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Advanced Linear Algebra: A Call for the Early
Introduction of Complex Numbers

Stephan Ramon Garcia

Abstract: A second course in linear algebra that goes beyond the traditional lower-level
curriculum is increasingly important for students of the mathematical sciences. Although
many applications involve only real numbers, a solid understanding of complex arithmetic
often sheds significant light. Many instructors are unaware of the opportunities afforded by
the early introduction of complex arithmetic. Most elementary properties of complex
numbers have immediate matrix analogues and many important theorems can be deduced,
or at least postulated, from the basics of complex arithmetic alone.

Keywords: Linear algebra, complex arithmetic, SVD, polar decomposition, positive
semidefinite, unitary, self-adjoint, normal, Hermitian

1. INTRODUCTION

A second course in linear algebra, which goes beyond the traditional lower-
level curriculum (e.g., linear systems, row reduction, determinants, eigenva-
lues), is increasingly important for students of the mathematical sciences. Not
only in pure mathematics, but also in applied mathematics, physics, computer
science, engineering, operations research, and statistics, a fluency with more
advanced matrix methods (e.g., QR decomposition, singular value decompo-
sition, discrete Fourier transforms) is required. In a big-data world, students
must be prepared to face large matrices and the procedures required to deal
with them.

Although many applications involve only real numbers, a solid understanding
of complex arithmetic often sheds significant light. Some instructors are unaware of
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the opportunities afforded by the early and vigorous introduction of complex
arithmetic. Most elementary properties of complex numbers have immediate
matrix analogues. Moreover, many important theorems can be deduced, or at
least postulated, from the basics of complex arithmetic alone.

Ideally, students will enter a second linear algebra course having already
mastered complex arithmetic. If this is not possible, the instructor should
spend time at the beginning of the course on the subject. Students should be
fluent with complex arithmetic and the geometry of the complex plane. No
knowledge of complex analysis, however, is required.

This philosophy pertains to both advanced undergraduate courses and intro-
ductory graduate courses in the subject. We focus here on material that is more
typical of a second course in linear algebra. A discussion of the standard, lower-
level material would lead us too far astray and into well-trodden territory. For
instance, there is no need to discuss the role of complex numbers in the con-
sideration of second order, constant coefficient differential equations. Similarly,
we do not consider sophisticated topics that straddle the border with functional
analysis. For example, we do not mention Banach spaces or Fourier analysis.

In what follows, Mm�nðFÞ denotes the set of all m� n matrices with entries
in the field F; we consider only F ¼ R and F ¼ C. If m ¼ n, then we write
MnðFÞ instead. We use capital letters to denote matrices and lower-case letters to
denote complex numbers. Since the lower-case letters z;w are somewhat standard
notation for generic complex numbers, in order to hammer home some analogies,
we often employ the decidedly non-standard letters Z;W to denote matrices.

2. THE ADJOINT AND TRANSPOSE

The adjoint of a matrix Z ¼ ½zi;j� 2 Mm�nðCÞ is the conjugate transpose

Z� ¼ ½zj;i� 2 Mn�mðCÞ of Z.1 In physics, Zy is used instead of Z�. Here the
term “adjoint” encompass both the complex case (conjugate transpose) and
the real case (transpose).

The transpose is commonly introduced in lower-level courses with little,
if any, motivation. Students are required to memorize properties such as

ðAT Þ�1 ¼ ðA�1ÞT and ðAT ÞT ¼ A with no payoff; the punchline is often
missing. Consequently, they are often confused by the transpose and the
adjoint. What is the point of it? What is so special about “flipping” a matrix
with respect to the main diagonal?

Students should be strongly encouraged to recognize that the adjoint is a
higher-dimensional generalization of complex conjugation. For instance, if
Z ¼ ½z� is a 1� 1 complex matrix, then Z� ¼ ½�z�. Apart from the matrix

1 The term adjoint is occasionally used to denote the transpose of the matrix of
cofactors of a given matrix, although the much-preferred terms adjugate and classical
adjoint have gained wide acceptance.
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brackets, the adjoint and complex conjugation are fundamentally identical in
this case.

The complex number z ¼ aþ bi, in which a; b 2 R , is often represented
using the real matrix

Mz ¼ a �b
b a

� �
:

The matrix that represents �z ¼ a� bi is MT
z ¼ M �

z . This is another clear
reminder of the relationship between the adjoint and conjugation.

Each formula involving complex conjugation has a matrix analogue. For
instance, zþ w ¼ �zþ �w suggests that ðZ þW Þ� ¼ Z� þW �. Similarly,

ð�zÞ�1 ¼ z�1 for z� 0 suggests that ðZ�Þ�1 ¼ ðZ�1Þ for invertible Z. The
formula zw ¼ �z�w requires only a little more imagination to generalize:
ðZW Þ� ¼ W �Z�. Since there is a similar identity for matrix inversion, students
are rarely surprised to see the order reversed.

The analogy between the adjoint and complex conjugation can be pushed
much further, as many important classes of matrices are defined in terms of
the adjoint. We consider this perspective in the following several sections.

3. UNITARY MATRICES

A unitary matrix is an invertible square matrix Z that satisfies Z�1 ¼ Z�.
Motivation for considering complex unitary matrices, as opposed to focusing
solely on real orthogonal matrices (i.e., real square matrices for which
Z�1 ¼ ZT ), can be found throughout engineering and physics. For instance,
the bustling field of quantum information theory is built upon the arithmetic
of complex unitary matrices. In many computational sciences, the discrete
Fourier transform (DFT) plays a central role. It is the linear transformation on
C

n induced by the unitary matrix

1ffiffiffi
n

p ½ωðjþ1Þðkþ1Þ�nj;k¼1;

in which ω ¼ expð�2πi=nÞ. Various fast implementations of it (which go by
the name of “fast Fourier transforms”) arise in signal processing and even in
large-integer arithmetic. Needless to say, the student must have a firm grasp of
complex arithmetic before working with the DFT, as its very definition
involves nth roots of unity.

The structural parallels between complex numbers and unitary matrices
provide an opportunity to encourage students to discover the properties of unitary
matrices. The equation z�1 ¼ �z implies that�zz ¼ 1, so that jzj ¼ 1. This suggests
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that unitary matrices should be seen as matrix analogues of complex numbers of
unit modulus. What does this analogy suggest?

If jzj ¼ 1; then

jzwj2 ¼ zwzw ¼ �zzw�w ¼ w�w ¼ jwj2:

Consequently, zw ¼j jwj j, so multiplication by a unimodular constant pre-
serves lengths; that is, it is an isometry. Almost the same proof works for
unitary matrices

k Zw k2 ¼ hZw; Zwi ¼ hZ�Zw;wi ¼ hw;wi ¼ k w k2:

Much more is true. Multiplication by a unimodular constant is a rigid motion
of C; it preserves both lengths and angles. The appropriate generalization is
hZx; Zyi ¼ hx; yi, in which x; y 2 C

n. Conversely, the complex-linear isome-
tries ofC that fix 0 are precisely the multiplications by unimodular constants. The
complex-linear isometries of C

n that fix 0 are precisely the n� n unitary
matrices.

4. SELF-ADJOINT MATRICES

A self-adjoint (or Hermitian) matrix is a square matrix Z that satisfies
Z ¼ Z�. The fundamental axioms of quantum mechanics require the self-
adjointness of the underlying Hamiltonian operator. At the undergraduate
level, finite-dimensional “toy” physics problems are often posed using self-
adjoint matrices. The adjacency matrices and graph Laplacians that arise in
network theory are all self-adjoint. Positive semidefinite matrices, a special
subclass of self-adjoint matrices, arise all the time in statistical applications
(see Section 7).

The condition Z ¼ Z� is analogous to the equation z ¼ �z, which char-
acterizes real numbers. Consequently, we expect that self-adjoint matrices
enjoy certain properties reminiscent of real numbers; they should be analo-
gous to “higher-dimensional real numbers.” For example, a self-adjoint matrix
has only real eigenvalues.

The proof of the following theorem is a trivial modification of the
corresponding decomposition z ¼ aþ ib for complex numbers. Here a ¼
Re z ¼ 1

2 ðzþ �zÞ and b ¼ Im z ¼ 1
2i ðz� �zÞ.

Theorem (Cartesian decomposition). If Z 2 MnðCÞ, then there exist unique
self-adjoint A;B 2 MnðCÞ so that Z ¼ Aþ iB. Moreover,

A ¼ 1

2
ðZ þ Z�Þ and B ¼ 1

2i
ðZ � Z�Þ:
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For students who will only ever deal with real matrices, the complex
perspective still leads to the following purely “real” result.

Theorem. If Z 2 MnðRÞ, then there exist a unique symmetric A 2 MnðRÞ and a
unique skew-symmetric B 2 MnðRÞ so that Z ¼ Aþ B. Moreover,

A ¼ 1

2
ðZ þ ZT Þ and B ¼ 1

2
ðZ � ZT Þ:

The sum of two real numbers is real. In a similar manner, the sum of two self-
adjoint matrices is self-adjoint. Multiplication is more troublesome; this is to be
expected since one of the major ways in which matrix arithmetic differs from
complex arithmetic is the noncommutativity of multiplication. However, if one
“balances” things appropriately, there are many ways to multiplicatively combine
two self-adjoint matrices; the texts [1, 4] contain a wealth of information on
the topic.

5. THE SPECTRAL THEOREM

A normalmatrix is a square matrix Z that commutes with its adjoint: Z�Z ¼ ZZ�.
Many standard and familiar classes of matrices are normal. For instance, unitary,
self-adjoint, and positive semidefinite matrices are all normal (positive semide-
finite matrices and their properties will be discussed in Section 7).

Most of the standard algebraic properties of a complex number z can be
expressed, in one way or another, in terms of z and �z alone. For instance, we
have

Re z ¼ 1

2
ðzþ �zÞ; Im z ¼ 1

2i
ðz� �zÞ; jzj ¼ ð�zzÞ1=2; 1

z
¼ �z

jzj2 ;

and so forth. A matrix that commutes with its adjoint behaves as much like a
complex number as we can reasonably expect from a matrix. That is the
content of the Spectral Theorem: up to an orthonormal change of basis, a
normal matrix is just a diagonal matrix (i.e., a direct sum of complex
numbers) in disguise.

Theorem (Spectral Theorem). Let Z 2 MnðCÞ be normal. Then there exist a
unitary U 2 MnðCÞ and diagonal Λ 2 MnðCÞ so that Z ¼ UΛU�.

The decomposition Z ¼ U ΛU� above is called the spectral decomposi-
tion of Z. Various important classes of normal matrices are characterized
entirely by their eigenvalues and are easily treated using the Spectral
Theorem. For instance:
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● if Z is normal and has only real eigenvalues, then Z is self-adjoint;
● if Z is normal and has only eigenvalues of unit modulus, then Z is unitary;
● if Z is normal and has eigenvalues only in ½0;1Þ (resp., ð0;1Þ), then Z is
positive semidefinite (resp., positive definite);

● if Z is normal and has eigenvalues only in f0; 1g, then Z is an orthogonal
projection.

The power of the Spectral Theorem truly emerges only when it is
combined with polynomial algebra. If

pðzÞ ¼ cnz
n þ cn�1z

n�1 þ � � � þ c0

is a complex polynomial, then we let

pðZÞ ¼ cnZ
n þ cn�1Z

n�1 þ � � � þ c0I :

If Z ¼ UΛU� is the spectral decomposition of a normal matrix Z, then

pðZÞ ¼ UpðΛÞU�; (1)

for any complex polynomial p. This polynomial functional calculus permits
us to define functions of a normal (or, more generally, diagonalizable) matrix
in a simple, unified manner. For instance, if p is a polynomial for which
pðλÞ ¼ eλ for each eigenvalue λ of a diagonalizable matrix Z, then pðZÞ ¼
exp Z (the existence of such a polynomial is justified by the Lagrange
Interpolation Theorem; see Section 6). Consequently, matrix exponentials
can be approached entirely through polynomial interpolation; infinite series
of matrices (and the associated hand-waving) are unnecessary.

6. EIGENVALUES AND POLYNOMIALS

Even though matrices that arise in the “real world” often contain only real
entries, complex numbers are essential to their study. A “typical” real, square
matrix has many complex eigenvalues; see Figure 1. As another example,
complex eigenvalues are expected to arise in the consideration of “typical”
discrete-time Markov chains, which have many states. The theory of random
matrices can make all of these assertions precise [2, 5].

Since eigenvalues and polynomials go hand-in-hand, fluency with the
basic properties of complex polynomials yields benefits in the study of
matrices and their eigenvalues. The following theorem should be in every
mathematician’s arsenal.

Theorem (Lagrange Interpolation). Let n � 1, let z1; z2; . . . ; zn be distinct
complex numbers, and let w1;w2; . . . ;wn 2 C. There is a unique polynomial
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p of degree at most n� 1 such that pðziÞ ¼ wi for i ¼ 1; 2; . . . ; n. If the data
z1; z2; . . . ; zn;w1;w2; . . . ;wn are real, then p is a real polynomial.

This basic fact about complex polynomials is phenomenally useful in
linear algebra. Moreover, this relationship is reciprocal because the best
proofs of the interpolation theorem involve linear algebra! One proof employs
a convenient basis for the n-dimensional space of polynomials of degree at
most n� 1. For j ¼ 1; 2; . . . ; n, the polynomials

,jðzÞ ¼
Y

1�k�n
k�j

z� zk
zj � zk

are of degree n� 1 and satisfy ,jðzkÞ ¼ δjk. Therefore, pðzÞ ¼
Pn

j¼1 wj,jðzÞ
has degree at most n� 1 and satisfies pðzkÞ ¼

Pn
j¼1 wj,jðzkÞ ¼ wk . Another

well-known approach can be based on the invertibility of the associated
Vandermonde matrix

Figure 1. Plot in the complex plane of the eigenvalues of a randomly generated
1000� 1000 real matrix. The matrix entries are drawn independently from the uniform
distribution on ½�1; 1�. Readers who are interested in an explanation for the distinctive
appearance of this plot are invited to consult [2, 5].
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Vn ¼

1 z1 z21 � � � zn�1
1

1 z2 z22 � � � zn�1
2

..

. ..
. ..

. . .
. ..

.

1 zn z2n � � � zn�1
n

2
66666664

3
77777775
:

A nice consequence of the Lagrange Interpolation Theorem is the follow-
ing seminal result that underpins diagonalization.

Theorem. Suppose that w1;w2; . . . ;wr are eigenvectors of Z 2 MnðCÞ corre-
sponding to distinct eigenvalues λ1; λ2; . . . ; λr. Then the vectors w1;w2; . . . ;wr

are linearly independent.

The proof is elegant and simple. If c1w1 þ c2w2 þ � � � þ crwr ¼ 0, then for
any polynomial p

0 ¼ pðZÞðc1w1 þ c2w2 þ � � � þ crwrÞ
¼ c1pðZÞw1 þ c2pðZÞw2 þ � � � þ crpðZÞwr

¼ c1pðλ1Þw1 þ c2pðλ2Þw2 þ � � � þ crpðλrÞwr:
(2)

For i ¼ 1; 2; . . . ; r, select polynomials pi so that piðλjÞ ¼ δi;j for
j ¼ 1; 2; . . . ; r. Now substitute p ¼ pi into equation (2) to see that each ci ¼ 0.

This polynomial interpolation technique can also be used to prove the
existence of a positive semidefinite square root of a positive semidefinite
matrix; see Section 7. Before proceeding, we cannot resist a brief discussion
about Geršgorin’s Theorem, which elegantly combines linear algebra and com-
plex arithmetic. Further information can be found in [4]; a treatise on the
theorem and its generalizations is [6].

Theorem (Geršgorin’s Theorem). If n � 2, then every eigenvalue of A ¼
½aij� 2 Mn is contained in

GðAÞ ¼
[n
k¼1

GkðAÞ;

where GkðAÞ ¼ fz 2 C : jz� akk j � R0
kðAÞg denotes the closed disk in C whose

center is at the point akk and whose radius is given by the deleted absolute row
sum R0

kðAÞ ¼
P

j�k akj
�� ��.

The proof of Geršgorin’s Theorem uses only the definition of eigenvalues
and complex arithmetic. However, its power is stunning. For example, con-
sider the matrix
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A ¼ 9 8
2 �6

� �
;

whose eigenvalues are � 7 and 10. We have R0
1ðAÞ ¼ 8, R0

2ðAÞ ¼ 2,
R0
1ðAT Þ ¼ 2, R0

2ðAT Þ ¼ 8, and hence

G1ðAÞ ¼ fz 2 C : jz� 9j � 8g; G1ðAT Þ ¼ fz 2 C : jz� 9j � 2g;
G2ðAÞ ¼ fz 2 C : jzþ 6j � 2g; G2ðAT Þ ¼ fz 2 C : jzþ 6j � 8g:

Since A and AT always have the same eigenvalues, the eigenvalues of A lie in
GðAÞ \ GðAT Þ; see Figure 2. This example is from [3].

7. POSITIVE SEMIDEFINITE MATRICES

We say that Z 2 MnðCÞ is positive semidefinite (resp., positive definite) if
hZw;wi � 0 (resp., hZw;wi> 0) for all w 2 C

n. Statisticians deal with posi-
tive semidefinite matrices, such as covariance and correlation matrices, all the
time. Orthogonal projections, which are useful in approximation theory, are
examples of positive semidefinite matrices. These matrices are characterized
by the two conditions Z ¼ Z� (self-adjointness) and Z2 ¼ Z (idempotence).

What are positive semidefinite matrices an analogue of? For a complex
number z, asserting that zw�w � 0 for all w 2 C is another way of saying that
z � 0; that is, z is non-negative. This suggests that positive semidefinite matrices
should enjoy properties that are reminiscent of non-negative real numbers. For
instance, a complex number z is non-negative if and only if z ¼ p2 for some non-
negative p. The same is true for matrices.

� �
5

5i

10i

−5i

−10i

−5 10−10 15−15

G1(A)G2(AT )

G1(AT )G2(A)

Figure 2. The intersection of GðAÞ and GðAT Þ, which is the union of the two small
disks and the lens-shaped region, contains the eigenvalues z ¼ 10 and z ¼ �7 of A.
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Theorem. If Z 2 MnðCÞ is positive semidefinite, then there exists a positive
semidefinite matrix P 2 MnðCÞ so that Z ¼ P2.

The matrix P is uniquely determined and it is usually denoted Z1=2. In

fact, there exists a real polynomial p so that P ¼ pðZÞ; simply let pðλÞ ¼ ffiffiffi
λ

p
for each (necessarily real) eigenvalue λ of Z. The existence of such a poly-
nomial is guaranteed by the Lagrange Interpolation Theorem; that P ¼ pðZÞ is
positive semidefinite and squares to Z follows easily from the polynomial
functional calculus (1).

For any complex number z, we have �zz � 0. Entirely analogous to this is
the fact that for any Z 2 Mm�nðCÞ, the matrix Z�Z 2 MnðCÞ is positive
semidefinite

hZ�Zw;wi ¼ hZw;Zwi ¼ kZwk2 � 0:

As such, we may define Zj j 2 MnðCÞ to be the positive semidefinite square

root ðZ�ZÞ1=2 of Z�Z. This opens the door to matrix generalizations of the
polar decomposition of a complex number.

For the sake of simplicity, we now restrict our attention solely to square
matrices. Both the polar decomposition and the singular value decomposition,
which we discuss below, can be suitably generalized to the non-square case.
Although these generalizations are important in many applications, they are
more cumbersome to write down, and doing so would detract from our
present course. Our main interest is demonstrating that complex arithmetic
can be our guide through many of the crucial topics in a second linear algebra
course.

Theorem (Polar decomposition). Let Z 2 MnðCÞ. There exists a unitary
matrix U 2 MnðCÞ so that Z ¼ U Zj j. If Z is invertible, then U is uniquely
determined.

From the complex perspective, the proof of the preceding theorem is
(almost) trivial. If z� 0, we may write z ¼ u zj j, in which u 2 T. So

u ¼ zjzj�1. Now suppose that Z 2 MnðCÞ is invertible. Then the matrix U ¼
ZjZj�1 is unitary since

U�U ¼ ðZjZj�1Þ�ðZjZj�1Þ ¼ jZj�1jZj2jZj�1 ¼ I ;

because Z�Z ¼ jZj2. Consequently, Z ¼ U Zj j as claimed. Of course, there are
details to fill in if Z is not invertible. The point, however, is not to give a
complete proof of the most general theorem possible. We simply wish to show
that complex arithmetic suggests, in an intuitive manner, some of the funda-
mental results in advanced linear algebra.

As another example, consider the formula
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z�1 ¼ �zjzj�2; (3)

in which z 2 C is nonzero. The same formula holds for an invertible
Z 2 MnðCÞ, with a minor adjustment to take noncommutativity into account:

Z�1 ¼ jZj�1Z�jZj�1: (4)

To see why, write the polar decomposition of Z as Z ¼ U Zj j, in which U is

unitary. Taking inverses yields Z� ¼ jZj�1U �; taking adjoints yields
Z� ¼ jZjU�. Combining these last two equations leads to equation (4).

Perhaps the most important matrix decomposition, from the perspective
of applications, is the singular value decomposition (SVD), which we state
below in the square case.

Theorem (SVD). Let Z 2 MnðCÞ. Then there exist unitary matrices U ;V 2
MnðCÞ and a diagonal matrix � with non-negative entries so that Z ¼ U�V �:

Here is how to pass from the polar decomposition to the SVD. Write
Z ¼ WP, in which W is unitary and P is positive semidefinite. The Spectral
Theorem provides a unitary V and a diagonal matrix� with non-negative entries
so that P ¼ V�V �. Thus, Z ¼ U�V �, in which U ¼ WV and V are unitary.

Unlike the polar decomposition, the positive semidefinite matrix involved
is diagonal in the SVD. In order to accomplish this, we must pay a price.
Instead of a single unitary matrix, we must employ two unitary matrices. In
light of the noncommutativity of matrix multiplication, this is natural. Indeed,
we have already seen a similar “two-sided” phenomenon in equation (4), in
which a simple formula (3) from complex arithmetic required a slight “two-
sided” adjustment.

8. NON-NORMAL MATRICES

As we have seen, normal matrices are the “best” matrices in the sense that
their properties can largely be anticipated from elementary complex arith-
metic. Fruitful analogies abound in their study and they hold few surprises for
the attentive student. To a large extent, the Spectral Theorem reduces the
study of normal matrices to that of diagonal matrices; questions about diag-
onal matrices boil down to simple arithmetic.

Diagonalizable matrices are already familiar to students, who are accus-
tomed to diagonalizing matrices from a first course in linear algebra. What
about non-diagonalizable matrices? Those must be grappled with at some
point in a second linear algebra course. For instance, the n� n Jordan matrix
Jn satisfies Jnn ¼ 0 and J kn�0 for k ¼ 1; 2; . . . ; n� 1; that is, Jn is nilpotent of
order n. Nilpotency does not occur in the arithmetic with which students are
normally familiar. It certainly has no parallel in complex arithmetic.
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Those who have followed along with our general philosophy should not
be surprised. What our analogies tell us is that normal matrices are the most
well-behaved matrices; their properties tend to mirror those of complex
numbers. The farther one strays from the realm of normal matrices (or,
more generally, diagonalizable matrices), the more pathological behavior
one expects to find.

Fortunately, the matrices encountered most often in applications are
normal. These include unitary matrices in quantum information theory, self-
adjoint matrices in network theory, positive semidefinite matrices in statistics,
orthogonal projections in approximation theory, and so forth. Students can
safely swim in the shallow end at first, studying normal matrices and their
applications for a while (armed with intuition gained from the complex
perspective), before moving on to general matrices.

A major tool in the (theoretical) study of arbitrary square matrices is the
Jordan canonical form. This standard topic requires complex arithmetic from
the outset, as the roots and multiplicities of the characteristic polynomial must
first be known (in addition to other information). An instructor hoping to
reach Jordan canonical form by the end of the course must “face the music” at
some point. The complex numbers must be introduced somewhere; we argue
that this should be done as early as possible.

9. CONCLUSIONS

For the modern student of the mathematical sciences and allied fields, the
importance of a second course in linear algebra is undeniable. As we have
demonstrated, a firm understanding of complex arithmetic and the geometry
of the complex plane provide the student with a solid foundation upon which
to learn advanced linear algebra. This approach is relevant both to under-
graduate and graduate courses on the subject.

Properties of important special classes of matrices (e.g., unitary, self-
adjoint, positive semidefinite) are almost self-evident from this perspective.
Fluency with complex polynomials opens the door to simple proofs of major
theorems, whereas comfort with complex geometry yields qualitative insights
into the behavior of matrices.

All of this suggests that an early introduction to complex arithmetic,
either prior to or at the beginning of a second course in linear algebra, is
greatly beneficial to the student. The instructor will also benefit from this
approach, since it provides a unifying theme and an established framework
upon which to build.
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