the CSG tree. Figure 16.10 shows an example of a CSG tree and
the resulting model.

The representation used in CSG for solid objects varies, but we will consider a solid
to be a collection of polygons forming a closed volume. Solid, primitive, and object are
used here to mean the same thing.

CSG objects have traditionally been rendered through the use of raycasting, (which
is slow) or through the construction of a boundary representation (B-rep). B-reps vary
in construction, but are generally defined as a set of polygons that form the surface of
the result of the CSG tree. One method of generating a B-rep is to take the polygons
forming the surface of each primitive and trim away the polygons (or portions thereof)
that do not satisfy the CSG operations. B-rep models are typically generated once and
then manipulated as a static model because they are slow to generate.

CGS tree Resulting
solid

F i g u r e 16.10 An example of constructive solid geometry.

394 C H A P T E R 16 CAD and Mode l i ng Te chn iques

Drawing a CSG model using stenciling usually requires drawing more polygons than
a B-rep would contain for the same model. Enabling stencil itself also may reduce per-
formance. Nonetheless, some portions of a CSG tree may be interactively manipulated
using stenciling if the remainder of the tree is cached as a B-rep.

The algorithm presented here is from a paper (Wiegand, 1996) describing a
GL-independent method for using stenciling in a CSG modeling system for fast inter-
active updates. The technique can also process concave solids, the complexity of which
is limited by the number of stencil planes available.

The algorithm presented here assumes that the CSG tree is in “normal” form. A tree
is in normal form when all intersection and subtraction operators have a left subtree
that contains no union operators and a right subtree that is simply a primitive (a set of
polygons representing a single solid object). All union operators are pushed toward the
root, and all intersection and subtraction operators are pushed toward the leaves. For
example, (((A ∩ B) − C) ∪ (((D ∩ E) ∩ G) − F)) ∪ H is in normal form; Figure 16.11
illustrates the structure of that tree and the characteristics of a tree in this form.

A CSG tree can be converted to normal form by repeatedly applying the following
set of production rules to the tree and then its subtrees.

1. X − (Y ∪ Z) → (X − Y) − Z

2. X ∩ (Y ∪ Z) → (X ∩ Y) ∪ (X ∩ Z)

3. X − (Y ∩ Z) → (X − Y) ∪ (X − Z)

4. X ∩ (Y ∩ Z) → (X ∩ Y) ∩ Z

5. X − (Y − Z) → (X − Y) ∪ (X ∩ Z)

Union at top of tree

Left child of intersection
or subtraction is

never union

Right child of intersection
or subtraction always

a primitive

�

�

A

�

�

�

–

–

B

C

D E

F

G

H

A

–

�

� Union

Intersection

Subtraction

Primitive

Key

((((A�B) – C) � (((D�E) �G) – F)) �H)

F i g u r e 16.11 A CSG tree in normal form.

S E C T I O N 1 6 . 1 0 Cons t r u c t i v e So l i d Geomet ry 395

6. X ∩ (Y − Z) → (X ∩ Y) − Z

7. (X − Y) ∩ Z → (X ∩ Z) − Y

8. (X ∪ Y) − Z → (X − Z) ∪ (Y − Z)

9. (X ∪ Y) ∩ Z → (X ∩ Z) ∪ (Y ∩ Z)

X, Y, and Z here match either primitives or subtrees. The algorithm used to apply the
production rules to the CSG tree follows.

normalize(tree *t){
if (isPrimitive(t))

return;

do {
while (matchesRule(t)) /* Using rules given above */

applyFirstMatchingRule(t);
normalize(t->left);

} while (!(isUnionOperation(t) ||
(isPrimitive(t->right) &&
! isUnionOperation(T->left))));

normalize(t->right);
}

Normalization may increase the size of the tree and add primitives that do not contribute
to the final image. The bounding volume of each CSG subtree can be used to prune the tree
as it is normalized. Bounding volumes for the tree can be calculated using the following
algorithm.

findBounds(tree *t){
if (isPrimitive(t))

return;

findBounds(t->left);
findBounds(t->right);

switch (t->operation){
case UNION:

t->bounds = unionOfBounds(t->left->bounds,
t->right->bounds);

case INTERSECTION:
t->bounds = intersectionOfBounds(t->left->bounds,

t->right->bounds);

396 C H A P T E R 16 CAD and Mode l i ng Te chn iques

case SUBTRACTION:
t->bounds = t->left->bounds;

}
}

CSG subtrees rooted by the intersection or subtraction operators may be pruned at each
step in the normalization process using the following two rules.

1. If T is an intersection and not intersects(T->left->bounds,
T->right->bounds), delete T.

2. If T is a subtraction and not intersects(T->left->bounds,
T->right->bounds), replace T with T->left.

The normalized CSG tree is a binary tree, but it is important to think of the tree as a
“sum of products” to understand the stencil CSG procedure.

Consider all unions as sums. Next, consider all the intersections and subtractions
as products. (Subtraction is equivalent to intersection with the complement of the term
to the right; for example, A − B = A ∩ B̄.) Imagine all unions flattened out into a
single union with multiple children. That union is the “sum.” The resulting subtrees of
that union are all composed of subtractions and intersections, the right branch of those
operations is always a single primitive, and the left branch is another operation or a
single primitive. Consider each child subtree of the imaginary multiple union as a single
expression containing all intersection and subtraction operations concatenated from the
bottom up. These expressions are the “products.” For example, ((A ∩ B) − C) ∪ (((G ∩
D) − E) ∩ F) ∪ H can be thought of as (A ∩ B − C) ∪ (G ∩ D − E ∩ F) ∪ H. Figure 16.12
illustrates this process.

�

�

A

�

�

�

–
–

B

C

D E

F

G

H
�

H

A�B – C
D�E�G – F

(A�B – C) � (D�E�G – F) �H((((A�B) – C) � (((D�E)�G) – F)) �H)

F i g u r e 16.12 Thinking of a CSG tree as a sum of products.

S E C T I O N 1 6 . 1 0 Cons t r u c t i v e So l i d Geomet ry 397

At this time, redundant terms can be removed from each product. Where a term
subtracts itself (A − A), the entire product can be deleted. Where a term intersects itself
(A ∩ A), that intersection operation can be replaced with the term itself.

All unions can be rendered simply by finding the visible surfaces of the left and right
subtrees and allowing the depth test to determine the visible surface. All products can be
rendered by drawing the visible surfaces of each primitive in the product and trimming
those surfaces with the volumes of the other primitives in the product. For example, to
render A − B the visible surfaces of A are trimmed by the complement of the volume of
B, and the visible surfaces of B are trimmed by the volume of A.

The visible surfaces of a product are the front-facing surfaces of the operands of inter-
sections and the back-facing surfaces of the right operands of subtraction. For example, in
(A−B∩C) the visible surfaces are the front-facing surfaces of A and C and the back-facing
surfaces of B.

Concave solids are processed as sets of front-facing or back-facing surfaces. The
“convexity” of a solid is defined as the maximum number of pairs of front and back
surfaces that can be drawn from the viewing direction. Figure 16.13 shows some examples
of the convexity of objects. The nth front surface of a k-convex primitive is denoted Anf ,
and the nth back surface is Anb. Because a solid may vary in convexity when viewed from
different directions, accurately representing the convexity of a primitive may be difficult
and may involve reevaluating the CSG tree at each new view. Instead, the algorithm must
be given the maximum possible convexity of a primitive; it then draws the nth visible
surface by using a counter in the stencil planes.

The CSG tree must be further reduced to a “sum of partial products” by converting
each product to a union of products, each consisting of the product of the visible surfaces
of the target primitive with the remaining terms in the product. For example, if A, B, and D

1-Convex 2-Convex 3-Convex

1

2

1

2

3

4

1

2

3

4

5

F i g u r e 16.13 Examples of n-convex solids.

398 C H A P T E R 16 CAD and Mode l i ng Te chn iques

are 1-convex and C is 2-convex:

(A − B ∩ C ∩ D) →
(A0f − B ∩ C ∩ D) ∪
(B0b ∩ A ∩ C ∩ D) ∪
(C0f ∩ A − B ∩ D) ∪
(C1f ∩ A − B ∩ D) ∪
(D0f ∩ A ∩ B ∩ C)

Because the target term in each product has been reduced to a single front-facing or back-
facing surface, the bounding volumes of that term will be a subset of the bounding volume
of the original complete primitive. Once the tree is converted to partial products, the
pruning process may be applied again with these subset volumes. In each resulting child
subtree representing a partial product, the leftmost term is called the “target” surface,
and the remaining terms on the right branches are called “trimming” primitives.

The resulting sum of partial products reduces the rendering problem to rendering each
partial product correctly before drawing the union of the results. Each partial product is
rendered by drawing the target surface of the partial product and then “classifying” the
pixels generated by that surface with the depth values generated by each of the trimming
primitives in the partial product. If pixels drawn by the trimming primitives pass the depth
test an even number of times, that pixel in the target primitive is “out,” and discarded.
If the count is odd, the target primitive pixel is “in,” and kept.

Because the algorithm saves depth buffer contents between each object, the number
of depth saves and restores can be minimized by drawing as many of target and trimming
primitives for each pass as can fit in the stencil buffer.

The algorithm uses one stencil bit (Sp) as a toggle for trimming primitive depth test
passes (parity); n stencil bits for counting to the nth surface (Scount), where n is the smallest
number for which 2n is larger than the maximum convexity of a current object, and as
many bits as are available (Sa) to accumulate whether target pixels have to be discarded.
Because Scount will require the GL_INCR operation, it must be stored contiguously in the
least-significant bits of the stencil buffer. Sp and Scount are used in two separate steps, and
so may share stencil bits.

For example, drawing two 5-convex primitives requires one Sp bit, three Scount bits,
and two Sa bits. Because Sp and Scount are independent, the total number of stencil bits
required is 5.

Once the tree is converted to a sum of partial products, the individual products are
rendered. Products are grouped so that as many partial products can be rendered between
depth buffer saves and restores as the stencil buffer has capacity.

For each group, color buffer writes are disabled, the contents of the depth buffer are
saved, and the depth buffer is cleared. Then, every target in the group is classified against
its trimming primitives. The depth buffer is then restored, and every target in the group is

S E C T I O N 1 6 . 1 0 Cons t r u c t i v e So l i d Geomet ry 399

rendered against the trimming mask. The depth buffer save/restore can be optimized by
saving and restoring only the region containing the screen-projected bounding volumes
of the target surfaces.

for each group
glReadPixels(...);
<classify the group>
glStencilMask(0); /* so DrawPixels won’t affect Stencil */
glDrawPixels(...);
<render the group>

Classification consists of drawing each target primitive’s depth value and then clearing
those depth values where the target primitive is determined to be outside the trimming
primitives.

glClearDepth(far);
glClear(GL_DEPTH_BUFFER_BIT);
a = 0;
for (each target surface in the group)

for (each partial product targeting that surface)
<render the depth values for the surface>
for (each trimming primitive in that partial product)

<trim the depth values against that primitive>
<set Sa to 1 where Sa = 0 and Z < Zfar>
a++;

The depth values for the surface are rendered by drawing the primitive containing the
target surface with color and stencil writes disabled. (Scount) is used to mask out all but the
target surface. In practice, most CSG primitives are convex, so the algorithm is optimized
for that case.

if (the target surface is front facing)
glCullFace(GL_BACK);

else
glCullFace(GL_FRONT);

if (the surface is 1-convex)
glDepthMask(1);
glColorMask(0, 0, 0, 0);
glStencilMask(0);
<draw the primitive containing the target surface>

else
glDepthMask(1);
glColorMask(0, 0, 0, 0);

400 C H A P T E R 16 CAD and Mode l i ng Te chn iques

glStencilMask(Scount);
glStencilFunc(GL_EQUAL, index of surface, Scount);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
<draw the primitive containing the target surface>
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);

Each trimming primitive for that target surface is then drawn in turn. Depth testing is
enabled and writes to the depth buffer are disabled. Stencil operations are masked to Sp,
and the Sp bit in the stencil is cleared to 0. The stencil function and operation are set so
that Sp is toggled every time the depth test for a fragment from the trimming primitive
succeeds. After drawing the trimming primitive, if this bit is 0 for uncomplemented
primitives (or 1 for complemented primitives) the target pixel is “out,” and must be
marked “discard” by enabling writes to the depth buffer and storing the far depth value
(Zf) into the depth buffer everywhere the Sp indicates “discard.”

glDepthMask(0);
glColorMask(0, 0, 0, 0);
glStencilMask(mask for Sp);
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_ALWAYS, 0, 0);
glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT);
<draw the trimming primitive>
glDepthMask(1);

Once all the trimming primitives are rendered, the values in the depth buffer are Zf for
all target pixels classified as “out.” The Sa bit for that primitive is set to 1 everywhere the
depth value for a pixel is not equal to Zf , and 0 otherwise.

Each target primitive in the group is finally rendered into the framebuffer with depth
testing and depth writes enabled, the color buffer enabled, and the stencil function and
operation set to write depth and color only where the depth test succeeds and Sa is 1.
Only the pixels inside the volumes of all the trimming primitives are drawn.

glDepthMask(1);
glColorMask(1, 1, 1, 1);
a = 0;
for (each target primitive in the group)

glStencilMask(0);
glStencilFunc(GL_EQUAL, 1, Sa);
glCullFace(GL_BACK);
<draw the target primitive>
glStencilMask(Sa);

S E C T I O N 1 6 . 1 0 Cons t r u c t i v e So l i d Geomet ry 401

glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
a++;

Further techniques are available for adding clipping planes (half-spaces), including more
normalization rules and pruning opportunities (Wiegand, 1996). This is especially
important in the case of the near clipping plane in the viewing frustum.

17
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Scene Realism

Although a number of fields of computer graphics, such as scientific visualization and
CAD, don’t make creating realistic images a primary focus, it is an important goal for
many others. Computer graphics in the entertainment industry often strives for realistic
effects, and realistic rendering has always been a central area of research. A lot of image
realism can be achieved through attention to the basics: using detailed geometric models,
creating high-quality surface textures, carefully tuning lighting and material parameters,
and sorting and clipping geometry to achieve artifact-free transparency. There are limits
to this approach, however. Increasing the resolution of geometry and textures can rapidly
become expensive in terms of design overhead, as well as incurring runtime storage and
performance penalties.

Applications usually can’t pursue realism at any price. Most are constrained by
performance requirements (especially interactive applications) and development costs.
Maximizing realism becomes a process of focusing on changes that make the most visual
difference. A fruitful approach centers around augmenting areas where OpenGL has only
basic functionality, such as improving surface lighting effects and accurately modeling
the lighting interactions between objects in the scene.

This chapter focuses on the second area: interobject lighting. OpenGL has only a very
basic interobject lighting model: it sums all of the contributions from secondary reflections
in a single “ambient illumination” term. It does have many important building blocks,
however (such as environment mapping) that can be used to model object interactions.
This chapter covers the ambient lighting effects that tend to dominate a scene: specular
and diffuse reflection between objects, refractive effects, and shadows.

403

404 C H A P T E R 17 Scene Rea l i sm

17.1 Reflections

Reflections are one of the most noticeable effects of interobject lighting. Getting it right
can add a lot of realism to a scene for a moderate effort. It also provides very strong
visual clues about the relative positioning of objects. Here, reflection is divided into
two categories: highly specular “mirror-like” reflections and “radiosity-like” interobject
lighting based on diffuse reflections.

Directly calculating the physics of reflection using algorithms such as ray tracing
can be expensive. As the physics becomes more accurate, the computational overhead
increases dramatically with scene complexity. The techniques described here help an
application budget its resources, by attempting to capture the most significant reflec-
tion effects in ways that minimize overhead. They maintain good performance by
approximating more expensive approaches, such as ray tracing, using less expensive
methods.

17.1.1 Object vs. Image Techniques

Consider a reflection as a view of a “virtual” object. As shown in Figure 17.1, a scene
is composed of reflected objects rendered “behind” their reflectors, the same objects
drawn in their unreflected positions, and the reflectors themselves. Drawing a reflection
becomes a two-step process: using objects in the scene to create virtual reflected versions
and drawing the virtual objects clipped by their reflectors.

There are two ways to implement this concept: image-space methods using textures
and object-space approaches that manipulate geometry. Texture methods create a tex-
ture image from a view of the reflected objects, and then apply it to a reflecting surface.
An advantage of this approach, being image-based, is that it doesn’t depend on the geo-
metric representation of the objects being reflected. Object-space methods, by contrast,
often must distort an object to model curved reflectors, and the realism of their reflec-
tions depends on the accuracy of the surface model. Texture methods have the most
built-in OpenGL support. In addition to basic texture mapping, texture matrices, and

Object

Start with scene Create virtual object Clip to reflector

Reflector Virtual
object

F i g u r e 17.1 Mirror reflection of the scene.

S E C T I O N 1 7 . 1 Re f l e c t i ons 405

texgen functionality, environment texturing support makes rendering the reflections from
arbitrary surfaces relatively straightforward.

Object-space methods, in contrast, require much more work from the application.
Reflected “virtual” objects are created by calculating a “virtual” vertex for every ver-
tex in the original object, using the relationship between the object, reflecting surface,
and viewer. Although more difficult to implement, this approach has some significant
advantages. Being an object-space technique, its performance is insensitive to image res-
olution, and there are fewer sampling issues to consider. An object-space approach can
also produce more accurate reflections. Environment mapping, used in most texturing
approaches, is an approximation. It has the greatest accuracy showing reflected objects
that are far from the reflector. Object-space techniques can more accurately model reflec-
tions of nearby objects. Whether these accuracy differences are significant, or even notice-
able, depends on the details of the depicted scene and the requirements of the application.

Object-space, image-space, and some hybrid approaches are discussed in this chapter.
The emphasis is on object-space techniques, however, since most image-space tech-
niques can be directly implemented using OpenGL’s texturing functionality. Much of
that functionality is covered in Sections 5.4 and 17.3.

Virtual Objects

Whether a reflection technique is classified as an object-space or image-space approach,
and whether the reflector is planar or not, one thing is constant: a virtual object must be
created, and it must be clipped against the reflector. Before analyzing various reflection
techniques, the next two sections provide some general information about creating and
clipping virtual objects.

Clipping Virtual Objects Proper reflection clipping involves two steps: clipping any
reflected geometry that lies outside the edges of the reflected object (from the viewer’s
point of view) and clipping objects that extend both in front of and behind the reflec-
tor (or penetrate it) to the reflector’s surface. These two types of clipping are shown in
Figure 17.2. Clipping to a planar reflector is the most straightforward. Although the

Reflector

Clipping to
reflector’s extent

Clipping to
reflector’s plane

Reflector (side view)

Virtual
object

Virtual
object

F i g u r e 17.2 Clipping virtual objects to reflectors.

406 C H A P T E R 17 Scene Rea l i sm

application is different, standard clipping techniques can often be reused. For example,
user-defined clip planes can be used to clip to the reflector’s edges or surface when the
reflection region is sufficiently regular or to reduce the area that needs to be clipped by
other methods.

While clipping to a reflecting surface is trivial for planar reflectors, it can become
quite challenging when the reflector has a complex shape, and a more powerful clipping
technique may be called for. One approach, useful for some applications, is to han-
dle reflection clipping through careful object modeling. Geometry is created that only
contains the parts visible in the reflector. In this case, no clipping is necessary. While effi-
cient, this approach can only be used in special circumstances, where the view position
(but not necessarily the view direction), reflector, and reflected geometry maintain a static
relationship.

There are also image-space approaches to clipping. Stencil buffering can be useful for
clipping complex reflectors, since it can be used to clip per-pixel to an arbitrary reflection
region. Rather than discarding pixels, a texture map of the reflected image can be con-
structed from the reflected geometry and applied to the reflecting object’s surface. The
reflector geometry itself then clips an image of the virtual object to the reflector’s edges.
An appropriate depth buffer function can also be used to remove reflecting geometry
that extends behind the reflector. Note that including stencil, depth, and texture clipping
techniques to object-space reflection creates hybrid object/image space approaches, and
thus brings back pixel sampling and image resolution issues.

Issues When Rendering Virtual Objects Rendering a virtual object properly has a surprising
number of difficulties to overcome. While transforming the vertices of the source object
to create the virtual one is conceptually straightforward when the reflector is planar, a
reflection across a nonplanar reflector can distort the geometry of the virtual object. In
this case, the original tessellation of the object may no longer be sufficient to model it
accurately. If the curvature of a surface increases, that region of the object may require
retessellation into smaller triangles. A general solution to this problem is difficult to
construct without resorting to higher-order surface representations.

Even after finding the proper reflected vertices for the virtual object, finding the
connectivity between them to form polygons can be difficult. Connectivity between ver-
tices can be complicated by the effects of clipping the virtual object against the reflector.
Clipping can remove vertices and add new ones, and it can be tedious to handle all corner
cases, especially when reflectors have complex or nonplanar shapes.

More issues can arise after creating the proper geometry for the virtual object. To
start, note that reflecting an object to create a virtual one reverses the vertex ordering
of an object’s faces, so the proper face-culling state for reflected objects is the opposite
of the original’s. Since a virtual object is also in a different position compared to the
source object, care must be taken to light the virtual objects properly. In general, the light
sources for the reflected objects should be reflected too. The difference in lighting may
not be noticeable under diffuse lighting, but changes in specular highlights can be quite
obvious.

S E C T I O N 1 7 . 1 Re f l e c t i ons 407

17.1.2 Planar Reflectors

Modeling reflections across planar or nearly planar surfaces is a common occurrence.
Many synthetic objects are shiny and flat, and a number of natural surfaces, such as the
surface of water and ice, can often be approximated using planar reflectors. In addition to
being useful techniques in themselves, planar reflection methods are also important build-
ing blocks for creating techniques to handle reflections across nonplanar and nonuniform
surfaces.

Consider a model of a room with a flat mirror on one wall. To reflect objects in this
planar reflector, its orientation and position must be established. This can be done by com-
puting the equation of the plane that contains the mirror. Mirror reflections, being specu-
lar, depend on the position of both the reflecting surface and the viewer. For planar reflec-
tors, however, reflecting the geometry is a viewer-independent operation, since it depends
only on the relative position of the geometry and the reflecting surface. To draw the
reflected geometry, a transform must be computed that reflects geometry across the mir-
ror’s plane. This transform can be conceptualized as reflecting either the eye point or the
objects across the plane. Either representation can be used; both produce identical results.

An arbitrary reflection transformation can be decomposed into a translation of the
mirror plane to the origin, a rotation embedding the mirror into a major plane (for
example the x − y plane), a scale of −1 along the axis perpendicular to that plane (in this
case the z axis), the inverse of the rotation previously used, and a translation back to the
mirror location.

Given a vertex P on the planar reflector’s surface and a vector V perpendicular to the
plane, the reflection transformations sequence can be expressed as the following single
4 × 4 matrix R (Goldman, 1990):

R =

⎛⎜⎜⎝
1 − 2V2

x −2VxVy −2VxVz 2(P · V)Vx

−2VxVy 1 − 2V2
y −2VyVz 2(P · V)Vy

−2VxVz −2VyVz 1 − 2V2
z 2(P · V)Vz

0 0 0 1

⎞⎟⎟⎠
Applying this transformation to the original scene geometry produces a virtual scene on
the opposite side of the reflector. The entire scene is duplicated, simulating a reflector of
infinite extent. The following section goes into detail on how to render and clip virtual
geometry against planar reflectors to produce the effect of a finite reflector.

Clipping Planar Reflections

Reflected geometry must be clipped to ensure it is only visible in the reflecting surface.
To do this properly, the reflected geometry that appears beyond the boundaries of the
reflector from the viewer’s perspective must be clipped, as well as the reflected geometry
that ends up in front of the reflector. The latter case is the easiest to handle. Since the
reflector is planar, a single application-defined clipping plane can be made coplanar to the
reflecting surface, oriented to clip out reflected geometry that ends up closer to the viewer.

408 C H A P T E R 17 Scene Rea l i sm

If the reflector is polygonal, with few edges, it can be clipped with the remaining
application clip planes. For each edge of the reflector, calculate the plane that is formed
by that edge and the eye point. Configure this plane as a clip plane (without applying
the reflection transformation). Be sure to save a clip plane for the reflector surface, as
mentioned previously. Using clip planes for reflection clipping is the highest-performance
approach for many OpenGL implementations. Even if the reflector has a complex shape,
clip planes may be useful as a performance-enhancing technique, removing much of the
reflected geometry before applying a more general technique such as stenciling.

In some circumstances, clipping can be done by the application. Some graphics
support libraries support culling a geometry database to the current viewing frustum.
Reflection clipping performance may be improved if the planar mirror reflector takes up
only a small region of the screen: a reduced frustum that tightly bounds the screen-space
projection of the reflector can be used when drawing the reflected scene, reducing the
number of objects to be processed.

For reflectors with more complex edges, stencil masking is an excellent choice. There
are a number of approaches available. One is to clear the stencil buffer, along with the
rest of the framebuffer, and then render the reflector. Color and depth buffer updates are
disabled, rendering is configured to update the stencil buffer to a specific value where a
pixel would be written. Once this step is complete, the reflected geometry can be rendered,
with the stencil buffer configured to reject updates on pixels that don’t have the given
stencil value set.

Another stenciling approach is to render the reflected geometry first, and then use
the reflector to update the stencil buffer. Then the color and depth buffer can be cleared,
using the stencil value to control pixel updates, as before. In this case, the stencil buffer
controls what geometry is erased, rather than what is drawn. Although this method can’t
always be used (it doesn’t work well if interreflections are required, for example), it may
be the higher performance option for some implementations: drawing the entire scene
with stencil testing enabled is likely to be slower than using stencil to control clearing the
screen. The following outlines the second approach in more detail.

1. Clear the stencil and depth buffers.

2. Configure the stencil buffer such that 1 will be set at each pixel where polygons are
rendered.

3. Disable drawing into the color buffers using glColorMask.

4. Draw the reflector using blending if desired.

5. Reconfigure the stencil test using glStencilOp and glStencilFunc.

6. Clear the color and depth buffer to the background color.

7. Disable the stencil test.

8. Draw the rest of the scene (everything but the reflector and reflected objects).

S E C T I O N 1 7 . 1 Re f l e c t i ons 409

Draw unreflected objects
first (except reflector)

Draw virtual objects
clipped by depth test

Draw reflector last

F i g u r e 17.3 Masking reflections with depth buffering.

The previous example makes it clear that the order in which the reflected geometry,
reflector, and unreflected geometry are drawn can create different performance trade-offs.
An important element to consider when ordering geometry is the depth buffer. Proper
object ordering can take advantage of depth buffering to clip some or all of the reflected
geometry automatically. For example, a reflector surrounded by nonreflected geometry
(such as a mirror hanging on a wall) will benefit from drawing the nonreflected geometry
in the scene first, before drawing the reflected objects. The first rendering stage will
initialize the depth buffer so that it can mask out reflected geometry that goes beyond the
reflector’s extent as it’s drawn, as shown in Figure 17.3. Note that the figure shows how
depth testing can clip against objects in front of the mirror as well as those surrounding
it. The reflector itself should be rendered last when using this method; if it is, depth
buffering will remove the entire reflection, since the reflected geometry will always be
behind the reflector. Note that this technique will only clip the virtual object when there
are unreflected objects surrounding it, such as a mirror hanging on a wall. If there are
clear areas surrounding the reflector, other clipping techniques will be needed.

There is another case that can’t be handled through object ordering and depth testing.
Objects positioned so that all or part of their reflection is in front of the mirror (such as
an object piercing the mirror surface) will not be automatically masked. This geometry
can be eliminated with a clip plane embedded in the mirror plane. In cases where the
geometry doesn’t cross the mirror plane, it can be more efficient for the application to
cull out the geometry that creates these reflections (i.e., geometry that appears behind the
mirror from the viewer’s perspective) before reflecting the scene.

Texture mapping can also be used to clip a reflected scene to a planar reflector.
As with the previous examples, the scene geometry is transformed to create a reflected
view. Next, the image of the reflected geometry is stored into a texture map (using
glCopyTexImage2D, for example). The color and depth buffers are cleared. Finally,
the entire scene is redrawn, unreflected, with the reflector geometry textured with the
image of the reflected geometry. The process of texturing the reflector clips the image of
the reflected scene to the reflector’s boundaries. Note that any reflected geometry that
ends up in front of the reflector still has to be clipped before the texture image is created.

410 C H A P T E R 17 Scene Rea l i sm

The methods mentioned in the previous example, using culling or a clip plane, will work
equally well here.

The difficult part of this technique is configuring OpenGL so that the reflected scene
can be captured and then mapped properly onto the reflector’s geometry. The problem
can be restated in a different way. In order to preserve alignment, both the reflected and
unreflected geometry are rendered from the same viewpoint. To get the proper results,
the texture coordinates on the reflector only need to register the texture to the original
captured view. This will happen if the s and t coordinates correlate to x and y window
coordinates of the reflector.

Rather than computing the texture coordinates of the reflector directly, the map-
ping between pixels and texture coordinates can be established using glTexGen and the
texture transform matrix. As the reflector is rendered, the correct texture coordinates
are computed automatically at each vertex. Configuring texture coordinate generation to
GL_OBJECT_LINEAR, and setting the s, t and r coordinates to match one to one with
x, y, and z in eye space, provides the proper input to the texture transform matrix. It can
be loaded with a concatenation of the modelview and projection matrix used to “pho-
tograph” the scene. Since the modelview and projection transforms the map from object
space to NDC space, a final scale-and-translate transform must be concatenated into the
texture matrix to map x and y from [−1, 1] to the [0, 1] range of texture coordinates.
Figure 17.4 illustrates this technique. There are three views. The left is the unreflected
view with no mirror. The center shows a texture containing the reflected view, with a
rectangle showing the portion that should be visible in the mirror. The rightmost view
shows the unreflected scene with a mirror. The mirror is textured with the texture con-
taining the reflected view. Texgen is used to apply the texture properly. The method of
using texgen to match the transforms applied to vertex coordinates is described in more
detail in Section 13.6.

The texture-mapping technique may be more efficient on some systems than stencil
buffering, depending on their relative performance on the particular OpenGL implemen-
tation. The downside is that the technique ties up a texture unit. If rendering the reflector
uses all available texture units, textured scenes will require the use of multiple passes.

Finally, separating the capture of the reflected scene and its application to the reflector
makes it possible to render the image of the reflected scene at a lower resolution than the

F i g u r e 17.4 Masking reflections using projective texture.

S E C T I O N 1 7 . 1 Re f l e c t i ons 411

final one. Here, texture filtering blurs the texture when it is projected onto the reflector.
Lowering resolution may be desirable to save texture memory, or to use as a special effect.

This texturing technique is not far from simply environment-mapping the reflector,
using a environment texture containing its surroundings. This is quite easy to do with
OpenGL, as described in Section 5.4. This simplicity is countered by some loss of realism
if the reflected geometry is close to the reflector.

17.1.3 Curved Reflectors

The technique of creating reflections by transforming geometry can be extended to curved
reflectors. Since there is no longer a single plane that accurately reflects an entire object
to its mirror position, a reflection transform must be computed per-vertex. Computing a
separate reflection at each vertex takes into account changes in the reflection plane across
the curved reflector surface. To transform each vertex, the reflection point on the reflector
must be found and the orientation of the reflection plane at that point must be computed.

Unlike planar reflections, which only depend on the relative positions of the geometry
and the reflector, reflecting geometry across a curved reflector is viewpoint dependent.
Reflecting a given vertex first involves finding the reflection ray that intersects it. The
reflection ray has a starting point on the reflector’s surface and the reflection point, and
a direction computed from the normal at the surface and the viewer position. Since the
reflector is curved, the surface normal varies across the surface. Both the reflection ray
and surface normal are computed for a given reflection point on the reflector’s surface,
forming a triplet of values. The reflection information over the entire curved surface can
be thought of as a set of these triplets. In the general case, each reflection ray on the
surface can have a different direction.

Once the proper reflection ray for a given vertex is found, its associated surface
position and normal can be used to reflect the vertex to its corresponding virtual object
position. The transform is a reflection across the plane, which passes through the reflection
point and is perpendicular to the normal at that location, as shown in Figure 17.5.
Note that computing the reflection itself is not viewer dependent. The viewer position

Original object

Virtual
object

Reflection planes

Ray from eye to vertex

Normal at reflection point

From original to reflected vertex

F i g u r e 17.5 Normals and reflection vectors in curved reflectors.

412 C H A P T E R 17 Scene Rea l i sm

comes into play when computing the reflection rays to find the one that intersects the
vertex.

Finding a closed-form solution for the reflection point — given an arbitrary eye posi-
tion, reflector position and shape, and vertex position — can be suprisingly difficult.
Even for simple curved reflectors, a closed-form solution is usually too complex to be
useful. Although beyond the scope of this book, there has been interesting research into
finding reflection point equations for the class of reflectors described as implicit equa-
tions. Consult references such as Hanrahan (1992) and Chen (2000 and 2001) for more
information.

Curved Reflector Implementation Issues

There are a few issues to consider when using an object-based technique to model curved
reflections. The first is tessellation of reflected geometry. When reflecting across a curved
surface, straight lines may be transformed into curved ones. Since the reflection transform
is applied to the geometry per-vertex, the source geometry may need to be tessellated more
finely to make the reflected geometry look smoothly curved. One metric for deciding when
to tessellate is to compare the reflection point normals used to transform vertices. When
the normals for adjacent vertices differ sufficiently, the source geometry can be tessellated
more finely to reduce the difference.

Another problem that arises when reflecting geometry against a curved reflector is
dealing with partially reflected objects. An edge may bridge two different vertices: one
reflected by the curved surface and one that isn’t. The ideal way to handle this case is to
find a transform for the unreflected point that is consistent with the reflected point sharing
an edge with it. Then both points can be transformed, and the edge clipped against the
reflector boundary.

For planar reflectors, this procedure is simple, since there is only one reflection trans-
form. Points beyond the edge of the reflector can use the transform, so that edges clipped
by the reflector are consistent. This becomes a problem for nonplanar reflectors because it
may be difficult or impossible to extend the reflector and construct a reasonable transform
for points beyond the reflector’s extent. This problem is illustrated in Figure 17.6.

Reflection boundaries also occur when a reflected object crosses the plane of the reflec-
tor. If the object pierces the reflector, it can be clipped to the surface, although creating an
accurate clip against a curved surface can be computationally expensive. One possibility
is to use depth buffering. The reflector can be rendered to update the depth buffer, and
then the reflected geometry can be rendered with a GL_GREATER depth function. Unfor-
tunately, this approach will lead to incorrect results if any reflected objects behind the
reflector obscure each other. When geometry needs to be clipped against a curved surface
approximated with planar polygons, application-defined clip planes can also be used.

Arbitrary Curved Reflectors

A technique that produces reflections across a curved surface is most useful if it can be
used with an arbitrary reflector shape. A flexible approach is to use an algorithm that

S E C T I O N 1 7 . 1 Re f l e c t i ons 413

How to extend to curved reflector?
Can’t find transform or vertices.

Works for planar
reflectors

Need to transform extra
vertices to clip reflected

geometry

? ?

F i g u r e 17.6 Clipping curved reflectors.

represents a curved reflector approximated by a mesh of triangles. A simple way to build
a reflection with such a reflector is to treat each triangle as a planar reflector. Each vertex
of the object is reflected across the plane defined by one or more triangles in the mesh
making up the reflector. Finding the reflection plane for each triangle is trivial, as is the
reflection transform.

Even with this simple method, a new issue arises: for a given object vertex, which
triangles in the reflector should be used to create virtual vertices? In the general case, more
than one triangle may reflect a given object vertex. A brute-force approach is to reflect
every object vertex against every triangle in the reflector. Extraneous virtual vertices are
discarded by clipping each virtual vertex against the triangle that reflected it. Each triangle
should be thought of a single planar mirror and the virtual vertices created by it should
be clipped appropriately. This approach is obviously inefficient. There are a number of
methods that can be used to match vertices with their reflecting triangles. If the application
is using scene graphs, it may be convenient to use them to do a preliminary culling/group
step before reflecting an object. Another approach is to use explosion maps, as described
in Section 17.8.

Reflecting an object per triangle facet produces accurate reflections only if the reflect-
ing surface is truly represented by the polygon mesh; in other words, when the reflector
is faceted. Otherwise, the reflected objects will be inaccurate. The positions of the virtual
vertices won’t match their correct positions, and some virtual vertices may be missing,
falling “between the cracks” because they are not visible in any triangle that reflected
them, as shown in Figure 17.7.

This method approximates a curved surface with facets. This approximation may be
adequate if the reflected objects are not close to the reflector, or if the reflector is highly
tessellated. In most cases, however, a more accurate approximation is called for. Instead
of using a single facet normal and reflection plane across each triangle, vertex normals
are interpolated across the triangle.

414 C H A P T E R 17 Scene Rea l i sm

Vertex reflected to wrong position
Vertex unreflected by any facet

F i g u r e 17.7 Approximating a curved reflector as triangle facets.

The basic technique for generating a reflected image is similar to the faceted reflector
approach described previously. The vertices of objects to be reflected must be associated
with reflection points and normals, and a per-vertex reflection transform is constructed
to reflect the vertices to create a “virtual” (reflected) object. The difference is that the
reflection rays, normals, and points are now parameterized.

Parameterizing each triangle on the reflector is straightforward. Each triangle on the
reflector is assumed to have three, possibly nonparallel, vertex normals. Each vertex and
its normal is shared by adjacent triangles. For each vertex, vertex normal, and the eye
position, a per-vertex reflection vector is computed. The OpenGL reflection equation,
R = U − 2NT (N · U), can be used to compute this vector.

The normals at each vertex of a triangle can be extended into a ray, creating a volume
with the triangle at its base. The position of a point within this space relative to these
three rays can be used to generate parameters for interpolating a reflection point and
transform, as illustrated in Figure 17.8.

Computing the distance from a point to each ray is straightforward. Given a vertex
on the triangle V , and it’s corresponding normal N, a ray R can be defined in a parametric
form as

R = V + tN.

Finding the closest distance from a point P to R is done by computing t for the point
on the ray closest to P and then measuring the distance between P and that point.

Triangle in mesh
with vertex normals

Normals extended
into rays to form

half-space

Vertex position relative
to rays used to generate

parameter values

Parameters used to
find reflection plane

F i g u r e 17.8 Generating interpolation parameters.

S E C T I O N 1 7 . 1 Re f l e c t i ons 415

The formula is

t = N · (P − V)

This equation finds the value of t where P projects onto R. Since the points on the three
rays closest to P form a triangle, the relationship between P and that triangle can be used
to find barycentric coordinates for P. In general, P won’t be coplanar with the triangle.
One way to find the barycentric coordinates is to project P onto the plane of the triangle
and then compute its barycentric coordinates in the traditional manner.

The barycentric coordinates can be used to interpolate a normal and position from
the vertices and vertex normals of the reflector’s triangle. The interpolated normal and
position can be used to reflect P to form a vertex of the virtual object.

This technique has a number of limitations. It only approximates the true position
of the virtual vertices. The less parallel the vertex normals of a triangle are the poorer
the approximation becomes. In such cases, better results can be obtained by further
subdividing triangles with divergent vertex normals. There is also the performance issue
of choosing the triangles that should be used to reflect a particular point. Finally, there
is the problem of reconstructing the topology of the virtual object from the transformed
virtual vertices. This can be a difficult for objects with high-curvature and concave regions
and at the edge of the reflector mesh.

Explosion Maps

As mentioned previously, the method of interpolating vertex positions and normals for
each triangle on the reflector’s mesh doesn’t describe a way to efficiently find the proper
triangle to interpolate. It also doesn’t handle the case where an object to reflect extends
beyond the bounds of the reflection mesh, or deal with some of the special cases that come
with reflectors that have concave surfaces. The explosion map technique, developed by
Ofek and Rappoport (Ofek, 1998), solves these problems with an efficient object-space
algorithm, extending the basic interpolation approach described previously.

An explosion map can be thought of as a special environment map, encoding the
volumes of space “owned” by the triangles in the reflector’s mesh. An explosion map
stores reflection directions in a 2D image, in much the same way as OpenGL maps
reflection directions to a sphere map. A unit vector (x, y, z)T is mapped into coordinates
s, t within a circle inscribed in an explosion map with radius r as

s = r
2

(
1 + x√

2(z + 1)

)
t = r

2

(
1 + y√

2(z + 1)

)
.

The reflection directions used in the mapping are not the actual reflection rays determined
from the reflector vertex and the viewpoint. Rather, the reflection ray is intersected with a

416 C H A P T E R 17 Scene Rea l i sm

Eye

Bounding
sphere

Intersection of rays
reflected from eye
with sphere

Triangle n

Reflector

Painted with ID of
triangle n

Explosion
map

F i g u r e 17.9 Mapping reflection vectors into explosion map coordinates.

sphere and the normalized vector from the center of the sphere to the intersection point is
used instead. There is a one-to-one mapping between reflection vectors from the convex
reflector and intersection points on the sphere as long as the sphere encloses the reflector.
Figure 17.9 shows a viewing vector V and a point P on the reflector that forms the
reflection vector R as a reflection of V. The normalized direction vector D from the center
of a sphere to the intersection of R with that sphere is inserted into the previous equation.

Once the reflection directions are mapped into 2D, an identification “color” for each
triangle is rendered into the map using the mapped vertices for that triangle. This provides
an exact mapping from any point on the sphere to the point that reflects that point to
the viewpoint (see Figure 17.10). This identifier may be mapped using the color buffer,
the depth buffer, or both. Applications need to verify the resolution available in the
framebuffer and will likely need to disable dithering. If the color buffer is used, only the
most significant bits of each component should be used. More details on using the color
buffer to identify objects are discussed in Section 16.1.2.

Imagine a simplified scenario in which a vertex of a face to be reflected lies on the
sphere. For this vertex on the sphere, the explosion map can be used to find a reflection
plane the vertex is reflected across. The normalized vector pointing from the sphere
center to the vertex is mapped into the explosion map to find a triangle ID. The mapped
point formed from the vertex and the mapped triangle vertices are used to compute
barycentric coordinates. These coordinates are used to interpolate a point and normal
within the triangle that approximate a plane and normal on the curved reflector. The
mapped vertex is reflected across this plane to form a virtual vertex. This process is
illustrated in Figure 17.11.

S E C T I O N 1 7 . 1 Re f l e c t i ons 417

F i g u r e 17.10 Triangle IDs stored in an explosion map as color.

Explosion
map

Reflector

Vertex

Yields the triangle
that reflects the
vertex to the eye

Reflection from eye
mapped to triangle ID

Eye

Bounding
sphere

Vertex

F i g u r e 17.11 Using an explosion map to determine the reflecting triangle.

It may be impossible to find a single sphere that can be used to build an explosion map
containing all vertices in the scene. To solve this problem, two separate explosion maps
with two spheres are computed. One sphere tightly bounds the reflector object, while
a larger sphere bounds the entire scene. The normalized vector from the center of each
sphere to the vertex is used to look up the reflecting triangle in the associated explosion
map. Although neither triangle may be correct, the reflected vertex can be positioned
with reasonable accuracy by combining the results of both explosion maps to produce an
approximation.

The results from the two maps are interpolated using a weight determined by the
ratios of the distance from the surface of each sphere to the original vertex. Figure 17.12
shows how the virtual vertices determined from the explosion maps representing

418 C H A P T E R 17 Scene Rea l i sm

α

I Ð α

I Ð αα

Sphere
center

RF Rn
R

Eye

Near sphere Far sphere

Approximated reflection RIs (Reflection IDs)
Weighted average of reflections

computed from near and far explosion maps

F i g u r e 17.12 Combining the results of near and far explosion map evaluation.

the near and far spheres are interpolated to find the final approximated reflected
vertices.

Because the reflection directions from triangles in the reflector will not typically cover
the entire explosion map, extension polygons are constructed that extend the reflection
mappings to cover the map to its edges. These extension polygons can be thought of
as extending the edges of profile triangles in the reflector into quadrilaterals that fully
partition space. This ensures that all vertices in the original scene are reflected by some
polygon.

If the reflector is a solid object, extension quadrilaterals may be formed from triangles
in the reflector that have two vertex normals that face away from the viewer. If the reflector
is convex, these triangles automatically lie on the boundary of the front-facing triangles in
the reflector. The normals of each vertex are projected into the plane perpendicular to the
viewer at that vertex, which guarantees that the reflection vector from the normals maps
into the explosion map. This profile triangle is projected into the explosion map using
these “adjusted” coordinates. The edge formed by the “adjusted” vertices is extended to
a quadrilateral to cover the remaining explosion map area, which is rendered into the

S E C T I O N 1 7 . 1 Re f l e c t i ons 419

explosion map with the profile triangle’s identifier. It is enough to extend these vertices
just beyond the boundary of the explosion map before rendering this quadrilateral. If the
reflector is a surface that is not guaranteed to have back-facing polygons, it is necessary
to extend the actual edges of the reflector until normals along the edge of the reflector
fully span the space of angles in the x − y plane.

The technique described can be used for both convex and concave surfaces. Concave
surfaces, however, have the additional complication that more than one triangle may
“own” a given vertex. This prevents the algorithm from generating a good approximation
to the reflection normal. Note, however, that the motion of such vertices will appear
chaotic in an actual reflection, so arbitrarily choosing any one of the reflector triangles
that owns the vertex will give acceptable results. A reflector with both convex and concave
areas doesn’t have to be decomposed into separate areas. It is sufficient to structure the
map so that each point on the explosion map is owned by only one triangle.

Trade-offs

The alternative to using object-space techniques for curved reflectors is environment map-
ping. Sphere or cube map texture can be generated at the center of the reflector, capturing
the surrounding geometry, and a texgen function can be applied to the reflector to show
the reflection. This alternative will work well when the reflecting geometry isn’t too close
to the reflector, and when the curvature of the reflector isn’t too high, or when the
reflection doesn’t have to be highly accurate. An object-space method that creates virtual
reflected objects, such as the explosion map method, will work better for nearby objects
and more highly curved reflectors. Note that the explosion map method itself is still an
approximation: it uses a texture map image to find the proper triangle and compute the
reflection point. Because of this, explosion maps can suffer from image-space sampling
issues.

17.1.4 Interref lect ions

The reflection techniques described here can be extended to model interreflections between
objects. An invocation of the technique is used for every reflection “bounce” between
objects to be represented. In practice, the number of bounces must be limited to a small
number (often less than four) in order to achieve acceptable performance.

The geometry-based techniques require some refinements before they can be used
to model multiple interreflections. First, reflection transforms need to be concatenated
to create multiple interreflection transforms. This is trivial for planar transforms; the
OpenGL matrix stack can be used. Concatenating curved reflections is more involved,
since the transform varies per-vertex. The most direct approach is to save the geometry
generated at each reflection stage and then use it to represent the scene when computing the
next level of reflection. Clipping multiple reflections so that they stay within the bounds
of the reflectors becomes more complicated. The clipping method must be structured so
that it can be applied repeatably at each reflection step. Improper clipping after the last
interreflection can leave excess incorrect geometry in the image.

420 C H A P T E R 17 Scene Rea l i sm

When clipping with a stencil, it is important to order the stencil operations so that
the reflected scene images are masked directly by the stencil buffer as they are rendered.
Render the reflections with the deepest recursion first. Concatenate the reflection trans-
formations for each reflection polygon involved in an interreflection. The steps of this
approach are outlined here.

1. Clear the stencil buffer.

2. Set the stencil operation to increment stencil values where pixels are rendered.

3. Render each reflector involved in the interreflection into the stencil buffer.

4. Set the stencil test to pass where the stencil value equals the number of reflections.

5. Apply planar reflection transformation overall, or apply curved reflection
transformation per-vertex.

6. Draw the reflected scene.

7. Draw the reflector, blending if desired.

Figure 17.13 illustrates how the stencil buffer can segment the components of interreflect-
ing mirrors. The leftmost panel shows a scene without mirrors. The next two panels show
a scene reflected across two mirrors. The coloring illustrates how the scene is segmented
by different stencil values — red shows no reflections, green one, and blue two. The
rightmost panel shows the final scene with all reflections in place, clipped to the mirror
boundaries by the stencil buffer.

As with ray tracing and radiosity techniques, there will be errors in the results
stemming from the interreflections that aren’t modeled. If only two interreflections are
modeled, for example, errors in the image will occur where three or more interreflections
should have taken place. This error can be minimized through proper choice of an “initial
color” for the reflectors. Reflectors should have an initial color applied to them before
modeling reflections. Any part of the reflector that doesn’t show an interreflection will
have this color after the technique has been applied. This is not an issue if the reflector
is completely surrounded by objects, such as with indoor scenes, but this isn’t always the
case. The choice of the initial color applied to reflectors in the scene can have an effect

F i g u r e 17.13 Clipping multiple interreflections with stencil.

S E C T I O N 1 7 . 1 Re f l e c t i ons 421

on the number of passes required. The initial reflection value will generally appear as a
smaller part of the picture on each of the passes. One approach is to set the initial color
to the average color of the scene. That way, errors in the interreflected view will be less
noticeable.

When using the texture technique to apply the reflected scene onto the reflector,
render with the deepest reflections first, as described previously. Applying the texture
algorithm for multiple interreflections is simpler. The only operations required to pro-
duce an interreflection level are to apply the concatenated reflection transformations,
copy the image to texture memory, and paint the reflection image to the reflector to
create the intermediate scene as input for the next pass. This approach only works for
planar reflectors, and doesn’t capture the geometry warping that occurs with curved ones.
Accurate nonplanar interreflections require using distorted reflected geometry as input for
intermediate reflections, as described previously. If high accuracy isn’t necessary, using
environment mapping techniques to create the distorted reflections coming from curved
objects makes it possible to produce multiple interreflections more simply.

Using environment mapping makes the texture technique the same for planar and
nonplanar algorithms. At each interreflection step, the environment map for each object
is updated with an image of the surrounding scene. This step is repeated for all reflec-
tors in the scene. Each environment map will be updated to contain images with more
interreflections until the desired number of reflections is achieved.

To illustrate this idea, consider an example in which cube maps are used to model
the reflected surroundings “seen” by each reflective (and possibly curved) object in the
scene. Begin by initializing the contents of the cube map textures owned by each of the
reflective objects in the scene. As discussed previously, the proper choice of initial values
can minimize error in the final image or alternatively, reduce the number of interreflec-
tons needed to achieve acceptable results. For each interreflection “bounce,” render the
scene, cube-mapping each reflective object with its texture. This rendering step is iterative,
placing the viewpoint at the center of each object and looking out along each major axis.
The resulting images are used to update the object’s cube map textures. The following
pseudocode illustrates how this algorithm might be implemented.

for (each reflective object Obj) {
initialize the cube map textures of Obj to an initial color

}
do {

for (each reflective object Obj with center C) {
initialize the viewpoint to look along the axis (0, 0, -1)
translate the viewpoint to C
render the view of the scene (except for Obj)
save rendered image to -z face of Obj’s cube map
rotate the viewer to look along (0, 0, 1)
render the view of the scene (except for Obj)
save rendered image to z face of Obj’s cube map

422 C H A P T E R 17 Scene Rea l i sm

rotate the viewer to look along (0, -1, 0)
render the view of the scene (except for Obj)
save rendered image to -y face of Obj’s cube map
rotate the viewer to look along (0, 1, 0)
render the view of the scene (except for Obj)
save rendered image to y face of Obj’s cube map
rotate the viewer to look along (-1, 0, 0)
render the view of the scene (except for Obj)
save rendered image to -x face of Obj’s cube map
rotate the viewer to look along (1, 0, 0)
render the view of the scene (except for Obj)
save rendered image to x face of Obj’s cube map

}
} until (cube maps are sufficiently accurate or to limits of sampling)

Once the environment maps are sufficiently accurate, the scene is rerendered from the
normal viewpoint, with each reflector textured with its environment map. Note that
during the rendering of the scene other reflective objects must have their most recent
texture applied. Automatically determining the number of interreflections to model can
be tricky. The simplest technique is to iterate a certain number of times and assume the
results will be good. More sophisticated approaches can look at the change in the sphere
maps for a given pass, or compute the maximum possible change given the projected area
of the reflective objects.

When using any of the reflection techniques, a number of shortcuts are possible.
For example, in an interactive application with moving objects or a moving viewpoint
it may be acceptable to use the reflection texture with the content from the previous
frame. Having this sort of shortcut available is one of the advantages of the texture
mapping technique. The downside of this approach is obvious: sampling errors. After
some number of iterations, imperfect sampling of each image will result in noticeable
artifacts. Artifacts can limit the number of interreflections that can be used in the scene.
The degree of sampling error can be estimated by examining the amount of magnification
and minification encountered when a texture image applied to one object is captured as
a texture image during the rendering process.

Beyond sampling issues, the same environment map caveats also apply to interreflec-
tions. Nearby objects will not be accurately reflected, self-reflections on objects will be
missing, and so on. Fortunately, visually acceptable results are still often possible; view-
ers do not often examine reflections very closely. It is usually adequate if the overall
appearance “looks right.”

17.1.5 Imperfect Reflectors

The techniques described so far model perfect reflectors, which don’t exist in nature. Many
objects, such as polished surfaces, reflect their surroundings and show a surface texture

S E C T I O N 1 7 . 1 Re f l e c t i ons 423

as well. Many are blurry, showing a reflected image that has a scattering component.
The reflection techniques described previously can be extended to objects that show these
effects.

Creating surfaces that show both a surface texture and a reflection is straightforward.
A reflection pass and a surface texture pass can be implemented separately, and combined
at some desired ratio with blending or multitexturing. When rendering a surface texture
pass using reflected geometry, depth buffering should be considered. Adding a surface
texture pass could inadvertently update the depth buffer and prevent the rendering of
reflected geometry, which will appear “behind” the reflector. Proper ordering of the two
passes, or rendering with depth buffer updating disabled, will solve the problem. If the
reflection is captured in a surface texture, both images can be combined with a multipass
alpha blend technique, or by using multitexturing. Two texture units can be used — one
handling the reflection texture and the other handling the surface one.

Modeling a scattering reflector that creates “blurry” reflections can be done in a
number of ways. Linear fogging can approximate the degradation in the reflection image
that occurs with increasing distance from the reflector, but a nonlinear fogging technique
(perhaps using a texture map and a texgen function perpendicular to the translucent
surface) makes it possible to tune the fade-out of the reflected image.

Blurring can be more accurately simulated by applying multiple shearing transforms
to reflected geometry as a function of its perpendicular distance to the reflective surface.
Multiple shearing transforms are used to simulate scattering effects of the reflector. The
multiple instances of the reflected geometry are blended, usually with different weight-
ing factors. The shearing direction can be based on how the surface normal should be
perturbed according to the reflected ray distribution. This distribution value can be
obtained by sampling a BRDF. This technique is similar to the one used to generate
depth-of-field effects, except that the blurring effect applied here is generally stronger.
See Section 13.3 for details. Care must be taken to render enough samples to reduce
visible error. Otherwise, reflected images tend to look like several overlaid images rather
than a single blurry one. A high-resolution color buffer or the accumulation buffer may
be used to combine several reflection images with greater color precision, allowing more
images to be combined.

In discussing reflection techniques, one important alternative has been overlooked
so far: ray tracing. Although it is usually implemented as a CPU-based technique with-
out acceleration from the graphics hardware, ray tracing should not be discounted as a
possible approach to modeling reflections. In cases where adequate performance can be
achieved, and high-quality results are necessary, it may be worth considering ray trac-
ing and Metropolis light transport (Veach, 1997) for providing reflections. The resulting
application code may end up more readable and thus more maintainable.

Using geometric techniques to accurately implement curved reflectors and blurred
reflections, along with culling techniques to improve performance, can lead to very
complex code. For small reflectors, ray tracing may achieve sufficient performance with
much less algorithmic complexity. Since ray tracing is well established, it is also possible
to take advantage of existing ray-tracing code libraries. As CPUs increase in performance,

424 C H A P T E R 17 Scene Rea l i sm

and multiprocessor and hyperthreaded machines slowly become more prevalent, it may
be the case that brute-force algorithms may provide acceptable performance in many
cases without adding excessive complexity.

Ray tracing is well documented in the computer graphics literature. There are a
number of ray-tracing survey articles and course materials available through SIGGRAPH,
such as Hanrahan and Michell’s paper (Hanrahan, 1992), as well as a number of good
texts (Glassner, 1989; Shirley, 2003) on the subject.

17.2 Refraction

Refraction is defined as the “change in the direction of travel as light passes from one
medium to another” (Cutnell, 1989). The change in direction is caused by the difference
in the speed of light between the two media. The refractivity of a material is characterized
by the index of refraction of the material, or the ratio of the speed of light in the material to
the speed of light in a vacuum (Cutnell, 1989). With OpenGL we can duplicate refraction
effects using techniques similar to the ones used to model reflections.

17.2.1 Refract ion Equation

The direction of a light ray after it passes from one medium to another is computed
from the direction of the incident ray, the normal of the surface at the intersection of the
incident ray, and the indices of refraction of the two materials. The behavior is shown in
Figure 17.14. The first medium through which the ray passes has an index of refraction
n1, and the second has an index of refraction n2. The angle of incidence, θ1, is the angle
between the incident ray and the surface normal. The refracted ray forms the angle θ2
with the normal. The incident and refracted rays are coplanar. The relationship between

n2

n1

ϑ1

ϑ2

Refraction boundary

Refracted light ray

F i g u r e 17.14 Refraction: Medium below has higher index of refraction.

S E C T I O N 1 7 . 2 Re f r a c t i on 425

Critical
angle

F i g u r e 17.15 Total internal reflection.

the angle of incidence and the angle of refraction is stated as Snell’s law (Cutnell, 1989):

n1 sin θ1 = n2 sin θ2

If n1 > n2 (light is passing from a more refractive material to a less refractive material),
past some critical angle the incident ray will be bent so far that it will not cross the bound-
ary. This phenomenon is known as total internal reflection, illustrated in Figure 17.15
(Cutnell, 1989).

Snell’s law, as it stands, is difficult to use with computer graphics. A version more
useful for computation (Foley, 1994) produces a refraction vector R pointing away from
the interface. It is derived from the eye vector U incident to the interface, a normal vector
N, and n, the ratio of the two indexes of refraction, n1

n2
:

R = nU − N
(

n(N · U) +
√

1 − n2(1 − (N · U)2)
)

If precision must be sacrificed to improve performance, further simplifications can be
made. One approach is to combine the terms scaling N, yielding

R = U − (1 − n)N(N · U)

An absolute measurement of a material’s refractive properties can be computed by taking
the ratio of its n against a reference material (usually a vacuum), producing a refractive
index. Table 17.1 lists the refractive indices for some common materials.

Refractions are more complex to compute than reflections. Computation of a refrac-
tion vector is more complex than the reflection vector calculation since the change in
direction depends on the ratio of refractive indices between the two materials. Since refrac-
tion occurs with transparent objects, transparency issues (as discussed in Section 11.8)
must also be considered. A physically accurate refraction model has to take into
account the change in direction of the refraction vector as it enters and exits the object.

426 C H A P T E R 17 Scene Rea l i sm

T ab l e 17.1 Indices of Refraction for Some
Common Materials

Material Index

Vacuum 1.00
Air ∼1.00
Glass 1.50
Ice 1.30
Diamond 2.42
Water 1.33
Ruby 1.77
Emerald 1.57

Modeling an object to this level of precision usually requires using ray tracing. If an
approximation to refraction is acceptable, however, refracted objects can be rendered
with derivatives of reflection techniques.

For both planar and nonplanar reflectors, the basic approach is to compute an eye
vector at one or more points on the refracting surface, and then use Snell’s law (or a
simplification of it) to find refraction vectors. The refraction vectors are used as a guide
for distorting the geometry to be refracted. As with reflectors, both object-space and
image-space techniques are available.

17.2.2 Planar Refract ion

Planar refraction can be modeled with a technique that computes a refraction vector at
one point on the refracting surface and then moves the eye point to a perspective that
roughly matches the refracted view through the surface (Diefenbach, 1997). For a given
viewpoint, consider a perspective view of an object. In object space, rays can be drawn
from the eye point through the vertices of the transparent objects in the scene. Locations
pierced by a particular ray will all map to the same point on the screen in the final image.
Objects with a higher index of refraction (the common case) will bend the rays toward
the surface normal as the ray crosses the object’s boundary and passes into it.

This bending toward the normal will have two effects. Rays diverging from an eye
point whose line of sight is perpendicular to the surface will be bent so that they diverge
more slowly when they penetrate the refracting object. If the line of sight is not per-
pendicular to the refractor’s surface, the bending effect will cause the rays to be more
perpendicular to the refractor’s surface after they penetrate it.

These two effects can be modeled by adjusting the eye position. Less divergent rays
can be modeled by moving the eye point farther from the object. The bending of off-axis
rays to directions more perpendicular to the object surface can be modeled by rotating
the viewpoint about a point on the reflector so that the line of sight is more perpendicular
to the refractor’s surface.

S E C T I O N 1 7 . 2 Re f r a c t i on 427

Computing the new eye point distance is straightforward. From Snell’s law, the
change in direction crossing the refractive boundary, sin θ1

sin θ2
, is equal to the ratio of the

two indices of refraction n. Considering the change of direction in a coordinate system
aligned with the refractive boundary, n can be thought of as the ratio of vector components
perpendicular to the normal for the unrefracted and refracted vectors. The same change in
direction would be produced by scaling the distance of the viewpoint from the refractive
boundary by 1

n , as shown in Figure 17.16.
Rotating the viewpoint to a position more face-on to the refractive interface also

uses n. Choosing a location on the refractive boundary, a vector U from the eye point to
the refractor can be computed. The refracted vector components are obtained by scaling
the components of the vector perpendicular to the interface normal by n. To produce the
refracted view, the eye point is rotated so that it aligns with the refracted vector. The
rotation that makes the original vector colinear with the refracted one using dot products
to find the sine and cosine components of the rotation, as shown in Figure 17.17.

1/n * d
d

Eyepoint distance to refractor scaled by 1/n

F i g u r e 17.16 Changing viewpoint distance to simulate refraction.

nVi Vi

Eyepoint rotated about v
to align with refracted vector

v

Components of vector
perpendicular to normal scaled
by n; dot product produces cosine

N
–NN

U

Uref

F i g u r e 17.17 Changing viewpoint angle to simulate refraction.

428 C H A P T E R 17 Scene Rea l i sm

17.2.3 Texture Mapped Refract ion

The viewpoint method, described previously, is a fast way of modeling refractions, but
it has limited application. Only very simple objects can be modeled, such as a planar
surface. A more robust technique, using texture mapping, can handle more complex
boundaries. It it particularly useful for modeling a refractive surface described with a
height field, such as a liquid surface.

The technique computes refractive rays and uses them to calculate the texture coordi-
nates of a surface behind the refractive boundary. Every object that can be viewed through
the refractive media must have a surface texture and a mapping for applying it to the sur-
face. Instead of being applied to the geometry behind the refractive surface, texture is
applied to the surface itself, showing a refracted view of what’s behind it. The refractive
effect comes from careful choice of texture coordinates. Through ray casting, each vertex
on the refracting surface is paired with a position on one of the objects behind it. This
position is converted to a texture coordinate indexing the refracted object’s texture. The
texture coordinate is then applied to the surface vertex.

The first step of the algorithm is to choose sample points that span the refractive
surface. To ensure good results, they are usually regularly spaced from the perspective of
the viewpoint. A surface of this type is commonly modeled with a triangle or quad mesh,
so a straightforward approach is to just sample at each vertex of the mesh. Care should
be taken to avoid undersampling; samples must capture a representative set of slopes on
the liquid surface.

At each sample point the relative eye position and the indices of refraction are used
to compute a refractive ray. This ray is cast until it intersects an object in the scene
behind the refractive boundary. The position of the intersection is used to compute texture
coordinates for the object that matches the intersection point. The coordinates are then
applied to the vertex at the sample point. Besides setting the texture coordinates, the
application must also note which surface was intersected, so that it can use that texture
when rendering the surface near that vertex. The relationship among intersection position,
sample point, and texture coordinates is shown in Figure 17.18.

Location of intersection used to compute
texture map and coordinates to use at
sample point.

Viewpoint
Sample points

Intersection points

F i g u r e 17.18 Texturing a surface to refract what is behind it.

S E C T I O N 1 7 . 2 Re f r a c t i on 429

The method works well where the geometry behind the refracting surface is very
simple, so the intersection and texture coordinate computation are not difficult. An ideal
application is a swimming pool. The geometry beneath the water surface is simple; find-
ing ray intersections can be done using a parameterized clip algorithm. Rectangular
geometry also makes it simple to compute texture coordinates from an intersection
point.

It becomes more difficult when the geometry behind the refractor is complex, or the
refracting surface is not generally planar. Efficiently casting the refractive rays can be
difficult if they intersect multiple surfaces, or if there are many objects of irregular shape,
complicating the task of associating an intersection point with an object. This issue can
also make it difficult to compute a texture coordinate, even after the correct object is
located.

Since this is an image-based technique, sampling issues also come into play. If the
refractive surface is highly nonplanar, the intersections of the refracting rays can have
widely varying spacing. If the textures of the intersected objects have insufficient reso-
lution, closely spaced intersection points can result in regions with unrealistic, highly
magnified textures. The opposite problem can also occur. Widely spaced intersection
points will require mipmapped textures to avoid aliasing artifacts.

17.2.4 Environment Mapped Refract ion

A more general texturing approach to refraction uses a grid of refraction sample points
paired with an environment map. The map is used as a general lighting function that
takes a 3D vector input. The approach is view dependent. The viewer chooses a set of
sample locations on the front face of the refractive object. The most convenient choice
of sampling locations is the refracting object’s vertex locations, assuming they provide
adequate sampling resolution.

At each sample point on the refractor, the refraction equation is applied to find the
refracted eye vector at that point. The x, y, and z components of the refracted vector are
applied to the appropriate vertices by setting their s, t, and r texture components. If the
object vertices are the sample locations, the texture coordinates can be directly applied
to the sampled vertex. If the sample points don’t match the vertex locations, either new
vertices are added or the grid of texture coordinates is interpolated to the appropriate
vertices.

An environment texture that can take three input components, such as a cube (or
dual-paraboloid) map, is created by embedding the viewpoint within the refractive object
and then capturing six views of the surrounding scene, aligned with the coordinate sys-
tem’s major axes. Texture coordinate generation is not necessary, since the application
generates them directly. The texture coordinates index into the cube map, returning a
color representing the portion of the scene visible in that direction. As the refractor is
rendered, the texturing process interpolates the texture coordinates between vertices,
painting a refracted view of the scene behind the refracting object over its surface, as
shown in Figure 17.19.

430 C H A P T E R 17 Scene Rea l i sm

Refraction vector
elements used as
texture coordinates
at each vertex

Views of surrounding scene rendered from
center of refractor and applied to cube map

F i g u r e 17.19 Changing viewpoint angle to simulate refraction.

The resulting refractive texture depends on the relative positions of the viewer, the
refractive object, and to a lesser extent the surrounding objects in the scene. If the refract-
ing object changes orientation relative to the viewer, new samples must be generated and
the refraction vectors recomputed. If the refracting object or other objects in the scene
change position significantly, the cube map will need to be regenerated.

As with other techniques that depend on environment mapping, the resulting refrac-
tive image will only be an approximation to the correct result. The location chosen to
capture the cube map images will represent the view of each refraction vector over the
surface of the image. Locations on the refractor farther from the cube map center point
will have greater error. The amount of error, as with other environment mapping tech-
niques, depends on how close other objects in the scene are to the refractor. The closer
objects are to the refractor, the greater the “parallax” between the center of the cube map
and locations on the refractor surface.

17.2.5 Modeling Mult iple Refract ion Boundaries

The process described so far only models a single transition between different refractive
indices. In the general case, a refractive object will be transparent enough to show a dis-
torted view of the objects behind the refractor, not just any visible structures or objects
inside. To show the refracted view of objects behind the refractor, the refraction calcula-
tions must be extended to use two sample points, computing the light path as it goes into
and out of the refractor.

As with the single sample technique, a set of sample points are chosen and refraction
vectors are computed. To model the entire refraction effect, a ray is cast from the sample
point in the direction of the refraction vector. An intersection is found with the refractor,
and a new refraction vector is found at that point, as shown in Figure 17.20. The second
vector’s components are stored at texture coordinates at the first sample point’s location.

S E C T I O N 1 7 . 2 Re f r a c t i on 431

Views of surrounding scene rendered from
center of refractor and applied to cube map

Second sample point computed
by casting ray from first.

1

2

Vector from
second sample
point used
as texture
coordinates

F i g u r e 17.20 Refracting objects behind the refractor.

The environment mapping operation is the same as with the first approach. In essence,
the refraction vector at the sample point is more accurate, since it takes into account the
refraction effect from entering and leaving the refractive object.

In both approaches, the refractor is ray traced at a low sampling resolution, and an
environment map is used to interpolate the missing samples efficiently. This more elabo-
rate approach suffers from the same issues as the single-sample one, with the additional
problem of casting a ray and finding the second sample location efficiently. The approach
can run into difficulties if parts of the refractor are concave, and the refracted ray can
intersect more than one surface.

The double-sampling approach can also be applied to the viewpoint shifting approach
described previously. The refraction equation is applied to the front surface, and then a
ray is cast to find the intersection point with the back surface. The refraction equation is
applied to the new sample point to find the refracted ray. As with the single-sample ver-
sion of this approach, the viewpoint is rotated and shifted to approximate the refracted
view. Since the entire refraction effect is simulated by changing the viewpoint, the
results will only be satisfactory for very simple objects, and if only a refractive effect is
required.

17.2.6 Cl ipping Refracted Objects

Clipping refracted geometry is identical to clipping reflected geometry. Clipping to the
refracting surface is still necessary, since refracted geometry, if the refraction is severe
enough, can cross the refractor’s surface. Clipping to the refractor’s boundaries can
use the same stencil, clip plane, and texture techniques described for reflections. See
Section 17.1.2 for details.

Refractions can also be made from curved surfaces. The same parametric approach
can be used, applying the appropriate refraction equation. As with reflectors, the

432 C H A P T E R 17 Scene Rea l i sm

transformation lookup can be done with an extension of the explosion map technique
described in Section 17.8. The map is created in the same way, using refraction vectors
instead of reflection vectors to create the map. Light rays converge through some curved
refractors and diverge through others. Refractors that exhibit both behaviors must be
processed so there is only a single triangle owning any location on the explosion map.

Refractive surfaces can be imperfect, just as there are imperfect reflectors. The refrac-
tor can show a surface texture, or a reflection (often specular). The same techniques
described in Section 17.1.5 can be applied to implement these effects.

The equivalent to blurry reflections — translucent refractors — can also be imple-
mented. Objects viewed through a translucent surface become more difficult to see the
further they are from the reflecting or transmitting surface, as a smaller percentage of
unscattered light is transmitted to the viewer. To simulate this effect, fogging can be
enabled, where fogging is zero at the translucent surface and increases as a linear func-
tion of distance from that surface. A more accurate representation can rendering multiple
images with a divergent set of refraction vectors, and blend the results, as described in
Section 17.1.5.

17.3 Creating Environment Maps

The basics of environment mapping were introduced in Section 5.4, with an emphasis
on configuring OpenGL to texture using an environment map. This section completes
the discussion by focusing on the creation of environment maps. Three types of environ-
ment maps are discussed: cube maps, sphere maps, and dual-paraboloid maps. Sphere
maps have been supported since the first version of OpenGL, while cube map support is
more recent, starting with OpenGL 1.3. Although not directly supported by OpenGL,
dual-paraboloid mapping is supported through the reflection map texture coordinate
generation functionality added to support cube mapping.

An important characteristic of an environment map is its sampling rate. An environ-
ment map is trying to solve the problem of projecting a spherical view of the surrounding
environment onto one or more flat textures. All environment mapping algorithms do this
imperfectly. The sampling rate — the amount of the spherical view a given environment
mapped texel covers — varies across the texture surface. Ideally, the sampling rate doesn’t
change much across the texture. When it does, the textured image quality will degrade
in areas of poor sampling, or texture memory will have to be wasted by boosting tex-
ture resolution so that those regions are adequately sampled. The different environment
mapping types have varying performance in this area, as discussed later.

The degree of sampling rate variation and limitations of the texture coordinate gen-
eration method can make a particular type of environment mapping view dependent or
view independent. The latter condition is the desirable one because a view-independent
environment mapping method can generate an environment that can be accurately used
from any viewing direction. This reduces the need to regenerate texture maps as the

S E C T I O N 1 7 . 3 C rea t i ng Env i r onmen t Maps 433

viewpoint changes. However, it doesn’t eliminate the need for creating new texture maps
dynamically. If the objects in the scene move significantly relative to each other, a new
environment map must be created.

In this section, physical render-based, and ray-casting methods for creating each
type of environment map textures are discussed. Issues relating to texture update rates
for dynamic scenes are also covered. When choosing an environment map method, key
considerations are the quality of the texture sampling, the difficulty in creating new
textures, and its suitability as a basic building block for more advanced techniques.

17.3.1 Creating Environment Maps with Ray Casting

Because of its versatility, ray casting can be used to generate environment map texture
images. Although computationally intensive, ray casting provides a great deal of control
when creating a texture image. Ray-object interactions can be manipulated to create
specific effects, and the number of rays cast can be controlled to provide a specific image
quality level. Although useful for any type of environment map, ray casting is particularly
useful when creating the distorted images required for sphere and dual-paraboloid maps.

Ray casting an environment map image begins with a representation of the scene. In
it are placed a viewpoint and grids representing texels on the environment map. The view-
point and grid are positioned around the environment-mapped object. If the environment
map is view dependent, the grid is oriented with respect to the viewer. Rays are cast from
the viewpoint, through the grid squares and out into the surrounding scene. When a ray
intersects an object in the scene, a color reflection ray value is computed, which is used
to determine the color of a grid square and its corresponding texel (Figure 17.21). If the

Grid for cube map (1 of 6)

Object

Texel color set
Viewpoint

F i g u r e 17.21 Creating environment maps using ray casting.

434 C H A P T E R 17 Scene Rea l i sm

grid is planar, as is the case for cube maps, the ray-casting technique can be simplified
to rendering images corresponding to the views through the cube faces, and transfering
them to textures.

There are a number of different methods that can be applied when choosing rays to
cast though the texel grid. The simplest is to cast a ray from the viewpoint through the
center of each texel. The color computed by the ray-object intersection becomes the texel
color. If higher quality is required, multiple rays can be cast through a single texel square.
The rays can pass through the square in a regular grid, or jittered to avoid spatial aliasing
artifacts. The resulting texel color in this case is a weighted sum of the colors determined
by each ray. A beam-casting method can also be used. The viewpoint and the corners of
the each texel square define a beam cast out into the scene. More elaborate ray-casting
techniques are possible and are described in other ray tracing texts.

17.3.2 Creating Environment Maps with Texture Warping

Environment maps that use a distorted image, such as sphere maps and dual-paraboloid
maps, can be created from six cube-map-style images using a warping approach. Six flat,
textured, polygonal meshes called distortion meshes are used to distort the cube-map
images. The images applied to the distortion meshes fit together, in a jigsaw puzzle fashion,
to create the environment map under contruction. Each mesh has one of the cube map
textures applied to it. The vertices on each mesh have positions and texture coordinates
that warp its texture into a region of the environment map image being created. When
all distortion maps are positioned and textured, they create a flat surface textured with
an image of the desired environment map. The resulting geometry is rendered with an
orthographic projection to capture it as a single texture image.

The difficult part of warping from cube map to another type of environment map is
finding a mapping between the two. As part of its definition, each environment map has
a function env() for mapping a vector (either a reflection vector or a normal) into a pair
of texture coordinates: its general form is (s, t) = f (Vx, Vy, Vz). This function is used in
concert with the cube-mapping function cube(), which also takes a vector (Vx, Vy, Vz) and
maps it to a texture face and an (s, t) coordinate pair. The largest R component becomes
the major axis, and determines the face. Once the major axis is found, the other two
components of R become the unscaled s and t values, sc and tc. Table 17.2 shows which
components become the unscaled s and t given a major axis ma. The correspondence
between env() and cube() determines both the valid regions of the distortion grids and
what texture coordinates should be assigned to their vertices.

To illustrate the relationship between env() and cube(), imagine creating a set of rays
emanating from a single point. Each of the rays is evenly spaced from its neighbors by a
fixed angle, and each has the same length. Considering these rays as vectors provides a
regular sampling of every possible direction in 3D space. Using the cube() function, these
rays can be segmented into six groups, segregated by the major axis they are aligned with.
Each group of vectors corresponds to a cube map face.

S E C T I O N 1 7 . 3 C rea t i ng Env i r onmen t Maps 435

T ab l e 17.2 Components which
Become the Unscaled s and t Values

ma = chooseMaxMag(Rx,Ry,Rz)
sc = chooseS(ma, Rx,Ry,Rz)
tc = chooseT(ma, Rx,Ry,Rz)

s= 1
2

(
sc

|ma| + 1
)

t= 1
2

(
tc

|ma| + 1
)

If all texture coordinates generated by env() are transformed into 2D positions,
a nonuniform flat mesh is created, corresponding to texture coordinates generated by
env()’s environment mapping method. These vertices are paired with the texture coordi-
nates generated by cube() from the same vectors. Not every vertex created by env() has
a texture coordinate generated by cube(); the coordinates that don’t have cooresponding
texture coordinates are deleted from the grid. The regions of the mesh are segmented,
based on which face cube() generates for a particular vertex/vector. These regions are
broken up into separate meshes, since each corresponds to a different 2D texture in the
cube map, as shown in Figure 17.22.

When this process is completed, the resulting meshes are distortion grids. They pro-
vide a mapping between locations on each texture representing a cube-map face with
locations on the environment map’s texture. The textured images on these grids fit
together in a single plane. Each is textured with its corresponding cube map face texture,
and rendered with an orthogonal projection perpendicular to the plane. The resulting
image can be used as texture for the environment map method that uses env().

In practice, there are more direct methods for creating proper distortion grids to
map env() = cube(). Distortion grids can be created by specifying vertex locations

Vectors radiating out
from planned location

of textured object.

Same vector also
maps to (s,t) in

environment map.

Each vector maps to a
face and (s,t) location

on cube map.

F i g u r e 17.22 Creating environment maps using texture warping.

436 C H A P T E R 17 Scene Rea l i sm

corresponding to locations on the target texture map, mapping from these locations to
the corresponding target texture coordinates, then a (linear) mapping to the correspond-
ing vector (env()−1), and then mapping to the cubemap coordinates (using cube()) will
generate the texture coordinates for each vertex. The steps to R and back can be skipped
if a direct mapping from the target’s texture coordinates to the cube-map’s can be found.
Note that the creation of the grid is not a performance-critical step, so it doesn’t have
to be optimal. Once the grid has been created, it can be used over and over, applying
different cube map textures to create different target textures.

There are practical issues to deal with, such as choosing the proper number of vertices
in each grid to get adequate sampling, and fitting the grids together so that they form
a seamless image. Grid vertices can be distorted from a regular grid to improve how
the images fit together, and the images can be clipped by using the geometry of the
grids or by combining the separate images using blending. Although a single image is
needed for sphere mapping, two must be created for dual-paraboloid maps. The directions
of the vectors can be used to segement vertices into two separate groups of distortion
grids.

Warping with a Cube Map

Instead of warping the equivalent of a cube-map texture onto the target texture, a real cube
map can be used to create a sphere map or dual-paraboloid map directly. This approach
isn’t as redundant as it may first appear. It can make sense, for example, if a sphere or dual-
paraboloid map needs to be created only once and used statically in an application. The
environment maps can be created on an implementation that supports cube mapping. The
generated textures can then be used on an implementation that doesn’t. Such a scenario
might arise if the application is being created for an embedded environment with limited
graphics hardware. It’s also possible that an application may use a mixture of environment
mapping techniques, using sphere mapping on objects that are less important in the scene
to save texture memory, or to create simple effect, such as a specular highlight.

Creating an environment map image using cube-map texturing is simpler than the
texture warping procedure outlined previously. First, a geometric representation of the
environment map is needed: a sphere for a sphere map, and two paraboloid disks for
the dual-paraboloid map. The vertices should have normal vectors, perpendicular to the
surface.

The object is rendered with the cube map enabled. Texture coordinate generation
is turned on, usually using GL_REFLECTION_MAP, although GL_NORMAL_MAP could
also be used in some cases. The image of the rendered object is rendered with an ortho-
graphic projection, from a viewpoint corresponding to the texture image desired. Since
sphere mapping is viewer dependent, the viewpoint should be chosen so that the proper
cube-map surfaces are facing the viewer. Dual-paraboloid maps require two images,
captured from opposing viewpoints. As with the ray tracing and warping method,
the resulting images can be copied to texture memory and used as the appropriate
environment map.

S E C T I O N 1 7 . 3 C rea t i ng Env i r onmen t Maps 437

17.3.3 Cube Map Textures

Cube map textures, as the name implies, are six textures connected to create the faces
of an axis-aligned cube, which operate as if they surround the object being environment
mapped. Each texture image making up a cube face is the same size as the others, and
all have square dimensions. Texture faces are normal 2D textures. They can have texture
borders, and can be mipmapped.

Since the textures that use them are flat, square, and oriented in the environment
perpendicular to the major axes, cube-map texture images are relatively easy to create.
Captured images don’t need to be distorted before being used in a cube map. There is
a difference in sampling rate across the texture surface, however. The best-case (center)
to worst-case sampling (the four corners) rate has a ratio of about 5.2 (3

√
3); this is

normally handled by choosing an adequate texture face resolution.
In OpenGL, each texture face is a separate texture target, with a name based on the

major axis it is perpendicular to, as shown in Table 17.3. The second and third columns
show the directions of increasing s and t for each face.

Note that the orientation of the texture coordinates of each face are counter-intuitive.
The origin of each texture appears to be “upper left” when viewed from the outside of
the cube. Although not consistent with sphere maps or 2D texture maps, in practice the
difference is easy to handle by flipping the coordinates when capturing the image, flipping
an existing image before loading the texture, or by modifying texture coordinates when
using the mipmap.

Cube maps of a physical scene can be created by capturing six images from a central
point, each camera view aligned with a different major axis. The field of view must be
wide enough to image an entire face of a cube, almost 110 degrees if a circular image is
captured. The camera can be oriented to create an image with the correct s and t axes
directly, or the images can be oriented by inverting the pixels along the x and y axes as
necessary.

Synthetic cube-map images can be created very easily. A cube center is chosen,
preferably close to the “center” of the object to be environment mapped. A perspec-
tive projection with a 90-degree field of view is configured, and six views from the cube
center, oriented along the six major axes are used to capture texture images.

T ab l e 17.3 Relationship Between Major Axis and s and t Coordinates

target (major axis) sc tc

GL_TEXTURE_CUBE_MAP_POSITIVE_X −z −y

GL_TEXTURE_CUBE_MAP_NEGATIVE_X z −y

GL_TEXTURE_CUBE_MAP_POSITIVE_Y x z

GL_TEXTURE_CUBE_MAP_NEGATIVE_Y x −z

GL_TEXTURE_CUBE_MAP_POSITIVE_Z x −y

GL_TEXTURE_CUBE_MAP_NEGATIVE_Z −x −y

438 C H A P T E R 17 Scene Rea l i sm

The perspective views are configured using standard transform techniques. The
glFrustum command is a good choice for loading the projection matrix, since it is
easy to set up a frustum with edges of the proper slopes. A near plane distance should
be chosen so that the textured object itself is not visible in the frustum. The far plane
distance should be great enough to take in all surrounding objects of interest. Keep in
mind the depth resolution issues discussed in Section 2.8. The left, right, bottom, and
top values should all be the same magnitude as the near value, to get the slopes correct.

Once the projection matrix is configured, the modelview transform can be set with
the gluLookAt command. The eye position should be at the center of the cube map.
The center of interest should be displaced from the viewpoint along the major axis for the
face texture being created. The modelview transform will need to change for each view,
but the projection matrix can be held constant. The up direction can be chosen, along
with swapping of left/right and/or bottom/top glFrustum parameters to align with the
cube map s and t axes, to create an image with the proper texture orientation.

The following pseudocode fragment illustrates this method for rendering cube-map
texture images. For clarity, it only renders a single face, but can easily be modified to loop
over all six faces. Note that all six cube-map texture target enumerations have contiguous
values. If the faces are rendered in the same order as the enumeration, the target can be
chosen with a “GL_TEXTURE_CUBE_MAP_POSITIVE_Z + face”-style expression.

GLdouble near, far; /*set to appropriate values*/
GLdouble cc[3]; /*coordinates of cube map center*/
GLdouble up[3] = {0, 1, 0}; /*changes for each face*/

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
/*left/right, top/bottom reversed to match cube map s,t*/
glFrustum(near, -near, near, -near, near, far);

glMatrixMode(GL_MODELVIEW);
/*Only rendering +z face: repeat appropriately for all faces*/
glLoadIdentity();
gluLookAt(cc[X], cc[Y], cc[Z], /*eye point*/

cc[X], cc[Y], cc[Z] + near, /*offset changes for each face*/
up[X], up[Y], up[Z]);

draw_scene();
glCopyTexImage(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, ...);

Note that the glFrustum command has its left, right, bottom, and top param-
eters reversed so that the resulting image can be used directly as a texture. The
glCopyTexImage command can be used to transfer the rendered image directly into
a texture map.

Two important quality issues should be considered when creating cube maps: texture
sampling resolution and texture borders. Since the spatial sampling of each texel varies as

S E C T I O N 1 7 . 3 C rea t i ng Env i r onmen t Maps 439

a function of its distance from the center of the texture map, texture resolution should be
chosen carefully. A larger texture can compensate for poorer sampling at the corners at the
cost of more texture memory. The texture image itself can be sampled and nonuniformly
filtered to avoid aliasing artifacts. If the cube-map texture will be minified, each texture
face can be a mipmap, improving filtering at the cost of using more texture memory.
Mipmapping is especially useful if the polygons that are environment mapped are small,
and have normals that change direction abruptly from vertex to vertex.

Texture borders must be handled carefully to avoid visual artifacts at the seams of
the cube map. The OpenGL specification doesn’t specify exactly how a face is chosen for
a vector that points at an edge or a corner; the application shouldn’t make assumptions
based on the behavior of a particular implementation. If textures with linear filtering
are used without borders, setting the wrap mode to GL_CLAMP_TO_EDGE will produce
the best quality. Even better edge quality results from using linear filtering with texture
borders. The border for each edge should be obtained from the strip of edge texels on the
adjacent face.

Loading border texels can be done as a postprocessing step, or the frustum can be
adjusted to capture the border pixels directly. The mathematics for computing the proper
frustum are straightforward. The cube-map frustum is widened so that the outer border
of pixels in the captured image will match the edge pixels of the adjacent views. Given a
texture resolution res — and assuming that the glFrustum call is using the same value
len for the magnitude of the left, right, top, and bottom parameters (usually equal to
near) — the following equation computes a new length parameter newlen:

newlen = near ∗ len ∗ res
(rez ∗ near − 2 ∗ len)

In practice, simply using a one-texel-wide strip of texels from the adjacent faces of the
borders will yield acceptable accuracy.

Border values can also be used with mipmapped cube-map faces. As before, the
border texels should match the edge texels of the adjacent face, but this time the process
should be repeated for each mipmap level. Adjusting the camera view to capture border
textures isn’t always desirable. The more straightforward approach is to copy texels from
adjacent texture faces to populate a texture border. If high accuracy is required, the area
of each border texel can be projected onto the adjacent texture image and used as a guide
to create a weighted sum of texel colors.

Cube-Map Ray Casting

The general ray-casting approach discussed in Section 17.3.1 can be easily applied to
cube maps. Rays are cast from the center of the cube, through texel grids positioned as
the six faces of the cube map, creating images for each face. The pixels for each image
are computed by mapping a grid onto the cube face, corresponding to the desired texture
resolution and then casting a ray from the center of the cube through each grid square

440 C H A P T E R 17 Scene Rea l i sm

out into the geometry of the surrounding scene. A pseudocode fragment illustrating the
approach follows.

float ray[3]; /*ray direction*/
int r; /*resolution of the square face textures*/
for(face = 0; face < 6; face++){

for(j = 0; j < r; j++){
for(i = 0; i < r; i++){

ray[0] = 1 - 1/(2*r) - (2*j)/r; /*s increasing with -x*/
ray[1] = 1 - 1/(2*r) - (2*j)/r; /*t increasing with -y*/
ray[2] = -1;
shuffle_components(face, vector); /*reshuffle for each face*/
cast_ray(pos, ray, tex[face][j*r + i]);

}
}

}

The cast_ray() function shoots a ray into the scene from pos, in the direction of ray,
returning a color value based on what the ray intersects. The shuffle_components()
function reorders the vertices, changing the direction of the vector for a given cube face.

17.3.4 Sphere Map Textures

A sphere map is a single 2D texture map containing a special image. The image is circular,
centered on the texture, and shows a highly distorted view of the surrounding scene from
a particular direction. The image can be described as the reflection of the surrounding
environment off a perfectly reflecting unit sphere. This distorted image makes the sampling
highly nonlinear, ranging from a one-to-one mapping at the center of the texture to a
singularity around the circumference of the circular image.

If the viewpoint doesn’t move, the poor sampling regions will map to the silhouettes
of the environment-mapped objects, and are not very noticeable. Because of this poor
mapping near the circumference, sphere mapping is view dependent. Using a sphere map
with a view direction or position significantly different from the one used to make it will
move the poorly sampled texels into more prominent positions on the sphere-mapped
objects, degrading image quality. Around the edge of the circular image is a singularity.
Many texture map positions map to the same generated texture coordinate. If the viewer’s
position diverges significantly from the view direction used to create the sphere map, this
singularity can become visible on the sphere map object, showing up as a point-like
imperfection on the surface.

There are two common methods used to create a sphere map of the physical world.
One approach is to use a spherical object to reflect the surroundings. A photograph of
the sphere is taken, and the resulting image is trimmed to the boundaries of the sphere,

S E C T I O N 1 7 . 3 C rea t i ng Env i r onmen t Maps 441

and then used as a texture. The difficulty with this, or any other physical method, is that
the image represents a view of the entire surroundings. In this method, an image of the
camera will be captured along with the surroundings.

Another approach uses a fish-eye lens to approximate sphere mapping. Although no
camera image will be captured, no fish-eye lens can provide the 360-degree field of view
required for a proper sphere map image.

Sphere Map Ray Casting

When a synthetic scene needs to be captured as a high-quality sphere map, the general
ray-casting approach discussed in Section 17.3.1 can be used to create one. Consider the
environment map image within the texture to be a unit circle. For each point (s, t) in the
unit circle, a point P on the sphere can be computed:

Px = s

Py = t

Pz =
√

1.0 − P2
x − P2

y

Since it is a unit sphere, the normal at P is equal to P. Given the vector V toward the eye
point, the reflected vector R is

R = 2NT (N · V) − V (17.1)

In eye space, the eye point is at the origin, looking down the negative z axis, so V is
a constant vector with value (0, 0, 1). Equation 17.1 reduces to

Rx = 2NxNz

Ry = 2NyNz

Rz = 2NzNz − 1

Combining the previous equations produces equations that map from (s, t) locations on
the sphere map to R:

Rx = 2
√

−4s2 + 4s − 1 − 4t2 + 4t(2t − 1)

Ry = 2
√

−4s2 + 4s − 1 − 4t2 + 4t(2s − 1)

Rz = −8s2 + 8s − 8t2 + 8t − 3

Given the reflection vector equation, rays can be cast from the center of the object location.
The rays are cast in every direction; the density of the rays is influenced by the different
sampling rates of a sphere map. The reflection vector equation can be used to map the ray’s

442 C H A P T E R 17 Scene Rea l i sm

color to a specific texel in the cube map. Since ray casting is expensive, an optimization
of this approach is to only cast rays that correspond to a valid texel on the sphere map.
The following pseudocode fragment illustrates the technique.

void gen_sphere_map(GLsizei width, GLsizei height, GLfloat pos[3],
GLfloat (*tex)[3])

{
GLfloat ray[3], color[3], p[3], s, t;
int i, j;

for (j = 0; j < height; j++) {
t = -1 + 2 * (j /(height-1) - .5);
for (i = 0; i < width; i++) {

s = -1 + 2 * (i /(width - 1) - .5);
if (s*s + t*t > 1.0) continue;

/* compute normal vectors */
p[0] = s;
p[1] = t;
p[2] = sqrt(1.0 - s*s - t*t);

/* compute reflected ray */
ray[0] = p[0] * p[2] * 2;
ray[2] = p[1] * p[2] * 2;
ray[3] = p[2] * p[2] * 2 - 1;
cast_ray(pos, ray, tex[j*width + i]);

}
}

}

To minimize computational overhead, the code fragment uses the first two equations
to produce a normal, and then a reflection vector, rather than compute the reflection
vector directly. The cast_ray() function performs the ray/environment intersection
given the starting point and the direction of the ray. Using the ray, it computes the color
and puts the results into its third parameter (the location of the appropriate texel in the
texture map).

The ray-casting technique can be used to create a texture based on the synthetic
surroundings, or it can be used as a mapping function to convert a set of six cube map
images into a sphere map. This approach is useful because it provides a straightforward
method for mapping cube faces correctly onto the highly nonlinear sphere map image.
The six images are overlayed on six faces of a cube centered around the sphere. The
images represent what a camera with a 90-degree field of view and a focal point at the
center of the square would see in the given direction. The cast rays intersect the cube’s
image pixels to provide the sphere map texel values.

S E C T I O N 1 7 . 3 C rea t i ng Env i r onmen t Maps 443

Sphere Map Warping

The texture warping approach discussed in Section 17.3.2 can be used to create sphere
maps from six cube-map-style images. OpenGL’s texture mapping capabilities are used
to distort the images and apply them to the proper regions on the sphere map. Unlike
a ray-casting approach, the texture warping approach can be accelerated by graphics
hardware. Depending on the technique, creating the distortion meshes may require a
way to go from reflection vectors back into locations on the sphere map. The following
equations perform this mapping.

s = Rx

2p
+ 1

2

t = Ry

2p
+ 1

2

p =
√

R2
x + R2

y + R2
z

Figure 17.23 shows the relationship of the distortion meshes for each cube face view to
the entire sphere map mesh. The finer the tessellation of the mesh the better the warping.
In practice, however, the mesh does not have to be extremely fine in order to construct a
usable sphere map.

The distortion mesh for the back face of the cube must be handled in a special way.
It is not a simple warped rectangular patch but a mesh in the shape of a ring. It can be
visualized as the back cube view face pulled inside-out to the front. In a sphere map,
the center of the back cube view face becomes a singularity around the circular edge of
the sphere map. The easiest way to render the back face mesh is as four pieces. The
construction of these meshes is aided by the reverse mapping equations. Using separate
meshes makes it possible to apply the highly nonlinear transformation needed to make
a cube map, but it leads to another problem. Combining meshes representing the six
cube faces will result in a sphere with polygonal edges. To avoid this problem, a narrow
“extender” mesh can be added, extending out from the circle’s edge. This ensures that
the entire circular sphere map region is rendered.

Although the sphere map should be updated for every change in view, the meshes
themselves are static for a given tessellation. They can be computed once and rerendered
to extract a different view from the cube map. Precomputing the meshes helps reduce the
overhead for repeated warping of cube face views into sphere map textures.

When the meshes are rendered, the sphere map image is complete. The final step is
to copy it into a texture using glCopyTexImage2D.

17.3.5 Dual-paraboloid Maps

Dual-paraboloid mapping provides an environment mapping method between a sphere
map — using a single image to represent the entire surrounding scene — and a cube map,
which uses six faces, each capturing a 90-degree field of view. Dual paraboloid mapping

444 C H A P T E R 17 Scene Rea l i sm

Front and back
face sub-meshes

Left and right
face sub-meshes

Top and bottom
Face sub-meshes

F i g u r e 17.23 Distortion meshes for a sphere map.

S E C T I O N 1 7 . 3 C rea t i ng Env i r onmen t Maps 445

uses two images, each representing half of the surroundings. Consider two parabolic
reflectors face to face, perpendicular to the z axis. The convex back of each reflector
reflects a 180-degree field of view. The circular images from the reflectors become two
texture maps. One texture represents the “front” of the environment, capturing all of the
reflection vectors with a nonnegative z component. The second captures all reflections
with a z component less than or equal to zero. Both maps share reflections with a z
component of zero.

Dual-paraboloid maps, unlike sphere maps, have good sampling characteristics,
maintaining a 4-to-1 sampling ratio from the center to the edge of the map. It pro-
vides the best environment map sampling ratio, exceeding even cube maps. Because of
this, and because dual-paraboloid maps use a three-component vector for texture lookup,
dual-paraboloid maps are view independent. The techniques for creating dual-paraboloid
maps are similar to those used for sphere maps. Because of the better sampling ratio and
lack of singularities, high-quality dual-paraboloid maps are also easier to produce.

As with sphere mapping, a dual-paraboloid texture image can be captured physically.
A parabolic reflector can be positioned within a scene, and using a camera along its axis
an image captured of the reflector’s convex face. The process is repeated, with the reflector
and camera rotated 180 degrees to capture an image of the convex face reflecting the view
from the other side. As with sphere maps, the problem with using an actual reflector is
that the camera will be in the resulting image.

A fish-eye lens approach can also be used. Since only a 180◦ field of view is required,
a fish-eye lens can create a reasonable dual-paraboloid map, although the view distortion
may not exactly match a parabolic reflector.

Dual-paraboloid Map Ray Casting

A ray-casting approach, as described in Section 17.3.1, can be used to create dual-
paraboloid maps. The paraboloid surface can be assumed to cover a unit circle. A
paraboloid for reflection vectors with a positive Rz component, centered around the
z axis, has a parametric representation of

Px = s

Py = t

Pz =
√

1
2 − 1

2 (P2
x − P2

y) (front)

Pz =
√

−1
2 + 1

2 (P2
x − P2

y) (back)

Taking the gradient, the normal at (s, t) is

Nx = s

Ny = t

446 C H A P T E R 17 Scene Rea l i sm

Nz = 1 (front)

Nz = −1 (back)

The reflection vector R is

R = 2NT (N · V) − V

As with sphere maps, the eye vector V simplifies in eye space to the constant vector
(0, 0, 1). The reflection vector reduces to

Rx = 2NxNz

Ry = 2NyNz

Rz = 2NzNz − 1

Combining the normal and reflection equations produces two equations: one for the front
side paraboloid and one for the back. These represent the reflection vector as a function
of surface parameters on the paraboloid surfaces.

front side:

Rx = 2s
s2 + t2 + 1

Ry = 2t
s2 + t2 + 1

Rz = −1 + s2 + t2

s2 + t2 + 1

back side:

Rx = −2s
s2 + t2 + 1

Ry = −2t
s2 + t2 + 1

Rz = 1 − s2 − t2

s2 + t2 + 1

Given the reflection vector equation, rays can be cast from the location where the
environment-mapped object will be rendered. The rays are cast in the direction speci-
fied by the reflection vector equations that match up with valid texel locations. Note that
the rays cast will be segmented into two groups: those that update texels on the front-
facing paraboloid map and those for the back-facing one. The following pseudocode
fragment illustrates the technique.

S E C T I O N 1 7 . 3 C rea t i ng Env i r onmen t Maps 447

void gen_dual-paraboloid_map(GLsizei width, GLsizei height,
GLfloat pos[3], GLfloat (*tex)[2][3]) {

GLfloat ray[3], color[3], norm[3], s, t;
int i, j;

for (j = 0; j < height; j++) {
t = -1 + 2 * (j /(height - 1) - .5);
for (i = 0; i < width; i++) {

s = -1 + 2 * (i /(width - 1) - .5);

if (s*s + t*t > 1.0) continue;

/* compute a normal on one of the paraboloid faces */
norm[0] = s;
norm[1] = t;
norm[2] = 1;

for (map = 0; map < 2; map++) {
/* compute reflected ray */
ray[0] = norm[0] * norm[2] * 2;
ray[2] = [1] * norm[2] * 2;
ray[3] = norm[2] * norm[2] * 2 - 1;
cast_ray(pos, ray, tex[map][j * width + i]);
norm[2] = -norm[2]; /*reverse z direction*/

}
}

}
}

To minimize computational overhead, the code fragment uses the first two equations to
produce a normal, then a reflection vector, rather than computing the reflection vector
directly. The cast_ray() function performs the ray/environment intersection, given the
starting point and the direction of the ray. Using the ray, it computes the color and puts the
results into its third parameter (the location of the appropriate texel in the texture map).

Dual-paraboloid Map Warping

The texture warping approach discussed in Section 17.3.2 can be used to create dual-
paraboloid maps from six cube-map-style images. OpenGL’s texture mapping capabilities
are used to distort the images and apply them to the proper regions on the paraboloid
maps. The texture warping approach can be accelerated. Creating the distortion meshes
requires a way to go from reflection vectors back into locations on the paraboloid map.

448 C H A P T E R 17 Scene Rea l i sm

top

front

bottom

left right

Front texture

top

back

bottom

left right

Back texture

alpha = 1.0 inside circle
alpha = 0.0 outside circle

F i g u r e 17.24 How cube map faces map to a dual-paraboloid map.

The following equations perform this mapping.

front side:

s = Rx

1 − Rz

t = Ry

1 − Rz

back side:

s = − Rx

1 + Rz

t = − Ry

1 + Rz

Figure 17.24 shows the relationship of the submesh for each cube face view to the
dual-paraboloid-map mesh. The finer the tessellation of the mesh the better the warp-
ing, although usable paraboloid maps can be created with relatively coarse meshes, even
coarser than sphere maps, since dual paraboloid maps don’t require strong warping of
the image. Figure 17.24 shows how cube-map faces are arranged within the two dual-
paraboloid map texture images, and Figure 17.25 shows the meshes required to do the
warping.

17.3.6 Updating Environment Maps Dynamical ly

Once the details necessary to create environment maps are understood, the next question
is when to create or update them. The answer depends on the environment map type, the
performance requirements of the application, and the required quality level.

S E C T I O N 1 7 . 4 Shadows 449

F i g u r e 17.25 Distortion meshes for a dual-paraboloid map.

Any type of environment map will need updating if the positional relationship
between objects changes significantly. If some inaccuracy is acceptable, metrics can be
created that can defer an update if the only objects that moved are small and distant
enough from the reflecting object that their motion will not be noticeable in the reflec-
tion. These types of objects will affect only a small amount of surface on the reflecting
objects. Other considerations, such as the contrast of the objects and whether they are
visible from the reflector, can also be used to optimize environment map updates.

Sphere maps require the highest update overhead. They are the most difficult to cre-
ate, because of their high distortion and singularities. Because they are so view dependent,
sphere maps may require updates even if the objects in the scene don’t change position.
If the view position or direction changes significantly, and the quality of the reflection
is important in the application, the sphere map needs to be updated, for the reasons
discussed in Section 17.3.4.

Dual-paraboloid maps are view independent, so view changes don’t require updating.
Although they don’t have singularities, their creation still requires ray-casting or image
warping techniques, so there is a higher overhead cost incurred when creating them. They
do have the best sampling ratio, however, and so can be more efficient users of texture
memory than cube maps.

Cube maps are the easiest to update. Six view face images, the starting point for sphere
and dual-paraboloid maps, can be used directly by cube maps. Being view independent,
they also don’t require updating when the viewer position changes.

17.4 Shadows

Shadows are an important method for adding realism to a scene. There are a number of
trade-offs possible when rendering a scene with shadows (Woo, 1990). As with lighting,

450 C H A P T E R 17 Scene Rea l i sm

there are increasing levels of realism possible, paid for with decreasing levels of rendering
performance.

Physically, shadows are composed of two parts: the umbra and the penumbra. The
umbra is the area of a shadowed object that is not visible from any part of the light
source. The penumbra is the area of a shadowed object that can receive some, but not all,
of the light. A point source light has no penumbra, since no part of a shadowed object
can receive only part of the light.

Penumbrae form a transition region between the umbra and the lighted parts of the
object. The brightness across their surface varies as a function of the geometry of the light
source and the shadowing object. In general, shadows usually create high-contrast edges,
so they are more unforgiving with aliasing artifacts and other rendering errors.

Although OpenGL does not support shadows directly, it can be used to implement
them a number of ways. The methods vary in their difficulty to implement, their perfor-
mance, and the quality of their results. All three of these qualities vary as a function of
two parameters: the complexity of the shadowing object and the complexity of the scene
that is being shadowed.

17.4.1 Project ive Shadows

A shadowing technique that is easy to implement is projective shadows. They can be
created using projection transforms (Tessman, 1989; Blinn, 1988) to create a shadow as
a distinct geometric object. A shadowing object is projected onto the plane of the shad-
owed surface and then rendered as a separate primitive. Computing the shadow involves
applying an orthographic or perspective projection matrix to the modelview transform,
and then rendering the projected object in the desired shadow color. Figure 17.26 illus-
trates the technique. A brown sphere is flattened and placed on the shadowed surface by
redrawing it with an additional transform. Note that the color of the “shadow” is the
same as the original object. The following is an outline of the steps needed to render an

First, turn off
texture, lighting,
set color to black,
then project.

More realistic shadow

Copy of 3D object
projected onto
shadowed surface

Right shape, but
doesn’t look like a shadow!

F i g u r e 17.26 Projective shadow technique.

S E C T I O N 1 7 . 4 Shadows 451

object that has a shadow cast from a directional light on the y-axis down onto the x, z
plane.

1. Render the scene, including the shadowing object.

2. Set the modelview matrix to identity, and then apply a projection transform such as
glScalef with arguments 1.f, 0.f, 1.f.

3. Apply the other transformation commands necessary to position and orient the
shadowing object.

4. Set the OpenGL state necessary to create the correct shadow color.

5. Render the shadowing object.

In the final step, the shadowing object is rendered a second time, flattened by the
modelview transform into a shadow. This simple example can be expanded by apply-
ing additional transforms before the glScalef command to position the shadow onto
the appropriate flat object. The direction of the light source can be altered by applying
a shear transform after the glScalef call. This technique is not limited to directional
light sources. A point source can be represented by adding a perspective transform to the
sequence.

Shadowing with this technique is similar to decaling a polygon with another coplanar
one. In both cases, depth buffer aliasing must be taken into account. To avoid aliasing
problems, the shadow can be slightly offset from the base polygon using polygon offset,
the depth test can be disabled, or the stencil buffer can be used to ensure correct shadow
decaling. The best approach is depth buffering with polygon offset. Depth buffering will
minimize the amount of clipping required. Depth buffer aliasing is discussed in more
detail in Section 6.1.2 and Section 16.8.

Although an arbitrary shadow can be created from a sequence of transforms, it is
often easier to construct a single-projection matrix directly. The following function takes
an arbitrary plane, defined by the plane equation Ax + By + Cz + D = 0, and a light
position in homogeneous coordinates. If the light is directional, the w value is set to 0.
The function concatenates the shadow matrix with the current one.

static void
ShadowMatrix(float ground[4], float light[4]) {

float dot;
float shadowMat[4][4];

dot = ground[0] * light[0] +
ground[1] * light[1] +
ground[2] * light[2] +
ground[3] * light[3];

shadowMat[0][0] = dot - light[0] * ground[0];

452 C H A P T E R 17 Scene Rea l i sm

shadowMat[1][0] = 0.0 - light[0] * ground[1];
shadowMat[2][0] = 0.0 - light[0] * ground[2];
shadowMat[3][0] = 0.0 - light[0] * ground[3];

shadowMat[0][1] = 0.0 - light[1] * ground[0];
shadowMat[1][1] = dot - light[1] * ground[1];
shadowMat[2][1] = 0.0 - light[1] * ground[2];
shadowMat[3][1] = 0.0 - light[1] * ground[3];

shadowMat[0][2] = 0.0 - light[2] * ground[0];
shadowMat[1][2] = 0.0 - light[2] * ground[1];
shadowMat[2][2] = dot - light[2] * ground[2];
shadowMat[3][2] = 0.0 - light[2] * ground[3];

shadowMat[0][3] = 0.0 - light[3] * ground[0];
shadowMat[1][3] = 0.0 - light[3] * ground[1];
shadowMat[2][3] = 0.0 - light[3] * ground[2];
shadowMat[3][3] = dot - light[3] * ground[3];

glMultMatrixf((const GLfloat*)shadowMat);
}

Projective Shadow Trade-offs

Although fast and simple to implement, the projective shadow technique is limited in
a number of ways. First, it is difficult to shadow onto anything other than a flat surface.
Although projecting onto a polygonal surfaces is possible (by carefully casting the shadow
onto the plane of each polygon face) the results have to be clipped to each polygon’s
boundaries. For some geometries, depth buffering will do the clipping automatically.
Casting a shadow to the corner of a room composed of just a few perpendicular polygons
is feasible with this method. Clipping to an arbitrary polgyonal surface being shadowed
is much more difficult, and the technique becomes problematic if the shadowed object is
image based (such as an object clipped by stenciling).

The other problem with projection shadows is controlling the shadow’s appearance.
Since the shadow is a flattened version of the shadowing object, not the polygon being
shadowed, there are limits to how well the shadow’s color can be controlled. The nor-
mals have been squashed by the projection operation, so properly lighting the shadow is
impossible. A shadowed polygon with changing colors (such as a textured floor) won’t
shadow correctly either, since the shadow is a copy of the shadowing object and must
use its vertex information.

17.4.2 Shadow Volumes

This technique sheaths the shadow regions cast by shadowing objects with polygons,
creating polygon objects called shadow volumes (see Figure 17.27). These volumes never

S E C T I O N 1 7 . 4 Shadows 453

Light

Shadowing
object

Shadow volume

Shadowed
object

Eye

F i g u r e 17.27 Shadow volume.

update the color buffer directly. Instead, they are rendered in order to update the stencil
buffer. The stencil values, in turn, are used to find the intersections between the polygons
in the scene and the shadow volume surfaces (Crow, 1981; Bergeron, 1986; Heidmann,
1991).

A shadow volume is constructed from the rays cast from the light source that intersect
the vertices of the shadowing object. The rays continue past the vertices, through the
geometery of the scene, and out of view. Defined in this way, the shadow volumes are
semi-infinite pyramids, but they don’t have to be used that way. The technique works
even if the base of the shadow volume is truncated as long as the truncation happens
beyond any object that might be in the volume. The same truncation and capping can be
applied to shadow volumes that pierce the front clipping plane as they go out of view. The
truncation creates a polygonal object, whose interior volume contains shadowed objects
or parts of shadowed objects. The polygons of the shadow volume should be defined so
that their front faces point out from the shadow volume itself, so that they can be front-
and back-face culled consistently.

The stencil buffer is used to compute which parts of the objects in the scene are
enclosed in each shadow volume object. It uses a volumetric version of polygon rendering

454 C H A P T E R 17 Scene Rea l i sm

techniques. Either an even/odd or a non-zero winding rule can be used. Since the non-
zero technique is more robust, the rest of the discussion will focus on this approach.
Conceptually, the approach can be thought of as a 3D version of in/out testing. Rays are
cast from the eye point into the scene; each ray is positioned to represent a pixel in the
framebuffer. For each pixel, the stencil buffer is incremented every time its ray crosses
into a shadow object, and decremented every time it leaves it. The ray stops when it
encounters a visible object. As a result, the stencil buffer marks the objects in the scene
with a value indicating whether the object is inside or outside a shadow volume. Since
this is done on a per-pixel basis, an object can be partially inside a shadow volume and
still be marked correctly.

The shadow volume method doesn’t actually cast rays through pixel positions into
the shadow volumes and objects in the scene. Instead, it uses the depth buffer test to find
what parts of the front and back faces of shadow volumes are visible from the viewpoint.
In its simplest form, the entire scene is rendered, but only the depth buffer is updated.
Then the shadow volumes are drawn. Before drawing the volume geometry, the color
and depth buffers are configured so that neither can be updated but depth testing is still
enabled. This means that only the visible parts of the shadow volumes can be rendered.

The volumes are drawn in two steps; the back-facing polygons of the shadow volume
are drawn separately from the front. If the shadow volume geometry is constructed cor-
rectly, the back-facing polygons are the “back” of the shadow volume (i.e., farther from
the viewer). When the back-facing geometry is drawn, the stencil buffer is incremented.
Similarly, when the front-facing polygons of the shadow volumes are drawn the stencil
buffer is set to decrement. Controlling whether the front-facing or back-face polygons
are drawn is done with OpenGL’s culling feature. The resulting stencil values can be used
to segment the scene into regions inside and outside the shadow volumes.

To understand how this technique works, consider the three basic scenarios possible
when the shadow volumes are drawn. The result depends on the interaction of the shadow
geometry with the current content of the depth buffer (which contains the depth values of
the scene geometry). The results are evaluated on a pixel-by-pixel basis. The first scenario
is that both the front and back of a shadow buffer are visible (i.e., all geometry at a
given pixel is behind the shadow volume). In that case, the increments and decrements of
the stencil buffer will cancel out, leaving the stencil buffer unchanged. The stencil buffer
is also unchanged if the shadow volume is completely invisible (i.e., some geometry at
a given pixel is in front of the shadow volume). In this case, the stencil buffer will be
neither incremented or decremented. The final scenario occurs when geometry obscures
the back surface of the shadow volume, but not the front. In this case, the stencil test will
only pass on the front of the shadow volume, and the stencil value will be changed.

When the process is completed, pixels in the scene with non-zero stencil values iden-
tify the parts of an object in shadow. Stencil values of zero mean there was no geometry,
or the geometry was completely in front of or behind the shadow volume.

Since the shadow volume shape is determined by the vertices of the shadowing object,
shadow volumes can become arbitrarily complex. One consequence is that the order of

S E C T I O N 1 7 . 4 Shadows 455

stencil increments and decrements can’t be guaranteed, so a stencil value could be decre-
mented below zero. OpenGL 1.4 added wrapping versions of the stencil increment and
decrement operations that are robust to temporary overflows. However, older versions of
OpenGL will need a modified version of the algorithm. This problem can be minimized
by ordering the front- and back-facing shadow polygons to ensure that the stencil value
will neither overflow nor underflow.

Another issue with counting is the position of the eye with respect to the shadow
volume. If the eye is inside a shadow volume, the count of objects outside the shadow
volume will be −1, not zero. This problem is discussed in more detail in Section 17.4. One
solution to this problem is to add a capping polygon to complete the shadow volume where
it is clipped by the front clipping plane, but this approach can be difficult to implement
in a way that handles all clipping cases.

A pixel-based approach, described by a number of developers, (Carmack, 2000;
Lengyel, 2002; Kilgard, 2002), changes the sense of the stencil test. Instead of incre-
menting the back faces of the shadow volumes when the depth test passes, the value is
incremented only if the depth test fails. In the same way, the stencil value is only decre-
mented where the front-facing polygons fail the depth test. Areas are in shadow where
the stencil buffer values are non-zero. The stencil buffer is incremented where an object
pierces the back face of a stencil volume, and decremented where they don’t pierce the
front face. If the front face of the shadow volume is clipped away by the near clip plane,
the stencil buffer is not decremented and the objects piercing the back face are marked
as being in shadow. With this method, the stencil buffer takes into account pixels where
the front face is clipped away (i.e., the viewer is in the shadow volume).

This approach doesn’t handle the case where the shadow volume is clipped away
by the far clip plane. Although this scenario is not as common as the front clip plane
case, it can be handled by capping the shadow volume to the far clip plane with extra
geometry, or by extruding points “to infinity” by modifying the perspective transform.
Modifying the transform is straightforward: two of the matrix elements of the standard
glFrustum equation are modified, the ones using the far plane distance, f . The equations
are evaluated with f at infinity, as shown here.

P33 = −(f + n)/(f − n) → −1

P34 = −2fn/(f − n) → −2n

Taking f to infinity can lead to problems if the clip-space z value is greater than zero. A
small epsilon value ε can be added:

P33 = ε − 1

P34 = n(ε − 2)

456 C H A P T E R 17 Scene Rea l i sm

Segmenting the Scene

The following outlines the shadow volume technique. Creating and rendering geometry
extending from light sources and occluders, with the side effect of updating the stencil
buffer, can be used to create shadows in a scene.

The simplest example is a scene with a single point-light source and a single occluder.
The occluder casts a shadow volume, which is used to update the stencil buffer. The buffer
contains non-zero values for objects in shadow, and zero values elsewhere. To create shad-
ows, the depth buffer is cleared, and the entire scene is rendered with lighting disabled.
The depth buffer is cleared again. The stencil buffer is then configured to only allow color
and depth buffer updates where the stencil is zero. The entire scene is rendered again, this
time with lighting enabled.

In essence, the entire scene is first drawn with the lights off, then with the lights
on. The stencil buffer prevents shadowed areas from being overdrawn. The approach is
broken out into more detailed steps shown here.

1. Clear the depth buffer.

2. Enable color and depth buffers for writing and enable depth testing.

3. Set attributes for drawing in shadow and turn light sources off.

4. Render the entire scene (first time).

5. Compute the shadow volume surface polygons.

6. Disable color and depth buffer updates and enable depth testing.

7. Clear stencil buffer to 0.

8. Set stencil function to "always pass."

9. Set stencil operations to increment when depth test fails.

10. Enable front-face culling.

11. Render shadow volume polygons.

12. Set stencil operations to decrement when depth test fails.

13. Enable back-face culling.

14. Render shadow volume polygons.

15. Clear depth buffer.

16. Set stencil function to test for equality to 0.

17. Set stencil operations to do nothing.

18. Turn on the light source.

19. Render the entire scene (second time).

S E C T I O N 1 7 . 4 Shadows 457

A complex object can generate a lot of shadow volume geometry. For complicated shad-
owing objects, a useful optimization is to find the object’s silhouette vertices, and just use
them for creating the shadow volume. The silhouette vertices can be found by looking
for any polygon edges that either (1) surround a shadowing object composed of a single
polygon or (2) are shared by two polygons, one facing toward the light source and one
facing away. The direction a polygon is facing can be found by taking the inner product
of the polygon’s facet normal with the direction of the light source, or by a combination
of selection and front- and back-face culling.

Multiple Light Sources

The shadow volume algorithm can be simply extended to handle multiple light sources.
For each light source, repeat the second pass of the algorithm, clearing the stencil buffer
to zero, computing the shadow volume polygons, and then rendering them to update
the stencil buffer. Instead of replacing the pixel values of the unshadowed scenes, choose
the appropriate blending function and add that light’s contribution to the scene for each
light. If more color accuracy is desired, use the accumulation buffer.

This method can also be used to create soft shadows. Jitter the light source, choosing
points that sample the light’s surface, and repeat the steps used to shadow multiple light
sources.

Light Volumes

Light volumes are analogous to shadow volumes; their interpretation is simply reversed.
Lighting is applied only within the volume, instead of outside it. This technique is
useful for generating spotlight-type effects, especially if the light shape is complex.
A complex light shape can result if the light source is partially blocked by multiple
objects.

Incrementally Updating Shadow Volumes

Since computing shadow polygons is the most difficult part of the shadow volume
technique, it’s useful to consider ways to reuse an existing volume whenever possi-
ble. One technique is useful for shadow or light volumes that are reflected in one or
more planar surfaces. Instead of generating a new volume for each reflection, the orig-
inal volume is transformed to match the light’s virtual position. The virtual position is
where the light appears to be in the reflecting surface. The same reflection transform that
moves the light from its actual position to the virtual one can be applied to the volume
geometry.

Another technique is useful when the light or shadowing object moves only incre-
mentally from frame to frame. As the light source moves, only the base of the volume
(the part of the volume not attached to the light or shadowing object) requires updating.
The change in vertex positions tracks the change in light position as a function of the
ratio between the light-to-shadowing-object distance and the shadowing-object-to-base

458 C H A P T E R 17 Scene Rea l i sm

distance. A similar argument can be made when the shadowing object moves incremen-
tally. In this case, some of the volume vertices move with the object (since it is attached
to it). The base can be calculated using similar triangles. If either the light or shadowing
object are moving linearly for multiple frames, a simplified equation can be generated for
volume updates.

If the light source is being jittered to generate soft shadows, only the volume vertices
attached to the shadowing object need to be updated. The base of the shadow volume
can be left unchanged. Since the jitter movement is a constrained translation, updating
these vertices only involves adding a constant jitter vector to each of them.

Shadow Volume Trade-offs

Shadow volumes can be very fast to compute when the shadowing object is simple.
Difficulties occur when the shadowing object has a complex shape, making it expen-
sive to compute the volume geometry. Ideally, the shadow volume should be generated
from the vertices along the silhouette of the object, as seen from the light. This is not a
trivial problem for a complex shadowing object.

In pathological cases, the shape of the shadow volume may cause a stencil value
underflow. If the OpenGL implementation supports wrapping stencil increment and
decrement,1 it can be used to avoid the problem. Otherwise, the zero stencil value can be
biased to the middle of the stencil buffer’s representable range. For an 8-bit stencil buffer,
128 is a good “zero” value. The algorithm is modified to initialize and test for this value
instead of zero.

Another pathological case is shadowed objects with one or more faces coincident, or
nearly coincident, to a shadow volume’s polygon. Although a shadow volume polygon
doesn’t directly update the color buffer, the depth test results determine which pixels in
the stencil buffer are updated. As with normal depth testing, a shadow volume polygon
and a polgyon from a shadowed object can be coplanar, or nearly so. If the two polygons
are sufficiently close together, z-fighting can occur. As with z-fighting, the artifacts result
from the two polygons rendering with slightly varying depth values at each pixel, creating
patterns. Instead of one polygon “stitching through” another, however, the artifacts show
up as shadow patterns on the object surface.

This problem can be mitigated by sampling multiple light sources to create softer-
shadowed edges, or if the geometry is well understood (or static) by displacing the shadow
volume polygons from nearby polygons from the shadowed objects.

A fundamental limitation in some OpenGL implementations can display similar arti-
facts. Shadow volumes test the polygon renderer’s ablity to handle adjacent polygons
correctly. If there are any rendering problems, such as “double hits,” the stencil count
will be incorrect, which can also lead to “stitching” and “dirt” shadow artifacts remi-
niscent of z-fighting. Unlike coincident shadow volume polygons, this problem is more
difficult to solve. At best, the problem can be worked around. In some cases, changing

1. Part of core OpenGL 1.4.

S E C T I O N 1 7 . 4 Shadows 459

the OpenGL state can cause the implementation to use a more well-behaved rasterizer.
Perhaps the best approach is to use a more compliant implementation, since this type of
problem will also show itself when attempting to use alpha blending for transparency or
other techniques.

17.4.3 Shadow Maps

Shadow maps use the depth buffer and projective texture mapping to create an image
space method for shadowing objects (Reeves, 1987; Segal, 1992). Like depth buffering,
its performance is not directly dependent on the complexity of the shadowing object.

Shadow mapping generates a depth map of the scene from the light’s point of view,
and then applies the depth information (using texturing) into the eye’s point of view. Using
a special testing function, the transformed depth info can then be used to determine which
parts of the scene are not visible to the light, and therefore in shadow.

The scene is transformed and rendered with the eye point at the light source. The
depth buffer is copied into a texture map, creating a texture of depth values. This texture
is then mapped onto the primitives in the original scene, as they are rendered from the
original eye point. The texture transformation matrix and eye-space texture coordinate
generation are used to compute texture coordinates that correspond to the x, y, and z
values that would be generated from the light’s viewpoint, as shown in Figure 17.28.

Light view of scene Eye view of scene Parts of scene
closest to light

Shadowed scene

Depth values from
light view

Eye view with
depth textured on

Parts of scene not
closest to light

F i g u r e 17.28 Shadow map.

460 C H A P T E R 17 Scene Rea l i sm

The value of the depth texture’s texel value is compared against the generated texture
coordinate’s r value at each fragment. This comparison requires a special texture param-
eter. The comparison is used to determine whether the pixel is shadowed from the light
source. If the r value of the texture coordinate is greater than the corresponding texel
value, the object is in shadow. If not, it is visible by the light in question, and therefore
isn’t in shadow.

This procedure works because the depth buffer records the distances from the light
to every object in the scene, creating a shadow map. The smaller the value the closer the
object is to the light. The texture transform and texture coordinate generation function
are chosen so that x, y, and z locations of objects in the scene generate s, t, and r values
that correspond to the x, y, and z values seen from the light’s viewpoint. The z coordinates
from the light’s viewpoint are mapped into r values, which measure how far away a given
point on the object is from the light source. Note that the r values and texel values must
be scaled so that comparisons between them are meaningful. See Section 13.6 for more
details on setting up the texture coordinate transformations properly.

Both the texture value and the generated r coordinate measure the distance from an
object to the light. The texel value is the distance between the light and the first object
encountered along that texel’s path. If the r distance is greater than the texel value, it
means that there is an object closer to the light than this object. Otherwise, there is
nothing closer to the light than this object, so it is illuminated by the light source. Think
of it as a depth test done from the light’s point of view.

Most of the shadow map functionality can be done with an OpenGL 1.1 imple-
mentation. There is one piece missing, however: the ability to compare the tex-
ture’s r component against the corresponding texel value. Two OpenGL extensions,
GL_ARB_depth_texture and GL_ARB_shadow, provide the functionality necessary.
OpenGL 1.4 supports this functionality as part of the core implementation. These exten-
sions add a new type of texture, a depth texture, that can have its contents loaded
directly from a depth buffer using glCopyTexImage. When texturing with a depth
buffer, the parametersGL_TEXTURE_COMPARE_MODE,GL_TEXTURE_COMPARE_FUNC,
and GL_DEPTH_TEXTURE_MODE are used to enable testing between the texel values and
the r coordinates. In this application, setting these parameters as shown in Table 17.4
produces shadow mapping comparisons.

The new functionality adds another step to texturing: instead of simply reading texel
values and filtering them, a new texture comparison mode can be used. When enabled,
the comparision function compares the current r value to one or more depth texels. The

T ab l e 17.4 Texture Parameter Settings for Depth Testing

Parameter Value
GL_TEXTURE_COMPARE_MODE GL_COMPARE_R_TO_TEXTURE
GL_TEXTURE_COMPARE_FUNC GL_LEQUAL
GL_DEPTH_TEXTURE_MODE GL_ALPHA

S E C T I O N 1 7 . 4 Shadows 461

simplest case is when GL_NEAREST filtering is enabled. A depth texel is selected (using the
normal wrapping), and is then compared to the r value generated for the current pixel loca-
tion. The exact comparision depends on the value of the GL_TEXTURE_COMPARE_FUNC
parameter. If the comparision test passes, a one is returned; if it fails, a zero is returned.

The texels compared against the r value follow the normal texture filtering rules. For
example, if the depth texture is being minified using linear filtering, multiple texels will
be compared against the r value and the result will be a value in the range [0, 1]. The
filtered comparision result is converted to a normal single component texture color, lumi-
nance, intensity, or alpha, depending on the setting of the GL_DEPTH_TEXTURE_MODE
parameter. These colors are then processed following normal texture environment rules.

The comparison functionality makes it possible to use the texture to create a mask to
control per-pixel updates to the scene. For example, the results of the texel comparisions
can be used as an alpha texture. This value, in concert with a texture environment setting
that passes the texture color through (such as GL_REPLACE), and alpha testing makes it
possible to mask out shadowed areas using depth comparision results. See Section 14.5
for another use of this approach.

Once alpha testing (or blending if linearly-filtered depth textures are used) is used
to selectively render objects in the scene, the shadowed and nonshadowed objects can be
selectively lighted, as described in Section 17.4.2 for shadow volumes.

Shadow Map Trade-offs

Shadow maps have some important advantages. Being an image-space technique, they can
be used to shadow any object that can be rendered. It is not necessary to find the silhouette
edge of the shadowing object, or clip the object being shadowed. This is similar to the
advantages of depth buffering versus an object-based hidden surface removal technique,
such as depth sort. Like depth buffering, shadow mapping’s performance bounds are
predictable and well understood. They relate to the time necessary to render the scene
twice: once from the light’s viewpoint and once from the viewpoint with the shadow map
textured onto the objects in the scene.

Image-space drawbacks are also present. Since depth values are point sampled into
a shadow map and then applied onto objects rendered from an entirely different point
of view, aliasing artifacts are a problem. When the texture is mapped, the shape of the
original shadow texel does not project cleanly to a pixel. Two major types of artifacts
result from these problems: aliased shadow edges and self-shadowing “shadow acne”
effects.

These effects cannot be fixed by simply averaging shadow map texel values, since
they encode depths, not colors. They must be compared against r values, to generate a
boolean result. Averaging depth values before comparison will simply create depth val-
ues that are incorrect. What can be averaged are the Boolean results of the r and texel
comparison. The details of this blending functionality are left to the OpenGL implemen-
tation, but the specification supports filtering of depth textures. Setting the minification

462 C H A P T E R 17 Scene Rea l i sm

and magnification filters to GL_LINEAR will reduce aliasing artifacts and soften shadow
edges.

Beyond blending of test results, there are other approaches that can reduce aliasing
artifacts in shadow maps. Two of the most important approaches are shown below. Each
deals with a different aspect of aliasing errors.

1. Shadow maps can be jittered. This can be done by shifting the position of the depth
texture with respect to the scene being rendered. One method of applying the jitter
is modifying the projection in the texture transformation matrix. With each jittered
position, a new set of r/depth texel comparisons is generated. The results of these
multiple comparisons can then be averaged to produce masks with smoother edges.

2. The shadow map can be biased. The bias is applied by modifying the texture
projection matrix so that the r values are biased down by a small amount. Making
the r values a little smaller is equivalent to moving the objects a little closer to the
light. This prevents sampling errors from causing a curved surface to shadow itself.
Applying a bias to r values can also be done using polygon offset to change the
coordinates of the underlying geometry.

Jittering a shadow map to create a soft shadow can be done for more than aesthetic
reasons. It can also mitigate an artifact often seen with shadow maps. Shadowed objects
whose faces are coplanar with, and very close to the edge of a shadow map shadow can
show rasterization effects similar to z-fighting. This problem is similar to the one seen
with shadow volumes, but for a different reason.

In the shadow map case, geometry nearly coincident with a shadow edge will be
nearly edge-on from the light’s point of view. As a result, rendering from that point of
view will create an “edge” in the depth buffer, where the values change. Rasterizing
the scene the second time from the eye’s viewpoint will cause that edge to be texture
mapped across the face of the coincident polygons. The rasterization patterns resulting
from sampling the descrete depth buffer pixels will be magnified as they are used to test
against r on these polygons.

As suggested previously, this artifact can be mitigated by averaging the results of
the depth tests of adjacent depth buffer samples. This can be done through a linear
magnification or minification, or by jittering the light position and combining the results,
producing shadows with smooth edges — in effect, “antialiasing” the shadow edges.

A more fundamental problem with shadow maps should be noted. It is difficult to use
the shadow map technique to cast shadows from a light surrounded by shadowing objects.
This is because the shadow map is created by rendering the a set of objects in the scene
from the light’s point of view, projecting it into the depth buffer. It’s not always possible
to come up with a single transform to do this, depending on the geometric relationship
between the light and the objects in the scene. As a result, it can be necessary to render
sections of a scene with multiple passes, each time using a different transform. The results
of each pass are applied to the part of the scene covered by the transform. The solution

S E C T I O N 1 7 . 4 Shadows 463

to this problem can be automated by using a cube map depth texture to store the light
point of the view in multiple directions in the faces of the cube map.

17.4.4 Creating Soft Shadows

Most shadow techniques create a very “hard” shadow edge. Surfaces in shadow and
surfaces being lighted are separated by a sharp, distinct boundary, with a large change in
surface brightness. This is an accurate representation for distant point light sources, but
is unrealistic for many lighting environments.

Most light sources emit their light from a finite, non-zero area. Shadows created by
such light sources don’t have hard edges. Instead, they have an umbra (the shadowed
region that can “see” none of the light source), surrounded by a penumbra, the region
where some of the light source is visible. There will be a smooth transition from fully
shadowed to lit regions. Moving out toward the edge of the shadow, more and more of
the light source becomes visible.

Soft Shadows with Jittered Lights

A brute-force method to approximate the appearance of soft shadows is to use one of the
shadow techniques described previously and modeling an area light source as a collection
of point lights. Brotman and Badler (1984) used this approach with shadow volumes to
generate soft shadows.

An accumulation buffer or high-resolution color buffer can combine the shadowed
illumination from multiple-point light sources. With enough point light source samples,
the summed result creates softer shadows, with a more gradual transition from lit to unlit
areas. These soft shadows are a more realistic representation of area light sources. To
reduce aliasing artifacts, it is best to reposition the light in an irregular pattern.

This area light source technique can be extended to create shadows from multi-
ple, separate light sources. This allows the creation of scenes containing shadows with
nontrivial patterns of light and dark, resulting from the light contributions of all lights in
the scene.

Since each sample contribution acts as a point light source, it is difficult to produce
completely smooth transitions between lit and unlit areas. Depending on the performance
requirements, it may take an unreasonable number of samples to produce the desired
shadow quality.

Soft Shadows Using Textures

Heckbert and Herf describe an alternative technique for rendering soft shadows. It uses
a “receiver” texture for each shadowed polygon in the scene (Heckbert, 1996). The
receiver texture captures the shadows cast by shadowing objects and lights in the scene
on its parent polygon.

A receiver texture is created for every polygon in the scene that might have a shadow
cast on it. The texture’s image is created through a rendering process, which is repeated

464 C H A P T E R 17 Scene Rea l i sm

for every light that might cast a shadow on the polygon. First a target quadrilateral is
created that fits around the polygon being shadowed, and embedded in its plane. Then a
perspective transform is defined so that the eye point is at the light’s position, while the
quadrilateral defines the frustum’s sides and far plane. The near plane of the transform is
chosen so that all relevant shadowing objects are rendered. Once it has been calculated,
objects that might shadow the polygon are rendered using this transform.

After the transform is loaded, the rendering process itself is composed of two steps.
First, the shadowed polygon itself is rendered, lighted from one of the light sources that
could cast a shadow on it. Then every other object that may shadow the polygon is
rendered, drawn with the ambient color of the receiving polygon. Since all shadowing
objects are the same color, the painter’s algorithm will give correct results, so no depth
buffering is needed. This is a useful feature of this algorithm, since turning off depth
buffering will improve performance for some OpenGL hardware implementations. The
resulting image is rendered at the desired resolution and captured in a color buffer with
high pixel resolution, or the accumulation buffer if performance is less of a factor.

The process is repeated for every point light source that can illuminate the shadowed
polygon. Area lights are simulated by sampling them as numerous point light sources
distributed over the area light’s face. As every image is rendered, it is accumulated with
the others, adding them into the total light contribution for that polygon. After all images
have been accumulated, the resulting image is copied to a texture map. When completed,
this texture is applied to its polygon as one of its surface textures. It modulates the
polygon’s brightness, modeling the shadowing effects from its environment.

Care must be taken to choose an appropriate image resolution for the receiver texture.
A rule of thumb is to use a texture resolution that leads to a one-to-one mapping from
texel to pixel when it is applied as a surface texture. If many accumulation passes are
necessary to create the final texture, the intensity of each pass is scaled so as to not exceed
the dynamic range of the receiving buffer. There are limits to this approach as color values
that are too small may not be resolvable by the receiving buffer.

A paper describing this technique in detail and other information on shadow
generation algorithms is available at Heckbert and Herf’s web site (Heckbert, 1997).
The Heckbert and Herf method of soft shadow generation is essentially the composition
of numerous “hard” shadow visibility masks. The contributions from individual light
positions will be noticeable unless sufficient number of light source samples are used. The
efficiency of this method can be increased by adjusting the number of samples across the
shadow, increasing the number of samples where the penumbra is large (and will produce
slowly varying shadow intensities).

Soler and Sillion (Soler, 1998) proposed another method to reduce soft shadow
artifacts. Their method models the special case where the light source, shadow occluder,
and shadow receiver are all in parallel planes. They use a convolution operation that
results in shadow textures with fewer sampling-related artifacts. In essence, they smooth
the hard shadows directly though image processing, rather than relying soley on multiple
samples to average into a soft shadow.

S E C T I O N 1 7 . 5 Summary 465

First, the light source and shadow occluder are represented as images. Scaled versions
of the images are then efficiently convolved through the application of the Fast Fourier
transform (FFT) and its inverse to produce a soft shadow texture. Soler and Sillion go on to
apply approximations that generalize the “exact” special case of parallel objects to more
general situations. While the FFT at the heart of the technique is not readily accelerated
by OpenGL, convolution can be accelerated on implementations that support the ARB
imaging extension or fragment program, which can produce similar results. Even without
convolution, the technique can still be useful in interactive applications. It’s approach can
be used to precompute high-quality shadow textures that can later be used like light map
textures during OpenGL rendering.

17.5 Summary

This chapter covered some important and fundamental approaches to realism, with an
emphasis on inter-object lighting. Reflections, refractions, environment map creation,
and shadowing were covered here. Modeling these effects accurately is key to creating
realistic scenes. They often give the strongest impact to visual realism, after considering
the surface texture and geometry of the objects themselves. To obtain still higher levels
of realism, the application designer should consider augmenting these approaches with
fragment programs.

Fragment programs are rapidly becoming the method of choice for augmenting scene
realism. Although computationally expensive, the ability to create surface “shaders” is
a powerful method for creating detailed surfaces, and with good environment maps
can model interobject reflections realistically. Although not part of any core specifi-
cation at the time of this writing, it is rapidly evolving into an indispensible part of
OpenGL. For more information on fragment programs, consult the specification of the
ARB_fragment_program extension, and descriptions of higher-level APIs, such as
GLSL.

18
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Natural Detail

Many phenomena found in nature don’t conform well to simple geometric representa-
tions. Many of these objects, such a fire and smoke, have complex internal motions and
indistinct borders. Others, such as a cloud layer and a lake surface, can have boundaries,
but these boundaries are constantly changing and are complex in shape. This chapter
focuses on these amorphous objects, extending OpenGL’s expressive power by harnessing
techniques such as particle systems, procedural textures, and dynamic surface meshes.

Given the complexity in detail and behavior of the objects being modeled, trade-
offs between real-time performance and realism are often necessary. Because of this,
performance issues will often be considered, and many of the techniques trade-off some
realism in order to maintain interactivity. In many ways, these techniques are simply
building blocks for creating realistic natural scenes. Producing extreme realism requires
careful attention to every aspect of the scene. The costs, both in development time and
application performance, must be managed. High realism is best applied where the viewer
will focus the most attention. In many cases, it is most effective to settle for adequate but
not spectacular detail and realism in regions of the scene that aren’t of central importance.

18.1 Particle Systems

A “particle system” is the label for a broad class of techniques where a set of graph-
ics components is controlled as a group to create an object or environment effect. The
components, called particles, are usually simple, — sometimes as simple as single pixels.

467

468 C H A P T E R 18 Na tu r a l De ta i l

Particle systems are used to represent a variety of objects, from rain, smoke, and fire to
some very “unparticle-like” objects such as trees and plants.

Given the broad range of particle system applications, it’s risky to make defini-
tive statements about how they should be implemented. Nevertheless, it’s still useful to
describe some particle system techniques and guidelines, with the caveat that any rules
on the proper use of particles will undoubtedly have exceptions.

A number of objects can be represented well with particles systems. Objects such as
rain, snow, and smoke that are real-life systems of particles are a natural fit. Objects with
dynamic boundaries and that lack rigid structure — such as fire, clouds, and water — also
make good candidates.

The appearance of a particle system is controlled by a number of factors: the number
and appearance of the particles themselves, the particles’ individual behaviors, and how
the component particles “interact.” Each factor can vary widely, which allows particle
systems to represent a wide range of objects. Table 18.1 provides some examples on how
particles systems can vary in their characteristics.

The ways parameters can be made to change over time is almost unlimited, and is a
key component to particle systems’ expressive power. A fundamental technique for mod-
ifying particles’ behavior over time is parameterization. A particle’s position, color, and
other characteristics are controlled by applying a small number of temporal or spatial
parameters to simple functions. This makes it easier to orchestrate the combined behav-
ior of particles and boosts performance. If the global behavior of the particle system is
sufficiently constrained, difficult-to-calculate characteristics such as local particle density,
can become a simple function of a position or distance parameter.

Particle interaction is controlled by how their attributes are orchestrated, and by
rendering parameters. Luminous small particles (such as fire) can be approximated as
transparent and luminous, and so can be rendered with depth testing off using an

T ab l e 18.1 Characterizing Particle Systems

Particle Parameter Types Description

Type Simple points Color, position
Type Points Color, position, normal, size, antialiasing
Type “Big” points Color, position, normal, size, antialiasing,

texture, orientation

Number Variable Function of visual impact
and bandwidth available

Interaction Small luminous No depth test, additive blend func
Interaction Small absorbing No depth test, transparency blend
Interaction Large obscuring Depth testing on
Interaction Heterogeneous Depth testing on, ambient and diffuse

lighting a function of surroundings

S E C T I O N 1 8 . 1 Pa r t i c l e Sys t ems 469

additive blend. Obscuring fine particles, such as dust, can also be rendered without
depth (which helps performance), using a normal replace operation. More sophisticated
lighting models are also possible. A particle deep inside a dense cloud of particles can
be assumed to be lighted only with ambient light based on the color of the surrounding
particles. Particles on the outside of a cloud, in a region of lower density, can be lighted
by the environment, using diffuse or even specular components.

Despite their power, particle systems have significant limitations. Primary is the
performance penalty from modifying and rendering a very large number of graphics primi-
tives each frame. Many of the techniques used in particle systems focus on maximizing
the efficiency of updating particle attributes and rendering them efficiently. Since both
the updating and rendering steps must be performed efficiently to use a particle system
effectively, both processes are described here.

18.1.1 Representing Part ic les

Individual particles can range from “small” ones represented with individual pixels ren-
dered as points, to “big” once represented with textured billboard geometry, or even
complete geometric objects, such as tetrahedrons. The parameters of an individual par-
ticle can be limited to position and color, or can incorporate lighting, texture, size,
orientation, and transparency. The number of objects varies depending on the effect
required and performance available. In general, the more internal variation and motion
that has to be expressed the more particles are required. In some cases, a smaller number
of big particles can be used, each big particle representing a group of smaller ones.

Big Particles

The choice of particle is often a function of the complexity of the object being represented.
If the internal dynamics of an object vary slowly, and the object has a relatively well-
defined boundary, a smaller number of “big” particles may represent the object more
efficiently. A big particle represents a group of the objects being modeled. The particle
is sized so that its rigidity doesn’t detract from adequately modeling the dynamics of the
object.

Sometimes big particles are a more realistic choice than small ones. Smoke, for
example, consists of individual particles that are invisible to the viewer, even when close
up. A big particle can contain an image that accurately represents the appearance of a
puff of smoke, which would be expensive and difficult to do by controlling the properties
of individual pixels. The key requirement is combining big particles and controlling their
properties so that they combine seamlessly into the desired object.

Big particles are usually represented as textured and billboarded polygons, in order
to minimize vertex count. Because they are composed of multiple vertices, the applica-
tion can have a great deal of control over the particle’s appearance. Textures can be
applied to the particles, and color and lighting can vary across their surfaces. The particle
outlines can be stenciled into arbitrary shapes with alpha component textures, and the
particles can be oriented appropriately.

470 C H A P T E R 18 Na tu r a l De ta i l

Smoke cloud composed of multiple big particles

Single "big particle"

F i g u r e 18.1 Big particles.

Good examples of objects that can be modeled with big particles are vapor trails,
clouds, and smoke. In these cases, the object can be decomposed into a small number
of similar pieces, moving in an orchestrated pattern. The objects in these examples are
assumed to have a low amount of turbulence, relatively high opacity, and fairly well-
defined boundaries. Big particles become overlapping “patches” of the object, moving
independently, as shown in Figure 18.1.

The geometry of big particles are simple polygons, usually quads, that are trans-
formed using the billboard technique described in Section 13.5. The polygons are covered
with a surface texture containing an alpha component. This makes it possible to vary the
transparency of the polygon across its surface, and to create an arbitrary outline to the
polygon without adding vertices, as described in Section 6.2.2.

Big particles can be controlled by varying a few important characteristics. Unifying
and simplifying the potential parameters makes it possible to manage and update a large
number of particles every frame. Fortunately, the particle system paradigm holds true:
a few particle parameters, applied to a large number of particles, can yield significant
expressive power. Table 18.2 shows a useful set of big-particle parameters. Note that the
parameters are chosen so that they are inexpensive to apply. None of them, for example,
requires changing the geometric description of the particle. Size and orientation can be
changed by modifying the particle’s modeling transform. Binding textures to particles can
be expensive, but the number of textures used is small (often one). A single texture map
is often applied to large groups of particles, amortizing the cost. The textures themselves
are also small, making it possible to keep them resident in texture memory.

Current color can be changed for groups of particles, if there is no color associ-
ated with the particle geometry. Color is changed by updating the current color before

S E C T I O N 1 8 . 1 Pa r t i c l e Sys t ems 471

T ab l e 18.2 Big Particle Parameters

Parameter Description

Size Scale factor of polygon
Orientation Rotation around axis pointing to viewer
Current texture Small number of textures shared by many particles
Color All vertices same color; can modify texture (using modulate)
Lighting Light enables and light position; shared by many particles

material and normals usually held constant

rendering a group of particles. If the texture environment is set to combine texture and
polygon color, such as GL_BLEND or GL_MODULATE, the current color can be used to
globally modify the particle’s appearance. Lighting can be handled by changing the cur-
rent state, as is done for color. Color material can also be used to vary material properties.
Lights can be enabled or disabled, and lighting parameters changed, before rendering each
group of particles. Geometric lighting attributes, such as vertex normals and colors, are
supplied as current state, or are part of the per-vertex geometry and kept constant.

Small Particles

While big particles can model an important class of objects efficiently, approximating an
object with a small number of large, complex primitives isn’t always acceptable. Some
objects, particularly those with diffuse, highly chaotic boundaries, and complex internal
motion, are better represented with a larger number of smaller particles. Such a system
can model the internal dynamics of the object more finely, and makes the representation
of very diffuse and turbulent object boundaries and internal structure possible. Small
particles are a particularly attractive choice if the individual particles are large enough to
be visible to the viewer, at least when they are nearby. Examples include swarms of bees,
sparks, rain, and snow.

A good candidate primitive for simple particles is the OpenGL point. Single points
can be thought of as very inexpensive billboards, since they are always oriented toward
the viewer. Although simple particles are often small, it’s still useful to be able to provide
visual cues about their distance by varying their size. This can be done with the OpenGL
point size parameter. Changing size can become a challenge when trying to represent a
particle smaller than a single pixel. Subpixel-size particles can be approximated using
coverage or transparency. With OpenGL, this is done by modifying the alpha component
of a point’s color and using the appropriate blending function.

Objects that are small compared to the size of a pixel can scintillate when moving
slowly across the screen. Antialiasing, which controls pixel brightness as a function of
coverage, mitigates this effect. OpenGL points can be antialiased; they are modeled
as circles whose radius is controlled by point size. Changing point size, especially for

472 C H A P T E R 18 Na tu r a l De ta i l

antialiased points, can be an expensive operation for some implementations, however. In
those cases, techniques can be used to amortize the cost over several particles, as discussed
in Section 18.3.

If the ARB_point_parameters extension is available1, an application can set
parameters that control point size and transparency as a function of distance from the
viewer. A threshold size can be set, that automatically attenuates the alpha value of a
point when it shrinks below the threshold size. This extension makes it easy to adjust size
and transparency of small particles based on viewer distance.

Point parameters shouldn’t be considered a panacea for controlling point size, how-
ever. Depending on how the extension is implemented, the same performance overhead
for point size change could be hidden within the implementation. The extension should
be carefully benchmarked to determine if the implementation can process a set of points
with unsorted distance values efficiently. If not, the methods for amortizing point size
changes discussed in Section 18.3 can also be used here.

A more recent extension, GL_ARB_point_sprite, makes OpenGL points even
more versatile for particle systems. It adds special point sprite texture coordinates that
vary from zero to one across the point. Point sprites allow points to be used as bill-
board textures, blurring the distinction between big and small particles. A point sprite
allows a particle to be specified with a single vertex, minimizing data transfer over-
head while allowing the fragments in the point to index the entire set of texels in the
texture map.

Antialiasing Small Particles

Particles, when represented as points, can be spatially antialiased by simply enabling
GL_POINT_SMOOTH and setting the appropriate blending function. It can also be useful
to temporally antialias small particles. A common method is to “stretch” them. The par-
ticle positions between two adjacent frames are used to orient an OpenGL line primitive
centered at the particle’s current position. A motion blur effect (Section 10.7.1) is created
by varying the line’s length and alpha as a function of current velocity. Lines are a useful
particle primitive in their own right. Like points, they can be thought of a billboarded
geometry. Their size can be controlled by adjusting their width and length, and they can
be antialiased using GL_LINE_SMOOTH.

If high quality is critical and performance isn’t as important, or the implementation
has accelerated accumulation buffer support, the accumulation buffer can be used to
generate excellent particle antialiasing and motion blur. The particles for a given frame
can be rendered repeatedly and accumulated. The particle positions can be jittered for
spatial antialiasing, and the particle rerendered along its direction of motion to produce
motion blur effects. For more information, see Section 10.2.2, and the accumulation
buffer paper (Haeberli, 1990).

1. Added as a core feature in OpenGL 1.4.

S E C T I O N 1 8 . 1 Pa r t i c l e Sys t ems 473

18.1.2 Number of Part ic les

After the proper particle type and characteristics are chosen, the next step in designing a
particle system is to choose the number of particles to display. Two issues dominate this
design decision: the performance limitations of the system, and the degree of complexity
that needs to be modeled in the object. There are cases where fewer particles are called
for, even if the implementation can support them. For example, if a particle system is
being used to represent blowing dust, the number of particles should match the desired
dust density. Too many particles can average together into a uniform block of color,
destroying the desired effect.

Performance limitations are the simplest limitation to quantify. Benchmarking the
application is key to determining the number of particles that can be budgeted without
overwhelming the graphics system rendering them, and the CPU updating them. Often
performance constraints will dictate the number of particles that can be rendered.

18.1.3 Modeling Part ic le Interact ions

Independently positioning and adjusting the other parameters of each particle in isolation
typically isn’t sufficient for realistic results. Controlling how particles visually interact is
also important. Unless the particles are very sparse, they will tend to overlap each other.
The color of particles may also be affected by the number of other particles there are in
the immediate vicinity.

Choosing how particles interact is affected by the physical characteristics of the par-
ticles being modeled. Particles can be transparent or opaque, light absorbing or light
emitting, heterogeneous or homogeneous. Fine particles are often assumed to be trans-
parent, causing particles along the same line of sight to interact visually. Larger particles
may block more distant ones. Transparent particles may emit light. In this case, any
particles along the same line of sight will add their brightness. More absorbing particles
along the same line of sight will obscure more of the scene behind the particles.

Some of these effects are shown in Figure 18.2. Three cubes of particles are drawn,
each with the same colors, alpha values, and positions. The left cube draws them with
no blending, representing lighted opaque particles that obscure each other. The center
uses blending with the function GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, repre-
senting transparent particles. The right cube blends with GL_ONE, GL_ONE, representing
glowing particles. Each cube is divided into four quadrants. The left side has a white
background; the right side has a black one. The top half of each cube has a background
with maximum depth values. The bottom half has background geometry closer to the
eye, only one-quarter of the way from the front of the particle cube.

Although the particles are identical, they appear different depending on how they
interact. The backgrounds are more visible with the transparent particles, with the center
cube showing more background than the left one. The right cube, containing glowing
particles, sums toward a constant value with areas of high particle density. The glowing
particles stand out against the dark background and appear washed out when drawn in
front of a white one.

474 C H A P T E R 18 Na tu r a l De ta i l

F i g u r e 18.2 Different particle interactions.

Much of the visual interaction between particles can be controlled by using
alpha components in their color and applying blend functions, or using depth
buffering. Transparent luminous particles are rendered with an additive blend func-
tion and no depth updates. Absorbing particles are rendered with an appropriate
alpha value, no depth updates, and with a blend function of GL_SRC_ALPHA and
GL_ONE_MINUS_SRC_ALPHA. Larger, obscuring particles can be rendered with nor-
mal depth testing on and blending disabled. In cases where depth updates are disabled,
the normal caveats discussed in Section 11.9 apply: the background geometry should be
rendered first, with depth updates enabled.

Particles in a system may vary in appearance. For example, a dense cloud of particles
may have different lighting characteristics depending on where they are in the cloud.
Particles deep within the cloud will not have direct views of lights in the scene. They should
be rendered almost entirely with an ambient light source modeling particle interreflections.
Particles near the boundaries of the cloud will have a much lower, but still significant,
ambient light contribution from other particles but will also be affected by lights in the
scene that are visible to it.

Rendering particles with heterogeneous appearance requires accurately determining
the proper lighting of each particle, and proper rendering techniques to display their
colors. The first problem can be easy to solve if the particle system dynamics are well
understood. For example, if a cloud’s boundaries are known at any given time the par-
ticle color can become a simple function of position and time. For a static, spherical
object, the color could be a function of distance from the sphere’s center. Rendering
heterogeneous particles properly is straightforward if depth buffering is enabled, since
only the closest visible particles are rendered. If particles are transparent, the particle set

S E C T I O N 1 8 . 1 Pa r t i c l e Sys t ems 475

must be sorted from back to front when a blend function, such as GL_SRC_ALPHA and
GL_ONE_MINUS_SRC_ALPHA, is used, unless the particle colors are very similar.

18.1.4 Updating and Rendering Part ic les

Choosing the correct type and number of particles, their attributes, and their interactions
is important for creating a realistic object, but that is only one part of the design phase.
A particle system will only function correctly if the updates and rendering stages can be
implemented efficiently enough to support the particle system at interactive rates.

An important bottleneck for particle systems is the bandwidth required to trans-
fer the particle geometry to the graphics hardware. If simple particles suffice, OpenGL
points have low overhead, since they require only a single vertex per point. The number
of components and the data types of the components should also be minimized. Posi-
tion resolution, rather than range, should be considered when choosing a coordinate
type, since the transformation pipeline can be used to scale point position coordinates as
necessary.

Reducing transfer bandwidth also demands an efficient method of representing the
particle set. The fine-grain glBegin/glEnd command style requires too much function
call overhead. Display lists are more efficient, but are usually a poor fit for the points that
require individual attribute updates each frame. Vertex arrays are the preferred choice.
They avoid the overhead of multiple function calls per-vertex, and have an additional
advantage. The primitive data is already organized in array form. This is a common
representation for particle attributes in a particle system update engine, allowing the
particles to be operated on efficiently. Structuring the particle system so that attribute
data can be passed directly to OpenGL avoids data conversion overhead.

Particle system software has three basic components: initialization, rendering, and
update (as shown in Figure 18.3). Particles in particle systems can be organized in tables,
indexed by the particle, containing particle characteristics to be updated each frame
(as shown in Table 18.3).

Using compact representations for both rendering and nonrendering parameters is
important for performance reasons. A smaller array of parameters can be more eas-
ily held in the CPU cache during update, and can be transfered more efficiently to the

Initialize particles

Render particles Update particles

F i g u r e 18.3 Particle system block diagram.

476 C H A P T E R 18 Na tu r a l De ta i l

T ab l e 18.3 Example Particle Table

Index Vx Vy Vz Temp Energy

0
1
2
3
...

graphics hardware. Using integer representations is helpful, as is factoring out parameters
that are constant within a group of particles.

Parameters directly used for rendering, such as position and color, are best kept in
tables separate from the nonrendering parameters, such as current velocity and energy.
Many OpenGL implementations have faster transfer rates if the vertex arrays have small
strides. Performance analysis and benchmarking are essential to determining which par-
ticle updating method is faster: using an incremental update algorithm and caching
intermediate results (such as velocity) or performing a more computationally intensive
direct computation that requires less stored data.

When choosing a vertex array representation, keep in mind that OpenGL implemen-
tations may achieve higher performance using interleaved arrays that are densely packed.
The particle engine data structures may have to be adjusted to optimize for either render-
ing speed or particle update performance, depending on which part of the system is the
performance bottleneck.

Sorting Particles

A bottleneck that can affect both transfer rate and rendering performance is OpenGL state
changes. Changing transformation matrices, binding a new set of textures, or enabling,
disabling, or changing other state parameters can use up transfer bandwidth, as well as
add overhead to OpenGL rendering. In general, as many primitives should be rendered
with the same state as possible.

One method to minimizing state changes is state sorting. Primitives that require
the same OpenGL state are grouped and rendered consecutively. State sorting makes it
possible to set an attribute, such as color, for a whole group of particles, instead of just
one. Performance tuning methods are discussed in greater detail in Chapter 21.

As mentioned previously, an example of a state change that might require sorting is
point size, since it can be a costly operation in OpenGL. The overhead can be minimized
by sorting and grouping the particles by size before rendering to minimize the number
of glPointSize calls. Sorting itself can lead to significant CPU overhead, and must be
managed. It can be minimized in many cases by organizing the initial particle list, since
their relative distances from the viewer may be known in advance.

S E C T I O N 1 8 . 1 Pa r t i c l e Sys t ems 477

Grouping: 6 different point sizes collected into two groups:
red (sizes 1 through 3) and blue (sizes 4 through 6)

F i g u r e 18.4 Grouping particles.

Sorting overhead can also be reduced by quantizing the parameter to be sorted.
Rather than support the entire range of possible parameter values, find objects with
similar parameter values and group them, representing them all with a single value.
In Figure 18.4, a range of six different point sizes are combined into two groups, illustrated
as “red” points (sizes 1 through 3) and “blue” points (sizes 4 through 6). In this example,
the different red point sizes are collapsed into a single point size of 2, while the blue points
are represented as points of size 5.

Quantizing simplifies sorting by reducing the number of possible different values.
Point size changes may also be quantized to some degree. If particles are very small and
of uniform size, bounding volumes can be chosen so that the particles within it are close
together relative to their distance from the viewer. For a given bounding volume, an
average point size can be computed, and all particles within the volume can be set to that
size. The effectiveness of quantizing particle size this way will depend on the behavior of
particles in a particular system. Particles moving rapidly toward or away from the viewer
cannot be grouped effectively, since they will show size aliasing artifacts.

The sorting method used should match well with the particle system’s storage repre-
sentation. Since the elements are in arrays, an in-line sorting method can be used to save
space. An incremental sorting algorithm can be effective, since points usually move only a
small distance from frame to frame. An algorithm that is efficient for sorting nearly sorted
arrays is ideal, for example, insertion and shell sorts take linear time for nearly sorted
input.

Because of their compact representation, many particle systems require a sort against
key values that have a narrow range. In these cases, a radix-exchange sort may prove
effective. Radix sort is attractive, since it uses n log n bit comparisons to sort n keys. The
smaller the keys the better. The sort is guaranteed to use less than nb bit comparisons for
n keys each with b bits.

In some cases, such as presorting to work around an inefficient implementation
of glPointParameter, it may be possible to only partially sort particles and still get
useful results. Partial sorting may be necessary if an interactive application can only spare
a limited amount of time per frame. In this case, sorting can proceed until the time limit
expires. However, it must be possible to interrupt the sorting algorithm gracefully for this

478 C H A P T E R 18 Na tu r a l De ta i l

approach to work. It is also important for the sort to monotonically improve the ordering
of the particles as it proceeds. In the glPointParameter example, some sorting can
improve rendering performance, even if the sort doesn’t have time to complete.

Vertex Programs

If the OpenGL implementation supports vertex programs, some or all particle updating
can be done by the OpenGL implementation. A vertex program can be created that uses
a global parameter value representing the current age of all particles. If each particle
is rendered with a unique vertex attribute value, a vertex program can use the current
parameter value and vertex attribute as inputs to a function that modifies the position,
color, size, normal, and other characteristics of the particle. Since each particle starts with
a different attribute, they will still have different characteristics. Each time the frame is
rendered, the global parameter value is incremented, providing an age parameter for the
vertex program.

Using vertex programs is desirable since updates are happening in the implementa-
tion. Depending on the implementation this work may be parallelized and accelerated
in hardware. It also keeps the amount of data transferred with each particle to a mini-
mum. The trade-off is less flexibility. Currently, vertex programs don’t support decision
or looping constructs, and the operations supported, while powerful, aren’t as general as
those available to the application on the CPU.

18.1.5 Applicat ions

The following sections review some common particle system applications. These descrip-
tions help illustrate the application of particle system principles in general, but also show
some of the special problems particular to each application.

Precipitation

Precipitation effects such as rain and snow can be modeled and rendered using the basic
particle rendering techniques described in the preceding section. Using snowflakes as an
example, individual flakes can be rendered as white points, textured billboards, or as
point sprites. Ideally, the particle size should be rendered correctly under perspective
projection. Since the real-life particles are subject to the effects of gravity, wind, thermal
convection, and so on, the modeled dynamics should include these effects. Much of the
complexity, however, lies in the management of the particle lifetime. In the snow example,
particle dynamics may cause particles to move from a region not visible to the viewer to
a visible portion, or vice versa. To avoid artifacts at the edges of the screen, more than
the visible frustum has to be simulated.

One of the more difficult problems with particle systems is managing the end of life
of particles efficiently. Usually snowflakes accumulate to form a layer of snow over the
objects upon which they fall. The straightforward approach is to terminate the particle
dynamics when the particle strikes a surface (using a collision detection algorithm), but

S E C T I O N 1 8 . 1 Pa r t i c l e Sys t ems 479

continue to draw it in its final position. But this solution has a problem: the number of
particles that need to be drawn each frame will grow over time without bound.

Another way to solve this problem is to draw the surfaces upon which the particles
are falling as textured surfaces. When a particle strikes the surface, it is removed from
the system, but its final position is added to a dynamic texture map. The updated texture
is reapplied to the snow-covered surface. This solution allows the number of particles in
the system to reach a steady state, but creates a new problem: efficiently managing the
texture maps for the collision surfaces.

One way to maintain these texture maps is to use the rendering pipeline to update
them. At the beginning of a simulation the texture map for a surface is free of particles. At
the end of each frame, the particles to be retired this frame are drawn with an orthographic
projection onto the textured surface (choosing a viewpoint perpendicular to it) using the
current version of the texture. The resulting image replaces the current texture map.

There is a problem transitioning from a particle resting on the surface (which is really
a billboarded object facing the viewer) and the texture marked with the new snow spot.
In general, the textured surface will be at an oblique angle with the viewer. Projecting the
screen area onto the texture will lead to a smooth transition, but in general the updated
texture area won’t look correct from any other viewing angle. A more robust solution
is to transition from particle to texture spot using a multiframe fade operation. This
will require introducing a new limbo state for managing particles during this transition
period.

Using a texture map for snow particles on the surface provides an efficient mecha-
nism for maintaining a constant number of particles in the system and works well for
simulating the initial accumulation of precipitation on an uncovered surface. However,
it does not serve as a realistic model for continued accumulation since it only simulates
a 1D layer. To simulate continued accumulation, the model would have to be enhanced
to simulate the increasing accumulation thickness. Modifying the surface with a dynamic
mesh (as described in Section 18.2) is one possible solution.

When simulating rain instead of snow, some of the precipitation properties change.
Rain particles are typically denser than snow particles and are thus affected differently
by gravity and wind. Since heavy rain falls faster than snow, it may be better simulated
using short antialiased line segments rather than points, to simulate motion blurring.

Simulating the initial accumulation of rain is similar to simulating snow. In the case
of snow, an opaque accumulation is built up over time. For rain, the raindrops are
semi-transparent; they affect the surface characteristics and thus the surface shading of
the collision surface in a more subtle manner. One way to model this effect is to create a
gloss map, as described in Section 15.7.1. The gloss map can be updated per particle, as
was done in the snow example, increasing the area of specular reflection on the surface.

For any precipitation, another method to reduce the rendering workload and
increase the performance of the simulation is to reduce the number of particles using a
“Hollywood” technique. In this scheme, rather than rendering particles throughout the
entire volume a “curtain” of particles is rendered in front of the viewer. The use of motion
blurring and fog along with lighting to simulate an overcast sky can make the illusion

480 C H A P T E R 18 Na tu r a l De ta i l

more convincing. It is still possible to simulate simple accumulation of precipitation by
choosing points on collision surfaces at random (within the parameterization of the sim-
ulation), rather than tracking particle collisions with the surfaces, and blending them into
texture maps as described previously.

Smoke

Exactly modeling smoke requires some sophisticated physics, but surprisingly realistic
images can be generated using fairly simple techniques. One such technique uses big
particles; each particle is textured with a 2D cross section of a puff of smoke. To simplify
manipulation, a texture containing only luminance and alpha channels can be used. If
the GL_MODULATE texture environment is used, changing the color and alpha value of
the particle geometry controls the color and transparency of the smoke. Controlling the
appearance of the smoke with geometry attributes, such as vertex color, also makes it
possible to simulate different types of smoke with the same texture. While smoke from
an oil fire is dark and opaque, steam from a factory smoke stack is much lighter in
color.

The size, position, orientation, and opacity of the particles can be varied as a func-
tion of time to simulate the puff of smoke enlarging, drifting, and dissipating over time
(see Figure 18.5). Overlapping the smoke particles creates a smokey region of arbitrary
shape, which can be modified dynamically over time by moving, rotating, scaling, and
modifying the color and transparency of the component particles.

The smoke texture, used to represent a group of smoke particles, is a key building
block for building smoke effects of this type. The texture image itself may vary. A single
texture may be used for all particles. The texture used can vary with particle position,
or might be animated over time, depending on the requirements of the application. The
realism and accuracy of the texture image itself is important. There are a number of
procedural techniques that can be used to synthesize both static and dynamic 2D textures,
as described in Section 18.3. Some of the literature devoted to realistic clouds, as described
in Section 18.6, can also be applied to producing smoke textures.

Alpha 1.0

Scale � 2 Scale � 2

Alpha .75

Alpha .4

F i g u r e 18.5 Dilating, fading smoke.

S E C T I O N 1 8 . 1 Pa r t i c l e Sys t ems 481

Dialate

9 8 7 6 5
4

3
2 1

0

Fade

Head

F i g u r e 18.6 Vapor trail.

Vapor Trails

Vapor trails emanating from a jet or a missile can be modeled with a particle system,
treating it as a special case of smoke. A circular, wispy 2D smoke texture applied on a big
particle is used to generate the vapor pattern. The texture image can consist of only alpha
components, modulating the transparency of the image, letting the particle geometry set
the color. The trajectory of the vapor trail is painted using multiple overlapping particles,
as shown in Figure 18.6. Over time the individual billboards gradually enlarge and fade.
The program for rendering a trail is largely an exercise in maintaining an active list of
the position, orientation, and time since creation for each particle used to paint the trail.
As each particle exceeds a threshold transparency value it can be reused as a new particle,
keeping the total number constant, and avoiding the overhead of allocating and freeing
particles.

Fire

A constant fire can be modeled as a set of nearly stationary big particles mapped with
procedural textures. The particles can be partially transparent and stacked to create the
appearance of multiple layers of intermingling flames, adding depth to the fire.

A static image of fire can be constructed from a noise texture (Section 18.3 describes
how to make a noise texture using OpenGL). The weights for different frequency com-
ponents should be chosen to create a realistic spectral structure for the fire. Turbulent fire
can be modeled in the texture image, or by warping the texture coordinates being applied
to the particles. Texture coordinates may be distorted vertically to simulate the effect
of flames rising and horizontally to mimic the effect of winds. These texture coordinate
distortions can be applied with the texture transform matrix to avoid having to update
the particle texture coordinates.

A progressive sequence of fire textures can be animated on the particles, as described
in Section 14.12. Creating texture images that reflect the abrupt manner in which fire

482 C H A P T E R 18 Na tu r a l De ta i l

moves and changes intensity can be done using the same turbulence techniques used to
create the fire texture itself. The speed of the animation playback, as well as the distortion
applied to the texture coordinates of the billboard, can be controlled using a turbulent
noise function.

Explosions

Explosion effects can be rendered with a heterogeneous particle system, combining the
techniques used for smoke and fire. A set of big particles, textured with either a still or
animated image of a fireball, is drawn centered in the middle of the explosion. It can
be dilated, rotated, and faded over a short period of time. At the same time, a smoke
system can produce a smoke cloud rising slowly from the center of the explosion. To
increase realism, simple particles can spray from the explosion center at high speed on
ballistic trajectories. Careful use of local light sources can improve the effect, creating a
flash corresponding to the fireball.

Clouds

Individual clouds, like smoke, have an amorphous structure without well-defined surfaces
and boundaries. In the literature, computationally intensive physical cloud modeling tech-
niques have given way to simplified mathematical models that are both computationally
tractable and aesthetically pleasing (Gardner, 1985; Ebert, 1994).

As with smoke systems, big particles using sophisticated textures can be combined
to create clouds. The majority of the realism comes from the quality of the texture.

To get realism the texture image should be based on a fractal-based or spectral-based
function we’ll call t. Gardner suggests a Fourier-like sum of sine waves with phase shifts:

t(x, y) = k
n∑

i=1

(
ci sin(fxix + pxi) + t0

) n∑
i=1

(
ci sin(fyiy + pyi) + t0

)
with the relationships

fxi+1 = 2fxi

fyi+1 = 2fyi

ci+1 = .707ci

pxi = π

2
sin(fyi−1y), i > 1

pyi = π

2
sin(fxi−1x), i > 1

Care must be taken using this technique to choose values to avoid a regular pattern in the
texture. Alternatively, texture generation techniques described in Section 18.3 can also
be used.

S E C T I O N 1 8 . 1 Pa r t i c l e Sys t ems 483

Another cloud texture generating method is stochastic, based on work by Fournier
and Miller (Fournier, 1982; Miller, 1986). It uses a midpoint displacement technique
called Diamond-Square for generating a set of random values on a uniform grid. These
generated values are interpreted as opacity values and correspond to the cloud density
at a given point. The algorithm is iterative; during each iteration two steps are executed.
The first, the diamond step, takes four corners of a square and produces a new value at
its center by averaging the values at the four corners and adding a random number in the
range [−1, 1].

The second step, the square step, consists of taking the corners of the four diamonds
that were generated in the diamond step (they share the center point of the diamond step)
and generating a new center value for each diamond by averaging its four corners and
adding a random number in the range [−1, 1]. During the square step, attention must be
paid to diamonds at the edges of the grid as they will wrap around to the opposite side of
the grid. During each iteration the number of squares processed is increased by a factor
of four. To produce smooth variations in the generated values, the range of the random
value added during the generation of center points is reduced by some fraction for each
iteration. Seed values for the first few iterations of the algorithm may be used to control
the overall shape of the final texture.

Light Points

The same procedures used for controlling the appearance of dynamic particles can also be
used to realistically render small static light sources, such as stars, beacons, and runway
lights. As with particles, to render realistic-looking small light sources it is necessary to
change some combination of the size and brightness of the source as a function of distance
from the eye.

If available, the implementation’s point parameter functionality can be used to
modify the light points as a function of distance, as described in Section 18.1. If the
point parameter feature is not available, the brightness attenuation a as a function of
distance, d, can be approximated by using the same equation used in the OpenGL lighting
equation:

1
kc + kld + kqd2

Attenuation can be achieved by modulating the point size by the square root of the
attenuation:

sizeeffective = size × √
a

Subpixel size points are simulated by adjusting transparency, making the alpha value pro-
portional to the ratio of the point area determined from the size attenuation computation

484 C H A P T E R 18 Na tu r a l De ta i l

to the area of the point being rendered:

alpha =
(

sizeeffective

sizethreshold

)2

More complex behavior — such as defocusing, perspective distortion, and directionality
of light sources — can be achieved by using an image of the light lobe as a texture map
on big particles. To effectively simulate distance attenuation it may be necessary to select
different texture patterns based on the distance from the eye.

18.2 Dynamic Meshes

While particle systems can be a powerful modeling technique, they are also expensive.
The biggest problem is that the geometry count per frame can rapidly get to a point
where it impacts performance. In cases where an object has a distinct boundary that is
smooth and continuous, representing the object with a textured mesh primitive can be
more economical.

A dynamic mesh has two components: the mesh geometry, whose vertices and vertex
attributes can be updated parametrically every frame, and the surface texture itself, which
may also be dynamic. The mesh geometry can be represented in OpenGL with triangle or
quad strips. The vertices and vertex attributes can be processed in a way very similar to
particle systems, as described in Section 18.1.4. The vertex and attribute values are stored
in arrays, and updated with parameterized functions each frame. They are rendered by
sending them to the hardware as vertex arrays.

Figure 18.7 shows the components of a dynamic mesh; an array of vertices and
their attributes that defines the mesh surface. The array structure makes it easy for an
application to update the components efficiently. The data is organized so that it can be
drawn efficiently as a vertex array, combined with a texture that is applied to the mesh
surface. This texture can be modified by changing the texture coordinates of the mesh,
or the color values if the texture is applied with the GL_MODULATE texture environment.

Much of the visible complexity of a mesh object is captured by a surface texture. The
texture image may have a regular pattern, making it possible to repeat a small texture
over the entire surface. Examples of surfaces with repeating patterns include clouds and
water. It is often convenient to use a procedurally generated texture (see Section 18.3)
in these cases. This is because the spatial frequency components of a procedural texture
can be finely controlled, making it easy to create a texture that wraps across a surface
without artifacts.

The texture may be updated dynamically in a number of ways. The direct method is
to simply update the texture image itself using subimages. But image updates are expen-
sive consumers of bandwidth. For many applications, lower-cost methods can create a
dynamic texture without updating new images. In some cases, simply warping the texture

S E C T I O N 1 8 . 2 Dynami c Meshes 485

Mesh can have dynamic vertices, texture

Texture applied to mesh

Array of vertices defines
mesh, updated by application,
drawn as vertex array

Surface texture

F i g u r e 18.7 Dynamic mesh components.

on the surface is sufficient. The texture’s appearance can also be modified by changing
the underlying vertex color, rendering with a texture environment such as GL_BLEND or
GL_MODULATE. If the texture image itself must be modified, a procedural texture is a
good choice for animation, since it is easy to create a series of slowly varying images by
varying the input parameters of the generation functions.

We’ll describe dynamic meshes in more depth through a set of application examples.
They illustrate the technique in more detail, showing how they can solve problems for
particular application areas.

Water

A large body of research has focused on modeling, shading, and reproducing optical
effects of water (Watt, 1990; Peachey, 1986; Fournier, 1986), yet most methods still
present a large computational burden to achieve a realistic image. Nevertheless, it is
possible to borrow from these approaches and achieve reasonable results while retaining
interactive performance (Kass, 1990; Ebert, 1994).

Dynamic mesh techniques can provide good realism efficiently enough to maintain
interactive frame rates. The dynamics of waves can be simulated using procedural models
and rendered using meshes computed from height fields. The mesh vertices are positioned
by modulating the height of the vertices with a sinusoid to simulate simple wave patterns,
as shown in Figure 18.8. The frequency and amplitude of the waves can be varied to
achieve different effects. The phase of the sinusoid can be varied over time to create wave
motion.

486 C H A P T E R 18 Na tu r a l De ta i l

y = a * sin (f * x)

F i g u r e 18.8 Water modeled as a height field.

The mesh geometry can be textured using simple procedural texture images, pro-
ducing a good simulation of water surfaces. Synthetic perturbations to the texture
coordinates, as outlined in Section 18.3.7, can also be used to help animate the water
surface.

If there is an adequate performance margin, the rendering technique can be further
embellished. Multipass or multitexture rendering techniques can be used to layer addi-
tional effects such as surf. The reflective properties of the water surface can also be more
accurately simulated. Environment mapping can be used to simulate basic reflections from
the surface, such as sun smear. This specular reflection can be made more physically accu-
rate using environment mapping that incorporates the Fresnel reflection model described
in Section 15.9. The bump-mapping technique described in Section 15.10 can be used to
create the illusion of ripples without having to model them in the mesh geometry. The
bump maps can be updated dynamically to animate them.

Animating water surface effects also extends to underwater scenes. Optical effects
such as caustics can be approximated using OpenGL, as described by Nishita and
Nakamae (Nishita, 1994), but interactive frame rates are not likely to be achieved. A more
efficient, if less accurate, technique to model such effects uses a caustic texture to modu-
late the intensity of any geometry that lies below the surface. Other below-surface effects
can also be simulated. Movements of the water (surge) can be simulated by perturbing
the vertex coordinates of submerged objects, again using sinusoids. Blueish-green fog can
be used to simulate light attenuation in water.

Cloud Layers

Cloud layers, in many cases, can be modeled well with dynamic meshes. The best can-
didates are cloud layers that are continuous and that have distinct upper and lower

S E C T I O N 1 8 . 3 P ro cedu ra l T e x tu re Gene ra t i on 487

boundaries. Clouds in general have complex and chaotic boundaries, yet when viewed
from a distance or from a viewing angle other than edge-on to the layer boundary this
visual complexity is less apparent. In these cases, the dynamic mesh can approximate
the cloud layer boundary, with the surface texture supplying the visual complexity.
In the simplest case, the dynamic mesh geometry can be simplified to a single quadrilateral
covering the sky.

The procedural texture generation techniques described in Section 18.3 can be used
to create cloud layer textures. The texture can be a simple luminance image, making it
possible to model slowly varying color changes (such as the effect of atmospheric haze)
by changing vertex colors in the dynamic mesh. Thin broken cloud layers can also be
simulated well if the viewer is not too close to the cloud layer. A luminance cloud texture
can be used to blend a white constant texture environment color into a blue sky polygon.
If the view is from above the cloud layer, a texture with alpha can be used instead
to provide transparency. Rendered with blending or alpha test, the texture can stencil
appropriately shaped holes in the mesh polygon, showing the ground below.

Dynamic aspects of cloud layers can also be modeled. Cloud drift can be simulated by
translating the textured particles across the sky, along with changes in the mesh geometry,
as appropriate.

18.3 Procedural Texture Generation

Although many textures are created from natural or synthetic images, textures can also
be created by directly evaluating a procedure to generate texel colors. A function is
chosen that generates colors as a function of texture coordinates: color = p(s, t, r, q).
A procedural texture can be created by evaluating this function at every texel location in
a texture image. There is a class of these procedures, known as filtered noise functions,
that are particularly useful for generating images for natural features. The images created
have similar features at different levels of spatial resolution. This result can be created
directly using an appropriate function, or through a multistep process by creating a high-
resolution image and then compositing it with scaled and filtered versions of itself. The
resulting textures can simulate the appearance of such diverse phenomena as fire, smoke,
clouds, and certain types of stone, such as marble. This class of procedural texture, and
how it is used in RenderMan shaders, is described in Ebert (1994).

18.3.1 Fi l tered Noise Functions

Procedural textures can be generated “on the fly,” producing texture color values as
needed during the filtering process. Texture images created this way are defined over
a continuous range of texture coordinates (using floating-point representations of the
input parameters). This method is very powerful, and is the basis for high-quality
“shader-based” texturing approaches. It can be accelerated in hardware using fragment

488 C H A P T E R 18 Na tu r a l De ta i l

programs, but only if the shader hardware is powerful enough to implement the generating
function’s algorithm.

Instead of this general method, we’ll use more limited but efficient approach. A pseu-
dorandom image is created in software using a simpler generating function, and is then
loaded into a texture map. Texturing is used to convolve and scale the image as necessary
to produce the final filtered image. Since the generating function is only evaluated to cre-
ate a discrete texture image, the generating function need only create valid values at texel
locations. This makes it possible to create simpler, discrete versions of the randomizing
algorithm, and to make use of a texture-mapping technique to efficiently resample the
source images at multiple frequencies. It uses a combination of pseudorandom values,
polygon rendering, and texture-filtering techniques to create filtered images.

To create a texture image, the generating function must create color and intensity
values at every texel location. To do this efficiently with OpenGL, the algorithms use
rectangular grids of values, represented as pixel images. Each 2D grid location is defined
to be separated from its neighbors by one unit in each dimension. Both the input and
output of the function are defined in terms of this grid. The input to the function is a grid
with pseudorandom “noise” values placed in each location. The output is the same grid
properly filtered, which can then be used as a component of the final texture image.

The characteristics and distribution of the input noise values, and the filtering method
applied to them, determines the characteristics of the final noise function image. A pro-
cedural texture must always produce the same output at a given position in the texture,
and must produce values limited to a given range. Both of these requirements are met by
generating the image once, loading it into a texture map, and mapping it as many times
as necessary onto the target geometry.

Another important criterion of procedurally generated textures is that they be band-
limited to a maximum spatial frequency of about one. This limit ensures that the filtered
image can be properly sampled on the texel grid without aliasing. Any initial set of
pseudorandom noise values should therefore be filtered with a low-pass filter at this
maximum spatial frequency before use in a texture.

Figure 18.9 illustrates the steps in producing a filtered noise function. The direct
approach is simple: a continuous function is written that outputs filtered color values as
a function of surface position. It is used during the rasterization phase to set the pixel
colors of the polygon. The texture approach requires more steps. A discrete function is
used to generate an unfiltered image. The image is filtered and resampled over one or more
frequencies using texture mapping. The resulting image is then applied to the geometry
as a texture.

The initial noise inputs need to be positioned in the image before filtering. Their
distribution affects the appearance of the resulting image. One common method is to
distribute the initial values in a uniform grid. Textures that start from a regular grid of
noise values are called lattice noise functions. Lattice noise is simple to create, but can
exhibit axis-aligned artifacts. The noise functions can also be distributed in a nonuniform
stochastic pattern, avoiding this problem. In the literature, this technique is called a
sparse convolution. Another method designed to avoid the artifact problem is called spot

S E C T I O N 1 8 . 3 P ro cedu ra l T e x tu re Gene ra t i on 489

Continuous, filtered function
evaluated at every
pixel location as

polygon is rendered

Discrete function evaluated
to create image

Texture technique to
resample and filter image

Apply image as
texture to polygon

Classical vs. textured
filtered noise functions

F i g u r e 18.9 Filtered noise functions.

noise, described by van Wijk (1991). To use image-based filtering techniques, nonuniform
spacing is allowed, but all random data must be placed on a grid point.

How the filtering step is applied to the input noise can vary (Ebert, 1994). Two
common filters interpolate lattice noise values in quite different ways. In value noise, the
filter function directly interpolates the value of the random noise data placed at all lattice
points. In gradient noise, noise data is used to produce vector values at each lattice point,
which are then interpolated to produce filtered values. A frequency analysis of gradient
noise shows no contribution at a frequency of zero. This is useful because it makes it easy
to composite multiple noise functions without introducing a bias term.

Simple noise functions are often combined to create more complex ones. A common
case is a function composed of scaled versions of the output of the original function. The
scaling is done so that the output frequency is lower by a power-of-two: 2, 4, 8, and
so on. These lower-frequency derivative functions are called the octaves of the original
function. The octaves are composited with the original version of the noise function. The
compositing step scales the output of each function by a set of weighting factors, which
can be varied to produce different effects. The result is a band-limited function that has
the appearance of controlled randomness in each frequency band. This distribution of
energy in the frequency domain is very similar to random phenomena found in nature,
and accounts for the realism of these textures.

18.3.2 Generating Noise Functions

A discrete version of the generating function described previously can be created in the
framebuffer using OpenGL. The generation algorithm must be able to start with a grid of
random values, stretch them so that each covers a larger area (to create lower-frequency
octaves), and apply low-pass filtering (essentially blending them).

490 C H A P T E R 18 Na tu r a l De ta i l

One simple way to do this is to create a texture composed of random values at
each texel, and then stretch and interpolate the values by rendering a textured rectangle.
The rectangle could be textured using bilinear filtering, and drawn at an appropriate
size to create the desired octave. Bilinear interpolation, however, is a poor filter for this
application. This is especially true when creating lower-frequency octaves, where random
values must be interpolated across a large area.

Some OpenGL implementations support better texture-filtering modes, such as bicu-
bic filtering, which may produce results of acceptable quality. Some implementations of
bicubic filtering may have limited subtexel precision, however, causing noticeable band-
ing when creating lower-frequency octaves. Both bilinear and bicubic filters also have
the limitation that they can only interpolate existing values. This limits the noise filter to
produce only value noise; the approach isn’t flexible enough to work with gradient noise.
A more powerful approach is to spread each value across the image using convolution
techniques. Fortunately, this method can be made efficient with a clever application of
texture mapping.

18.3.3 Fi l ter ing Using Texture Convolution

Instead of simply creating textures of random values and stretching them to create filtered
octaves using built-in texture filtering, the octave images can be created using a convo-
lution approach. A convolution filter can apply the appropriate filtering to each random
value as needed. Filter kernels that cover a larger area can be used to create lower-
frequency octaves. Convolution is discussed in Section 12.6. The approach shown here
accelerates convolution by encoding the convolution filter into a texture image. A rectan-
gle, whose color is the random value to be convolved, is rendered with the monochrome
texture containing the convolution filter image applied to it.

To illustrate, consider a low-pass filtering operation on an image. The input image
can be thought of as a grid of values. To low-pass filter the image, the values at each grid
location must be blended with their neighbors. The number of neighboring values that
are blended is called the filter’s extent or support (Section 4.3); it defines the width of the
filter. Blending the value of location i, j with a neighbor at i +n, j +m can be expressed as
valuei+n,j+m = valuei+n,j+m ∗ filter + valuei,j ∗ (1 − filter). The filter function controls the
contribution location i, j makes to each of its neighbors. The extent of the filter and its
values determine the filtering effect. In general, the wider the extent (i.e., the more neigh-
bors affected), the lower the maximum frequency a low-pass filter can achieve and the
more work required to apply the filtering (because it requires operating on more values).

The convolution operation can be implemented using a combination of texturing
and blending. A texture map is created that represents a convolution kernel, containing
the desired filter weights for each texel neighbor. The size of the filter texels doesn’t
have to be one-to-one with the destination pixels. The resolution of the texture filter is
determined by the complexity of the filtering function. A simple linear filtering function
can be represented with a small texture, since OpenGL’s linear magnification can be
used to interpolate between filter values. The filter texels can modulate a sample value

S E C T I O N 1 8 . 3 P ro cedu ra l T e x tu re Gene ra t i on 491

Polygon rendered with
sample value color

Note: texel and pixel sizes
don’t have to match.

Note: if magnifying texture
a linear filter can be used
to smooth.

Sample value color scaled
as a function of position

by textured polygon

Sample
value

Filter values in
texture image

F i g u r e 18.10 Using textures to filter a value.

by using the filter texture to texture a rectangle colored with the sample. If the texture
environment is GL_MODULATE, a single component GL_LUMINANCE texture containing
the filter function will scale the base color by the texel values. The texture performs two
functions: it spreads the sample value over the region of the rectangle and modulates
the sample value at the resolution of the filter texture. Rendering the textured rectangle
updates the values in the framebuffer with the filtered values for a single sample, as shown
in Figure 18.10.

A straightforward filtering pass based on this idea reads each sample value and uses
it to color a texture rectangle modulated by the filter texture. The process is repeated,
shifting the textured rectangle and substituting a new sample value for the rectangle color
for each iteration. The filtered results for each sample are combined using blending, or
for higher color resolution using the accumulation buffer.

The following is a very simple example of this approach in more detail. It starts with
a 512 × 512 grid of sample values and applies a 2 × 2 box filter. The filter spreads the
sample, considered to be at the lower-left corner of the filter, over a 4 × 4 region.

1. Create a 2 × 2 luminance filter, each value containing the value .25.

2. Configure the transform pipeline so that object coordinates are in screen space.

3. Clear a 512 × 512 region of the framebuffer that will contain the filtered image to
black.

4. Create a 512 × 512 grid of sample values to be filtered.

5. Enable blending, setting the blend function to GL_ONE, GL_ONE.

6. Set the texture environment to GL_MODULATE.

7. For each sample location i, j:

(a) Render a rectangle of size 4 × 4 with lower left corner at i, j, textured with the
filter function. Use the sample color at i, j for the vertex color at all four
corners.

8. Copy the filtered image into a texture map for use.

492 C H A P T E R 18 Na tu r a l De ta i l

There are a number of parameters that need to be adjusted properly to get the desired
filtering. The transformation pipeline should be configured so that the object coordinate
system matches screen coordinates. The region of the framebuffer rendered should be
large enough to create the filtered image at the desired resolution. The textured rectangle
should be sized to cover all neighboring pixels needed to get the desired filtering effect.
The resolution of the filter texture itself should be sufficient to represent the filter function
accurately for the given rectangle size. The rectangle should be adjusted in x and y to match
the grid sample being filtered. The filter marches across the image, one pixel at a time, until
the filtering is completed. To avoid artifacts at the edges of the image, the filter function
should extend beyond the bounds of the image, just as it does for normal convolution
operations. The relationship between sample value and filter function will determine the
details of how overlaps should be handled, either by clamping or by wrapping.

Although efficient, there are limitations to this approach. The most serious is the
limited range of color values for both the filter texture and the framebuffer. Both the
filter function and sample color are limited to the range [0, 1]. This makes it impossible
to use filter kernels with negative elements without scaling and biasing the values to keep
them within the supported range, as described in Section 14.13.1. Since the results of
each filtering pass are accumulated, filters should be chosen that don’t cause pixel color
overflow or underflow. Texturing and/or framebuffers with extended range can mitigate
these restrictions.

18.3.4 Optimizing the Convolution Process

Although texture mapping efficiently applies the filtered values of a sample point over a
large number of pixels, the filtering operation can become expensive since it has to be
repeated for every sample in the target image. This process can be optimized, particularly
for filters with a small extent, using the following observation. Since a texture map is used
to apply a filter function, the filter’s extent can be represented as a rectangular region with
a given width and height. Note that two sample values won’t blend with each other during
filtering if they are as far apart as the filter’s extent. This independence can be used to
reduce the number of passes required to filter an image. Instead of filtering only a single
sample value per pass, and iterating over the entire image, the texture filter can be tiled
over the entire image at once, reducing the number of passes. If a filter extent is of width
w and height h, every w+1th sample in the horizontal direction and every h+1th sample
in the vertical direction can be filtered at the same time, since they don’t interact with
each other.

For a concrete illustration, consider the 2×2 filter with the 4×4 extent in the previous
example. For any given sample at i, j, the samples at i+4, j and i, j+4 won’t be affected by
the sample value at i, j. This means the samples at i + 4, j and i, j + 4 can be filtered at the
same time that i, j is sampled by applying three nonoverlapping textured rectangles, each
with a different one of the three sample values. Taking full advantage of this idea, the
entire image can be tiled with texture rectangles, filtering the samples at i+4∗n, j+4∗m.
With this technique, the entire image can be filtered in 16 passes. In general, the number

S E C T I O N 1 8 . 3 P ro cedu ra l T e x tu re Gene ra t i on 493

12

9

6

3

0
4

1

8

5

2

13

10

7
11

15
14

8

2
0 10

13

7
5 15

12

6
4 14

9

3
1 11

Texture A

Texture B

Texture C

Texture D

F i g u r e 18.11 Input image.

of passes required will be equal to the extent of the filter. With this technique, that equals
the number of pixels covered by the filter rectangle.

The implementation of this technique can be further streamlined. The tiled set of
textured rectangles, each colored with a different sample value, is replaced with a single
rectangle textured with two textures. The first texture is the filter texture, with the wrap
parameter set to GL_REPEAT and texture coordinates set so that it tiles over the entire
rectangle, creating filters of the same size as the original technique. The second texture
contains the sample values themselves. It is composed of a subset of the grid sample
points that satisfies the i + 4n, j + 4m equation, as illustrated in Figure 18.11. In a two-
pass technique (or single pass if multitexturing is available), the sample-points texture
can be modulated by the filter texture, creating a sparse grid of filtered values in a single
texturing pass. The process can be repeated with the same filter texture, and offset sample
textures, such as i + 1 + 4n, j + 4m and i + 4n, j + 1 + 4m. The large rectangle should
be offset to match the offset sample values, as shown in Figure 18.12. The process is
repeated until every sample in the filter’s extent has been computed.

The example steps that follow illustrate the technique in more detail. It assumes that
multitexturing is available. Two textures are used: the filter texture, consisting a single
component texture containing values that represent the desired filter function, and the
sample texture, containing the sample values to be filtered.

1. Set a blending function to combine the results from rendering passes or configure
the accumulation buffer.

2. Choose a rectangle size that covers the destination image.

494 C H A P T E R 18 Na tu r a l De ta i l

Filter texture

Input image Combined image

Replicated filter
and source image

Shift and filter steps

F i g u r e 18.12 Output image.

3. Create the sample texture from a subset of the samples, as described previously.
Bind it to the first texture unit.

4. Scale the texture coordinates of the sample texture so that each sample matches
the desired extent of the filter.

5. Bind the second texture unit to the filter texture.

6. Set the wrap mode used on the filter texture to GL_REPEAT.

7. Scale the texture coordinates used on the filter texture so it has the desired extent.

8. Set the texture environment mode so that the filter texture scales the intensity of
the sample texture’s texels.

9. Render the rectangle with the two textures enabled.

10. If using the accumulation buffer, accumulate the result.

11. This is one pass of the filtering operation. One sample has been filtered over the
entire image. To filter the other samples:

(a) Shift the position of the rectangle by one pixel.

(b) Update the sample texture to represent the set of samples that matches the
new rectangle position.

(c) Rerender the rectangle, blending with the old image, or if using the
accumulation buffer make an accumulation pass.

(d) Repeat until each sample in the filter’s extent has been processed.

The subset of the sample grid can be efficiently selected by rendering a texture with the
sample values, using GL_NEAREST for the minification filter. By rendering a rectangle

S E C T I O N 1 8 . 3 P ro cedu ra l T e x tu re Gene ra t i on 495

the size of the reduced sample grid, and setting the texture coordinates to minify and bias
the texture appropriately, the minification filter can be used to only render the samples
desired.

The position of the rectangle, the way the filter and sample textures are positioned on
the rectangle, and the grid samples used in each pass are determined by the relationship
between the sample point and the filter. The filter is considered to have a sample position,
which describes the position of the input sample relative to the filter. This position is
needed to properly position the filter relative to the input samples as each subset of
samples is filtered. Many filters assume that the input sample is at the center of the filter.
This can’t always be done, as there is no center for a filter with a width and/or height that
is even. To get the edges of the filtered image correct, the textured rectangle can overlap
beyond the edge of the image.

Creating Octaves

Once a filtered noise image is created, it is a simple matter to create lower octaves. The
original image being filtered has a maximum spatial frequency component. Simply scaling
the size of the textured rectangle, in the approach described previously, will change the
filter extent and create a filtered image with different frequency components. Doubling
the size of the textured rectangle, for example, will create an image with frequency
components that are one-half the original. If the rectangle is to be increased in size, be
sure that the filter texture has sufficient resolution to represent the filter accurately when
spread over a larger number of pixels.

18.3.5 Spectral Synthesis

Using the previous algorithm, multiple octaves can be created and combined to create
multispectral images. The process of rescaling the filter size can be streamlined by chang-
ing the texture coordinates in the texture transform matrix. The matrix also makes it
easy to translate and scale texture coordinates. Translating texture coordinates by a ran-
dom factor for each octave prevents the samples near the texture coordinate origin from
aligning. Such alignment can lead to noticeable artifacts.

Natural phenomena often have a frequency spectrum where lower-frequency com-
ponents are stronger. Often the amplitude of a particular frequency is proportional to

1
frequency . To replicate this phenomenon, the intensity of each octave’s filtered samples can
be scaled. An easy way to do this is to apply a frequency-dependent scale factor when
coloring the textured rectangles.

Just as each filtered sample must be blended with its neighbors within the filter’s
extent, so each scaled octave must be blended with the others to create a multispectral
texture. As with the original filtering method, blending can be done in the framebuffer, or
if more color precision is needed using the accumulation buffer. If desired, the weighting
factors for each octave can be applied when the octaves are blended, instead of when the
filter rectangle is shaded. The steps that follow use the technique for creating a filtered

496 C H A P T E R 18 Na tu r a l De ta i l

image mentioned previously to generate and combine octaves of that image to produce a
multispectral texture map.

1. Create the original filtered image using the filtered noise technique described
previously.

2. For each octave (halving the previous frequency):

(a) Create a sample texture with one quarter the samples of the previous level.

(b) Halve the texture coordinate scale used to texture the rectangle. This will
quadruple the extent of each filtered sample.

(c) Draw textured rectangles to filter the image with both textures. The number
of rendering steps must be quadrupled, since each filtered sample is covering
four times as many pixels.

(d) Scale the intensity of the resulting image as needed.

(e) Combine the new octave with the previous one by blending or using the
accumulation buffer.

Generalizing the Filtering Operation

Gradient noise can be also created using the previous method. Instead of an averaging
filter, a gradient filter is used. Since a gradient filter has both positive and negative com-
ponents, multiple passes are required, segmenting the filter into positive and negative
components and changing the blend equation to create the operation desired.

Since texture coordinates are not restricted to integral values, the texture filter can
be positioned arbitrarily. This makes it possible to generalize the previous technique to
create noise that is not aligned on a lattice. To create nonaligned noise images, such as
sparse convolution noise (Lewis, 1989) or spot noise (van Wijk, 1991), filter the sample
values individually, randomly positioning the filter texture. Instead of drawing the entire
point-sampled texture at once, draw one texel and one copy of the filter at a time for each
random location. This is just a generalization of the initial texture approach described
previously in Section 18.3.3.

18.3.6 Turbulence

A variation of the process used to create noise textures can create images that suggest
turbulent flow. To create this type of image, first-derivative (slope) discontinuities are
introduced into the noise function. A convenient way to do this on a function that has
both positive and negative components is to take its absolute value. Although OpenGL
does not include an absolute value operator for framebuffer content in the fixed-function
pipeline, the same effect can be achieved using the accumulation buffer.

The accumulation buffer can store signed values. Unsigned values from the
framebuffer, in the range [0, 1], can be stretched to range [−1, 1] using GL_ADD and

S E C T I O N 1 8 . 3 P ro cedu ra l T e x tu re Gene ra t i on 497

Red line shows absolute value folding

Zero line

F i g u r e 18.13 Turbulence.

GL_MULT operations in the accumulation buffer. The absolute value of the stretched
function can be obtained by reading back from the accumulation buffer; returned values
are clamped to be positive. The negative values are returned using a scale factor of −1.
This flips the negative components to positive, which will survive clamping during the
return. The result is the absolute value of the stretched image. The discontinuity will
appear at the midway values, one-half of the original function (see Figure 18.13).

The following steps illustrate the details of this technique. They would be applied to
a filtered image in the framebuffer.

1. Load the accumulation buffer using glAccum(GL_LOAD,1.0).

2. Bias the image in the buffer by 1/2 using glAccum(GL_ADD,-0.5), making it
signed.

3. Scale the image by 2 using glAccum(GL_MULT,2.0), filling the [−1, 1] range.

4. Return the image using glAccum(GL_RETURN,1.0), implicitly clamping to
positive values.

5. Save the image in the color buffer to a texture, application memory, or other color
buffer.

6. Return the negative values by inverting them using glAccum(GL_RETURN,-1.0).

7. Set the blend function to GL_ONE for both source and destination.

8. Draw the saved image from step 5 onto the image returned from the accumulation
buffer. The blend mode will combine them.

The color buffer needs to be saved after the first GL_RETURN because the second
GL_RETURN will overwrite the color buffer. OpenGL does not define blending for accu-
mulation buffer return operations. One way to implement this is using both the front and
back color buffers in a double-buffered framebuffer.

498 C H A P T E R 18 Na tu r a l De ta i l

18.3.7 Random Image Warping

A useful application for a 2D noise texture is to use the noise values to offset texture
coordinates. Texture coordinates are applied with regular spacing to a triangle mesh.
The noise values are used to displace each texture coordinate. If the grid and its texture
coordinates are then textured with an image, the resulting image will be distorted, creating
a somewhat painterly view of the image. A more severe distortion can be created by using
the noise values directly as texture coordinates, rather than as offsets.

By setting the proper transforms, the process of using noise values as texture coor-
dinates can be automated. Capturing the noise image into a vertex array as texture
coordinates, and setting the texture transform matrix appropriately, makes it possible
to render the texture with the noise image texture coordinates directly. A variation of
this technique, where the noise values are used as vertex positions in the vertex array and
then transformed by the appropriate modelview matrix, makes it possible to use noise
values as vertex positions.

Another similar use of a 2D noise texture is to distort the reflection of an image.
In OpenGL, reflections on a flat surface can be done by reflecting a scene across the
surface. The results are copied from the framebuffer to texture memory, and in turn drawn
with distorted texture coordinates. The shape and form of the distortion are controlled
by modulating or attenuating the contents of the framebuffer after the noise texture is
drawn but before it is copied to texture memory. This can produce interesting effects such
as water ripples.

18.3.8 Generating 3D Noise

Noise images are not limited to two dimensions. 3D noise images can also be synthesized
using the techniques described here. To do this correctly requires a 3D filter instead of
a 2D one. In the 2D case, a 2D filter is created by converting a 2D filter function into a
texture image, then using the texture to modulate an input color. For 3D filtering, the same
apporach can be used. A discrete 3D filter is created from a 3D filter function, then stored
in a 3D texture. Using a 3D texture filter to create a 3D noise image requires slicing the 3D
block of pixels into 2D layers, a technique similar to the volume visualization techniques
discussed in Section 20.5.8. As with volume visualization, 3D texturing is done using
multiple textured 2D slices, building up a 3D volume one layer at a time. Like volume
visualization, it also can be done using true 3D textures, or a series of 2D textures applied
in layers instead.

As with 2D noise filtering, it can be clearer to consider the simple brute-force case for
3D. A 3D grid of random values is created with the desired resolution. A 3D filter texture
is created, either as a single 3D texture or as a series of 2D textures, each representing a
different r coordinate in the 3D texture. As with 2D textures, the 3D filter function has
an extent, but this time it is measured in three dimensions. As with 2D, a rectangle is
rendered, sized to match the extent of the texture filter and sized to cover the pixels that
should be modified by the filter. Unlike the 2D case, a series of rectangles must be drawn,

S E C T I O N 1 8 . 3 P ro cedu ra l T e x tu re Gene ra t i on 499

spanning the layers of the image covered by the filter’s extent. The rendering process is
repeated, shifting the texture rectangles as necessary and iterating through the samples in
the 3D sample grid. As with the 2D case, the rectangle is shifted to align the filter texture
properly as each new grid value is filtered. In the 3D case, the image layers the rectangles
are applied must also be shifted.

Since 3D framebuffers are not supported in OpenGL, one or more 2D framebuffers
must be segmented into layers to provide rendering surfaces representing the layers in
the 3D noise image. If there is sufficient space in a single framebuffer, the framebuffer
can be split up into a grid of rectangular regions, each representing a different layer.
The application managing the layers maps a different framebuffer region to each layer.
Multiple framebuffers may be necessary to provide enough pixels to represent all of the
layers in the noise image. Once the filtered image layers have all been rendered, the
results can be copied into a single 3D noise texture, or loaded into a series of 2D textures,
depending on the requirements of the application.

As with the 2D case, the procedure can be optimized, wrapping the filter texture in
3 dimensions, and filtering multiple samples (that aren’t under the same filter’s extent) at
once. The samples themselves can be assembled into a 3D sample texture, or a series of
2D sample textures can be used. Like the 2D technique, the texture coordinates of the
sample texture are scaled so that each sample matches the extent of its filter function.
As before, the filter texture is used to spread and modulate the sample texture’s values
onto the framebuffer regions. The 3D case requires this process to be applied to multiple
layers.

To synthesize a 3D function with different frequencies, first create a 3D noise image
for each frequency and composite a weighted set of frequencies, as was done in the 2D
case. A large amount of memory is required to store the different 3D noise functions.
Many implementations severely restrict the maximum size of 3D textures, so an appli-
cation should query to see if the implementation’s available resolutions are sufficient for
the application.

Generating 2D Noise to Simulate 3D Noise

Creating 3D noise function can be computationally expensive. The resulting textures are
large consumers of texture and system memory. In some cases, clever use of 2D noise
functions can sometimes successfully substitute for true 3D noise functions. To make 2D
noise functions adequately approximate the appearance of a true 3D noise function, the
2D function should match the appearance of the 3D function when it is applied to the
target surface. The texture image must be updated if the target geometry changes. This
makes “pseudo-3D” noise textures less general.

Pseudo-3D noise textures are simple to implement if the original noise function uses
spot noise (van Wijk, 1991). The pseudo-3D noise function is designed around the geome-
try it will texture. Spots are still created in 3D space, but only spots that are close enough
to the geometry surface to make a contribution to the final 2D noise image are used.
Once the proper spots are selected, they are rendered onto the 2D surface so that at each

500 C H A P T E R 18 Na tu r a l De ta i l

fragment the value of the spot is determined by the object-space distance from the center
of the spot to that fragment.

Depending on the complexity of the geometry, it may be possible to make an accept-
able approximation to the correct spot value by distorting a 2D spot texture. One possible
way to improve the approximation is to compensate for a nonuniform mapping of the
noise texture to the geometry. Van Wijk describes how he does this by nonuniformly
scaling a spot. Approximating the correct spot value is most important when generating
the lower octaves, where the spots are largest and errors are most noticeable.

Trade-offs Between True and Simulated 3D Noise

When choosing between a true 3D noise texture and a simulation of one, the most accurate
approach is to use the 3D one. Per-frame overhead may also be lower for true 3D textures.
They can be used with arbitrary geometry without reloading the texture image (assuming
the OpenGL implementation supports 3D textures). 3D noise textures suffer the same
drawbacks as any 3D texture technique. Generating a 3D noise texture requires a large
amount of memory and a large number of passes, especially if the filter convolves a
large number of input values at a time. If memory resources are constrained, the 2D
approximation can work well on a useful class of geometry. The 2D texture doesn’t
require nearly as many passes to create, but it does require knowledge of the geometry
and additional computation in order to properly shape the spot.

18.4 Summary

This chapter described some classes of advanced techniques useful for simulating natural
phenomena. The ideas are general and serve as building blocks for modeling a variety
of natural phenomena. Reproducing the appearance of objects in nature continues to
be an area of considerable activity. The addition of vertex and fragment programs to
the OpenGL pipeline significantly increases the range of processes that can be modeled
directly in the pipeline and will serve as a catalyst for numerous new techniques.

19
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

I l lustration and Artistic

Techniques

In applications such as scientific visualization and technical illustration, photorealism
detracts from rather than enhances the information in the rendered image. Applica-
tions such as cartography and CAD benefit from the use of hidden surface elimination
and 3D illumination and shading techniques, but the goal of increased insight from the
generated images suggests some different processing compared to those used to achieve
photorealism.

Strict use of photorealistic models and techniques also hampers applications striv-
ing to provide greater artistic freedom in creating images. Examples of such applications
including digital image enhancement, painting programs, and cartoon-rendering applica-
tions. One aspect often shared by such applications is the use of techniques that emulate
traditional modeling, lighting, and shading processes. Some examples of traditional
processes are paint brush strokes and charcoal drawing.

19.1 Projections for Illustration

Traditional perspective projection models the optical effect of receding lines converging
at a single point on the horizon, called the vanishing point. Outside the computer graphics
field, perspective projections are called linear perspective projections. Linear perspective
is the ideal model for reproducing a real-world scene the way it would be captured by

501

502 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

a camera lens or a human eye. In some technical applications, such as architectural
presentations, linear perspective serves the needs of the viewer well. In other technical
applications, (however, such as engineering and mechanical design) parallel projections
prove more useful. With parallel projections, edges that are parallel in 3D space remain
parallel in the 2D projection. Parallel projections have many properties that make them
useful for both engineering and artistic applications.

In engineering applications, it is desirable to avoid distorting the true geometry of
the object, allowing measurements to be taken directly from the drawing. In the simplest
forms of engineering drawings, a single view of the object is generated (such as a front-,
top-, or right-side view). These individual views can be combined to create a multiview
projection. Alternatively, drawings can be created that show more than one face of an
object simultaneously, providing a better sense of the object. Such drawings are generally
referred to as projections, since they are generated from a projection in which the object
is aligned in a canonical position with faces parallel to the coordinate planes. Using
this nomenclature, the drawing is defined by the position and orientation of the viewing
(projection) plane, and the lines of sight from the observer to this plane.

Several types of projections have been in use for engineering drawings since the nine-
teenth century. These projections can be divided into two major categories: axonometric
and oblique projections.

19.1.1 Axonometric Project ion

Orthographic projections are parallel projections in which the lines of sight are perpen-
dicular to the projection plane. The simplest orthographic projections align the projection
plane so that it is perpendicular to one of the coordinate axis. The OpenGL glOrtho
command creates an orthographic projection where the projection plane is perpendicular
to the z axis. This orthographic projection shows the front elevation view of an object.
Moving the projection plane so that it is perpendicular to the x axis creates a side elevation
view, whereas moving the projection plane to be perpendicular to the y axis produces a
top or plan view. These projections are most easily accomplished in the OpenGL pipeline
using the modelview transformation to change the viewing direction to be parallel to the
appropriate coordinate axis.

Axonometric projections are a more general class of orthographic projections in
which the viewing plane is not perpendicular to any of the coordinate axes. Parallel lines
in the 3D object continue to remain parallel in the projection, but lines are foreshortened
and angles are not preserved. Axonometric projections are divided into three classes
according to the relative foreshortening of lines parallel to the coordinate axis.

Isometric projection is the most frequently used axonometric projection for engi-
neering drawings. Isometric projection preserves the relative lengths of lines parallel to
all three of the coordinate axes and projects the coordinate axes to lines that are 60 degrees
apart. An isometric projection corresponds to a viewing plane oriented such that the nor-
mal vector has all three components equal, |nx| = |ny| = |nz| = 1/

√
3. Object edges that

are parallel to the coordinate axes are shortened by 0.8165. The y axis remains vertical,

S E C T I O N 1 9 . 1 P ro j e c t i ons fo r I l l u s t r a t i on 503

Isometric
view

Dimetric Trimetric

F i g u r e 19.1 Isometric, dimetric, and trimetric projections of a cube.

and the x and z axes make 30-degree angles with the horizon, as shown in Figure 19.1.
To allow easier direct measurement, isometric projections are sometimes scaled to com-
pensate for the foreshortening to produce an isometric drawing rather than an isometric
projection.

An isometric projection is generated in OpenGL by transforming the viewing plane
followed by an orthographic projection. The viewing plane transformation can be
computed using gluLookAt, setting the eye at the origin and the look-at point at
(−1, −1, −1)1 or one of the seven other isometric directions.

Equal foreshortening along all three axes results in a somewhat unrealistic looking
appearance. This can be alleviated in a controlled way, by increasing or decreasing the
foreshortening along one of the axes. A dimetric projection foreshortens equally along
two of the coordinate axes by constraining the magnitude of two of the components of
the projection plane normal to be equal. Again, gluLookAt can be used to compute the
viewing transformation, this time maintaining the same component magnitude for two
of the look-at coordinates and choosing the third to improve realism. Carefully choosing
the amount of foreshortening can still allow direct measurements to be taken along all
three axes in the resulting drawing.

Trimetric projections have unequal foreshortening along all of the coordinate axes.
The remaining axonometric projections fall into this category. Trimetric projections are
seldom used in technical drawings.

19.1.2 Oblique Project ion

An oblique projection is a parallel projection in which the lines of sight are not perpen-
dicular to the projection plane. Commonly used oblique projections orient the projection
plane to be perpendicular to a coordinate axis, while moving the lines of sight to intersect
two additional sides of the object. The result is that the projection preserves the lengths

1. The point (−1, −1, −1) is used rather than (−1, −1, −1)/
√

3 because the gluLookAt normalizes the
direction vector.

504 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

y

(xp,yp)

(x0,y0)

x

(x0,y0,z0)
θ

φ

–z

Projection plane

F i g u r e 19.2 Oblique projection.

and angles for object faces parallel to the plane. Oblique projections can be useful for
objects with curves if those faces are oriented parallel to the projection plane.

To derive an oblique projection, consider the point (x0, y0, z0) projected to the posi-
tion (xp, yp) (see Figure 19.2). The projectors are defined by the two angles: θ and φ, θ is
the angle between the line L = [(x0, y0), (xp, yp)] and the projection plane, φ is the angle
between the line L and the x axis. Setting l = ||L||/z0 = 1/ tan θ , the general form of the
oblique projection is

P =

⎛⎜⎜⎝
1 0 l cos φ 0
0 1 l sin φ 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
For an orthographic projection, the projector is perpendicular and the length of the line
L is zero, reducing the projection matrix to the identity. Two commonly used oblique
projections are the cavalier and cabinet projections. The cavalier projection preserves the
lengths of lines that are perpendicular or parallel to the projection plane, with lines of
sight at θ = φ = 45 degrees. However, the fact that length is preserved for perpendicu-
lar lines gives rise to an optical illusion where perpendicular lines look longer than their
actual length, since the human eye is used to compensating for perspective foreshorten-
ing. To correct for this, the cabinet projection shortens lines that are perpendicular to
the projection plane to one-half the length of parallel lines and changes the angle θ to
atan(2) = 63.43 degrees.

To use an oblique projection in the OpenGL pipeline, the projection matrix P is com-
puted and combined with the matrix computed from the glOrtho command. Matrix

S E C T I O N 1 9 . 2 Nonpho to rea l i s t i c L i gh t i ng Mode l s 505

P is used to compute the projection transformation, while the orthographic matrix
provides the remainder of the view volume definition. The P matrix assumes that the
projection plane is perpendicular to the z axis. An additional transformation can be
applied to transform the viewing direction before the projection is applied.

19.2 Nonphotorealistic Lighting Models

Traditional technical illustration practices also include methods for lighting and shad-
ing. These algorithms are designed to improve clarity rather than embrace photorealism.
In Gooch (1998, 1999), lighting and shading algorithms are developed based on
traditional technical illustration practices. These practices include the following.

• Use of strong edge outlines to indicate surface boundaries, silhouette edges, and
discontinuities.

• Matte objects are shaded with a single light source, avoiding extreme intensities
and using hue to indicate surface slope.

• Metal objects are shaded with exaggerated anisotropic reflection.

• Shadows cast by objects are not shown.

Nonphotorealistic lighting models for both matte and metal surfaces are described here.

19.2.1 Matte Surfaces

The model for matte surfaces uses both luminance and hue changes to indicate surface
orientation. This lighting model reduces the dynamic range of the luminance, reserving
luminance extremes to emphasize edges and highlights. To compensate for the reduced
dynamic range and provide additional shape cues, tone-based shading adds hue shifts to
the lighting model. Exploiting the perception that cool colors (blue, violet, green) recede
from the viewer and warm colors (red, orange, yellow) advance, a sense of depth is
added by including cool-to-warm color transitions in the model. The diffuse cosine term
is replaced with the term

dmdl (N · L) →
(

dlcool

(
1 + N · L

2

)
+ dlwarm

(
1 − 1 + N · L

2

))
,

where dlcool
and dlwarm are linear combinations of a cool color (a shade of blue) combined

with the object’s diffuse reflectance, and a warm color (yellow) combined with the object’s
diffuse reflectance. A typical value for dlcool

is (0., 0., .4)+.2dm and for dlwarm is (.4, .4, 0.)+
.6dm. The modified equation uses a cosine term that varies from [−1, 1] rather than
clamping to [0, 1].

506 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

L

–L

F i g u r e 19.3 Opposing lights approximating warm to cool shift.

If vertex programs are not supported, this modified diffuse lighting model can be
approximated using fixed-function OpenGL lighting using two opposing lights (L, −L),
as shown in Figure 19.3. The two opposing lights are used to divide the cosine term
range in two, covering the range [0, 1] and [−1, 0] separately. The diffuse intensities are
set to (dlwarm − dlcool

)/2, and (dlcool
− dlwarm)/2, respectively, the ambient intensity is set to

(dlcool
+ dlwarm)/2 and the specular intensity contribution is set to zero. Objects are drawn

with the material reflectance components set to one (white).
Highlights can be added in a subsequent pass using blending to accumulate the result.

Alternatively, the environment mapping techniques discussed in Section 15.9 can be used
to capture and apply the BRDF at the expensive of computing an environment map for
each different object material.

19.2.2 Metal l ic Surfaces

For metallic surfaces, the lighting model is further augmented to simulate the appearance
of anisotropic reflection (Section 15.9.3). While anisotropic reflection typically occurs on
machined (milled) metal parts rather than polished parts, the anisotropic model is still
used to provide a cue that the surfaces are metal and to provide a sense of curvature.
To simulate the anisotropic reflection pattern, the curved surface is shaded with stripes
along the parametric axis of maximum curvature. The intensity of the stripes are random
values between 0.0 and 0.5, except the stripe closest to the light source, which is set to 1.0,
simulating a highlight. The values between the stripes are interpolated. This process is
implemented in the OpenGL pipeline using texture mapping. A small 1D or 2D luminance
texture is created containing the randomized set of stripe values. The stripe at s coordinate
zero (or some well-known position) is set to the value 1. The object is drawn with texture
enabled, the wrap mode set to GL_CLAMP, and the s texture coordinate set to vary along
the curvature. The position of the highlight is adjusted by biasing the s coordinate with
the texture matrix. This procedure is illustrated in Figure 19.4.

S E C T I O N 1 9 . 3 Edge L ines 507

Blinn lighting
and Gouraud shading

Anisotropic light texture
Anisotropic lighting

applied

F i g u r e 19.4 Simulation of anisotropic lighting.

F i g u r e 19.5 Object with edge lines.

19.3 Edge Lines

An important aspect of the lighting model is reducing the dynamic range of the luminance
to make edges and highlights more distinct. Edges can be further emphasized by outlining
the silhouette and boundary edges in a dark color (see Figure 19.5). Algorithms for
drawing silhouette lines are described in Section 16.7.4. Additional algorithms using
image-processing techniques, described in Saito (1990) can be implemented using the

508 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

OpenGL pipeline (as described in Chapter 12). Gooch (1999) and Markosian (1997)
discuss software methods for extracting silhouette edges that can then be drawn as lines.

19.4 Cutaway Views

Engineering drawings of complex objects may show a cutaway view, which removes one
or more surface layers of the object (shells) to reveal the object’s inner structure. A simple
way to accomplish this is to not draw the polygons comprising the outer surfaces. This
shows inner detail, but also removes the information relating the inner structure to the
outer structure. To restore the outer detail, the application may draw part of the outer
surface, discarding polygons only in one part of the surface where the inner detail should
show through. This requires the application to classify the surface polygons into those
to be drawn and those to be discarded. The resulting hole created in the surface will not
have a smooth boundary.

Alternatively, clip planes can be used to create cross-sectional views by discarding
surface geometry in one of the half-spaces defined by the clip plane. Multiple clip planes
can be used in concert to define more complex culling regions. Reintroducing the clipped
polygons into the drawing as partially transparent surfaces provides some additional
context for the drawing.

Another method for using transparency is to draw the outer surface while varying the
surface transparency with the distance from the viewer. Polygons that are most distant
from the viewer are opaque, while polygons closest to the viewer are transparent, as
shown in Figure 19.6. Seams or significant boundary edges within the outer shell may
also be included by drawing them with transparency using a different fading rate than
the shell surface polygons.

This technique uses OpenGL texture mapping and texture coordinate generation to
vary the alpha component of the object shell. The object is divided into two parts that
are rendered separately: the shell polygons and the interior polygons. First, the depth-
buffered interior surfaces are drawn normally. Next, the object shell is rendered using
a 1D texture map containing an alpha ramp, to replace the alpha component of each
polygon fragment. Texture coordinate generation is used to create an s coordinate that
increases with the distance of the vertex along the −z axis. The shell surface is rendered
using the alpha-blending transparency techniques described in Section 11.8. The edges of
the shell are rendered in a third pass, using a slightly different 1D texture map or texture
generation plane equation to produce a rate of transparency change that differs from that
of the shell surface.

1. Draw the object internals with depth buffering.

2. Enable and configure a 1D texture ramp using GL_ALPHA as the format and
GL_REPLACE as the environment function.

S E C T I O N 1 9 . 4 Cu taway V iews 509

Object shell

Internal parts

Te
xg

en
: s

 is
 p

ro
po

rt
io

na
l t

o
z

in
 e

ye
 s

pa
ce

F i g u r e 19.6 Gradual cutaway using a 1D texture.

3. Enable and configure eye-linear texture coordinate generation for the s component,
and set the s eye plane to map −z over the range of the object shell cutaway from
0 to 1.

4. Disable depth buffer updates and enable blending, setting the source and
destination factors to GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA.

5. Render the shell of the object from back to front.

6. Load a different texture ramp in the 1D texture map.

7. Render the shell edges using one of the techniques described in Section 16.7.1.

If the shell is convex and surface polygons oriented consistently, the more efficient form
of transparency rendering (described in Section 11.9.3) using face culling can be used.
If the shell edges are rendered, a method for decaling lines on polygons, such as polygon
offset, should be used to avoid depth buffering artifacts. These methods are described in
Sections 16.7.2 and 16.8.

There are a number of parameters that can be tuned to improve the result. One
is the shape of the texture ramp for both the shell and the shell edges. A linear ramp
produces an abrupt cutoff, whereas tapering the beginning and end of the ramp creates a
smoother transition. The texture ramps can also be adjusted by changing the s coordinate

510 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

generation eye plane. Changing the plane values moves the distance and the range of the
cutaway transition zone.

If vertex lighting is used, both the shell and the interior of the object will be lighted.
The interior surfaces of the outer shell will be darker since the vertex normals face out-
ward. Two-sided lighting may be used to compute diffuse (and specular) lighting for
back-facing polygons, or face culling can be used to draw the front-facing and back-facing
polygons separately with different rendering styles.

19.4.1 Surface Texture

The previous algorithm assumes an untextured object shell. If the shell itself has a surface
texture, the algorithm becomes more complex (depending on the features available in the
OpenGL implementation). If multitexture is available, the two textures can be applied in
a single pass using one texture unit for the surface texture and a second for the alpha ramp.
If multitexture is not available, a multipass method can be used. There are two variations
on the multipass method: one using a destination alpha buffer (if the implementation
supports it) and a second using two color buffers.

The basic idea is to partition the blend function αCshell + (1 − α)Cscene into two
separate steps, each computes one of the products. There are now three groups to consider:
the object shell polygons textured with a surface texture Cshell , the object shell polygons
textured with the 1D alpha texture, α, and the polygons in the remainder of the scene,
Cscene. The alpha textured shell is used to adjust the colors of the images rendered from
the other two groups of polygons separately, similar to the image compositing operations
described in Section 11.1.

Alpha Buffer Approach

In this approach, the scene without the shell is rendered as before. The transparency of
the resulting image is then adjusted by rendering the alpha-textured shell with source and
destination blend factors: GL_ZERO, GL_ONE_MINUS_SRC_ALPHA. The alpha values
from the shell are used to scale the colors of the scene that have been rendered into the
framebuffer. The alpha values themselves are also saved into the alpha buffer.

Next, depth buffer and alpha buffer updates are disabled, and the sur-
face textured shell is rendered, with the source and destination blend factors
GL_ONE_MINUS_DST_ALPHA and GL_ONE. This sums the previously rendered scene,
already scaled by 1 − α, with the surface-textured shell. Since the alpha buffer contains
1 − α, the shell is modulated by 1 − (1 − α) = α, correctly compositing the groups.

1. Configure a window that can store alpha values.

2. Draw the scene minus the shell with depth buffering.

3. Disable depth buffer updates.

4. Enable blending with source and destination factors GL_ZERO,
GL_ONE_MINUS_SRC_ALPHA.

S E C T I O N 1 9 . 5 Dep th Cu ing 511

5. Draw the alpha-textured shell to adjust scene transparency.

6. Change blend factors to GL_ONE_MINUS_DST_ALPHA, GL_ONE.

7. Disable alpha buffer updates.

8. Disable 1D alpha texture and enable surface texture.

9. Render the surface-textured shell.

Two Buffer Approach

If the OpenGL implementation doesn’t support a destination alpha buffer, two color
buffers can be used. One buffer is used to construct the scene without the color values of
the outer shell, Cscene and then attenuate it by 1−α. The second buffer is used to build up
the color of the outer shell with its surface texture and transparency, αCshell , after which
the buffer containing the shell is added to the scene buffer using blending.

The first steps are the same as the alpha buffer approach. The scene without the shell
is rendered as before. The colors of the resulting image are then attenuated by rendering
the alpha-textured shell with the source and destination blend factors set to GL_ZERO
and GL_ONE_MINUS_SRC_ALPHA.

Next, the textured shell is rendered in a separate buffer (or different area of the
window). In another pass, the colors of this image are adjusted by rerendering the
shell using the alpha texture and blend source and destination factors GL_ZERO and
GL_SRC_ALPHA. Last, the two images are combined using glCopyPixels and blending
with both factors set to GL_ONE.

One obvious problem with this algorithm is that no depth testing is performed
between the outer shell polygons and the remainder of the scene. This can be corrected
by establishing the full scene depth buffer in the buffer used for drawing the outer shell.
This is done by drawing the scene (the same drawn into the first buffer) into the second
buffer, with color buffer updates disabled. After the scene is drawn, color buffer updates
are enabled and the shell is rendered with depth testing enabled and depth buffer updates
disabled as described previously.

19.5 Depth Cuing

Perspective projection and hidden surface and line elimination are regularly used to add
a sense of depth to rendered images. However, other types of depth cues are useful,
particularly for applications using orthographic projections. The term depth cuing is
typically associated with the technique of changing the intensity of an object as a function
of distance from the eye. This effect is typically implemented using the fog stage of the
OpenGL pipeline. For example, using a linear fog function with the fog color set to black
results in a linear interpolation between the object’s color and zero. The interpolation
factor, f , is determined by the distance of each fragment from the eye, f = end−z

end−start .

512 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

It is also straightforward to implement a cuing algorithm using a 1D texture map
applied by glTexGen to generate a texture coordinate using a linear texture coordinate
generation function. This is used to compute a coordinate proportional to the distance
from the eye along the z axis. The filtered texel value is used as the interpolation factor
between the polygon color and texture environment color. One advantage of using a 1D
texture is that the map can be used to encode an arbitrary function of distance, which
can be used to implement more extreme cuing effects. Textures can also be helpful when
working with OpenGL implementations that use per-vertex rather than per-pixel fog
calculations.

Other types of depth cues may also be useful. Section 18.6 describes methods for
generating points with appropriate perspective foreshortening. Similar problems exist
for line primitives, as their width is specified in window coordinates rather than object
coordinates. For most wireframe display applications this is not an issue since the lines
are typically very narrow. However, for some applications wider lines are used to convey
other types of information. A simple method for generating perspective lines is to use
polygonal primitives rather than lines.

19.6 Patterns and Hatching

Artists and engineers use patterns and hatching for a variety of purposes (see Figure 19.7).
In engineering drawings patterns and hatch marks are used to distinguish between dif-
ferent material types. In 2D presentation graphics, monochrome and colored patterns

F i g u r e 19.7 2D patterns.

S E C T I O N 1 9 . 6 Pa t t e rn s and Ha t ch ing 513

and hatches are used for decorative purposes. In artistic renderings, hatching is used to
provide visual cues for surface texture, lighting, tone, and shadows.

The OpenGL pipeline can be used to render patterns and hatches using a number of
methods. The glPolygonStipple command provides a simple mechanism to apply a
repeating 32×32 pattern to a polygon. The stipple pattern acts as a mask that discards
rasterized fragments wherever the stipple pattern is zero and allows them to pass wherever
the pattern is one. The pattern is aligned to the x and y window coordinate axes and the
origin of the pattern is fixed relative to the origin of the window.

Another way to generate the effect of a stipple pattern is to create a mask in the
stencil buffer and apply a stenciling operation to polygons as they are drawn. The pattern
can be created in the stencil buffer by writing it as a stencil image using glDrawPixels
or by drawing geometry elements that set the contents of the stencil buffer. A polygon
can be shaded with hatch lines of arbitrary orientation by initializing the stencil buffer
with the polygon and using it as a mask during line drawing. The lines can be drawn so
that they cover the 2D screen-space bounding rectangle for the object.

Texture mapping provides a more general mechanism for performing pattern fills.
The flexible method of assigning and interpolating texture coordinates eliminates the
restrictions on patterns being aligned and oriented in window space. A window-
coordinate alignment constraint can still be emulated, however, using eye linear texture
coordinate generation and a scale and bias transform on the texture matrix stack.

To perform masking operations using texture mapping, several functions are useful.
A luminance texture pattern can be used to modulate the polygon color, or an alpha
texture can be used with alpha testing or framebuffer blending to either reject fragments
outright or to perform weighted blends. The masking technique generalizes to the familiar
texture mapping operation in which polygon colors are substituted with the texture colors.

19.6.1 Cross Hatching and 3D Halftones

In (Saito, 1990), Saito suggests using cross hatching to shade 3D geometry to provide
visual cues. Rather than performing 2D hatching using a fixed screen space pattern (e.g.,
using polygon stipple) an algorithm is suggested for generating hatch lines aligned with
parametric axes of the object (for example, a sequence of straight lines traversing the
length of a cylinder, or a sequence of rings around a cylinder).

A similar type of shading can be achieved using texture mapping. The parametric
coordinates of the object are used as the texture coordinates at each vertex, and a 1D
or 2D texture map consisting of a single stripe is used to generate the hatching. This
method is similar to the methods for generating contour lines in Section 14.10, except
that the isocontours are now lines of constant parametric coordinate. If a 1D texture is
used, at minimum two alternating texels are needed. A wrap mode of GL_REPEAT is
used to replicate the stripe pattern across the object. If a 2D texture is used, the texture
map contains a single stripe. Two parametric coordinates can be cross hatched at the
same time using a 2D texture map with stripes in both the s and t directions. To reduce

514 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

F i g u r e 19.8 3D cross hatching.

artifacts, the object needs to be tessellated finely enough to provide accurate sampling of
the parametric coordinates.

This style of shading can be useful with bilevel output devices. For example, a
luminance-hatched image can be thresholded against an unlit version of the same image
using a max function. This results in the darker portions of the shaded image being
hatched, while the brighter portions remain unchanged (as shown in Figure 19.8). The
max function may be available as a separate blending extension or as part of the imaging
subset. The parameters in the vertex lighting model can also be used to bias it. Using
material reflectances that are greater than 1.0 will brighten the image, while leaving
self-occluding surfaces black. Alternatively, posterization operations using color lookup
tables can be used to quantize the color values to more limited ranges before thresholding.
These ideas are generalized to the notion of a 3D halftone screen in (Haeberli, 1993).

Combining the thresholding scheme with (vertex) lighting allows tone and shadow to
be incorporated into the hatching pattern automatically. The technique is easily extended
to include other lighting techniques such as light maps. Using multipass methods, the
hatched object is rendered first to create the ambient illumination. This is followed by
rendering diffuse and specular lighting contributions and adding them to the color buffer
contents using blending. This converts to a multitexture algorithm by adding the hatch
pattern and lighting contributions during texturing. More elaborate interactions between
lighting and hatching can be created using 3D textures. Hatch patterns corresponding to
different N�L values are stored as different r slices in the texture map, and the cosine term
is computed dynamically using a vertex program to pass s and t coordinates unchanged
while setting r to the computed cosine term.

If fragment programs are supported, more sophisticated thresholding algorithms can
be implemented based on the results of intermediate shading computations, either from
vertex or fragment shading. Dependent texture lookup operations allow the shape of the
threshold function to be defined in a texture map.

Praun et al. (Praun, 2001; Webb, 2002) describe sophisticated hatching techniques
using multitexturing with mipmapping and 3D texturing to vary the tone across the

S E C T I O N 1 9 . 6 Pa t t e rn s and Ha t ch ing 515

surface of an object. They develop procedures for constructing variable hatching patterns
as texture maps called tonal art maps as well as algorithms for parameterizing arbitrary
surfaces in such a way that the maps can be applied as overlapping patches onto objects
with good results.

19.6.2 Halftoning

Halftoning is a technique for trading spatial resolution for an increased intensity range.
Intensity values are determined by the size of the halftone. Traditionally, halftones are
generated by thresholding an image against a halftone screen. Graphics devices such as
laser printers approximate the variable-width circles used in halftones by using circular
raster patterns. Such patterns can be generated using a clustered-dot ordered dither (Foley,
1990). An n × n dither pattern can be represented as a matrix. For dithering operations
in which the number of output pixels is greater than the number of input pixels (i.e., each
input pixel is converted to a n×n set of output pixels) the input pixel is compared against
each element in the dither matrix. For each element in which the input pixel is larger than
the dither element, a 1 is output; otherwise, a 0. An example 3 × 3 dither matrix is:

D =
⎛⎝6 8 4

1 0 3
5 2 7

⎞⎠
A dithering operation of this type can be implemented using the OpenGL pipeline as
follows:

1. Replicate the dither pattern in the framebuffer to generate a threshold image the
size of the output image. Use glCopyPixels to perform the replication.

2. Set glPixelZoom(n,n) to replicate each pixel to a n × n block.

3. Move the threshold image into the accumulation buffer with
glAccum(GL_LOAD,1.0).

4. Use glDrawPixels to transfer the expanded source image in the framebuffer.

5. Call glAccum(GL_ACCUM,-1.0).

6. Call glAccum(GL_RETURN,-1.0) to invert and return the result.

7. Set up glPixelMap to map 0 to 0 and everything else to 1.0.

8. Call glReadPixels with the pixel map to retrieve the thresholded image.

Alternatively, the subtractive blend function can be used to do the thresholding instead
of the accumulation buffer if the imaging extensions are present.2 If the input image is
not a luminance image, it can be converted to luminance using the techniques described

2. Subtractive blending added to the core of OpenGL 1.4.

516 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

in Section 12.3.5 during the transfer to the framebuffer. If the framebuffer is not large
enough to hold the output image, the source image can be split into tiles that are processed
separately and merged.

19.7 2D Drawing Techniques

While most applications use OpenGL for rendering 3D data, it is inevitable that 3D
geometry must be combined with some 2D screen space geometry. OpenGL is designed
to coexist with other renderers in the window system, meaning that OpenGL and other
renderers can operate on the same window. For example, X Window System 2D draw-
ing primitives and OpenGL commands can be combined together on the same surface.
Similarly, Win32 GDI drawing and OpenGL commands can be combined in the same
window.

One advantage of using the native window system 2D renderer is that the 2D ren-
derers typically provide more control over 2D operations and a richer set of built-in
functions. This extended control may include joins in lines (miter, round, bevel) and end
caps (round, butt). The 2D renderers also often specify rasterization rules that are more
precise and therefore easier to predict or portably reproduce the results. For example, both
the X Window System and Win32 GDI have very precise specifications of the algorithms
for rasterizing 2D lines, whereas OpenGL has provided some latitude for implementors
that occasionally causes problems with application portability.

Some disadvantages in not using OpenGL commands for 2D renderings are:

• The native window system 2D renderers are not tightly integrated with the
OpenGL renderers.

• The 2D renderer cannot query or update additional OpenGL window states such
as the depth, stencil, or other ancillary buffers.

• The 2nd coordinate system typically has the origin at the top left corner of the
window.

• Some desirable OpenGL functionality may not be available in the 2D renderer
(framebuffer blending, antialiased lines).

• The 2D code is less portable; OpenGL is available on many platforms, whereas
specific 2D renderers are often limited to particular platforms.

19.7.1 Accuracy in 2D Drawing

To specify object coordinates in window coordinates, an orthographic projection is used.
For a window of width w and height h, the transformation maps object coordinate (0, 0)
to window coordinate (0, 0) and object coordinate (w, h) to window coordinate (w, h).
Since OpenGL has pixel centers on half-integer locations, this mapping results in pixel

S E C T I O N 1 9 . 7 2D Draw ing Te chn iques 517

centers at 0.5, 1.5, 2.5, . . . , w−.5 along the x axis and 0.5, 1.5, 2.5, . . . , h−.5 along the
y axis.

One difficulty is that the line (and polygon) rasterization rules for OpenGL are
designed to avoid multiple writes (hits) to the same pixel when drawing connected line
primitives. This avoids errors caused by multiple writes when using blending or stenciling
algorithms that need to merge multiple primitives reliably. As a result, a rectangle drawn
with aGL_LINE_LOOPwill be properly closed with no missing pixels (dropouts), whereas
if the same rectangle is drawn with a GL_LINE_STRIP or independent GL_LINES there
will likely be pixels missing and/or multiple hits on the rectangle boundary at or near the
vertices of the rectangle.

A second issue is that OpenGL uses half-integer pixel centers, whereas the native
window system invariably specifies pixel centers at integer boundaries. Application devel-
opers often incorrectly use integer pixel centers with OpenGL without compensating in
the projection transform. For example, a horizontal line drawn from integer coordinates
(px, py) to (qx, py) with px < qx will write to pixels with pixel centers at window x coordi-
nate px+.5, px+1.5, px+2.5, . . . , qx−.5, and not the pixel with center at qx+.5. Instead,
the end points of the line should be specified on half-integer locations. Conversely, for
exact position of polygonal primitives, the vertices should be placed at integer coordi-
nates, since the behavior of a vertex at a pixel center is dependent on the point sampling
rules used for the particular pipeline implementation.

19.7.2 Line Joins

Wide lines in OpenGL are drawn by expanding the width of the line along the x or y
direction of the line for y-major and x-major lines, respectively (a line is x-major if the
slope is in the range [−1, 1]). When two noncolinear wide lines are connected, the overlap
in the end caps leaves a noticeable gap. In 2D drawing engines such as GDI or the X
Window System, lines can be joined using a number of different styles: round, mitered,
or beveled as shown in Figure 19.9.

A round join can be implemented by drawing a round antialiased point with a size
equal to the line width at the shared vertex. For most implementations the antialiasing
algorithm generates a point that is similar enough in size to match the line width without
noticeable artifacts. However, many implementations do not support large antialiased
point sizes, making it necessary to use a triangle fan or texture-mapped quadrilateral to
implement a disc of the desired radius to join very wide lines.

F i g u r e 19.9 Line join styles: none, round, miter, bevel.

518 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

A mitered join can be implemented by drawing a triangle fan with the first vertex
at the shared vertex of the join, two vertices at the two outside vertices of rectangles
enclosing the two lines, and the third at the intersection point created by extending the two
outside edges of the wide lines. For an x-major line of width w and window coordinate
end points (x0, y0) and (x1, y1) the rectangle around the line is (x0, y0 − (w − 1)/2),
(x0, y0 − (w − 1)/2 + w), (x1, y1 − (w − 1)/2 + w), (x1, y1 − (w − 1)/2).

Mitered joins with very sharp angles are not aesthetically pleasing, so for angles less
then some threshold angle (typically 11 degrees) a bevel join is used. A bevel join can
be constructed by rendering a single triangle consisting of the shared vertex and the two
outside corner vertices of the lines as previously described.

Having gone this far, it is a small step to switch from using lines to using trian-
gle strips to draw the lines instead. One advantage of using lines is that many OpenGL
implementations support antialiasing up to moderate line widths, whereas there is sub-
stantially less support for polygon antialiasing. Wide antialiased lines can be combined
with antialiased points to do round joins, but it requires the overlap algorithm from
Section 16.7.5 to sort the coverage values. Accumulation buffer antialiasing can be used
with triangle primitives as well.

19.7.3 2D Trim Curves

Many 2D page display languages and drawing applications support the creation of shapes
with boundaries defined by quadratic and cubic 2D curves. The resulting shapes can then
be shaded using a variety of operators. Using many of the shading algorithms previously
described, an OpenGL implementation can perform the shading operations; however,
the OpenGL pipeline only operates on objects defined by polygons. Using the OpenGL
pipeline for shapes defined by higher-order curves might require tessellating the curved
shapes into simple polygons, perhaps using the GLU NURBS library. A difficulty with
this method is performing consistent shading across the entire shape. To perform correct
shading, attributes values such as colors and texture coordinates must be computed at
each of the vertices in the tessellated object.

An equivalent, but simpler, method for rendering complex shapes is to consider the
shape as a 2D rectangle (or trapezoid) that has parts of the surface trimmed away, using
the curved surfaces to define the trim curves. The 2D rectangle is the window-axis-aligned
bounding rectangle for the shape. Shading algorithms, such as radial color gradient fills,
are applied directly to the rectangle surface and the final image is constructed by masking
the rectangle. One method for performing the masking is using the stencil buffer. In
this method the application scan converts the trim curve definitions, producing a set of
trapezoids that define either the parts of the shape to be kept or the parts to be removed
(see Figure 19.10). The sides of the trapezoids follow the curve definitions and the height
of each trapezoid is determined by the amount of error permissible in approximating the
curve with a straight trapezoidal edge. In the worst case, a trapezoid will be 1 pixel high
and can be rendered as a line rather than a polygon. Figure 19.10 exaggerates the size of
the bounding rectangle for clarity; normally it would tightly enclose the shape.

S E C T I O N 1 9 . 7 2D Draw ing Te chn iques 519

F i g u r e 19.10 Trapezoidal trim regions.

Evaluating the trim curves on the host requires nontrivial computation, but that is
the only pixel-level host computation required to shade the surface. The trim regions can
be drawn efficiently by accumulating the vertices in a vertex array and drawing all of the
regions at once. To perform the shading, the stencil buffer is cleared, and the trim region
is created in it by drawing the trim trapezoids with color buffer updates disabled. The
bounding rectangle is then drawn with shading applied and color buffer updates enabled.

To render antialiased edges, a couple of methods are possible. If multisample
antialiasing is supported, the supersampled stencil buffer makes the antialiasing auto-
matic, though the quality will be limited by the number of samples per pixel. Other
antialiasing methods are described in Chapter 10. If an alpha buffer is available, it may
serve as a useful antialiased stenciling alternative. In this algorithm, all trapezoids are
reduced to single-pixel-high trapezoids (spans) and the pixel coverage at the trim curve
edge is computed for each span. First, the boundary rectangle is used to initialize the
alpha buffer to one with updates of the RGB color chennels disabled. The spans are then
drawn with alpha values of zero (color channel updates still disabled). Next, the pixels
at the trim curve edges are redrawn with their correct coverage values. Finally, color
channel updates are enabled and the bounding rectangle is drawn with the correct shad-
ing while blending with source and destination factors of GL_ONE_MINUS_DST_ALPHA
and GL_ZERO. The factor GL_ONE_MINUS_DST_ALPHA is correct if the coverage values
correspond to the nonvisible part of the edge pixel. If the trim regions defined the visible
portion, GL_DST_ALPHA should be used instead.

A simple variation computes the alpha map in an alpha texture map rather than
the alpha buffer and then maps the texels to pixel fragments one to one. If color matrix
functionality (or fragment programs) is available, the alpha map can be computed in the
framebuffer in one of the RGB channels and then swizzled to the alpha texture during a
copy-to-texture operation (Section 9.3.1).

By performing some scan conversion within the application, the powerful shading
capabilities of the OpenGL pipeline can be leveraged for many traditional 2D applications.
This class of algorithms uses OpenGL as a span processing engine and it can be further
generalized to compute shading attributes at the start and end of each span for greater
flexibility.

520 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

19.8 Text Rendering

Text rendering requirements can vary widely between applications. In illustration appli-
cations, text can play a minor role as annotations on an engineering drawing or can play
a central role as part of a poster or message in a drawing. Support for drawing text in 2D
renderers has improved substantially over the past two decades. In 3D renderers such as
OpenGL, however, there is little direct support for text as a primitive.

OpenGL does provide ample building blocks for creating text-rendering primitives,
however. The methods for drawing text can be divided into two broad categories: image
based and geometry based.

19.8.1 Image-based Text

Image-based primitives use one of the pixel image-drawing primitives to render separate
pixel images for each character. The OpenGL glBitmap primitive provides support
for traditional single-bit-per-pixel images and resembles text primitives present in 2D
renderers. To leverage the capabilities of the host platform, many of the OpenGL embed-
ding layers include facilities to import font data from the 2D renderer, for example,
glXUseXFont in the GLX embedding and wglUseFontBitmaps in WGL.

Typically the first character in a text string is positioned in 3D object coordinates
using the glRasterPos command, while the subsequent characters are positioned in
window (pixel) coordinates using offsets specified with the previously rendered character.
One area where the OpenGL bitmap primitive differs from typical 2D renderers is that
positioning information is specified with floating-point coordinates and retains subpixel
precision when new positions are computed from offsets. By transforming the offsets used
for positioning subsequent characters, the application can render text strings at angles
other than horizontal, but each character is rendered as a window-axis-aligned image.

The bitmap primitive has associated attributes that specify color, texture coordinates,
and depth values. These attributes allow the primitive to participate in hidden surface
and stenciling algorithms. The constant value across the entire primitive limits the utility
of these attributes, however. For example, color and texture coordinates cannot directly
vary across a bitmap image. Nevertheless, the same effect can be achieved by using bitmap
images to create stencil patterns. Once a pattern is created in the stencil buffer, shaded
or texture-mapped polygons that cover the window extent of the strings are drawn and
the fragments are written only in places where stencil bits have been previously set.

Display List Encodings

In the most basic form, to draw a character string an application draws issues a glBitmap
command for each character. To improve the performance and simplify this process,
the application can use display lists. A contiguous range of display list names are allo-
cated and associated with a corresponding contiguous range of values in the character set
encoding. Each display list contains the bitmap image for the corresponding character.

S E C T I O N 1 9 . 8 Tex t Rende r i ng 521

List names obey the relationship n = c + b, where c is a particular character encoding,
n is the corresponding list name, and b is the list name corresponding to encoding 0.
Once the display lists have been created, a string is drawn by setting the list base b (using
glListBase) and then issuing a single glCallLists command with the pointer to the
array containing the string.

For strings represented using byte-wide array elements, the GL_UNSIGNED_BYTE
type is used. This same method is easily adapted to wider character encodings, such as
16-bit Unicode, by using a wider type parameter with the glCallLists command. If the
character encoding is sparse, it may be advantageous to allocate display list names only
for the nonempty encodings and use an intermediate table to map a character encoding
to a display list name. This changes the string-drawing algorithm to a two-step process:
first a new array of display list names is constructed from the string using the look-up
table, then the resulting array is drawn using glCallLists.

Many applications use multiple graphical representations for the same character
encoding. The multiple representations may correspond to different typefaces, different
sizes, and so on. Using the direct one-to-one display list mapping, each representation
has a different display list base. Using the look-up table mapping, each representation
has a separate table.

Kerning

More sophisticated applications may wish to implement kerning to tune the spacing
between different character pairs. Since the character advance is dependent on the last
rendered character and the current character, a single advance cannot be stored in the
same display list with each character. However, a kerning table can be computed contain-
ing an adjustment for each pair of characters and each unique adjustment can be encoded
in a separate display list. A simple method for making a relative adjustment to the raster
position (without drawing any pixels) is to issue a glBitmap command with a zero-size
image, specifying the desired adjustment as the offset parameters.

A variation on the two-step text-rendering method can be used to build a kerned
string. The array of list names constructed in the first step also includes a call to the
display list containing the corresponding adjustment found in the kerning table. The
resulting array contains an alternating sequence of lists to draw a character and lists
to adjust the position. A single glCallLists command can draw the entire string
using the constructed array in the second step. Ligatures and other features can also be
accommodated by storing them as separate display lists and incorporating them when
building the array of lists.

Pixmap Images

Another limitation with the bitmap primitive is that it cannot be used to render antialiased
text. This limitation can be overcome by using the glDrawPixels command to draw
character images that have been preantialiased (prefiltered). Antialiased character images

522 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

F i g u r e 19.11 Bitmap, image, and texture text.

store both a luminance (or RGB color) and alpha coverage values and are rendered using
the over compositing operator described in Section 11.1.1.

The glDrawPixels primitive doesn’t include offsets to advance the raster position
to the next character position, so the application must compute each character position
and use the glRasterPos command to move the current raster position. It is probable
that the application needs to position the subsequent characters in a string in window
coordinates rather than object coordinates.

Another way to implement relative positioning is to define the raster position in
terms of a relative coordinate system in which each character is drawn with raster position
object coordinates (0, 0, 0). A cumulative character advance is computed by concatenating
a translation onto the modeling transform after each character is drawn. The advan-
tage of such a scheme is that display lists can still be used to store the glRasterPos,
glDrawPixels, and glTranslatef commands so that a complete string can be drawn
with a single invocation of glCallLists. However, at the start and end of the string
additional modeling commands are required to establish and tear down the coordinate
system.

Establishing the coordinate system requires computing a scaling transform that maps
(x, y) object coordinates one-to-one to window coordinates. Since this requires knowledge
of the current cumulative modelview and projection transforms, it may be difficult to
transparently incorporate into an application. Often applications will save and restore the
current modelview and projection transforms rather than track the cumulative transform.
Saving the state can have deleterious performance effects, since state queries typically
introduce “bubbles” of idle time into the rendering pipeline. An alternative to saving
and restoring state is to specify the raster position in window coordinates directly using
the ARB_window_pos extension.3 Unfortunately, using absolute positioning requires
issuing a specific raster position command for each character position, eliminating the
opportunity to use position independent display lists. Establishing a window coordinate
system transform and using relative positioning is a more broadly applicable method for
working with both the image- and geometry-based rendering techniques.

3. Also part of OpenGL 1.4.

S E C T I O N 1 9 . 8 Tex t Rende r i ng 523

Texture Images

Using RGB images allows the color to vary within a single character, though the color
values need to be assigned to the image data before transfer to the pipeline. A common
limitation with both bitmap and pixel image character text rendering is that the text
cannot be easily scaled or rotated. Limited scaling can be achieved using pixel zoom oper-
ations, but no filtering is performed on the images so the results deteriorate very quickly.

A third type of image-based text stores the character glyphs as texture maps and
renders them as quadrilaterals using the billboard techniques described in Section 13.5
(Haeberli, 1993; Kilgard, 1997). Using billboard geometry allows text strings to be easily
rotated and texture filtering allows scaling over a larger range than pixel zoom. Using
mipmap filtering increases the effective scaling range even more. In addition to affine
scaling, the text strings can be perspective projected since the characters are affixed to
regular geometry. Text can be shaded with a color gradient or lit by lighting and shading
the underlying quad and modulating it with the texture map. If the source image for the
texture map is antialiased, the rendered text remains antialiased (within the limitations
of the texture filter).

The images used in the texture maps are the same images that are used for pixmap
text rendering. The texture maps are constructed directly from the pixel image sources
and are also rendered using compositing techniques. The characters stored in the texture
maps can also be rendered with other geometry besides simple screen parallel quads.
They can be decaled directly onto other geometry, combined with stencil operations to
create cutouts in the geometry, or projected onto geometry using the projection techniques
described in Section 14.9.

The high performance of texture mapping on modern hardware accelerators makes
rendering using texture-mapped text very fast. To maximize the rendering efficiency it is
desirable to use the mosaicing technique described in Section 14.4 to pack the individual
font glyphs into a single texture image. This avoids unnecessarily padding individual
character glyphs to a power-of-two image. Individual glyphs are efficiently selected by
setting the texture coordinates to index the appropriate subimage rather than binding a
new texture for each character. All character positioning is performed in object space.
To position subsequent characters in the string using window coordinates, variations on
the method described for moving the raster position can be used.

19.8.2 Geometry-based Text

Geometry-based text is rendered using geometric primitives such as lines and polygons.4

Text rendered using 3D primitives has several advantages: attributes can be interpo-
lated across the primitive; character shapes have depth in addition to width and height;

4. The texture-mapped text method is actually a hybrid between image-based and geometry-based
methods.

524 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

F i g u r e 19.12 Triple stroke Roman typeface.

character geometry can be easily scaled, rotated, and projected; and the geometry can be
antialiased using regular antialiasing techniques.

Characters rendered using a series of arc and line segment primitives are called stroke
or vector fonts. They were originally used on vector-based devices such as calligraphic
displays and pen plotters. Stroke fonts still have some utility in raster graphics systems
since they are efficient to draw and can be easily rotated and scaled. Stroke fonts con-
tinue to be useful for complex, large fonts such as those used for Asian languages, since
the storage costs can be significantly lower than other image- or geometry-based repre-
sentations. They are seldom used for high-quality display applications since they suffer
from legibility problems at low resolutions and at larger scales the stroke length appears
disproportionate relative to the line width of the stroke. This latter problem is often alle-
viated by using double or triple stroke fonts, achieving a better sense of width by drawing
parallel strokes with a small separation between them (Figure 19.12).

The arc segments for stroke fonts are usually tessellated to line segments for ren-
dering. Ideally this tessellation matches the display resolution, but frequently a one-time
tessellation is performed and only the tessellated representation is retained. This results
in blocky rather than smooth curved boundaries at higher display resolutions. Rendering
stroke fonts using the OpenGL pipeline requires little more than rendering line primitives.
To maximize efficiency, connected line primitives should be used whenever possible. The
line width can be varied to improve the appearance of the glyphs as they are scaled larger
and antialiasing is implemented using regular line antialiasing methods (Section 10.4).

Applications can make more creative use of stroke fonts by rendering strokes using
primitives other than lines (such as using flat polygons or 3D cylinders and spheres). Flat
polygons traced along each stroke emulate calligraphic writing, while 3D solid geometry
is created by treating each stroke as a path and a profile is swept along the path. Tools
for creating geometry from path descriptions are common in most modeling packages.

Outline Fonts

Outline font is the term used for the resolution-independent mathematical description of
a font. Type 1 and TrueType are examples of systems for describing fonts as series of 2D
closed curves (contours). Outline fonts are converted to bitmaps by scaling the outline
to a particular size and then scan-converting the contours, much like scan-converting a
polygon. Alternatively, the contours can be tessellated into polygonal geometry or a set
of line segments for rendering as filled polygons or outlines. The curves can also be used

S E C T I O N 1 9 . 9 Draw ing and Pa in t i ng 525

F i g u r e 19.13 Helvetica typeface rendered as outlines.

to generate profiles for generating 3D extrusions, converting them to a mesh of polygons.
Since the process starts with a resolution independent representation, outline fonts can
produce high-quality polygonal or vector representations at almost any resolution. It is
“almost” any resolution, since low resolutions usually require some additional hinting
beyond the curve descriptions to improve the legibility.

To render outline fonts using OpenGL, an application requires a font engine or
library to convert the mathematical contour description into polygons or lines. Some
platform embeddings include such a feature directly; for example, the Microsoft WGL
embedding includes wglUseFontOutlines, to generate display lists of polygon or line
representations from TrueType font descriptions. On other systems, readily available font
libraries, such as the FreeType project (FreeType, 2003), can be used to generate pixmap
images directly, and to retrieve contour descriptions. The curves comprising the contours
are converted to vectors by evaluating the curve equations and creating line segments that
approximate the curves within a specified tolerance. The vector contours are then drawn
as outlines or tessellated to polygons using the GLU tessellator. Simple extrusions can be
generated from the resulting tessellation, using the meshes for the front and back faces of
each character and using the vector contours to generate the side polygons bridging the
faces.

19.9 Drawing and Painting

Content creation applications often provide the digital equivalent of traditional drawing
and painting techniques, in which the user adds color to pixel values using pens and
brushes with a variety of shapes and other properties. There are many advantages that
come from performing the operations digitally: the ability to undo operations; the ability
to automate repetitive tasks, the availability of a unified palette of different painting tech-
niques, and (to some extent) the ability to operate independent of the output resolution.
There are many commercial drawing and painting packages that provide these features.
Many of them can take advantage of the facilities available in the OpenGL 3D pipeline
to accelerate operations. These techniques go beyond the idea of simply using the 3D
pipeline to incorporate 3D geometry into an image.

Smooth shading provides a simple way to perform color gradient fills, while 1D
and 2D texture mapping allow more flexible control over the shape of the gradients.

526 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

F i g u r e 19.14 Brush stroke using disc brush.

Texture mapping provides additional opportunities for implementing irregularly shaped
brush geometry by combining customized geometry and texture alpha to define the brush
shape (see Figure 19.14). A brush stroke is rendered by sampling the coordinates of
an input stroke, rendering the brush geometry centered about each input sample. Typi-
cally the input coordinate samples are spaced evenly in time, allowing dense strokes to
be created by moving the input device slowly and light strokes by moving it quickly.
Alternatively, a pressure-sensitive input device can be used, mapping input pressure to
density.

Using texture-mapped brush geometry allows two types of painting algorithms to be
supported. In the first style, the texture-mapped brush creates colored pixel fragments
that are blended with the image in the color buffer in much the same way a painter
applies paint to a painting. The second method uses the brush geometry and resulting
brush strokes to create a mask image, Im, used to composite a reference image, Ir, over
the original image, Io, using the strokes to reveal parts of the reference image:

Inew = (Ir Im) over Io.

The reference image is often a version of the original image created using a separate
processing or filtering algorithm (such as, a blurring or sharpening filter). In this way,
brush strokes are used to specify the parts of the original image to which the filtering
algorithm is applied without needing to compute the filter dynamically on each stroke.

There are several ways to implement the revealing algorithm. If an alpha buffer is
available, the brush strokes can incrementally add to an alpha mask in the alpha buffer.
An alpha buffer allows rendering of antialiased or smooth stroke edges. If an alpha
buffer isn’t available, the stencil buffer can be used instead. The alpha or stencil buffer
is updated as the strokes are drawn and an updated image is created each frame by
compositing a buffer storing the reference image with a buffer storing the original image.

S E C T I O N 1 9 . 9 Draw ing and Pa in t i ng 527

The compositing operation is performed using either blending or stencil operations with
a buffer-to-buffer pixel copy.

If the application is using double buffering, either aux buffers or off-screen buffers
can be used to hold the original and reference image, recopying the original to the back
buffer each frame, before compositing the reference image on top. Both images can also
be stored as texture maps and be transferred to the framebuffer by drawing rectangles that
project the texels one-to-one to pixels. Other variations use multitexture to composite
the images as part of rendering texture rectangles. Brush strokes are accumulated in one
of the RGB channels of an off-screen color buffer and copied to an alpha texture map
using color matrix swizzling (Section 9.3.1) before rendering each frame.

19.9.1 Undo and Resolution Independence

One of the advantages of performing painting operations digitally is that they can be
undone. This is accomplished by recording all of the operations that were executed to
produce the current image (sometimes called an adjustment layer). Each brush stroke
coordinate is recorded as well as all of the parameters associated with the operation per-
formed by the brush stroke (both paint and reveal). This allows every intermediate version
of the image to be reconstructed by replaying the appropriate set of operations. To undo
an operation, the recorded brush strokes are deleted. Interactive performance can be main-
tained by caching one of the later intermediate images and only replaying the subsequent
brush strokes. For example, for the revealing algorithm, when a new reference image is
created to reveal, a copy of the current image is saved as the original image; only the set
of strokes accumulated as part of revealing this reference image is replayed each frame.

Erase strokes are different from undo operations. Erase strokes have the effect of
selectively undoing or erasing part of a brush stroke. However, undo operations also
apply to erase strokes. Erase strokes simply perform local masking operations to the
current set of brush strokes, creating a mask that is applied against the stroke mask.
Erase strokes are journaled and replayed in a manner similar to regular brush strokes.

Since all of the stroke geometry is stored along with the parameters for the filtering
algorithms used to create references images for reveals, it is possible to replay the brush
strokes using images of different sizes, scaling the brush strokes appropriately. This
provides a degree of resolution independence, though in some cases changing the size of
the brush stroke may not create the desired effect.

19.9.2 Painting in 3D

A texture map can be created by “painting” an image, then viewing it textured on a 3D
object. This process can involve a lot of trial and error. Hanrahan (1990) and Haeberli
proposed methods for creating texture maps by painting directly on the 2D projection of
the 3D geometry (see Figure 19.15). The two key problems are determining how screen
space brush strokes are mapped to the 3D object coordinates and how to efficiently
perform the inverse mapping from geometry coordinates to texture coordinates.

528 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

Texture
map

F i g u r e 19.15 Painting on a 3D object.

In the Hanrahan and Haeberli method an object into a quadrilateral mesh, making the
number of quadrilaterals equal to the size of the texture map. This creates an approximate
one-to-one correspondence between texels in the texture map and object geometry. The
object tagging selection technique (described in Section 16.1.2) is used to efficiently deter-
mine which quads are covered by a brush stroke. Once the quads have been located, the
texels are immediately available. Brush geometry can be projected onto the object geom-
etry using three different methods: object parametric, object tangent plane, or screen
space.

Object parametric projection maps brush geometry and strokes to the s and t texture
coordinate parameterization of the vector. As the brush moves the brush geometry is
decaled to the object surface. Object tangent projection considers the brush geometry
as an image, tangent to the object surface (perpendicular to the surface normal) at the
brush center and projects the brush image onto the object. As the brush moves, the brush
image remains tangent to the object surface. The screen space projection keeps the brush
aligned with the screen (image plane). In the original Hanrahan and Haeberli algorithm,
the tangent and screen space brushes are implemented by warping the images into the
equivalent parametric projection. The warp is computed within the application and used
to update the texture map.

The preceding scheme uses a brute-force geometry tessellation to implement the selec-
tion algorithm. An alternative method that works well with modern graphics accelerators
with high performance (and predictable) texture mapping avoids the tessellation step and
operates directly on a 2D texture map. The object identifiers for the item buffer are stored
in one 2D texture map, called the tag texture and a second 2D texture map stores the

S E C T I O N 1 9 . 9 Draw ing and Pa in t i ng 529

current painted image, called the paint texture. To determine the location of the brush
within the texture image, the image is drawn using the tag texture with nearest filtering
and a replace environment function. This allows the texture coordinates to be determined
directly from the color buffer. The paint texture can be created in the framebuffer. For
object parametric projections, the current brush is mapped and projected to screen space
(parameter space) as for regular 2D painting. For tangent and screen space projections,
the brush image is warped by tessellating the brush and warping the vertex coordinates
of the brush. As changes are made to the paint texture, it is copied to texture memory
and applied to the object to provide interactive feedback.

To compute the tangent space projection, the object’s surface normal corresponding
to the (s, t) coordinates is required. This can be computed by interpolating the vertex
normals of the polygon face containing the texture coordinates. Alternatively, a second
object drawing pass can draw normal vectors as colors to the RGB components of the
color buffer. This is done using normal map texture coordinate generation combined
with a cube map texture containing normal vectors. The normal vector can be read back
at the same brush location in the color buffer as for the (s, t) coordinates. Since a single
normal vector is required, only one polygon containing the texture coordinate need be
drawn.

The interactive painting technique can be used for more than applying color to a
texture map. It can be used to create light intensity or more general material reflectance
maps for use in rendering the lighting effects described in Chapter 15. Painting techniques
can also be used to design bump or relief maps for the bump map shading techniques
described in Section 15.10 or to interactively paint on any texture that is applied as part
of a shading operation.

19.9.3 Painting on Images

The technique of selectively revealing an underlying image gives rise to a number of
painting techniques that operate on images imported from other sources (such as digital
photographs). One class of operations allows retouching the image using stroking oper-
ations or other input methods to define regions on which various operators are applied.
These operators can include the image processing operations described in Chapter 12:
sharpen, blur, contrast enhancement, color balance adjustment, and so on.

Haeberli (1990) describes a technique for using filters in the form of brush strokes to
create abstract images (impressionistic paintings) from source images. The output image is
generated by rendering an ordered list of brush strokes. Each brush stroke contains color,
shape, size, and orientation information. Typically the color information is determined by
sampling the corresponding location in the source image. The size, shape, and orientation
information are generated from user input in an interactive painting application. The
paper also describes some novel algorithms for generating brush stroke geometry. One
example is the use of a depth buffered cone with the base of the cone parallel to the image
plane at each stroke location. This algorithm results in a series of Dirichlet domains

530 C H A P T E R 19 I l l u s t r a t i on and A r t i s t i c T e chn iques

F i g u r e 19.16 Impressionist and dirichelet domain processed image.

(Preparata, 1985) where the color of each domain is sampled from the source image
(see Figure 19.16).

Additional effects can be achieved by preprocessing the input image. For example,
the contrast can be enhanced, or the image sharpened using simple image-processing
techniques. Edge detection operators can be used to recover paths for brush strokes to
follow. These operations can be automated and combined with stochastic methods to
choose brush shape and size to generate brush strokes automatically.

19.10 Summary

Illustration and artistic techniques is a broad area of active research. This chapter sam-
pled some algorithms and ideas from a few different areas, but we have just scratched
the surface. There are several excellent books that cover the topic of nonphotorealistic
rendering in greater detail. The addition of the programmable pipeline will undoubt-
edly increase the opportunities for innovation on both the artistic side and the pursuit of
higher-quality rendered images.

20
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Scientific Visualization

20.1 Mapping Numbers to Pictures

Scientific visualization utilizes computer graphics, image processing, and other techniques
to create graphical representations of the results from computations and simulations. The
objective of creating these representations is to assist the researcher in developing a deeper
understanding of the data under investigation.

Modern computation equipment enables mathematical models and simulations to
become so complex that tremendous amounts of data are generated. Visualization
attempts to convey this information to the scientist in an effective manner. Not only
is visualization used to post-process generated data, but it also serves an integral role in
allowing a scientist to interactively steer a computation.

In this chapter we will provide an introduction to visualization concepts and basic
algorithms. Following this we will describe different methods for using the OpenGL
pipeline to accelerate some of these techniques. The algorithms described here are useful
to many other application areas in addition to scientific visualization.

20.2 Visual Cues and Perception

Visualization techniques draw from a palette of visual cues to represent the data in a
meaningful way. Visual cues include position, shape, orientation, density, and color cues.
Each visual cue has one or more perceptual elements used to represent some aspect of
the data. For example, shape cues encompass length, depth, area, volume, and thickness;

531

532 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

color includes hue, saturation, and brightness. Multiple visual cues are combined to
produce more complex visual cues, paralleling the way nature combines objects of various
colors, shapes, and sizes at different positions.

Many visual cues have a natural interpretation. For example, brightness of an object
is interpreted as an ordering of information from low to high. Similarly, hue expresses
a natural perception of the relationship between data. The red hue applied to objects
makes them appear warmer, higher, and nearer, whereas the blue hue makes objects
appear cooler, lower, and farther away. This latter perception is also used by some of the
illustration techniques described in Section 19.2.

Scientific visualization isn’t limited to natural visual cues. Other visual representa-
tions such as contour lines, glyphs, and icons once learned serve as powerful acquired
visual cues and can be combined with other cues to provide more expressive representa-
tions. However, care must be taken when using both natural and acquired cues to ensure
that the characteristics of the data match the interpretation of the cue. If this is not the
case, the researcher may draw erroneous conclusions from the visualization, defeating its
purpose. Common examples of inappropriate use of cues include applying cues that are
naturally perceived as ordered against unordered data, cues that imply the data is contin-
uous with discontinuous data (using a line graph in place of a bar graph, for example),
or cues that imply data is discontinuous with continuous data (inappropriate use of hue
for continuous data).

20.3 Data Characterization

Visualization techniques can be organized according to a taxonomy of characteristics of
data generated from various computation processes. Data can be classified according to
the domain dimensionality. Examples include 1-dimensional data consisting of a set of
rainfall measurements taken at different times or 3-dimensional data consisting of temp-
erature measurements at the grid points on a 3D finite-element model. Dimensionality
commonly ranges from 1 to 3 but data are not limited to these dimensions. Larger dimen-
sionality does increase the challenges in effectively visualizing the data. However, data
that includes sets of samples taken at different times also creates an additional dimension.
The time dimension is frequently visualized using animation, since it naturally conveys
the temporal aspect of the data. Data can be further classified by type:

• Nominal values describe unordered members from a class (Oak, Birch, and Maple
trees, for example). Hue and position cues are commonly used to represent
nominal data.

• Ordinal values are related to each other by a sense of order (such as small,
medium, and large). Visual cues that naturally represent order (such as position,
size, or brightness) are commonly used. Hue can also be used. However, a legend
indicating the relative ordering of the color values should be included to avoid
misinterpretation.

S E C T I O N 2 0 . 3 Da ta Cha ra c t e r i z a t i on 533

• Quantitative values carry a precise numerical value. Often quantitative data
are converted to ordinal data during the visualization process, facilitating the
recognition of trends in the data and allowing rapid determination of regions
with significant ranges of values. Interactive techniques can be used to retain
the quantitative aspects of the data, for example, using a mouse button can be
used to trigger display of the value at the current cursor location.

Finally, data can also be classified by category:

• Points describe individual values such as positions or types (the position or type of
each atom in a molecule for example). Point data are often visualized using scatter
plots or point clouds that allow clusters of similar values to be easily located.

• Scalars, like points, describe individual values but are usually samples from a
continuous function (such as temperature). The dependent scalar value can be
expressed as a function of an independent variable, y = f (x). Multidimensional
data corresponds to a multidimensional function, y = f (x0, x1, . . . , xn). Scalar
data is usually called a scalar field, since it frequently corresponds to a function
defined across a 2D or 3D physical space. Multiple data values, representing
different properties, may be present at each location. Each property corresponds
to a different function, yk = fk(x0, x1, . . . , xn). Scalar fields are visualized using a
variety of techniques, depending on the dimensionality of the data. These
techniques include line graphs, isolines (contour maps), image maps, height fields,
isosurfaces, volumetric rendering, and many others.

• Vector data sets consist of a vector value at each sample rather than a single value.
Vector data differs from multivariate scalar fields, such as separate temperature
and pressure samples, in that the vector represent a single quantity. Vector values
often represent directional data such as flow data. The dimensionality of the vector
is independent of the dimensionality of the field. For example, a 2D data set may
consist of 3D vectors. Complex data sets may consist of multiple data types
(points, vectors, and scalars) at each sample. Vector data are often visualized
using arrow icons to convey direction and magnitude. Particle tracing and stream
lines are used to visualize flows through the fields.

• Tensor values generalize the scalar and vector field categories to a tensor field
where each data value is a rank k tensor. A scalar field is a tensor field composed
of rank 0 tensors, a vector field is a tensor field composed of rank 1 tensors, and
a rank k tensor field stores a k-dimensional matrix of values at each sample
point. Tensor fields require sophisticated visualization techniques to convey
all of the information present at each sample. Tensor field visualization
frequently combines multiple perceptual elements: color, size, position,
orientation, and shape. Examples include tensor ellipsoids (Haber, 1990) and
hyperstreamlines (Delmarcelle, 1993).

534 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

Taking the combination of domain dimension, data type, data category, and multiple
values results in a large combination of data set classifications. Brodlie (1992) used the
notion EmX

d to describe a data set with domain dimension d, type X = {P, S, Vn, Tn}, and
multiplicity m. A two-dimensional scalar field is expressed in this notation as ES

2, and a

3-dimensional vector field with two-element vectors at each point is expressed as EV2
3 and

so forth.
Many visualization techniques are available. Some techniques, such as graphics and

charts, have been in use long before the computer came into existence, whereas newer
techniques involving complex per-pixel calculations have only become available in the
last 10 to 15 years. Nevertheless, it is important to recognize that newer techniques are
not necessarily better for all types of data. Older and simpler methods may be as or more
insightful as new methods. The following sections describe visualization methods, the
types of data for which they are useful, and methods for effectively using the OpenGL
pipeline to implement them.

20.4 Point Data Visualization

Point data sets often arise in statistical models and a number of techniques have been
created to visualize such data (Wong, 1997). Point data visualizations consider each
value to be a point in a multidimensional space. The visualization technique projects the
multidimensional space to a 2D image.

20.4.1 Scatter Plots

Scatter plots use positional cues to visualize the relationship between data samples.
1-dimensional point data sets (EP

1) can use a 2D plot with positions along one axis repre-
senting different point values. A marker symbol is drawn at the position corresponding to
each point value. Ordinal and quantitative values naturally map into positions; nominal
values are mapped to positions using a table-mapping function.

Data sets with two values at each point (E2P
1) can be represented using a 2D plot

where each pair of values determines a position along the two axes. This technique can
be extended to 3D plots, called point clouds, for E3S

1 data sets. Alternatively, if two of
the three data types are quantitative or ordinal and the third is nominal, a 2D plot can
be used with the nominal value used to select different marker shapes or colors.

Higher-order multivariate data also be rendered as a series of 2D scatter plots, plot-
ting two variables at a time to create a scatter plot matrix. The set of plots is arranged into
a two dimensional matrix such that the scatter plot of variable i with variable j appears
in the ith row and jth column of the matrix (see Figure 20.1).

All of these types of visualizations can be drawn very efficiently using the OpenGL
pipeline. Simple markers can be drawn as OpenGL point primitives. Multiple marker
shapes for nominal data can be implemented using a collection of bitmaps, or texture-
mapped quads, with one bitmap or texture image for each marker shape. The viewport

S E C T I O N 2 0 . 4 Po in t Da ta V i sua l i z a t i on 535

F i g u r e 20.1 Scatter plot matrix.

transform can be used to position individual plots in a scatter plot matrix. OpenGL
provides a real benefit for visualizing more complex data sets. Point clouds can be inter-
actively rotated to improve the visualization of the 3D structure; 2D and 3D plots can be
animated to visualize 2-dimensional data where one of the dimensions is time.

20.4.2 Iconographic Display

Multivariate point data (EnP
1) can be visualized using collections of discrete patterns to

form glyphs. Each part of the glyph corresponds to one of the variables and serves as one
visual cue. A simple example is a multipoint star. Each data point is mapped to a star that
has a number of spikes equal to the number of variables, n, in the data set. Each variable
is mapped to a spike on the star, starting with the topmost spike. The length from the
star center to the tip of a spike corresponds to the value of the variable mapped to that
star point. The result is that data points map to stars of varying shapes, and similarities
in the shapes of stars match similarities in the underlying data.

Another example, Chernoff faces (Chernoff, 1973) map variables to various features
of a schematic human face: variables are mapped to the nose shape, eye shape, mouth
shape, and so on (see Figure 20.2). These techniques are effective for small data sets with

536 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

F i g u r e 20.2 Iconographic display.

a moderate number of dimensions or variables. To render glyphs using OpenGL, each
part is modeled as a set of distinct geometry: points, lines or polygons. The entire glyph
is constructed by rendering each part at the required position relative to the origin of the
glyph using modeling transforms. The set of glyphs for the entire data set is rendered in
rows and columns using additional transforms to position the origin of the glyph in the
appropriate position. Allowing the viewer to interactively rearrange the location of the
glyphs enables the viewer to sort the data into clusters of similar values.

20.4.3 Andrews Plots

Another visualization technique (see Figure 20.3) for multivariate data, called an Andrews
plot (Andrews, 1972), uses shape cues, plotting the equation

f (t) = v0√
2

+ v1 sin(t) + v2 cos(t) + v3 sin(2t) + v4 sin(2t) + · · ·

S E C T I O N 2 0 . 4 Po in t Da ta V i sua l i z a t i on 537

F i g u r e 20.3 Andrews plot.

over the range t = [−π , π]. The number of terms in the equation is equal to the number of
variables, n, in the data set and the number of equations is equal to the number of samples
in the data set. Ideally, the more important variables are assigned to the lower-frequency
terms. The result is that close points have similarly shaped plots, whereas distant plots
have differently shaped plots.

20.4.4 Histograms and Charts

For 1-dimensional point data consisting of nominal values, histograms and pie charts can
be used to visualize the count of occurrences of the nominal values. The data set values
are aggregated into bins. There are various display methods that can be used. Sorting
the bins by count and plotting the result produces a staircase chart (see Figure 20.4). If
staircase charts are plotted using line drawing, multiple staircases can be plotted on the
same chart using different colors or line styles to distinguish between them.

If the counts are normalized, pie charts effectively display the relative proportion of
each bin. The methods described in Chapter 19 can be used to produce more aesthetically
appealing charts.

538 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

F i g u r e 20.4 Staircase and pie chart.

20.5 Scalar Field Visualization

Scalar field visualization maps a continuous field, f (x1, x2, . . . , xn), to a visual cue,
frequently to color or position. The data set, ES

n, is a set of discrete samples of the under-
lying continuous field. The sample geometry and spacing may be regular, forming an
n-dimensional lattice, or irregular (scattered) forming an arbitrary mesh (Figure 20.5). An
important consideration is the true behavior of the field between data samples. Many visu-
alization techniques assume the value changes linearly from point to point. For example,
color and texture coordinate interpolation calculations interpolate linearly between their
end points. If linear approximation between sample points introduces too much error, a
visualization technique may be altered to use a better approximation, or more generally
the field function can be reconstructed from the data samples using a more accurate recon-
struction function and then resampled at higher resolution to reduce the approximation
error.

20.5.1 Line Graphs

Continuous information from 1-dimensional scalar fields (EmS
1) can be visualized effec-

tively using line graphs. The m variables can be displayed on the same graph using
a separate hue or line style to distinguish the lines corresponding to each variable.
Line graphs are simply rendered using OpenGL line primitives. Different line stipple
patterns can be used to create different line styles. The illustration techniques described
in Chapter 19 can be used to produce more aesthetically appealing graphs. Two dimen-
sional data, where one of the dimensions represents time, can be visualized by animating
the line graph.

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 539

(a) Regular (b) Curvilinear (c) Unstructured

F i g u r e 20.5 2D Sample topology.

20.5.2 Contour Lines

Contour plots are used to visualize scalar fields by rendering lines of constant field value,
called isolines. Usually multiple lines are displayed corresponding to a set of equidistant
threshold values (such as elevation data on a topographic map). Section 14.10 describes
techniques using 1D texturing to render contour lines.

Two dimensional data sets are drawn as a mesh of triangles with x and y vertices at
the 2-dimensional coordinates of the sample points. Both regular and irregular grids of
data are converted to a series of triangle strips, as shown in Figure 20.5. The field value
is input as a 1D texture coordinate and is scaled and translated using the texture matrix
to create the desired spacing between threshold values. A small 1D texture with two hue
values, drawn with a repeat wrap mode, results in repeating lines of the same hue. To
render lines in different hue, a larger 1D texture can be used with the texture divided such
that a different hue is used at the start of each interval. The s coordinate representing the
field value is scaled to match the spacing of hues in the textures.

The width of each contour line is related to the range of field values that are mapped
to the [0, 1] range of the texture and the size of the texture. For example, field values
ranging from [0, 8], used with a 32×1 texture, result in four texels per field value, or
conversely a difference in one texel corresponds to change in field value of 1/4. Setting
texels 0, 4, 8, 12, 16, 20, 24, and 28 to different hues and all others to a background hues,
while scaling the field value by 1/8, results in contour lines drawn wherever the field value
is in the range [0, 1/4], [1, 5/4], [2, 9/4], and so forth. The contour lines can be centered
over each threshold value by adding a bias of 1/8 to the scaled texture coordinates.

Simple 2-dimensional data sets are drawn as a rectangular grid in the 2D x−y plane.
Contour lines can also be drawn on the faces of 3D objects using the same technique.
One example is using contour lines on the faces of a 3D finite element model to indicate
lines of constant temperature or pressure, or the faces of an elevation model to indicate
lines of constant altitude (see Figure 20.6).

20.5.3 Annotating Metrics

In variation of the contouring approach, Teschner (1994) proposes a method for dis-
playing metrics, such as 2D tick marks, on an object using a 2D texture map containing

540 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

F i g u r e 20.6 Contour plot showing lines of constant altitude.

the metrics. Texture coordinates are generated as a distance from object coordinates to a
reference plane. For the 2D case, two reference planes are used. As an example applica-
tion for this technique, consider a 2D texture marked off with tick marks every kilometer
in both the s and t directions. This texture can be mapped on to terrain data using the
GL_REPEAT texture coordinate wrap mode. An object linear texture coordinate genera-
tion function is used, with the reference planes at x = 0 and z = 0 and a scale factor set so
that a vertex coordinate 1 km from the x−y or z −y plane produces a texture coordinate
value equal to the distance between two tick marks in texture coordinate space.

20.5.4 Image Display

The texture-mapped contour line generation algorithm generalizes to a technique in which
field values are mapped to a continuous range of hues. This technique is known by a
number of names, including image display and false coloring. The mapping of hue values
to data values is often called a color map. Traditionally the technique is implemented
using color index rendering by mapping field values to color index values and using the
display hardware to map the index values to hues. With texture mapping support so
pervasive in modern hardware, and color index rendering become less well supported, it
makes sense to implement this algorithm using texture mapping rather than color index
rendering. One advantage of texture mapping is that linear filters can be used to smooth
the resulting color maps. The color index algorithm is equivalent to texture mapping
using nearest filtering.

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 541

V

H
S

F i g u r e 20.7 HSV color wheel.

Suitable hue ramps are often generated using the HSV color model (see
Section 12.3.8). The HSV color model maps the red, yellow, green, cyan, blue, and
magenta hues to the vertices of a hexagon. Hue and saturation of a color are determined
by the position of the color around the perimeter of the hexagon (angle) and distance from
the center, respectively (see Figure 20.7). Hue ramps are created by specifying a starting,
ending, and step angle and calculating the corresponding RGB value for each point on
the HSV ramp. The RGB values are then used to construct the 1D texture image. The
mapping from data values to hues is dependent on the application domain, the under-
lying data, and the information to be conveyed. HSV hue ramps can effectively convey
the ordered relationship between data values. However, the choice of hues can imply
different meanings. For example, hues ranging from blue, violet, black might indicate
cold or low values, greens and yellows for moderate values, and red for extreme values. It
is always important to include a color bar (legend) on the image indicating the mapping
of hues to data values to reduce the likelihood of misinterpretation.

Choropleths

Another form of false coloring, often used with geographic information, called a choro-
pleth, is used to display 2D information. The data values in choropleths describe regions
rather than individual points. For example, a map of census data for different geographic
regions may also use hue for the different values (see Figure 20.8). However, continuous
scalar fields usually have gradual transitions between color values. The choropleth images
have sharp transitions at region boundaries if neighboring regions have different values.

542 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

F i g u r e 20.8 Census choropleth.

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 543

Using OpenGL to render a choropleth involves two steps. The first is modeling the region
boundaries using polygons. The second is drawing the boundaries with the data mapped
to a color. Since the first step requires creating individual objects for each region, the
color can be assigned as the region is rendered.

20.5.5 Surface Display

The 3D analog to a 2D line graph is a surface plot. If the scalar field data is 2-dimensional,
field values can be mapped to a third spatial dimension. The data set is converted to a
mesh of triangles, where the 2D coordinates of the data set become the x and z coordinates
of the vertices and the field value becomes the y coordinate (the y axis is the up vector).
The result is a 2D planar sheet displaced in the normal direction by the field values (see
Figure 20.9). This technique works well with ordinal and quantitative data since the
positional cue naturally conveys the relative order of the data value. This technique is
best for visualizing smooth data. If the data is noisy, the resulting surfaces contain many
spikes, making the data more difficult to understand.

For a regular 2-dimensional grid, the geometry is referred to as a height field, since
the data set can be described by the number of samples in each dimension and the height
values. Warping a sheet with elevation data is frequently used in geographic information
systems (GIS) where it is called rubber sheeting. Regular grids can be drawn efficiently
in OpenGL using triangle and quad strips. To reduce the data storage requirements, the

F i g u r e 20.9 Rubber sheeting.

544 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

strips can be generated on the fly so that there is no need to store x and y coordinates.
However, if the data set is not prohibitively large it is more efficient to create a display
list containing the entire geometry.

Irregular grids are also drawn using triangle and quad strips. If the algorithm for
generating the strips is simple, it can also be executed on the fly to avoid storing x and
z coordinates for each sample. However, for complex grids it may be necessary to pre
compute the meshes and store them, often using arrays of indices into the vertex data.
For irregular data, a Delaunay triangulation algorithm is a good choice for generating
the meshes, since it produces “fat” triangles (triangles with large angles at each vertex),
giving the best representation for a given surface. A detailed description of Delaunay
triangulation algorithms is beyond the scope of this book. O’Rourke provides a detailed
treatment on triangulation and similar topics in (O’Rourke, 1994). See Section 1.2 for a
discussion of tessellation.

The height of the surface corresponds to the field value. Linear scaling can be achieved
using the modelview transformation. More complex scaling, for example — plotting the
logarithm of the field value — usually requires preprocessing the field values. Alterna-
tively, vertex programs, if supported, can be used to evaluate moderately sophisticated
transforms of field data. Combining perspective projection, interactive rotation, depth
cueing, or lighting can enhance the 3D perception of the model. Lighting requires comput-
ing a surface normal at each point. Some methods for computing normals are described
in Section 1.3. In the simplest form, the mesh model is drawn with a constant color.
A wireframe version of the mesh, using the methods described in Section 16.7.2, can be
drawn on the surface to indicate the locations of the sample points. Alternatively, con-
touring or pseudocoloring techniques can be used to visualize a field with two variables
(E2S

2), mapping one field to hue and the second to height. The techniques described in
Section 19.6.1 can also be used to cross-hatch the region using different hatching pat-
terns. Hatching patterns do not naturally convey a sense of order, other than by density
of the pattern, so care must be used when mapping data types other than nominal to
patterns.

Surface plots can also be combined with choropleths to render the colored regions
with height proportional to data values. This can be more effective than hue alone since
position conveys the relative order of data better than color. However, the color should
be retained since it can indicate the region boundaries more clearly.

For large data sets surface plots require intensive vertex and pixel processing. The
methods for improving performance described in Chapter 21 can make a significant
improvement in the rendering speed. In particular, minimizing redundant vertices by
using connected geometry, display lists or vertex arrays combined with backface culling
are important. For very large data sets the bump mapping techniques described in
Section 15.10 may be used to create shaded images with relief. A disadvantage of the
bump mapping technique is that the displacements are limited to a small range. The
bump mapping technique eliminates the majority of the vertex processing but increases
the per-pixel processing. The technique can support interactive rendering rates for large
data sets on the order of 10000 × 10000.

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 545

Some variations on the technique include drawing vertical lines with length propor-
tional to field value at each point (hedgehogs), or the solid surfaces can be rendered with
transparency (Section 11.9) to allow occluded surfaces to show through.

20.5.6 Isosurfaces

The 3D analog of an isoline is an isosurface — a surface of constant field value. Isosur-
faces are useful for visualizing 3-dimensional scalar fields, Es

3. Rendering an isosurface
requires creation of a geometric model corresponding to the isosurface, called isosur-
face extraction. There are many algorithms for creating such a model (Lorensen, 1987;
Wilhelms, 1992; O’Rourke, 1994; Chiang, 1997). These algorithms take the data set,
the field value, α, and a tolerance ε as input and produce a set of polygons with surface
points in the range [α − ε, α + ε]. The polygons are typically determined by considering
the data set as a collection of volume cells classifying each cell as containing part of the
surface or not. Cells that are classified as having part of the surface passing through them
are further analyzed to determine the geometry of the surface fragment passing through
the cell.

The result of such an algorithm is a collection of polygons where the edges of each
polygon are bound by the faces of a cell. This means that for a large grid a nontrivial
isosurface extraction can produce a large number of small polygons. To efficiently render
such surfaces, it is essential to reprocess them with a meshing or stripping algorithm to
reduce the number of redundant vertices as described in Section 1.4.

Once an efficient model has been computed, the isosurface can be drawn using regu-
lar surface rendering techniques. Multiple isosurfaces can be extracted and drawn using
different colors in the same way that multiple isolines can be drawn on a contour plot
(see Figure 20.10). To allow isosurfaces nested within other isosurfaces to be seen, trans-
parent rendering techniques (Section 11.9) or cutting planes can be used. Since blended
transparency requires sorting polygons, polygons may need to be rendered individually
rather than as part of connected primitives. For special cases where multiple isosurfaces
are completely contained (nested) within each other and are convex (or mostly convex),
face culling or clipping planes can be used to perform a partition sort of the polygons.
This can be a good compromise between rendering quality and speed.

Perspective projection; interactive zoom, pan, and rotation; and depth cueing can
be used to enrich the 3D perception. The isosurfaces can be lighted, but vertex or facet
normals then must be calculated. The techniques in Section 1.3 can be used to create
them, but many isosurface extraction algorithms also include methods to calculate surface
gradients using finite differences. These methods can be used to generate a surface normal
at each vertex instead.

Three dimensional data sets with multiple variables, EmS
3 , can be visualized using iso-

surfaces for one of the variables, while mapping one or more of the remaining variables
to other visual cues such as color (brightness or hue), transparency, or isolines. Since the
vertices of the polygons comprising the isosurface do not necessarily coincide with the
original sample points, the other field variables must be reconstructed and sampled at

546 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

F i g u r e 20.10 3D isosurfaces of wind velocities in a thunderstorm. Scalar field data provided by the National Center for
Supercomputing Applications.

the vertex locations. The isosurface extraction algorithm may do this automatically, or
it may need to be computed as a postprocessing step after the surface geometry has been
extracted.

20.5.7 Volume Slic ing

The 2D image display technique can be extended to 3-dimensional fields by rendering one
or more planes intersecting (slicing) the 3-dimensional volume. If the data set is sampled
on a regular grid and the planes intersect the volume at right angles, the slices correspond
to 2-dimensional array slices of the data set. Each slice is rendered as a set of triangle
strips forming a plane, just as they would be for a 2-dimensional scalar field. The planes
formed by the strips are rotated and translated to orient them in the correct position
relative to the entire volume data set, as shown in Figure 20.11. Slices crossing through
the data set at arbitrary angles require additional processing to compute a sample value
at the locations where each vertex intersects the volume.

Animation can be used to march a slice through a data set to give a sense of the shape
of the field values through the entire volume. Volume slices can be used after clipping an

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 547

F i g u r e 20.11 90° Volume slices.

isosurface to add an isocap to the open cross section, revealing additional detail about
the behavior of the field inside the isosurface. The capping algorithm is described in
Section 16.9. The isocap algorithm uses the volume slice as the capping plane rather than
a single solid colored polygon.

20.5.8 Volume Rendering

Volume rendering is a useful technique for visualizing 3-dimensional scalar fields. Exam-
ples of sampled 3D data can range from computational fluid dynamics, medical data
from CAT or MRI scanners, seismic data, or any volumetric information where geomet-
ric surfaces are difficult to generate or unavailable. Volume visualization provides a way
to see through the data, revealing complex 3D relationships.

An alternative method for visualizing 3-dimensional scalar fields is to render the
volume directly. Isosurface methods produce hard surfaces at distinct field values. Volume
visualization methods produce soft surfaces by blending the contributions from multiple
surfaces, integrating the contribution from the entire volume. By carefully classifying the
range of field values to the various source contributions to the volume, and mapping these
classified values using color and transparency, individual surfaces can be resolved in the
rendered image.

Volume rendering algorithms can be grouped into four categories: ray casting
(Hall, 1991), resampling or shear-warp (Drebin, 1988; Lacroute, 1994), texture slicing
(Cabral, 1994), and splatting (Westover, 1990; Mueller, 1999).

Ray casting is the most common technique. The volume is positioned near the viewer
and a light source, and a ray is projected from the eye through each pixel in the image plane
through the volume (as shown in Figure 20.12). The algorithm (and many other volume
rendering algorithms) use a simplified light transport model in which a photon is assumed
to scatter exactly once, when it strikes a volume element (voxel) and is subsequently
reflected. Absorption between the light source and the scattering voxel is ignored, while
absorption between the viewer and the scattering is modeled. Using this simplified model,
the color of a pixel is computed by integrating the light transmission along the ray.
The integration calculation assumes that each volume element emits light and absorbs
a percentage the light passing through it. The amount absorbed is determined by the
amount of material contained in the voxel, which is mapped to an opacity, α, as part of

548 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

Eye

Light
source

Volume
data

Image
plane

Ray

F i g u r e 20.12 Ray casting.

the classification process. The pixel color for a ray passing through n voxels is computed
using the back to front compositing operation (Section 11.1.2),

Cf = αnCn + (1 − αn)(αn−1Cn−1 + 1 − αn−1(· · · (α0C0))),

where voxel 0 is farthest from the viewer along the ray.
The ray-casting process is repeated, casting a unique ray for each pixel on the screen.

Each ray passes through a different set of voxels, with the exact set determined by the
orientation of the volume relative to the viewer. Ray casting can require considerable com-
putation to process all of the rays. Acceleration algorithms attempt to avoid computations
involving empty voxels by storing the voxel data in hierarchical or other optimized data
structures. Performing the compositing operation from front to back rather than back
to front allows the cumulative opacity to be tracked, and the computation along a ray
terminated when the accumulated opacity reaches 1.

A second complication with ray casting involves accuracy in sampling. Sampled 3D
volume data shares the same properties as 2D image data described in (Section 4.1).
Voxels represent point samples of a continuous signal and the voxel spacing determines
the maximum representable signal frequency. When performing the integration operation,
the signal must be reconstructed at points along the ray intersecting the voxels. Simply
using the nearest sample value introduces sampling errors. The reconstruction operation
requires additional computations using the neighboring voxels. The result of integrating
along a ray creates a point sample in the image plane used to reconstruct the final image.
Additional care is required when the volume is magnified or minified during projection
since the pixel sampling rate is no longer equal to voxel sampling rate. Additional rays
are required to avoid introducing aliasing artifacts while sampling the volume.

If one of the faces of the volume is parallel with the image plane and an orthographic
projection with unity scaling is used, then the rays align with the point samples and
a simpler reconstruction function can be used. This special case, where the volume is
coordinate axis aligned, leads to a volume rendering variation in which the oriented and
perspective projected volume is first resampled to produce a new volume that is axis

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 549

aligned. The aligned volume is then rendered using simple ray casting, where the rays are
aligned with the sample points.

Shear-warp and related algorithms break the rendering into the resampling and ray-
casting parts. Warping or resampling operations are used to align voxel slices such that
the integration computations are simpler, and if necessary warp the resulting image. The
transformed slices can be integrated using simple compositing operations. Algorithms
that rely on resampling can be implemented efficiently using accelerated image-processing
algorithms. The shear-warp factorization (Lacroute, 1994) uses sophisticated data
structures and traversal to implement fast software volume rendering.

The following sections discuss the two remaining categories of volume rendering
algorithms: texture slicing and splatting. These algorithms are described in greater detail
since they can be efficiently implemented using the OpenGL pipeline.

20.5.9 Texture Sl ic ing

The texture-slicing algorithm is composed of two parts. First, the volume data is resam-
pled with planes parallel to the image plane and integrated along the direction of view.
These planes are rendered as polygons, clipped to the limits of the texture volume. These
clipped polygons are textured with the volume data, and the resulting images are com-
posited from back to front toward the viewing position, as shown in Figure 20.13. These
polygons are called data-slice polygons. Ideally the resampling algorithm is implemented
using 3D texture maps. If 3D textures are not supported by the OpenGL implementation
however, a more limited form of resampling can be performed using 2D texture maps.

Close-up views of the volume cause sampling errors to occur at texels that are far
from the line of sight into the data. The assumption that the viewer is infinitely far away

F i g u r e 20.13 Slicing a 3D texture to render volume.

550 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

Eye

Shells

Volume

F i g u r e 20.14 Slicing a 3D texture with spherical shells.

and that the viewing rays are perpendicular to the image plane is no longer correct. This
problem can be corrected using a series of concentric tessellated spheres centered around
the eye point, rather than a single flat polygon, to generate each textured “slice” of the
data as shown in Figure 20.14. Like flat slices, the spherical shells should be clipped to
the data volume, and each textured shell blended from back to front.

Slicing 3D Textures

Using 3D textures for volume rendering is the most desirable method. The slices can be
oriented perpendicular to the viewer’s line of sight. Spherical slices can be created for
close-up views to reduce sampling errors. The steps for rendering a volume using 3D
textures are:

1. Load the volume data into a 3D texture. This is done once for a particular data
volume.

2. Choose the number of slices, based on the criteria in the section on Sampling
Frequency considerations (p. 552). Usually this matches the texel dimensions of
the volume data cube.

3. Find the desired viewpoint and view direction.

4. Compute a series of polygons that cut through the data perpendicular to the
direction of view. Use texture coordinate generation to texture the slice properly
with respect to the 3D texture data.

5. Use the texture transform matrix to set the desired orientation of the textured
images on the slices.

6. Render each slice as a textured polygon, from back to front. A blend operation is
performed at each slice. The type of blend depends on the desired effect, and
several common types are described shortly.

7. As the viewpoint and direction of view changes, recompute the data-slice positions
and update the texture transformation matrix as necessary.

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 551

Slicing 2D Textures

Volume rendering with 2D textures is more complex and does not provide results as
good as with 3D textures, but can be used on any OpenGL implementation. The problem
with 2D textures is that the data-slice polygons can’t always be perpendicular to the view
direction. Three sets of 2D texture maps are created, each set perpendicular to one of the
major axes of the data volume. These texture sets are created from adjacent 2D slices of
the original 3D volume data along a major axis. The data-slice polygons must be aligned
with whichever set of 2D texture maps is most parallel to it. The worst case is when the
data slices are canted 45 degrees from the view direction.

The more edge-on the slices are to the eye the worse the data sampling is. In the
extreme case of an edge-on slice the textured values on the slices aren’t blended at all.
At each edge pixel, only one sample is visible, from the line of texel values crossing the
polygon slice. All the other values are obscured.

For the same reason, sampling the texel data as spherical shells to avoid aliasing
when doing close-ups of the volume data isn’t practical with 2D textures. The steps for
rendering a volume using 2D textures are:

1. Generate the three sets of 2D textures from the volume data. Each set of 2D
textures is oriented perpendicular to one of the volume’s major axes. This
processing is done once for a particular data volume.

2. Choose the number of slices. Usually this matches the texel dimensions of the
volume data cube.

3. Find the desired viewpoint and view direction.

4. Find the set of 2D textures most perpendicular to the direction of view. Generate
data-slice polygons parallel to the 2D texture set chosen. Use texture coordinate
generation to texture each slice properly with respect to its corresponding 2D
texture in the texture set.

5. Use the texture transform matrix to set the desired orientation of the textured
images on the slices.

6. Render each slice as a textured polygon, from back to front. A blend operation
is performed at each slice, with the type of blend operation dependent on the
desired effect. Relevant blending operators are described in the next section.

7. As the viewpoint and direction of view changes, recompute the data-slice positions
and update the texture transformation matrix as necessary. Always orient the data
slices to the 2D texture set that is most closely aligned with it.

Blending Operators

A number of blending operators can be used to integrate the volume samples. These
operators emphasize different characteristics of the volume data and have a variety of
uses in volume visualization.

552 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

Over The over operator (Porter, 1984) is the most common way to blend for volume
visualization. Volumes blended with the over operator approximate the transmission
of light through a colored, transparent material. The transparency of each point in the
material is determined by the value of the texel’s alpha channel. Texels with higher alpha
values tend to obscure texels behind them, and stand out through the obscuring texels in
front of them. The over operator is implemented in OpenGL by setting the blend source
and destination blend factors to GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA.

Attenuate The attenuate operator simulates an X-ray of the material. With attenuate,
the volume’s alpha appears to attenuate light shining through the material along the
view direction toward the viewer. The alpha channel models material density. The final
brightness at each pixel is attenuated by the total texel density along the direction of view.

Attenuation can be implemented with OpenGL by scaling each element by the number
of slices and then summing the results. This is done using constant color blending:1

glBlendFunc(GL_CONSTANT_ALPHA, GL_ONE)
glBlendColor(1.f, 1.f, 1.f, 1.f/number_of_slices)

Maximum Intensity Projection Maximum intensity projection (or MIP) is used in medical
imaging to visualize blood flow. MIP finds the brightest alpha from all volume slices
at each pixel location. MIP is a contrast enhancing operator. Structures with higher
alpha values tend to stand out against the surrounding data. MIP and its lesser-used
counterpart, minimum intensity projection, is implemented in OpenGL using the blend
minmax function in the imaging subset:

glBlendEquation(GL_MAX)

Under Volume slices rendered front to back with the under operator give the same
result as the over operator blending slices from back to front. Unfortunately,
OpenGL doesn’t have an exact equivalent for the under operator, although using
glBlendFunc(GL_SRC_ALPHA_SATURATE, GL_ONE) is a good approximation. Use
the over operator and back to front rendering for best results. See Section 11.1 for more
details.

Sampling Frequency Considerations

There are a number of factors to consider when choosing the number of slices (data-slice
polygons) to use when rendering a volume.

Performance It’s often convenient to have separate “interactive” and “detail” modes for
viewing volumes. The interactive mode can render the volume with a smaller number of
slices, improving the interactivity at the expense of image quality. Detail mode renders
with more slices and can be invoked when the volume being manipulated slows or stops.

1. Constant color blending is part of the Imaging Subset and the OpenGL 1.4 core.

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 553

Cubical Voxels The data-slice spacing should be chosen so that the texture sampling rate
from slice to slice is equal to the texture sampling rate within each slice. Uniform sampling
rate treats 3D texture texels as cubical voxels, which minimizes resampling artifacts.

For a cubical data volume, the number of slices through the volume should roughly
match the resolution in texels of the slices. When the viewing direction is not along a
major axis, the number of sample texels changes from plane to plane. Choosing the
number of texels along each side is usually a good approximation.

Non-linear blending The over operator is not linear, so adding more slices doesn’t just
make the image more detailed. It also increases the overall attenuation, making it harder
to see density details at the “back” of the volume. Changes in the number of slices used
to render the volume require that the alpha values of the data should be rescaled. There
is only one correct sample spacing for a given data set’s alpha values.

Perspective When viewing a volume in perspective, the density of slices should increase
with distance from the viewer. The data in the back of the volume should appear denser
as a result of perspective distortion. If the volume isn’t being viewed in perspective,
uniformly spaced data slices are usually the best approach.

Flat Versus Spherical Slices If spherical slices are used to get good close-ups of the data,
the slice spacing should be handled in the same way as for flat slices. The spheres making
up the slices should be tessellated finely enough to avoid concentric shells from touching
each other.

2D Versus 3D Textures 3D textures can sample the data in the s, t, or r directions freely.
2D textures are constrained to s and t. 2D texture slices correspond exactly to texel slices
of the volume data. To create a slice at an arbitrary point requires resampling the volume
data.

Theoretically, the minimum data-slice spacing is computed by finding the longest
ray cast through the volume in the view direction, transforming the texel values found
along that ray using the transfer function (if there is one) calculating the highest frequency
component of the transformed texels. Double that number for the minimum number of
data slices for that view direction.

This can lead to a large number of slices. For a data cube 512 texels on a side, the
worst case is at least 1024

√
3 slices, or about 1774 slices. In practice, however, the volume

data tends to be band-limited, and in many cases choosing the number of data slices to
be equal to the volume’s dimensions (measured in texels) works well. In this example,
satisfactory results may be achieved with 512 slices, rather than 1774. If the data is very
blurry, or image quality is not paramount (for example, in “interactive mode”), this value
can be reduced by a factor of 2 or 4.

554 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

Shrinking the Volume Image

For best visual quality, render the volume image so that the size of a texel is about the
size of a pixel. Besides making it easier to see density details in the image, larger images
avoid the problems associated with undersampling a minified volume.

Reducing the volume size causes the texel data to be sampled to a smaller area. Since
the over operator is nonlinear, the shrunken data interacts with it to yield an image that
is different, not just smaller. The minified image will have density artifacts that are not
in the original volume data. If a smaller image is desired, first render the image full size
in the desired orientation and then shrink the resulting 2D image in a separate step.

Virtualizing Texture Memory

Volume data doesn’t have to be limited to the maximum size of 3D texture memory.
The visualization technique can be virtualized by dividing the data volume into a set of
smaller “bricks.” Each brick is loaded into texture memory. Data slices are then textured
and blended from the brick as usual. The processing of bricks themselves is ordered from
back to front relative to the viewer. The process is repeated with each brick in the volume
until the entire volume has been processed.

To avoid sampling errors at the edges, data-slice texture coordinates should be
adjusted so they don’t use the surface texels of any brick. The bricks themselves are
oriented so that they overlap by one volume texel with their immediate neighbors. This
allows the results of rendering each brick to combine seamlessly. For more information
on paging textures, see Section 14.6.

Mixing Volumetric and Geometric Objects

In many applications it is useful to display both geometric primitives and volumetric
data sets in the same scene. For example, medical data can be rendered volumetrically,
with a polygonal prosthesis placed inside it. The embedded geometry may be opaque or
transparent.

The opaque geometric objects are rendered first using depth buffering. The volumetric
data-slice polygons are then drawn with depth testing still enabled. Depth buffer updates
should be disabled if the slice polygons are being rendered from front to back (for most
volumetric operators, data slices are rendered back to front). With depth testing enabled,
the pixels of volume planes behind the opaque objects aren’t rendered, while the planes in
front of the object blend on it. The blending of the planes in front of the object gradually
obscure it, making it appear embedded in the volume data.

If the object itself should be transparent, it must be rendered along with the data-
slice polygons a slice at a time. The object is chopped into slabs using application-defined
clipping planes. The slab thickness corresponds to the spacing between volume data
slices. Each slab of object corresponds to one of the data slices. Each slice of the object
is rendered and blended with its corresponding data-slice polygon, as the polygons are
rendered back to front.

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 555

Transfer Functions

Different alpha values in volumetric data often correspond to different materials in the
volume being rendered. To help analyze the volume data, a nonlinear transfer function
can be applied to the texels, highlighting particular classes of volume data. This transfer
function can be applied through one of OpenGL’s look-up tables. Fragment programs
and dependent texture reads allow complex transfer functions to be implemented. For the
fixed-function pipeline, the SGI_texture_color_table extension applies a look-up
table to texels values during texturing, after the texel value is filtered.

Since filtering adjusts the texel component values, a more accurate method is to
apply the look-up table to the texel values before the textures are filtered. If the
EXT_color_table table extension is available, a color table in the pixel path can be
used to process the texel values while the texture is loaded. If look-up tables aren’t avail-
able, the processing can be done to the volume data by the application, before loading the
texture. With the increasing availability of good fragment program support, it is practical
to implement a transfer function as a postfiltering step within a fragment program.

If the paletted texture extension (EXT_paletted_texture) is available and the
3D texture can be stored simply as color table indices, it is possible to rapidly change the
resulting texel component values by changing the color table.

Volume-cutting Planes

Additional surfaces can be created on the volume with application-defined clipping planes.
A clipping plane can be used to cut through the volume, exposing a new surface. This
technique can help expose the volume’s internal structure. The rendering technique is
the same, with the addition of one or more clipping planes defined while rendering and
blending the data-slice polygons.

Shading the Volume

In addition to visualizing the voxel data, the data can be lighted and shaded. Since there
are no explicit surfaces in the data, lighting is computed per volume texel.

The direct approach is to compute the shading at each voxel within the OpenGL
pipeline, ideally with a fragment program. The volumetric data can be processed to find
the gradient at each voxel. Then the dot product between the gradient vector, now used
as a normal, and the light is computed. The volumetric density data is transformed to
intensity at each point in the data. Specular intensity can be computed in a similar way,
and combined so that each texel contains the total light intensity at every sample point in
the volume. This processed data can then be visualized in the manner described previously.

If fragment programs are not supported, the volume gradient vectors can be
computed as a preprocessing step or interactively, as an extension of the texture bump-
mapping technique described in Section 15.10. Each data-slice polygon is treated as
a surface polygon to be bump-mapped. Since the texture data must be shifted and
subtracted, and then blended with the shaded polygon to generate the lighted slice before

556 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

blending, the process of generating lighted slices must be performed separately from the
blending of slices to create the volume image.

Warped Volumes

The data volume can be warped by nonlinearly shifting the texture coordinates of the data
slices. For more warping control, tessellate the slices to provide more sample points to
perturb the texture coordinate values. Among other things, very high-quality atmospheric
effects, such as smoke, can be produced with this technique.

20.5.10 Splatt ing

Splatting (Westover, 1990) takes a somewhat different approach to the signal recon-
struction and integration steps of the ray-casting algorithm. Ray casting computes the
reconstructed signal value at a new sample point by convolving a filter with neighboring
voxel samples. Splatting computes the contribution of a voxel sample to the neighboring
pixels and distributes these values, accumulating the results of all of the splat distribu-
tions. The resulting accumulation consists of a series of overlapping splats, as shown in
Figure 20.15.

Splatting is referred to as a forward projection algorithm since it projects voxels
directly onto pixels. Ray casting and texture slicing are backward projection algorithms,
calculating the mapping of voxels onto a pixel by projecting the image pixels along the
viewing rays into the volume. For sparse volumes, splatting affords a significant optimiza-
tion opportunity since it need only consider nonempty voxels. Voxels can be sorted by
classified value as a preprocessing step, so that only relevant voxels are processed during
rendering. In contrast, the texture-slicing methods always process all of the voxels.

The contribution from a voxel is computed by integrating the filter kernel along
the viewing ray, as shown in Figure 20.16. A typical kernel might be a 3D Gaussian
distribution centered at the voxel center. The width of the kernel is typically several
(5 to 11) pixels wide. The projection of the kernel onto the image plane is referred
to as the footprint of the kernel. For an orthographic projection, the footprint of the
convolution filter is fixed and can be stored in a table. To render an image, slices of voxels
are stepped through, scaling the filter kernel by the sample value and accumulating the

F i g u r e 20.15 Overlapping splats.

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 557

Spherical splat
kernel

z
Eye

z

F i g u r e 20.16 Splat kernel integration.

result. For an orthographic projection with no scaling, the integrated kernel table can be
used directly. For projections that scale the volume, the footprint is scaled proportionately
and the table is recalculated using the scaling information. For perspective projections,
the footprint size varies with the distance from the viewer and multiple footprint tables are
required.

The simplest splatting algorithm sorts all of the voxels along the viewing direction and
renders the voxels one at a time from the back of the volume to the front, compositing each
into the framebuffer. This can be implemented using the OpenGL pipeline by creating a
table of projected kernels and storing them as 2D texture maps. Each voxel is rendered by
selecting the appropriate texture map and drawing a polygon with the correct screen-space
footprint size at the image-space voxel position. The polygon color is set to the color (or
intensity) and opacity corresponding to the classified voxel value and the polygon color
is modulated by the texture image.

This algorithm is very fast. It introduces some errors into the final image, however,
since it composites the entire 3D kernel surrounding the voxel at once. Two voxels that
are adjacent (parallel to the image plane) have overlapping 3D kernels. Whichever voxel
is rendered second will be composited over pixels shared with the voxel rendered first.
This results in bleeding artifacts where material from behind appears in front. Ideally the
voxels contributions should be subdivided along the z axis into a series of thin sheets and
the contributions from each sheet composited back to front so that the contributions to
each pixel are integrated in the correct order.

An improvement on the algorithm introduces a sheet buffer that is used to correct
some of the integration order errors. In one form of the algorithm, the sheet buffer
is aligned to the volume face that is most parallel to the image plane and the sheet is
stepped from the back of the volume to the front, one slice at a time. At each position the
set of voxels in that slice is composited into the sheet buffer. After the slice is processed,
the sheet buffer is composited into the image buffer, retaining the front-to-back ordering.
This algorithm is similar to the texture slice algorithm using 2D textures.

Aligning the sheet buffer with one of the volume faces simplifies the computations,
but introduces popping artifacts as the volume is rotated and the sheet buffer switches
from one face to another. The sheet buffer algorithm uses the OpenGL pipeline in much
the same way as the simple back-to-front splat algorithm. An additional color buffer
is needed to act as the image buffer, while the normal rendering buffer serves as the

558 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

sheet buffer. The second color buffer can be the front buffer, an off-screen buffer, or a
texture map.

In this algorithm, the sheet buffer is aligned with the volume face most parallel
with the image plane. A slab is constructed that is �s units thick, parallel to the sheet
buffer. The slab is stepped from the back of the volume to the front. At each slab loca-
tion, all voxels with 3D kernel footprints intersecting the slab are added to the sheet
buffer by clipping the kernel to the slab and compositing the result into the sheet buffer.
Each completed sheet buffer is composited into the main image buffer, maintaining the
front-to-back order.

A variation on the sheet buffer technique referred to as an image-aligned sheet buffer
(Mueller, 1998) more closely approaches front to back integration and eliminates the
color popping artifacts in the regular sheet buffer algorithm. The modified version aligns
the sheet buffer with the image plane, rather than the volume face most parallel to the
image plane. The regular sheet buffer algorithm steps through the voxels one row at a
time, whereas the image-aligned version creates an image-aligned slab volume, �s units
thick along the viewing axis, and steps that from back to front through the volume.
At each position, the set of voxels that intersects this slab volume are composited into
the sheet buffer. After each slab is processed, the sheet buffer is composited into the
image buffer. Figure 20.17 shows the relationship between the slab volume and the voxel
kernels.

The image-aligned sheet buffer differs from the previous two variations in that the
slab volume intersects a portion of the kernel. This means that multiple kernel integrals
are computed, one for each different kernel-slab intersection combination. The number
of preintegrated kernel sections depends on the radial extent of the kernel, R, and the
slab width �s. A typical application might use a kernel 3 to 4 units wide and a slab width
of 1. A second difference with this algorithm is that voxels are processed more than once,
since a slab is narrower than the kernel extent.

Current
sheet buffer

Slab width

Image plane

Slabs

Kernels

F i g u r e 20.17 Image-aligned sheet buffer.

S E C T I O N 2 0 . 5 Sca l a r F i e l d V i sua l i z a t i on 559

The image-aligned algorithm uses the OpenGL pipeline in the identical manner as for
the other algorithms. The only difference is that additional 2D texture maps are needed
to store the preintegrated kernel sections and the number of compositing operations
increases.

Shading

Like the other volume rendering algorithms, the shading operations are not limited to
the over compositing operator. Maximum intensity projections and attenuate operators
described for texture slicing are equally useful for splatting.

20.5.11 Creating Volume Data

Both the texture slicing and splatting methods can be intermixed with polygonal data.
Sometimes it is useful to convert polygonal objects to volumetric data, however, so that
they can be rendered using the same techniques. The OpenGL pipeline can be used to
dice polygonal data into a series of slices using either a pair of clipping planes or a 1D
texture map to define the slice. The algorithm repeatedly draws the entire object using an
orthographic projection, creating a new slice in the framebuffer each time. To produce a
single value for each voxel, the object’s luminance or opacity is rendered with no vertex
lighting or texture mapping. The framebuffer slice data are either copied to texture images
or transferred to the host memory after each drawing operation until the entire volume
is complete.

One way to define a slice for rasterization is to use the near and far clip planes.
The planes are set to bound the desired slice and are spaced dz units apart as shown
in Figure 20.18. For example, a modeling transformation might be defined to map the
eye z coordinates for the geometry to the range [2.0, 127.0], and the near and far clip
planes positioned 1 unit apart at the positions (1.0, 2.0), (2.0, 3.0), . . . , (128, 129) to pro-
duce 128 slices. The content of each slice is the geometry that is defined in the range
[near, near + dz]. The exact sample location is dependent on the polygon data and is not
a true point sample from the center of the voxel. The x and y coordinates are at the voxel
center, whereas the z coordinate satisfies the plane equation of the polygon.

Geometric
data

Image
plane

Clip planes

z

F i g u r e 20.18 Slicing geometric data.

560 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

The number of fragments accumulated in each pixel value is dependent on the
number of polygons that intersect the pixel center. If depth buffering is enabled, only
a single fragment is accumulated, dependent on the depth function. To accumulate multi-
ple fragments, a weighting function is required. If a bound on the number of overlapping
polygons is known, the stencil buffer can be used, in conjunction with multiple rendering
passes to control which fragment is stored in the framebuffer, creating a superslice. As
each superslice is transferred to the host it can be accumulated with the other superslices
to compute the final set of slice values.

Polygons edge-on to the image plane have no area, and make no sample contribu-
tion, which can cause part of an object to be missed. This problem can be mitigated
by repeating the slicing algorithm with the volume rotated so that the volume is sliced
along each of the three major axes. The results from all three volumes are merged. Since
the algorithm approximates point sampling the object, it can introduce aliasing artifacts.
To reduce the artifacts and further improve the quality of the sample data, the volume
can be supersampled by increasing the object’s projected screen area and proportionately
increasing the number of z slices. The final sample data is generated off-line from the
supersampled data using a higher-order reconstruction filter.

The clip plane slicing algorithm can be replaced with an alternate texture clipping
technique. The clipping texture is a 1D alpha texture with a single opaque texel value and
zero elsewhere. The texture width is equal to the number of slices in the target volume.
To render a volume slice, the object’s z vertex coordinate is normalized relative to the
z extent of the volume and mapped to the s texture coordinate. As each slice is rendered,
the s coordinate is translated to position the opaque texel at the next slice position. If
the volume contains v slices, the s coordinate is advanced by 1/v for each slice. Using
nearest (point) sampling for the texture filter, a single value is selected from the texture
map and used as the fragment color. Since this variation also uses polygon rasterization
to produce the sample values, the z coordinate of the sample is determined by the plane
equation of the polygon passing through the volume. However, since the sample value is
determined by the texture map, using a higher-resolution texture maps multiple texels to
a voxel. By placing the opaque texel at the center of the voxel, fragments that do not pass
close enough to the center will map to zero-valued texels rather than an opaque texel,
improving sampling accuracy.

20.6 Vector Field Visualization

Visualizing vector fields is a difficult problem. Whereas scalar fields have a scalar value
at each sample point, vector fields have an n-component vector (usually two or three
components). Vector fields occur in applications such as computational fluid dynamics
and typically represent the flow of a gas or liquid. Visualization of the field provides a
way to better observe and understand the flow patterns.

S E C T I O N 2 0 . 6 Vec to r F i e l d V i sua l i z a t i on 561

Vector field visualization techniques can be grouped into three general classes: icon
based, particle and stream line based, and texture based. Virtually all of these techniques
can be used with both 2- and 3-dimensional vector fields, EV

2 and EV
3 .

20.6.1 Icons

Icon-based or hedgehog techniques render a 3D geometric object (cone, arrow, and so on)
at each sample point with the geometry aligned with the vector direction (tangent to the
field) at that point. Other attributes, such as object size or color, can be used to encode
a scalar quantity such as the vector magnitude at each sample point. Arrow plots can be
efficiently implemented using a single instance of a geometric model to describe the arrow
aligned to a canonical up vector U. At each sample point, a modeling transformation is
created that aligns the up vector with the data set vector, V. This transformation is a
rotation through the angle U ·V about the axis U×V. Storage and time can be minimized
by precomputing the angle and cross product and storing these values with the sample
positions.

Glyphs using more complex shape and color cues, called vector field probes, can be
used to display additional properties such as torsion and curvature (de Leeuw, 1993).
In general, icons or glyphs are restricted to a coarse spatial resolution to avoid overlap
and clutter. Often it is useful to restrict the number of glyphs, using them only in regions
of interest. To avoid unnecessary distraction from placement patterns, the glyphs should
not be placed on a regular grid. Instead, they should be displaced from the sample position
by a small random amount. To further reduce clutter, glyphs display can be constrained
to particular 3D regions. Brushing (painting) techniques can be used to provide inter-
active control over which glyphs are displayed, allowing the viewer to paint and erase
regions of glyphs from the display. The painting techniques can use variations on the
selection techniques described in Section 16.1 to determine icons that intersect a given
screen area.

20.6.2 Part ic le Tracing

Particle tracing techniques trace the path of massless particles through a vector velocity
field. The particles are displayed as small spheres or point-shaped geometry, for example,
2D triangles or 3D cones. Portions of the field are seeded with particles and paths are
traced through the field following the vector field samples (see Figure 20.19). The positions
of the particles along their respective paths are animated over time to convey a sense of
flow through the field.

Particle paths are computed using numerical integration. For example, using Euler’s
method the new position, pi+1, for a particle is computed from the current position,
pi as pi+1 = pi + vi�t. The vector, vi, is an estimate of the vector at the point pi. It is
computed by interpolating the vectors at the vertices of the area or volume cell containing
pi. For a 2-dimensional field, the four vectors at the vertices of the area cell are bilinearly
interpolated. For a 3-dimensional field, the 8 vectors at the vertices of the volume cell

562 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

F i g u r e 20.19 Particle tracing.

are trilinearly interpolated. This simple approximation can introduce substantial error.
More accurate integration using Runge-Kutta (R-K) methods (Lambert, 1991) are a better
choice and can be incorporated with only a small increase in complexity. For example, a
fourth-order R-K method is computed as

pi+1 = pi + 1
6

�t
(
vi + 2v1

i+1 + 2v2
i+1 + 2v3

i+1

)

where vk
i+1 is the vector computed at intermediate position, pi + 1

2�tvk−1
i+1 , and v0

i+1 = vi.
For small number of particles, the particle positions can be recomputed each frame.

For large numbers of particles it may be necessary to precompute the particle positions.
If the particle positions can be computed interactively, the application allows the user to
interactively place new particles in the system and follow the flow. Various glyphs can
be used as the particles. The most common are spheres and arrows. Arrows are oriented
in the direction of the field vector at the particle location. Additional information can be
encoded in the particles using other visual cues. The magnitude of the vector is reflected
in the speed of the particle motion, but can be reinforced by mapping the magnitude to
the particle color.

S E C T I O N 2 0 . 6 Vec to r F i e l d V i sua l i z a t i on 563

20.6.3 Stream Lines

A variation on particle tracing techniques is to record the particle paths as they are
traced out and display each path as a stream line using lines or tube-shaped geometry.
Each stream line is the list of positions computed at each time step for a single particle.
Rendering the set of points as a connected line strip is the most efficient method, but using
solid geometry such as tubes or cuboids allows additional information to be incorporated
in the shape. A variation of stream lines called ribbons, uses geometry with a varying cross
section or rotation (twist) to encode other local characteristics of the field: divergence or
convergence modulates the width, and curl angular velocity rotates the geometry.

A ribbon results from integrating a line segment, rather than a point, through the
velocity field. Ribbons can be drawn as quadrilateral (or triangle) strips where the strip
vertices coincide with the end points of the line segment at each time step. For small
step sizes, this can result in a large number of polygons in each ribbon. Storing the
computed vertices in a vertex array and drawing them as connected primitives maximizes
the drawing performance. Ribbons can be lighted, smooth shaded, and depth buffered to
improve the 3D perception. However, for dense or large data sets, the number of ribbons
to be rendered each frame may create a prohibitive processing load on the OpenGL
pipeline.

20.6.4 I l luminated Stream Lines

When visualizing 3-dimensional fields, illumination and shading provide additional visual
cues, particularly for dense collections of stream lines. One type of geometry that can be
used is tube-shaped geometry constructed from segments of cylinders following the path.
In order to capture accurate shading information, the radius of the cylinders needs to be
finely tessellated, resulting in a large polygon load when displaying a large number of
stream lines.

Another possibility is to use line primitives since they can be rendered very efficiently
and allow very large numbers of stream lines to be drawn. A disadvantage is that lines
are rendered as flat geometry with a single normal at each end point, so they result
in much lower shading accuracy compared to using tessellated cylinders. In (Stalling,
1997), an algorithm is described to approximate cylinder-like lighting using texture map-
ping (see Figure 20.20). This algorithm uses the anisotropic lighting method described in
Section 15.9.3.2

The main idea behind the algorithm is to choose a normal vector that lies in the same
plane as that formed by the tangent vector T and light vector L. The diffuse and specular
lighting contributions are then expressed in terms of the line’s tangent vector and the
light vector rather than a normal vector. A single 2D texture map contains the ambient
contribution, the 1D cosine function used for the diffuse contribution, and a second 2D
view-dependent function used to compute the specular contribution.

2. Actually, this method inspired the anisotropic lighting method.

564 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

F i g u r e 20.20 Illuminated stream lines.

The single material reflectance is sent as the line color (much like color material)
and is modulated by the texture map. The illuminated lines can also be rendered using
transparency techniques. This is useful for dense collections of stream lines. The opacity
value is sent with the line color and the lines must be sorted from back to front to be
rendered correctly, as described in Section 11.8.

20.6.5 Line Integral Convolution

Line integral convolution (see Figure 20.21) is a texture-based technique for visualizing
vector fields and has the advantage of being able to visualize large and detailed vector
fields in a reasonable display area.

Line integral convolution involves selectively blurring a reference image as a function
of the vector field to be displayed. The reference image can be anything, but to make
the results clearer, it is usually a spatially uncorrelated image (e.g., a noise image). The
resulting image appears stretched and squished along the directions of the distorting vector
field stream lines, visualizing the flow with a minimum of display resolution. Vortices,
sources, sinks, and other discontinuities are clearly shown in the resulting image, and the
viewer can get an immediate grasp of the flow field’s “big picture.”

S E C T I O N 2 0 . 6 Vec to r F i e l d V i sua l i z a t i on 565

F i g u r e 20.21 Line integral convolution.

The algorithm starts with a vector field, sampled as a discrete grid of normalized
vectors. A nonuniform and spatially uncorrelated image is needed so that correlations
applied to it will be more obvious. This technique visualizes the direction of the flow
field, not its velocity. This is why the vector values at each grid point are normalized.

The processed image can be calculated directly using a special convolution technique.
A representative set of vector values on the vector grid is chosen. Special convolution ker-
nels are created shaped like the local stream line at that vector. This is done by tracing the
local field flow forward and backward some application-defined distance. The resulting
curve is used as a convolution kernel to convolve the underlying image. This process is
repeated over the entire image using a sampling of the vectors in the vector field.

Mathematically, for each location p in the input vector field a parametric curve P(p, s)
is generated that passes through the location and follows the vector field for some distance
in either direction. To create an output pixel F′(p), a weighted sum of the values of the
input image F along the curve is computed. The weighting function is k(x). Thus, the
continuous form of the equation is

F′(p) =
∫ L
−L F(P(p, s))k(s)ds∫ L

−L k(s)ds

566 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

To discretize the equation, use values P0..l along the curve P(p, s):

F′(p) =
∑l

i=0 F(Pi)hi∑l
i=0 hi

The accuracy with which the processed image represents the vector field depends on how
accurately the line convolution kernels follow the flow-field stream lines. Since the con-
volution kernels are only discretely sampling a continuous flow field, they are inaccurate
in general. Areas of flow that are changing slowly will be represented well, but rapidly
changing regions of the flow field (such as the center of vortices and other singularities)
will be incorrectly described or missed altogether.

There are various ways of optimizing the sampling intervals to minimize this problem,
with different trade-offs between computation time and resulting accuracy. The numer-
ical analysis topics involved are described in detail in (Cabral, 1993; Ma, 1997). For
our purposes, we’ll use the simplest but least accurate method: a fixed spatial sampling
interval.

Rather than generating a series of custom convolution kernels and applying them to
an image, a texture mapping approach can be used. This variant has the advantage that it’s
reasonably easy to implement and runs quickly, especially on systems with good texturing
and accumulation buffer support, since it is parallelizing the convolution operations.

The concept is simple: a surface, tessellated into a mesh, is textured with an image
to be processed. Each vertex on the surface has a texture coordinate associated with
it. Instead of convolving the image with a series of stream-line convolution kernels, the
texture coordinates at each vertex are shifted parallel to the flow-field vector, local to
that vertex. This process, called advection, is done repeatedly in a series of displacements
parallel to the flow vectors, with the resulting series of distorted images combined using
the accumulation buffer.

The texture coordinates at each grid location are displaced parallel to the local field
vector in a fixed series of steps. The displacement is done both parallel and antiparallel to
the field vector at the vertex. The amount of displacement for each step and the number
of steps determines the accuracy and appearance of the line integral convolution. The
application generally sets a global value describing the length of the displacement range
for all texture coordinates on the surface. The number of displacements along that length
is computed per vertex, as a function of the local field’s curl (see Figure 20.22).

The following assumptions simplify the line integral convolution procedure.

1. The supplied flow-field vector grid matches the tessellated textured surface. There
is a one-to-one correspondence between vector and vertex.

2. Set a fixed number of displacements (n) at each vertex.

These assumptions allow the vector, associated with each vertex on the tessellated sur-
face, to be used when computing texture displacements. Displacements can also be

S E C T I O N 2 0 . 6 Vec to r F i e l d V i sua l i z a t i on 567

Flow field vectors

n samples

L

F i g u r e 20.22 Line integral convolution with OpenGL.

calculated by parameterizing the vector and computing evenly spaced texture coordi-
nate locations displaced along the vector direction, both forward and backward. Given
these assumptions, the procedure becomes:

1. Update the texture coordinates at each vertex on the surface.

2. Render the surface using the noise texture and the displaced texture coordinates.

3. Accumulate the resulting image in the accumulation buffer, scaling by 1/n.

4. Repeat the steps above n times and then return the accumulated image.

5. Perform histogram equalization or image scaling to maximize contrast.

Since the texture coordinates are repeatedly updated, using vertex arrays to represent
the textured surface provides several benefits. It simplifies the representation of the
texture coordinates (they can be kept in a 2D array), and it potentially increases ren-
dering performance (glDrawElements has an index array that eliminates the need to
send shared texture and vertex coordinates multiple times) and it reduces function call
overhead.

Scaling each accumulation uniformly is not optimal. The displacement of the texture
coordinates is most accurate close to the grid vector, so each image contribution should
be scaled as an inverse function of distance from the vector. The farther the displacement
from the original flow field vector the more potential error in the advection, and the
smaller the accumulation scale factor should be. More sophisticated algorithms can be
implemented that adjust scale based on a computed, rather than assumed, accuracy. Any
scaling algorithm should take into account the maximum and minimum possible color
values after accumulating to avoid pixel color overflow or underflow.

In many implementations, the performance of this algorithm will be limited by the
speed of the convolution operation. For some applications, a blend operation can be
substituted with a loss of resolution accuracy. The scaling operation can be provided by
changing the intensity of the base polygon. Care must be taken to avoid overflow and
underflow of the blended color values.

568 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

There are methods to enhance the resulting flow field to counteract the blurring
tendency from the random noise texels being blended. One simple method is to scale
and bias the image to maximize its contrast using glCopyPixels with the contrast
stretching method described in Section 12.4.1. An alternative is to perform a histogram
equalization using the method described in Section 12.4.2.

The approach described here to generate line integral convolution images is very sim-
plistic. More sophisticated algorithms decouple the surface tessellation from the flow field
grid, and more finely subdivide the tessellation surface where there are rapidly chang-
ing flows to properly sample them. This subdivision algorithm should be backed with
a rigorous sampling approach so that the results can be trusted within given accuracy
bounds. A subdivision algorithm must also recognize and handle various types of flow
discontinuities.

This technique can be readily extended into three dimensions, using 3D textures
(Interrante, 1997). Volume visualization techniques, described in Section 20.5.8, can be
used to visualize the resulting 3D line integral convolution image.

20.7 Tensor Field Visualization

Tensors further extend vector-valued data samples to k-dimensional arrays at each sample
point. Tensor fields frequently occur in engineering and physical science computations.
For example, rank 2 (second-order) tensors are used to describe velocity gradients, stress,
and strain. Tensor fields present a difficult visualization problem since it is difficult to
map even a second order tensor onto a set of visual cues. A simple second order tensor
might consist of a 3 × 3 array of scalar values defined over a 3D domain. It is difficult
to visualize the data directly, so such fields are often visualized using vector or scalar
techniques.

One frequently occurring class of tensor fields, symmetric tensor fields, has special
properties that simplify the visualization problem. In particular, 3-dimensional fields of
second-order tensors can be thought of as three orthogonal vector fields. Each tensor value
can be reduced to a set of three real-valued vectors defined by the real-valued eigenvalues
(λ) and unit eigenvectors (e) of the tensor value

v(i) = λ(i)e(i), i = 1, 2, 3

The vectors are ordered such that λ(1) ≥ λ(2) ≥ λ(3) and v(1) is called the major eigenvector,
v(2) the medium eigenvector, and v(3) the minor eigenvector. Visualization techniques
strive to visualize these three vectors in meaningful ways.

The simplest method is to map each tensor to a 3D glyph, such as an ellipsoid
(Haber, 1990) or rectangular prism. The major axis of the ellipsoid aligns with the major
eigenvector, and the two remaining axes with the medium and minor eigenvectors. The
magnitudes of the vectors can be used to scale the glyph, and colors can be used to

S E C T I O N 2 0 . 7 Tenso r F i e l d V i sua l i z a t i on 569

indicate compression or strain (negative and positive eigenvalues). Tensor glyphs can be
efficiently rendered using the method described in Section Section 20.6.1. If eigenvalue
magnitudes are used to scale the glyph geometry, the transformed surface normal vectors
will require normalization to compute correct lighting. The simplest way to accomplish
renormalization is to enable automatic normalization, using GL_NORMALIZE.

20.7.1 Hyperstreamlines

Using glyphs to visualize the eigenvectors suffers from the same drawbacks found with
using glyphs to visualize vector fields: rapid crowding and their discrete nature provides
little information regarding the continuity of the field. To solve these problems, vector
field visualization uses advection techniques to trace stream lines through the vector field.
An analogous idea can be applied to symmetric tensor fields by tracing tensor field lines
tangent to one of the three vectors at every point (Dickinson, 1989).

This method is virtually identical to tracing a stream line through a vector field, with
the difference being that one of the three vectors is selected. The same methods used for
rendering stream lines can be used to render tensor field lines.

The tensor field line approach only displays one of the vectors at each point. Replacing
the stream line with tubular geometry with an elliptic cross section allows all three vectors
to be represented continuously along the field line. Each tube, termed a hyperstreamline,
follows one of the eigenvectors, while the two remaining vectors modulate the major
and minor axis length of the elliptical cross section (Delmarcelle, 1993). Usually the tube
is color coded according to the magnitude of the longitudinal vector. More generally,
an arbitrary geometric primitive can be swept along the vector field trajectory while
modulating its size using the other two vectors. Using a cross as the profile shape allows
encoding of both the magnitude and direction of the transverse eigenvectors. The result,
called a helix, may appear as a spiral as the transverse vectors change direction along the
length of the helix.

Rendering hyperstreamlines interactively requires efficient construction of the model
geometry. The trajectory is traced out using the advection techniques described in
Section 20.6.2, but with some additional complications. Two eigenvalues may become
equal at some point along the path. Assuming that the longitudinal trajectory is smooth,
abrupt changes in the longitudinal direction can be used to signal that additional search-
ing is required to locate a degeneracy and terminate the hyperstreamline. Similarly, the
derivatives of the transverse eigenvalues can be used to determine when to search for
points where these eigenvalues are zero and add extra vertices to display the singularity
(Delmarcelle, 1993).

The hyperstreamline is constructed by tiling the perimeter of the tube or helix
with a ring of polygons that are decomposed into a single triangle strip, (as shown in
Figure 20.23). For an elliptical tube, the vertices in a unit circle can be stored in a look-up
table and rotated to match the orientation of the longitudinal vector. The vertices and
normal vectors are stored in a vertex array or display list for efficient transfer to the

570 C H A P T E R 20 Sc i en t i f i c V i sua l i z a t i on

Tiled
tube
segments

F i g u r e 20.23 Tiling a hyperstreamline.

rendering pipeline. Since the stream lines are closed surfaces, they can be rendered with
backface culling to further improve the performance.

Hyperstreamlines are effective in describing the tensor field along one dimensional
paths. They can be extended to handle nonsymmetric tensors (Delmarcelle, 1993) and fur-
ther extended to hyperstreamsurfaces (Jeremic, 2002) similar to the way stream lines are
extended to stream surfaces. However, hyperstreamlines are subject to the same problem
seen in other iconic and geometry-based visualization techniques: the overall visualization
is sensitive to the seed points for the stream lines. The density of hyperstreamlines must
be carefully controlled to maintain an intelligible visualization. Beyond hyperstreamline
and hyperstreamsurfaces, other techniques have been proposed that display more of the
field values simultaneously using hue and anisotropic reflection to encode tensor values
(Kindlmann, 1999).

20.8 Summary

The number of visualization techniques continues to grow along with advances in hard-
ware accelerator processing power and support for additional shading techniques using
multitexture, vertex programs, fragment programs, and multipass rendering. Simultane-
ously, the size of scientific and engineering data sets continues to grow and will remain a
challenge to visualization for some time to come.

21
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

CH
A
P
TE

R

Structuring Applications

for Performance

Interactive graphics applications are performance sensitive, perhaps more sensitive than
any other type of application. A design application can be very interactive at a redraw
rate of 72 frames per second (fps), difficult to operate at 20 fps, and unusable at 5 fps.
Tuning graphics applications to maximize their performance is important. Even with
high-performance hardware, application performance can vary by multiple orders of mag-
nitude, depending on how well the application is designed and tuned for performance.
This is because a graphics pipeline must support such a wide mixture of possible command
and data sequences (often called “paths”) that it’s impossible to optimize an implemen-
tation for every possible configuration. Instead, the application must be optimized to
take full advantage of the graphics systems’ strengths, while avoiding or minimizing its
weaknesses. Although taking full advantage of the hardware requires understanding and
tuning to a particular implementation, there are general principles that work with nearly
any graphics accelerator and computer system.

21.1 Structuring Graphics Processing

In its steady state, a graphics application animates the scene and achieves interactivity by
constantly updating the scene it’s displaying. Optimizing graphics performance requires
a detailed understanding of the processing steps or stages used during these updates.

571

572 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

The stages required to do an update are connected in series to form a pipeline, starting at
the application and proceeding until the framebuffer is updated. The early stages occur
in the application, using its internal state to create data and commands for the OpenGL
implementation. The application has wide leeway in how its stages are implemented. Later
stages occur in the OpenGL implementation itself and are constrained by the requirements
of the OpenGL specification. A well-optimized application designs its stages for maximum
performance, and drives the OpenGL implementation with a mixture of commands and
data chosen to maximize processing efficiency.

21.1.1 Scene Graphs

An application uses its own algorithms and internal state to create a sequence of graphics
data and commands to update the scene. There are a number of design approaches for
organizing the data and processing within an application to efficiently determine com-
mand sequences to draw the scene. One way to think about a graphics application is as
a database application. The collection of geometric objects, textures, state, and so on,
form the database; drawing a scene requires querying the set of visible objects from the
database and issuing commands to draw them using the OpenGL pipeline. A popular
method for organizing this database is the scene graph. This design technique provides
the generality needed to support a wide range of applications, while allowing efficient
queries and updates to the database.

A scene graph can be thought of as a more sophisticated version of a display list. It
is a data structure containing the information that represents the scene. But instead of
simply holding a linear sequence of OpenGL commands the nodes of a scene graph can
hold whatever data and procedures are needed to manipulate or render the scene. It is a
directed graph, rather than a list. This topology is used to collect elements of the scene
into hierarchical groupings. The organization of scene graphs is often spatial in nature.
Objects close to each other in the scene graph are close to each other physically. This
supports efficient implementations of culling techniques such as view-frustum and portal
culling. Figure 21.1 shows a schematic figure of a simple scene graph storing transforms

Xform2Xform1 Xform3

Tire

WheelBody

F i g u r e 21.1 A simple scene graph.

S E C T I O N 2 1 . 1 S t ru c tu r i ng G raph i c s P ro ce s s i ng 573

and collections of geometric primitives that form objects. Note that a single object can
be transformed multiple times to create multiple instances on the screen. This turns the
scene graph from a simple tree structure to a directed acyclic graph (DAG).

In addition to objects, which correspond to items in the scene, attribute values
and procedures can also be included as nodes in the scene graph. In the most common
approach, nodes closer to the root of the graph are more global to the scene, affecting
the interpretation of their child nodes. The graph topology can be changed to represent
scene changes, and it can be traversed. Traversal makes it possible to easily update node
information, or to use that information to generate the stream of OpenGL commands
necessary to render it.

This type of organization is general enough that an application can use the scene graph
for tasks that require information about spatial relationships but that do not necessarily
involve graphics. Example include computing 3D sound sources, and source data for col-
lision detection. Since it is such a common approach, this chapter discussess graphics pro-
cessing steps in the context of an application using a scene graph. This yields a five-stage
process. It starts with application generating or modifying scene graph elements and ends
with OpenGL updating the framebuffer. The stages are illustrated in Figure 21.2. It shows
the states of the pipeline, with data and commands proceeding from left to right. The
following sections describe each stage and what system attributes affect its performance.

Generation

During the generation stage, object and attribute data is created or updated by the appli-
cation. The possible types, purpose, and updating requirements of the graphics data are
as varied as the graphics applications themselves. The object data set can be updated
to reflect changes in position or appearance of objects, or annotated with application-
specific information to support spatially based techniques such as 3D sound and collision
detection.

For a scene graph-based application, the generation phase is where nodes are added,
removed, or updated by the application to reflect the current state of the scene. The
interconnections between nodes can change to reflect changes in their relationship.

As a simple example, consider a scene graph whose nodes only contain geometry or
a transform. A new object can be created by adding nodes to the scene graph: geometry
to represent the object (or components of a complex object) and the transforms needed to

TraversalGeneration Transform Rasterize Display

F i g u r e 21.2 The stages of a graphics update.

574 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

position and orient it. The generation phase is complete when the scene graph has been
updated to reflect the current state of the scene. In general, performance of this stage
depends on system (CPU, memory) performance, not the performance of the graphics
hardware.

Traversal

The traversal stage uses the data updated by the generation stage. Here, the graphics-
related data set is traversed to generate input data for later stages. If the data is organized
as a scene graph, the graph itself is traversed, examining each element to extract the
information necessary to create the appropriate OpenGL commands. Procedures linked
to the graph are run as they are encountered, generating data themselves or modifying
existing data in the graph. Traversal operations can be used to help implement many
of the techniques described here that have object-space components (such as reflections,
shadowing, and visibility culling), because the scene graph contains information about
the spatial relationships between objects in the scene.

Traversing the simple example scene graph shown in Figure 21.1 only generates
OpenGL commands. Commands to update the modelview matrix are generated as each
transform is encountered, and geometry commands such as glBegin/glEnd sequences,
vertex arrays, or display lists are issued as geometry nodes are traversed. Even for this
simple example the traversal order can be used to establish a hierarchy: transforms higher
in the graph are applied first, changing the effect of transforms lower in the graph. This
relationship can be implemented by pushing the transform stack as the traversal goes
down the graph, popping as the traversal goes back up.

Since OpenGL has no direct support for scene graphs, the stages described up to this
point must be implemented by the application or a scene graph library. However, in an
application that has very limited requirements, an OpenGL display list or vertex array
can be used to store the graphics data instead. It can be updated during the generation
phase. In this case, the traversal step may only require rendering the stored data, which
might be performed solely by the OpenGL implementation.

Executing an OpenGL display list can be considered a form of traversal. Since
OpenGL display lists can contain calls to other OpenGL display lists, a display list can
also form a DAG. Executing a display list walks the DAG, performing a depth-first traver-
sal of the graph. The traversal may be executed on the host CPU, or in some advanced
OpenGL implementations, parts of the traversal may be executed in the accelerator itself.
Creating new display lists can be similarly thought of as a form of generation.

If the traversal stage is done in the application, performance of this stage
depends on either the bandwidth available to the graphics hardware or system per-
formance, depending on which is the limiting factor. If traversal happens within
OpenGL, the performance details will be implementation dependent. In general, per-
formance depends on the bandwidth available between the stored data and the rendering
hardware.

S E C T I O N 2 1 . 1 S t ru c tu r i ng G raph i c s P ro ce s s i ng 575

Transform

The transform stage processes primitives, and applies transforms, texture coordinate
generation, clipping, and lighting operations to them. From this point on, all update
stages occur within the OpenGL pipeline, and the behavior is strictly defined by the spec-
ification. Although the transform stage may not be implemented as a distinct part of
the implementation, the transformation stage is still considered separately when doing
performance analysis. Regardless of the implementation details, the work the implemen-
tation needs to do in order to transform and light incoming geometry in this stage is
usually distinct from the work done in the following stages. This stage will affect perfor-
mance as a function of the number of triangles or vertices on the screen and the number
of transformations or other geometry state updates in the scene.

Rasterization

At this stage, higher-level representations of geometry and images are broken down into
individual pixel fragments. Since this stage creates pixel fragments, its performance is
a function of the number of fragments created and the complexity of the processing on
each fragment. For the purposes of performance analysis it is common to include all of
the steps in rasterization and fragment processing together. The number of active texture
units, complexity of a fragment programs, framebuffer blending, and depth testing can all
have a significant influence on performance. Not all pixels created by rasterizing a triangle
may actually update the framebuffer, because alpha, depth, and stencil testing can discard
them. As a result, framebuffer update performance and rasterization performance aren’t
necessarily the same.

Display

At the display stage, individual pixel values are scanned from the color buffer and trans-
mitted to the display device. For the most part the display stage has limited influence on the
overall performance of the application. However, some characteristics (such as locking
to the video refresh rate) can significantly affect the performance of an application.

21.1.2 Vertex Updates

A key factor affecting update performance that can be controlled by the application is the
efficiency of vertex updates. Vertex updates occur during the traversal stage, and are often
limited by system bandwidth to the graphics hardware. Storing vertex information in ver-
tex arrays removes much of the function call overhead associated with glBegin/glEnd
representations of data. Vertex arrays also make it possible to combine vertex data into
contiguous regions, which improves transfer bandwidth from the CPU to the graphics
hardware. Although vertex arrays reduce overhead and improve performance, their ben-
efits come at a cost. Their semantics limit their ability to improve a bandwidth-limited
application.

576 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

Ideally, vertex arrays make it possible to copy vertex data “closer” to the ren-
dering hardware or otherwise optimize the placement of vertex data to improve
performance. The original (OpenGL 1.1) definition prevents this, however. The appli-
cation “owns” the pointer to the vertex data, and the specification semantics prevents
the implementation from reusing cached data, since it has no way to know or con-
trol when the application modifies it. A number of vendor-specific extensions have
been implemented to make caching possible, such as NV_vertex_array_range
and ATI_vertex_array_object. This has culminated in a cross-vendor exten-
sion ARB_vertex_buffer_object, integrated into the core specification as part of
OpenGL 1.5.

Display lists are another mechanism allowing the implementation to cache vertex
data close to the hardware. Since the application doesn’t have access to the data after the
display list is compiled, the implementation has more opportunities to optimize the rep-
resentation and move it closer to the hardware. The requirement to change the OpenGL
state as the result of display list execution can limit the ability of the OpenGL imple-
mentation to optimize stored display list representations, however. Any performance
optimizations applied to display list data are implementation dependent. The developer
should do performance experiments with display lists, such as segmenting geometry, state
changes, and transform commands into separate display lists or saving and restoring
transform state in the display list to find the optimal performance modes.

Regardless of how the vertex data is passed to the implementation, using vertex repre-
sentations with a small memory footprint can improve bandwidth. For example, in many
cases normals with type GL_UNSIGNED_SHORT will take less transfer time than nor-
mals with GL_FLOAT components, and be precise enough to generate acceptable results.
Minimizing the number of vertex parameters, such as avoiding use of glTexCoord
through the use of texture coordinate generation, also reduces vertex memory footprint
and improves bandwidth utilization.

21.1.3 Texture Updates

Like vertex updates, texture updates can significantly influence overall performance, and
should be optimized by the application. Unlike vertex updates, OpenGL has always had
good support for caching texture data close to the hardware. Instead of finding ways
to cache texture data, the application’s main task becomes managing texture updates
efficiently. A key approach is to incrementally update textures, spreading the update load
over multiple frames whenever possible. This reduces the peak bandwidth requirements
of the application. Two good candidates for incremental loads are mipmapped textures,
and large “terrain” textures. For many applications, only parts of these types of textures
are visible at any given time.

A mipmapped textured object often first comes into view at some distance from the
viewer. Usually only coarser mipmap levels are required to texture it at first. As the
object and viewer move closer to each other, progressively finer mipmap levels are used.
An application can take advantage of this behavior by loading coarser mipmap levels first

S E C T I O N 2 1 . 2 Manag ing F r ame T ime 577

and then progressively loading finer levels over a series of frames. Since coarser levels are
low resolution, they take very little bandwidth to load. If the application doesn’t have the
bandwidth available to load finer levels fast enough as the object approaches, the coarser
levels provide a reasonable fallback.

Many large textures have only a portion of their texture maps visible at any given
time. In the case where a texture has higher resolution than the screen, it is impossible
to show the entire texture at level 0, even if it is viewed on edge. An edge on a non-
mipmapped texture will be only coarsely sampled (not displaying most of its texels) and
will show aliasing artifacts. Even a mipmapped texture will blur down to coarser texture
levels with distance, leaving only part of level 0 (the region closest to the viewer) used to
render the texture.

This restriction can be used to structure large texture maps, so that only the visible
region and a small ring of texture data surrounding it have to be loaded into texture
memory at any given time. It breaks up a large texture image into a grid of uniform texture
tiles, and takes advantage of the properties of wrapped texture coordinates. Section 14.6
describes this technique, called texture paging, in greater detail.

21.2 Managing Frame Time

An interactive graphics application has to perform three major tasks: receive new input
from the user, perform the calculations necessary to draw a new frame, and send update
and rendering instructions to the hardware. Some applications, such as those used to
simulate vehicles or sophisticated games, have very demanding latency and performance
requirements. In these applications, it can be more important to maintain a constant frame
rate than to update as fast as possible. A varying frame rate can undermine the realism
of the simulation, and even lead to “simulator sickness,” causing the viewer to become
nauseous. Since these demanding applications are often used to simulate an interactive
visual world, they are often called visual simulation (a.k.a. “vissim”) applications.

Vissim applications often have calculation and rendering loads that can vary signifi-
cantly per frame. For example, a user may pan across the scene to a region of high depth
complexity that requires significantly more time to compute and render. To maintain a
constant frame rate, these applications are allotted a fixed amount of time to update a
scene. This time budget must always be met, regardless of where the viewer is in the scene,
or the direction the viewer is looking. There are two ways to satisfy this requirement.
One approach is to statically limit the geometry and texture data used in the application
while the application is being written. Typically, these limits have to be severe in order to
handle the worst case. It can also be difficult to guarantee there is no view position in the
scene that will take too long to render. A more flexible approach is for the application
to dynamically restrict the amount of rendering work, controlling the amount of time
needed to draw each frame as the application is running. Rendering time can be managed
by simplifying or skipping work in the generation and traversal stages and controlling

578 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

the number and type of OpenGL commands sent to the hardware during the rendering
stage.

There are three components to frame time management: accurately measuring the
time it takes to draw each frame, adjusting the amount of work performed to draw
the current frame (based on the amount of time it took to draw previous frames), and
maintaining a safety margin of idle time at the end of all frames in order to handle
variations. In essence, the rendering algorithm uses a feedback loop, adjusting the amount
of rendering work from the time it took to draw the previous frames, adjusting to maintain
a constant amount of idle time each frame (see Figure 21.3).

This frame management approach requires that the work a graphics application does
each frame is ordered in a particular way. There are two criteria: critical work must be
ordered so that it is always performed and the OpenGL commands must be started as
early as possible. In visual simulation applications, taking into account the user input and
using it to update the viewer’s position and orientation are likely to be the highest-priority
tasks. In a flight simulation application, for example, it is critical that the view out of
the windshield respond accurately and quickly to pilot inputs. It would be better to drop
distant frame geometry than to inconsistently render the viewer’s position. Therefore,
reading input must be done consistently every frame.

Starting OpenGL commands early in the frame requires that this task be handled
next. This is done to maximize parallelism. Most graphics hardware implementations are
pipelined, so a command may complete asynchronously some time after it is sent. A visual
simulation application can issue all of its commands, and then start the computation work
necessary to draw the next frame while the OpenGL commands are still being rendered
in the graphics hardware. This ordering provides some parallelism between graphics
hardware and the CPU, increasing the work that can be done each frame. This is why
calculations for the next frame are done at the end of the current frame.

Because of parallelism, there are two ways frame time can be exceeded: too many
OpenGL commands have been issued (causing the hardware to take too long to draw
the frame) or the calculation phase can take too long, exceeding the frame time and
interfering with the work that needs to be completed during the next frame. Having the

R
ead inputs

C
lear tim

e

Draw

Safety

E
nd of fram

e sw
ap

Start of fram
e sw

ap

Draw commands in pipeline

Compute

F i g u r e 21.3 Frame time management.

S E C T I O N 2 1 . 2 Manag ing F r ame T ime 579

calculation phase happen last makes it easier to avoid both problems. The amount of
idle time left during the previous frame can be used to adjust the amount of OpenGL
work to schedule for the next frame. The amount of time left in the current frame can
be used to adjust the amount of calculation work that should be done. Note that using
the previous frame’s idle time to compute the next frame’s OpenGL work introduces two
frames of latency. This is necessary because the OpenGL pipeline may not complete its
current rendering early enough for the calculation phase to measure the idle time.

Based on the previous criteria, the application should divide the work required to
draw a scene into three main phases. At the start of each frame (after the buffer swap)
the application should read the user inputs (and ideally use them to update the viewer’s
position and orientation), send the OpenGL commands required to render the current
frame, and perform the calculations needed to render the next frame. Note that the cal-
culations done at the end of a given frame will affect the next frame, since the OpenGL
commands rendering the current frame have already been issued. Ideally, these calcu-
lations are ordered so that low-priority ones can be skipped to stay within one frame
time. The following sections describe each of the these three rendering phases in more
detail.

21.2.1 Input Phase

The user input is read early in the frame, since updating input consistently is critical. It
is important that the view position and orientation match the user input with as little
“lag” as possible, so it is ideal if the user input is used to update the viewer position in
the current frame. Fortunately, this is usually a fast operation, involving little more than
reading control input positions and updating the modelview (and possibly the projection)
transform. If multiple processors are available, or if the implementation of glClear is
nonblocking, this task (and possibly other nongraphics work) can be accomplished while
the framebuffer is being cleared at the beginning of the frame. If immediately updating
the viewer position is not low cost, due to the structure of the program, another option is
to use the input to update the viewer position during the start of the computation phase.
This adds a single frame of latency to the input response, which is often acceptable. Some
input latency is acceptable in a visual simulation application, as long as it is small and
consistent. It can be a worthwhile trade-off if it starts the rendering phase sooner.

21.2.2 Rendering Phase

Once the user inputs are handled properly, the rendering phase should begin as early as
possible. During this phase, the application issues the texture loads, geometry updates,
and state changes needed to draw the scene. This task is a significant percentage of the total
time needed to draw a frame, and it needs to be measured accurately. This can be done by
issuing a glFinish as the last command and measuring the time from the start of the first
command to the time the glFinish command completes. Since this is a synchronous
operation, the thread executing this command stalls waiting for the hardware to finish.

580 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

To maintain parallelism, the application issuing the OpenGL commands is usually in a
separate execution thread. Its task is to issue a precomputed list of OpenGL commands,
and measure the time it takes to draw them.

There are a number of ways to adjust the amount of time it takes to complete the
rendering phase. The number of objects in the scene can be reduced, starting with the
smallest and least conspicuous ones. Smaller, coarser textures can also be used, as well
as restricting the number of texture LODs in use to just the coarser ones, saving the
overhead of loading the finer ones. A single texture can be used to replace a number of
similar ones. More complex time-saving techniques, such as geometry LOD, can also be
used (see Section 16.4 for details on this technique).

21.2.3 Computation Phase

Ideally, every frame should start with the calculations necessary to create and configure
the OpenGL rendering commands already completed. This minimizes the latency before
the rendering pass can start. The computation phase performs this task ahead of time.
After the rendering commands for a frame have been sent, the remaining frame time is
used to perform the computations needed for the next frame. As mentioned previously, a
multithreaded application can take advantage of hardware pipelining to overlap some of
the rendering phase with the start of the computation phase. Care must be taken to ensure
that the start of the calculation phase doesn’t steal cycles from the rendering thread. It
must submit all of its OpenGL commands as early as possible.

This restriction may be relaxed in a multiprocessor or hyperthreading system. If it
doesn’t impact the rendering work, the computation and rendering phases can start at
the same time, allowing more computation to be done per frame.

There might not be enough time in the computation phase to perform all calculations.
In this case, some computations will have to be deferred. In general, some computations
must be done every frame, others will have a lower priority and be done less often. In
order to decide which computations are less important, they can be sorted based on how
they affect the scene. Computations can be categorized by how viewer dependent they are.
Viewer dependence is a measure of how strongly correlated the computation is to viewer
position and orientation. The more viewer dependent a computation is the more sensitive
it is to stale input, and the more likely it will produce incorrect results if it is deferred. The
most viewer-dependent computations are those that generate viewer position transforms.
The time between when the user inputs are read and the time these computations are
updated should be kept small, no more than one or two frames. Significant latency
between updates will be noticeable to the user, and can impact the effectiveness of the
visual simulation application.

On the other hand, many calculations are only weakly viewer dependent. Calcula-
tions such as geometric LOD (Section 16.4), some types of scene graph updates, view
culling, and so on can affect rendering efficiency, but only change the rendered scene
slightly if they are computed with stale input values. This type of work can be computed
less often in order to meet frame time constraints.

S E C T I O N 2 1 . 3 App l i c a t i on Pe r fo rmance Tun ing 581

As with all phases of frame updates, a visual simulation application should use all
of the computation time available without compromising the frame rate. Since there can
be some latency between the time the buffer swap command is called and the next frame
refresh, an application can potentially use that time to do additional computations. This
time is available if the implementation provides a nonblocking swap command, or if the
swap command is executed in a thread separate from the one doing the computation.

21.2.4 The Safety Margin

Like the rendering phase, the calculation phase has to be managed to maintain a constant
frame rate. As with rendering, this is done by prioritizing the work to be done, and stop-
ping when the time slice runs out. If the calculations run even a little too long, the frame
swap will be missed, resulting in a noticeable change in update rate (see Section 21.3.3
for details on this phenomenon). Not all calculation or rendering work is fine grained,
so a safety margin (a period of dead time) is reserved for the end of each frame. If the
rendering and calculation phases become long enough to start to significantly reduce the
amount of safety margin time, the amount of work done in the next frame is cut back.
If the work completes early, increasing the amount of safety margin time, the work load
is incrementally increased. This creates a feedback loop, where the per-frame is adjusted
to match the changing amount of rendering and calculating needed to be done to render
the current view.

21.3 Application Performance Tuning

Any graphics application that has high performance requirements will require perfor-
mance tuning. Graphics pipeline implementations, whether they are hardware or software
based, have too many implementation-specific variations to make it possible to skip a tun-
ing step. The rendering performance of the application must be measured, the bottlenecks
found, and the application adjusted to fix them.

Maximizing the performance of a graphics application is all about finding bottle-
necks; i.e., localized regions of the application code that are restricting performance. Like
debugging an application, locating and understanding bottlenecks is usually more difficult
than fixing them. This section begins by discussing common bottlenecks in graphics appli-
cations and some useful techniques for fixing them. It also discusses ways of measuring
applications so that their performance characteristics are understood and their bottle-
necks are identified. Multithreaded OpenGL applications are also discussed, including
some common threading architectures that can improve an application’s performance.

21.3.1 Locating Bott lenecks

As mentioned previously, tuning an application is the process of finding and removing
bottlenecks. A bottleneck is a localized region of software that can limit the performance

582 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

of the entire application. Since these regions are usually only a small part of the overall
application, and not always obvious, it’s rarely productive to simply tune parts of the
application that appear “slow” from code inspection. Bottlenecks should be found by
measuring (benchmarking) the application and analyzing the results.

In traditional application tuning, finding bottlenecks in software involves looking
for “inner loops,” the regions of code most often executed when the program is running.
Optimizing this type of bottleneck is important, but graphics tuning also requires knowl-
edge of the graphics pipeline and its likely bottlenecks. The graphics pipeline consists
of three conceptual stages. Except for some very low-end systems, it’s common today
for all or part of the last two stages to be accelerated in hardware. In order to achieve
maximum performance, the pipeline must be “balanced” — each stage of the pipeline
must be working at full capacity.

This is not always easy to do, since each stage of the pipeline tends to produce more
output for the following stage than it received from the previous one. When designing
hardware, pipeline stages are sized to handle this amplification of work for “typical”
cases, but the amount of work produced in each stage depends on the command stream
that the application sends to the hardware. The stages are rarely in balance unless the
application has been performance tuned.

The conceptual pipeline subsystems are:

• The application subsystem (i.e., the application itself) feeds the OpenGL
implementation by issuing commands to the geometry subsystem.

• The geometry subsystem performs per-vertex operations such as coordinate
transformations, lighting, texture coordinate generation, and clipping. The
processed vertices are assembled into primitives and sent to the raster subsystem.

• The raster subsystem performs per-pixel operations — from simple operations such
as writing color values into the framebuffer, to more complex operations such as
texture mapping, depth buffering, and alpha blending.

To illustrate how the amount of work done by each pipeline stage depends on the appli-
cation, consider a program that draws a small number of large polygons. Since there
are only a few polygons, the geometry subsystem is only lightly loaded. However, those
few polygons cover many pixels on the screen, so the load on the raster subsystem is
much higher. If the raster subsystem can’t process the triangles as fast as the geometry
subsystem is feeding them, the raster subsystem becomes a bottleneck. Note that this
imbalance cannot be determined solely from static analysis of the application. Many
graphics systems have very powerful raster engines. The hypothesis that the raster sub-
system is limiting the speed of the program must be proved through benchmarking and
performance experiments.

To avoid a rasterization bottleneck, the work between the geometry and rasteriza-
tion stages must be balanced. One way to do this is to reduce the work done in the
raster subsystem. This can be done by turning off modes such as texturing, blending, or
depth buffering. Alternatively, since spare capacity is available in the geometry subsystem

S E C T I O N 2 1 . 3 App l i c a t i on Pe r fo rmance Tun ing 583

more work can be performed there without degrading performance. A more complex
lighting model could be used, or objects can be tessellated more finely to create a more
accurate geometric model.

21.3.2 Finding Applicat ion Bott lenecks

Graphics bottlenecks can usually be fixed by rebalancing the pipeline stages, but the
more difficult part is determining where the bottleneck is located. The performance of
each pipeline stage depends on the design of the OpenGL hardware and software, and
the pattern of commands being processed. The resulting performance characteristics can
be quite complex. Additional complexity can result because a bottleneck in an early stage
of the pipeline can change the behavior of later stages.

The basic strategy for isolating bottlenecks is to measure the time it takes to execute
part or all of the program and then change the code in ways that add or subtract work at
a single point in the graphics pipeline. If changing the amount of work done by a given
stage does not alter performance appreciably, that stage is not the bottleneck. Conversely,
a noticeable difference in performance indicates a bottleneck. Since bottlenecks early in
the pipeline can mask later ones, check for early bottlenecks first. Table 21.1 provides
an overview of factors that may limit rendering performance, and names the part of the
pipeline to which they belong.

Application Subsystem Bottlenecks

The first potential bottleneck can come if the application doesn’t issue OpenGL commands
to the hardware fast enough. To measure the performance of the application accurately,
the OpenGL calls can be “stubbed out.” Stubbing out an OpenGL call means using an
empty function call in place of the real OpenGL command. The application with stubs
can then be benchmarked to measure its maximum performance.

To get an accurate assessment of the application’s performance, the behavior of the
application should be preserved by attempting to keep the number of instructions executed
and the way memory is accessed unchanged. Since some OpenGL commands are used

T ab l e 21.1 Factors Influencing Performance

Performance Parameter Pipeline Stage

Amount of data per polygon All stages
Application overhead Application
Transform rate and geometry mode setting Geometry subsystem
Total number of polygons in a frame Geometry and raster subsystem
Number of pixels filled Raster subsystem
Fill rate for the current mode settings Raster subsystem
Duration of screen and/or depth buffer clear Raster subsystem

584 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

much more often than others, stubbing just a few key commands may be sufficient.
For example, if the application uses glBegin/glEnd sequences to render geometry,
replacing the vertex and normal calls glVertex3fv and glNormal3fv with color
subroutine calls (glColor3fv) preserves the CPU behavior while eliminating all drawing
and lighting work in the graphics pipeline. If making these changes does not significantly
improve the time taken to render a frame, the application is the bottleneck.

On many faster hardware accelerators, the bus between the CPU and the graphics
hardware can limit the number of polygons sent from the application to the geometry
subsystems. To test for this bottleneck, reduce the amount of data being sent per vertex.
For example, if removing color and normal parameters from the vertices shows a speed
improvement the bus is probably the bottleneck.

Geometry Subsystem Bottlenecks

Applications that suffer from bottlenecks in the geometry subsystem are said to be
transform limited (or sometimes geometry limited). To test for bottlenecks in geometry
operations, change the application so that it issues the same number of commands and
fills the same number of pixels but reduces the amount of geometry work. For example, if
lighting is enabled, call glDisable with a GL_LIGHTING argument to temporarily turn
it off. If performance improves, the application has a geometry bottleneck. Transforma-
tion and clipping performance can be measured in a similar fashion. All transforms can
be set to identity, and all application-defined clipping planes can be disabled. Geometry
can also be altered so that no clipping is needed to render it. Measuring geometry perfor-
mance with this method can be tricky. Some hardware implementations are configured
to run full speed over a wide range of geometry configurations, and changes to the geom-
etry subsystem can inadvertently change the load of the raster subsystem. Understanding
the hardware’s performance profile is important in avoiding fruitless attempts to tune
geometry processing.

Rasterization Subsystem Bottlenecks

Applications that cause bottlenecks at the rasterization (per-pixel) stage in the pipeline
are said to be fill limited. To test for bottlenecks in rasterization operations, shrink
objects or make the window smaller to reduce the number of pixels being processed. This
technique will not work if the program alters its behavior based on the sizes of objects
or the size of the window. Per-pixel work can also be reduced by turning off operations
such as depth buffering, texturing, or alpha blending. If any of these experiments speed
up the program, it has a fill bottleneck. Like geometry state changes discussed in the
previous section, consider that the hardware implementation may not slow down for
certain rasterization state changes.

At the rasterization stage, performance may strongly depend on the type of primitive
being rendered. Many programs draw a variety of primitives, each of which stresses a
different part of the system. Decompose such a program into homogeneous pieces and

S E C T I O N 2 1 . 3 App l i c a t i on Pe r fo rmance Tun ing 585

time each one separately. After measuring these results, the slowest primitive type can be
identified and optimized.

Oversubscribing texture memory resources can also cause significant performance
degradation. Texture memory thrashing can be tested for by temporarily reducing the
number of different textures in use. Other rasterization and fragment processing-related
state changes can also adversely affect performance. These can be difficult to locate. Tools
that trace and gather statistics on the number and types of OpenGL commands issued
each frame can be invaluable in understanding the load generated by an application.

Optimizing Cache and Memory Usage

On most systems, memory is structured in a hierarchy that contains a small amount
of fast, expensive memory at the top (e.g., CPU registers) through a series of larger and
slower storage caches to a large amount of slow storage at the base (e.g., system memory).
As data is referenced, it is automatically copied into higher levels of the hierarchy, so data
that is referenced most often migrates to the fastest memory locations.

The goal of machine designers and programmers is to improve the likelihood of find-
ing needed data as high up in this memory hierarchy as possible. To achieve this goal, algo-
rithms for maintaining the hierarchy (embodied in the hardware and the operating system)
assume that programs have locality of reference in both time and space. That is, programs
are much more likely to access a location that has been accessed recently or is close to
another recently accessed location. Performance increases if the application is designed
to maximize the degree of locality available at each level in the memory hierarchy.

Minimizing Cache Misses Most CPUs have first-level instruction and data caches on chip.
Many also have second-level caches that are bigger but somewhat slower. Memory
accesses are much faster if the data is already loaded into the first-level cache. When
a program accesses data that is not in one of the caches, a cache miss occurs. This
causes a block of consecutively addressed words, including the data the program just
tried to access, to be loaded into the cache. Since cache misses are costly, they should be
minimized. Cache misses can be minimized by using the following techniques.

• Keep frequently accessed data together. Store and access frequently used data in
flat, sequential data structures and avoid pointer indirection. This way, the most
frequently accessed data remains in the first-level cache as much as possible.

• Access data sequentially. Each cache miss brings in a block of consecutively
addressed words of needed data. If the program is accessing data sequentially, each
cache miss will bring in n words at a time, improving bandwidth (the exact value
of n is system dependent). If only every nth word is accessed (strided access) the
cache constantly brings in unneeded data, degrading performance.

• Avoid simultaneously traversing several large buffers of data, such as an array of
vertex coordinates and an array of colors within a loop. This behavior can cause
cache aliasing between the buffers. Instead, pack the contents into one buffer

586 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

whenever possible. If the application uses vertex arrays, try to use interleaved
arrays.

Some framebuffers have cache-like behaviors as well. The application can utilize this
caching by ordering geometry so that drawing the geometry causes writes to adjacent
regions of the screen. Using connected primitives such as triangle and line strips tends to
create this behavior, and offers other performance advantages by minimizing the number
of vertices needed to represent a continuous surface.

Modern graphics accelerators make heavy use of caching for vertex and texture
processing. Use of indexed vertex arrays with careful ordering of vertex attributes and
indices can substantially improve vertex cache hit rates. Applications have less control
over texture cache performance, but programmable fragment programs provide sub-
stantial flexibility in how texture coordinates are computed. Dependent texture reads,
environment mapping, and other texture coordinate computations can suffer from poor
locality.

Storing Data in an Efficient Format The design effort required to create a simpler graph-
ics database can make a significant difference when traversing that data for display. A
common tendency is to leave the data in a format that is optimized for loading or gener-
ating the object, but suboptimal for actually displaying it. For peak performance, do as
much work as possible before rendering. This preprocessing is typically performed when
an application can temporarily be noninteractive, such as at initialization time or when
changing from a modeling to a fast-rendering mode.

Minimizing State Changes

A graphics application will almost always benefit if the number of state changes is reduced.
A good way to do this is to sort scene data according to what state values are set and render
primitives with the same state settings together. Mode changes should be ordered so that
the most expensive state changes occur least often. Although it can vary widely with
implementation, typically it is expensive to change texture binding, material parameters,
fog parameters, texture filter modes, and the lighting model.

Measurement is the best way to determine which state settings are most expensive on
a particular implementation. On systems that fully accelerate rasterization, for example,
it may not be expensive to change rasterization controls such as enabling depth testing
or changing the comparison function. On a system using software rasterization, how-
ever, these state changes may cause a cached graphics state, such as function pointers or
automatically generated code, to be flushed and regenerated.

An OpenGL implementation may not optimize state changes that are redundant, so it
is also important for the application to avoid setting the same state values multiple times.
Sometimes sorting rendering by state isn’t practical, and redundant state changes can
result. In these situations, shadowing state changes and discarding (filtering) redundant
changes can often improve performance.

S E C T I O N 2 1 . 3 App l i c a t i on Pe r fo rmance Tun ing 587

21.3.3 Measuring Performance

When benchmarking any application, there are common guidelines that when followed
help ensure accurate results. The system used to measure performance should be idle,
rather than executing competing activities that could steal system resources from the
application being measured. A good system clock should be used for measuring per-
formance with sufficient resolution, low latency, and producing accurate, reproducible
results. The measurements themselves should be repeated a number of times to average
out atypical measurements. Any significant variation in measurements should be inves-
tigated and understood. Beyond these well-known practices, however, are performance
techniques and concepts that are specific to computer graphics applications. Some of these
fundamental ideas are described in the following, along with their relevance to OpenGL
applications.

Video Refresh Quantization

A dynamic graphics application renders a series of frames in sequence, creating animated
images. The more frames rendered per second the smoother the motion appears. Smooth,
artifact-free animation also requires double buffering. In double buffering, one color
buffer holds the current frame, which is scanned out to the display device by video
hardware, while the rendering hardware is drawing into a second buffer that is not
visible. When the new color buffer is ready to be displayed, the application requests that
the buffers be swapped. The swap is delayed until the next vertical retrace period between
video frames, so that the update process isn’t visible on the screen.

Frame rates must be integral multiples of the screen refresh time, 16.7 msec (millisec-
onds) for a 60-Hz display. If the rendering time for a frame is slightly longer than the time
for n raster scans, the system waits until the n + 1st video period (vertical retrace) before
swapping buffers and allowing drawing to continue. This quantizes the total frame time
to multiples of the display refresh rate. For a 60-Hz refresh rate, frame times are quan-
tized to (n + 1) ∗ 16.7 msec. This means even significant improvements in performance
may not be noticeable if the saving is less than that of a display refresh interval.

Quantization makes performance tuning more difficult. First, quantizing can mask
most of the details of performance improvements. Performance gains are often the sum
of many small improvements, which are found by making changes to the program and
measuring the results. Quantizing may hide those results, making it impossible to notice
program changes that are having a small but positive effect. Quantizing also establishes
a minimum barrier to making performance gains that will be visible to the user. Imagine
an application running fast enough to support a 40-fps refresh rate. It will never run
faster than 30 fps on a 60-Hz display until it has been optimized to run at 60 fps, almost
double its original rate. Table 21.2 lists the quantized frame times for multiples of a
60-Hz frame.

To accurately measure the results of performance changes, quantization should be
turned off. This can be done by rendering to a single-buffered color buffer. Besides making
it possible to see the results of performance changes, single-buffering performance also

588 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

T ab l e 21.2 60-Hz Rate Quantization

Frame Multiple Rate (Hz) Interval (ms)

1 60 16.67
2 30 33.33
3 20 50
4 15 66.67
5 12 83.33
6 10 100
7 8.6 116.67
8 7.5 133.33
9 6.7 150
10 6 166.67

shows how close the application’s update rate is to a screen refresh boundary. This is
useful in determining how much more improvement is necessary before it becomes visible
in a double-buffered application. Double buffering is enabled again after all performance
tuning has been completed.

Quantization can sometimes be taken advantage of in application tuning. If an appli-
cation’s single-buffered frame rate is not close to the next multiple of a screen refresh
interval, and if the current quantized rate is adequate, the application can be modified to
do additional work, improving visual quality without visibly changing performance. In
essence, the time interval between frame completion and the next screen refresh is being
wasted, which it can be used instead to produce a richer image.

Finish Versus Flush

Modern hardware implementations of OpenGL often queue graphics commands to
improve bandwidth. Understanding and controlling this process is important for accurate
benchmarking and maximizing performance in interactive applications.

When an OpenGL implementation uses queuing, the pipeline is buffered. Incoming
commands are accumulated into a buffer, where they may be stored for some period
of time before rendering. Some queuing pipelines use the notion of a high water mark,
deferring rendering until a given buffer has exceeded some threshold, so that commands
can be rendered in a bandwidth-efficient manner. Queuing can allow some parallelism
between the system and the graphics hardware: the application can fill the pipeline’s
buffer with new commands while the hardware is rendering previous commands. If the
pipeline’s buffer fills, the application can do other work while the hardware renders its
backlog of commands.

The process of emptying the pipeline of its buffered commands is called flushing. In
many applications, particularly interactive ones, the application may not supply com-
mands in a steady stream. In these cases, the pipeline buffer can stay partially filled for
long period of time, not rendering any more commands to hardware even if the graphics
hardware is completely idle.

S E C T I O N 2 1 . 3 App l i c a t i on Pe r fo rmance Tun ing 589

ABC ABC

ABCFIN

FLH

Pipe not full enough to flush; commands aren’t sent to hardware

Flush: guarantees all commands ahead in pipe will be sent.
asynchronous; program can send more commands immediately

Finish: sends all commands immediately; no other commands allowed in until
finish completes

E

D D

ABC DD E

F i g u r e 21.4 Finish versus flush.

This situation can be a problem for interactive applications. If some graphics com-
mands are left in the buffer when the application stops rendering to wait for input, the
user will see an incomplete image. The application needs a way of indicating that the
buffer should be emptied, even if it isn’t full. OpenGL provides the command glFlush
to perform this operation. The command is asynchronous, returning immediately. It guar-
antees that outstanding buffers will be flushed and the pipeline will complete rendering,
but doesn’t provide a way to indicate exactly when the flush will complete.

The glFlush command is inadequate for graphics benchmarking, which needs to
measure the duration between the issuing of the first command and the completion of
the last. The glFinish command provides this functionality. It flushes the pipeline, but
doesn’t return until all commands sent before the finish have completed. The difference
between finish and flush is illustrated in Figure 21.4

To benchmark a piece of graphics code, call glFinish at the end of the timing trial,
just before sampling the clock for an end time. The glFinish command should also be
called before sampling the clock for the start time, to ensure no graphics calls remain in
the graphics queue ahead of the commands being benchmarked.

While glFinish ensures that every previous command has been rendered, it should
be used with care. A glFinish call disrupts the parallelism the pipeline buffer is designed
to achieve. No more commands can be sent to the hardware until the glFinish com-
mand completes. The glFlush command is the preferred method of ensuring that the
pipeline renders all pending commands, since it does so without disrupting the pipeline’s
parallelism.

21.3.4 Measuring Depth Complexity

Measuring depth complexity, or the number of fragments that were generated for each
pixel in a rendered scene, is important for analyzing rasterization performance. It indicates

590 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

how polygons are distributed across the framebuffer and how many fragments were
generated and discarded — clues for application tuning. Depending on the performance
details of the OpenGL implementation, depth complexity analysis can help illustrate
problems that can be solved by presorting geometry, adding a visibility culling pass, or
structuring parts of the scene to use a painters algorithm for hidden surface removal
instead of depth testing.

One way to visualize depth complexity is to use the color values of the pixels in the
scene to indicate the number of times a pixel is written. It is easy to do this using the
stencil buffer. The basic approach is simple: increment a pixel’s stencil value every time
the pixel is written. When the scene is finished, read back the stencil buffer and display it
in the color buffer, color coding the different stencil values.

The stencil buffer can be set to increment every time a fragment is sent to a pixel
by setting the zfail and zpass parameters of glStencilOp to GL_INCR, and setting the
func argument of glStencilFunc to GL_ALWAYS. This technique creates a count of
the number of fragments generated for each pixel, irrespective of the results of the depth
test. If the zpass argument to glStencilOp is changed to GL_KEEP instead (the setting
of the fail argument doesn’t matter, since the stencil function is still set to GL_ALWAYS),
the stencil buffer can be used to count the number of fragments discarded after failing the
depth test. In another variation, changing zpass to GL_INCR, and zfail to GL_KEEP, the
stencil buffer will count the number of times a pixel was rewritten by fragments passing
the depth test. The following is a more detailed look at the first method, which counts
the number of fragments sent to a particular pixel.

1. Clear the depth and stencil buffer:
glClear(GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT).

2. Enable stenciling:
glEnable(GL_STENCIL_TEST).

3. Set up the proper stencil parameters:
glStencilFunc(GL_ALWAYS, 0, 0) and glStencilOp(GL_KEEP,
GL_INCR, GL_INCR).

4. Draw the scene.

5. Read back the stencil buffer with glReadPixels, using GL_STENCIL_INDEX as
the format argument.

6. Draw the stencil buffer to the screen using glDrawPixels, with
GL_COLOR_INDEX as the format argument.

The glPixelMap command can be used to map stencil values to colors. The stencil
values can be mapped to either RGBA or color index values, depending on the type of
color buffer. Color index images require mapping colors with glPixelTransferi,
using the arguments GL_MAP_COLOR and GL_TRUE.

Note that this technique is limited by the range of values of the stencil buffer
(0 to 255 for an 8-bit stencil buffer). If the maximum value is exceeded, the value will

S E C T I O N 2 1 . 3 App l i c a t i on Pe r fo rmance Tun ing 591

clamp. Related methods include using framebuffer blending with destination alpha as
the counter, but this requires that the application not use framebuffer blending for other
purposes.

21.3.5 Pipel ine Interleaving

OpenGL has been specified with multithreaded applications in mind by allowing one or
more separate rendering threads to be created for any given process. Thread programming
in OpenGL involves work in the OpenGL interface library. This means GLX, WGL,
or other interface library calls are needed. Each rendering thread has a single context
associated with it. The context holds the graphics state of the thread. A context can
be disconnected from one thread and attached to another. The target framebuffer of the
rendering thread is sometimes called its drawable. There can be multiple threads rendering
to a single drawable. For more information on the role of threads in the OpenGL interface
libraries, see Section 7.2, which describes the interactions of the interface libraries in more
detail.

Each thread can be thought of as issuing a separate stream of rendering commands
to a drawable. OpenGL does not guarantee that the ordering of the streams of different
threads is maintained. Every time a different thread starts rendering, the previous com-
mands sent by other threads may be interleaved with commands from the new thread.
However, if a context is released from one thread and attached to another; any pend-
ing commands from the old thread are applied before any commands coming from the
new one.

Providing general guidelines for multithreaded programming is beyond the scope of
this book. There are two common thread architectures, however, that are particularly
useful for OpenGL applications and bear mentioning.

The first is the pipeline model. In this model, the application divides its graphics work
into a series of pipeline stages, connected by queues. For example, one or more threads
might update a scene graph, and one or more may be traversing it, pushing drawing
commands into a queue. A single rendering thread can then read each command from the
queue, and make the appropriate OpenGL calls. This model is useful for scene-graph-
oriented applications, and is easy to understand. A variant of this model, used to optimize
visual simulation applications, is discussed briefly in Section 21.3. In the visual simulation
example, rendering is kept in a separate thread to allow parallelism between rendering
work and the computations needed to render the next frame.

The other model is a parallel rendering model. This model has multiple rendering
threads. Each rendering thread is receiving commands from a central source, such as a
scene graph or other database, rendering to separate drawables or separate regions within
a drawable. This model is useful if the application is rendering multiple separate versions
of the same data, such as a modeling program that renders multiple views of the data.
However, care must be taken to ensure that rendering commands such as window clears
do not affect overlapping parts of the window. Both the pipeline and parallel rendering
models are illustrated in Figure 21.5.

592 C H A P T E R 21 S t ru c tu r i ng App l i c a t i ons fo r Pe r fo rmance

Traversal
thread Command queue Rendering

thread

Pipeline model: work divided among threads arranged serially to update a region of screen

Rendering
thread A

Parallel model:
each thread renders to

a separate screen region

Rendering
thread B

Rendering
thread C

F i g u r e 21.5 Multiple thread rendering models.

In either case, creating a multiple-thread model is only useful in certain situations.
The most obvious case is where the system supports multiple CPUs, or one or more
“hyperthreaded” ones. A hypertheaded CPU is a single physical CPU that is designed to
act as if it contains multiple “virtual” processors. Even a single nonhyperthreaded CPU
system can benefit from threading if it is possible for one or more tasks to be stalled
waiting for data or user input. If the application splits the tasks into individual threads,
the application can continue to do useful work even if some of its threads are stalled.
Common cases where a rendering thread may stall are during a screen clear, or while
waiting for a glFinish command to complete.

21.4 Summary

This chapter provided a background and an introduction to the techniques of graphics
performance tuning. While there are many graphics-specific details covered here, the main
idea is simple: create experiments and measure the results. Computer graphics hardware
is complex and evolving. It’s not practical to make assumptions about its performance
characteristics. This is true whether writing a fixed-function OpenGL program or writing
vertex or fragment programs. Reading all of the performance documentation available
on a particular vendor’s hardware accelerator and OpenGL implementation is still useful
however. It can make your guesses more educated and help to target performance tuning
experiments more accurately.

A
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

A
P
P
EN

D
IX

Using OpenGL Extensions

By design, OpenGL implementors are free to extend OpenGL’s basic rendering functional-
ity with new rendering operations. This extensibility was one of OpenGL’s original design
goals. As a result, scores of OpenGL extensions have been specified and implemented.
These extensions provide OpenGL application developers with new rendering features
above and beyond the features specified in the official OpenGL standard. OpenGL exten-
sions keep the OpenGL API current with the latest innovations in graphics hardware and
rendering algorithms.

This appendix describes the OpenGL extension mechanism. It describes how exten-
sions are used and documented as well as how to use extensions portably in applications.
Particular attention is paid to using OpenGL extensions in the Win32 and UNIX
environments.

A.1 How OpenGL Extensions are Documented

An OpenGL extension is defined by its specification. These specifications are typically
written as standard ASCII text files. OpenGL extension specifications are written by
and for OpenGL implementors. A well-written OpenGL specification is documented to
the level of detail needed for a hardware designer and/or OpenGL library engineer to
implement the extension unambiguously. This means that OpenGL application program-
mers should not expect an extension’s specification to justify fully why the functionality
exists or explain how an OpenGL application would go about using it. An OpenGL

593

594 A P P E N D I X A Us ing OpenGL Ex tens i ons

extension specification is not a tutorial on how to use the particular extension. Still, being
able to read and understand an OpenGL extension specification helps the application
programmer fully understand an OpenGL extension’s functionality.

A.2 Finding OpenGL Extension Specifications

The latest public OpenGL specifications can be found on the www.opengl.org web site.
Note that extension specifications are updated from time to time based on reviews and
implementation feedback. In the case of certain proprietary OpenGL extensions, it may be
necessary to contact the OpenGL vendor that developed the extension for the extension’s
specification.

A.3 How to Read an OpenGL Extension

Specification

When reading an OpenGL extension specification, it helps to be familiar with the original
OpenGL specification. The operation of an OpenGL extension is described as additions
and changes to the core OpenGL specification. Having a copy of the core OpenGL
specification handy is a good idea when reviewing an OpenGL extension.

OpenGL extension specifications consist of multiple sections. There is a common
form established by convention that is used by nearly all OpenGL extensions. Often
within a specification, the gl and GL prefixes on routine names and tokens are assumed.
The following describes the purpose of the most common sections in the order they
normally appear in extension specifications.

Name: Lists the official name of the extension. This name uses underscores instead of
spaces between words. The name also begins with a prefix that indicates who
developed the extension. This prefix helps to avoid naming conflicts if two
independent groups implement a similar extension. It also helps identity who is
promoting use of the extension. For example, SGIS_point_parameters was an
extension proposed by Silicon Graphics. The SGIS prefix belongs to Silicon
Graphics. SGI uses the SGIS prefix to indicate that the extension is specialized and
may not be available on all SGI hardware. Other prefixes in use are:

ARB: Extensions officially approved by the OpenGL Architectural Review Board

EXT: Extensions agreed upon by multiple OpenGL vendors

APPLE: Apple Computer

S E C T I O N A . 3 How to Read an OpenGL Ex tens i on Spec i f i c a t i on 595

ATI: ATI Technologies

ES: Evans and Sutherland

HP: Hewlett-Packard

IBM: International Business Machines

INTEL: Intel

KTX: Kinetix (maker of 3D Studio Max)

MESA: Brian Paul’s freeware portable OpenGL implementation

NV: NVIDIA Corporation

OES: OpenGL ES, OpenGL for Embedded Systems

SGI: Silicon Graphics

SGIS: Silicon Graphics (limited set of machines)

SGIX: Silicon Graphics (experimental)

SUN: Sun Microsystems

WIN: Microsoft

Note that the SGIS_point_parameters extension has since been standardized
by other OpenGL vendors. Now there is also an EXT_point_parameters
extension with the same basic functionality as the SGIS version. The EXT prefix
indicates that multiple vendors have agreed to support the extension. Successful
OpenGL extensions are often promoted to EXT or ARB extensions or made an
official part of OpenGL in a future revision to the core OpenGL specification.
In fact, the point parameters extension was moved into the core in OpenGL 1.4.
Almost all of the new functionality in OpenGL 1.1 through 1.5 appeared first as
OpenGL extensions.

Name Strings: Name strings are used to indicate that the extension is supported
by a given OpenGL implementation. Applications can query the GL_EXTENSIONS
string with the OpenGL glGetString command to determine what extensions are
available. OpenGL also supports the idea of window-system-dependent extensions.
Core OpenGL extension name strings are generally prefixed with GL_, while
window-system-dependent extensions are prefixed with GLX_ for the X Window
System or WGL_ for Win32 based on the platform embedding to which the extension
applies. Note that there may be multiple strings if the extension provides both
core OpenGL rendering functionality and window-system-dependent functionality.

In the case of the X Window System, support for GLX extensions is
indicated by listing the GLX extension name in the string returned by

596 A P P E N D I X A Us ing OpenGL Ex tens i ons

glXQueryExtensionsString. Querying the core OpenGL extension string
requires that an OpenGL rendering context be created and made current
(calling glGetString assumes a current OpenGL context). However, using
glXQueryExtensionString only requires a connection to an X server. Because
the X Window System is client/server based, the OpenGL client library may
support different extensions than the OpenGL server. For this reason, it is also
possible to query the extensions supported by the client or server individually using
glXQueryClientString and glXQueryServerString, respectively. To
actually use most GLX extensions, a GLX extension must be supported by both the
OpenGL client and server, but it is possible for an extension to be a pure client-side
extension. For this reason, the strings returned by glXQueryClientString and
glXQueryServerString are intended for informational use only. The string
returned by glXQueryExtensionString is typically an intersection of the
extensions supported by both the client and server. This is the string that should
be checked before using a GLX extension. There is not a separate mechanism to
discover WGL extensions. Instead, WGL extensions are advertised through
OpenGL’s core extension string, the one returned by glGetString.

Version: A source code control revision string to keep track of what version of the
specification the given text file represents. It is important to refer to the latest
version of the extension specification in case there are any important changes.
Normally the version string has the date the extension was last updated.

Number: Each OpenGL extension is assigned a unique number. Silicon Graphics (who
owns the OpenGL trademark) allocates these numbers to ensure that OpenGL
extensions do not overlap in their usage of enumerants or protocol tokens. This
number is only important to extension implementors.

Dependencies: Often an extension specification builds on the functionality of
preexisting extensions. This section documents other extensions upon which
the specified extension depends. Dependencies indicate that another extension
“is required” to support the specified extension or that the specified extension
“affects” the specification of another extension. When an extension affects the
specification of another extension, the affecting extension is responsible for
fully documenting the interactions between the two extensions.

The dependencies section often also indicates which version of the OpenGL
core standard the extension specification is based on. Later sections specify the
extension based on updates to the relevant section of this particular OpenGL
specification. The importance of a given extension to the evolution of OpenGL can
be inferred from how many other extensions are listed that depend on or are
affected by the given extension.

Overview: The section provides a description, often terse and without justification, for
the extension’s specified functionality. This section is the closest to describing
“what the extension does.”

S E C T I O N A . 3 How to Read an OpenGL Ex tens i on Spec i f i c a t i on 597

Issues: Often there are issues that need to be resolved in the specification of an extension.
This section documents open issues and states the resolution to closed issues. These
issues are often things of interest to the extension implementor, but can also help a
programmer understand details regarding how the extension really works.

New Procedures and Functions: This section lists the function prototypes for any new
procedures and functions the extension adds. The specifications often leave out the
gl prefix when discussing commands. Also note that the extension’s new functions
will be suffixed with the same letters used as the prefix for the extension name.

New Tokens: This section lists the tokens (also called enumerants) the extension adds.
The commands that accept each set of new enumerants are documented. The
integer values of the enumerants are documented here. These values should be
added to <GL/gl.h>. Keep in mind that specifications often leave out the GL_
prefix when discussing enumerants. Also note that the extension’s new enumerants
will be suffixed with the same letters used as the prefix for the extension name.

Additions to Chapter XX of the 1.X Specification (XXX): These sections document
how the core OpenGL specification should be amended to add the extension’s
functionality to the core OpenGL functionality. Note that the exact version of the
core OpenGL specification (such as 1.0, 1.1, or 1.2) is documented. The chapters
typically amended by an extension specification are:

• Chapter 2, OpenGL Operations

• Chapter 3, Rasterization

• Chapter 4, Per-fragment Operations and the Framebuffer

• Chapter 5, Special Functions

• Chapter 6, State and State Requests

• Appendix A, Invariance

These sections are quite formal. They indicate precisely how the OpenGL
specification wording should be amended or changed. Often tables within the
specification are amended as well.

Additions to the GLX Specification: If an extension has any window-system-dependent
functionality affecting the GLX interface to the X Window System, these issues are
documented here.

GLX Protocol: When implementing the extension for the X Window System, if any
special X11 extension protocol for the GLX extension is required to support the
extension the protocol are documented in this section. This section is only
interesting to GLX protocol implementors because the GLX protocol is hidden
from application programmers beneath the OpenGL API.

598 A P P E N D I X A Us ing OpenGL Ex tens i ons

Dependencies on XXX: These sections describe how the extension depends on some
other extension listed in the Dependencies section. Usually the wording says that if
the other extension is not supported simply ignore the portion of this extension
dealing with the dependent extension’s state and functionality.

Errors: If the extension introduces any new error conditions particular to the extension,
they are documented here.

New State: Extensions typically add new state variables to OpenGL’s state machine.
These new variables are documented in this section. The variable’s get enumerant,
type, get command, initial value, description, section of the specification describing
the state variable’s function, and attribute group the state belongs to are all
documented in tables in this section.

New Implementation-dependent State: Extensions may add implementation-dependent
state. These are typically maximum and minimum supported ranges for the
extension functionality (such as the widest line size supported by the extension).
These values can be queried through OpenGL’s glGet family of commands.

Backward Compatibility: If the extension supersedes an older extension, issues
surrounding backward compatibility with the older extension are documented in
this section.

Note that these sections are merely established by convention. While the conventions
for OpenGL extension specifications are normally followed, extensions vary in how
closely they stick to the conventions. Generally, the more preliminary an extension
is the more loosely specified it is. Usually after sufficient review and implementation
the specification language and format is improved to provide an unambiguous final
specification.

A.3.1 ARB Extensions

The current (as of the OpenGL 1.5 release) set of ARB extensions is as shown here

OpenGL Extensions: ARB_multitexture, ARB_transpose_matrix,
ARB_multisample, ARB_texture_env_add, ARB_texture_cube_map,
ARB_texture_compression, ARB_texture_border_clamp,
ARB_point_parameters, ARB_vertex_blend, ARB_matrix_palette,
ARB_texture_env_combine, ARB_texture_env_crossbar,
ARB_texture_env_dot3, ARB_texture_mirrored_repeat,
ARB_depth_texture, ARB_shadow, ARB_shadow_ambient,
ARB_window_pos, ARB_vertex_program, ARB_fragment_program,
ARB_vertex_buffer_object, ARB_occlusion_query,
ARB_shader_objects, ARB_vertex_shader, ARB_fragment_shader,
ARB_shading_language_100, ARB_texture_non_power_of_two,
ARB_point_sprite

S E C T I O N A . 4 Po r t ab l e Use o f OpenGL Ex tens i ons 599

GLX Extensions: ARB_get_proc_address

WGL Extensions: ARB_buffer_region, ARB_extensions_string,
ARB_pixel_format, ARB_make_current_read, ARB_pbuffer,
ARB_render_texture

A.4 Portable Use of OpenGL Extensions

The advantage of using OpenGL extensions is getting access to cutting-edge rendering
functionality so that an application can achieve higher performance and higher quality
rendering. OpenGL extensions provide access to the latest features of the newest graphics
hardware. The problem with OpenGL extensions is that many OpenGL implementations,
particularly older implementations, may not support a given extension. An OpenGL
application that uses extensions should be written so that it still works when the extension
is not supported. At the very least, the program should report that it requires whatever
extension is missing and exit without crashing.

The first step to using OpenGL extensions is to locate the copy of the <GL/gl.h>
header file that advertises the API interfaces for the desired extensions. Typically this
can be obtained from OpenGL implementation vendor or OpenGL driver vendor as part
of a software development kit (SDK). API interface prototypes and macros can also be
obtained directly from the extension specifications, but getting the correct <GL/gl.h>
from your OpenGL vendor is the preferred way. A version of the <GL/gl.h> header file
with all available extensions is also available from www.opengl.org.

Note that the <GL/gl.h> header file sets C preprocessor macros to indicate whether
the header advertises the interface of a particular extension or not. For example, the basic
<GL/gl.h> supplied with Microsoft Visual C++ 7.0 has a section reading:

/* Extensions */
#define GL_EXT_vertex_array 1
#define GL_WIN_swap_hint 1
#define GL_EXT_bgra 1
#define GL_EXT_paletted_texture 1
#define GL_EXT_clip_disable 1

These macros indicate that the header file advertises these five extensions. The EXT_bgra
extension makes it possible to read and draw pixels in the Blue, Green, Red, Alpha
component order as opposed to OpenGL’s standard RGBA color component ordering.1

1. The functionality of the EXT_bgra extension was added as part of OpenGL 1.2. The BGRA color
component ordering is important because it matches the color component ordering of Win32’s GDI 2D
API and therefore many PC-based file formats use it.

600 A P P E N D I X A Us ing OpenGL Ex tens i ons

A program using the EXT_bgra extension should test that the extension is supported at
compile time with code like this:

#ifdef GL_EXT_bgra
glDrawPixels(width, height, GL_BGRA_EXT, GL_UNSIGNED_BYTE, pixels);

#endif

When GL_EXT_bgra is defined, the GL_BGRA_EXT enumerant will be defined. Note that
if the EXT_bgra extension is not supported expect the glDrawPixels line to generate
a compiler error because the standard unextended OpenGL header does not define the
GL_BGRA_EXT enumerant.

Based on the extension name macro definition in <GL/gl.h>, code can be writ-
ten so that it can optimally compile in the extension functionality if the development
environment supports the extension’s interfaces. This is not a complete solution, how-
ever. Even if the development environment supports the extension’s interface at compile
time, at runtime the target system where the application executes may not support the
extension. In UNIX environments, different systems with different graphics hardware
often support different sets of extensions. Likewise, in the Win32 environment different
OpenGL-accelerated graphics boards will support different OpenGL extensions because
they have different OpenGL drivers. It is not safe to assume that a given extension is
supported. Runtime checks should be made to verify that a given extension is supported.
Assuming that the application thread is made current to an OpenGL rendering context,
the following routine can be used to determine at runtime if the OpenGL implementation
really supports a particular extension.

#include <GL/gl.h>
#include <string.h>

isExtensionSupported(const char *extension){
const GLubyte *extensions = NULL;
const GLubyte *start;
GLubyte *where, *terminator;

/* Extension names should not have spaces. */
where = (GLubyte *) strchr(extension, ‘ ’);
if (where || *extension == ‘\0’)

return 0;

extensions = glGetString(GL_EXTENSIONS);

/* It takes a bit of care to be fool-proof about parsing the OpenGL
extensions string. Don’t be fooled by substrings, etc. */

S E C T I O N A . 4 Po r t ab l e Use o f OpenGL Ex tens i ons 601

start = extensions;
for (;;) {

where = (GLubyte *) strstr((const char *) start, extension);
if (!where)

break;
terminator = where + strlen(extension);
if (where == start || *(where - 1) == ‘ ’)

if (*terminator == ‘ ’ || *terminator == ‘\0’)
return 1;

start = terminator;
}
return 0;

}

The isExtensionSupported routine can be used to check if the current OpenGL ren-
dering context supports a given OpenGL extension.2 To ensure the EXT_bgra extension
is supported before using it, the application is structured as follows:

/* At context initialization. */
int hasBGRA = isExtensionSupported("GL_EXT_bgra");

/* When trying to use EXT_bgra extension. */
#ifdef GL_EXT_bgra

if (hasBGRA) {
glDrawPixels(width,height, GL_BGRA_EXT, GL_UNSIGNED_BYTE, pixels);

} else
#endif

{
/* No EXT_bgra so quit (or implement software workaround). */
fprintf(stderr, "Needs EXT_bgra extension!\n");
exit(1);

}

Note that if the EXT_bgra extension is unavailable at either runtime or compile time this
code will detect the lack of EXT_bgra support. The code is cumbersome but is necessary
for portability. The compile time check can be eliminated if the development environment
is well understood and the application will not be compiled with header files that don’t
support the extensions used by the application. The runtime check is essential in avoiding
system or graphics card dependencies in the application.

2. Toolkits such as GLUT include functions to query extension support.

602 A P P E N D I X A Us ing OpenGL Ex tens i ons

A.5 Using Extension Function Pointers

Many OpenGL implementations support extension commands as if they were core com-
mands. Assuming the OpenGL header file provides the function prototypes and enumer-
ants for the desired extension, the program is simply compiled and linked, presupposing
that the extension routines exist. Before calling any extension routines, the program
should first check the GL_EXTENSIONS string value to verify that the OpenGL extension
is supported. If the extension is supported, the code can safely call the extension’s routines
and use its enumerants. If not supported, the program must avoid using the extension.

This method of using an extension’s new routines works because several operating
systems today support flexible shared libraries. A shared library delays the binding of a
routine name to its executable function until the routine is first called when the appli-
cation runs. This is known as a runtime link instead of a compile-time link. A problem
occurs when an OpenGL extension routine is called that is not supported by the OpenGL
runtime library. The result is a runtime link error that is generally fatal. This is why it
is so important to check the GL_EXTENSIONS string before using any extension. Once
extension support is verified, the program can safely call the extension’s routines in full
expectation that the system’s runtime linker will invoke the extension routine correctly.

Unfortunately, many open platforms allow graphics hardware vendors to ship new
OpenGL implementations, therefore it is not always possible to provide all of the API
interfaces a priori. This is often the case for vendor-specific extensions or platforms that
support multiple simultaneous graphics adaptors (multiadaptor). One problem is that
the platform may include a standard runtime library containing the core entry points.
OpenGL implementation vendors may not (and likely should not) replace this library
with their own. One reason for not doing this is the multiadaptor scenario where the two
graphics accelerators are supplied by two different hardware vendors.

To solve this problem hardware vendors supply additional runtime libraries that
provide the hardware-specific functionality. The standard OpenGL library discovers and
loads these device-specific libraries as plugins. The window system embedding layers
also include a command to query a pointer to one or more device-specific extension
commands. This mechanism allows an application to retrieve a function pointer for each
extension API function. In GLX this function is glxGetProcAddress and in WGL
wglGetProcAddress.3

The previousEXT_bgra example, showing how to safely detect and use the extension
at runtime and compile time, is straightforward. The EXT_bgra simply adds two new
enumerants (GL_BGRA_EXT andGL_BGR_EXT) and does not require any new commands.
Using an extension that includes new command entry points is more complex on many
platforms because the application must first explicitly request the function address from
the OpenGL device-specific library before it can call the OpenGL function.

3. OpenGL Toolkit libraries such as GLUT include platform-independent wrapper versions of these
functions.

S E C T I O N A . 5 Us ing Ex tens i on Func t i on Po in te r s 603

We will use the EXT_point_parameters extension to illustrate the process.
The EXT_point_parameters extension adds two new OpenGL entry points called
glPointParameterfEXT and glPointParameterfvEXT. These routines allow the
application to specify the attenuation equation parameters and fade threshold. On the
Win32 platform, an OpenGL application cannot simply link with these extension func-
tions. The application must first use the wglGetProcAddress command to find the
function address and then call through the returned address to invoke the extension
function.

First, declare function prototype typedefs that match the extension’s entry points.
For example:

#ifdef _WIN32
typedef void (APIENTRY * PFNGLPOINTPARAMETERFEXTPROC)

(GLenum pname, GLfloat param);
typedef void (APIENTRY * PFNGLPOINTPARAMETERFVEXTPROC)

(GLenum pname, const GLfloat *params);
#endif

The <GL/gl.h> header file may already have these typedefs declared if the
<GL/gl.h> defines the GL_EXT_point_parameters macro. Next declare global
variables of the type of these function prototype typedefs like this:

PFNGLPOINTPARAMETERFEXTPROC pglPointParameterfEXT;
PFNGLPOINTPARAMETERFVEXTPROC pglPointParameterfvEXT;

The names here correspond to the extension’s function names. Once wglGetProc
Address is used to assign these function variables to the address of the
OpenGL driver’s device-specific extension functions, the application can call
pglPointParameterfEXT and pglPointParameterfvEXT as if they were normal
functions. Pass wglGetProcAddress the name of the extension function as an ASCII
string. After verifying that the extension is supported the function pointer variables are
initialized as follows:

int hasPointParams = isExtensionSupported("GL_EXT_point_parameters");
if (hasPointParams) {

pglPointParameterfEXT = (PFNGLPOINTPARAMETERFEXTPROC)
wglGetProcAddress("glPointParameterfEXT");

pglPointParameterfvEXT = (PFNGLPOINTPARAMETERFVEXTPROC)
wglGetProcAddress("glPointParameterfvEXT");

}

Note that before calling this code there should be a current OpenGL rendering context.
With the function variables properly initialized to the extension entry points, the extension

604 A P P E N D I X A Us ing OpenGL Ex tens i ons

can be used as follows:

if (hasPointParams && pglPointParameterfvEXT && pglPointParameterfEXT) {
static GLfloat quadratic[3] = { 0.25, 0.0, 1/60.0 };
pglPointParameterfvEXT(GL_DISTANCE_ATTENUATION_EXT, quadratic);
pglPointParameterfEXT(GL_POINT_FADE_THRESHOLD_SIZE_EXT, 1.0);

}

Note that the behavior of wglGetProcAddress and glxGetProcAddress are sub-
tly different. The function returned by wglGetProcAddress is only guaranteed to
work for the pixel format type of the OpenGL rendering context that was current when
wglGetProcAddress was called. If multiple contexts were created for different pixel
formats, keeping a single function address in a global variable as shown previously may
create problems. The application may need to maintain distinct function addresses on
a per-pixel-format basis. The WGL implementation may reference a different function
pointer value for each different pixel format. This allows different (heterogenous) device
drivers in the multiadaptor scenario to return different device-specific implementations
of the function. In contrast, the GLX specification guarantees that the pointer returned
will be the same for all contexts. This means that the device-dependent layer and the
standard OpenGL library cooperate on routing commands through the correct parts of
the device-dependent libraries on a context by context basis. For other window system
embedding layers, consult the documentation to determine whether the returned pointers
are context-independent.

The requirement of using either glxGetProcAddress or wglGetProcAddress
is cumbersome, but makes applications using extension functionality substantially more
portable. Using these coding practices and a portable OpenGL toolkit, such as GLUT, can
make the task of developing portable code that works across a wide variety of platforms
(UNIX/Linux, Windows, Apple) manageable. The end result is applications that can use
state-of-the-art features while maintaining broad compatibility.

B
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

A
P
P
EN

D
IX

Equations

This appendix describes some important formulas and matrices referred to in the text.

B.1 3D Vectors

A =
⎛⎝Ax

Ay

Az

⎞⎠ , αA =
⎛⎝αAx

αAy

αAz

⎞⎠
A · B = AxBx + AyBy + AzBz

A · B = B · A

‖A‖ = √
A · A =

√
A2

x + A2
y + A2

z

A � B = max (0, A · B)

A × B =
⎛⎝AyBz − AzBy

AzBx − AxBz

AxBy − AyBx

⎞⎠
A × B = −B × A

A · (B × C) = B · (C × A) = C · (A × B)

A × (B × C) = (A · C)B − (A · B)C

605

606 A P P E N D I X B Equa t i ons

B.1.1 Spherical Coordinates

Given a point specified in Cartesian coordinates (x, y, z)T , the spherical coordinates
(ρ, θ , φ) consisting of a length and two angles are

ρ =
√

x2 + y2 + z2

tan θ = y/x

tan φ =
√

x2 + y2

z
and cos φ = z√

x2 + y2 + z2

Given length ρ, azimuth angle φ, and elevation angle θ (assuming y is up) the Cartesian
coordinates of the corresponding unit vector are

x = ρ cos θ sin φ

y = ρ sin θ sin φ

z = ρ cos φ

For unit vectors, ρ is equal to 1.

B.1.2 Linear Interpolat ion of 3D Vectors

Each vector component is interpolated separately, and then the resulting interpolated
vector is renormalized. Renormalization is required if the interpolated vectors need to
have unit length. Linearly interpolating a vector V using a single parameter α along a line
with vectors A and B at the endpoints:

V = αA + (1 − α)B

V′ = V
||V||

Linearly interpolating a vector V using two barycentric parameters α and β over a triangle
with vectors A, B, C at the vertices:

V = αA + βB + (1 − (α + β))C :

V′ = V
||V||

Note: When using linear vector interpolation care must be taken to handle or report the
case where one or more vector components interpolate to zero or a number so small
that an excessive amount of accuracy is lost in the representation. In cases where linear
interpolation is inadequate, spherical interpolation (SLERP) using quaternions may be
a preferable method.

S E C T I O N B . 2 P ro j e c t i on Mat r i c e s 607

B.1.3 Barycentr ic Coordinates

Given a triangle with vertices A, B, C, the barycentric coordinates of the point P inside
triangle ABC are α, β, γ , with P = αA + βB + γ C and α + β + γ = 1. Let area (XYZ) be
the area of the triangle with vertices X, Y, Z. Then

area(XYZ) = 1
2||(Y − X) × (Z − X)||

and the barycentric coordinates are the ratios of the areas of the subtriangles formed by
the interior point P to the entire triangle ABC:

α = area(PBC)
area(ABC)

β = area(PAC)
area(ABC)

γ = area(PAB)
area(ABC)

.

B.2 Projection Matrices

B.2.1 Orthographic Project ion

The call glOrtho(l, r, b, t, u, f) generates R, where

R=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
r−l

0 0 − r+l
r−l

0
2

t−b
0 − t+b

t−b

0 0 − 2
f −n

− f +n
f −n

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and R−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r−l
2

0 0
r+l
2

0
t−b

2
0

t+b
2

0 0
f −n

2
n+f

2
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R is defined as long as l
= r, t
= b, and n
= f .

B.2.2 Perspective Project ion

The call glFrustum(l, r, b, t, n, f) generates R, where

R=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2n
r−l

0
r+l
r−l

0

0
2n

t−b
t+b
t−b

0

0 0 − f +n
f −n

− 2fn
f −n

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and R−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r−l
2n

0 0
r+l
2n

0
t−b
2n

0
t+b
2n

0 0 0 −1

0 0
−f −n

2fn
f +n
2fn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R is defined as long as l
= r, t
= b, and n
= f .

608 A P P E N D I X B Equa t i ons

B.2.3 Perspective z-Coordinate Transformations

The z value in eye coordinates, zeye, can be computed from the window coordinate z value,
zwindow, using the near and far plane values, near and far, from the glFrustum com-
mand and the viewport near and far values, farvp and nearvp, from the glDepthRange
command using the equation

zeye =
far near (farvp − nearvp)

far − near

zwindow − (far + near)(farvp − nearvp)
2(far − near)

− farvp + nearvp

2

The z-window coordinate is computed from the eye coordinate z using the equation

zwindow =
[

far + near
far − near

+ 2 far near
zeye(far − near)

] [
farvp − nearvp

2

]
+ farvp + nearvp

2

B.2.4 Alternative Perspective Project ion

The call gluPerspective(fovy, ar, n, f) generates R, where

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
ar

0 0 0

0 c 0 0

0 0 − f + n
f − n

− 2nf
f − n

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and R−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ar
c

0 0 0

0
1
c

0 0

0 0 0 −1

0 0
−f − n

2fn
f + n
2fn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where c = cot(fovy/2) = cos(fovy/2)

sin(fovy/2) . R is defined as long as ar
= 0, sin(fovy)
= 0, and

n
= f .

B.3 Viewing Transforms

The callgluLookat(eyex, eyey, eyez, centerx, centery, centerz, upx,
upy, upz) generates V , where

V =

⎛⎜⎜⎝
sx sy sz −eyex

ux uy uz −eyey

nx ny nz −eyez

0 0 0 1

⎞⎟⎟⎠ and V−1 =

⎛⎜⎜⎝
sx ux nx eyex

sy uy ny eyey

sz uz nz eyez

0 0 0 1

⎞⎟⎟⎠

S E C T I O N B . 4 Mode l i ng T r ans fo rms 609

where n = eye−center
||eye−center|| , s = up×n

||up×n|| , and u = n × s. Or equivalently, n = eye−center
||eye−center|| ,

u = up − (up · n)n, and s = u × n.

B.4 Modeling Transforms

B.4.1 Scal ing

The call glScalef(sx, sy, sz) generates S, where

S =

⎛⎜⎜⎝
sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎞⎟⎟⎠ and S−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
sx

0 0 0

0
1
sy

0 0

0 0
1
sz

0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

B.4.2 Translat ion

The call glTranslatef(tx, ty, tz) generates T, where

T =

⎛⎜⎜⎜⎝
1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎞⎟⎟⎟⎠ and T−1 =

⎛⎜⎜⎜⎝
1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎞⎟⎟⎟⎠

B.4.3 Rotation

The call glRotatef(θ, Vx, Vy, Vz) generates R, where

R =

⎛⎜⎜⎜⎝
0

Q 0

0

0 0 0 1

⎞⎟⎟⎟⎠ and R−1 =

⎛⎜⎜⎜⎝
0

Q−1 0

0

0 0 0 1

⎞⎟⎟⎟⎠
and

Q = UUT + cos θ (I − UUT) + sin θS

Q−1 = UUT + cos θ (I − UUT) − sin θS

610 A P P E N D I X B Equa t i ons

U = V/||V||, V = (Vx, Vy, Vz)T

S =
⎛⎝ 0 −Uz Uy

Uz 0 −Ux

−Uz Ux 0

⎞⎠

B.5 Parallel and Perpendicular Vectors

Given two vectors A, B, the portion of A parallel to B is

A||B = B
(A · B)
||B||2

and the proportion of A perpendicular to B is A⊥B = A − A||B.

B.6 Reflection Vector

Given a surface point p, a unit vector, N, normal to that surface, and a vector, U, incident
to the surface at p, the reflection vector, R, exiting from p is

R = U − 2NT (N · U).

If U′ is exiting from the surface, U′ = −U and

R = 2NT (N · U′) − U′.

B.7 Lighting Equations

In single-color lighting mode, the primary and secondary colors at surface point Ps are
computed from n light sources as

Cprimary = em + amasc

+
n−1∑
i=0

(atti)(spoti)
[
amali + dmdli (N � Li) + smsli (fi)(N � Hi)shi

]
Csecondary = (0, 0, 0, 1).

S E C T I O N B . 7 L i gh t i ng Equa t i ons 611

In separate specular color mode, the primary and secondary colors are computed from n
light sources as

Cprimary = em + amasc +
n−1∑
i=0

(atti)(spoti)
[
amali + dmdli (N � Li)

]

Csecondary =
n−1∑
i=0

(atti)(spoti)
[
smsli (fi)(N � Hi)shi

]

where

em, am, dm, and sm are the material emissive, ambient, diffuse, and specular
reflectances

asc is the scene ambient intensity

ali , dli , and sli are the ambient, diffuse, and specular intensities for light source i

shi is the specular exponent for light source i

atti is the distance attenuation for light source i

atti =

⎧⎪⎨⎪⎩
1

kci + kli di + kqi d
2
i

, positional light

1.0, directional light

where,

di is the distance between the surface point and light source i

di = ||−−→PsPli ||

kci is the constant attenuation for light source i

kli is the linear attenuation for light source i

kqi is the quadratic attenuation for light source i

spoti is the spotlight attenuation for light source i

spoti =

⎧⎪⎨⎪⎩
(
−−→
PliPs � sdi)sei , coi
= 180.0, (

−−→
PliPs � sd) ≥ cos (coi)

0.0, coi
= 180.0, (
−−→
PliPs � sd) < cos (coi)

1.0, coi = 180.0

612 A P P E N D I X B Equa t i ons

where

sdi is the spotlight direction unit vector for light source i

sei is the spotlight exponent for light source i

coi is the spotlight cutoff angle for light source i

N is the surface normal unit vector

Li is the unit vector from the surface point to light source i,
−−→
PsPli

Hi is the half-angle vector between the vectors from the surface point to the eye
position (Pe), and the surface point and and light source i

Hi =
{−−→

PsPli + −−→
PsPe, local viewer

−−→
PsPli + (0, 0, 1)T , infinite viewer

fi is the self-occlusion discriminator for light source i

fi =
{

1, N � Li
= 0

0, otherwise

B.8 Function Approximations

B.8.1 Taylor Series Expansion

The Taylor series expansion of a function f (x) about the point a is

f (x) =
∞∑

j=0

1
j! (x − a)jf (j)

∣∣∣
x=a

where f (j) denotes the jth derivative of f (x). The Maclaurin series expansion is the special
case of the Taylor series expansion about the point a = 0.

B.8.2 Newton-Raphson Method

The Newton-Raphson method for obtaining a root of the function f (x) uses an initial
estimate x0 and the recurrence

xn+1 = xn − f (xn)
f ′(xn)

(B.1)

S E C T I O N B . 8 Func t i on App rox ima t i ons 613

The approximation for the reciprocal of a number a is the root of the equation f (x) =
1/x − a. Substituting f (x) in Equation B.1 gives

xn+1 = xn − 1/xn − a
−1/x2

n
= xn(2 − axn)

and the reciprocal square root of a number a is the root of the equation f (x) = 1/x2 − a.
Substituting f (x) in Equation B.1 gives

xn+1 = xn − 1/x2
n − a

−2/x3
n

= xn

2
(3 − ax2

n)

B.8.3 Hypotenuse

A rough approximation of the 2D hypotenuse or length function
√

a2 + b2 suitable for
level-of-detail computations (Wu, 1988), is

max(|a|, |b|) + 11/32 min(|a|, |b|).

Bibliography

Airey, J., B. Cabral, and M. Peercy, “Explanation of Bump Mapping with Texture,”
personal communication, 1997.

Akeley, K. “Algorithm for Drawing Boundary Plus Silhouette Edges for a Solid,” personal
communication, 1998.

Andrews, D. F., “Plots of High-dimensional Data,” Biometrics, 28: 125–136, 1972.

Angel, E. Interactive Computer Graphics: A Top-down Approach with OpenGL,
Reading, MA: Addison-Wesley, 1997.

Apple Computer. Apple GL Library Specification, Apple Computer, Inc., Cupertino,
CA, 2001. On-line reference available at http://developer.apple.com/documentation/
GraphicsImaging/OpenGL-date.html.

Ashikhmin, M., S. Premo, and P. Shirley, “A Microfacet-based BRDF Generator,” in
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 65–74. New York: ACM Press/Addison-Wesley, 2000.

Attarwala, Y. “Rendering Hidden Lines,” Iris Universe, Fall: 39, 1988.

Bailey, M., and D. Clark, “Encoding 3D Surface Information in a Texture Vector,”
Journal of Graphics Tools 2(3): 29–35, 1997, www.sdsc.edu/tmf/texvec.pdf.

Beckmann, P., and Spizzichino, A., The Scattering of Electromagnetic Waves from Rough
Surfaces, New York: MacMillan, 1963.

Bergeron, P. “A General Version of Crow’s Shadow Volumes,” IEEE Computer Graphics
and Applications, 6(9): 17–28, 1986.

615

616 B ib l i og r aphy

Blinn, J. F. “A Ghost in a Snowstorm,” IEEE Computer Graphics and Applications,
pp. 79–84, January 1998.

Blinn, J. F. “Me and My (Fake) Shadow,” IEEE Computer Graphics and Applications,
January 1988, reprinted in Jim Blinn’s Corner: A Trip Down the Graphics Pipeline,
San Francisco: Morgan Kaufmann, 1996.

Blinn, J. F. “Hyperbolic Interpolation,” IEEE Computer Graphics and Applications,
July 1992, reprinted in Jim Blinn’s Corner: A Trip Down the Graphics Pipeline.
San Francisco: Morgan Kaufmann, 1996.

Blinn, J. F. “Models of Light Reflection for Computer Synthesized Pictures,” in Pro-
ceedings of the 4th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 192–198, New York: ACM Press, 1977.

Blinn, J. F. “Simulation of Wrinkled Surfaces,” in Computer Graphics (SIGGRAPH ’78
Proceedings), vol. 12, pp. 286–292. August 1978.

Blinn, J. F. “W Pleasure, W Fun,” IEEE Computer Graphics and Applications,
pp. 78–82, June 1998.

Blythe, D. (ed.). OpenGL ES Common/Common-Lite Profile Specification (Version 1.0),
Clearlake Park, CA: The Khronos Group, 2003, www.khronos.org/opengles/
spec.html.

Bourgoyne, A., R. Bornstein, and D. Yu, Silicon Graphics Visual Workstation OpenGL
Programming Guide for Windows NT, Mountain View, CA: Silicon Graphics, 1999,
www.sgi.com/developers/nt/sdk/.

Brodlie, K. W., L. A. Carpenter, R. A. Earnshaw, J. R. Gallop, R. J. Hubbold,
A. M. Mumford, C. D. Osland, and P. Quarendon (eds.). Scientific Visualization:
Techniques and Applications. New York: Springer-Verlag, 1992.

Brotman, L. S., and N. Badler, “Generating Soft Shadows with a Depth Buffer
Algorithm,” IEEE Computer Graphics and Applications, October, 1984.

Cabral, B., and L. Leedom, “Imaging Vector Fields Using Line Integral Convolution,”
in J. T. Kajiya (ed.). Computer Graphics (SIGGRAPH ’93 Proceedings), vol. 27,
pp. 263–272, Aug. 1993.

Cabral, B., N. Cam, and J. Foran, “Accelerated Volume Rendering and Tomographic
Reconstruction Using Texture Mapping Hardware,” in Proceedings of the 1994
Symposium on Volume Visualization, pp. 91–98, New York: ACM Press, 1994.

Carmack, J. “Shadow Volumes,” e-mail, May 2000.

Carpenter, L. “The A-buffer: An Antialiased Hidden Surface Method,” in Proceedings
of the 11th Annual Conference on Computer Graphics and Interactive Techniques,
pp. 103–108, New York: ACM Press, 1984.

Catmull, E. “A Hidden-surface Algorithm with Anti-aliasing,” in Proceedings of the 5th
Annual Conference on Computer Graphics and Interactive Techniques, pp. 6–11,
New York: ACM Press, 1978.

B ib l i og r aphy 617

Chen, M., and J. Arvo, “Perturbation Methods for Interactive Specular Reflections,”
IEEE Transactions on Visualization and Computer Graphics, 6(3): 253–264,
Sept. 2000.

Chen, M., and J. Arvo, “Theory and Application of Specular Path Perturbation,” ACM
Transactions on Graphics, 19(4), Jan. 2001.

Chernoff, H. “The Use of Faces to Represent Points in k-dimensional Space Graphically,”
Journal of the American Statistical Association, 68: 361–368, June 1973.

Chiang, Y-J., and T. Silva, “I/O Optimal Isosurface Extraction,” in Proceedings of the
8th Conference on Visualization ’97, p. 293, Washington, D.C.: IEEE Computer
Society Press, 1997.

Chui, K., M. Herf, P. Shirley, S. Swamy, C. Wang, and K. Zimmerman, “Spa-
tially Nonuniform Scaling Functions for High-Contrast Images,” in Proceedings of
Graphics Interface ’93, pp. 245–253, 1993.

Cohen, M. F., and J. R. Wallace, Radiosity and realistic image synthesis, San Diego, CA:
Harcourt Brace & Company, 1993.

Cook, R. L., “Stochastic Sampling in Computer Graphics,” ACM Trans. Graph., 5(1):
51–72, 1986.

Cook, R. L., and K. E. Torrance, “A Reflectance Model for Computer Graphics,”
in Computer Graphics (SIGGRAPH ’81 Proceedings), vol. 15, pp. 307–316,
Aug. 1981.

Cook, R. L., L. Carpenter, and E. Catmull, “The Reyes Image Rendering Architecture,”
in Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 95–102, New York: ACM Press, 1987.

Coorg S., and S. Teller, “A Spatially and Temporally Coherent Object Space Visi-
bility Algorithm,” Technical Report TM 546, Laboratory for Computer Science,
Cambridge, MA: Massachusetts Institute of Technology, 1996.

Crow, F. C., “A Comparison of Antialiasing Techniques,” IEEE Computer Graphics
and Applications, 1(1): 40–48, Jan. 1981.

Cutnell, J. D., and K. W. Johnson, Physics, New York: John Wiley & Sons, 1989.

Debevec, P. “Image-based Lighting,” IEEE Computer Graphics and Applications.
2002;22(2):26–34.

Debevec, P. F., and J. Malik, “Recovering High Dynamic Range Radiance Maps from
Photographs,” in Proceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques, pp. 369–378, New York: ACM Press/Addison-Wesley,
1997.

Deering, M. F., “High resolution Virtual Reality,” in E. E. Catmull (ed.). Computer
Graphics (SIGGRAPH ’92 Proceedings), vol. 26, pp. 195–202, July 1992.

de Leeuw, W. C., and J. J. van Wijk, “A Probe for Local Flow Field Visualization,” in
Proceedings of the 4th Conference on Visualization ’93, pp. 39–45, 1993.

618 B ib l i og r aphy

Delmarcelle, T., and L. Hesselink, “Visualizing Second-order Tensor Fields with
Hyperstreamlines,” IEEE Computer Graphics and Applications, 13(4): 25–33,
July 1993.

Dickinson, R. R., “A Unified Approach to the Design of Visualization Software for
the Analysis of Field Problems,” in Three-Dimensional Visualization and Display
Technologies, vol. 1083, pp. 173–180, 1989.

Deifenbach, P., “Pipeline Rendering: Interaction and Realism Through Hardware-Based
Multi-Pass Rendering,” Ph.D. thesis, School of Computer Science, University of
Pennsylvania, 1996.

Diefenbach, P. J., and N. I. Badler, “Multi-pass Pipeline Rendering: Realism for Dynamic
Environments,” in Proceedings of the 1997 Symposium on 3D Graphics, pp. 12,
1997.

Drebin, R. A., L. Carpenter, and P. Hanrahan, “Volume Rendering,” in J. Dill (ed.).
Computer Graphics (SIGGRAPH ’88 Proceedings), vol. 22, pp. 65–74, Aug. 1988.

Duff, T. “Compositing 3-D Rendered Images,” in B. A., Barsky (ed.). Computer Graphics
(SIGGRAPH ’85 Proceedings), vol. 19, pp. 41–44, July 1985.

Ebert, D., K. Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing and modeling:
A Procedural Approach, San Diego: Academic Press, 1994.

Epic Games, “Unreal,” Jan. 1999, www.epicgames.com/.

Evans, F., S. Skiena, and A. Varshney, “Optimizing Triangle Strips for Fast Render-
ing,” in Proceedings of Visualization 96, pp. 319–326, 1996, www.cs.sunysb.edu/
evans/stripe.html.

Everitt, C. “Interactive Order-independent Transparency,” NVIDIA Technical Report,
2002, http://developer.nvidia.com/view.asp?IO=Interactive_Order_Transparency.

Fernando, R. (ed.). GPU Gems: Programming Techniques, Tips, and Tricks for Real-
Time Graphics, Reading, MA: Addison-Wesley Professional, 2004.

Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles
and Practice, Reading, MA: Addison-Wesley, 1990.

Foley, J. D., A. van Dam, S. K. Feiner, J. F. Hughes, and R. L. Phillips, Introduction to
Computer Graphics, Reading, MA: Addison-Wesley, 1994.

Fosner, R., OpenGL Programming for Windows 95 and Windows NT, Reading, MA:
Addison-Wesley, 1996.

Fournier, A., and W. T. Reeves, “A Simple Model of Ocean Waves,” in D. C. Evans
and R. J. Athay (eds.). Computer Graphics (SIGGRAPH ’86 Proceedings), vol. 20,
pp. 75–84, Aug. 1986.

Fournier, A., D. Fussell, and L. Carpenter, “Computer Rendering of Stochastic Models,”
Communications of the ACM, 25(6): 371–384, June 1982.

FreeType project documentation, www.freetype.org, 2003.

B ib l i og r aphy 619

Gardner, G. Y. “Visual Simulation of Clouds,” in B. A. Barsky (ed.). Computer Graphics
(SIGGRAPH ’85 Proceedings), vol. 19, pp. 297–303, July 1985.

Glassner, A. S., An Introduction to Ray Tracing, San Francisco: Morgan Kaufmann,
1989.

Goldfeather, J., J. P. M. Hultquist, and H. Fuchs, “Fast Constructive-solid Geome-
try Display in the Pixel-Powers Graphics System,” in D. C. Evans and R. J. Athay
(eds.). Computer Graphics (SIGGRAPH ’86 Proceedings), vol. 20, pp. 107–116,
Aug. 1986.

Goldman, R. “Matrices and Transformations,” in A. Glassner (ed.). Graphics Gems,
pp. 474, San Diego: Academic Press, 1990.

Gonzalez, R. C., and P. Wintz, Digital Image Processing (2d ed.). Reading, MA:
Addison-Wesley, 1987.

Gooch, A., B. Gooch, P. Shirley, and E. Cohen, “A Non-photorealistic Lighting Model
for Automatic Technical Illustration,” in M. F. Cohen (ed.). Computer Graphics
("SIGGRAPH ’98 Proceedings), vol. 25, pp. 447–452, July 1998.

Gooch, B., P. Sloan, A. Gooch, P. Shirley, and R. Riesenfield, “Interactive Technical
Illustration,” in J. Hodgins and J. Foley (eds.). Proceedings of the 1999 Symposium
on Interactive 3D Graphics, pp. 31–38, April 1999.

Gortler, S. J., R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph,” in
Computer Graphics (SIGGRAPH ’96 Proceedings), vol. 30, pp. 43–54, Aug. 1996.

Gouraud, H. “Continuous Shading of Curved Surfaces,” IEEE Transactions on
Computers, C-20(6):623–629, June 1971.

Greene, N., M. Kass, and G. Miller, “Hierarchical Z-buffer Visibility,” in Proceedings
of the 20th Annual Conference on Computer Graphics and Interactive Techniques,
pp. 231–238, New York: ACM Press, 1993.

Haber, R. B. “Visualization Techniques for Engineering Mechanics,” Computing Sytems
in Engineering, 1(1):37–50, 1990.

Haeberli, P. E. “Matrix Operations for Image Processing,” www.sgi.com/grafica/matrix/
index.html, Nov. 1993.

Haeberli, P. E. “Paint by Numbers: Abstract Image Representations,” in F. Baskett
(ed.). Computer Graphics (SIGGRAPH ’90 Proceedings), vol. 24, pp. 207–214,
Aug. 1990.

Haeberli, P. E., and K. Akeley, “The Accumulation Buffer: Hardware Support for
High-quality Rendering,” in F. Baskett (ed.). Computer Graphics (SIGGRAPH ’90
Proceedings), vol. 24, pp. 309–318, Aug. 1990.

Haeberli, P. E., and M. Segal, “Texture Mapping as a Fundamental Drawing Primitive,”
in M. F. Cohen, C. Puech, and F. Sillion (eds.) Fourth Eurographics Workshop on
Rendering, pp. 259–266, Eurographics, Paris, 14–16 June 1993.

620 B ib l i og r aphy

Haeberli, P. E., and D. Voorhies, “Image Processing by Linear Interpolation and
Extrapolation,” Iris Universe, (28): 8–9, 1994.

Hall, R. Illumination and Color in Computer Generated Imagery, New York: Springer-
Verlag, 1989.

Hall, P. M., and A. H. Watt, “Rapid Volume Rendering Using a Boundary-fill Guided
Ray Cast Algorithm,” in N. M. Patrikalakis (ed.). Scientific Visualization of Physical
Phenomena (Proceedings of CG International ’91), pp. 235–249, New York:
Springer-Verlag, 1991.

Hanrahan, P., and P. E. Haeberli, “Direct WYSIWYG Painting and Texturing on 3D
Shapes,” in F. Baskett (ed.). Computer Graphics (SIGGRAPH ’90 Proceedings),
vol. 24, pp. 215–223, Aug. 1990.

Hanrahan, P., and D. Mitchell, ”Illumination from Curved Reflectors,” in Computer
Graphics (SIGGRAPH ’92 Proceedings), vol. 26, pp. 282–291, July 1992.

Heckbert, P. S., and M. Herf, “Fast Soft Shadows,” in Visual Proceedings,
SIGGRAPH ’96, pp. 145, New York: ACM Press, 1996.

Heckbert, P. S., and M. Herf, “Shadow Generation Algorithms,” www.cs.cmu.edu/ph/
shadow.html, April 1997.

Heidmann, T. “Real Shadows Real Time,” Iris Universe, (18):28–31, 1991.

Heidrich, W., and H-P. Seidel, “Efficient Rendering of Anisotropic Surfaces Using
Computer Graphics Hardware,” in Image and Multi-dimensional Digital Signal
Processing Workshop (IMDSP), Washington, D.C.: IEEE Computer Society Press,
1998.

Heidrich, W., and H-P. Seidel, “View-independent Environment Maps,” in Proceed-
ings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware, 1998,
www9.informatik.unierlangen.de/eng/research/rendering/envmap.

Herrell, R., J. Baldwin, and C. Wilcox, “High-quality Polygon Edging,” IEEE Computer
Graphics and Applications, 15(4):68–74, July 1995.

Hewlett-Packard, “About srgb,” www.srgb.com/aboutsrgb.html, Nov. 2001.

Hewlett-Packard, OpenGL Implementation Guide, www.hp.com/unixwork/products/
grfx/OpenGL/Web/ImpGuide.html, June 1998.

Hill, S., “Hardware Accelerating Art Production,” www.gamasutra.com/features/
20040319/hill_01.shtml, March 2004.

Huttner, T. “High-resolution Textures,” in Proceedings of IEEE Visualization 98, Oct.
1998, http://davinci.informatik.unikl.de/vis98/archive/lbht/papers/huettnerA4.pdf.

id Software, “Quake,” www.idsoftware.com/, Jan. 1999.

Interrante, V., and C. Grosch, “Strategies for Effectively Visualizing 3D Flow with
Volume LIC,” in Proceedings of the Conference on Visualization ’97, pp. 421–ff,
New York: ACM Press, 1997.

B ib l i og r aphy 621

Jack, K. Video Demystified: A Handbook for the Digital Engineer, San Diego: HighText
Publications, 1996.

Jeremic, B., G. Scheuermann, J. Frey, Z. Yang, B. Hamman, K. I. Joy, and H. Haggen,
“Tensor Visualizations in Computational Geomechanics,” International Journal for
Numerical and Analytical Methods in Geomechanics Incorporating Mechanics of
Cohesive-Frictional Materials, 26(10):925-944, Aug. 2002.

Kass, M., and G. Miller, “Rapid, Stable Fluid Dynamics for Computer Graphics,”
in F. Baskett (ed.). Computer Graphics (SIGGRAPH ’90 Proceedings), vol. 24,
pp. 49–57, Aug. 1990.

Kautz, J., and M. D. McCool, “Interactive Rendering with Arbitrary BRDFs Using
Separable Approximations,” in ACM SIGGRAPH 99 Conference Abstracts and
Applications, pp. 253, New York: ACM Press, 1999.

Kessenich, J., D. Baldwin, and R. Rost, The OpenGL Shading Language (Version
1.051), 3DLabs, Inc., Egham, Surry, Feb. 2003, www.opengl.org/documentation/
oglsl.html.

Khronos Group, The “OpenGL ES,” www.khronos.org/opengles/index.html, Dec. 2002.

Kilgard, M. J. Programming OpenGL for the X Window System, Reading, MA:
Addison-Wesley, 1996.

Kilgard, M. J. “Shadow Volumes,” http://developer.nvidia.com, March 2002.

Kilgard, M. J. “A Simple OpenGL-based API for Texture Mapped Text,”
http://reality.sgi.com/opengl/tips/TexFont/TexFont.html, 1997.

Kilgard, M. J., D. Blythe, and D. Hohn, “System Support for OpenGL Direct Rendering,”
in W. A. Davis and P. Prusinkiewicz (eds.). Graphics Interface ’95, pp. 116–127,
Canadian Human-Computer Communications Society, 1995.

Kindlmann, G., and D. Weinstein, “Hue-balls and Lit-tensors for Direct Volume
Rendering of Diffusion Tensor Fields,” in Proceedings of the Conference on Visu-
alization ’99, pp. 183–189, Washington, D.C.: IEEE Computer Society Press,
1999.

Lacroute, P., and M. Levoy, “Fast Volume Rendering Using a Shear–warp Factor-
ization of the Viewing Transformation,” in A. Glassner (ed.). Proceedings of
SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), Computer Graphics Pro-
ceedings, Annual Conference Series, pp. 451–458, ACM SIGGRAPH, New York:
ACM Press, July 1994.

Lambert, J. D., Numerical Methods for Ordinary Differential Equations, Chichester,
UK: John Wiley & Sons, 1991.

Larson, G. W., H. Rushmeier, and C. Piatko, “A Visibility Matching Tone Reproduc-
tion Operator for High Dynamic Range Scenes,” in ACM SIGGRAPH 97 Visual
Proceedings: The Art and Interdisciplinary Programs of SIGGRAPH ’97, pp. 155,
New York: ACM Press, 1997.

622 B ib l i og r aphy

Lee, A., H. Moreton, and H. Hoppe, “Displaced Subdivision Surfaces,” in Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques,
pp. 85–94, New York: ACM Press/Addison-Wesley, 2000.

Leech, J. (ed.). OpenGL ES Native Platform Graphics Interface (Version 1.0), Clearlake
Park, CA: The Khronos Group, 2003, www.khronos.org/opengles/spec.html.

Lengyel, E. “The Mechanics of Robust Stencil Shadows,” www.gamasutra.com,
Oct. 2002.

Levoy, M., and P. Hanrahan, “Light Field Rendering,” in Computer Graphics
(SIGGRAPH ’96 Proceedings), vol. 30, pp. 31–42, Aug. 1996.

Lewis, J-P., “Algorithms for Solid Noise Synthesis,” in J. Lane (ed.). Computer Graphics
(SIGGRAPH ’89 Proceedings), vol. 23, pp. 263–270, July 1989.

Lorensen, W. E., and H. E. Cline, “Marching Cubes: A High-resolution 3D Surface
Construction Algorithm,” in Proceedings of the 14th Annual Conference on Com-
puter Graphics and Interactive Techniques, pp. 163–169, New York: ACM Press,
1987.

Luebke, D., and C. Georges, “Portals and Mirrors: Simple, Fast Evaluation of Potentially
Visible Sets,” in Proceedings of the 1995 Symposium on Interactive 3D Graphics,
pp. 105, New York: ACM Press, 1995.

Ma, K-L., B. Cabral, H-C. Hege, D. Stalling, and V. L. Interrante, “Texture Synthesis with
Line Integral Convolution,” ACM SIGGRAPH, Los Angeles, 1997, Siggraph ’97
Conference Course Notes.

Mammen, A. “Transparency and Antialiasing Algorithms Implemented with the Virtual
Pixel Maps Technique,” IEEE Computer Graphics and Applications, pp. 43–55,
July 1989.

Markosian, L., M. Kowalski, S. Trychin, L. Bourdev, D. Goldstein, and J. Hughes,
“Real-time Nonphotorealistic Rendering,” in T. Whitted (ed.). Computer Graphics
(SIGGRAPH ’97 Proceedings) vol. 24, pp. 415–420, Aug. 1997.

McCool, M. D., J. Ang, and A. Ahmad, “Homomorphic Factorization of BRDFS
for High-performance Rendering,” in Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques, pp. 171–178, New York:
ACM Press, 2001.

McMillan, L., and G. Bishop, “Plenoptic Modeling: An Image-based Rendering Sys-
tem,” in Computer Graphics (SIGGRAPH ’95 Proceedings), vol. 29, pp. 39–46,
Aug. 1995.

Microsoft. Windows OpenGL SDK Documentation, Microsoft MSDN Library, 2001.

Microsoft. Windows Win32 SDK Documentation, Microsoft MSDN Library, 2001.

Miller, G. S. P. “The Definition and Rendering of Terrain Maps,” in D. C. Evans and
R. J. Athay (eds.). Computer Graphics (SIGGRAPH ’86 Proceedings), vol. 20,
pp. 39–48, Aug. 1986.

B ib l i og r aphy 623

Mitchell, D. P., and A. N. Netravali, “Reconstruction Filters in Computer Graphics,”
in J. Dill (ed.). Computer Graphics (SIGGRAPH ’88 Proceedings), vol. 22,
pp. 221–228, Aug. 1988.

Montrym, J., D. Baum, D. Dignam, and C. Migdal, “InfiniteReality: A Real-time Graph-
ics System,” in T. Whitted (ed.). Computer Graphics (SIGGRAPH ’97 Proceedings),
pp. 293–302, Aug. 1997.

Mueller, K., and R. Crawfis, “Eliminating Popping Artifacts in Sheet Buffer-based
Splatting,” in Proceedings of the Conference on Visualization ’98, pp. 239–245,
Washington, D.C.: IEEE Computer Society Press, 1998.

Mueller, K., T. Muller, and R. Crawfis, “Splatting Without the Blur,” in Proceedings
of the Conference on Visualization ’99, pp. 363–370, Washington, D.C.: IEEE
Computer Society Press, 1999.

Myler, H. R., and A. R. Weeks, The Pocket Handbook of Image Processing Algo-
rithms in C, University of Central Florida Department of Electrical & Computer
Engineering, Indianapolis: Prentice Hall, 1993.

Neider, J., T. Davis, and M. Woo, OpenGL Programming Guide (2d ed.). Reading, MA:
Addison-Wesley, 1997.

Newman, W. M., and R. F. Sproull, Principles of Interactive Computer Graphics (1st ed.).
New York: McGraw-Hill, 1973.

Nishita, T., and E. Nakamae, “Method of Displaying Optical Effects Within Water
Using Accumulation Buffer,” in A. Glassner (ed.). Proceedings of SIGGRAPH ’94
(Orlando, Florida, July 24–29, 1994), Computer Graphics Proceedings, Annual
Conference Series, pp. 373–381, ACM SIGGRAPH, New York: ACM Press, 1994.

NVIDIA, Cg Toolkit, Release 1.2, Santa Clara, CA, www.nvidia.com/Cg, Jan. 2004.

NVIDIA, “NVIDIA Occlusion Query Extension Specification,” http://oss.sgi.com/
projects/oglsample/registry/NV/occlusion_query.txt, Feb. 2002.

Ofek, E., and A. Rappoport, “Interactive Reflections on Curved Objects,” in M. F. Cohen
(ed.). Computer Graphics (SIGGRAPH ’98 Proceedings), pp. 333–342, July 1998.

Oren, M., and S. K. Nayar, “Generalization of Lambert’s Reflectance Model,” in
A. Glassner (ed.). Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29,
1994) vol. 28 of Computer Graphics Proceedings, Annual Conference Series,
pp. 239–246, ACM SIGGRAPH, New York: ACM Press, July 1994.

O’Rourke, J., Computational Geometry in C, Cambridge: Cambridge University Press,
1994.

Owens, J. D., B. Khailany, B. Towles, and W. J. Dally, “Comparing Reyes and OpenGL on a
Stream Architecture,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, pp. 47–56, Eurographics Association, 2002.

Owens, J. D., W. J. Dally, U. J. Kapasi, S. Rixner, P. Mattson, and B. Mowery,
“Polygon Rendering on a Stream Architecture,” in Proceedings of the ACM

624 B ib l i og r aphy

SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pp. 23–32,
New York: ACM Press, 2000.

Pantone, Inc., www.pantone.com, Jan. 2003.

Peachey, D. R. “Modeling Waves and Surf,” in D. C. Evans and R. J. Athay (eds.).
Computer Graphics (SIGGRAPH ’86 Proceedings), vol. 20, pp. 65–74, Aug. 1986.

Peercy, M., J. Airey, and B. Cabral, “Efficient Bump Mapping Hardware,” in Computer
Graphics (SIGGRAPH ’97 Proceedings), 1997.

Peleg, A., S. Wilkie, and U. Weiser, “Intel MMX for Multimedia PCs,” Communications
of the ACM, 40(1):24–38, 1997.

Phong, B-T. “Illumination for Computer Generated Pictures,” Communications of the
ACM, 18(6):311–317, June 1975.

Porter, T., and T. Duff, “Compositing Digital Images,” in H. Christiansen (ed.).
Computer Graphics (SIGGRAPH ’84 Proceedings), vol. 18, pp. 253–259, July 1984.

Potmesil, M., and I. Chakravarty, “A Lens and Aperture Camera Model for Synthetic
Image Generation,” in Proceedings of the 8th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 297–305, New York: ACM Press, 1981.

Poynton, C. “The Rehabilitation of Gamma,” in B. E. Rogowitz and T. N. Pappas (eds.).
Proceedings of SPIE/IS&T Conference 3299, Jan. 1998.

Praun, E., H. Hoppe, M. Webb, and A. Finkelstein, “Real-time Hatching,” in Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques,
pp. 581, New York: ACM Press, 2001.

Preparata, F. P., and M. I. Shamos, Computational Geometry, New York: Springer-
Verlag, 1985.

Reeves, W. T., D. H. Salesin, and R. L. Cook, “Rendering Antialiased Shadows
with Depth Maps,” in M. C. Stone (ed.). Computer Graphics (SIGGRAPH ’87
Proceedings), vol. 21, pp. 283–291, July 1987.

Reinhard, E., M. Stark, P. Shirley, and J. Ferwerda, “Photographic Tone Reproduction
for Digital Images,” in Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 267–276, New York: ACM Press, 2002.

Rogers, D. F., Procedural Elements for Computer Graphics (2d ed.). New York:
McGraw-Hill, 1997.

Rohlf, J., and J. Helman, “IRIS Performer: A High Performance Multiprocessing Toolkit
for Real–time 3D Graphics,” in A. Glassner (ed.). Proceedings of SIGGRAPH ’94
(Orlando, Florida, July 24–29, 1994), Computer Graphics Proceedings, Annual
Conference Series, pp. 381–395, ACM SIGGRAPH, New York: ACM Press, July
1994.

Rustagi, P., “Silhouette Line Display from Shaded Models,” Iris Universe, Fall: 42–44,
1989.

B ib l i og r aphy 625

Saito, T., and T. Takahashi, “Comprehensible Rendering of 3-D Shapes,” in F. Baskett
(ed.). Computer Graphics (SIGGRAPH ’90 Proceedings), vol. 24, pp. 197–206,
Aug. 1990.

Scheifler, R. W., and J. Gettys, “The X Window System,” ACM Transactions on
Graphics, 5(2):79–109, 1986.

Schlag, J. Fast Embossing Effects on Raster Image Data, Cambridge, MA: Academic
Press, 1994.

Schlick, C. “Divers Éléments Pour Une Synthèse d’Images Réalistes,” Ph.D. thesis,
Université Bordeax 1, November 1992.

Segal, M., and K. Akeley, The OpenGL Graphics System: A Specification (version 1.5),
Mountain View, CA: Silicon Graphics, Inc., October 2003, http://opengl.org/
documentation/specs/version1.5/glspec15.pdf.

Segal, M., C. Korobkin, R. van Widenfelt, J. Foran, and P. E. Haeberli, “Fast Shadows
and Lighting Effects Using Texture Mapping,” in E. E. Catmull (ed.). Computer
Graphics (SIGGRAPH ’92 Proceedings), vol. 26, pp. 249–252, July 1992.

Shirley, P., R. K. Morley, Realistic Ray Tracing (2d ed.). Natick, MA: AK Peters Ltd,
2003.

Sloan, P-P. J., D. Weinstein, and J. D. Brederson, “Importance Driven Texture Coor-
dinate Optimization,” submitted to SIGGRAPH ’97, 1997, www.cs.utah.edu/
dejohnso/workshop/talks/sloan/sloan.html.

Soderquist, P., and M. Leeser, “Area and Performance Tradeoffs in Floating-point Divide
and Square-root Implementations,” ACM Comput. Surv., 28(3):518–564, 1996.

Soler, C., and F. Sillion, “The Clipmap: A Virtual Mipmap,” in M. F. Cohen (ed.).
Computer Graphics (SIGGRAPH ’98 Proceedings), pp. 321–332, July 1998.

Spencer, G., P. Shirley, K. Zimmerman, and D. P. Greenberg, “Physically-based
Glare Effects for Digital Images,” in Proceedings of the 22nd Annual Confer-
ence on Computer Graphics and Interactive Techniques, pp. 325–334, New York:
ACM Press, 1995.

Stalling, D., M. Zöckler, and H.-C. Hege, “Fast Display of Illuminated Field Lines,”
IEEE Transactions on Visualization and Computer Graphics, 3(2):118–128, 1997.

Strauss, P. S., and R., Carey, “An Object-oriented 3D Graphics Toolkit,” in E. E. Catmull
(ed.). Computer Graphics (SIGGRAPH ’92 Proceedings), vol. 26, pp. 341–349,
July 1992.

Tanner, C., C. Migdal, and M. Jones, “The Clipmap: A Virtual Mipmap,” in M. F.
Cohen (ed.). Computer Graphics (SIGGRAPH ’98 Proceedings), pp. 151–158, July
1998.

Teschner, M. “Texture Mapping: New Dimensions in Scientific and Technical Visualiza-
tion,” Iris Universe, (29):8–11, 1994.

Tessman, T. “Casting Shadows on Flat Surfaces,” Iris Universe, Winter: 16, 1989.

626 B ib l i og r aphy

Torrance, K. E., and E. Sparrow, “Theory for Off-specular Reflection from Rough
Surfaces,” Journal of Optical Society of America, 57:1105–114, Sept. 1976.

van Wijk, J. J., “Spot Noise Texture Synthesis for Data Visualization,” in T. W. Sederberg
(ed.). Computer Graphics (SIGGRAPH ’91 Proceedings), vol. 25, pp. 309–318,
July 1991.

Walter, B., G. Alppay, E. Lafortune, S. Fernandez, and D. P. Greenberg, “Fitting Virtual
Lights for Non-diffuse Walkthroughs,” in Computer Graphics (SIGGRAPH ’97
Proceedings), vol. 31, pp. 45–48, Aug. 1997.

Ward, G. “High Dynamic Range Imaging,” in Proceedings of the Ninth Color Imaging
Conference, Nov. 2001.

Ward, G. “Measuring and Modeling Anisotropic Reflection,” in E. E. Catmull (ed.). Com-
puter Graphics (SIGGRAPH ’92 Proceedings), vol. 28, pp. 265–272, July 1992.

Ward, G. J., “The RADIANCE Lighting Simulation and Rendering System,” in
A. Glassner (ed.). Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29,
1994), Computer Graphics Proceedings, Annual Conference Series, pp. 459–472,
New York: ACM SIGGRAPH, ACM Press, July 1994.

Watt, A., Fundamentals of Three-dimensional Computer Graphics, Wokingham,
England: Addison-Wesley, 1989.

Watt, M. “Light-water Interaction Using Backward Beam Tracing,” in F. Baskett
(ed.). Computer Graphics (SIGGRAPH ’90 Proceedings), vol. 24, pp. 377–385,
Aug. 1990.

Webb, M., E. Praun, A. Finkelstein, and H. Hoppe, “Fine Tone Control in Hard-
ware Hatching,” in Proceedings of the 2nd International Symposium on Non-
photorealistic Animation and Rendering, pp. 53–ff, New York: ACM Press,
2002.

Welsh, T., “Parallax Mapping with Offset Limiting: A Per-Pixel Approxi-
mation of Uneven Surfaces,” Infiscape Corporation, www.infiscape.com/doc/
parallax_mapping.pdf, Jan 2004.

Westover, L. “Footprint Evaluation for Volume Rendering,” in F. Baskett (ed.).
Computer Graphics (SIGGRAPH ’90 Proceedings), vol. 24, pp. 367–376,
Aug. 1990.

Whitehurst, A. “Depth Map Based Ambient Occlusion Culling Lighting,”
www.andrewwhitehurst.net/amb_occlude.html, 2003.

Wiegand, T. F. “Cadlab Open Inventor Node Library: csg,” www.arct.cam.ac.uk/
research/cadlab/inventor/csg.html, April 1998.

Wiegand, T. F. “Interactive Rendering of CSG Models,” Computer Graphics Forum,
15(4):249–261, 1996.

Wilhelms, J., and A. Van Gelder, “Octrees for Faster Isosurface Generation,” ACM
Transactions on Graphics, 11(3):201–227, 1992.

B ib l i og r aphy 627

Williams, L. “Pyramidal Parametrics,” in Computer Graphics (SIGGRAPH ’83 Proceed-
ings), vol. 17, pp. 1–11, July 1983.

Womack, P., and J. Leech (eds.). OpenGL Graphics with the X Window System
(Version 1.3), Mountain View, CA: Silicon Graphics, Inc., October 1998.

Wong, P., and R. Bergeron, “30 Years of Multidimensional Multivariate Visualization,”
Washington, D.C.: IEEE Computer Society, 1997.

Woo, A., P. Poulin, and A. Fournier, “A Survey of Shadow Algorithms,” IEEE Computer
Graphics and Applications, Nov. 1990.

Wu, K. “Rational-linear Interpolation of Texture Coordinates and Their Partial Deriva-
tives,” Technical Report HPL-98-113, Computer Systems Laboratory, Hewlett-
Packard, 1998.

Zhang, H. “Effective Occlusion Culling for the Interactive Display of Arbitrary Models,”
Ph.D. dissertation, Department of Computer Science, University of North Carolina
at Chapel Hill, 1998, www.cs.unc.edu/zhangh/dissertation.pdf.

Zhang, H., D. Manocha, T. Hudson, and K. Hoff III, “Visibility Culling Using Hierar-
chical Occlusion Maps,” In: T. Whitted (ed.). Computer Graphics (SIGGRAPH ’97
Proceedings), vol. 24, pp. 77–88, Aug. 1997.

Subject Index

A
Accumulation buffer

blending artifacts, 193
convolution utilization,

228–230
operations, 116–117
supersampling, 173–175

Adaptive tessellation, 319
Alias, definition, 60, 169
Alpha

acceleration, 139
color computation, 39

Alpha-blended transparency
depth peeling, 205
dynamic objects, 202–203
ordering, 200–201
output color, 200–202
transparency mapping, 203
transparency sorting,

204–205
Alpha test, fragment

operations, 111
Ambient lighting, see Lighting
Ambient occlusion, global

illumination,
357–359

Andrews plot, point data
visualization,
536–537

Animation, textures, 302–306
Anisotropic lighting model,

337–340
Antialiasing

area sampling, 177–178
artifact prevention in line

renderings, 389–390

full-scene, 170
line antialiasing, 178–180
point antialiasing, 178–180
polygon antialiasing,

181–182
rationale, 169–170
small particles, 472
supersampling, see

Supersampling
temporal antialiasing,

182–184
texturing, 180–181

Application performance
bottlenecks

finding
application subsystem

bottlenecks,
overview, 583–584

geometry subsystem
bottlenecks, 584

rasterization subsystem
bottlenecks, 584–585

subsystem sites, 581–583
cache and memory usage

optimization,
585–586

depth complexity,
measuring, 589–591

measurement
finish versus flush,

588–589
video refresh

quantization,
587–588

pipeline interleaving,
591–592

state change minimization,
586

ARB imaging subset
color matrix transform, 68
color tables, 70
constant color bending,

71–72
convolution, 68
histogram, 69–70
minmax operation, 70

ARB_buffer_region, 599
ARB_depth_texture, 598
ARB_extensions_string, 599
ARB_fragment_program, 100,

102, 161, 465, 598
ARB_fragment_shader, 598
ARB_make_current_read, 599
ARB_matrix_palette, 598
ARB_multisample, 207, 598
ARB_multitexture, 598
ARB_occlusion_query, 373,

598
ARB_pbuffer, 599
ARB_pixel_format, 599
ARB_point_parameters, 472,

598
ARB_point_sprite, 598
ARB_render_texture, 80, 126,

314, 599
ARB_shader_objects, 598
ARB_shading_language, 100,

598
ARB_shadow, 598
ARB_shadow_ambient, 598
ARB_texture_border_clamp,

598

629

630 I ndex

ARB_texture_compression,
598

ARB_texture_cube_map, 598
ARB_texture_env_add, 99,

598
ARB_texture_env_combine,

97, 99, 598
ARB_texture_env_crossbar,

97, 100, 598
ARB_texture_env_dot3, 97,

100, 598
ARB_texture_mirrored_repeat,

598
ARB_texture_non_power_

of_two, 274, 286,
598

ARB_transpose_matrix, 598
ARB_vertex_blend, 598
ARB_vertex_buffer_object,

576, 598
ARB_vertex_program, 33,

598
ARB_vertex_shader, 598
ARB_window_pos, 598
Area sampling, 177–178
Atlas, texture, see Texture

mapping
ATI_envmap_bumpmap, 354,

447
ATI_vertex_array_object, 576
Attenuate operator, blending

for volume
visualization, 552

Attenuation, positional light,
47

Axonometric projection,
502–503

B
Bidirectional reflectance

distribution function,
lighting, 46, 332

Billboarding, geometry and
transformation,
257–261

Bitmaps
images, 63
rasterization, 107

Blending
acceleration, 140
alpha blending, see

Alpha-blended
transparency

artifacts
accumulation buffer

blending, 193
approximation errors,

193
arithmetic errors,

192–193
gamma correction errors,

193–194
operations

constant colors, 196
fragment operations,

112–114
min/max, 196
modulating an image, 196
subtraction, 196
summing two images, 196

Blinn lighting model, 335
Bottlenecks, see Application

performance
Box filter, 61
BRDF, see Bidirectional

reflectance
distribution function

Bump mapping
applications, 343–344
approximation using

texture, 345
forward differencing, 347,

349–351
limitations, 351
overview, 344–345
reflections, 353–354
tangent space, 346–347

C
CAD, see Computer-aided

design

cast_ray(), 440, 442
Chart, point data

visualization, 537
Choropleth, scalar field

visualization,
541, 543

Circle of confusion, definition,
239

Clip mapping, see Texture
mapping

Clip space, perspective divide,
22

Clouds
dynamic mesh modeling,

486–487
particle system modeling,

482–483
CMYK, see Cyan magenta

yellow black
Color

alpha, 39
biased representation,

54–56
final color value calculation,

46, 53
fixed-point representation,

53
floating-point

representation, 53
gamma, 37–39
image processing, see Image

processing
interpolation in

rasterization,
108–109

reflectance values, 46
representation of color

space, 35–40
resolution and dynamic

range, 36–37
Color index mode,

applications, 39–40
Color space

conversion
CMY, 221–222
HSV, 222–223

I ndex 631

XYZ, 219–221
YIQ, 222

definition, 35
Comb function, frequency

domain analysis, 60
Common profile, OpenGL ES,

133–136
Common-Lite profile,

OpenGL ES,
133–134

Composite materials,
classification for
lighting, 50

Compositing
alpha division operation,

190
definition, 185
depth images, 194–195
multiple images, 187–190
operators, 190–191
two images, 185–187

Computer-aided design
capping clipped solids,

392–393
Constructive solid geometry,

model construction,
393–401

Convolution
accumulation buffer

utilization, 228–230
ARB imaging subset, 68
correlation and feature

detection, 233, 235
definition, 62
extension utilization, 230
filtering using texture

convolution,
490–495

filters
arithmetic mean,

231–232
basic smooth, 232
gradient detection, 231
high-pass filters, 232
Laplacian filter, 232
line detection, 231

smoothing and blurring,
231

Sobel filter, 232–233
kernels, 62–63
separable filters, 227–228

Cook-Torrance lighting
model, 342–343

CSG, see Constructive solid
geometry

Cube map
ray casting, 549–440
textures, 83–85, 437–440
warping, 434–436

Culling,
geometric level of detail

changing detail, 374–375
principles, 373–374
transition techniques,

375–377
occlusion culling

depth estimation buffer
building, 372

occluder selection, 371
occlusion map building,

371
principles, 370–371
testing, 372–373

overview, 369–370
Cutaway views

generation, 508–510
surface texture management

alpha buffer approach,
510–511

two buffer approach, 511
Cyan magenta yellow black,

color representation,
36

D
Data representation,

transformed data, 19
Data visualization, see

Scientific
visualization

Decaling, polygons, 390–392

Decompensation, polygon,
4–5

Deferred shading, multipass
rendering, 167

Depth complexity, measuring,
589–591

Depth cuing, implementation,
511–512

Depth of field
geometric modeling,

252–254
image-based modeling,

238–241
Depth peeling, alpha-blended

transparency, 205
Depth range

line renderings, 384–385
perspective projection, 31
viewport transform, 23

Depth test, acceleration,
139–140

Detail textures, see Texture
mapping

Dielectrics, material
classification for
lighting, 49

Diffuse lighting, see Lighting
Dissolves, 186

definition, 196
masking operations, 197
stenciling, 197–198

Distortion mesh
dual-paraboloid maps,

448–449
environment map creation,

434
Drawing, two-dimensional

accuracy, 516–517
limitations of OpenGL, 516
line joins, 517–518
trim curves, 518–519

Dual-paraboloid mapping, see
Environment maps

Dynamic mesh
cloud modeling, 486–487
components, 484–485
water modeling, 485–486

632 I ndex

Dynamic range
color, 36–37, 56, 224,

241–242

E
Edge antialiasing, 105
Emissive lighting, see Lighting
Environment maps

creation
cube map textures,

437–440
ray casting, 433–434
sphere map textures,

440–443
texture warping, 434–436

curved reflectors, 419
dual-paraboloid mapping

environment mapping
between cube and
sphere maps, 443,
445

ray casting, 445–447
sampling characteristics,

445
textures

mathematics, 291–294
OpenGL support, 296
using, 294–295

warping, 447–448
dynamic updating, 448–449
refraction, 429–430
sampling rate, 432
specular lighting

multitexture, 326–327
two-pass method,

325–326
texture mapping

cube mapping, 83–85
overview, 80–81
sphere mapping, 85–88
texture coordinate

generation, 81–82
texture maps, 82–83

Explosions, particle system
modeling, 482

EXT_bgra, 599–602
EXT_color_table, 212, 555
EXT_convolution, 212
EXT_CMYKA, 222
EXT_paletted_texture
EXT_point_parameters, 595,

603
EXT_texture_compression_s3tc,

76
EXT_texture_filter_anisotropic,

91
EXT_texture_lod, 284
EXT_texture_rectangle, 274
Extensions, OpenGL

ARB extension types,
598–599

convolution, 230
documentation, 593–594
function pointers, 602–604
overview, 131
portable use, 599–601
specifications

format, 594–598
resources, 594

Eye space, projection
transform, 21–22

F
Facet normal, computation,

8–9
False coloring, scalar field

visualization,
540–541, 543

Fan winding, 12
Filtered noise functions,

procedural texture
generation, 487–489

Filtering (see also
Convolution)

applications, 60–61
box filter, 61
texture mapping, 90–91

Fire, particle system modeling,
481–482

Fog
acceleration, 139
z coordinate in

computation, 32
Fourier analysis

convolution, 63
sampling, 59

Fragment operations
alpha test, 111
blending, 112–114
comparison operators, 110
logical operation, 114–115
multisample operations,

111
stencil test, 111–112

Fragment programs, texture
environment
function, 100–102

Framebuffer
operations, 115–117, 140
texture image loading, 270
texture mapping of images,

79–80
Frame rate, 182, 302–303,

577, 581, 587–588
Frame time management

overview, 577–579
phases

computation phase,
580–581

input phase, 579
rendering phase, 579–580

safety margin, 581
Fresnel reflection lighting

model, 335–336
Function approximations

hypotenuse, 613
Newton-Raphson method,

612–613
Taylor series expansion,

612

G
Gamma

computer display value,
37–38

I ndex 633

correction, 37–39
correction errors, 193–194

Gaussian reflection lighting
model, 336

Geometrical attenuation
factor, 340

glAccum, 214, 228–229, 497,
515

glActiveTexture, 96
glAlphaFunc, 157
glBegin, 133, 144, 381, 475,

574–575, 584
glBeginQuery, 373
glBindProgramARB, 101
glBindTexture, 94
glBitmap, 134, 520–521
glBlendColor, 71, 552
glBlendEquation, 71, 552
glBlendFunc, 157, 191, 216,

552
glBufferData, 16
glCallLists, 521–522
glClear, 195, 198, 399, 590
glClearDepth, 399
glClearStencil, 400
glClientActiveTexture, 96–97
glColor, 356
glColor3fv, 584
glColor3ub, 366
glColorMask, 111, 115, 158,

195, 198, 382–383,
399, 408

glColorMaterial, 133, 356
glColorTable, 235
glCompressedTexImage, 76
glCopyConvolutionFilter, 2D,

230, 235
glCopyPixels, 124, 134,

160–161, 191, 228,
329, 511, 515, 568

glCopyTexImage, 80, 314,
438

glCopyTexImage2D, 83, 160,
162, 212, 301, 409,
443

glCopyTexture, 124, 127

glCopyTexture2D, 133
glCullFace, 392, 399
glDeleteProgramARB, 101
glDepthFunc, 157
glDepthMask, 111, 179, 198,

201, 400
glDepthRange, 133, 382, 384,

608
glDisable, 96, 195, 383, 391,

584
glDisableClientState, 96–97
glDrawElements, 16, 145, 567
glDrawPixels, 134, 194–195,

198, 212, 215, 270,
399, 513, 515,
521–522, 590,
600–601

glEnable, 83, 86, 96, 198,
235, 382–384, 390,
590

glEnableClientState, 96
glEnd, 133, 144, 475,

574–575, 584
glEndQuery, 373
glFinish, 579, 589
glFlush, 589
glFrontFace, 205
glFrustum, 31, 253–255, 262,

375, 438–439, 455,
607–608

glGenTextures, 94
glGet, 90, 261
glGetIntegerv, 96
glGetPointerv, 96
glGetQueryObject, 373
glGetString, 595–596, 600
glGetTexImage, 94
glGetTexLevelParameter, 77,

94
glGetTexParameter, 94
glLight, 21, 356
glLineSmooth, 133
glListBase, 521
glLoadIdentity, 218, 438
glLoadMatrix, 248, 262
glLogicOp, 157

glLookAt, 251, 262
glMapBuffer, 16
glMaterial, 356
glMatrixMode, 96, 255, 438
glMultiTexCoord, 96
glMultMatrix, 248
glNormal3f, 378
glNormal3fv, 584
glNormalPointer(), 16
Global illumination, see

Lighting
glOrtho, 30, 255, 262, 502,

607
glPixelMap, 515, 590
glPixelTransfer, 195
glPixelTransferi, 590
glPixelZoom, 235, 515
glPointParameter, 477–478
glPointParameterfEXT, 603
glPointParameterfvEXT, 603
glPointSmooth, 133
glPolygonMode, 381–382
glPolygonOffset, 107, 157,

382, 384, 388–389
glPolygonSmooth, 133
glPolygonStipple, 206, 513
glPopAttrib, 97
glPopClientAttrib, 97
glPopMatrix, 96
glProgramEnvParameter, 101
glProgramLocalParameter,

101
glProgramStringARB, 101
glPushAttrib, 97
glPushClientAttrib, 97
glPushMatrix, 96
glRasterPost, 522
glReadPixels, 79–80, 124,

175, 194, 212, 301,
515

glRotate, 218, 248, 261
glRotatef, 609
glSampleCoverage, 207, 376
glScale, 248, 261, 262
glScalef, 451, 609
glScissor, 157

634 I ndex

glStencilFunc, 111, 157, 195,
198, 383, 389,
391–392, 400, 408,
590

glStencilMask, 391, 399–400
glStencilOp, 111, 157,

194–195, 198, 383,
390, 392, 400, 408,
590

glTexCoord, 576
glTexCoord3f, 84, 294, 378
glTexCoordPointer, 96
glTexEnv, 98–100
glTexGen, 81, 84, 86, 96,

330–331, 410, 512
glTexImage, 75, 94
glTexImage2D, 79, 83, 96,

133
glTexImage3D, 90, 304
glTexParameter, 75, 94, 96,

284
glTexSubImage2D, 302
glTranslate, 248, 253,

261–262
glTranslatef, 522, 609
gluBuild2DMipmaps, 313
gluLookAt, 438, 503, 608
gluPerspective, 31, 255, 323,

608
gluScaleImage, 312
glVertex, 107
glVertex3fv, 584
glViewpor, 228
glxCreateContext, 120
glxCreatePbuffer, 126
glXQueryClientString, 596
glXQueryExtensionsString,

596
glXQueryServerString, 596
glXUseXFont, 520
GL_ACCUM, 117, 228–229,

515
GL_ADD, 99, 119, 134, 160
GL_ADD_SIGNED, 55, 310
GL_ALPHA, 134, 279, 460,

508

GL_ALWAYS, 110, 383, 390,
590

GL_AMBIENT, 50–52
GL_AMBIENT_AND_

DIFFUSE, 133
GL_ARB_depth_texture, 460
GL_ARB_point_sprite, 472
GL_ARB_shadow, 460
GL_BACK, 392
GL_BGRA_EXT, 600–602
GL_BGR_EXT, 602
GL_BLEND, 98, 134, 295,

471
GL_CLAMP, 75, 297, 324,

331, 506
GL_CLAMP_TO_BORDER,

279, 297
GL_CLAMP_TO_EDGE, 75,

275, 324, 439
GL_COLOR_INDEX, 590
GL_COLOR_MATERIAL, 41
GL_COLOR_TABLE, 70
GL_COMBINE, 55, 99, 160,

166, 310, 352
GL_COMPARE_R_TO_

TEXTURE, 460
GL_CONSTANT, 99
GL_CONSTANT_ALPHA,

202, 552
GL_CONSTANT_COLOR,

376
GL_CONVOLUTION_2D,

235
GL_COPY, 115
GL_DECAL, 98, 134
GL_DEPTH_BIAS, 195
GL_DEPTH_BUFFER_BIT,

399, 590
GL_DEPTH_COMPONENT,

195
GL_DEPTH_SCALE, 195
GL_DEPTH_TEST, 382–383,

391
GL_DEPTH_TEXTURE_

MODE, 460–461
GL_DIFFUSE, 50–52

GL_DONT_CARE, 179
GL_DOT3_RGB, 160, 352
GL_DOT3_RGBA, 160
GL_DST_ALPHA, 189, 519
GL_DST_COLOR, 196, 324
GL_EQUAL, 158, 167, 324,

333, 391, 393
GL_EQUIV, 115
GL_EXTENSIONS, 595, 600,

602
GL_EYE_LINEAR, 79, 84,

299
GL_EYE_PLANE, 330
GL_FALSE, 179, 391
GL_FASTEST, 179
GL_FILL, 105
GL_FLAT, 41
GL_FLOAT, 576
GL_FRONT, 392
GL_FRONT_AND_BACK,

133, 381
GL_FUNC_ADD, 114
GL_FUNC_REVERSE_

SUBTRACT, 114
GL_FUNC_SUBTRACT, 114
GL_GREATER, 412
GL_INCR, 590
GL_KEEP, 383, 390, 590
GL_LEQUAL, 329, 368, 383,

460
GL_LESS, 110, 158
GL_LIGHTING, 584
GL_LINE, 105, 381
GL_LINEAR, 75, 84, 91, 271,

273, 287, 301, 304,
314, 327, 329,
331, 461

GL_LINEAR_MIPMAP_
LINEAR, 84, 91–92,
139, 147, 313

GL_LINES, 381, 517
GL_LINE_LOOP, 381, 389,

517
GL_LINE_SMOOTH, 179
GL_LINE_STRIP, 381, 517
GL_LOAD, 515

I ndex 635

GL_LUMINANCE, 75, 134
GL_LUMINANCE12_ALPHA

4, 76
GL_MAP_COLOR, 590
GL_MAX, 114
GL_MAX_3D_TEXTURE_

SIZE, 90
GL_MAX_EXT, 552
GL_MAX_TEXTURE_

UNITS, 96
GL_MIN, 114
GL_MODELVIEW, 438
GL_MODULATE, 42, 53,

98–99, 134, 160,
180, 203, 297, 323,
471, 480, 484–485,
491

GL_MULT, 229, 497
GL_NEAREST, 75, 91, 273,

279, 287, 460, 494
GL_NEVER, 110
GL_NICEST, 179
GL_NORMALIZE, 30, 378,

569
GL_NORMAL_MAP, 81, 84,

164, 378, 436
GL_NOTEQUAL, 389
GL_OBJECT_LINEAR, 79,

299, 410
GL_OBJECT_PLANE, 299
GL_ONE, 114, 156, 179,

181, 189, 196, 201,
216, 311, 323, 329,
333, 473, 491, 497,
510–511, 552

GL_ONE_MINUS_ALPHA,
114

GL_ONE_MINUS_
CONSTANT_
ALPHA, 202

GL_ONE_MINUS_
CONSTANT_
COLOR, 376

GL_ONE_MINUS_DST, 552
GL_ONE_MINUS_DST_

ALPHA, 510, 519

GL_ONE_MINUS_SRC_
ALPHA, 179–180,
187–189, 200–201,
473–475, 509–511,
552

GL_PIXEL_MAP_A_TO_A,
215

GL_POINT_SMOOTH,
179, 472

GL_POLYGON, 381
GL_POLYGON_OFFSET_

FILL, 384
GL_POLYGON_OFFSET_

LINE, 384
GL_POLYGON_SMOOTH,

170, 181
GL_POLYGON_

SMOOTH_HINT,
181

GL_POLYGON_STIPPLE,
206

GL_POST_COLOR_
MATTRIX_
COLOR_TABLE, 70

GL_POST_CONVOLUTION_
COLOR_TABLE, 70,
235

GL_PREVIOUS, 99
GL_PRIMARY_COLOR, 99,

329
GL_PROJECTION, 255, 438
GL_PROXY_TEXTURE_1D,

77
GL_PROXY_TEXTURE_2D,

77
GL_PROXY_TEXTURE_3D,

90
GL_REFLECTION_MAP, 81,

84, 164, 294, 436
GL_REPEAT, 283, 299, 305,

309, 314, 329, 331,
493–494, 513

GL_REPLACE, 98, 314, 162,
203, 206, 279, 295,
383, 390, 461, 508

GL_RESCALE_NORMAL,
25

GL_RETURN, 497, 515
GL_RGB, 75, 134
GL_RGB5_A1, 139
GL_RGBA, 76, 134, 195
GL_RGBA4, 76, 139
GL_RGBA8, 76
GL_RGB_SCALE, 311
GL_S, 84, 330
GL_SAMPLE_ALPHA_TO_

COVERAGE, 207
GL_SAMPLE_COVERAGE_

VALUE, 207
GL_SEPARATE_SPECULAR_

COLOR, 53
GL_SHININESS, 50–52
GL_SKIP_PIXELS, 283
GL_SKIP_ROWS, 283
GL_SMOOTH, 41–42
GL_SOURCEO_ALPHA, 329
GL_SOURCEO_RGB, 329
GL_SPECULAR, 50–52
GL_SPHERE_MAP, 81
GL_SRC_ALPHA, 114, 179,

187–188, 200, 215,
333–334, 473–475,
509, 511, 552

GL_SRC_ALPHA_
SATURATE, 114,
181, 189, 552

GL_SRC_COLOR, 196, 311,
329

GL_STENCIL_BUFFER_BIT,
195, 400–401, 590

GL_STENCIL_INDEX, 590
GL_STENCIL_TEST, 198,

383, 390, 590
GL_T, 330
GL_TEXTURE, 99
GL_TEXTURE_1D, 77, 88,

94
GL_TEXTURE_2D, 77, 84,

88, 94
GL_TEXTURE_3D, 88, 94

636 I ndex

GL_TEXTURE_BASE_
LEVEL, 92, 284

GL_TEXTURE_BORDER_
COLOR, 75

GL_TEXTURE_COMPARE_
FUNC, 460

GL_TEXTURE_COMPARE_
MODE, 460

GL_TEXTURE_CUBE_MAP,
83, 94

GL_TEXTURE_CUBE_
MAP_POSITIVE,
438

GL_TEXTURE_GEN_MODE,
84

GL_TEXTURE_MAG_FILTER,
273

GL_TEXTURE_MAX_LEVEL,
92, 284

GL_TEXTURE_MAX_LOD,
93, 284

GL_TEXTURE_MIN_FILTER,
273

GL_TEXTURE_MIN_LOD,
93, 284

GL_TEXTURE_WIDTH, 77
GL_TEXTURE_WRAP_R,

305
GL_TEXTURE_WRAP_S,

282
GL_TEXTURE_WRAP_T,

282
GL_TRIANGLES, 16
GL_TRIANGLE_FAN, 12
GL_TRIANGLE_STRIP, 12
GL_TRUE, 590
GL_UNSIGNED_BYTE, 521
GL_UNSIGNED_SHORT,

576
GL_VERTEX_PROGRAM_

ARB, 33
GL_ZERO, 114, 156, 189,

196, 311, 329, 390,
510–511, 519

GLX buffers, off-screen
rendering, 125–126

Graphics processing
application optimization,

571–572
frame time management

overview, 577–579
phases

computation phase,
580–581

input phase, 579
rendering phase,

579–580
safety margin, 581

scene graphs
principles, 572–573
update stages

display, 575
generation, 573–574
rasterization, 575
transform, 575
traversal, 574

texture updates, 576–577
vertex updates, 575–576

Greedy tri-stripping, 13

H
Halftones

implementation, 515–516
three-dimensional, 513–515

Hardware acceleration
early-Z processing,

148-–149
latency hiding, 148
processing forms, 142–144
rasterization, 145–148
vertex caching, 145
vertex efficiency, 144–145

Hatching, implementation,
512–515

High dynamic range imaging,
241–245

Highlighting
foreground object

manipulation, 369
overview, 367–368
XOR highlighting, 368

Histogram
ARB imaging subset, 69–70
equalization, 224
point data visualization,

537
reduction implementation,

226
HSV, see Hue saturation value
Hue saturation value, color

representation, 36
Hyperstreamlines, tensor field

visualization,
569–570

Hyperthreading, latency
hiding, 148, 592

Hypotenuse, estimation, 613

I
Icons, vector field

visualization, 561
Illustrations

cutaway views, see Cutaway
views

edge lines, 507–508
nonphotorealistic lighting

models
matte surfaces, 505–506
metallic surfaces,

506–507
perspective, 501
projections

axonometric projection,
502–503

oblique projection,
503–505

Image display, scalar field
visualization,
540–541, 543

Image processing
convolution, see

Convolution
depth of field modeling,

238–241
dynamic range

half-float representation,
241–242

I ndex 637

shared exponent
representation, 242

geometric operations
distortion correction,

237–238
pixel zoom, 235–236
rotation using texture

mapping, 237
scaling using texture

mapping, 236
human adaptation process

modeling, 245
overview, 211–212
point operations

color adjustment, 213
color space conversion

CMY, 221–222
HSV, 222–223
XYZ, 219–221
YIQ, 222

interpolation and
extrapolation,
213–214

luminance image
conversion from
color image, 216

rotating hue, 218–219
saturation manipulation,

216, 218
scale and bias, 215
thresholding, 215–216

reduction operations,
225–226

region-based operations
contrast stretching, 224
histogram equalization,

224
tone mapping

curve scaling, 244
local scaling, 244
luminance scaling,

243–244
operator, 243

Images
combining, see Compositing
dissolves, see Dissolves

off-screen processing, 72
positioning, 65
representation, digital,

57–60
storage, 212–213
tiling, 254–257
types in OpenGL, 63

Instancing, geometric,
364–365, 573

Interobject lighting, see
Environment maps;
Reflections;
Refraction; Shadows

Inverse transforms,
computation,
247–249

Isosurfaces, scalar field
visualization,
545–546

K
Kernal, see Filtering
Keying, definition, 192

L
Laplacian filter, 232
Lighting

bidirectional reflectance
distribution function,
46, 332

bump mapping, see Bump
mapping

clamped dot product, 44
closed versus open surfaces,

44
diffuse versus specular

reflection, 45
directional light, 47
equations, 610–612
global illumination

ambient occlusion,
357–359

radiosity combination
technique, 356–357

virtual light technique,
355–356

half-angle vectors, 45
high dynamic range

lighting, 354–355
infinite light, see directional

light
interobject lighting, see

Environment maps;
Reflections;
Refraction; Shadows

light source properties,
47–49

local versus infinite viewer,
45–46

material properties, 46–47,
49–53

model components, 43
models

anisotropic lighting,
337–340

Blinn, 335
Cook-Torrance, 342–343
Fresnel reflection,

335–336
Gaussian reflection, 336
Oren-Nayer, 340
Phong, 43

nonphotorealistic lighting
models for
illustrations

matte surfaces, 505–506
metallic surfaces,

506–507
per-fragment computations,

334–335
positional light, 47
reflectance maps

emission maps, 334
gloss maps, 332–334

tangent space, 334–335,
346–347

texture mapping
applications

fragment lighting,
321–322

638 I ndex

Lighting (continued)
light maps

three-dimensional
texture light maps,
330–331

two-dimensional
texture light maps,
327–330

normal maps, 352–353
specular lighting using

environment maps
multitexture, 326–327
two-pass method,

325–326
spotlight effects using

projective textures,
322–324

transform and lighting
acceleration,
141–142

two-sided lighting, 44
vertex lighting

computation, 40–41
limitations, 317–318
local light and spotlight

attenuation, 320–321
tessellation, 319–320

Light points, particle system
modeling, 483–484

Light position, multipass
rendering, 164–165

Line antialiasing, 178–180
Line integral convolution,

vector field
visualization,
564–568

Line renderings
antialiasing artifact

prevention, 389–390
depth range, 384–385
end caps on wide lines, 390
haloed lines, 385–386
hidden lines, 382–384
polygon offset, 384
silhouette edges, 386–389
wireframe models, 381–382

Logical operation, fragment
operations, 114–115

Luminance image, conversion
from color image,
216

M
Matting, definition, 192
Maximum intensity

projection, blending
for volume
visualization, 552

Metals
material classification for

lighting, 49–50
program parameters by

metal type, 51–52
Minmax operation, ARB

imaging subset, 70
MIP, see Maximum intensity

projection
Mipmap images, 63, 89,

313–315
Modeling

definition, 3
representations, 17
transforms, 27–28

Modeling transforms
rotation, 309–310
scaling, 609
translation, 609

Modelview matrix
object space transformation,

20–21
orthonormal matrix, 24
inverse transpose, 24,

249
Mosaic, texture, see Texture

mapping
Motion blur, temporal

antialiasing,
183–184

Multipass rendering
deferred shading, 167
limitations, 155, 164–165

micropass comparison,
165–167

overview, 156–159
rasterization invariance,

105, 155–156
toolbox

arbitrary functions,
160–161

arithmetic operations,
159–160

conditionals, 161–162
parameters, 163–165
variables, 162–163

Multisampling, 175
multisample transparency,

207–208
multisample coverage, 207,

376
Multitexture

model, 96–97
multipass versus micropass

environments,
166–167

overview, 95
texture environments,

97–98

N
NDC space, see Normalized

device coordinate
space

Newton-Raphson method,
612–613

Noise
filtered noise functions,

487–489
three-dimensional noise

generation, 498–500
Normal vectors,

transformation,
23–25

Normalized device coordinate
space, viewpoint
transform, 22–23

NV_vertex_array_range, 576

I ndex 639

O
Object space, transformation,

20–21
Oblique projection, 503–505
Occlusion culling

depth estimation buffer
building, 372

occluder selection, 371
occlusion map building, 371
principles, 370–371
testing, 372–373

Off-screen rendering, see
Window system

Opacity, definition, 199
OpenGL ES

Common profile and
fixed-point
arithmetic, 133–136

embedded profiles, 132–133
embedded systems, 132
revisions, 136
Safety Critical profile, 136

Oren-Nayer lighting model,
340

Outline fonts, 524–525
Over operator, blending for

volume visualization,
552

Overlay window, see Window
system

P
Paging, textures

hardware support, 286–287
image paging in system

memory, 285–286
overview, 280–282
rationale, 279–280
texture subimage loading,

282–285
Painting

algorithms, 526–527
on images, 529–530
three-dimensional painting,

527–529
undo operations, 527

Particle systems
antialiasing small particles,

472
applications

clouds, 482–483
explosions, 482
fire, 481–482
light points, 483–484
precipitation, 478–480
smoke, 480
vapor trails, 481

interaction modeling,
473–475

limitations, 469
number of particles, 473
parameters, 468, 471, 476
representation

big particles, 469–471
small particles, 471–472

updating and rendering
software components,

475–476
sorting particles, 476–478
vertex programs, 478

Particle tracing, vector field
visualization,
561–562

Patterning, implementation,
512–513

Pbuffers, off-screen rendering,
126

Penumbra, creation, 463
Performance, see Application

performance
Perspective divide, clip space,

22
Perspective projection, 30–32
Phong lighting, 43
Phong shading, 42
Picking

alternative techniques, 367
mapping from window to

object coordinates,
367

object tagging in color
buffer, 365–366

OpenGL selection method,
364–365

proxy geometry, 366
Pipeline balance,

optimization, 142
Pipeline evolution, OpenGL,

137–138, 149–151
Pipeline interleaving,

performance
optimization,
591–592

Pixel
center, 104, 517, 560
image representation, 57–58

Pixel storage
operations, 65–67
overview, 63–65
pack group, 66
unpack group, 66

Pixel transfer
bias operations, 67
mapping operations, 67–68
overview, 63–65
scale operations, 67

Pixmap images, 63, 521–522
Point antialiasing, 178–180
Point data

classification, 533
visualization

Andrews plots, 536–537
histograms and charts,

537
iconographic display,

535–536
scatter plots, 534–535

Polygon
antialiasing, 181–182
decaling, 390–392
representation, 3–4

Polygon normals, generation,
8

Polygon offset, line
renderings, 384

Polygon stipling, screen-door
transparency, 206

640 I ndex

Precipitation, particle system
modeling, 478–480

Primitive setup, acceleration,
14

Procedural texture
filtered noise functions for

generation, 487–489
filtering using texture

convolution,
490–495

noise function generation,
489–490

random image warping, 498
spectral synthesis, 495–496
three-dimensional noise

generation, 498–500
turbulence modeling,

496–497
Projection matrices

alternative perspective
projection, 608

orthogographic projection,
607

perspective projection, 607
perspective z-coordinate

transformations, 608
Projection transform, 21–22,

30

R
Rasterization

accelerators
alpha, 139
blending, 140
depth test, 139–140
fog, 139
framebuffer operations,

140
scan conversion, 138–139
stencil test, 139–140
texture, 139

bitmaps, 107
consistency, 105, 155–156
edge antialiasing, 105
fragment operations, see

Fragment operations

interpolation of texture,
color, and depth,
108–109

parallel processing
opportunities,
145–148

phases, 103–104
point sampling, 104
w buffering, 109
z-fighting, 105–107

Ray casting, cube maps,
549–440

Reconstruction, signal
aliasing, 60
images, 58

Red, green, and blue (RGB),
color representation
and OpenGL use,
35–36

Reflectance maps
emission maps, 334
gloss maps, 332–334

Reflection (see also
Environmental maps)

curved reflectors
arbitrary reflectors,

412–415
environment mapping,

419
explosion maps, 415–419
implementation issues,

412
overview, 411–412

imperfect reflectors,
422–424

interreflections, 419–422
light, see Lighting
object-space versus

image-space
techniques, 404–405

planar reflections
clipping, 407–411
transformation matrix,

407
ray tracing, 404
virtual objects

clipping, 405–406
rendering issues, 406

Refraction
clipping of objects, 431–432
environment mapping,

429–430
equation, 424–426
modeling of multiple

boundaries, 430–431
planar refraction, 426–427

Rendering
definition, 3
direct, 127
image-based rendering, 63
indirect, 127
line rendering, see Line

renderings
multiple passes, see

Multipass rendering
off-screen rendering,

124–126
text, see Text rendering
texture maps, 126–127
volume rendering

overview, 547–549
splatting, 556–559
texture slicing, 549–556

RGB, see Red, green, and blue

S
Sampling

definition, 58
Fourier analysis, 59
Nyquist limit, 60
rate, 58
undersampling, 59

Scalar field
data classification, 533
visualization

annotating metrics,
539–540

contour lines, 539
image display, 540–541,

543
isosurfaces, 545–546
line graphs, 538

I ndex 641

splatting, 556–559
surface display, 543–545
texture slicing, 549–556
volume data creation,

559–560
volume rendering,

547–549
volume slicing, 546–547

Scatter plot, point data
visualization,
534–535

Scene graphs
principles, 572–573
update stages

display, 575
generation, 573–574
rasterization, 575
transform, 575
traversal, 574

Scientific visualization
data characterization,

532–534
mapping numbers to

pictures, 531
point data visualization

Andrews plots, 536–537
histograms and charts,

537
iconographic display,

535–536
scatter plots, 534–535

scalar field visualization
annotating metrics,

539–540
contour lines, 539
image display, 540–541,

543
isosurfaces, 545–546
line graphs, 538
splatting, 556–559
surface display, 543–545
texture slicing, 549–556
volume data creation,

559–560
volume rendering,

547–549
volume slicing, 546–547

tensor field visualization
hyperstreamlines,

569–570
overview, 568–569

vector field visualization
icons, 561
line integral convolution,

564–568
particle tracing, 561–562
stream lines and

illumination,
563–564

visual clues and perception,
531–532

Screen-door transparency
limitations, 206–207
multisample transparency,

207–208
polygon stipling, 206
principles, 205–206

Self-occlusion, 44, 339, 343,
357, 461

Self-shadowing, see
Self-occlusion

SGI_texture_color_table, 555
SGIS_pixel_texture, 161
SGIS_point_parameters,

594–595
SGIS_sharpen_texture, 313
SGIS_texture_filter4, 91
SGIS_texture_lod, 314
SGIX_clipmap, 286
Shading

deferred shading and
multipass rendering,
167

definition, 40
facet normal computation,

8–9
models

constant shading, 41–42
Phong shading, 42
smooth shading, 42
texture shading, 42

polygon normals,
generation, 8

rasterization, 41
smooth shading, 9–11
vertex lighting

computation, 40–41
Shadows

projective shadows,
450–452

shadow mapping, 459–462
shadow volume technique

incremental updating of
volumes, 457–458

light volumes, 457
limitations, 458
multiple light sources,

457
overview, 452–454
scene segmentation,

455–457
soft shadow creation

jittered lights, 463
penumbras, 463
receiver textures,

463–464
umbras, 463

Silhouette edge, 4, 386–389,
507

Singleton strip, avoidance, 13
Slicing, volume rendering

textures
blending operators,

551–552
mixing volumetric and

geometric objects,
554

sampling frequency
considerations,
552–553

shading volumes,
555–556

three-dimensional
textures, 550

transfer functions, 555
two-dimensional textures,

551
virtualizing texture

memory, 554

642 I ndex

Slicing (continued)
volume image shrinking,

554
volume-cutting planes,

555
warped volumes, 556

volumes, 546
Smoke, particle system

modeling, 480
Smooth shading, 9–11
Sobel filter, 232–233
Specular lighting, see Lighting
Sphere map

ray casting, 441–442
texture mapping, 85–88
textures, 440–443
warping, 443

Splatting, volume rendering
artifacts, 557–558
principles, 556–557
shading, 559
slab width, 558

sRGB, color representation,
36

Stencil test
acceleration, 139–140
fragment operations,

111–112
Stereo viewing, geometry and

transformations,
249–252

Stream lines
illumination, 563–564
vector field visualization,

563
Stroke fonts, 524
Subpixel

locations, 172-174
transparency, see

Multisample
transparency

points, 483
text positioning, 520

Supersampling
advantages, 171
definition, 171

drawbacks, 176–177
implementation

accumulation buffer,
173–175

overdrawing, 172–173
multisample antialiasing,

175–176
sample patterns, 171–172
stochastic supersampling,

171
Surface curvature

visualization, 379–380
Surface display, scalar field

visualization,
543–545

Surface orientation
visualization, 377–379

T
Taylor series expansion, 612
Tangent space, see Lighting
Temporal antialiasing,

182–184
Tensor field

data classification, 533
visualization

hyperstreamlines,
569–570

overview, 568–569
Tessellation

definition, 4
icosahedron, 7–8
implementation, 5–8
octahedron, 6–7
sphere, 6

Texel, definition, 73
Text rendering

geometry-based text
geometric primitives, 523
outline fonts, 524–525
stroke fonts, 524

image-based text
bitmap primitives, 520
display list encodings,

520–521

kerning, 521
pixmap images, 521–523
texture images, 523

Texture coordinates, see also
Procedural texture

color coding and
contouring, 298–300

generation and
transformation, 25,
27, 79, 262–263

geometric transformations,
262

map indexing, 25
overview, 74, 77–79
perspective correct

interpolation, 78–79,
108–109, 297

transformation pipeline,
25–27

vertex to texture coordinate
mapping, 263

Texture mapping
acceleration, 139
animation, 302–306
detail textures

creation, 311–312
magnification

computation,
308–309

rationale, 306–308
signed intensity detail

textures, 309–311
environment mapping

cube mapping, 83–85
dual-paraboloid

environment
mapping

mathematics, 291–294
OpenGL support, 296
using, 294–295

overview, 80–81
sphere mapping, 85–88
texture coordinate

generation, 81–82
texture maps, 82–83

filtering, 90–91

I ndex 643

level of detail, 91–93
lighting applications

bump mapping, 343–351
fragment lighting,

321–322
light maps

three-dimensional
texture light maps,
330–331

two-dimensional
texture light maps,
327–330

normal maps, 352–353
specular lighting using

environment maps
multitexture, 326–327
two-pass method,

325–326
spotlight effects using

projective textures,
322–324

limitations, 315–316
mipmap generation,

313–315
mosaicing, 274–276
multitexture

model, 96–97
overview, 95
texture environments,

97–98
paging

clip map, 286
hardware support,

286–287
image paging in system

memory, 285–286
overview, 280–282
rationale, 279–280
texture subimage loading,

282–285
prefiltering

rationale, 287–289
texel aspect ratio

computation,
289–291

projected textures, 296–298

rationale, 73
refraction, 428–429
rendering to texture maps,

126–127
rotation, 237
scaling, 236
scene overlaying with

texture map,
263–264

sharpening, 312–313
texture coordinate

assignment
optimization,
270–271

texture environment
function

advanced functionality,
99–100

fragment programs,
100–102

overview, 98–99
texture image loading

compressed textures, 76
framebuffer images,

79–80, 270
internal texture formats,

75–76
overview, 73–74
proxy textures, 77
texture borders, 74–75,

151, 279, 281, 297
texture objects and targets,

93–95
three-dimensional textures

applications, 271, 274
filtering, 271, 273–274
indexing, 88–89
mipmapping, 89
solid material rendering,

89–90
tiling, 277–279
two-dimensional image

warping, 300–302
Tiling

images, 254–257
textures, 277–279

Tone mapping
curve scaling, 244
local scaling, 244
luminance scaling, 243–244
operator, 243

Transfer function, 38, 553,
555

Transformation pipeline
clip space, 22
eye space, 21
modelview matrix, 20–21
normalized device

coordinate space, 22
object space, 20
overview, 20
perspective divide, 22
projection transform, 22
texture coordinates, 25–27
viewpoint transform, 23
window space, 23

Transformation sequences
concatenation, 29
visualization, 28–29

Transparency
alpha-blended transparency

depth peeling, 205
dynamic objects, 202–203
ordering, 200–201
output color, 200–202
transparency mapping,

203
transparency sorting,

204–205
definition, 199
output color calculation,

199
screen-door transparency

limitations, 206–207
multisample

transparency,
207–208

polygon stippling, 206
principles, 205–206

simulation, 199
sorting, 204–205

Triangle lists, 16

644 I ndex

Triangle stripping
fan winding, 12
greedy tri-stripping, 13
meshes, 13
singleton strip avoidance,

13
strip winding, 12

Tuples, data representation,
19

Turbulence, procedural
texture modeling,
496–497

U
Umbra, creation, 463
Under operator, blending for

volume visualization,
552

Unsharp masking, 214, 312

V
Vapor trails, particle system

modeling, 481
Vector field

data classification, 533
visualization

icons, 561
line integral convolution,

564–568
particle tracing, 561–562
stream lines and

illumination,
563–564

Vectors
parallel, 610
perpendicular, 610
reflection vector, 610
three-dimensional

barycentric coordinates,
607

equations, 605
linear interpolation, 606
spherical coordinates, 606

Versions, OpenGL, 129–130

Vertex
arrays, 15
attribute specification,

14–15
buffer objects, 15–16
caching, 145
efficiency, 144–145
lighting computation,

40–41
programs, 32–33
triangle lists, 16

Vertex coordinates
interpolation of attributes

to window space
component interpolation,

266–267
LOD computation,

278–268
transformation of vertex

coordinates, 265–266
multipass rendering,

163–164
Vertex lighting, see Lighting
Vertex normals, 164

generating, 8
shading, see Shading
texture coordinate

generation from, 81
transforming, 23–25
vertex arrays, 14

Viewing transforms, 608–609
Viewpoint mapping, 23, 266,

364, 367
Viewpoint transform,

normalized device
coordinate space,
22–23

Virtual light, global
illumination,
355–356

W
Water, dynamic mesh

modeling, 485–486

W buffering, rasterization,
109

wglBindTexImageARB, 126
wglCreateContext, 120
wglGetProcAddress, 603–604
wglMakeCurrent, 126
wglReleaseTexImageARB,

127
wglUseFontBitmaps, 520
wglUseFontOutlines, 525
WGL_ARB_make_current_read,

126
WGL_arb_pbuffer, 126
WGL_ARB_pixel_format,

126
Winding order, polygon, 11
Window space, definition, 23,

120
Window system

address space and threads,
121

multiple displays, 123
off-screen rendering,

124–126, 162–163,
212, 369, 527, 558

overlay windows, 122, 368
platform integration,

119–120
renderer and window state,

120–121
rendering

direct versus indirect, 127
texture maps, 126–127

underlay windows, 122
Wireframe models, line

renderings, 381–382

Y
YCbCr, color representation,

36

Z
Z-fighting, rasterization,

105–107

