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► Power Electronics Engineer Goal
- Design a power electronic system which complies with a certain set performance indices

- Performance Indices

• Power density [kW/dm3]
• Power per unit weight [kW/kg]
• Relative costs [kW/$]
• Relative losses [%]
• Failure rate [h-1]

Source: Ch. Gammeter
Converter for airborn wind turbine
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► Assessing System’s Performance
- Translation of system requirements into components’ requirements
- Example: boost-type PFC rectifier with resonant-type isolation DC-DC converter stage
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► Assessing System’s Performance
- Translation of system requirements into components’ requirements
- Example: boost-type PFC rectifier with resonant-type isolation DC-DC converter stage

• Boost-type rectifier

Boost Inductor:
• DC-biased core losses
• High-frequency copper losses

Boost Switch/Diode:
• Hard-switching losses
• Conduction losses
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► Assessing System’s Performance
- Translation of system requirements into components’ requirements
- Example: boost-type PFC rectifier with resonant-type isolation DC-DC converter stage

• Boost-type rectifier
• Isolated DC-DC converter

Boost Inductor:
• DC-biased core losses
• High-frequency copper losses

Boost Switch/Diode:
• Hard-switching losses
• Conduction losses

Isolation Transformer:
• Non-sinusoidal core excitation
• Litz wire high-frequency losses

DC-DC converter switches:
• Soft-switching losses (ZVS/ZCS)
• Conduction losses
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► Assessing System’s Performance
- Translation of system requirements into components’ requirements
- Example: boost-type PFC rectifier with resonant-type isolation DC-DC converter stage

• Boost-type rectifier
• Isolated DC-DC converter
• EMI Filter

EMI Filter:
• Common-mode
• Differential-mode

Boost Inductor:
• DC-biased core losses
• High-frequency copper losses

Boost Switch/Diode:
• Hard-switching losses
• Conduction losses

Isolation Transformer:
• Non-sinusoidal core excitation
• Litz wire high-frequency losses

DC-DC converter switches:
• Soft-switching losses (ZVS/ZCS)
• Conduction losses



9/61

SOUTH AMERICA

► Assessing System’s Performance
- Translation of system requirements into components’ requirements
- Example: boost-type PFC rectifier with resonant-type isolation DC-DC converter stage

• Boost-type rectifier
• Isolated DC-DC converter
• EMI Filter
• Efficiency

- The performance of the complete system is defined by the performance of its individual components

Input power Output power

Power losses
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► Future Traction Vehicles Based on SST Technology
- Typical measurements performed during testing and commissioning of power electronic converters

- Floating potentials: Up to tens of kilovolts and tens of kilovolts/microsecond
- Voltages / currents: From millivolts to kilovolts, from amps to kiloamps, DC to tens of MHz
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► Future Micro Power Electronic Solutions
- Vicor highly integrated power supplies
- The little box challenge

- Big challenges during testing and debugging of the converter system!

Up to 1750W (!)
Isolated DC-DC converter

www.vicorpower.com

www.littleboxchallenge.com



13/61

SOUTH AMERICA

Micro Power
Electronics

Smart microgrids
DC Distribution

Microelectronics technology
Power supply on chip

MV / MF Power
Electronics

System Applications Standard / integrated
solutions

► Today, Soon, and Future of Power Electronics…
- Today: System Applications Standard / integrated solutions
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► Today, Soon, and Future of Power Electronics…
- Today: System Applications Standard / integrated solutions

- Future (Soon): Medium Freq. Medium Volt. Smart microgrids, DC distribution

Micro Power
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Smart microgrids
DC Distribution

Microelectronics technology
Power supply on chip
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► Today, Soon, and Future of Power Electronics…
- Today: System Applications Standard / integrated solutions

- Future (Soon): Medium Freq. Medium Volt. Smart microgrids, DC distribution
- Future: Micro Power Electronics Microelectronics technology, power supply on chip

Micro Power
Electronics

Smart microgrids
DC Distribution

Microelectronics technology
Power supply on chip

MV / MF Power
Electronics

System Applications Standard / integrated
solutions
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► Boost-type PFC with Isolated DC-DC Stage — Revisited
- Passive Components: Inductors, transformers, capacitors

EMI Filter:
• Common-mode
• Differential-mode

Boost Inductor:
• DC-biased core losses
• High-frequency copper losses

Boost Switch/Diode:
• Hard-switching losses

Isolation Transformer
• Non-sinusoidal core excitation
• Litz wire high-frequency losses

DC-DC converter switches:
• Soft-switching losses (ZVS/ZCS)

Efficiency
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► Boost-type PFC with Isolated DC-DC Stage — Revisited
- Passive Components: Inductors, transformers, capacitors
- Active Components: Switches, diodes

EMI Filter:
• Common-mode
• Differential-mode

Boost Inductor:
• DC-biased core losses
• High-frequency copper losses

Boost Switch/Diode:
• Hard-switching losses

Isolation Transformer
• Non-sinusoidal core excitation
• Litz wire high-frequency losses

DC-DC converter switches:
• Soft-switching losses (ZVS/ZCS)

Efficiency
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► Boost-type PFC with Isolated DC-DC Stage — Revisited
- Passive Components: Inductors, transformers, capacitors
- Active Components: Switches, diodes

- System Level: Efficiency, EMI compatibility

EMI Filter:
• Common-mode
• Differential-mode

Boost Inductor:
• DC-biased core losses
• High-frequency copper losses

Boost Switch/Diode:
• Hard-switching losses

Isolation Transformer
• Non-sinusoidal core excitation
• Litz wire high-frequency losses

DC-DC converter switches:
• Soft-switching losses (ZVS/ZCS)

Efficiency
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► Measurement of Core Losses
- Datasheet provided parameters are only valid for sinusoidal excitation
- Differences of up to two times in core losses with respect to calculated values have been reported

- Improved core loss estimation methods for non-sinusoidal excitation should be considered
- … or a relatively simple core-loss estimation system can be built.

Tape wound core

Ferrite core
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► Measurement of Core Losses
- Increase of core losses due to misalignment of tape wound cores

- Core losses are extremely sensitive to horizontal misalignment

Tape wound core

Source: B. Cougo 2011
“Increase of Tape Wound Core Losses due to Interlamination 
Short Circuits and Orthogonal Flux Components”
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► Core Loss Measurement Equipment
- Characterization of the core losses in inductor for variable duty cycle 
- The losses based on the i2GSE match the measured losses for variable duty cycle

- Improved core loss estimation methods should be used for calculation of core losses in PE circuits
- A simple testbench can be built in order to characterize core materials for a specific application

Source: J. Mühlethaler 2012
“Improved Core-Loss Calculation for Magnetic 

Components Employed in Power Electronic Systems”
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► Core Loss Measurement Equipment
- Full-bridge structure generates typical excitations found in power electronic converters
- External power supply adjusts the voltage amplitude

- Voltage and current are measured simultaneously to extract the core’s BH loop

Power stage based on full-bridge 
structure

Source: J. Mühlethaler 2010
“Core Losses under DC Bias Condition based on 

Steinmetz Parameters”
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► High Frequency Effects in Copper Conductors 
- Skin and proximity effects arise from the conduction of high-frequency currents in copper cond.

- Not accounting for high-frequency effects results in low accuracy in converter loss estimation
- Manufacturing of high quality litz wire is complex and costly

Source: I. Villar 2010
“Multiphysical Characterization of Medium-Frequency Power Electronic Transformers”

Skin effect Proximity effect Combined
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► Copper Loss Measurement Equipment
- The transformer must be short circuited on its secondary terminal with a very low resistive path
- An AC current source provides the high-frequency current with the required RMS value

- Since the power delivered is manly reactive a high power analyzer is utilized to measure the total losses

High-precision
power analyzer

Transformer under testHigh-current high-frequency
AC source

!
Short circuit
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► Copper Loss Measurement Equipment
- The current source: 5-level NPC bridges feeding an inductive load through a step-down transformer
- Mid-point voltage balancing required for stable operation

- Minimum THD modulation achieves low harmonic distortion in output current

Source: Ch. Gammeter 2012
“Medium Frequency High Current Source for Testing

Interconnections in High-Power Converters”



28/61

SOUTH AMERICA

► Copper Loss Measurement — Litz Wire Bundles
- Case study: Litz wire (tot. 9500 strands of 71µm each) with 10 sub-bundles 
- Current distribution in internal litz wire bundles depends strongly on interchanging strategy

- Total copper losses for 10bundles: 438W

10 bundles 950 with 71µm strands each

Source: G. Ortiz 2013
“Medium Frequency Transformers for Solid-State 

Transformer Applications — Design and 
Experimental Verification”
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► Copper Loss Measurement — Litz Wire Bundles
- Case study: Litz wire (tot. 9500 strands of 71µm each) with 10 sub-bundles 
- Current distribution in internal litz wire bundles depends strongly on interchanging strategy

- Total copper losses for 10bundles: 438W
- Total copper losses for 8 bundles: 353W

10 bundles 950 with 71µm strands each

Source: G. Ortiz 2013
“Medium Frequency Transformers for Solid-State 

Transformer Applications — Design and 
Experimental Verification”
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► Switching Loss Measurement — Current Sensing
- High bandwidth (tens of MHz) and (in most cases) isolated transducer

• Current transformer
• Rogowski coil (PCB)

• High bandwidth coaxial current shunt (expensive, non-isolated)

Source: www.ib-billmann.de

PCB Rogowski coil

Planar current 
transformer Coaxial current shunt

Rogowski coil
Source: www.pemuk.com
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► Switching Loss Measurement — Current Sensing
- Current transformers:
• High bandwidth isolated planar current transformer built in-house with standard components
• Designed for pulse operation → small construction

- Very easy to manufacture!

Primary

Planar core

Secondary
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► Switching Loss Measurement — Current Sensing
- Rogowski Coils
• High bandwidth, isolated Rogowski coil built with standard PCB
• For switching loss measurement, the integration is preferably done in post-processing

• Extremely low effect on power circuit 
• Very well suited for measurement in IGBT modules

PCB Rogowski coil placed 
on an IGBT module

Resulting voltage output 
and integrated signal

Source: Y. Lobsiger 2011
“Decentralized Active Gate Control for Current 

Balancing of Parallel Connected IGBT Modules”
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► Switching Loss Measurement — Current Sensing
- Current shunt
• Exceptionally high bandwidth (in the GHz range) and direct voltage output
• PCB soldered shunts offer the possibility to measure switches with virtually any package 

• Typically expensive and non-isolated → requires an oscilloscope with isolated channels
• Alternative constructions with SMD resistors also possible

Source: R. Burkart 2013
“Comparative Evaluation of SiC and Si PV Inverter Systems 

Based on Power Density and Efficiency as 
Indicators of Initial Cost and Operating Revenue”

Source: www.ib-billmann.de
Coaxial current shunt



35/61

SOUTH AMERICA

► Switching Loss Measurement — Deskew
- MOSFET and SiC technology feature ultra high switching speeds in the tens of nanoseconds range
- Light takes about 3.3ns to travel 1 meter → different cable lengths can lead to meas. inaccuracies

- Specially critical if the voltage/current measurement is not done passively (e.g. diff probes)

Source: R. A. Friedemann 2012
“Design of a Minimum Weight Dual Active Bridge Converter 

for an Airborne Wind Turbine System”

1.7kV SiC JFET turn-off:
drain current

drain-source voltage
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► Switching Loss Measurement — Deskew
- Simplified example case:

• Switching 100A with a 1000V DC-link 
• Unipolar-type semiconductor, i.e. no tail current with a

linear parasitic capacitance and ideal circuit layout
(no parasitic stray inductance, hence no switching overshoot)

• Switching time: 100ns

• Deviations of ±25% on measured energy with
only a 12ns deskew

Voltage lagging 12ns

Current lagging 12ns

Nominal

5mJ of energy

6.25mJ of energy
(+25%)

3.75mJ of energy
(-25%)
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► Switching Loss Measurement — Deskew
- Correcting deskew mismatch can be done directly in modern oscilloscopes
- Example: Lecroy Wavesurfer MXs-B oscilloscope

- Or in post-processing (e.g. with Matlab)
- In all cases, the deskew must be properly measured beforehand 

Source: www.teledynelecroy.com
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► Assessing System’s Performance — Efficiency
- Efficiency constitutes one of the systems primary performance indices
- The measurement of efficiency is typically done in one of two ways:

• Measurement of input and output power
• Measurement of input or output power and power losses

- The desired accuracy of the efficiency measurement will determine which method should be used

Input power Output power

Power losses
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► Assessing System’s Performance — Efficiency
- Input and output power measurement

• Power analyzer: Yokogawa WT3000
• Reading accuracy: 0.02%
• Range accuracy: 0.04%

• Table multimeter: Agilent 34401
• Reading accuracy: 0.005% @ 100mV
• Range accuracy: 0.0035% @ 100mV

www.yokogawa.com

www.agilent.comSource: Th. Schröter 2011
“Aspects and Considerations for Accurate Measurement of Very High Efficiency”
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► Assessing System’s Performance — Efficiency
- Input and output power measurement

• Handheld multimeter: Fluke 80 series V
• Reading accuracy: 0.3% @ 600mV

• Shunt resistor (curr. meas.): Burster 1282
• Shunt resistance: 1mΩ (1mV/A)
• Resistance tolerance: 0.02%
• Temperature coefficient: 0.001 %/°K

www.fluke.com

www.burster.comSource: Th. Schröter 2011
“Aspects and Considerations for Accurate Measurement of Very High Efficiency”
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► Assessing System’s Performance — Efficiency
- Measurement situation example: 
• Input power   (AC side): Yokogawa WT3000
• Output power (DC side): Agilent 34401 (voltage)

Burster 1282 & Agilent 34401 (current)

• Achieved power measurement accuracy: ±0.107%

Yokogawa WT3000

Agilent 34401

Burster 1282

Source: Th. Schröter 2011
“Aspects and Considerations for Accurate 

Measurement of Very High Efficiency”
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► Assessing System’s Performance — Efficiency
- Maximum permissible relative error in the power measurement for the determination of the losses with 

a max. relative error of in dependence on the efficiency

- The power measurement accuracy must be extremelly high when an accurate efficiency meas. is
desired

Source: J.W. Kolar 2012
“Extreme Efficiency Power Electronics”
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► Assessing System’s Performance — Efficiency
- Calorimetric direct power loss measurement
• Converter placed in a controlled-temperature double-jacketed chamber 
• A water-cooled heat exchanger extracts the heat generated by the converter
• The power extracted through the water-cooling circuit corresponds to the losses gen. by the conv.

• Accuracy higher than ±1W up to 100W of losses (e.g. for a 1kW converter → ± 0.1% accuracy)

Source: D. Christen 2010
“Calorimetric Power Loss Measurement for 

Highly Efficient Converters” www.enertronics.ch

Calorimeter manufactured 
by enertronics GmbH
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► Assessing System’s Performance — EMI Compatibility
- The performance of the EMI filter is split into:
• Differential-mode rejection and
• Common-mode rejection

• These two parameters must be separated by a dedicated circuit
• This allows to identify and correct possible incompatibilities with the respective EMI directives

Differential-mode filter

Common-mode filter

Source: M. Hartmann 2010
“EMI Filter Design for High Switching Frequency 
Three-Phase/Level PWM Rectifier Systems”
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► Assessing System’s Performance — EMI Compatibility
- Simple active circuit for separation of CM and DM noise
- Requires 4 OP-amps and passive components

- Achieves DMTR/CMRR > 51 dB and CMTR/DMRR > 47dB for frequencies up to 10MHz

Source: S. Schroth 2014
“Analysis and Practical Relevance of CM/DM EMI 
Noise Separator Characteristics”
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► Future Traction Vehicles Based on SST Technology
- Typical measurements performed during testing and commissioning of power electronic converters

- Floating potentials: Up to tens of kilovolts and tens of kilovolts/microsecond
- Voltages / currents: From millivolts to kilovolts, from amps to kiloamps, DC to tens of MHz
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► State-of-the-Art Isolated Voltage Measurement
- Basic types
• Differential probes

• Optically isolated systems
(analog link / digital link)

- Drawback: probe combines isolation and measurement
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► State-of-the-Art Isolated Current Measurement
- Basic types
• Current transformers

• Current compensated transformers
(clamp-on current probes)

• Rogowski coils

- Drawback: combination of isolation and measurement
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► Wireless Oscilloscope – Basic Idea
- Provide the isolation at a different position in the measurement chain

• Separate data acquisition (channels) and user interface
• No need for isolated probes / sensors
• No need for an additional oscilloscope

- System overview of a 100MHz wireless channel oscilloscope
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► Isolated Voltage Measurement 
- Setup consist of measurement of high side gate signal on a half-bridge-type structure
• The differential probe exhibits strong CM error during high dv/dt

• The Wireless Scope feautres no visible CM error
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► Isolated Current Measurement 

MOSFET drain current
• Floating reference voltage
• High bandwidth current transients

(turn-on / turn-off)

Measurement setup
• 0.1 Ohm shunt & Wireless Scope
• Current transformer
• Rogowski coil
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► Isolated Current Measurement 2 — Results

Rogowski Coil
• Delay
• Limited bandwidth
• Ringing due to CM transients
• Limited isolation voltage

Current Transformer
• High bandwidth
• No apparent CM error
• High-pass characteristic (no DC)
• Limited isolation voltage

Shunt & Wireless Scope
• High bandwidth
• No apparent CM error
• DC – 100 MHz
• No intrinsic limitation 

on isolation voltage
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► Example Microelectronics Highly Integrated Converter 
- Isolated (4kV) DC-DC converter with power

output up to 1.7kW

- How to test the circuit? How to measure internal signals? How to characterize switching 
performance? How to characterize magnetics performance?
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► Example of Power Supply on Chip
- Switched capacitor converter with 4.6W/mm2 and 86% efficiency

- How to test the circuit? How to measure internal signals? How to characterize switching 
performance? How to characterize capacitor performance?

Source: T. Andersen 2013
“A 4.6 W/mm2 Power Density 86% Efficiency On-Chip 

Switched Capacitor DC-DC Converter in 32nm SOI CMOS”

(!)
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► Future Micro Power Electronic Solutions
- Merge simulation and measurement to create a "simulation-augmented" environment

- Link between these two enables to supervise internal quantities of the experimental hardware

Simulation
model

Measurement
quantities



Summary / Outlook
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► Measurement in Today’s Power Electronics
- Design of power electronics circuit that fulfills given specifications
• Components: Passives, Actives
• System: Efficiency, EMI

► Measuring Future Power Electronics
- High-power medium-frequency electric power systems-oriented
• High common-mode, high isolation, high bandwidth
• Wireless measurement systems

- Microelectronics, highly integrated solutions:
• Simulation augmented measurement concepts



Thank You!
Questions?
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