ST. KATHARINE DREXEL PREP MATH DEPARTMENT

SUMMER MATH PACKET 2020

THIS PACKET IS FOR STUDENTS ENTERING:

ADVANCED MATHEMATICS

$12{ }^{\mathrm{TH}}$ GRADE STUDENTS

DIRECTIONS: IN ORDER TO RECEIVE MAXIMUM CREDIT:

- ALL PROBLEMS MUST BE COMPLETED.
- ALL WORK MUST BE SHOWN ON LOOSE LEAF PAPER AND MUST BE COMPLETED WITH A PENCIL ONLY. PAPERS WILL NOT BE GRADED IF THE WORK IS DONE WITH AN INK PEN.
- YOU MAY USE MATH WEBSITES SUCH AS KHAN ACADEMY FOR ASSISTANCE

DUE DATE: THE SUMMER MATH PACKET MUST BE SUBMITTED THE FIRST WEEK OF SCHOOL FOR A HOMEWORK GRADE. YOUR MATH TEACHER WILL SELECT PROBLEMS FROM THE MATH PACKET TO CREATE YOUR FIRST QUIZ IN YOUR MATH COURSE.

MATH SUMMER PACKET - ADV. MATH/ACT PRACTICE PROBLEMS 2020 $12^{\mathbf{T H}}$ GRADE STUDENTS

Name

Multiple Choice
Identify the choice that best completes the statement or answers the question.
\qquad 1. 180 is 45% of what number?
a. 81
b. 145
c. 204
d. 400
e. 340
\qquad 2. Solve $3(8-x)=-6 x+15$.
a. -3
b. -1
c. 2
d. -2
e. 3
\qquad 3. During the last 10 years, the population of a town increased from 6000 to 10,320 . What percent increase does this represent?
a. 80%
b. 72%
c. 75%
d. 78%
e. 70%
\qquad 4. The first five batters on a softball team's lineup have the following numbers of hits for the season: 83,71 , $68,62,61$. What is the mean number of hits for these five players?
a. 71
b. 69
c. 68
d. 70
e. 67
\qquad 5. A dance company is planning a program that will consist of one ballet, one tap, and one jazz routine. In its repertoire are five ballet, three jazz, and six tap routines. How many different programs are possible?
a. 56
b. 90
c. 14
d. 28
e. 72
\qquad 6. Which of these numbers is between 6 and 7 ?
a. $2 \sqrt{5}$
b. $3 \sqrt{6}$
c. $6 \sqrt{2}$
d. $4 \sqrt{3}$
e. $5 \sqrt{2}$
\qquad 7. Erika read 90 pages in $2 \frac{1}{2}$ hours. At the same time, how many hours would it take her to read 225 pages?
a. $5 \frac{3}{4}$
b. $5 \frac{1}{2}$
c. 6
d. $6 \frac{1}{2}$
e. $6 \frac{1}{4}$
8. After $\frac{4 \frac{4}{9}}{1 \frac{1}{5}}$ has been simplified to a mixed number in lowest terms, what is the numerator of the fraction?
a. 19
b. 16
c. 18
d. 20
e. 22
\qquad 9. For a birthday party, Marissa bought three cartons of ice cream at $\$ 4.59$ each and two packages of plastic bowls at $\$ 3.00$ each. If food is not taxed and non-emergency grocery items are taxed at the rate of 5%, what was her total bill?
a. $\$ 20.76$
b. \$20.37
c. $\$ 19.77$
d. $\$ 20.27$
e. $\$ 20.07$
10. $\sqrt{\frac{1}{9}}-\sqrt{\frac{1}{36}}=$?
a. $-\sqrt{\frac{1}{27}}$
b. $\frac{1}{6}$
c. -3
d. $\sqrt{\frac{1}{12}}$
e. $\frac{1}{2}$
11. The circle graph below shows the results of a survey of the 660 students in a school. How many students participate in sports?

After-School Activities

for 660 Students

a. 237
b. 35
c. 231
d. 243
e. 249
\qquad 12. $\frac{3}{5}+\frac{1}{3}=$?
a. $\frac{4}{5}$
b. $\frac{8}{15}$
c. $\frac{1}{2}$
d. $\frac{4}{15}$
e. $\frac{14}{15}$
13. Which of these expressions represents the greatest number?
a. $|-11+(-4)|-|-4|$
b. $-|7-3|+|-9-11|$
c. $|-8+(-2)|+|-7|$
d. $|-6-(-12)|-4$
e. $\quad-|-8|+|-9|+|4-8|$
14. Solve for x if $\frac{12}{21}=\frac{x+4}{2 x+4}$.
a. 8
b. 10
c. 9
d. 12
e. $8 \frac{1}{2}$
15. A toy maker has $6 \frac{1}{4}$ yards of fabric. He wants to make five stuffed animals that each require $\frac{7}{8}$ yard of fabric. How many yards of fabric will he have left?
a. $1 \frac{1}{2} \mathrm{yd}$
b. $1 \frac{3}{8} \mathrm{yd}$
c. $1 \frac{3}{4} \mathrm{yd}$
d. $\quad 1 \frac{5}{8} \mathrm{yd}$
e. $1 \frac{7}{8} \mathrm{yd}$
16. $4^{0}+3^{-1}+2^{-2}+1^{-3}=$?
a. $2 \frac{7}{12}$
b. $3 \frac{7}{12}$
c. $3 \frac{1}{12}$
d. $2 \frac{1}{12}$
e. $\frac{7}{12}$
17. Three quarters of Andre's collection of coins is pennies. Of the remaining coins, $\frac{2}{5}$ are quarters. If there are 280 coins in his collection, what is the value of the quarters?
a. $\$ 12.50$
b. $\$ 9.25$
c. $\$ 7.00$
d. $\$ 21.00$
e. $\$ 17.50$
18. $\frac{20}{10}+30 \times 10+\frac{40}{10^{2}}+50 \times 10^{2}=$?
a. 5302.4
b. 5320.4
c. 5432
d. 5032.4
e. 5032.04
19. Students must choose one of five books for their next book report. The books have 218, 180, 240, 164, and 128 pages, respectively. What is the range in the number of pages per book?
a. 144
b. 180
c. 162
d. 186
e. 112
20. A class of kindergartners was interviewed about their favorite fruit, with the results shown in the bar graph below. How many students are in the class?

Favorite Fruits of Kindergartners

a. 19
b. 23
c. 21
d. 25
e. 22
21. Mercury, in its metallic form, has a melting point of $-38.9^{\circ} \mathrm{C}$ and a boiling point of $356.6^{\circ} \mathrm{C}$. How many degrees higher is the boiling point than the melting point?
a. $\quad 384.7^{\circ} \mathrm{C}$
b. $385.5^{\circ} \mathrm{C}$
c. $\quad 395.5^{\circ} \mathrm{C}$
d. $\quad 316.3^{\circ} \mathrm{C}$
e. $\quad 317.7^{\circ} \mathrm{C}$
22. Solve $0.2(0.4-x)=0.6$.
a. 0.1
b. $\quad 3.4$
c. 2.4
d. -1.8
e. -2.6
23. Selena has eight quarters, five dimes, and three nickels in her pocket. If one coin is selected at random, what is the probability that it will not be a quarter?
a. $\frac{1}{4}$
b. $\frac{1}{5}$
c. $\frac{5}{11}$
d. $\frac{1}{2}$
e. $\frac{1}{3}$
24. When Alex joined a discount CD club, he was allowed to buy 10 CDs at $\$ 0.50$ each. If he buys one CD per month for the next year at $\$ 14.95$ each plus $\$ 3.70$ shipping and handling, what will be the average price for all the CDs he purchased?
a. $\$ 10.55$
b. $\$ 10.45$
c. $\$ 10.50$
d. $\$ 10.35$
e. $\$ 10.40$
25. Monica works 40 hours per week at two different jobs. She works h hours per week at the first job and is paid r dollars per hour. At her second job she is paid s dollars per hour. Which expression gives her weekly pay from the two jobs?
a. $r h+(40-h) s$
b. $r h+(40+h) s$
c. $h(r+s)-40$
d. $(40+h)(r+s)$
e. $r s+(40-h)$
26. Simplify $\sqrt{\frac{1}{24}}-\sqrt{\frac{1}{54}}$.
a. $\frac{\sqrt{6}}{36}$
b. $\frac{\sqrt{6}}{18}$
c. $\frac{\sqrt{6}}{12}$
d. $-\frac{\sqrt{30}}{30}$
e. $-\frac{\sqrt{6}}{6}$
27. Solve $\frac{2 x-3}{13}=\frac{1}{x+4}$.
a. $-\frac{9}{2},-5$
b. $-\frac{7}{2}, 3$
c. $\frac{3}{2}, 4$
d. $\frac{1}{2},-9$
e. $\frac{5}{2},-5$
28. Evaluate $a(a-\sqrt{b})^{-1}$ when $a=4$ and $b=\frac{1}{4}$.
a. $\frac{8}{7}$
b. $\frac{7}{4}$
c. $-\frac{7}{2}$
d. $\frac{4}{7}$
e. 14
29. Three times 7 less than x equals 11 more than x. Which of these equations could you use to find x ?
a. $x-3 \cdot 7=11+x$
b. $3 \cdot 7-3 \cdot x=x-11$
c. $3 \cdot 7-x=x+11$
d. $3(7-x)=x+11$
e. $3(x-7)=x+11$
30. $\frac{\sqrt{121}-\sqrt{49}}{\sqrt{4}}=$?
a. $3 \sqrt{2}$
b. $6 \sqrt{2}$
c. 3
d. 2
e. $2 \sqrt{3}$
31. Factor $9 x^{2}-30 x+25$.
a. $(3 x-5)(3 x+5)$
b. $(3 x-5)^{2}$
c. $(3 x+5)^{2}$
d. $(3 x-2)\left(3 x-\frac{25}{2}\right)$
e. $(3 x-10)(3 x+15)$
32. Evaluate $y x^{y}-x y^{x}$ for $x=\frac{1}{2}$ and $y=4$.
a. $\frac{3}{4}$
b. $-1 \frac{3}{4}$
c. $\frac{1}{4}$
d. $-\frac{1}{2}$
e. $-\frac{3}{4}$
33. Simplify $\frac{a^{2}-b^{2}}{a-b}-2 b$.
a. $a-b$
b. $a^{2}-b$
c. $a+b$
d. $a-b^{2}$
e. $a^{2}+b^{2}$
34. For an interval training program, a runner alternately runs and walks. She walks at w minutes per mile and runs at r minutes per mile. She walks for twice as long as she runs. If she trains for m minutes, how many miles has she covered?
a. $\frac{1}{3} m r+\frac{2}{3} m w$
b. $\frac{m}{3 r}+\frac{2 m}{3 w}$
c. $\frac{m}{2 r}+\frac{2 m}{w}$
d. $(m+2 m)(r+w)$
e. $\left(\frac{m}{2}\right) r+m w$
35. $\frac{\sqrt{0.0025}}{\sqrt{0.04}}=$?
a. 2.5
b. 0.25
c. 0.0025
d. 25
e. 0.025
36. Factor $16 x^{2}-121$.
a. $(16 x-11)(x-11)$
b. $(2 x+11)(8 x-11)$
c. $(2 x-11)(8 x+11)$
d. $(4 x-11)(4 x+11)$
e. $(4 x-11)^{2}$
37. The surface area of a rectangular prism with height h and base of length ℓ and width w is given by the formula $h(2 \ell+2 w)+2 \ell w$. If a rectangular prism with a base of length 6 feet and width 3 feet has a surface area of 225 square feet, find its height.
a. 8.5 ft
b. $\quad 10.5 \mathrm{ft}$
c. 9.5 ft
d. 9 ft
e. 10 ft
38. Six more than 3 times x equals 4 times 2 less than x. Find x.
a. 9.5
b. -2.5
c. 6
d. 26
e. 14
39. $\frac{\left(x^{2} y\right)^{0} x^{3} y^{-2}}{x^{-1} y^{2}}=$?
a. x^{6}
b. $\frac{x^{5}}{y}$
c. $\frac{x^{4}}{y^{4}}$
d. $x^{3} y$
e. x^{4}
40. A rectangle with length $2 x-1$ and width $x+5$ has an area of 156 square units. Find x.
a. 9
b. 13
c. 7 or $\frac{23}{2}$
d. 7
e. 12
41. An equilateral triangle with sides of length s has an area equal to $\frac{s \sqrt{3}}{4}$. Find the length of one side of an equilateral triangle if its area is $25 \sqrt{3}$ square units.
a. $5 \sqrt{3}$
b. 5
c. $\frac{25 \sqrt{3}}{4}$
d. $10 \sqrt{3}$
e. 10
42. $a^{\frac{1}{2}} a^{\frac{2}{3}}$
a. $a \sqrt{a}$
b. $\sqrt[3]{a}$
c. $a \sqrt[6]{a}$
d. $a \sqrt[3]{a}$
e. $\sqrt[3]{a}$
43. Factor $6 x^{2}-5 x-4$.
a. $(6 x-1)(x+4)$
b. $(3 x-2)(2 x+2)$
c. $(3 x-4)(2 x+1)$
d. $(2 x+1)(2 x+4)$
e. $(3 x+2)(2 x-2)$
44. Evaluate $\frac{m^{2}+m^{-2}+m}{m}$ for $m=0.5$.
a. $5 \frac{1}{4}$
b. $25 \frac{1}{2}$
c. $20 \frac{1}{4}$
d. $15 \frac{3}{4}$
e. $10 \frac{1}{2}$
45. For one week all of the cassette tapes at a music store are discounted by 20%. The sales tax rate is 6%. If Mario buys t tapes originally priced at $\$ 12$ each and c CDs priced at $\$ 15$ each, write an expression for his total bill.
a. $1.06(9.6 t+15 c)$
b. $6(20 t+15 c)$
c. $1.06 \cdot 9.6 t+15 c$
d. $1.06(10 t+5 c)$
e. $0.06(9.6+12 c)$
46. Simplify $(4 d)^{\frac{1}{2}}(8 d)^{\frac{1}{3}}(16 d)^{\frac{1}{4}}$.
a. $6 d^{\frac{1}{24}}$
b. $8 d \sqrt[12]{d}$
c. $8 d^{6} \sqrt{d}$
d. $2 d^{\frac{11}{12}}$
e. $6 d^{\frac{13}{12}}$
47. The product of a number and 3 more than twice the number is 275 . Find the number.
a. 13 or $-\frac{23}{2}$
b. 11 or $-\frac{23}{2}$
c. 11 or $-\frac{21}{2}$
d. 11 or $-\frac{25}{2}$
e. 13 or $-\frac{25}{2}$

- 48. For any triangle with sides of lengths a, b, and c, the area is given by the formula $A=\sqrt{s(s-a)(s-b)(s-c)}$, where s is equal to one-half the length of the perimeter. What is the area of a triangle in square units with sides of lengths 2,3 , and 3 ?
a. $4 \sqrt{2}$
b. $2 \sqrt{2}$
c. $6 \sqrt{2}$
d. $20 \sqrt{3}$
e. $4 \sqrt{3}$

49. Simplify $\frac{m}{2}+\frac{2 m}{3}+\frac{3 m}{4}$.
a. $\frac{11 m}{9}$
b. $\frac{23 m}{12}$
c. $\frac{2 m}{3}$
d. $\frac{11 m}{12}$
e. $\frac{21 m}{12}$
50. Use the quadratic formula to solve $3 x^{2}-2 x-4=0$ for x.
a. $\frac{1}{3} \pm \frac{2 \sqrt{13}}{3}$
b. $\frac{1}{6} \pm \frac{2 \sqrt{13}}{3}$
c. $\frac{1}{6} \pm \frac{\sqrt{13}}{6}$
d. $\frac{1}{3} \pm \frac{\sqrt{13}}{3}$
e. $\frac{5}{6} \pm \frac{2 \sqrt{13}}{3}$
51. Which of the following quadratic equations has two real solutions?
a. $x^{2}+5 x+8=0$
b. $2 x^{2}-5 x+3=0$
c. $3 x^{2}-3 x+2=0$
d. $2 x^{2}-4 x+3=0$
e. $3 x^{2}-2 x+1=0$
52. Solve $\frac{2}{x}-\frac{9}{x+4}=2$.
a. $\frac{1}{4}, 8$
b. $\frac{1}{2}, 8$
c. $-\frac{1}{4},-4$
d. $\frac{3}{4},-8$
e. $-\frac{1}{2}, 4$
53. Find the product $\left(x^{2}+4 x-3\right)(3 x+2)$.
a. $3 x^{3}+14 x^{2}+x-6$
b. $3 x^{3}+14 x^{2}-x-6$
c. $3 x^{3}-10 x^{2}+x-6$
d. $3 x^{3}+12 x^{2}-x-6$
e. $3 x^{3}+10 x^{2}-x-6$
54. What is the sixth term of the geometric sequence whose first term is 2 and whose fourth term is -54 ?
a. -324
b. 1458
c. -648
d. 540
e. -486
55. Find y if $2 x+4 y=2$ and $4 x+y=18$.
a. 2
b. -2
c. -4
d. 4
e. 6
56. A company ships two different products, one in smaller packages that weighs 12 pounds and the other in a 20-pound package. A shipment of nine packages weighs a total of 124 pounds. What is the total weight of the smaller packages?
a. 72 lb
b. 48 lb
c. 37 lb
d. 60 lb
e. 84 lb
57. $(1-2 i)^{3}=$?
a. $3-8 i$
b. $-11+2 i$
c. $-6+4 i$
d. $13-14 i$
e. $1-8 i$
58. Solve $2 x^{2}-5 x+1=0$.
a. $\frac{5}{4} \pm \frac{\sqrt{11}}{4}$
b. $-\frac{5}{4} \pm \frac{\sqrt{33}}{4}$
c. $\frac{5}{4} \pm \frac{\sqrt{17}}{4}$
d. $-\frac{5}{4} \pm \frac{\sqrt{13}}{4}$
e. $\frac{7}{4} \pm \frac{\sqrt{17}}{4}$
59. $\frac{\sqrt[4]{x^{2}} \sqrt{x^{4}}}{\sqrt[4]{x^{8}}}=$?
a. $x^{-\frac{5}{4}}$
b. $x^{\frac{3}{4}}$
c. $x^{-\frac{3}{4}}$
d. $x^{\frac{1}{2}}$
e. $x^{-\frac{1}{4}}$
60. What is the remainder in the division $\left(x^{3}-2 x^{2}+3 x-4\right) \div(x-2)$?
a. -2
b. 2
c. 0
d. 1
e. -10
61. Solve $|3 x+2| \leq 5$.
a. $x \geq 1$ or $x \leq-\frac{7}{3}$
b. $x \leq-1$ or $x \geq \frac{7}{3}$
c. $-1 \leq x \leq \frac{7}{3}$
d. $-\frac{7}{3} \leq x \leq 1$
e. $1 \leq x \leq \frac{7}{3}$
62. Find x if $y=x^{2}-4$ and $y=2 x+3$.
a. $4 \pm 2 \sqrt{2}$
b. $1 \pm 2 \sqrt{2}$
c. $-2 \pm 2 \sqrt{2}$
d. $2 \pm \sqrt{2}$
e. $-1 \pm \sqrt{2}$
63. If $A=\left[\begin{array}{cc}1 & 0 \\ -2 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 4 \\ -3 & 2\end{array}\right]$, find $2 A-3 B$.
a. $\left[\begin{array}{cc}2 & 12 \\ -5 & 0\end{array}\right]$
b. $\left[\begin{array}{cc}2 & -12 \\ 5 & 0\end{array}\right]$
c. $\left[\begin{array}{cc}2 & -12 \\ -5 & 12\end{array}\right]$
d. $\left[\begin{array}{cc}2 & 12 \\ -5 & 0\end{array}\right]$
e. $\left[\begin{array}{cc}2 & -12 \\ -13 & 0\end{array}\right]$
64. $\frac{6+2 i}{2-i}=$?
a. $2-3 i$
b. $2+2 i$
c. $3+2 i$
d. $2+3 i$
e. $3-2 i$
65. Suppose $\overrightarrow{B C}$ bisects $\angle A B E$, and D is the interior of $\angle A B C$. If $m \angle C B D=28^{\circ}$ and $m \angle A B E=136^{\circ}$, find $m \angle A B D$.
a. $n \| p$
b. $\quad \ell \| p$
c. $\ell \perp n$
d. $m \perp p$
e. $\ell \| n$
66. A base of an isosceles triangle has measure 75°. What is the measure of the vertex angle?
a. 75°
b. 105°
c. 15°
d. 30°
e. 52.5°
67. In right triangle $A B C$ below, $\overline{D E} \| \overline{B C}$. If $A D=4, B D=2$, and $B C=8$, find $A E$.

a. 7
b. $6 \frac{2}{3}$
c. $7 \frac{1}{2}$
d. 6
e. 8
68. Which segment is the longest?

a. $\overline{C D}$
b. $\overline{A D}$
c. $\overline{A C}$
d. $\overline{B C}$
e. $\overline{A B}$
69. Find the radius of circle C if $m \angle P Q R=24^{\circ}$ and the length of arc $P R$ is 8π.

a. 15
b. 20
c. 30
d. 60
e. 45
\qquad 70. In circle R, chords $\overline{A B}$ and $\overline{C D}$ intersect at point M. If $C D=21, A M=4, B M=27$, and $\overline{C M}$ is shorter than $\overline{D M}$, find $C M$.
a. 9
b. 13
c. 7
d. 8
e. 12
70. What is the surface area of a right cylinder of radius 3 meters and height 8 meters?
a. $60 \pi \mathrm{~m}^{2}$
b. $72 \pi \mathrm{~m}^{2}$
c. $24 \pi \mathrm{~m}^{2}$
d. $63 \pi \mathrm{~m}^{2}$
e. $66 \pi \mathrm{~m}^{2}$
__ 72. Find the perimeter of the kite shown below if $A P=6, B P=3$, and $D P=12$.

a. $18 \sqrt{5}$
b. $15 \sqrt{5}$
c. $12 \sqrt{5}$
d. $6 \sqrt{5}$
e. $9 \sqrt{5}$
71. A rhombus has diagonals of lengths 8 feet and 14 feet. Find its area.
a. $30 \sqrt{3} \mathrm{ft}^{2}$
b. $28 \mathrm{ft}^{2}$
c. $65 \mathrm{ft}^{2}$
d. $112 \mathrm{ft}^{2}$
e. $\quad 56 \mathrm{ft}^{2}$
72. Suppose $\angle 1$ is supplementary to $\angle 2$, and $\angle 2$ is complimentary to $\angle 3$. Which of the following statements is true?
a. $m \angle 1+m \angle 3=180^{\circ}$
d. $m \angle 1-m \angle 3=90^{\circ}$
b. $m \angle 1+m \angle 3=90^{\circ}$
e. none of the above
c. $m \angle 1-m \angle 1=90^{\circ}$
73. Two angles of a triangle measure 78° and 24°. Classify the triangle by its sides and angles.
a. equilateral equiangular
d. isosceles acute
b. isosceles right
e. scalene obtuse
c. scalene acute
74. A hemisphere of radius 3 inches sits on top of a cylinder of radius 3 inches. The entire solid is 12 inches tall. What is the volume of the entire solid?
a. $99 \pi \mathrm{in}^{2}$
b. $126 \pi \mathrm{in}^{2}$
c. 144π in 2
d. $\quad 117 \pi \mathrm{in}^{2}$
e. 108π in 2
75. An equilateral triangle has sides of length 6 . What is the length of a median of the triangle?
a. $2 \sqrt{2}$
b. $3 \sqrt{3}$
c. $4 \sqrt{3}$
d. $4 \sqrt{2}$
e. 6
76. A triangular prism has a base that is a right triangle with legs 5 and 12 feet long. The prism is 10 feet tall. What is its volume?
a. $600 \mathrm{ft}^{3}$
b. $300 \mathrm{ft}^{3}$
c. $6 \mathrm{ft}^{3}$
d. $450 \mathrm{ft}^{3}$
e. $150 \mathrm{ft}^{3}$
77. Lines ℓ and m are parallel. If $m \angle 1=67^{\circ}$ and $m \angle 2=36^{\circ}$, find $m \angle 3$.

a. $\quad 77^{\circ}$
b. 103°
c. 73°
d. 89°
e. 113°
78. Which point lies in the fourth quadrant?
a. $(6,-2)$
b. $(5,3)$
c. $(-3,-4)$
d. $(-8,5)$
e. $(0,-7)$
79. Which of the following equations represents a line has slope 3 and passes the point at $(-4,-1)$?
a. $x+3 y=-7$
b. $3 x-y=-11$
c. $3 x+y=-13$
d. $3 x+y=11$
e. $x-3 y=-1$
80. What is the distance between the points at $(-2,5)$ and $(2,-1)$?
a. $4 \sqrt{3}$
b. $2 \sqrt{13}$
c. $6 \sqrt{2}$
d. $2 \sqrt{15}$
e. 8
81. Which of the following equations represents a line that passes through point $(2,-1)$ and $(-4,3)$?
a. $3 x+2 y=4$
b. $2 x-3 y=7$
c. $3 y-2 x=1$
d. $2 x+3 y=1$
e. $3 x-2 y=-18$
82. What is the slope of the line whose equation is $3 x-5 y=10$?
a. $\frac{3}{5}$
b. $-\frac{3}{5}$
c. $\frac{5}{3}$
d. 2
e. $-\frac{5}{3}$
83. What is an equation of the line perpendicular to the graph of $y=-2 x+5$ that passes through the point at $(4,7)$?
a. $x+2 y=18$
b. $x-2 y=-5$
c. $2 x+y=15$
d. $2 x-y=1$
e. $x-2 y=-10$
84. What is the slope of the line passing through the points at $(-5,-2)$ and $(3,2)$?
a. 2
b. -2
c. 4
d. $-\frac{1}{2}$
e. $\frac{1}{2}$
85. What is an equation of the line with y-intercept 5 and x-intercept -3 ?
a. $y=\frac{5}{3} x-3$
b. $y=\frac{3}{5} x+3$
c. $y=\frac{5}{3} x+5$
d. $y=\frac{3}{5} x+5$
e. $y=-\frac{5}{3} x+5$
86. What is the midpoint of $\overline{A B}$ if A has coordinates $(3,-8)$ and B has coordinates $(-5,2)$?
a. $(-2,-3)$
b. $(-2,-2)$
c. $(-1,-3)$
d. $(-2,-4)$
e. $(-1,-4)$
87. $\triangle A B C$ has vertices $A(4,7), B(9,7)$, and $C(7,3)$. What kind of triangle is $\triangle A B C$?
a. isosceles
b. right
c. scalene
d. equilateral
e. obtuse
