

Advanced Measurement Technology for Power Electronics Systems

Keynote

Gabriel Ortiz and Johann W. Kolar

Power Electronic Systems Laboratory ETH Zurich, Switzerland

Introduction	Measuring Today: Componets	Measuring Today:		
		System	Measuring in the Future	Summary Outlook
13 slides	27 slides	9 slides	13 slides	1

Introduction

Power electronics' designer goal Typical and future power electronics measurement situations

Power Electronics Engineer Goal

- Design a power electronic system which complies with a certain set performance indices

 $[kW/dm^3]$

[kW/kg]

[kW/\$]

[%]

[h⁻¹]

Source: Ch. Gammeter Converter for airborn wind turbine

- Performance Indices
- Power density
- Power per unit weight
- Relative costs
- Relative losses
- Failure rate

SOUTH AMERICA

4/61

- Translation of <u>system</u> requirements into <u>components</u>' requirements
- Example: boost-type PFC rectifier with resonant-type isolation DC-DC converter stage

- Translation of <u>system</u> requirements into <u>components</u>' requirements
- Example: boost-type PFC rectifier with resonant-type isolation DC-DC converter stage
- Boost-type rectifier

- Translation of system requirements into components' requirements
- Example: boost-type PFC rectifier with resonant-type isolation DC-DC converter stage
- Boost-type rectifier
- Isolated DC-DC converter

ETH zürich

- Translation of system requirements into components' requirements
- Example: boost-type PFC rectifier with resonant-type isolation DC-DC converter stage
- Boost-type rectifier
- Isolated DC-DC converter
- EMI Filter

ETH zürich

- Translation of system requirements into components' requirements
- Example: boost-type PFC rectifier with resonant-type isolation DC-DC converter stage
- Boost-type rectifier
- Isolated DC-DC converter
- EMI Filter
- Efficiency

- The performance of the complete system is defined by the performance of its individual components

Introduction

Power electronics' designer goal Typical and future power electronics measurement situations

Future Traction Vehicles Based on SST Technology

- Typical measurements performed during testing and commissioning of power electronic converters

- Floating potentials: - Voltages / currents: **Up to tens of kilovolts and tens of kilovolts/microsecond** From millivolts to kilovolts, from amps to kiloamps, **DC to tens of MHz**

Future Micro Power Electronic Solutions

- Vicor highly integrated power supplies
- The little box challenge

www.littleboxchallenge.com

- Big challenges during testing and debugging of the converter system!

► Today, Soon, and Future of Power Electronics...

► Today, Soon, and Future of Power Electronics...

- Future (Soon):

Medium Freq. Medium Volt.

Smart microgrids, DC distribution

► Today, Soon, and Future of Power Electronics...

Future (Soon):Future:

SOUTH AMERICA

Medium Freq. Medium Volt. Micro Power Electronics Smart microgrids, DC distribution Microelectronics technology, power supply on chip

Today's Measurement Concepts

...in power electronic systems: Passive components Active components System level

Boost-type PFC with Isolated DC-DC Stage — Revisited

- Passive Components:

Inductors, transformers, capacitors

Boost-type PFC with Isolated DC-DC Stage — Revisited

- Passive Components:
- Active Components:

Inductors, transformers, capacitors Switches, diodes

Boost-type PFC with Isolated DC-DC Stage — Revisited

- Passive Components:
- Active Components:
- System Level:

SOUTH AMERICA

Inductors, transformers, capacitors Switches, diodes

Today's Measurement Concepts

...in power electronic systems: Passive components Active components System level

Measurement of Core Losses

- Datasheet provided parameters are only valid for sinusoidal excitation
- Differences of up to two times in core losses with respect to calculated values have been reported

Ferrite core

- Improved core loss estimation methods for non-sinusoidal excitation should be considered
- ... or a relatively simple core-loss estimation system can be built.

Measurement of Core Losses

- Increase of core losses due to misalignment of tape wound cores

Source: B. Cougo 2011 "Increase of Tape Wound Core Losses due to Interlamination Short Circuits and Orthogonal Flux Components"

- Core losses are extremely sensitive to horizontal misalignment

Core Loss Measurement Equipment

- Characterization of the core losses in inductor for variable duty cycle
- The losses based on the i²GSE match the measured losses for variable duty cycle

- Improved core loss estimation methods should be used for calculation of core losses in PE circuits
- A simple testbench can be built in order to characterize core materials for a specific application

Core Loss Measurement Equipment

- Full-bridge structure generates typical excitations found in power electronic converters
- External power supply adjusts the voltage amplitude

Source: J. Mühlethaler 2010 "Core Losses under DC Bias Condition based on Steinmetz Parameters"

Power stage based on full-bridge structure

- Voltage and current are measured simultaneously to extract the core's BH loop

High Frequency Effects in Copper Conductors

- Skin and proximity effects arise from the conduction of high-frequency currents in copper cond.

Source: I. Villar 2010 "Multiphysical Characterization of Medium-Frequency Power Electronic Transformers"

- Not accounting for high-frequency effects results in low accuracy in converter loss estimation
- Manufacturing of high quality litz wire is complex and costly

Copper Loss Measurement Equipment

- The transformer must be short circuited on its secondary terminal with a very low resistive path
- An AC current source provides the high-frequency current with the required RMS value

- Since the power delivered is manly reactive a high power analyzer is utilized to measure the total losses

Copper Loss Measurement Equipment

- The current source: 5-level NPC bridges feeding an inductive load through a step-down transformer
- Mid-point voltage balancing required for stable operation

- Minimum THD modulation achieves low harmonic distortion in output current

SOUTH AMERICA

Copper Loss Measurement — Litz Wire Bundles

- Case study: Litz wire (tot. 9500 strands of 71µm each) with 10 sub-bundles
- Current distribution in internal litz wire bundles depends strongly on interchanging strategy

- Total copper losses for 10 bundles:

438W

Copper Loss Measurement — Litz Wire Bundles

- Case study: Litz wire (tot. 9500 strands of 71µm each) with 10 sub-bundles
- Current distribution in internal litz wire bundles depends strongly on interchanging strategy

- Total copper losses for 10 bundles: 438W
- Total copper losses for 8 bundles: 353W

Today's Measurement Concepts

...in power electronic systems: Passive components Active components System level

SOUTH AMERICA

Switching Loss Measurement — Current Sensing

- High bandwidth (tens of MHz) and (in most cases) isolated transducer
- Current transformer
- Rogowski coil (PCB)

Planar current transformer

Coaxial current shunt Source: www.ib-billmann.de

Switching Loss Measurement — Current Sensing

- Current transformers:
- High bandwidth isolated planar current transformer built in-house with standard components
- Designed for pulse operation \rightarrow small construction

Switching Loss Measurement — Current Sensing

- Rogowski Coils
- High bandwidth, isolated Rogowski coil built with standard PCB
- For switching loss measurement, the integration is preferably done in post-processing

Source: Y. Lobsiger 2011 "Decentralized Active Gate Control for Current Balancing of Parallel Connected IGBT Modules"

- Extremely low effect on power circuit
- Very well suited for measurement in IGBT modules

Switching Loss Measurement — Current Sensing

- Current shunt
- Exceptionally high bandwidth (in the GHz range) and direct voltage output
- PCB soldered shunts offer the possibility to measure switches with virtually any package

Coaxial current shunt Source: www.ib-billmann.de

"Comparative Evaluation of SiC and Si PV Inverter Systems Based on Power Density and Efficiency as Indicators of Initial Cost and Operating Revenue"

- Typically expensive and non-isolated \rightarrow requires an oscilloscope with isolated channels
- Alternative constructions with SMD resistors also possible

Switching Loss Measurement — Deskew

- MOSFET and SiC technology feature ultra high switching speeds in the tens of nanoseconds range

- Light takes about 3.3ns to travel 1 meter \rightarrow different cable lengths can lead to meas. inaccuracies

Source: R. A. Friedemann 2012 "Design of a Minimum Weight Dual Active Bridge Converter for an Airborne Wind Turbine System"

- Specially critical if the voltage/current measurement is not done passively (e.g. diff probes)

SOUTH AMERICA

Switching Loss Measurement — Deskew

- Simplified example case:
- Switching 100A with a 1000V DC-link
- Unipolar-type semiconductor, i.e. no tail current with a linear parasitic capacitance and ideal circuit layout (no parasitic stray inductance, hence no switching overshoot)
- Switching time: 100ns

 Deviations of ±25% on measured energy with only a 12ns deskew

Switching Loss Measurement — Deskew

- Correcting deskew mismatch can be done directly in modern oscilloscopes
- Example: Lecroy Wavesurfer MXs-B oscilloscope

Source: www.teledynelecroy.com

- Or in post-processing (e.g. with Matlab)
- In all cases, the deskew must be properly measured beforehand

Today's Measurement Concepts

...in power electronic systems: Passive components Active components System level

- Efficiency constitutes one of the systems primary performance indices
- The measurement of efficiency is typically done in one of two ways:
- Measurement of input and output power
- Measurement of input or output power and power losses

$$\eta = \frac{P_{out}}{P_{in}} = \frac{P_{out}}{P_{out} + P_{loss}}$$

- The desired accuracy of the efficiency measurement will determine which method should be used

- Input and output power measurement
- Power analyzer: Yokogawa WT3000
- Reading accuracy: 0.02%
- Range accuracy: 0.04%

www.yokogawa.com

- Table multimeter:
 - Reading accuracy: 0.005%
- Range accuracy: 0.0035% @ 100mV

Source: Th. Schröter 2011 "Aspects and Considerations for Accurate Measurement of Very High Efficiency"

Agilent 34401

@ 100mV

- Input and output power measurement
- Handheld multimeter: Fluke 80 series V
- Reading accuracy: 0.3% @ 600mV

- Shunt resistor (curr. meas.):
- Shunt resistance:

SOUTH AMERICA

- Resistance tolerance:
- Temperature coefficient:
- Burster 1282 1mΩ (1mV/A) 0.02% 0.001 %/°K

41/61

- Measurement situation example:
- Input power (AC side): Yokogawa WT3000
- Output power (DC side): Agilent 34401 (voltage)

Burster 1282 & Agilent 34401 (current)

Source: Th. Schröter 2011 "Aspects and Considerations for Accurate Measurement of Very High Efficiency"

ETH zürich

Achieved power measurement accuracy: ±0.107%

- Maximum permissible relative error in the power measurement for the determination of the losses with a max. relative error of in dependence on the efficiency

Source: J.W. Kolar 2012 "Extreme Efficiency Power Electronics"

- The power measurement accuracy must be extremelly high when an accurate efficiency meas. is desired

SOUTH AMERICA

Assessing System's Performance — Efficiency

- Calorimetric direct power loss measurement

- Converter placed in a controlled-temperature double-jacketed chamber
- A water-cooled heat exchanger extracts the heat generated by the converter
- The power extracted through the water-cooling circuit corresponds to the losses gen. by the conv.

Source: D. Christen 2010 "Calorimetric Power Loss Measurement for Highly Efficient Converters"

• Accuracy higher than ±1W up to 100W of losses (e.g. for a 1kW converter \rightarrow ± 0.1% accuracy)

44/61

Calorimeter manufactured by <u>enertronics</u> GmbH

Assessing System's Performance — EMI Compatibility

- The performance of the EMI filter is split into:
- Differential-mode rejection and
- Common-mode rejection

Source: M. Hartmann 2010 "EMI Filter Design for High Switching Frequency Three-Phase/Level PWM Rectifier Systems"

- These two parameters must be separated by a dedicated circuit
- This allows to identify and correct possible incompatibilities with the respective EMI directives

Assessing System's Performance — EMI Compatibility

- Simple active circuit for separation of CM and DM noise
- Requires 4 OP-amps and passive components

Source: S. Schroth 2014 "Analysis and Practical Relevance of CM/DM EMI Noise Separator Characteristics"

- Achieves $DM_{TR}/CM_{RR} > 51$ dB and $CM_{TR}/DM_{RR} > 47$ dB for frequencies up to 10MHz

Future Technologies

Smart Grid / DC Distribution Highly Integrated Microelectronics

Future Traction Vehicles Based on SST Technology

- Typical measurements performed during testing and commissioning of power electronic converters

Floating potentials:Voltages / currents:

Up to tens of kilovolts and tens of kilovolts/microsecond From millivolts to kilovolts, from amps to kiloamps, **DC to tens of MHz**

State-of-the-Art Isolated Voltage Measurement

- Basic types
- Differential probes

• Optically isolated systems (analog link / digital link)

- Drawback: probe combines isolation and measurement

State-of-the-Art Isolated Current Measurement

- Basic types
- Current transformers

• Current compensated transformers (clamp-on current probes)

• Rogowski coils

- Drawback: combination of isolation and measurement

÷

. . . .

Wireless Oscilloscope – Basic Idea

- Provide the isolation at a different position in the measurement chain

- Separate data acquisition (channels) and user interface
- No need for isolated probes / sensors
- No need for an additional oscilloscope

- System overview of a 100MHz wireless channel oscilloscope

Isolated Voltage Measurement

- Setup consist of measurement of high side gate signal on a half-bridge-type structure
- The differential probe exhibits strong CM error during high dv/dt

Isolated Current Measurement

MOSFET drain current

- Floating reference voltage
- High bandwidth current transients (turn-on / turn-off)

Measurement setup

- 0.10hm shunt & Wireless Scope
- Current transformer
- Rogowski coil

Shunt & Wireless Scope

SOUTH AMERICA

Current Transformer

Rogowski Coil

SOUTH AMERICA

Isolated Current Measurement 2 — Results

Rogowski Coil

- Delay
- Limited bandwidth
- Ringing due to CM transients
- Limited isolation voltage

Current Transformer

- High bandwidth
- No apparent CM error
- High-pass characteristic (no DC)
- Limited isolation voltage

Shunt & Wireless Scope

- High bandwidth
- No apparent CM error
- DC 100 MHz
- No intrinsic limitation on isolation voltage

54/61

Future Technologies

Smart Grid / DC Distribution Highly Integrated Microelectronics

Example Microelectronics Highly Integrated Converter

- Isolated (4kV) DC-DC converter with power output up to 1.7kW

- How to test the circuit? How to measure internal signals? How to characterize switching performance? How to characterize magnetics performance?

Example of Power Supply on Chip

- Switched capacitor converter with 4.6W/mm² and 86% efficiency

- How to test the circuit? How to measure internal signals? How to characterize switching performance? How to characterize capacitor performance?

Future Micro Power Electronic Solutions

- Merge simulation and measurement to create a "simulation-augmented" environment

- Link between these two enables to supervise internal quantities of the experimental hardware

Summary / Outlook

Measurement in Today's Power Electronics

- Design of power electronics circuit that fulfills given specifications
- Components: Passives, Actives
- System: Efficiency, EMI

Measuring Future Power Electronics

- High-power medium-frequency electric power systems-oriented
- High common-mode, high isolation, high bandwidth
- Wireless measurement systems
- Microelectronics, highly integrated solutions:
- Simulation augmented measurement concepts

Thank You!

