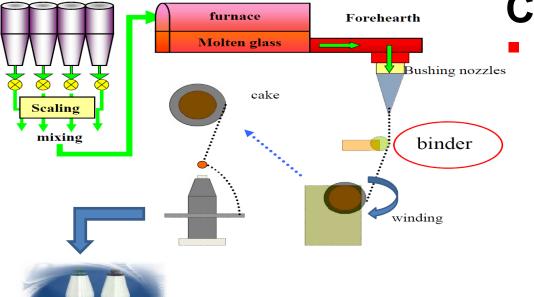

Advanced Material Selection IPC Designers Council

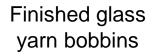
Michael J. Gay February 8th 2017 Michael.gay@isola-group.com

Laminate Material Components

Resin, Glass, Copper


B-Stage + Foil = Laminate

Glass Fabric - Yarn

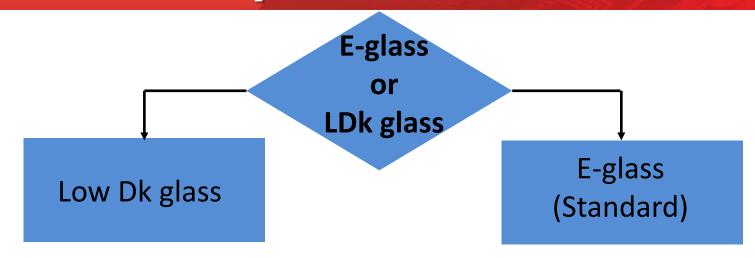


Glass Yarn

Critical Differences

- Composition effects
 - Electrical properties
 - Mechanical properties
 - PCB process-ability
 - Cost 1 to 10x
 - Availability may be limited

Glass Yarn Properties

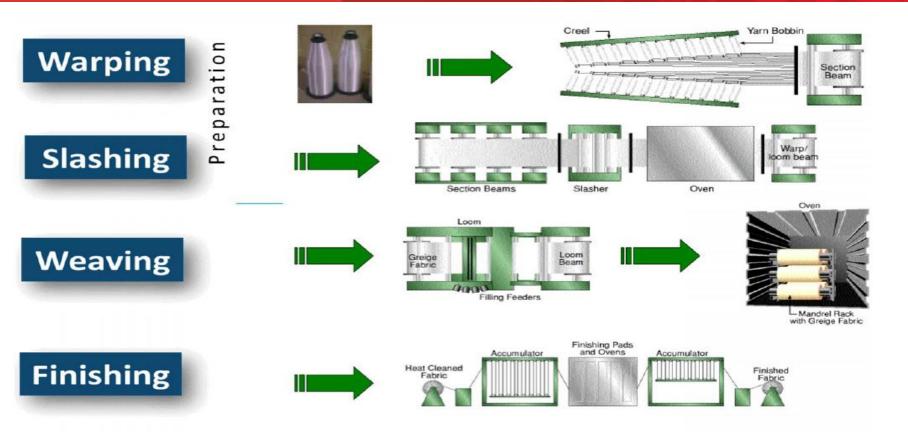

	Property			Low Dk			Low CTE	
	Advantage	Disadvantage	E-Glass	D-Glass	L-Glass	NE-Glass	T-Glass	S-Glass
SiO2	Dk, Df	Drillability	52-56%	72-76%	52-56%	52-56%	64-66%	<mark>64-66%</mark>
CaO		Dk	20-25%	0%	0-10%	0%	0%	0-0.3%
Al ₂ O ₃		Df	12-16%	0-5%	10-15%	10-18%	24-26%	24-26%
B ₂ O ₃	Dk, Dk		5-10%	20-25%	15-20%	18-25%	0%	0%
MgO	Meltability	Dk	0-5%	0%	0-5%	5-12%	9-11%	9-11%
Na ₂ O,K ₂ O		Dk, Df, Durability	0-1%	3-5%	0-1%	0-1%	0%	0-0.3%
TiO ₂ ,LiO ₂	Meltability		0%	0%	0-5%	0%	0%	0%

			Low Dk	Low CTE	
Property	Unit	E-Glass	Glass	Glass	
Dk @ 1GHz	Freq	6.8	4.8	5.4	
Df @ 1 GHz	Freq	0.0035	0.0015	0.0043	
Tensile Modulus	Gpa	75	<mark>6</mark> 4	86	
Thermal Expansion	ppm/°C	5.6 🧲	2.8	3.3	\triangleright

- Composition determines the effects of glass on the composite
- Low glass CTE values increase the gap between other components of the composite

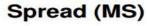
Glass Composition Decision Tree

- Lower Dk & Df
- Increases glass cost ~5-6x
- Increases lead time

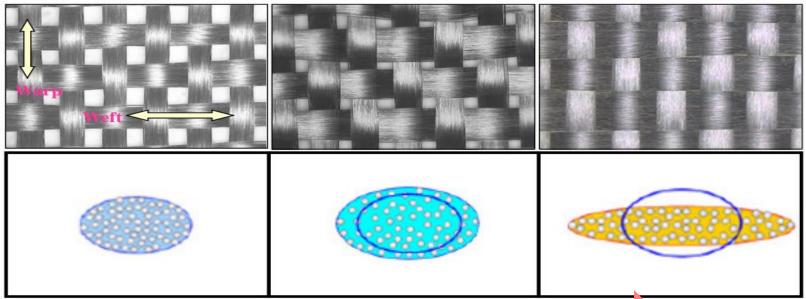

- Standard Dk & Df
- Low cost
- Readily available

Glass Fabric – Weaving

Fabric Weaving Process



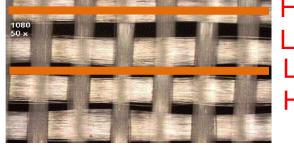
150Ia


Glass Fabric Types

Standard

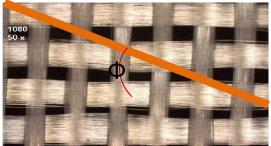
Expanded

150



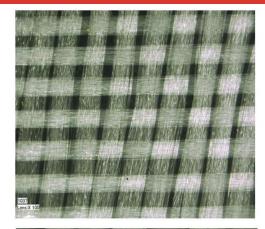
Less Skew or Fiber Weave Effect

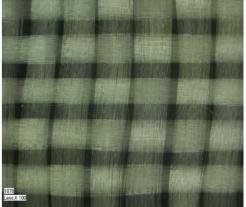
- Spread (MS) weaves reduce the Fiber Weave Effect (FWE)
- Spread or expanded must be in both directions


Two Main Fiber Weave Effects

 Effects due to location of trace with respect to fiber weave bundles

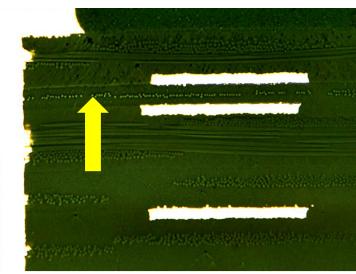
High Er; Low Zo Low Er; High Zo


2. Effects due to periodic loading of trace by fiber weave bundles – resonance



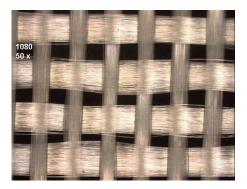
Ultra Thin Glass

UltraEC_1 Lens:X 400

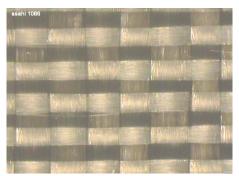


1037 Warp & Fill Count: 70 x 73 (ends/in) Thickness: 0.0011" / 0.030 mm

IPC SPEC	Thickness	Weight	count /	25mm	Weave
(excerpt)	(mm)	(g/m ²)	Warp	Fill	weave
1037	0.025	24	69	72	Plain
1027	0.020	19	74	74	Plain
1017	0.015	13	95	95	Plain

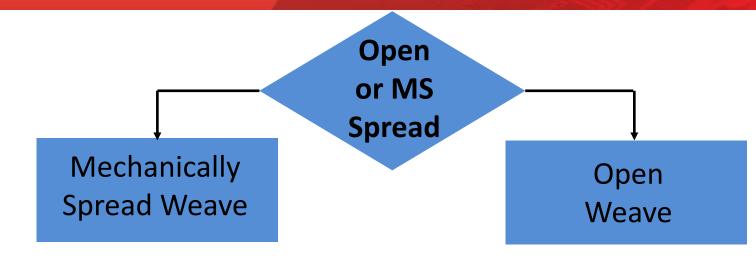

The above data are examples of actual measured values and not standard values.

1078 Warp & Fill Count: 54 x 54 (ends/in) Thickness: 0.0017" / 0.040 mm



Open vs Spread Weave

1080 Warp & Fill Count: 60 x 47 (ends/in) Thickness: 0.0021" / 0.064 mm



1086 Warp & Fill Count: 60 x 60 (ends/in) Thickness: 0.0022" / 0.050 mm

Photos courtesy of Isola R & D Laboratories

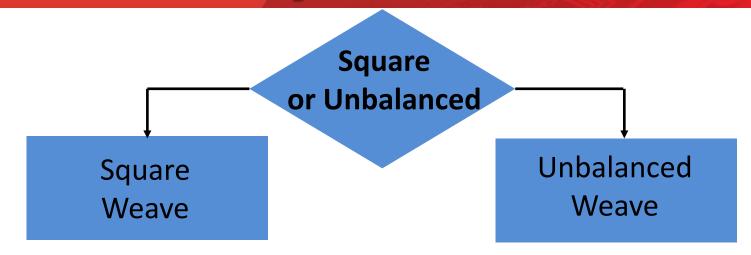
Glass Weave Decision Tree

- Reduces FWE (Fiber Weave Effect)
- Increases glass cost ~1.2-1.4x
- Improves dimensional stability
- Improves thickness control

- Low cost
- Notable FWE (Fiber Weave Effect)
- Readily available
- Through glass resin flow isola

Glass Fabric - Style

Glass Styles


Glass Style	Weave	Warp Count	Fill Count	Warp Yarn	Fill Yarn	Fabric Thickness inches	Fabric Thickness mm	Fabric Nominal Weight OSY	Fabric Nominal Weight g/m2
1035 *	Plain	66	68	ECD 900-1/0	ECD 900-1/0	0.0011	0.030	0.88	30
1037 *	Plain	70	73	ECC 1200-1/	0 ECC 1200-1/0	0.0011	0.030	0.68	23
1067 *	Plain	70	70	ECD 900-1/0	ECD 900-1/0	0.0014	0.035	0.91	31
106	Plain	56	56	ECD 900-1/0	ECD 900-1/0	0.0013	0.032	0.73	25
1078 *	Plain	54	54	ECD 450 1/0	D ECD 450 1/0	0.0017	0.040	1.41	48
1086 *	Plain	60	60	ECD 450 1/0	D ECD 450 1/0	0.0022	0.050	1.60	54
1080	Plain	60	47	ECD 450-1/0	ECD 450-1/0	0.0021	0.064	1.45	49
2113	Plain	60	56	ECE 225-1/0	ECD 450-1/0	0.0031	0.074	2.31	78
2313	Plain	60	64	FCE 225- 1/0	D ECD 450-1/0	0.0033	0.080	2.38	81
3313	Plain	61	62	L = 300-1/	0 ECDE 300-1/0	0.0033	0.081	2.43	82
3070	Plain	70	70	ECD ₋ °-1/	0 ECDE 300-1/0	0.0034	0.086	2.74	93
2116	Plain	60	58	ECE 225-	ECE 225-1/0	0.0037	0.097	3.22	109
1506	Plain	46	45	ECE110-1/1	ECE 110-1/0	0.0056	0.140	4.89	165
1652	Plain	52	52	ECG 150-1/0	0 CG 150-1/0	0.0045	0.114	4.09	142
7628	Plain	44	31	ECG 75-1/0	E 75-1/0	0.0068	0.173	6.00	203
Fiberglass Yarn Nomenclature 1st Letter E= E-glass (electrical grade)			1080	Р	lain	60	47		
2nd Let	tter C	= Continuo	Continuous Filaments		2113	P	lain	60	56
	3rd Letter Filament Diamete			E, DE, G					
lst num 2nd num		ardage in or	•	varn/ strands	plied or twisted				

Square Weave

E-glass and Low Dk glass nominal weights are not equal

isola

Glass Style Decision Tree

- Reduces FWE (Fiber Weave Effect)
- Increases glass cost slightly
- Improves dimensional stability

- Low cost
- Notable FWE (Fiber Weave Effect)
- Variation in x-y periodicity

Guide to Selecting Glass

Glass Styles	Square	Expanded	Spread	MS Spread
1035	Yes	Yes	Yes	Yes
1037	No	Yes	Yes	Yes
106	Yes	Yes	Yes	No
1067	Yes	Yes	Yes	Yes
1078	Yes	Yes	Yes	Yes
1080	No	Yes	Yes	No
1086	Yes	Yes	Yes	Yes
2113	No	Yes	Yes	No
2313	No	Yes	Yes	No
3313	Yes	Yes	Yes	Yes/No
2116	Yes	No	No	No
1652	Yes	No	No	No

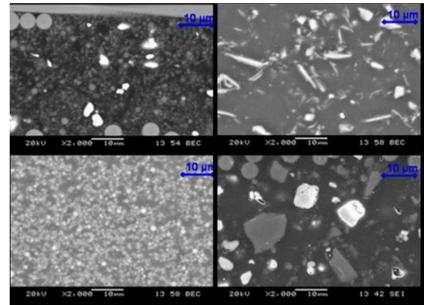
- Square weave same yarn count in warp and fill
- Expanded or Spread weave Glass is expanded in only one direction warp or fill
- MS Spread (Mechanically spread) Glass spread in both directions

Resin

Resin Technology

Base Resin Components

- Difunctional & Tetrafuntional Polymers, Oligomers
- Dicy, Phenolic, Novel curing
- Blends
 - Polyphenylene oxide PPO/Epoxy
 - Bismaleimide Triazine (BT)/Epoxy
 - Cyanate Ester/Epoxy
 - Polyphenylene ether PPE/Epoxy
- Polyimide, Hydrocarbon, Teflon, Acrylic, Melamine,
- Liquid Crystal Polymers
- Proprietary Thermoset Polymers and Polymer blends


"I have discovered something novel that will change the way we make laminates!"

Next generation of non-PTFE laminate is expected to have $D_k < 3.0 \text{ Dk}$ $D_f < 0.001$ isol

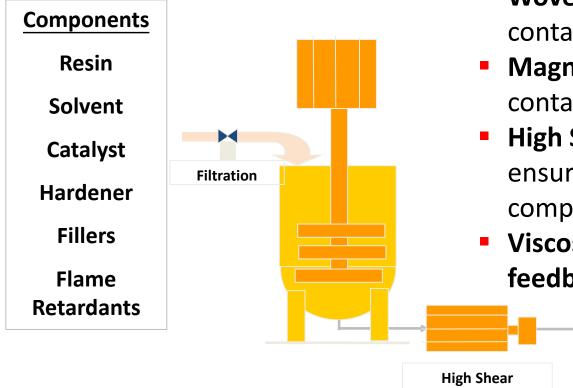
Resin Technology

Fillers - 'Components' which influence the electrical properties and thermal performance

- Various types of Silica
- Aluminum Silicate
- Talc (usage in laminate is patented)
- Rubber
- Glass microspheres
- Boron Nitride Thermal management
- Size and shape effect

Resin Technology

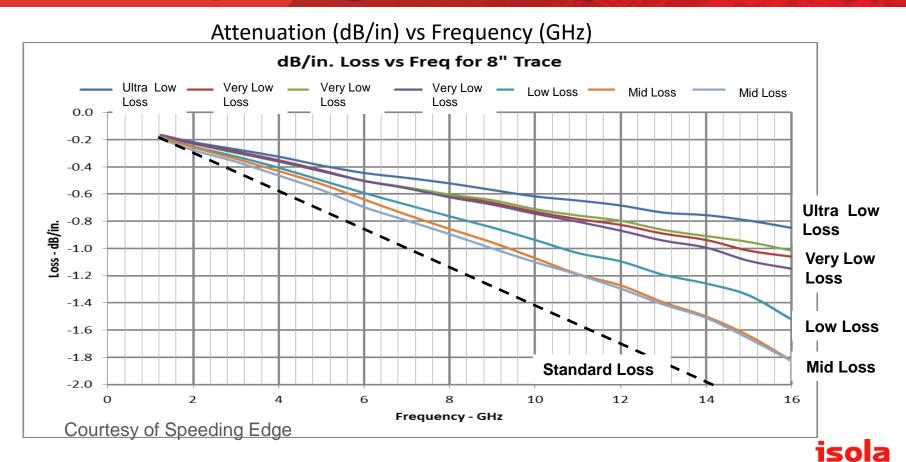
Flame retardants


- Brominated TBBPA
 Tetrabromobisphenol-A
- Halogen Free
 - Phosphorus based
 - Aluminum hydroxide
 - Magnesium hydroxide
 - Nitrogen based
- Solid vs reacted

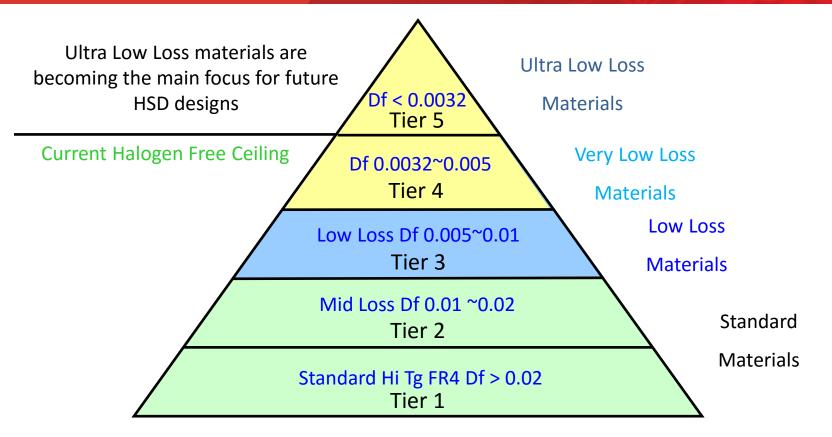
Mixing & Blending Technology

Milling/Mixer

- Woven filters remove contaminants in liquid components
- Magnetic Filters remove ferrous contaminates
- High Shear Milling/Mixing ensures homogenous mixing of all components and sizes fillers

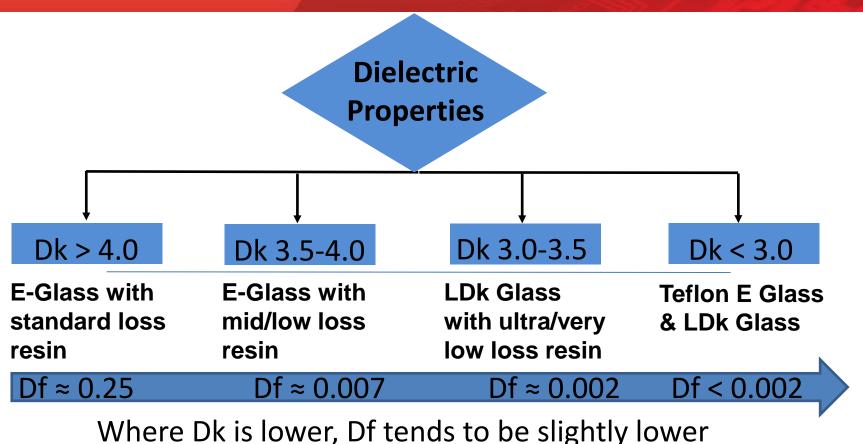

To the Treater

 Viscosity measurement and feedback


Viscosity

Regulator

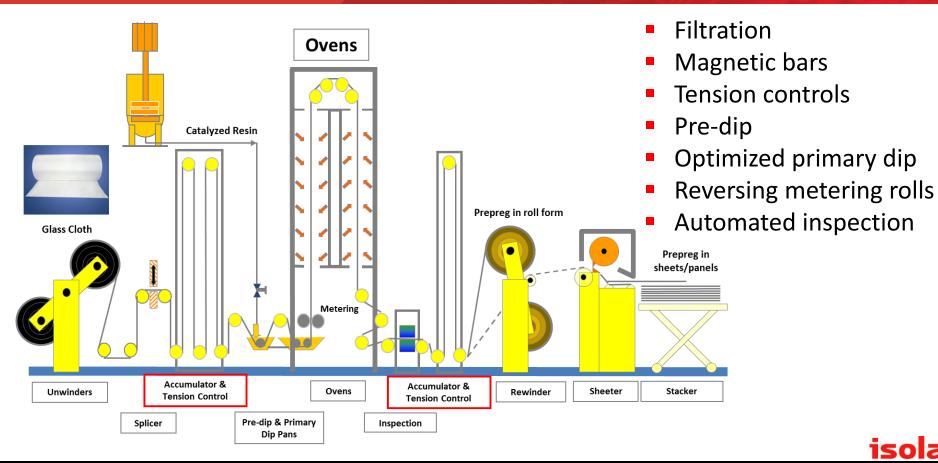
Comparing Resin Systems


Material Loss Pyramid

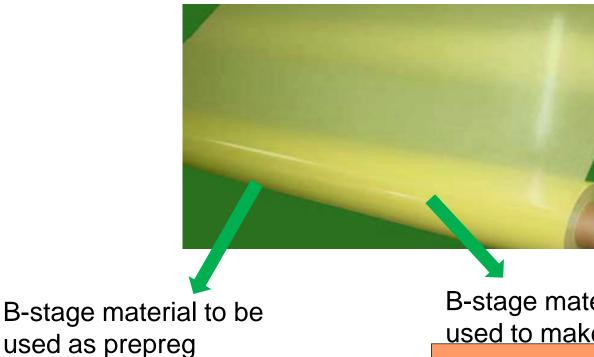
Approximately 400 material offerings available today

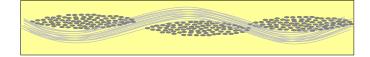
150

Resin Decision Tree

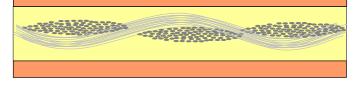


150


Glass Impregnation

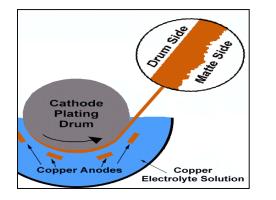


Treating Technology



Finished B-Stage

B-stage material to be used to make laminate



150

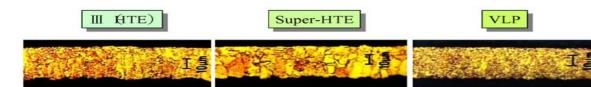
Copper Foil Plating

Copper is sold to the laminator by weight Oz. not by thickness.

Copper thickness is specified in mils for PCB's

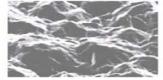
PCB processing reduces

copper thickness


Oz. ≠ Mils

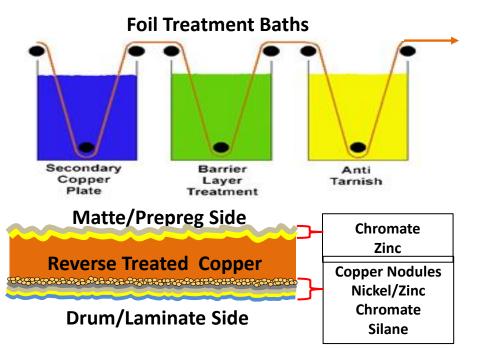
Warning:

ED Copper Grain Structure determines:


- Surface roughness or profile
- Physical properties of the copper
- Almost No Profile (ANP) <2 µm</p>
- Minimum thickness with carrier 2,3, 5 µm

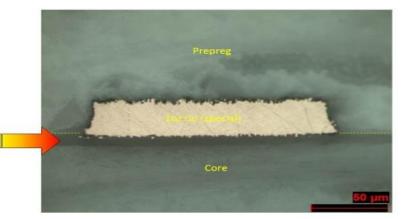
Grain Structure and Surface Profile

%After heated at 180℃.1hr



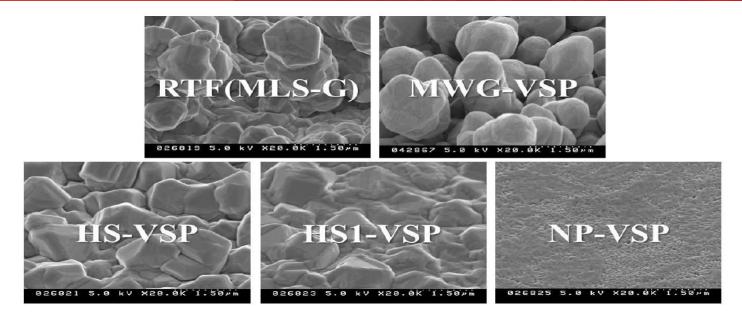
a vy xs.eek dieeja

Copper Foil Treatment



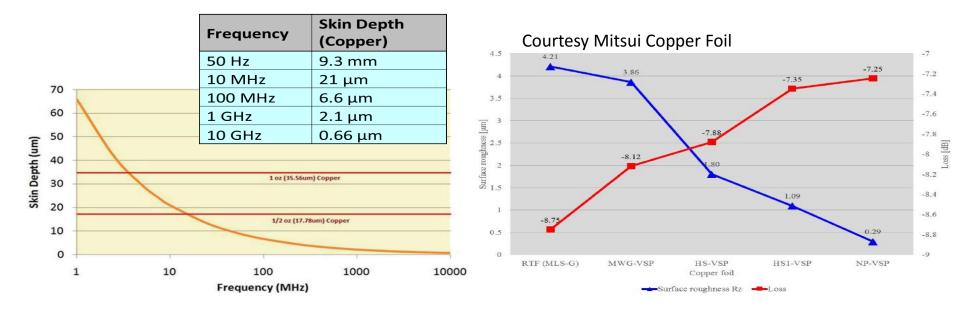
Secondary plating – Nodulation

- Reduction of conductor losses
- Minimization of conductor path


Barrier layer treatment

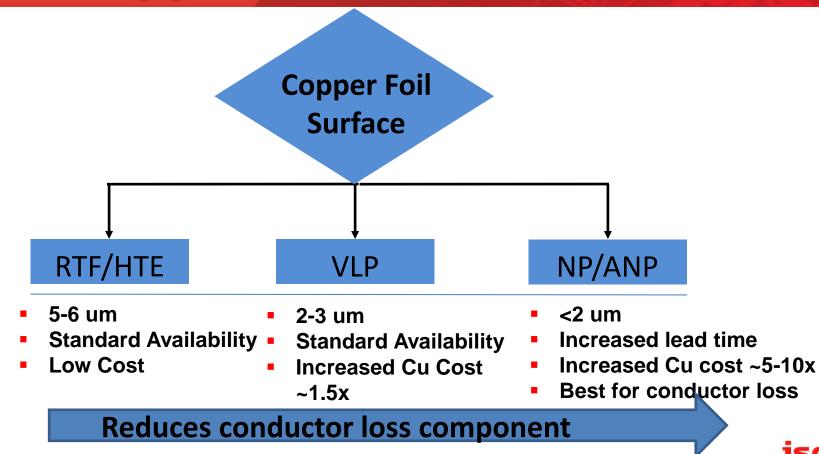
- Transition layer
- Treatment/coating maybe specific to a resin system

Copper Surface Images

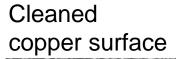


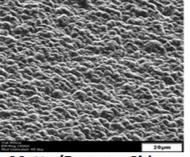
Smoother copper results in reduced conductor losses

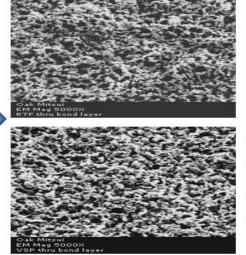
Courtesy Mitsui Copper Foil


Skin Effect

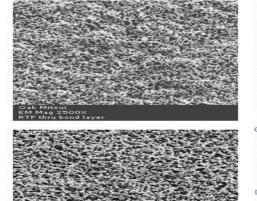
- Skin depth decreases as frequency increases
- Conductor losses decrease as foil roughness decrease

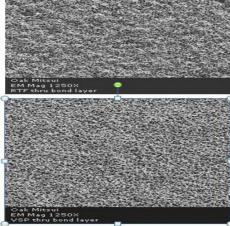


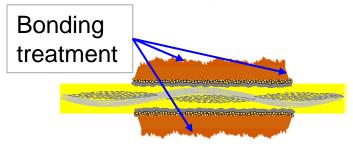

Copper Foil Decision Tree


150

Inner Layer Bonding Treatment (during PCB processing)

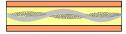






Courtesy Oak Mitsui

Warning:


Not all surface treatments are equal and result in significant variation from fab shop to fab shop 150

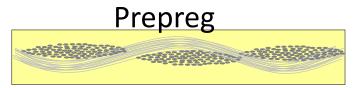
Lamination

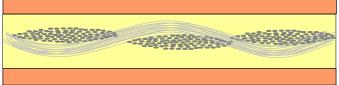
Lamination

Lay up -Copper foil applied to bstage

Laminate Kit

Build up – Kits built into a book


Master sheet lamination


Finished Products

Copper Clad Laminate

PCB Material Performance Needs

✓ PCB process ease and compatibility

Thermal performance during PCB fabrication and assembly

- ✓ Sequential lamination
- ✓ Assembly cycles
- ✓ Rework and localized performance

Design appropriate dielectric properties

✓ Long term reliability

✓ Low cost to performance ratio

Selecting the Right Material

- Laminate material selection can not be condensed into a single page chart (Data sheet) for easy selection. More information is needed
- Cost-to-performance evaluations must be done by the system design team to ensure selection of the lowest cost material that is good enough
- Collaboration between laminate material suppliers, key PCB fabricators and the OEM designer is important to achieve peak price/performance results

Laminate Material Processing

Cost Considerations

- Lamination cycle
 - 60-90 minute cure
 - Temperature
- Drill tool cost
 - Hit count
 - Special BU and/or Entry
- Desmear processing
 - Plasma
 - Chemical
- Baking requirements
 - When and how long?
- Special processing

isola

Tachyon[®] 100G Processing Guide

The processing guidelines contained in this document were developed through in-house testing and field experience. However, they should be considered to be starting points that will require further adjustment. Read the following review of processes for applicability to your particular Printed Wiring Board (PWB) fabrication environment. Remember that the suggestions contained herein cannot account for all possible board designs or processing environments. Additional adjustments by the fabricator will be necessary, Isola can and will assist with this process, but the fabricator, not Isola, is ultimately responsible for their process and the end results. Fabricators should writh that PWB made using these suggestions meet all applicable quality and performance requirements.

Part 1: Prepreg Storage and Handling

Isola Grangh proprieg bonding sheets for use In multityse priori occult board applications are manufactured to specification that include spherical and electrical properties and processing characteristics relative to the laminating application. Handling and danage tactions have an important influence on the desired performance of the proprieg. Some parameters are atticked by the environment in which progregs are solved. They can also detainstance over estandiad performance have impring rackets detainstance over estandiad performance in the environment in tables that the more than the more than the impringer area detainstance over estandiad performance in the environment in tables that the environment in the dash base in mitregraphical with a stated quantity of low volatile, partially polymented eres in. The result is tack-the but command to thin. Many the regulared thickness. In most cases the amount of resit carried by the fabric increases as the bach the but common as decreases.

Handling Suggestions

Handle all prepreg using clean gloves. Use sharp, precision equipment when cutting or paneling prepreg. Treat all prepreg as being very fraglie. Use extreme care when handling very high resin content prepreg (glass fathics 1080 and finer).

Storage Suggestions

Upon receipt, all prepreg should be immediately moved from the receiving area to a controlled environment. Material should be kept in original packaging until ready to use.

All prepreg should be used as soon as possible. A First-In-First-Out (FIFO) Inventory management system should be used.

If not handled property, Tachyon[®] 100G prepreg will absorb molisture, which will lead to depressed Tgs and cure and affect flow in the press. If extended storage is required, separate lacilities should be reserved with appropriate environmental control. Prepreg should be stored at 2 29°C and below 50% humidity.

Prepreg packages should be allowed to equilibrate to layup room conditions before opening to prevent moisture

condensation on the prepreg.

Statilization time will depend on storage temperature. In cases where storage temperature is applicantly below nom temperature, keep prepre in package or plastic wapping atmg the statilization pend to prevent motisture condensation. Once the original packaging is general, the prepreg should be used immediately, Remaining perpend should be ensembled in the original packaging with their desicocat, do not vacuum seel Tachyon 1000G prepend. Stationary should be in the absence of catalytic environments such as high tadiation levels or intense ultraviolet light.

Part 2: Innerlayer Preparation

Isola Group's Tachyon 1000 kminales are huly cured and ready for processing. It has been the experience of most batricators that stress relief bake cycles are not effective in reducing any movement of high performance laminates such as Tachyon 1000, Therefore, It is suggested that the movement of unback laminate be characterized and the appropriate artwork compensation factors are used.

Dimensional Stability

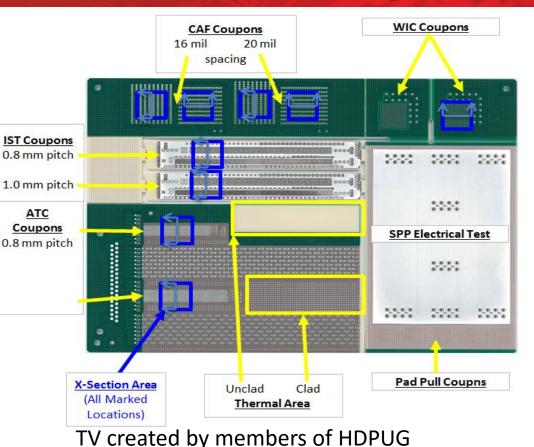
The net dimensional movement of laminate after the elch, oxide and lamination processes is hylicially shrinkage. This shrinkage is due to the relaxation of stresses that ware induced when the laminate was pressed as well as shrinkage contribution from the reals system. Most of the movement will be observed in the grain direction of the laminate.

There are situations that have been known to after the proportion of shrinkage in grain versus fill direction in some board shops. These include autoclave pressing and cross-plying laminate grain direction to that of prepreg.

Laminate Thermal Performance

Fabrication processing

- Multiple lamination ~ 8-10 cycles
- Lead Free HASL
- Multiple baking steps


Assembly processing

- Multiple reflow cycles
- Rework processing
- Minimal moisture uptake
- HDI Compatible Stacked micro vias on blind

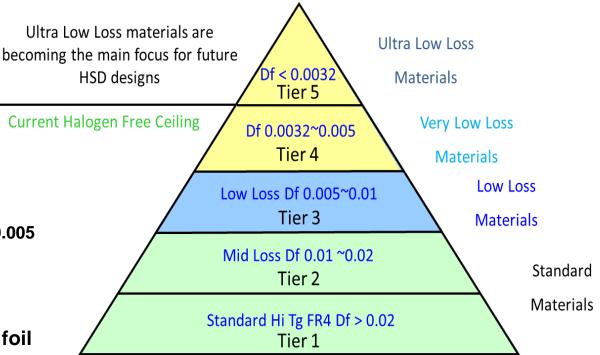
Laminate Material Capability

- There is no one single Test Vehicle to learn everything, but we can learn a lot from them
- MRT6 Industry TV
 - Thermal performance
 - CAF performance
 - Electrical performance
 - IST performance
 - Cycling performance
- Others not public

1)VIa

Laminate Electrical Properties

Basic Categories


- Dielectric Constant Dk
 - <u>Standard</u> Dk ≥ 4.0
 - Mid Dk: 3.5 4.0
 - Low Dk: 3.0 3.5
 - <u>Ultra Low</u>: ≤ 3.0

Dissipation Factor Df

- <u>Ultra</u> Low Loss Df ≤ 0.0032
- Very Low Loss Df: 0.032 0.005
- Low Loss Df: 0.005 0.007
- Mid Loss Df: 0.010 0.02
- <u>Standard</u> Df ≥ 0.020

Conductor losses of copper foil

- RTF
- VLP
- NP/ANP

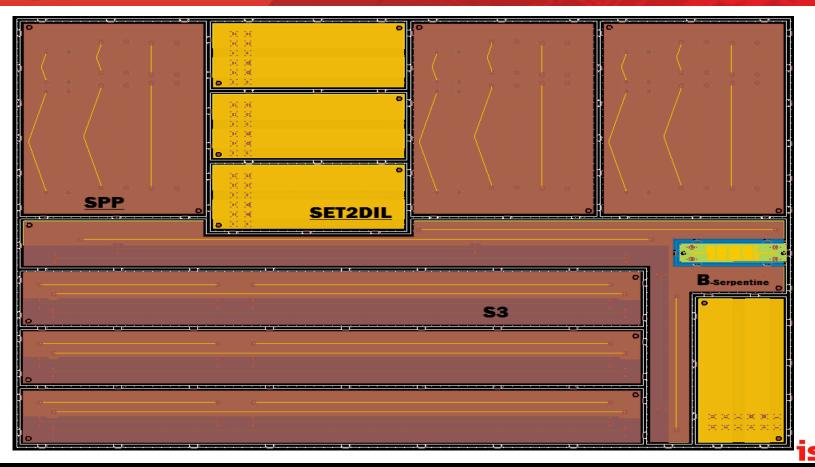
Approximately 400 material offerings available today

Data Sheet Laminate Properties

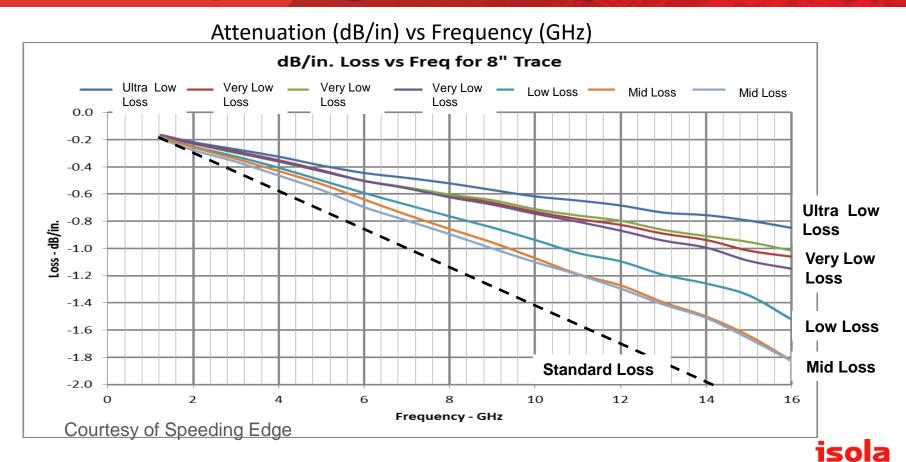
- Laminate properties are tested across a range of resin contents, frequencies, constructions, using appropriate 'laminate / dielectric' test methods
- Laminate D_k and D_f values at 1 MHz and 1 GHz alone do not provide sufficient data for designers for High-speed Digital applications
- Laminate data sheets provide 'single points' of information for D_k and D_f based on a single resin content (usually ~40-60% RC range)

Typical Laminate Comstruction Data

isola


Tachyon-100G DK/DF Constructions

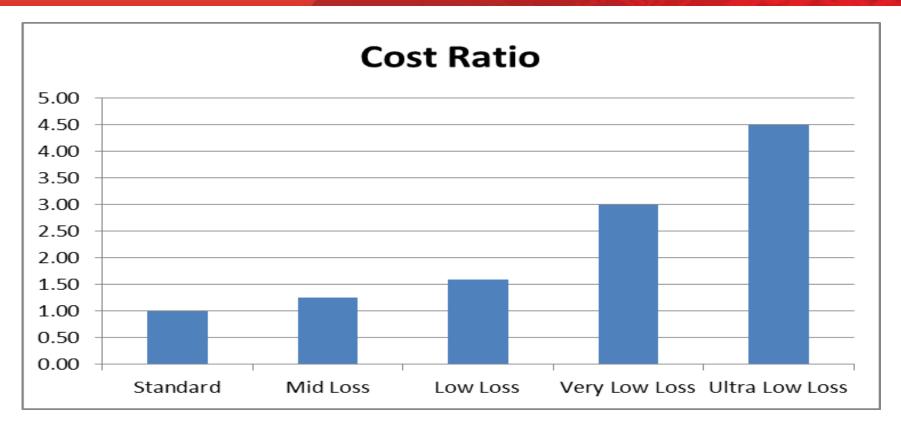
Core Data


Core	Resin Content (%)	Thickness (inch)	Thickness (mm)	Dielectric Constant(DK) / Dissipation Factor([F)							
Constructions				100 MHz	500 MHz	1.0 GHz	2.0 GHz	5.0 GHz	10.0 GHz	15.0 GHz	20.0 GHz
1x1067 MS	70.0	0.0020	0.0508	3.05	3.05	3.05	3.05	3.05	3.05	3.05	3.05
				0.0016	0.0016	0.0017	0.0017	0.0017	0.0017	0.0017	0.0017
1×1035 MS	75.0	0.0025	0.0635	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97
				0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
1x1067 MS	74.0	0.0025	0.0635	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98
				0.0014	0.0014	0.0014	0.0014	0.0015	0.0015	0.0015	0.0015
1x1078 MS	61.5	0.0030	0.0762	3.09	3.09	3.09	3.09	3.09	3.09	3.09	3.09
				0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018
1x1078 MS	70.	0.0033	0.0838	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04
				0.0016	0.0016	0.0016	0.0016	0.0016	0.0016	0.0016	0.0016
1×1078 MS	72.0	0.0035	0.0889	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.01
				0.0015	0.0015	0.0015	0.0016	0.0016	0.001	0.0016	0.0016

Core Constructions	Resin Content (%)	Thickness (inch)	3.07 0.0017 3.24 0.0022	F) 5.0 GHz	10.0 GHz	15.0 GHz	20.0 GHz
1×1067 MS	70.0	0.0020	3.05 0.0016 3.16 0.0020	3.05 0.0017	3.05 0.0017	3.05 0.0017	3.05 0.0017
1×1035 MS	75.0	0.0025	3.02 0.0016 3.19	2.97 0.0014	2.97 0.0014	2.97 0.0014	2.97 0.0014
1×1067 MS	74.0	0.0025	0.0021	2.98 0.0015	2.98 0.0015	2.98 0.0015	2.98 0.0015
Last modified at: 2015-08-2	20 16:49:22 UTC	Printed at:	2015-12-02 21:24	49 +0000	* **		Page 1/5

Typical Industry SI Test Vehicles

Comparing Resin Systems



Selection Summary

- Select a material with proven SI & thermal performance on an industry accepted or internal TV
- Collect the laminate Dk/Df data for the construction set and properties that fit your design criteria
- Consider glass type and how it influences your design
- Consider copper type and how it influences your design
- Evaluate hybrid construction opportunities
- Compare major processing steps for hidden cost
- Evaluate cost to performance of material options

Laminate Cost

CONTACT INFORMATION

Corporate Headquarters 3100 West Ray Road, Suite 301 Chandler, AZ 85226 480-893-6527 800-537-7656 Fax 480-893-1409 info@isola-group.com Asia Pacific Regional Headquarters Unit 3512 - 3522, 35/F No. 1 Hung To Road, Kwun Tong, Kowloon, Hong Kong Phone: 852-2418-1318 Fax: 852-2418-1533 info.hkg@isola-group.com European Regional Headquarters Isola Strasse 2 D-52348 Düren, Germany Phone: 49-2421-8080 Fax: 49-2421-808164 info-dur@isola-group.com

Michael J. Gay Michael.gay@isola-group.com Phone: (503) 713-7965

For permission to reproduce any portion of these materials, please contact the presenter.

Isola, GETEK, I-Fill, I-Speed, I-Tera, Ultra-EC25, Green Speed, Astra, Gigasync, Tachyon, Stratus, Terragreen, IsoDesign, IsoStack, Polyclad, DSTF, Duraver, Chronon and the Isola logo are registered trademarks of ISOLA USA Corp. in the U.S.A. and other countries. All other trademarks mentioned herein are property of their respective companies.

Isola has made commercially reasonable efforts to ensure information in these materials is accurate and up to date. The information may contain inadvertent errors, or be superseded by updates. The information is provided on an AS IS basis, without any representations or warranties, express or implied. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The sale of Isola products is governed by Isola's terms and conditions of sale. The information in these materials does not change or alter such terms.

The Base for Innovation

Thank You!