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PREFACE TO THE SECOND EDITION

This book is concerned with the topical problems of mechanics of advanced composite
materials whose mechanical properties are controlled by high-strength and high-stiffness
continuous fibers embedded in polymeric, metal, or ceramic matrix. Although the idea of
combining two or more components to produce materials with controlled properties has
been known and used from time immemorial, modern composites have been developed
only several decades ago and have found by now intensive applications in different fields
of engineering, particularly, in aerospace structures for which high strength-to-weight and
stiffness-to-weight ratios are required.

Due to wide existing and potential applications, composite technology has been devel-
oped very intensively over recent decades, and there exist numerous publications that
cover anisotropic elasticity, mechanics of composite materials, design, analysis, fabrica-
tion, and application of composite structures. According to the list of books on composites
presented in ‘Mechanics of Fibrous Composites’ by C.T. Herakovich (1998) there were
35 books published in this field before 1995, and this list should be supplemented now
with several new books.

In connection with this, the authors were challenged with a natural question as to what
caused the necessity to publish another book and what is the difference between this
book and the existing ones. Concerning this question, we had at least three motivations
supporting us in this work.

First, this book is of a more specific nature than the published ones which usually cover
not only mechanics of materials but also include analysis of composite beams, plates and
shells, joints, and elements of design of composite structures that, being also important, do
not strictly belong to the field of mechanics of composite materials. This situation looked
quite natural since composite science and technology, having been under intensive devel-
opment only over several past decades, required books of a universal type. Nowadays
however, implementation of composite materials has reached the level at which special
books can be dedicated to each of the aforementioned problems of composite technology
and, first of all, to mechanics of composite materials which is discussed in this book
in conjunction with analysis of composite materials. As we hope, thus constructed com-
bination of material science and mechanics of solids enabled us to cover such specific
features of material behavior as nonlinear elasticity, plasticity, creep, structural nonlin-
earity and discuss in details the problems of material micro- and macromechanics that
are only slightly touched in the existing books, e.g., stress diffusion in a unidirectional
material with broken fibers, physical and statistical aspects of fiber strength, coupling
effects in anisotropic and laminated materials, etc.

Second, this book, being devoted to materials, is written by designers of composite
structures who over the last 35 years were involved in practically all main Soviet and
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vi Preface to the second edition

then Russian projects in composite technology. This governs the list of problems covered
in the book which can be referred to as material problems challenging designers and
determines the third of its specific features – discussion is illustrated with composite parts
and structures designed and built within the frameworks of these projects. In connection
with this, the authors appreciate the permission of the Russian Composite Center – Central
Institute of Special Machinery (CRISM) to use in the book the pictures of structures
developed and fabricated at CRISM as part of the joint research and design projects.

The primary aim of the book is the combined coverage of mechanics, technology,
and analysis of composite materials at the advanced level. Such an approach enables the
engineer to take into account the essential mechanical properties of the material itself
and special features of practical implementation, including manufacturing technology,
experimental results, and design characteristics.

The book consists of eight chapters progressively covering all structural levels of
composite materials from their components through elementary plies and layers to
laminates.

Chapter 1 is an introduction in which typical reinforcing and matrix materials as well
as typical manufacturing processes used in composite technology are described.

Chapter 2 is also a sort of introduction but dealing with fundamentals of mechanics of
solids, i.e., stress, strain, and constitutive theories, governing equations, and principles
that are used in the next chapters for analysis of composite materials.

Chapter 3 is devoted to the basic structural element of a composite material – unidirec-
tional composite ply. In addition to conventional description of micromechanical models
and experimental results, the physical nature of fiber strength, its statistical characteris-
tics, and interaction of damaged fibers through the matrix are discussed, and an attempt
is made to show that fibrous composites comprise a special class of man-made materials
utilizing natural potentials of material strength and structure.

Chapter 4 contains a description of typical composite layers made of unidirectional,
fabric, and spatially reinforced composite materials. Conventional linear elastic mod-
els are supplemented in this chapter with nonlinear elastic and elastic–plastic analysis
demonstrating specific types of behavior of composites with metal and thermoplastic
matrices.

Chapter 5 is concerned with mechanics of laminates and includes conventional descrip-
tion of the laminate stiffness matrix, coupling effects in typical laminates and procedures
of stress calculation for in-plane and interlaminar stresses.

Chapter 6 presents a practical approach to evaluation of laminate strength. Three main
types of failure criteria, i.e., structural criteria indicating the modes of failure, approx-
imation polynomial criteria treated as formal approximations of experimental data, and
tensor-polynomial criteria are discussed and compared with available experimental results
for unidirectional and fabric composites.

Chapter 7 dealing with environmental and special loading effects includes analysis
of thermal conductivity, hydrothermal elasticity, material aging, creep, and durability
under long-term loading, fatigue, damping, and impact resistance of typical advanced
composites. The effect of manufacturing factors on material properties and behavior
is demonstrated for filament winding accompanied with nonuniform stress distribution
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between the fibers and ply waviness and laying-up processing of nonsymmetric laminate
exhibiting warping after curing and cooling.

Chapter 8 covers a specific problem of material optimal design for composite materials
and presents composite laminates of uniform strength providing high weight efficiency of
composite structures demonstrated for filament-wound pressure vessels, spinning disks,
and anisogrid lattice structures.

This second edition is a revised, updated, and extended version of the first edition,
with new sections on: composites with high fiber fraction (Section 3.6), composites with
controlled cracks (Section 4.4.4), symmetric laminates (Section 5.4), engineering stiffness
coefficients of orthotropic laminates (Section 5.5), tensor strength criteria (Section 6.1.3),
practical recommendations (Section 6.2), allowable stresses for laminates consisting of
unidirectional plies (Section 6.4), hygrothermal effects and aging (Section 7.2), application
to optimal composite structures (Section 8.3), spinning composite disks (Section 8.3.2),
and anisogrid composite lattice structures (Section 8.3.3).

The following sections have been re-written and extended: Section 5.8 Antisymmet-
ric laminates; Section 7.3.3 Cyclic loading; Section 7.3.4 Impact loading; Section 8.3.1
Composite pressure vessels. More than 40 new illustrations and 5 new tables were added.

The new title ‘Advanced Mechanics of Composite Materials’ has been adopted for the
2nd edition, which provides better reflection of the overall contents and improvements,
extensions and revisions introduced in the present version.

The book offers a comprehensive coverage of the topic in full range: from basics
and fundamentals to the advanced modeling and analysis including practical design and
engineering applications and can be used as an up-to-date introductory text book aimed at
senior undergraduates and graduate students. At the same time it includes a detailed and
comprehensive coverage of the contemporary theoretical models at the micro- and macro-
levels of material structure, practical methods and approaches, experimental results, and
optimization of composite material properties and component performance that can be
used by researchers and engineers.

The authors would like to thank several people for their time and effort in making the
book a reality. Specifically, we would like to thank our Elsevier editors who have encour-
aged and participated in the preparation of the first and second editions. These include
Ian Salusbury (Publishing editor of the first edition), Emma Hurst and David Sleeman
(Publishing editors of the second edition), and Derek Coleman (Development editor).
Special thanks are due to Prof. Leslie Henshall, for his work on the text improvements
and to Dr. Konstantin Morozov for his help in the development of illustrations in the book.
The authors are also grateful to the Central Institute of Special Machinery (CRISM) that
supplied many illustrations and case studies.

Valery V. Vasiliev Evgeny V. Morozov
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Chapter 1

INTRODUCTION

1.1. Structural materials

Materials are the basic elements of all natural and man-made structures. Figuratively
speaking, these materialize the structural conception. Technological progress is associated
with continuous improvement of existing material properties as well as with the expansion
of structural material classes and types. Usually, new materials emerge due to the necessity
to improve structural efficiency and performance. In addition, new materials themselves
as a rule, in turn provide new opportunities to develop updated structures and technology,
while the latter challenges materials science with new problems and tasks. One of the best
manifestations of this interrelated process in the development of materials, structures, and
technology is associated with composite materials, to which this book is devoted.

Structural materials possess a great number of physical, chemical and other types of
properties, but at least two principal characteristics are of primary importance. These
characteristics are the stiffness and strength that provide the structure with the ability to
maintain its shape and dimensions under loading or any other external action.

High stiffness means that material exhibits low deformation under loading. However, by
saying that stiffness is an important property we do not mean that it should be necessarily
high. The ability of a structure to have controlled deformation (compliance) can also
be important for some applications (e.g., springs; shock absorbers; pressure, force, and
displacement gauges).

Lack of material strength causes an uncontrolled compliance, i.e., in failure after which
a structure does not exist any more. Usually, we need to have as high strength as possible,
but there are some exceptions (e.g., controlled failure of explosive bolts is used to separate
rocket stages).

Thus, without controlled stiffness and strength the structure cannot exist. Naturally, both
properties depend greatly on the structure’s design but are determined by the stiffness and
strength of the structural material because a good design is only a proper utilization of
material properties.

To evaluate material stiffness and strength, consider the simplest test – a bar with cross-
sectional area A loaded with tensile force F as shown in Fig. 1.1. Obviously, the higher the
force causing the bar rupture, the higher is the bar’s strength. However, this strength does
not only depend on the material properties – it is proportional to the cross-sectional area A.

1



2 Advanced mechanics of composite materials

A

F F

L0 ∆

Fig. 1.1. A bar under tension.

Thus, it is natural to characterize material strength by the ultimate stress

σ = �F
A

(1.1)

where �F is the force causing the bar failure (here and subsequently we use the overbar
notation to indicate the ultimate characteristics). As follows from Eq. (1.1), stress is
measured as force divided by area, i.e., according to international (SI) units, in pascals
(Pa) so that 1 Pa = 1 N/m2. Because the loading of real structures induces relatively high
stresses, we also use kilopascals (1 kPa = 103 Pa), megapascals (1 MPa = 106 Pa), and
gigapascals (1 GPa = 109 Pa). Conversion of old metric (kilogram per square centimeter)
and English (pound per square inch) units to pascals can be done using the following
relations: 1 kg/cm2 = 98 kPa and 1 psi = 6.89 kPa.

For some special (e.g., aerospace or marine) applications, i.e., for which material
density, ρ, is also important, a normalized characteristic

kσ = σ

ρ
(1.2)

is also used to describe the material. This characteristic is called the ‘specific strength’
of a material. If we use old metric units, i.e., measure force and mass in kilograms and
dimensions in meters, substitution of Eq. (1.1) into Eq. (1.2) yields kσ in meters. This
result has a simple physical sense, namely kσ is the length of the vertically hanging fiber
under which the fiber will be broken by its own weight.

The stiffness of the bar shown in Fig. 1.1 can be characterized by an elongation � cor-
responding to the applied force F or acting stress σ = F/A. However, � is proportional
to the bar’s length L0. To evaluate material stiffness, we introduce strain

ε = �

L0
(1.3)

Since ε is very small for structural materials the ratio in Eq. (1.3) is normally multiplied
by 100, and ε is expressed as a percentage.
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Naturally, for any material, there should be some interrelation between stress and
strain, i.e.,

ε = f (σ) or σ = ϕ(ε) (1.4)

These equations specify the so-called constitutive law and are referred to as constitutive
equations. They allow us to introduce an important concept of the material model which
represents some idealized object possessing only those features of the real material that are
essential for the problem under study. The point is that in performing design or analysis
we always operate with models rather than with real materials. Particularly, for strength
and stiffness analysis, such a model is described by constitutive equations, Eqs. (1.4), and
is specified by the form of the function f (σ) or ϕ(ε).

The simplest is the elastic model which implies that f (0) = 0, ϕ(0) = 0 and that
Eqs. (1.4) are the same for the processes of an active loading and an unloading. The
corresponding stress–strain diagram (or curve) is presented in Fig. 1.2. The elastic model
(or elastic material) is characterized by two important features. First, the corresponding
constitutive equations, Eqs. (1.4), do not include time as a parameter. This means that the
form of the curve shown in Fig. 1.2 does not depend on the rate of loading (naturally, it
should be low enough to neglect inertial and dynamic effects). Second, the active loading
and the unloading follow one and the same stress–strain curve as in Fig. 1.2. The work
performed by force F in Fig. 1.1 is accumulated in the bar as potential energy, which is also
referred to as strain energy or elastic energy. Consider some infinitesimal elongation d�

and calculate the elementary work performed by the force F in Fig. 1.1 as dW = Fd�.
Then, work corresponding to point 1 of the curve in Fig. 1.2 is

W =
∫ �1

0
Fd�

1

0 e

s

Fig. 1.2. Stress–strain curve for an elastic material.
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where �1 is the elongation of the bar corresponding to point 1 of the curve. The work W

is equal to elastic energy of the bar which is proportional to the bar’s volume and can be
presented as

E = L0A

∫ ε1

0
σdε

where σ = F/A, ε = �/L0, and ε1 = �1/L0. Integral

U =
∫ ε1

0
σdε =

∫ ε1

0
ϕ(ε)dε (1.5)

is a specific elastic energy (energy accumulated in a unit volume of the bar) that is referred
to as an elastic potential. It is important that U does not depend on the history of loading.
This means that irrespective of the way we reach point 1 of the curve in Fig. 1.2 (e.g., by
means of continuous loading, increasing force F step by step, or using any other loading
program), the final value of U will be the same and will depend only on the value of final
strain ε1 for the given material.

A very important particular case of the elastic model is the linear elastic model described
by the well-known Hooke’s law (see Fig. 1.3)

σ = Eε (1.6)

Here, E is the modulus of elasticity. It follows from Eqs. (1.3) and (1.6), that E = σ

if ε = 1, i.e., if � = L0. Thus, the modulus can be interpreted as the stress causing
elongation of the bar in Fig. 1.1 to be the same as the initial length. Since the majority of
structural materials fail before such a high elongation can occur, the modulus is usually
much higher than the ultimate stress σ .

1

0
e

s

Fig. 1.3. Stress–strain diagram for a linear elastic material.
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Similar to specific strength kσ in Eq. (1.2), we can introduce the corresponding specific
modulus

kE = E

ρ
(1.7)

which describes a material’s stiffness with respect to its material density.
Absolute and specific values of mechanical characteristics for typical materials

discussed in this book are listed in Table 1.1.
After some generalization, the modulus can be used to describe nonlinear material

behavior of the type shown in Fig. 1.4. For this purpose, the so-called secant, Es, and
tangent, Et , moduli are introduced as

Es = σ

ε
= σ

f (σ)
Et = dσ

dε
= dϕ(ε)

dε
(1.8)

While the slope α in Fig. 1.4 determines the conventional modulus E, the slopes β

and γ determine Es and Et , respectively. As can be seen, Es and Et , in contrast to E,
depend on the level of loading, i.e., on σ or ε. For a linear elastic material (see Fig. 1.3),
Es = Et = E.

Hooke’s law, Eq. (1.6), describes rather well the initial part of stress–strain diagram
for the majority of structural materials. However, under a relatively high level of stress
or strain, materials exhibit nonlinear behavior.

One of the existing models is the nonlinear elastic material model introduced above
(see Fig. 1.2). This model allows us to describe the behavior of highly deformable rubber-
type materials.

Another model developed to describe metals is the so-called elastic–plastic material
model. The corresponding stress–strain diagram is shown in Fig. 1.5. In contrast to an
elastic material (see Fig. 1.2), the processes of active loading and unloading are described
with different laws in this case. In addition to elastic strain, εe, which disappears after the
load is taken off, the residual strain (for the bar shown in Fig. 1.1, it is plastic strain, εp)

remains in the material. As for an elastic material, the stress–strain curve in Fig. 1.5 does
not depend on the rate of loading (or time of loading). However, in contrast to an elastic
material, the final strain of an elastic–plastic material can depend on the history of loading,
i.e., on the law according to which the final value of stress was reached.

Thus, for elastic or elastic–plastic materials, constitutive equations, Eqs. (1.4), do not
include time. However, under relatively high temperature practically all the materials
demonstrate time-dependent behavior (some of them do it even under room temperature).
If we apply some force F to the bar shown in Fig. 1.1 and keep it constant, we can see that
for a time-sensitive material the strain increases under a constant force. This phenomenon
is called the creep of the material.

So, the most general material model that is used in this book can be described with a
constitutive equation of the following type:

ε = f (σ, t, T ) (1.9)
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Table 1.1
Mechanical properties of structural materials and fibers.

Material Ultimate
tensile
stress,
σ (MPa)

Modulus,
E (GPa)

Specific
gravity

Maximum
specific
strength,
kσ × 103 (m)

Maximum
specific
modulus,
kE × 103 (m)

Metal alloys
Steel 400–2200 180–210 7.8–7.85 28.8 2750
Aluminum 140–700 69–72 2.7–2.85 26.5 2670
Titanium 420–1200 110 4.5 26.7 2440
Magnesium 220–320 40 1.8 14.4 2220
Beryllium 620 320 1.85 33.5 17,300
Nickel 400–500 200 8.9 5.6 2250

Metal wires (diameter, µm)
Steel (20–1500) 1500–4400 180–200 7.8 56.4 2560
Aluminum (150) 290 69 2.7 10.7 2550
Titanium (100–800) 1400–1500 120 4.5 33.3 2670
Beryllium (50–500) 1100–1450 240–310 1.8–1.85 80.5 17,200
Tungsten (20–50) 3300–4000 410 19–19.3 21.1 2160
Molybdenum (25–250) 1800–2200 360 10.2 21.5 3500

Thermoset polymeric resins
Epoxy 60–90 2.4–4.2 1.2–1.3 7.5 350
Polyester 30–70 2.8–3.8 1.2–1.35 5.8 310
Phenol-formaldehyde 40–70 7–11 1.2–1.3 5.8 910
Organosilicone 25–50 6.8–10 1.35–1.4 3.7 740
Polyimide 55–110 3.2 1.3–1.43 8.5 240
Bismaleimide 80 4.2 1.2 6.7 350

Thermoplastic polymers
Polyethylene 20–45 6–8.5 0.95 4.7 890
Polystyrene 35–45 30 1.05 4.3 2860
Teflon 15–35 3.5 2.3 1.5 150
Nylon 80 2.8 1.14 7.0 240
Polyester (PC) 60 2.5 1.32 4.5 190
Polysulfone (PSU) 70 2.7 1.24 5.6 220
Polyamide-imide (PAI) 90–190 2.8–4.4 1.42 13.4 360
Polyetheretherketone (PEEK) 90–100 3.1–3.8 1.3 7.7 300
Polyphenylene sulfide (PPS) 80 3.5 1.36 5.9 250

Synthetic fibers
Capron 680–780 4.4 1.1 70 400
Dacron 390–880 4.9–15.7 1.4 60 1430
Teflon 340–440 2.9 2.3 190 130
Nitron 390–880 4.9–8.8 1.2 70 730
Polypropylene 730–930 4.4 0.9 100 480
Viscose 930 20 1.52 60 1300

Fibers for advanced composites (diameter, µm)
Glass (3–19) 3100–5000 72–95 2.4–2.6 200 3960
Quarts (10) 6000 74 2.2 270 3360
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Table 1.1 (Contd.)

Material Ultimate
tensile
stress,
σ (MPa)

Modulus,
E (GPa)

Specific
gravity

Maximum
specific
strength,
kσ × 103 (m)

Maximum
specific
modulus,
kE × 103 (m)

Basalt (9–13) 3000–3500 90 2.7–3.0 130 3300
Aramid (12–15) 3500–5500 140–180 1.4–1.47 390 12,800
Polyethylene (20–40) 2600–3300 120–170 0.97 310 17,500
Carbon (5–11)

High-strength 7000 300 1.75 400 17,100
High-modulus 2700 850 1.78 150 47,700

Boron (100–200) 2500–3700 390–420 2.5–2.6 150 16,800
Alumina – Al2O3 (20–500) 2400–4100 470–530 3.96 100 13,300
Silicon Carbide – SiC (10–15) 2700 185 2.4–2.7 110 7700
Titanium Carbide – TiC (280) 1500 450 4.9 30 9100
Boron Carbide – B4C (50) 2100–2500 480 2.5 100 10,000
Boron Nitride – BN (7) 1400 90 1.9 70 4700

ds
de

a
b

e

e

g

s

s

Fig. 1.4. Introduction of secant and tangent moduli.

where t indicates the time moment, whereas σ and T are stress and temperature, corre-
sponding to this moment. In the general case, constitutive equation, Eq. (1.9), specifies
strain that can be decomposed into three constituents corresponding to elastic, plastic and
creep deformation, i.e.,

ε = εe + εp + εc (1.10)

However, in application to particular problems, this model can be usually substantially
simplified. To show this, consider the bar in Fig. 1.1 and assume that a force F is applied
at the moment t = 0 and is taken off at moment t = t1 as shown in Fig. 1.6a. At the
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moment t = 0, elastic and plastic strains that do not depend on time appear, and while
time is running, the creep strain is developed. At the moment t = t1, the elastic strain
disappears, while the reversible part of the creep strain, εt

c, disappears with time. Residual
strain consists of the plastic strain, εp, and residual part of the creep strain, εr

c.
Now assume that εp � εe which means that either the material is elastic or the applied

load does not induce high stress and, hence, plastic strain. Then we can neglect εp in
Eq. (1.10) and simplify the model. Furthermore, let εc � εe which in turn means that
either the material is not susceptible to creep or the force acts for a short time (t1 is close
to zero). Thus, we arrive at the simplest elastic model, which is the case for the majority of
practical applications. It is important that the proper choice of the material model depends
not only on the material nature and properties but also on the operational conditions of the
structure. For example, a shell-type structure made of aramid–epoxy composite material,
that is susceptible to creep, and designed to withstand the internal gas pressure should
be analyzed with due regard to the creep, if this structure is a pressure vessel for long
term gas storage. At the same time for a solid propellant rocket motor case working for
seconds, the creep strain can be ignored.

A very important feature of material models under consideration is their phenomeno-
logical nature. This means that these models ignore the actual material microstructure
(e.g., crystalline structure of metals or molecular structure of polymers) and represent the
material as some uniform continuum possessing some effective properties that are the
same irrespective of how small the material volume is. This allows us, first, to determine
material properties testing material samples (as in Fig. 1.1). Second, this formally enables
us to apply methods of Mechanics of Solids that deal with equations derived for infinitesi-
mal volumes of material. And third, this allows us to simplify the strength and stiffness
evaluation problem and to reduce it to a reasonable practical level not going into analysis
of the actual mechanisms of material deformation and fracture.

1.2. Composite materials

This book is devoted to composite materials that emerged in the middle of the
20th century as a promising class of engineering materials providing new prospects for
modern technology. Generally speaking any material consisting of two or more compo-
nents with different properties and distinct boundaries between the components can be
referred to as a composite material. Moreover, the idea of combining several components
to produce a material with properties that are not attainable with the individual compo-
nents has been used by man for thousands of years. Correspondingly, the majority of
natural materials that have emerged as a result of a prolonged evolution process can be
treated as composite materials.

With respect to the problems covered in this book we can classify existing composite
materials (composites) into two main groups.

The first group comprises composites that are known as ‘filled materials.’ The main
feature of these materials is the existence of some basic or matrix material whose properties
are improved by filling it with some particles. Usually the matrix volume fraction is more
than 50% in such materials, and material properties, being naturally modified by the
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fillers, are governed mainly by the matrix. As a rule, filled materials can be treated as
homogeneous and isotropic, i.e., traditional models of mechanics of materials developed
for metals and other conventional materials can be used to describe their behavior. This
group of composites is not touched on in the book.

The second group of composite materials that is under study here involves composites
that are called ‘reinforced materials.’ The basic components of these materials (sometimes
referred to as ‘advanced composites’) are long and thin fibers possessing high strength
and stiffness. The fibers are bound with a matrix material whose volume fraction in a
composite is usually less than 50%. The main properties of advanced composites, due
to which these materials find a wide application in engineering, are governed by fibers
whose types and characteristics are considered below. The following sections provide a
concise description of typical matrix materials and fiber-matrix compositions. Two com-
ments should be made with respect to the data presented in these sections. First, only
brief information concerning material properties that are essential for the problems cov-
ered in this book is presented there, and, second, the given data are of a broad nature
and are not expected to be used in design or analysis of particular composite structures.
More complete description of composite materials and their components including the his-
tory of development and advancement, chemical compositions, physical characteristics,
manufacturing, and applications can be found elsewhere (Peters, 1998).

1.2.1. Fibers for advanced composites

Continuous glass fibers (the first type of fibers used in advanced composites) are made
by pulling molten glass (at a temperature about 1300◦C) through 0.8–3.0 mm diameter
dies and further high-speed stretching to a diameter of 3–19 µm. Usually glass fibers
have solid circular cross sections. However there exist fibers with rectangular (square
or plane), triangular, and hexagonal cross sections, as well as hollow circular fibers.
Typical mechanical characteristics and density of glass fibers are listed in Table 1.1,
whereas a typical stress–strain diagram is shown in Fig. 1.7.

Important properties of glass fibers as components of advanced composites for engi-
neering applications are their high strength, which is maintained in humid environments
but degrades under elevated temperatures (see Fig. 1.8), relatively low stiffness (about
40% of the stiffness of steel), high chemical and biological resistance, and low cost. Being
actually elements of monolithic glass, the fibers do not absorb water and do not change
their dimensions in water. For the same reason, they are brittle and sensitive to surface
damage.

Quartz fibers are similar to glass fibers and are obtained by high-speed stretching of
quartz rods made of (under temperature of about 2200◦C) fused quartz crystals or sand.
The original process developed for manufacturing glass fibers cannot be used because the
viscosity of molten quartz is too high to make thin fibers directly. However, this more
complicated process results in fibers with higher thermal resistance than glass fibers.

The same process that is used for glass fibers can be employed to manufacture mineral
fibers, e.g., basalt fibers made of molten basalt rocks. Having relatively low strength
and high density (see Table 1.1) basalt fibers are not used for high-performance, e.g.,
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Fig. 1.7. Stress–strain diagrams for typical fibers of advanced composites.

aerospace structures, but are promising reinforcing elements for pre-stressed reinforced
concrete structures in civil engineering.

Substantial improvement of a fiber’s stiffness in comparison with glass fibers has been
achieved with the development of carbon (or graphite) fibers. Modern high-modulus car-
bon fibers have a modulus that is a factor of about four higher than the modulus of steel,
whereas the fiber density is lower by the same factor. Although the first carbon fibers had
lower strength than glass fibers, modern high-strength fibers have a 40% higher tensile
strength compared to the strength of the best glass fibers, whereas the density of carbon
fibers is 30% less than that of glass fibers.

Carbon fibers are made by pyrolysis of organic fibers of which there exist two main
types – PAN-based and pitch-based fibers. For PAN-based fibers the process consists of
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Fig. 1.8. Temperature degradation of fiber strength normalized by the strength at 20◦C.

three stages – stabilization, carbonization, and graphitization. In the first step (stabiliza-
tion), a system of polyacrylonitrile (PAN) filaments is stretched and heated up to about
400◦C in an oxidation furnace, while in the subsequent step (carbonization under 900◦C
in an inert gas media) most elements of the filaments other than carbon are removed or
converted into carbon. During the successive heat treatment at a temperature reaching
2800◦C (graphitization) a crystalline carbon structure oriented along the fiber’s length is
formed, resulting in PAN-based carbon fibers. The same process is used for rayon organic
filaments (instead of PAN), but results in carbon fibers with lower modulus and strength
because rayon contains less carbon than PAN. For pitch-based carbon fibers, the initial
organic filaments are made in approximately the same manner as for glass fibers from
molten petroleum or coal pitch and pass through carbonization and graphitization pro-
cesses. Because pyrolysis is accompanied with a loss of material, carbon fibers have a
porous structure and their specific gravity (about 1.8) is less than that of graphite (2.26).
The properties of carbon fibers are affected by the crystallite size, crystalline orientation,
porosity and purity of the carbon structure.

Typical stress–strain diagrams for high-modulus (HM) and high-strength (HS) carbon
fibers are plotted in Fig. 1.7. As components of advanced composites for engineering
applications, carbon fibers are characterized by very high modulus and strength, high
chemical and biological resistance, electric conductivity and very low coefficient of ther-
mal expansion. The strength of carbon fibers practically does not change with temperature
up to 1500◦C (in an inert media preventing oxidation of the fibers).
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The exceptional strength of 7.06 GPa is reached in Toray T-1000 carbon fibers, whereas
the highest modulus of 850 GPa is obtained in Carbonic HM-85 fibers. Carbon fibers are
anisotropic, very brittle, and sensitive to damage. They do not absorb water and do not
change their dimensions in humid environments.

There exist more than 50 types of carbon fibers with a broad spectrum of strength,
stiffness and cost, and the process of fiber advancement is not over – one may expect
fibers with strength up to 10 GPa and modulus up to 1000 GPa within a few years.

Organic fibers commonly encountered in textile applications can be employed as rein-
forcing elements of advanced composites. Naturally, only high performance fibers, i.e.,
fibers possessing high stiffness and strength, can be used for this purpose. The most
widely used organic fibers that satisfy these requirements are known as aramid (aromatic
polyamide) fibers. They are extruded from a liquid crystalline solution of the corre-
sponding polymer in sulfuric acid with subsequent washing in a cold water bath and
stretching under heating. Some properties of typical aramid fibers are listed in Table 1.1,
and the corresponding stress–strain diagram is presented in Fig. 1.7. As components
of advanced composites for engineering applications, aramid fibers are characterized
by low density providing high specific strength and stiffness, low thermal conductivity
resulting in high heat insulation, and a negative thermal expansion coefficient allowing
us to construct hybrid composite elements that do not change their dimensions under
heating. Consisting actually of a system of very thin filaments (fibrils), aramid fibers
have very high resistance to damage. Their high strength in the longitudinal direction
is accompanied by relatively low strength under tension in the transverse direction.
Aramid fibers are characterized with pronounced temperature (see Fig. 1.8) and time
dependence for stiffness and strength. Unlike the inorganic fibers discussed above, they
absorb water resulting in moisture content up to 7% and degradation of material properties
by 15–20%.

The list of organic fibers has been supplemented recently with extended chain polyethy-
lene fibers demonstrating outstanding low density (less than that of water) in conjunction
with relatively high stiffness and strength (see Table 1.1 and Fig. 1.7). Polyethylene fibers
are extruded from the corresponding polymer melt in a similar manner to glass fibers.
They do not absorb water and have high chemical resistance, but demonstrate relatively
low temperature and creep resistance (see Fig. 1.8).

Boron fibers were developed to increase the stiffness of composite materials when
glass fibers were mainly used to reinforce composites of the day. Being followed by
high-modulus carbon fibers with higher stiffness and lower cost, boron fibers have now
rather limited application. Boron fibers are manufactured by chemical vapor deposi-
tion of boron onto about 12 µm diameter tungsten or carbon fiber (core). Because of
this technology, boron fibers have a relatively large diameter, 100–200 µm. They are
extremely brittle and sensitive to surface damage. Typical mechanical properties of
boron fibers are presented in Table 1.1 and Figs 1.7 and 1.8. Being mainly used in
metal matrix composites, boron fibers degrade on contact with aluminum or titanium
matrices at the temperature that is necessary for processing (above 500◦C). To pre-
vent this degradation, chemical vapor deposition is used to cover the fiber surface with
about 5 µm thick layer of silicon carbide, SiC, (such fibers are called Borsic) or boron
carbide, B4C.
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There exists a special class of ceramic fibers for high-temperature applications com-
posed of various combinations of silicon, carbon, nitrogen, aluminum, boron, and titanium.
The most commonly encountered are silicon carbide (SiC) and alumina (Al2O3) fibers.

Silicon carbide is deposited on a tungsten or carbon core-fiber by the reaction of a gas
mixture of silanes and hydrogen. Thin (8–15 µm in diameter) SiC fibers can be made
by pyrolysis of polymeric (polycarbosilane) fibers at temperatures of about 1400◦C in an
inert atmosphere. Silicon carbide fibers have high strength and stiffness, moderate density
(see Table 1.1) and very high melting temperature (2600◦C).

Alumina (Al2O3) fibers are fabricated by sintering of fibers extruded from the viscous
alumina slurry with rather complicated composition. Alumina fibers, possessing approx-
imately the same mechanical properties as SiC fibers, have relatively large diameter and
high density. The melting temperature is about 2000◦C.

Silicon carbide and alumina fibers are characterized by relatively low reduction in
strength at elevated temperatures (see Fig. 1.9).

Promising ceramic fibers for high-temperature applications are boron carbide (B4C)

fibers that can be obtained either as a result of reaction of a carbon fiber with a mixture
of hydrogen and boron chloride at high temperature (around 1800◦C) or by pyrolysis of
cellulosic fibers soaked with boric acid solution. Possessing high stiffness and strength and

Fig. 1.9. Temperature dependence of high-temperature fibers normalized strength (in comparison with
stainless steel).
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moderate density (see Table 1.1), boron carbide fibers have very high thermal resistance
(up to 2300◦C).

Metal fibers (thin wires) made of steel, beryllium, titanium, tungsten, and molybdenum
are used for special, e.g., low-temperature and high-temperature applications. Typical
characteristics of metal fibers are presented in Table 1.1 and Figs. 1.7 and 1.9.

In advanced composites, fibers provide not only high strength and stiffness but also a
possibility to tailor the material so that directional dependence of its mechanical properties
matches that of the loading environment. The principle of directional properties can be
traced in all natural materials that have emerged as a result of a prolonged evolution
and, in contrast to man-made metal alloys, are neither isotropic nor homogeneous. Many
natural materials have fibrous structures and utilize high strength and stiffness of natural
fibers listed in Table 1.2. As can be seen (Tables 1.1 and 1.2), natural fibers, having
lower strength and stiffness than man-made fibers, can compete with modern metals and
plastics.

Before being used as reinforcing elements of advanced composites, the fibers are sub-
jected to special finish surface treatments, undertaken to prevent any fiber damage under
contact with processing equipment, to provide surface wetting when the fibers are com-
bined with matrix materials, and to improve the interface bond between fibers and matrices.
The most commonly encountered surface treatments are chemical sizing performed during
the basic fiber formation operation and resulting in a thin layer applied to the surface of the
fiber, surface etching by acid, plasma, or corona discharge, and coating of the fiber surface
with thin metal or ceramic layers.

With only a few exceptions (e.g., metal fibers), individual fibers, being very thin and
sensitive to damage, are not used in composite manufacturing directly, but in the form of
tows (rovings), yarns, and fabrics.

A unidirectional tow (roving) is a loose assemblage of parallel fibers consisting usually
of thousands of elementary fibers. Two main designations are used to indicate the size of

Table 1.2
Mechanical properties of natural fibers.

Fiber Diameter
(µm)

Ultimate tensile
stress, σ (MPa)

Modulus,
E (GPa)

Specific
gravity

Wood 15–20 160 23 1.5
Bamboo 15–30 550 36 0.8
Jute 10–50 580 22 1.5
Cotton 15–40 540 28 1.5
Wool 75 170 5.9 1.32
Coir 10–20 250 5.5 1.5
Bagasse 25 180 9 1.25
Rice 5–15 100 6 1.24
Natural silk 15 400 13 1.35
Spider silk 4 1750 12.7 –
Linen – 270 – –
Sisal – 560 – –
Asbestos 0.2 1700 160 2.5
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the tow, namely the K-number that gives the number of fibers in the tow (e.g., 3K tow
contains 3000 fibers) and the tex-number which is the mass in grams of 1000 m of the tow.
The tow tex-number depends not only on the number of fibers but also on the fiber diameter
and density. For example, AS4-6K tow consisting of 6000 AS4 carbon fibers has 430 tex.

A yarn is a fine tow (usually it includes hundreds of fibers) slightly twisted (about
40 turns per meter) to provide the integrity of its structure necessary for textile processing.
Yarn size is indicated in tex-numbers or in textile denier-numbers (den) such that
1 tex = 9 den. Continuous yarns are used to make fabrics with various weave patterns.
There exists a wide variety of glass, carbon, aramid, and hybrid fabrics whose nomencla-
ture, structure, and properties are described elsewhere (Chou and Ko, 1989; Tarnopol’skii
et al., 1992; Bogdanovich and Pastore, 1996; Peters, 1998).

An important characteristic of fibers is their processability which can be evaluated as
the ratio, Kp = σ s/σ , of the strength demonstrated by fibers in the composite structure,
σ s, to the strength of fibers before they were processed, σ . This ratio depends on fibers’
ultimate elongation, sensitivity to damage, and manufacturing equipment causing damage
to the fibers. The most sensitive to operational damage are boron and high-modulus carbon
fibers possessing relatively low ultimate elongation ε (less than 1%, see Fig. 1.7). For
example, for filament wound pressure vessels, Kp = 0.96 for glass fibers, while for carbon
fibers, Kp = 0.86.

To evaluate fiber processability under real manufacturing conditions, three simple tests
are used – tension of a straight dry tow, tension of tows with loops, and tension of a tow
with a knot (see Fig. 1.10). Similar tests are used to determine the strength of individual
fibers (Fukuda et al., 1997). For carbon tows, normalized strength obtained in these tests
is presented in Table 1.3 (for proper comparison, the tows should be of the same size).
As follows from this table, the tow processability depends on the fiber ultimate strain
(elongation). The best processability is observed for aramid tows whose fibers have high
elongation and low sensitivity to damage (they are not monolithic and consist of thin
fibrils).

1.2.2. Matrix materials

To utilize high strength and stiffness of fibers in a monolithic composite material suitable
for engineering applications, fibers are bound with a matrix material whose strength and
stiffness are, naturally, much lower than those of fibers (otherwise, no fibers would be
necessary). Matrix materials provide the final shape of the composite structure and govern
the parameters of the manufacturing process. The optimal combination of fiber and matrix
properties should satisfy a set of operational and manufacturing requirements that are
sometimes of a contradictory nature, and have not been completely met yet in existing
composites.

First of all, the stiffness of the matrix should correspond to the stiffness of the fibers and
be sufficient to provide uniform loading of fibers. The fibers are usually characterized by
relatively high scatter in strength that may be increased due to damage of the fibers caused
by the processing equipment. Naturally, fracture of the weakest or damaged fiber should
not result in material failure. Instead, the matrix should evenly redistribute the load from
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(a) (b) (c)

Fig. 1.10. Testing of a straight tow (a), tows with a loop (b), and tow with a knot (c).

Table 1.3
Normalized strength of carbon tows.

Ultimate strain, ε (%) Normalized strength

Straight tow Tow with a loop Tow with a knot

0.75 1 0.25 0.15
1.80 1 0.53 0.18

the broken fiber to the adjacent ones and then load the broken fiber at a distance from the
cross section at which it failed. The higher the matrix stiffness, the smaller is this distance,
and less is the influence of damaged fibers on material strength and stiffness (which should
be the case). Moreover, the matrix should provide the proper stress diffusion (this is the
term traditionally used for this phenomenon in the analysis of stiffened structures (Goodey,
1946)) in the material at a given operational temperature. That is why this temperature is
limited, as a rule, by the matrix rather than by the fibers. But on the other hand, to provide
material integrity up to the failure of the fibers, the matrix material should possess high
compliance. Obviously, for a linear elastic material (see Fig. 1.3), a combination of high
stiffness and high ultimate strain ε results in high strength which is not the case for modern
matrix materials. Thus, close to optimal (with respect to the foregoing requirements) and
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realistic matrix material should have a nonlinear stress–strain diagram (of the type shown
in Fig. 1.5) and possess high initial modulus of elasticity and high ultimate strain.

However, matrix properties, even though being optimal for the corresponding fibers,
do not manifest in the composite material if the adhesion (the strength of fiber–matrix
interface bonding) is not high enough. High adhesion between fibers and matrices, pro-
viding material integrity up to the failure of the fibers, is a necessary condition for
high-performance composites. Proper adhesion can be reached for properly selected com-
binations of fiber and matrix materials under some additional conditions. First, a liquid
matrix should have viscosity low enough to allow the matrix to penetrate between the
fibers of such dense systems of fibers as tows, yarns, and fabrics. Second, the fiber sur-
face should have good wettability with the matrix. Third, the matrix viscosity should be
high enough to retain the liquid matrix in the impregnated tow, yarn, or fabric in the pro-
cess of fabrication of a composite part. Finally, the manufacturing process providing the
proper quality of the resulting material should not require high temperature and pressure
to make a composite part.

At present, typical matrices are made from polymeric, metal, carbon, and ceramic
materials.

Polymeric matrices are divided into two main types, thermoset and thermoplastic.
Thermoset polymers, which are the most widely used matrix materials for advanced
composites, include polyester, epoxy, polyimide and other resins (see Table 1.1) cured
under elevated or room temperature. A typical stress–strain diagram for a cured epoxy
resin is shown in Fig. 1.11. Being cured (polymerized), a thermoset matrix cannot be
reset, dissolved, or melted. Heating of a thermoset material results first in degradation of
its strength and stiffness, and then in thermal destruction.
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Fig. 1.11. Stress–strain diagram for a typical cured epoxy matrix.
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Fig. 1.12. Typical thermo-mechanical diagrams for cured epoxy resins with glass transition temperatures
80◦C (————–) and 130◦C (– – – –).

In contrast to thermoset resins, thermoplastic matrices (PSU, PEEK, PPS and others –
see Table 1.1) do not require any curing reaction. They melt under heating and convert to
a solid state under cooling. The possibility to re-melt and dissolve thermoplastic matrices
allows us to reshape composite parts forming them under heating and simplifies their
recycling, which is a problem for thermoset materials.

Polymeric matrices can be combined with glass, carbon, organic, or boron fibers to
yield a wide class of polymeric composites with high strength and stiffness, low den-
sity, high fatigue resistance, and excellent chemical resistance. The main disadvantage of
these materials is their relatively low (in comparison with metals) temperature resistance
limited by the matrix. The so-called thermo-mechanical curves are plotted to determine
this important (for applications) characteristic of the matrix. These curves, presented for
typical epoxy resins in Fig. 1.12, show the dependence of some stiffness parameter on
the temperature and allow us to find the so-called glass transition temperature, Tg, which
indicates a dramatic reduction in material stiffness. There exist several standard meth-
ods to obtain a material’s thermo-mechanical diagram. The one used to plot the curves
presented in Fig. 1.12 involves compression tests of heated polymeric discs. Naturally,
to retain the complete set of properties of polymeric composites, the operating tempera-
ture, in general, should not exceed Tg. However, the actual material behavior depends on
the type of loading. As follows from Fig. 1.13, heating above the glass transition tem-
perature only slightly influences material properties under tension in the fiber direction
and dramatically reduces its strength in longitudinal compression and transverse bending.
The glass transition temperature depends on the processing temperature, Tp, at which
a material is fabricated, and higher Tp results, as a rule, in higher Tg. Thermoset epoxy
matrices cured at a temperature in the range 120–160◦C have Tg = 60−140◦C. There also
exist a number of high temperature thermoset matrices (e.g., organosilicone, polyimide,
and bismaleimide resins) with Tg = 250−300◦C and curing temperatures up to 400◦C.
Thermoplastic matrices are also characterized by a wide range of glass transition temper-
atures – from 90◦C for PPS and 140◦C for PEEK to 190◦C for PSU and 270◦C for PAI
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Fig. 1.13. Dependence of normalized longitudinal moduli (1), strength under longitudinal tension (2),
bending (3), and compression (4) on temperature for unidirectional carbon composites with epoxy matrices

having Tg = 130◦C (a) and Tg = 80◦C (b).

(see Table 1.1 for abbreviations). The processing temperature for different thermoplastic
matrices varies from 300 to 400◦C.

Further enhancement in temperature resistance of composite materials is associated
with application of metal matrices in combination with high temperature boron, carbon,
ceramic fibers, and metal wires. The most widespread metal matrices are aluminum,
magnesium, and titanium alloys possessing high plasticity (see Fig. 1.14), whereas for
special applications nickel, copper, niobium, cobalt, and lead matrices can be used. Fiber
reinforcement essentially improves the mechanical properties of such metals. For example,
carbon fibers increase strength and stiffness of such a soft metal as lead by an order of
magnitude.

As noted above, metal matrices allow us to increase operational temperatures
for composite structures. The dependencies of longitudinal strength and stiffness of
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Fig. 1.14. Typical stress–strain curves for aluminum (1), magnesium (2), and titanium (3) matrices.

boron–aluminum unidirectional composite material on temperature, corresponding to the
experimental results that can be found in Karpinos (1985) and Vasiliev and Tarnopol’skii
(1990), are shown in Fig. 1.15. Naturally, higher temperature resistance requires higher
processing temperature, Tp. Indeed, aluminum matrix composite materials are processed
at Tp = 550◦C, whereas for magnesium, titanium, and nickel matrices the appropriate
temperature is about 800, 1000, and 1200◦C respectively. Some processes also require
rather high pressure (up to 150 MPa).

In polymeric composites, the matrix materials play an important but secondary role
of holding the fibers in place and providing good load dispersion into the fibers,
whereas material strength and stiffness are controlled by the reinforcements. In contrast,
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Fig. 1.15. Temperature dependence of tensile strength (•) and stiffness (◦) along the fibers for unidirectional
boron–aluminum composite.
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the mechanical properties of metal matrix composites are controlled by the matrix to a
considerably larger extent, though the fibers still provide the major contribution to the
strength and stiffness of the material.

The next step in the development of composite materials that can be treated as matrix
materials reinforced with fibers rather than fibers bonded with matrix (which is the case
for polymeric composites) is associated with ceramic matrix composites possessing very
high thermal resistance. The stiffnesses of the fibers which are usually metal (steel,
tungsten, molybdenum, niobium), carbon, boron, or ceramic (SiC, Al2O3) and ceramic
matrices (oxides, carbides, nitrides, borides, and silicides) are not very different, and
the fibers do not carry the main fraction of the load in ceramic composites. The func-
tion of the fibers is to provide strength and mainly toughness (resistance to cracks) of
the composite, because non-reinforced ceramic materials are very brittle. Ceramic com-
posites can operate under very high temperatures depending on the melting temperature
of the matrix that varies from 1200 to 3500◦C. Naturally, the higher the temperature,
the more complicated is the manufacturing process. The main shortcoming of ceramic
composites is associated with a low ultimate tensile elongation of the ceramic matrix
resulting in cracks appearing in the matrix under relatively low tensile stress applied to the
material.

An outstanding combination of high mechanical characteristics and temperature resis-
tance is demonstrated by carbon–carbon composites in which both components – fibers
and matrix are made from one and the same material but with different structure. A carbon
matrix is formed as a result of carbonization of an organic resin (phenolic and furfural resin
or pitch) with which carbon fibers are impregnated, or of chemical vapor deposition of
pyrolitic carbon from a hydrocarbon gas. In an inert atmosphere or in a vacuum, carbon–
carbon composites can withstand very high temperatures (more than 3000◦C). Moreover,
their strength increases under heating up to 2200◦C while the modulus degrades at tem-
peratures above 1400◦C. However in an oxygen atmosphere, they oxidize and sublime
at relatively low temperatures (about 600◦C). To use carbon–carbon composite parts in
an oxidizing atmosphere, they must have protective coatings, made usually from silicon
carbide. Manufacturing of carbon–carbon parts is a very energy- and time-consuming
process. To convert an initial carbon–phenolic composite into carbon–carbon, it should
receive a thermal treatment at 250◦C for 150 h, carbonization at about 800◦C for about
100 h and several cycles of densification (one-stage pyrolisis results in high porosity of the
material) each including impregnation with resin, curing, and carbonization. To refine the
material structure and to provide oxidation resistance, a further high-temperature graphi-
tization at 2700◦C and coating (at 1650◦C) can be required. Vapor deposition of pyrolitic
carbon is also a time-consuming process performed at 900–1200◦C under a pressure of
150–2000 kPa.

1.2.3. Processing

Composite materials do not exist apart from composite structures and are formed while
the structure is fabricated. Being a heterogeneous media, a composite material has two
levels of heterogeneity. The first level represents a microheterogeneity induced by at
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least two phases (fibers and matrix) that form the material microstructure. At the second
level the material is characterized by a macroheterogeneity caused by the laminated or
more complicated macrostructure of the material which consists usually of a set of layers
with different orientations. A number of technologies have been developed by now to
manufacture composite structures. All these technologies involve two basic processes
during which material microstructure and macrostructure are formed.

The first basic process yielding material microstructure involves the application of a
matrix material to the fibers. The simplest way to do it, normally utilized in the manufac-
turing of composites with thermosetting polymeric matrices, is a direct impregnation of
tows, yarns, fabrics, or more complicated fibrous structures with liquid resins. Thermo-
setting resin has relatively low viscosity (10–100 Pa s), which can be controlled using
solvents or heating, and good wetting ability for the majority of fibers. There exist two
versions of this process. According to the so-called ‘wet’ process, impregnated fibrous
material (tows, fabrics, etc.) is used to fabricate composite parts directly, without any
additional treatment or interruption of the process. In contrast to that, in ‘dry’ or ‘prepreg’
processes, impregnated fibrous material is dried (not cured) and thus preimpregnated tapes
obtained (prepregs) are stored for further utilization (usually under low temperature to pre-
vent uncontrolled premature polymerization of the resin). An example of a machine for
making prepregs is shown in Fig. 1.16. Both processes, having similar advantages and
shortcomings, are widely used for composites with thermosetting matrices. For thermo-
plastic matrices, application of direct impregnation (‘wet’ processing) is limited by the
relatively high viscosity (about 1012 Pa s) of thermoplastic polymer solutions or melts. For
this reason, ‘prepreg’ processes with preliminary fabricated tapes or sheets in which fibers
are already combined with the thermoplastic matrix are used to manufacture composite
parts. There also exist other processes that involve application of heat and pressure to
hybrid materials including reinforcing fibers and a thermoplastic polymer in the form of
powder, films, or fibers. A promising process (called fibrous technology) utilizes tows,
tapes, or fabrics with two types of fibers – reinforcing and thermoplastic. Under heat and
pressure, thermoplastic fibers melt and form the matrix of the composite material. Metal
and ceramic matrices are applied to fibers by means of casting, diffusion welding, chem-
ical deposition, plasma spraying, processing by compression molding or with the aid of
powder metallurgy methods.

The second basic process provides the proper macrostructure of a composite material
corresponding to the loading and operational conditions of the composite part that is
fabricated. There exist three main types of material macrostructure – linear structure
which is appropriate for bars, profiles, and beams, plane laminated structure suitable for
thin-walled plates and shells, and spatial structure which is necessary for thick-walled and
bulk solid composite parts.

A linear structure is formed by pultrusion, table rolling, or braiding and provides high
strength and stiffness in one direction coinciding with the axis of a bar, profile, or a beam.
Pultrusion results in a unidirectionally reinforced composite profile made by pulling a bun-
dle of fibers impregnated with resin through a heated die to cure the resin and, to provide
the desired shape of the profile cross section. Profiles made by pultrusion and braiding
are shown in Fig. 1.17. Table rolling is used to fabricate small diameter tapered tubular
bars (e.g., ski poles or fishing rods) by rolling preimpregnated fiber tapes in the form of
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Fig. 1.16. Machine making a prepreg from fiberglass fabric and epoxy resin. Courtesy of CRISM.



Chapter 1. Introduction 25

Fig. 1.17. Composite profiles made by pultrusion and braiding. Courtesy of CRISM.

flags around the metal mandrel which is pulled out of the composite bar after the resin
is cured. Fibers in the flags are usually oriented along the bar axis or at an angle to the
axis thus providing more complicated reinforcement than the unidirectional one typical of
pultrusion. Even more complicated fiber placement with orientation angle varying from
5 to 85◦ along the bar axis can be achieved using two-dimensional (2D) braiding which
results in a textile material structure consisting of two layers of yarns or tows interlaced
with each other while they are wound onto the mandrel.

A plane-laminated structure consists of a set of composite layers providing the necessary
stiffness and strength in at least two orthogonal directions in the plane of the laminate.
Such a plane structure would be formed by hand or machine lay-up, fiber placement, or
filament winding.

Lay-up and fiber placement technology provides fabrication of thin-walled composite
parts of practically arbitrary shape by hand or automated placing of preimpregnated uni-
directional or fabric tapes onto a mold. Layers with different fiber orientations (and even
with different fibers) are combined to result in the laminated composite material exhibit-
ing the desired strength and stiffness in given directions. Lay-up processes are usually
accompanied by pressure applied to compact the material and to remove entrapped air.
Depending on the required quality of the material, as well as on the shape and dimensions
of a manufactured composite part, compacting pressure can be provided by rolling or vac-
uum bags, in autoclaves, or by compression molding. A catamaran yacht (length 9.2 m,
width 6.8 m, tonnage 2.2 tons) made from carbon–epoxy composite by hand lay-up is
shown in Fig. 1.18.

Filament winding is an efficient automated process of placing impregnated tows or tapes
onto a rotating mandrel (Fig. 1.19) that is removed after curing of the composite material.
Varying the winding angle, it is possible to control the material strength and stiffness within
the layer and through the thickness of the laminate. Winding of a pressure vessel is shown
in Fig. 1.20. Preliminary tension applied to the tows in the process of winding induces
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Fig. 1.18. Catamaran yacht Ivan-30 made from carbon–epoxy composite by hand lay-up. Courtesy of CRISM.
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Fig. 1.19. Manufacturing of a pipe by circumferential winding of preimpregnated fiberglass fabric. Courtesy
of CRISM.

Fig. 1.20. Geodesic winding of a pressure vessel.
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Fig. 1.21. A body of a small plane made by filament winding. Courtesy of CRISM.

pressure between the layers providing compaction of the material. Filament winding is the
most advantageous in manufacturing thin-walled shells of revolution though it can also
be used in building composite structures with more complicated shapes (Fig. 1.21).

Spatial macrostructure of the composite material that is specific for thick-walled and
solid members requiring fiber reinforcement in at least three directions (not lying in one
plane) can be formed by 3D braiding (with three interlaced yarns) or using such tex-
tile processes as weaving, knitting, or stitching. Spatial (3D, 4D, etc.) structures used in
carbon–carbon technology are assembled from thin carbon composite rods fixed in dif-
ferent directions. Such a structure that is prepared for carbonization and deposition of
a carbon matrix is shown in Fig. 1.22.

There are two specific manufacturing procedures that have an inverse sequence of the
basic processes described above, i.e., first, the macrostructure of the material is formed
and then the matrix is applied to fibers.

The first of these procedures is the aforementioned carbon–carbon technology that
involves chemical vapor deposition of a pyrolitic carbon matrix on preliminary assembled
and sometimes rather complicated structures made from dry carbon fabric. A carbon–
carbon shell made by this method is shown in Fig. 1.23.

The second procedure is the well-known resin transfer molding. Fabrication of a com-
posite part starts with a preform that is assembled in the internal cavity of a mold from dry
fabrics, tows, yarns, etc., and forms the macrostructure of a composite part. The shape of
this part is governed by the shape of the mold cavity into which liquid resin is transferred
under pressure through injection ports.

The basic processes described above are always accompanied by a thermal treatment
resulting in the solidification of the matrix. Heating is applied to cure thermosetting resins,
cooling is used to transfer thermoplastic, metal, and ceramic matrices to a solid phase,
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Fig. 1.22. A 4D spatial structure. Courtesy of CRISM.

Fig. 1.23. A carbon–carbon conical shell. Courtesy of CRISM.
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whereas a carbon matrix is made by pyrolisis. The final stages of the manufacturing
procedure involve removal of mandrels, molds, or other tooling and machining of a
composite part.

The fabrication processes are described in more detail elsewhere (e.g., Peters, 1998).
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Chapter 2

FUNDAMENTALS OF MECHANICS OF SOLIDS

The behavior of composite materials whose micro- and macrostructures are much more
complicated than those of traditional structural materials such as metals, concrete, and
plastics is nevertheless governed by the same general laws and principles of mechanics
whose brief description is given below.

2.1. Stresses

Consider a solid body referred by Cartesian coordinates as in Fig. 2.1. The body is fixed
at the part Su of the surface and loaded with body forces qv having coordinate components
qx , qy , and qz, and with surface tractions ps specified by coordinate components px , py ,
and pz. Surface tractions act on surface Sσ which is determined by its unit normal n with
coordinate components lx , ly , and lz that can be referred to as directional cosines of the
normal, i.e.,

lx = cos(n, x), ly = cos(n, y), lz = cos(n, z) (2.1)

Introduce some arbitrary cross section formally separating the upper part of the body
from its lower part. Assume that the interaction of these parts in the vicinity of some
point A can be simulated with some internal force per unit area or stress σ distributed
over this cross section according to some as yet unknown law. Since the mechanics
of solids is a phenomenological theory (see the closure of Section 1.1) we do not care
about the physical nature of stress, which is only a parameter of our model of the real
material (see Section 1.1) and, in contrast to forces F , has never been observed in physical
experiments. Stress is referred to the plane on which it acts and is usually decomposed
into three components – normal stress (σz in Fig. 2.1) and shear stresses (τzx and τzy

in Fig. 2.1). The subscript of the normal stress and the first subscript of the shear stress
indicate the plane on which the stresses act. For stresses shown in Fig. 2.1, this is the
plane whose normal is parallel to the z-axis. The second subscript of the shear stress shows
the axis along which the stress acts. If we single out a cubic element in the vicinity of
point A (see Fig. 2.1), we should apply stresses to all its planes as in Fig. 2.2 which also
shows notations and positive directions of all the stresses acting inside the body referred
by Cartesian coordinates.
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2.2. Equilibrium equations

Now suppose that the body in Fig. 2.1 is in a state of equilibrium. Then, we can write
equilibrium equations for any part of this body. In particular we can do this for an infinitely
small tetrahedron singled out in the vicinity of point B (see Fig. 2.1) in such a way that
one of its planes coincides with Sσ and the other three planes are coordinate planes of
the Cartesian frame. Internal and external forces acting on this tetrahedron are shown
in Fig. 2.3. The equilibrium equation corresponding, for example, to the x-axis can be
written as

−σxdSx − τyxdSy − τzxdSz + pxdSσ + qxdV = 0

Here, dSσ and dV are the elements of the body surface and volume, whereas dSx = dSσ lx ,
dSy = dSσ ly , and dSz = dSσ lz. When the tetrahedron is infinitely diminished, the
term including dV , which is of the order of the cube of the linear dimensions, can be
neglected in comparison with terms containing dS, which is of the order of the square of
the linear dimensions. The resulting equation is

σxlx + τyxly + τzxlz = px (x, y, z) (2.2)

The symbol (x, y, z), which is widely used in this chapter, denotes permutation with
the aid of which we can write two more equations corresponding to the other two axes
changing x for y, y for z, and z for x.

Consider now the equilibrium of an arbitrary finite part C of the body (see Fig. 2.1).
If we single this part out of the body, we should apply to it body forces qv and surface
tractions pi whose coordinate components px , py , and pz can be expressed, obviously,
by Eq. (2.2) in terms of stresses acting inside the volume C. Because the sum of the
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Fig. 2.3. Forces acting on an elementary tetrahedron.
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components corresponding, for example, to the x-axis must be equal to zero, we have

∫∫∫

v

qxdv +
∫∫

s

pxds = 0

where v and s are the volume and the surface area of the part of the body under
consideration. Substituting px from Eq. (2.2) we get

∫∫

s

(σxlx + τyxly + τzxlz)ds +
∫∫∫

v

qxdv = 0 (x, y, z) (2.3)

Thus, we have three integral equilibrium equations, Eq. (2.3), which are valid for any
finite part of the body. To convert them into the corresponding differential equations, we
use Green’s integral transformation

∫∫

s

(fxlx + fyly + fzlz)ds =
∫∫∫

v

(
∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z

)
dv (2.4)

which is valid for any three continuous, finite, and single-valued functions f (x, y, z) and
allows us to transform a surface integral into a volume one. Taking fx = σx , fy = τyx ,
and fz = τzx in Eq. (2.4) and using Eq. (2.3), we arrive at

∫∫∫

v

(
∂σx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ qx

)
dv = 0 (x, y, z)

Since these equations hold true for whatever the part of the solid may be, provided only
that it is within the solid, they yield

∂σx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ qx = 0 (x, y, z) (2.5)

Thus, we have arrived at three differential equilibrium equations that could also be derived
from the equilibrium conditions for the infinitesimal element shown in Fig. 2.2.

However, in order to keep part C of the body in Fig. 2.1 in equilibrium the sum of
the moments of all the forces applied to this part about any axis must be zero. By taking
moments about the z-axis we get the following integral equation

∫∫∫

v

(qxy − qyx)dv +
∫∫

s

(pxy − pyx)ds = 0

Using again Eqs. (2.2), (2.4), and taking into account Eq. (2.5) we finally arrive at the
symmetry conditions for shear stresses, i.e.,

τxy = τyx (x, y, z) (2.6)
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So, we have three equilibrium equations, Eq. (2.5) which include six unknown stresses
σx, σy, σz and τxy, τxz, τyz.

Eq. (2.2) can be treated as force boundary conditions for the stressed state of a solid.

2.3. Stress transformation

Consider the transformation of a stress system from one Cartesian coordinate frame
to another. Suppose that the elementary tetrahedron shown in Fig. 2.3 is located inside
the body and that point B coincides with the origin 0 of Cartesian coordinates x, y,
and z in Fig. 2.1. Then, the oblique plane of the tetrahedron can be treated as a coor-
dinate plane z′ = 0 of a new coordinate frame x′, y′, z′ shown in Fig. 2.4 and such
that the normal element to the oblique plane coincides with the z′-axis, whereas axes
x′ and y′ are located in this plane. Component px of the surface traction in Eq. (2.2)
can be treated now as the projection on the x-axis of stress σ acting on plane z′ = 0.
Then, Eq. (2.2) can be presented in the following explicit form specifying projections of
stress σ

px = σxlz′x + τyxlz′y + τzxlz′z

py = σylz′y + τzylz′z + τxylz′x

pz = σzlz′z + τxzlz′x + τyzlz′y

(2.7)

Y

Z

X

Y′(ly ′x, ly ′y, ly ′z) X′(lx′x, lx′y, lx′z)

Z′(lz′x, lz′y, lz′z)

s (px , py , pz)

tz′y′
tz′x′

sz′

Fig. 2.4. Rotation of the coordinate frame.
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Here, l are directional cosines of axis z′ with respect to axes x, y, and z (see Fig. 2.4 in
which the corresponding cosines of axes x′ and y′ are also presented). The normal stress
σz′ can be found now as

σz′ = pxlz′x + pylz′y + pzlz′z

= σxl
2
z′x + σyl

2
z′y + σzl

2
z′z + 2τxylz′xlz′y + 2τxzlz′xlz′z + 2τyzlz′ylz′z (x′, y′, z′)

(2.8)

The final result was obtained with the aid of Eqs. (2.6) and (2.7). Changing x′ for y′, y′
for z′, and z′ for x′, i.e., performing the appropriate permutation in Eq. (2.8) we can write
similar expressions for σx′ and σy′ .

The shear stress in the new coordinates is

τz′x′ = pxlx′x + pylx′y + pzlx′z

= σxlx′xlz′x + σylx′ylz′y + σzlx′zlz′z + τxy(lx′xlz′y + lx′ylz′x)

+ τxz(lx′xlz′z + lx′zlz′x) + τyz(lx′ylz′z + lx′xlz′y) (x′, y′, z′) (2.9)

Permutation yields expressions for τx′y′ and τy′z′ .

2.4. Principal stresses

The foregoing equations, Eqs. (2.8) and (2.9), demonstrate stress transformations under
rotation of a coordinate frame. There exists a special position of this frame in which the
shear stresses acting on the coordinate planes vanish. Such coordinate axes are called the
principal axes, and the normal stresses that act on the corresponding coordinate planes
are referred to as the principal stresses.

To determine the principal stresses, assume that coordinates x′, y′, and z′, in Fig. 2.4 are
the principal coordinates. Then, according to the aforementioned property of the principal
coordinates, we should take τz′x′ = τz′y′ = 0 and σz′ = σ for the plane z′ = 0. This means
that px = σ lz′x, py = σ lz′y , and pz = σ lz′z in Eqs. (2.7). Introducing new notations for
directional cosines of the principal axis, i.e., taking lz′x = lpx, lz′y = lpy, lz′z = lpz we
have from Eqs. (2.7)

(σx − σ)lpx + τxylpy + τxzlpz = 0

τxylpx + (σy − σ)lpy + τyzlpz = 0

τxzlpx + τyzlpy + (σz − σ)lpz = 0

(2.10)

These equations were transformed with the aid of symmetry conditions for shear stresses,
Eq. (2.6). For some specified point of the body in the vicinity of which the principal
stresses are determined in terms of stresses referred to some fixed coordinate frame x, y, z
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and known, Eqs. (2.10) comprise a homogeneous system of linear algebraic equations.
Formally, this system always has the trivial solution, i.e., lpx = lpy = lpz = 0 which we
can ignore because directional cosines should satisfy an evident condition following from
Eqs. (2.1), i.e.,

l2
px + l2

py + l2
pz = 1 (2.11)

So, we need to find a nonzero solution of Eqs. (2.10) which can exist if the determinant
of the set is zero. This condition yields the following cubic equation for σ

σ 3 − I1σ
2 − I2σ − I3 = 0 (2.12)

in which

I1 = σx + σy + σz

I2 = −σxσy − σxσz − σyσz + τ 2
xy + τ 2

xz + τ 2
yz

I3 = σxσyσz + 2τxyτxzτyz − σxτ
2
yz − σyτ

2
xz − σzτ

2
xy

(2.13)

are invariant characteristics (invariants) of the stressed state. This means that if we refer
the body to any Cartesian coordinate frame with directional cosines specified by Eqs. (2.1),
take the origin of this frame at some arbitrary point and change stresses in Eqs. (2.13)
with the aid of Eqs. (2.8) and (2.9), the values of I1, I2, I3 at this point will be the same
for all such coordinate frames. Eq. (2.12) has three real roots that specify three principal
stresses σ1, σ2, and σ3. There is a convention according to which σ1 ≥ σ2 ≥ σ3, i.e.,
σ1 is the maximum principal stress and σ3 is the minimum one. If, for example, the
roots of Eq. (2.12) are 100 MPa, −200 MPa, and 0, then σ1 = 100 MPa, σ2 = 0, and
σ3 = −200 MPa.

To demonstrate the procedure, consider a particular state of stress relevant to several
applications, namely, pure shear in the xy-plane. Let a thin square plate referred to coordi-
nates x, y, z be loaded with shear stresses τ uniformly distributed over the plate thickness
and along the edges (see Fig. 2.5).

One principal plane is evident – it is plane z = 0, which is free of shear stresses. To find
the other two planes, we should take in Eqs. (2.13) σx = σy = σz = 0, τxz = τyz = 0,

and τxy = τ . Then, Eq. (2.12) takes the form

σ 3 − τ 2σ = 0

The first root of this equation gives σ = 0 and corresponds to plane z = 0. The other two
roots are σ = ±τ . Thus, we have three principal stresses, i.e., σ1 = τ, σ2 = 0, σ3 = −τ.

To find the planes corresponding to σ1 and σ3 we should put lpz = 0, substitute σ = ±τ

into Eqs. (2.10), write them for the state of stress under study, and supplement this set
with Eq. (2.11). The final equations allowing us to find lpx and lpy are

±τ lpx + τ lpy = 0, l2
px + l2

py = 1
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Fig. 2.5. Principal stresses under pure shear.

Solution of these equations yields lpx = ±1/
√

2 and lpy = ±1/
√

2, and means that
principal planes (or principal axes) make 45◦ angles with axes x and y. Principal stresses
and principal coordinates x1, x2, and x3 are shown in Fig. 2.5.

2.5. Displacements and strains

For any point of a solid (e.g., L or M in Fig. 2.1) coordinate component displacements
ux, uy, and uz can be introduced which specify the point displacements in the directions
of coordinate axes.

Consider an arbitrary infinitely small element LM characterized with its directional
cosines

lx = dx

ds
, ly = dy

ds
, lz = dz

ds
(2.14)

The positions of this element before and after deformation are shown in Fig. 2.6. Suppose
that the displacements of the point L are ux, uy, and uz. Then, the displacements of the
point M should be

u(1)
x = ux + dux, u(1)

y = uy + duy, u(1)
z = uz + duz (2.15)

Since ux , uy , and uz are continuous functions of x, y, z, we get

dux = ∂ux

∂x
dx + ∂uy

∂y
dy + ∂uz

∂z
dz (x, y, z) (2.16)
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Fig. 2.6. Displacement of an infinitesimal linear element.

It follows from Fig. 2.6 and Eqs. (2.15) and (2.16) that,

dx1 = dx + u(1)
x − ux = dx + dux =

(
1 + ∂ux

∂x

)
dx + ∂ux

∂y
dy + ∂ux

∂z
dz (x, y, z)

(2.17)

Introduce the strain of element LM as

ε = ds1 − ds

ds
(2.18)

After some rearrangements we arrive at

ε + 1

2
ε2 = 1

2

[(
ds1

ds

)2

− 1

]

where

ds2
1 = (dx1)

2 + (dy1)
2 + (dz1)

2

Substituting for dx1, dy1, dz1 in their expressions from Eq. (2.17) and taking into account
Eqs. (2.14), we finally get

ε + 1

2
ε2 = εxxl

2
x + εyyl

2
y + εzzl

2
z + εxylx ly + εxzlx lz + εyzly lz (2.19)
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where

εxx = ∂ux

∂x
+ 1

2

[(
∂ux

∂x

)2

+
(

∂uy

∂x

)2

+
(

∂uz

∂x

)2
]

(x, y, z)

εxy = ∂ux

∂y
+ ∂uy

∂x
+ ∂ux

∂x

∂ux

∂y
+ ∂uy

∂x

∂uy

∂y
+ ∂uz

∂x

∂uz

∂y
(x, y, z)

(2.20)

Assuming that the strain is small, we can neglect the second term in the left-hand side of
Eq. (2.19). Moreover, we further suppose that the displacements are continuous functions
that change rather slowly with the change of coordinates. This allows us to neglect the
products of derivatives in Eqs. (2.20). As a result, we arrive at the following equation

ε = εxl
2
x + εyl

2
y + εzl

2
z + γxylxly + γxzlx lz + γyzly lz (2.21)

in which

εx = ∂ux

∂x
, εy = ∂uy

∂y
, εz = ∂uz

∂z

γxy = ∂ux

∂y
+ ∂uy

∂x
, γxz = ∂ux

∂z
+ ∂uz

∂x
, γyz = ∂uy

∂z
+ ∂uz

∂y

(2.22)

can be treated as linear strain–displacement equations. Taking lx = 1, ly = lz = 0 in
Eqs. (2.22), i.e., directing element LM in Fig. 2.6 along the x-axis we can readily see
that εx is the strain along the same x-axis. Similar reasoning shows that εy and εz in
Eqs. (2.22) are strains in the directions of axes y and z. To find out the physical meaning
of strains γ in Eqs. (2.22), consider two orthogonal line elements LM and LN and find
angle α that they make with each other after deformation (see Fig. 2.6), i.e.,

cos α = dx1dx′
1 + dy1dy′

1 + dz1dz′
1

ds1ds′
1

(2.23)

Here, dx1, dy1, and dz1 are specified with Eq. (2.17), ds1 can be found from Eq. (2.18), and

dx′
1 =

(
1 + ∂ux

∂x

)
dx′ + ∂ux

∂y
dy′ + ∂ux

∂z
dz′ (x, y, z)

ds′
1 = ds′(1 + ε′)

(2.24)

Introduce directional cosines of element LN as

l′x = dx′

ds′ , l′y = dy′

ds′ , l′z = dz′

ds′ (2.25)
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Since elements LM and LN are orthogonal, we have

lx l
′
x + ly l

′
y + lzl

′
z = 0

Using Eqs. (2.14), (2.18), (2.24)–(2.26) and introducing the shear strain γ as the difference
between angles M1L1N1 and MLN, i.e., as

γ = π

2
− α

we can write Eq. (2.23) in the following form

sin γ = 1

(1 + ε)(1 + ε′)

[
2(εxxlx l

′
x + εyyly l

′
y + εzzlzl

′
z) + εxy(lx l

′
y + l′xly)

+ εxz(lx l
′
z + l′xlz) + εyz(ly l

′
z + l′ylz)

]
(2.26)

Linear approximation of Eq. (2.26) similar to Eq. (2.21) yields

γ = 2(εxlx l
′
x + εylyl

′
y + εzlzl

′
z) + γxy(lx l

′
y + l′xly) + γxz(lx l

′
z + l′xlz)

+ γyz(ly l
′
z + l′ylz) (2.27)

Here, εx, εy, εz and γxy, γxz, γyz components are determined with Eqs. (2.22). If we
now direct element LM along the x-axis and element LN along the y-axis putting
lx = 1, ly = lz = 0 and l′y = 1, l′x = l′z = 0, Eq. (2.27) yields γ = γxy . Thus,
γxy, γxz, and γyz are shear strains that are equal to the changes of angles between axes
x and y, x and z, y and z, respectively.

2.6. Transformation of small strains

Consider small strains in Eqs. (2.22) and study their transformation under rotation of
the coordinate frame. Suppose that x′, y′, z′ in Fig. 2.4 form a new coordinate frame
rotated with respect to original frame x, y, z. Since Eqs. (2.22) are valid for any Cartesian
coordinate frame, we have

εx′ = ∂ux′
∂x′ , γx′y′ = ∂ux′

∂y′ + ∂uy′
∂x′ (x, y, z) (2.28)

Here, ux′ , uy′ , and uz′ are displacements along the axes x′, y′, z′ which can be related to
displacements ux, uy , and uz of the same point by the following linear equations

ux′ = uxlx′x + uylx′y + uzlx′z (x, y, z) (2.29)
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Similar relations can be written for the derivatives of displacement with respect to variables
x′, y′, z′ and x, y, z, i.e.,

∂u

∂x′ = ∂u

∂x
lx′x + ∂u

∂y
lx′y + ∂u

∂z
lx′z (x, y, z) (2.30)

Substituting displacements, Eq. (2.29), into Eqs. (2.28), and transforming to variables x,
y, z with the aid of Eqs. (2.30), and taking into account Eqs. (2.22), we arrive at

εx′ = εxl
2
x′x + εyl

2
x′y + εzl

2
x′z + γxylx′xlx′y + γxzlx′xlx′z + γyzlx′ylx′z (x, y, z)

γx′y′ = 2εxlx′xly′x + 2εylx′yly′y + 2εzlx′zly′z + γxy(lx′xly′y + lx′yly′x) (2.31)

+ γxz(lx′xly′z + lx′zly′x) + γyz(lx′yly′z + lx′zly′y) (x, y, z)

These strain transformations are similar to the stress transformations determined by
Eqs. (2.8) and (2.9).

2.7. Compatibility equations

Consider strain–displacement equations, Eqs. (2.22), and try to determine displacements
ux , uy , and uz in terms of strains εx , εy , εz and γxy , γxz γyz. As can be seen, there are six
equations containing only three unknown displacements. In the general case, such a set
of equations is not consistent, and some compatibility conditions should be imposed on
the strains to provide the existence of a solution. To derive these conditions, decompose
derivatives of the displacements as follows

∂ux

∂x
= εx,

∂ux

∂y
= 1

2
γxy − ωz,

∂ux

∂z
= 1

2
γxz + ωy (x, y, z) (2.32)

Here

ωz = 1

2

(
∂uy

∂x
− ∂ux

∂y

)
(x, y, z) (2.33)

is the angle of rotation of a body element (such as the cubic element shown in Fig. 2.1)
around the z-axis. Three Eqs. (2.32) including one and the same displacement ux allow
us to construct three couples of mixed second-order derivatives of ux with respect to x

and y or y and x, x and z or z and x, y and z or z and y. As long as the sequence
of differentiation does not influence the result and since there are two other groups of
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equations in Eqs. (2.32), we arrive at nine compatibility conditions that can be presented as

∂ωx

∂x
= 1

2

(
∂γxz

∂y
− ∂γxy

∂z

)
(x, y, z)

∂ωx

∂y
= 1

2

∂γyz

∂y
− ∂εy

∂z
(x, y, z),

∂ωx

∂z
= −1

2

∂γyz

∂z
+ ∂εz

∂y
(x, y, z)

(2.34)

These equations are similar to Eqs. (2.32), i.e., they allow us to determine rotation angles
only if some compatibility conditions are valid. These conditions compose the set of
compatibility equations for strains and have the following final form

kxy(ε, γ ) = 0, rx(ε, γ ) = 0 (x, y, z) (2.35)

where

kxy(ε, γ ) = ∂2εx

∂y2
+ ∂2εy

∂x2
− ∂2γxy

∂x∂y
(x, y, z)

rx(ε, γ ) = ∂2εx

∂y∂z
− 1

2

∂
∂x

(
∂γxy

∂z
+ ∂γxz

∂y
− ∂γyz

∂x

)
(x, y, z)

(2.36)

If strains εx, εy, εz and γxy, γxz, γyz satisfy Eqs. (2.35), we can find rotation angles
ωx, ωy, ωz integrating Eqs. (2.34) and then determine displacements ux, uy, uz integrating
Eqs. (2.32).

The six compatibility equations, Eqs. (2.35), derived formally as compatibility condi-
tions for Eqs. (2.32), have a simple physical meaning. Suppose that we have a continuous
solid as shown in Fig. 2.1 and divide it into a set of pieces that perfectly match each
other. Now, apply some strains to each of these pieces. Obviously, for arbitrary strains,
the deformed pieces cannot be assembled into a continuous deformed solid. This will
happen only under the condition that the strains satisfy Eqs. (2.35). However, even if the
strains do not satisfy Eqs. (2.35), we can assume that the solid is continuous but in a more
general Riemannian (curved) space rather than in traditional Euclidean space in which the
solid existed before the deformation (Vasiliev and Gurdal, 1999). Then, six quantities k

and r in Eqs. (2.36), being nonzero, specify curvatures of the Riemannian space caused by
small strains ε and γ . The compatibility equations, Eqs. (2.35), require these curvatures
to be equal to zero which means that the solid should remain in the Euclidean space under
deformation.

2.8. Admissible static and kinematic fields

In solid mechanics, we introduce static field variables which are stresses and kinematic
field variables which are displacements and strains.
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The static field is said to be statically admissible if the stresses satisfy equilibrium
equations, Eq. (2.5), and are in equilibrium with surface tractions on the body surface Sσ

where these tractions are given (see Fig. 2.1), i.e., if Eq. (2.2) are satisfied on Sσ .
The kinematic field is referred to as kinematically admissible if displacements and

strains are linked by strain–displacement equations, Eqs. (2.22), and displacements satisfy
kinematic boundary conditions on the surface Su where displacements are prescribed (see
Fig. 2.1).

Actual stresses and displacements belong, naturally, to the corresponding admissi-
ble fields though actual stresses must in addition provide admissible displacements,
whereas actual displacements should be associated with admissible stresses. Mutual cor-
respondence between static and kinematic variables is established through the so-called
constitutive equations that are considered in the next section.

2.9. Constitutive equations for an elastic solid

Consider a solid loaded with body and surface forces as in Fig. 2.1. These forces
induce some stresses, displacements, and strains that compose the fields of actual static
and kinematic variables. Introduce some infinitesimal additional displacements dux , duy ,
and duz such that they belong to a kinematically admissible field. This means that there
exist equations that are similar to Eqs. (2.22), i.e.,

dεx = ∂
∂x

(dux), dγxy = ∂
∂y

(dux) + ∂
∂x

(duy) (x, y, z) (2.37)

and specify additional strains.
Since additional displacements are infinitely small, we can assume that external forces

do not change under such variation of the displacements (here we do not consider special
cases in which external forces depend on displacements of the points at which these forces
are applied). Then we can calculate the work performed by the forces by multiplying forces
by the corresponding increments of the displacements and writing the total work of body
forces and surface tractions as

dW =
∫∫∫

V

(qxdux + qyduy + qzduz)dV +
∫∫

S

(pxdux + pyduy + pzduz)dS

(2.38)

Here, V and S are the body volume and external surface of the body in Fig. 2.1. Actu-
ally, we must write the surface integral in Eq. (2.38) only for the surface Sσ on which
the forces are given. However, since the increments of the displacements belong to a
kinematically admissible field, they are equal to zero on Su, and the integral can be
written for the whole surface of the body. To proceed, we express px , py , and pz in
terms of stresses with the aid of Eq. (2.2) and transform the surface integral into a
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volume one using Eq. (2.4). For the sake of brevity, consider only x-components of
forces and displacement in Eq. (2.38). We have in several steps

∫∫∫

V

qxdux +
∫∫

S

pxduxds =
∫∫∫

V

qxdux +
∫∫

S

(σxlx + τyxly + τzxlz)duxdS

=
∫∫∫

V

[
qxdux + ∂

∂x
(σxdux) + ∂

∂y
(τyxdux) + ∂

∂z
(τzxdux)

]
dV

=
∫∫∫

V

[(
qx + ∂σx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
dux + σx

∂
∂x

(dux)

+τyx

∂
∂y

(dux) + τzx

∂
∂z

(dux)

]
dV

=
∫∫∫

V

[
σxdεx + τxy

∂
∂y

(dux) + τxz

∂
∂z

(dux)

]
dV

The last transformation step has been performed with due regard to Eqs. (2.5), (2.6), and
(2.37). Finally, Eq. (2.38) takes the form

dW =
∫∫∫

V

(σxdεx + σydεy + σzdεz + τxydγxy + τxzdγxz + τyzdγyz)dV (2.39)

Since the right-hand side of this equation includes only internal variables, i.e., stresses
and strains, we can conclude that the foregoing formal rearrangement actually allows us
to transform the work of external forces into the work of internal forces or into potential
energy accumulated in the body. For further derivation, let us introduce for the sake
of brevity new notations for coordinates and use subscripts 1, 2, 3 instead of x, y, z,
respectively. We also use the following notations for stresses and strains

σx = σ11, σy = σ22, σz = σ33

τxy = σ12 = σ21, τxz = σ13 = σ31, τyz = σ23 = σ32

εx = ε11, εy = ε22, εz = ε33

γxy = 2ε12 = 2ε21, γxz = 2ε13 = 2ε31, γyz = 2ε23 = 2ε32

Then, Eq. (2.39) can be written as

dW =
∫∫∫

V

dUdV (2.40)
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where

dU = σij dεij (2.41)

This form of equation implies summation over repeated subscripts i, j = 1, 2, 3.
It should be emphasized that by now dU is just a symbol, which does not mean that

there exists function U and that dU is its differential. This meaning for dU is correct only
if we restrict ourselves to the consideration of an elastic material described in Section 1.1.
For such a material, the difference between the body potential energy corresponding to
some initial state A and the energy corresponding to some other state B does not depend
on the way used to transform the body from state A to state B. In other words, the
integral

∫ B

A

σij dεij = U(B) − U(A)

does not depend on the path of integration. This means that the element of integration is
a complete differential of function U depending on εij , i.e., that

dU = ∂U

∂εij

dεij

Comparing this result with Eq. (2.41) we arrive at Green’s formulas

σij = ∂U

∂εij

(2.42)

that are valid for any elastic material. The function U(εij ) can be referred to as specific
strain energy (energy accumulated in the unit of body volume) or elastic potential. The
potential U can be expanded into a Taylor series with respect to strains, i.e.,

U(εij ) = s0 + sij εij + 1

2
sijklεij εkl + · · · (2.43)

where

s0 = U(εij = 0), sij = ∂U

∂εij

∣∣∣∣
εij =0

, sijkl = ∂2U

∂εij ∂εkl

∣∣∣∣
εij =0, εkl=0

(2.44)

Assume that for the initial state of the body, corresponding to zero external forces, we
have εij = 0, σij = 0, U = 0. Then, s0 = 0 and sij = 0 according to Eq. (2.42).
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For small strains, we can neglect high-order terms in Eq. (2.43) and restrict ourselves to
the first system of nonzero terms taking

U = 1

2
sijklεij εkl

Then, Eq. (2.42) yields

σij = sijklεkl (2.45)

These linear equations correspond to a linear elastic model of the material (see Section 1.1)
and, in general, include 34 = 81 coefficients of s. However, because σij = σji and
εij = εji , we have the following equations sijkl = sjikl = sij lk which reduce the number
of independent coefficients to 36. Then, taking into account that the mixed derivative spec-
ifying coefficients sijkl in Eqs. (2.44) does not depend on the sequence of differentiation,
we get 15 equations sijkl = sklij (ij �= kl). Thus, Eq. (2.45) contains only 21 independent
coefficients. Returning to coordinates x, y, z, we can write Eq. (2.45) in the following
explicit form

{σ } = [S] {ε} (2.46)

where

{σ } =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τxy

τxz

τyz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

{ε} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γxy

γxz

γyz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66

⎤
⎥⎥⎥⎥⎥⎥⎦
(2.47)

Eq. (2.46) are referred to as constitutive equations. They relate stresses and strains
through 21 stiffness coefficients Sij = Sji that specify material mechanical properties
within the framework of a linear elastic model of the material. The inverse form of
Eq. (2.46) is

{ε} = [C] {σ } (2.48)
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Strains are expressed in terms of stresses via the matrix of compliance coefficients that
can be written as

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ex

−νxy

Ey

−νxz

Ez

ηx, xy

Gxy

ηx, xz

Gxz

ηx, yz

Gyz

−νyx

Ex

1

Ey

−νyz

Ez

ηy, xy

Gxy

ηy, xz

Gxz

ηy, yz

Gyz

−νzx

Ex

−νzy

Ey

1

Ez

ηz, xy

Gxy

ηz, xz

Gxz

ηz, yz

Gyz

ηxy, x

Ex

ηxy, y

Ey

ηxy, z

Ez

1

Gxy

λxy, xz

Gxz

λxy, yz

Gyz

ηxz, x

Ex

ηxz, y

Ey

ηxz, z

Ez

λxz, xy

Gxy

1

Gxz

λxz, yz

Gyz

ηyz, x

Ex

ηyz, y

Ey

ηyz, z

Ez

λyz, xy

Gxy

λyz, xz

Gxz

1

Gyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.49)

This matrix is symmetric, and the following 15 symmetry conditions are valid

νxy

Ey

= νyx

Ex

,
νxz

Ez

= νzx

Ex

,
νyz

Ez

= νzy

Ey

ηx, xy

Gxy

= ηxy, x

Ex

,
ηx, xz

Gxz

= ηxz, x

Ex

,
ηx, yz

Gyz

= ηyz, x

Ex

ηy, xy

Gxy

= ηxy, y

Ey

,
ηy, xz

Gxz

= ηxz, y

Ey

,
ηy, yz

Gyz

= ηyz, y

Ey

ηz, xy

Gxy

= ηxy, z

Ez

,
ηz, xz

Gxz

= ηxz, z

Ey

,
ηz, yz

Gyz

= ηyz, z

Ez

λxy, xz

Gxz

= λxz, xy

Gxy

,
λxy, yz

Gyz

= λyz, xy

Gxy

,
λxz, yz

Gyz

= λyz, xz

Gxz

(2.50)

The compliance matrix, Eq. (2.49), includes the following engineering constants:
Ex is the modulus of elasticity in the x-direction (x, y, z); νxy the Poisson’s ratio that

determines the strain in the x-direction induced by normal stress acting in the orthog-
onal y-direction (x, y, z); Gxy the shear modulus in the xy-plane (x, y, z); ηx, yz the
extension–shear coupling coefficient indicating normal strain in the x-direction induced
by shear stress acting in the yz-plane (x, y, z); ηxy, z the shear–extension coupling coef-
ficient characterizing shear strain in the xy-plane caused by normal stress acting in the
z-direction (x, y, z); and λxy, yz the shear–shear coupling coefficient that determines the
shear strain taking place in the xy-plane under shear stress acting in the yz-plane (x, y, z).
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Having constitutive equations, Eq. (2.46), we can now write the finite expression for
elastic potential, U . Substituting stresses into Eq. (2.41) and integrating it with respect
to strains, we get the following equation after some transformation with the aid of
Eq. (2.46)

U = 1

2
(σxεx + σyεy + σzεz + τxyγxy + τxzγxz + τyzγyz) (2.51)

The potential energy of the body can be found as

W =
∫∫∫

V

UdV (2.52)

The compliance matrix, Eq. (2.49), containing 21 independent elastic constants cor-
responds to the general case of material anisotropy that practically never occurs in real
materials. The most common particular case corresponds to an orthotropic (orthogonally
anisotropic) material which has three orthogonal orthotropy (coordinate) axes such that
normal stresses acting along these axes do not induce shear strains, whereas shear stresses
acting in coordinate planes do not cause normal strains in the direction of these axes. As
a result, the stiffness and compliance matrices become uncoupled with respect to normal
stresses and strains on one side and shear stresses and strains on the other side. For the
case of an orthotropic material, with axes x, y, and z coinciding with the orthotropy axes,
Eq. (2.49) takes the form

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ex

−νxy

Ey

−νxz

Ez

0 0 0

−νyx

Ex

1

Ey

−νyz

Ez

0 0 0

−νzx

Ex

−νzy

Ey

1

Ez

0 0 0

0 0 0
1

Gxy

0 0

0 0 0 0
1

Gxz

0

0 0 0 0 0
1

Gyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.53)

Symmetry conditions, Eqs. (2.50), reduce to

νxyEx = νyxEy, νxzEx = νzxEz, νyzEy = νzyEz

These equations have a simple physical meaning. The higher the stiffness, demonstrated
by the material in some direction, the less is the strain in this direction under loading
in the orthogonal directions. Taking into account the foregoing symmetry conditions,
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we can conclude that an orthotropic material is characterized with nine independent elastic
constants.

The simplest material model corresponds to the isotropic material, whose mechanical
properties are the same for any direction or plane of loading. As a result, subscripts
indicating coordinate directions and planes in Eq. (2.53) disappear, and it reduces to

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E
− ν

E
− ν

E
0 0 0

− ν

E

1

E
− ν

E
0 0 0

− ν

E
− ν

E

1

E
0 0 0

0 0 0
1

G
0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.54)

The compliance matrix, Eq. (2.54), contains three elastic constants, E, G, and ν. However,
only two of them are independent. To show this, consider the case of pure shear for a plate
discussed in Section 2.4 (see Fig. 2.5). For this problem, σx = σy = σz = τxz = τyz = 0,
τxy = τ and Eqs. (2.48) and (2.54) yield

γxy = τ

G

The specific strain energy in Eq. (2.51) can be written as

U = 1

2
τxyγxy = 1

2G
τ 2 (2.55)

However, from Section 2.4, pure shear can be reduced to tension and compression in the
principal directions (see Fig. 2.5). For these directions, Eqs. (2.48) and (2.54) give

ε1 = σ1

E
− ν

σ3

E
, ε3 = σ3

E
− ν

σ1

E

Here σ1 = τ, σ3 = −τ and the remaining stresses are equal to zero. The strain energy,
Eq. (2.51), can be presented now in the following form

U = 1

2
(σ1ε1 + σ3ε3) = 1 + ν

E
τ 2 (2.56)

Since Eqs. (2.55) and (2.56) specify one and the same quantity, we get

G = E

2(1 + ν)
(2.57)



Chapter 2. Fundamentals of mechanics of solids 51

Thus, an isotropic material is characterized within the linear elastic model with two
independent elastic constants – E and ν.

2.10. Formulations of the problem

The problem of Solid Mechanics is reduced, as follows from the foregoing derivation, to
a set of 15 equations, i.e., three equilibrium equations, Eqs. (2.5), six strain–displacement
equations, Eqs. (2.22), and six constitutive equations, Eq. (2.46) or (2.48). This set of
equations is complete, i.e., it contains 15 unknown functions among which there are six
stresses, six strains, and three displacements. Solution of a particular problem should
satisfy three boundary conditions that can be written at any point of the body surface.
Static or force boundary conditions have the form of Eqs. (2.2), whereas kinematic or
displacement boundary conditions are imposed on three displacement functions.

There exist two classical formulations of the problem – displacement formulation and
stress formulation.

According to the displacement formulation, we first determine displacements ux , uy ,
and uz from three equilibrium equations, Eqs. (2.5), written in terms of displacements
with the aid of constitutive equations, Eq. (2.46), and strain–displacement equations,
Eqs. (2.22). Having found the displacements, we use Eqs. (2.22) and (2.46) to determine
strains and stresses.

The stress formulation is much less straightforward than the displacement one. Indeed,
we have only three equilibrium equations, Eqs. (2.5), for six stresses which means that
the problem of solid mechanics is not, in general, a statically determinate problem. All
possible solutions of the equilibrium equations (obviously, there is an infinite number
of them because the number of equations is less than the number of unknown stresses)
satisfying force boundary conditions (solutions that do not satisfy them, obviously, do not
belong to the problem under study) comprise the class of statically admissible stress fields
(see Section 2.8). Suppose that we have one of such stress fields. Now, we can readily find
strains using constitutive equations, Eq. (2.48), but to determine displacements, we need
to integrate a set of six strain–displacement equations, Eqs. (2.22) which having only three
unknown displacements are, in general, not compatible. As shown in Section 2.7, this set
can be integrated if strains satisfy six compatibility equations, Eqs. (2.35). We can write
these equations in terms of stresses using constitutive equations, Eq. (2.48). Thus, the
stress formulation of the problem is reduced to a set of nine equations consisting of three
equilibrium equations and six compatibility equations in terms of stresses. At first glance it
looks like this set is not consistent because it includes only six unknown stresses. However,
this is not the case because of the special properties of the compatibility equations. As
was noted in Section 2.7, these equations provide the existence of Euclidean space inside
the deformed body. But this space automatically exists if strains can be expressed in
terms of three continuous displacements as in Eqs. (2.22). Indeed, substituting strains,
Eqs. (2.22), into the compatibility equations, Eqs. (2.35), we can readily see that they are
identically satisfied for any three functions ux , uy , and uz. This means that the solution
of six Eqs. (2.35) including six strains is not unique. The uniqueness is ensured by three
equilibrium equations.



52 Advanced mechanics of composite materials

2.11. Variational principles

The equations of Solid Mechanics considered in the previous sections can be also
derived from variational principles that establish the energy criteria according to which
the actual state of the body under loading can be singled out of a system of admissible
states (see Section 2.8).

Consider a linear elastic solid and introduce two mutually independent fields of
variables: a statically admissible stress field σ ′

x , σ ′
y , σ ′

z, τ ′
xy , τ ′

xz, τ ′
yz and a kinematically

admissible field characterized with displacements u′′
x , u′′

y , u′′
z and corresponding strains

ε′′
x , ε′′

y , ε′′
z , γ ′′

xy , γ ′′
xz, γ ′′

yz. To construct the energy criteria allowing us to distinguish the
actual variables from admissible ones, consider the following integral similar to the energy
integral in Eqs. (2.51) and (2.52)

I =
∫∫∫

V

(σ ′
xε

′′
x + σ ′

yε
′′
y + σ ′

zε
′′
z + τ ′

xyγ
′′
xy + τ ′

xzγ
′′
xz + τ ′

yzγ
′′
yz)dV (2.58)

Here, in accordance with the definition of a kinematically admissible field (see
Section 2.8),

ε′′
x = ∂u′′

x

∂x
, γ ′′

xy = ∂u′′
x

∂y
+ ∂u′′

y

∂x
(x, y, z) (2.59)

Substituting Eqs. (2.59) into Eq. (2.58) and using the following evident relationships
between the derivatives

σ ′
x

∂u′′
x

∂x
= ∂

∂x
(σ ′

xu
′′
x) − u′′

x

∂σ ′
x

∂x
, τ ′

xy

∂u′′
x

∂y
= ∂

∂y
(τ ′

xyu
′′
x) − u′′

x

∂τ ′
xy

∂y
etc.,

we arrive at

I =
∫∫∫

V

[
∂

∂x
(σ ′

xu
′′
x + τ ′

xyu
′′
y + τ ′

xzu
′′
z ) + ∂

∂y
(τ ′

xyu
′′
x + σ ′

yu
′′
y + τ ′

yzu
′′
z )

+ ∂
∂z

(τ ′
xzu

′′
x + τ ′

yzu
′′
y + σ ′

zu
′′
z ) −

(
∂σ ′

x

∂x
+ ∂τ ′

xy

∂y
+ ∂τ ′

xz

∂z

)
u′′

x

−
(

∂σ ′
y

∂y
+ ∂τ ′

xy

∂x
+ ∂τ ′

yz

∂z

)
u′′

y −
(

∂σ ′
z

∂z
+ ∂τ ′

xz

∂x
+ ∂τ ′

yz

∂y

)
u′′

z

]
dV (2.60)

Applying Green’s integral transformation, Eq. (2.4), to the first three terms under the inte-
gral and taking into account that statically admissible stresses should satisfy equilibrium
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equations, Eqs. (2.5), (2.6), and force boundary conditions, Eq. (2.2), we obtain from
Eqs. (2.58) and (2.60)

∫∫∫

V

(σ ′
xε

′′
x + σ ′

yε
′′
y + σ ′

zε
′′
z + τ ′

xyγ
′′
xy + τ ′

xzγ
′′
xz + τ ′

yzγ
′′
yz)dV

=
∫∫

S

(pxu
′′
x + pyu

′′
y + pzu

′′
z )dS +

∫∫∫

V

(qxu
′′
x + qyu

′′
y + qzu

′′
z )dV (2.61)

For actual stresses, strains, and displacements, Eq. (2.61) reduces to the following equation

∫∫∫

V

(σxεx + σyεy + σzεz + τxyγxy + τxzγxz + τyzγyz)dV

=
∫∫

S

(pxux + pyuy + pzuz)dS +
∫∫∫

V

(qxux + qyuy + qzuz)dV (2.62)

known as Clapeyron’s theorem.

2.11.1. Principle of minimum total potential energy

This principle allows us to distinguish the actual displacement field of the body from
kinematically admissible fields. To derive it, assume that the stresses in Eq. (2.61) are
actual stresses, i.e., σ ′ = σ, τ ′ = τ , whereas the displacements and the corresponding
strains differ from the actual values by small kinematically admissible variations, i.e.,
u′′ = u + δu, ε′′ = ε + δε, γ ′′ = γ + δγ . Substituting these expressions into Eq. (2.61)
and subtracting Eq. (2.62) from the resulting equation, we arrive at

∫∫∫

V

(σxδεx + σyδεy + σzδεz + τxyδγxy + τxzδγxz + τyzδγyz)dV

=
∫∫

S

(pxδux + pyδuy + pzδuz)dS +
∫∫∫

V

(qxδux + qyδuy + qzδuz)dV

Assume that under small variation of displacements and strains belonging to the kinemat-
ically admissible fields the surface tractions and body forces do not change. Then, we can
write the foregoing result in the following form

δWε − δA = 0 (2.63)
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Here

δWε =
∫∫∫

V

(σxδεx + σyδεy + σzδεz + τxyδγxy + τxzδγxz + τyzδγyz)dV (2.64)

is the variation of the strain energy (internal potential energy of an elastic solid) associated
with small kinematically admissible variations of strains and

A =
∫∫

S

(pxux + pyuy + pzuz)dS +
∫∫∫

V

(qxux + qyuy + qzuz)dV (2.65)

can be formally treated as work performed by surface tractions and body forces on the
actual displacements. Expressing stresses in Eq. (2.64) in terms of strains with the aid of
the constitutive equations, Eq. (2.46), and integrating, we can determine Wε, which is the
body strain energy written in terms of strains. The quantity T = Wε − A is referred to
as the total potential energy of the body. This name historically came from problems in
which external forces had a potential function F = −A so that T = Wε +F was the sum
of internal and external potentials, i.e., the total potential function. Then, the condition in
Eq. (2.63) reduces to

δT = 0 (2.66)

which means that T has a stationary (actually, minimum) value under small admissible
variation of displacements in the vicinity of actual displacements. Thus, we arrive at the
following variational principle of minimum total potential energy: the actual displacement
field, in contrast to all kinematically admissible fields, delivers the minimum value of
the body total potential energy. This principle is a variational form of the displacement
formulation of the problem discussed in Section 2.10. As can be shown, the variational
equations ensuring the minimum value of the total potential energy of the body coincide
with the equilibrium equations written in terms of displacements.

2.11.2. Principle of minimum strain energy

This principle is valid for a linear elastic body and establishes the criterion according to
which the actual stress field can be singled out of all statically admissible fields. Suppose
that displacements and strains in Eq. (2.61) are actual, i.e., u′′ = u, ε′′ = ε, γ ′′ = γ,

whereas stresses differ from the actual values by small statically admissible variations, i.e.,
σ ′ = σ + δσ , τ ′ = τ + δτ . Substituting these expressions in Eq. (2.61) and subtracting
Eq. (2.62) for the actual state, we get

δWσ = 0 (2.67)
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where

δWσ =
∫∫∫

V

(εxδσx + εyδσy + εzδσz + γxyδτxy + γxzδτxz + γyzδτyz)dV (2.68)

is the variation of the strain energy associated with the variation of stresses. Expressing
strains in terms of stresses with the aid of constitutive equations, Eq. (2.48), and
integrating, we can determine Wσ , which is the body strain energy written in terms of
stresses. As before, Eq. (2.67) indicates that strain energy, Wσ , has a stationary (in fact,
minimum) value under admissible variation of stresses. As a result, we arrive at the
following variational principle of minimum strain energy: the actual stress field, in contrast
to all statically admissible fields, delivers the minimum value of the body strain energy.
This principle is a variational form of the stress formulation of the problem considered in
Section 2.10. As can be shown, the variational equations providing the minimum value of
the strain energy are compatibility equations written in terms of stresses. It is important
that the stress variation in Eq. (2.68) should be performed within the statically admissible
field, i.e., within stresses that satisfy equilibrium equations and force boundary conditions.

2.11.3. Mixed variational principles

The two variational principles described above imply variations with respect to either
displacements only or stresses only. There exist also the so-called mixed variational prin-
ciples in which variation is performed with respect to both kinematic and static variables.
The first principle from this group follows from the principle of minimum total potential
energy considered in Section 2.11.1. Let us expand the class of admissible kinematic vari-
ables and introduce displacements that are continuous functions satisfying displacement
boundary conditions and strains that are not related to these displacements by strain–
displacement equations, Eqs. (2.22). Then we can apply the principle of minimum total
potential energy performing a conditional minimization of the total potential energy and
introduce Eqs. (2.22) as additional constraints imposed on strains and displacements with
the aid of Lagrange’s multipliers. Using stresses as these multipliers we can construct the
following augmented function

TL = Wε − A +
∫∫∫

V

[
σx

(
∂ux

∂x
− εx

)
+ σy

(
∂uy

∂y
− εy

)
+ σz

(
∂uz

∂z
− εz

)

+ τxy

(
∂ux

∂y
+ ∂uy

∂x
− γxy

)
+ τxz

(
∂ux

∂z
+ ∂uz

∂x
− γxz

)

+ τyz

(
∂uy

∂z
+ ∂uz

∂y
− γyz

)]
dV

According to the initial principle, Eq. (2.66), δTL = 0. Variation of displacements yields,
as previously equilibrium equations, variation of stresses results in strain–displacement
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equations, and variation of strains gives constitutive equations (Wε should be expressed
in terms of strains).

The second form of the mixed variational principle can be derived from the principle of
minimum strain energy discussed in Section 2.11.2. Again expand the class of admissible
static fields and introduce stresses that satisfy force boundary conditions but do not satisfy
equilibrium equations, Eq. (2.5). Then, we can apply the principle of minimum strain
energy if we construct an augmented function adding Eqs. (2.5) as additional constraints.
Using displacements as Lagrange’s multipliers we obtain

WL = Wσ +
∫∫∫

V

[
ux

(
∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ qx

)

+ uy

(
∂σy

∂y
+ ∂τxy

∂x
+ ∂τyz

∂z
+ qy

)

+ uz

(
∂σz

∂z
+ ∂τxz

∂x
+ ∂τyz

∂y
+ qz

)]
dV

According to the original principle, Eq. (2.67), δWL = 0. The variation with respect to
stresses (Wσ should be expressed in terms of stresses) yields constitutive equations in
which strains are expressed in terms of displacements via strain–displacement equations,
Eqs. (2.22), whereas variation of displacements gives equilibrium equations.

The equations and principles considered in this chapter will be used in the following
chapters in the book for the analysis of the mechanics of composite materials.

2.12. Reference

Vasiliev, V.V. and Gurdal, Z. (1999). Optimal structural design. In Optimal Design (V.V. Vasiliev and Z. Gurdal
eds.). Technomic, Lancaster, pp. 1–29.



Chapter 3

MECHANICS OF A UNIDIRECTIONAL PLY

A ply or lamina is the simplest element of a composite material, an elementary layer
of unidirectional fibers in a matrix (see Fig. 3.1), formed when a unidirectional tape
impregnated with resin is placed onto the surface of the tool, thus providing the shape of
a composite part.

3.1. Ply architecture

As the tape consists of tows (bundles of fibers), the ply thickness (whose minimum
value is about 0.1 mm for modern composites) is much higher than the fiber diameter
(about 0.01 mm). In an actual ply, the fibers are randomly distributed, as in Fig. 3.2. Since
the actual distribution is not known and can hardly be predicted, some typical idealized
regular distributions, i.e., square (Fig. 3.3), hexagonal (Fig. 3.4), and layer-wise (Fig. 3.5),
are used for the analysis.

A composite ply is generally taken to consist of two constituents: fibers and a matrix
whose quantities in the materials are specified by volume, v, and mass, m, fractions

vf = Vf

Vc
, vm = Vm

Vc
(3.1)

mf = Mf

Mc
, mm = Mm

Mc
(3.2)

Here, V and M are volume and mass, whereas subscripts f, m, and c correspond to fibers,
matrix, and composite material, respectively. Since Vc = Vf + Vm and Mc = Mf + Mm,
we have

vf + vm = 1, mf + mm = 1 (3.3)

There exist the following relationships between volume and mass fractions

vf = ρc

ρf
mf , vm = ρc

ρm
mm (3.4)

57
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1

2

3

Fig. 3.1. A unidirectional ply.

Fig. 3.2. Actual fiber distribution in the cross-section of a ply (vf = 0.65).

where ρf , ρm, and ρc are the densities of fibers, the matrix, and the composite, respectively.
In analysis, volume fractions are used because they enter the stiffness coefficients for a ply,
whereas mass fractions are usually measured directly during processing or experimental
study of the fabricated material.

Two typical situations usually occur. The first situation implies that we know the mass
of fibers used to fabricate a composite part and the mass of the part itself. The mass of
fibers can be found if we weigh the spools with fibers before and after they are used or
calculate the total length of tows and multiply it by the tow tex-number that is the mass
in grams of a 1000-m-long tow. So, we know the values of Mf and Mc and can use the
first equations of Eqs. (3.2) and (3.4) to calculate vf .
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Fig. 3.3. Square fiber distribution in the cross-section of a ply (vf = 0.65).

Fig. 3.4. Hexagonal fiber distribution in the cross-section of a ply (vf = 0.65).
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Fig. 3.5. Layer-wise fiber distribution in the cross-section of a ply (vf = 0.65).

The second situation takes place if we have a sample of a composite material and know
the densities of the fibers and the matrix used for its fabrication. Then, we can find the
experimental value of material density, ρe

c , and use the following equation for theoretical
density

ρc = ρf vf + ρmvm (3.5)

Putting ρc = ρe
c and taking into account Eqs. (3.3), we obtain

vf = ρe
c − ρm

ρf − ρm
(3.6)

Consider, for example, a carbon–epoxy composite material with fibers AS4 and matrix
EPON DPL-862, for which ρf = 1.79 g/cm3 and ρm = 1.2 g/cm3. Let ρe

c = 1.56 g/cm3.
Then, Eq. (3.6) yields vf = 0.61.

This result is approximate because it ignores possible material porosity. To determine
the actual fiber fraction, we should remove the resin using matrix destruction, solvent
extraction, or burning the resin out in an oven. As a result, we get Mf , and having Mc,
can calculate mf and vf with the aid of Eqs. (3.2) and (3.4). Then we find ρc using
Eq. (3.5) and compare it with ρe

c . If ρc > ρe
c , the material includes voids whose volume

fraction (porosity) can be calculated using the following equation

vp = 1 − ρe
c

ρc
(3.7)
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Fig. 3.6. Ultimate fiber arrays for square (a), hexagonal (b), and layer-wise (c) fiber distributions.

For the carbon–epoxy composite material considered above as an example, assume that
the foregoing procedure results in mf = 0.72. Then, Eqs. (3.4), (3.5), and (3.7) give
vf = 0.63, ρc = 1.58 g/cm3, and vp = 0.013, respectively.

For real unidirectional composite materials, we normally have vf = 0.50−0.65. Lower
fiber volume content results in lower ply strength and stiffness under tension along the
fibers, whereas higher fiber content, close to the ultimate value, leads to reduction of the
ply strength under longitudinal compression and in-plane shear due to poor bonding of
the fibers.

Since the fibers usually have uniform circular cross-sections, there exists the ultimate
fiber volume fraction, vu

f , which is less than unity and depends on the fiber arrangement.
For typical arrangements shown in Figs. 3.3–3.5, the ultimate arrays are presented in
Fig. 3.6, and the corresponding ultimate fiber volume fractions are:

Square array vu
f = 1

d2

(
πd2

4

)
= π

4
= 0.785

Hexagonal array vu
f = 2

d2
√

3

(
πd2

4

)
= π

2
√

3
= 0.907

Layer-wise array vu
f = 1

d2

(
πd2

4

)
= π

4
= 0.785

3.2. Fiber–matrix interaction

3.2.1. Theoretical and actual strength

The most important property of advanced composite materials is associated with the
very high strength of a unidirectional ply, accompanied with relatively low density.
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This advantage of the material is provided mainly by the fibers. Correspondingly, a natural
question arises as to how such traditional lightweight materials such as glass or graphite,
which were never utilized as primary load-bearing structural materials, can be used to
make fibers with strength exceeding the strength of such traditional structural materials
as aluminum or steel (see Table 1.1). The general answer is well known: the strength of a
thin wire is usually much higher than the strength of the corresponding bulk material. This
is demonstrated in Fig. 3.7, showing that the wire strength increases as the wire diameter
is reduced.

In connection with this, two questions arise. First, what is the upper limit of strength
that can be predicted for an infinitely thin wire or fiber? And second, what is the nature
of this phenomenon?

The answer to the first question is given in The Physics of Solids. Consider an idealized
model of a solid, namely a regular system of atoms located as shown in Fig. 3.8 and find
the stress, σ , that destroys this system. The dependence of σ on atomic spacing as given
by The Physics of Solids is presented in Fig. 3.9. Point O of the curve corresponds to
the equilibrium of the unloaded system, whereas point U specifies the ultimate theoretical
stress, σ t . The initial tangent angle, α, characterizes the material’s modulus of elasticity, E.
To evaluate σ t , we can use the following sine approximation (Gilman, 1959) for the OU
segment of the curve

σ = σ t sin 2π
a − a0

a0

0

1

2

3

4

0.4 0.8 1.2 1.6

s, GPa

d, mm

Fig. 3.7. Dependence of high-carbon steel wire strength on the wire diameter.
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Fig. 3.8. Material model.

U

a
0

a0

st

a

s

Fig. 3.9. Atoms’ interaction curve ( ) and its sine approximation ( ).

Introducing strain

ε = a − a0

a0

we arrive at

σ = σ t sin 2πε
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Now, we can calculate the modulus as

E =
(

dσ

dε

)∣∣∣∣
ε=0

= 2πσ t

Thus,

σ t = E

2π
(3.8)

This equation yields a very high value for the theoretical strength. For example, for a
steel wire, σ t = 33.4 GPa. Until now, the highest strength reached in 2-µm-diameter
monocrystals of iron (whiskers) is about 12 GPa.

The model under study allows us to introduce another important characteristic of the
material. The specific energy that should be spent to destroy the material can be presented
in accordance with Fig. 3.9 as

2γ =
∫ ∞

a0

σ(a)da (3.9)

As material fracture results in the formation of two new free surfaces, γ can be referred
to as the specific surface energy (energy spent to form the surface of unit area).

The answer to the second question (why the fibers are stronger than the corresponding
bulk materials) was in fact given by Griffith (1920), whose results have formed the basis
of fracture mechanics.

Consider a fiber loaded in tension and having a thin circumferential crack as shown in
Fig. 3.10. The crack length, l, is much less than the fiber diameter, d.

For a linear elastic fiber, σ = Eε, and the elastic potential in Eq. (2.51) can be
presented as

U = 1

2
σε = σ 2

2E

When the crack appears, the strain energy is released in a material volume adjacent to
the crack. Suppose that this volume is comprised of a conical ring whose generating lines
are shown in Fig. 3.10 by dashed lines and heights are proportional to the crack length, l.
Then, the total released energy, Eq. (2.52), is

W = 1

2
kπ

σ 2

E
l2d (3.10)

where k is some constant coefficient of proportionality. On the other hand, the formation
of new surfaces consumes the energy

S = 2πγ ld (3.11)
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Fig. 3.10. A fiber with a crack.

where γ is the surface energy, Eq. (3.9). Now assume that the crack length is increased
by an infinitesimal increment, dl. Then, if for some value of acting stress, σ

dW

dl
>

dS

dl
(3.12)

the crack will propagate, and the fiber will fail. Substituting Eqs. (3.10) and (3.11) into
inequality (3.12) we arrive at

σ > σ c =
√

2γE

kl
(3.13)

The most important result that follows from this condition specifying some critical
stress, σc, beyond which the fiber with a crack cannot exist is the fact that σ c depends on
the absolute value of the crack length (not on the ratio l/d). Now, for a continuous fiber,
2l < d; so, the thinner the fiber, the smaller is the length of the crack that can exist in this
fiber and the higher is the critical stress, σ c. More rigorous analysis shows that, reducing
l to a in Fig. 3.8, we arrive at σ c = σ t .
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Consider, for example, glass fibers that are widely used as reinforcing elements in
composite materials and have been studied experimentally to support the fundamentals
of fracture mechanics (Griffith, 1920). The theoretical strength of glass, Eq. (3.8), is
about 14 GPa, whereas the actual strength of 1-mm-diameter glass fibers is only about
0.2 GPa, and for 5-mm-diameter fibers, this value is much lower (about 0.05 GPa). The
fact that such low actual strength is caused by surface cracks can be readily proved if
the fiber surface is smoothed by etching the fiber with acid. Then, the strength of 5-mm-
diameter fibers can be increased up to 2 GPa. If the fiber diameter is reduced by heating
and stretching the fibers to a diameter of about 0.0025 mm, the strength is increased to
6 GPa. Theoretical extrapolation of the experimental curve, showing the dependence of
the fiber strength on the fiber diameter for very small fiber diameters, yields σ = 11 GPa,
which is close to σ t = 14 GPa.

Thus, we arrive at the following conclusion, clarifying the nature of the high perfor-
mance of advanced composites and their place among modern structural materials.

The actual strength of advanced structural materials is much lower than their theoretical
strength. This difference is caused by defects in the material microstructure (e.g., crys-
talline structure) or macrocracks inside the material and on its surface. Using thin fibers,
we reduce the influence of cracks and thus increase the strength of materials reinforced
with these fibers. So, advanced composites comprise a special class of structural materials
in which we try to utilize the natural potential properties of the material, rather than the
possibilities of technology as we do developing high-strength alloys.

3.2.2. Statistical aspects of fiber strength

Fiber strength, being relatively high, is still less than the corresponding theoretical
strength, which means that fibers of advanced composites have microcracks or other
defects randomly distributed along the fiber length. This is supported by the fact that fiber
strength depends on the length of the tested fiber. The dependence of strength on length for
boron fibers (Mikelsons and Gutans, 1984) is shown in Fig. 3.11. The longer the fiber, the
higher the probability of a deleterious defect to exist within this length, and the lower the
fiber strength. The tensile strengths of fiber segments with the same length but taken from
different parts of a long continuous fiber, or from different fibers, also demonstrates the
strength deviation. A typical strength distribution for boron fibers is presented in Fig. 3.12.

The first important characteristic of the strength deviation is the strength scatter �σ =
σmax − σmin. For the case corresponding to Fig. 3.12, σmax = 4.2 GPa, σmin = 2 GPa,
and �σ = 2.2 GPa. To plot the diagram presented in Fig. 3.12, �σ is divided into a set
of increments, and a normalized number of fibers n = Nσ /N (Nσ is the number of fibers
failing at that stress within the increment, and N is the total number of tested fibers) is
calculated and shown on the vertical axis. Thus, the so-called frequency histogram can be
plotted. This histogram allows us to determine the mean value of the fiber strength as

σm = 1

N

N∑
i=1

σ i (3.14)
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68 Advanced mechanics of composite materials

and the strength dispersion as

dσ =
√√√√ 1

N − 1

N∑
i=1

(σm − σi)
2 (3.15)

The deviation of fiber strength is characterized by the coefficient of the strength variation,
which is presented as follows

rσ = dσ

σm
100% (3.16)

For the boron fibers under consideration, Eqs. (3.14)–(3.16) yield σm = 3.2 GPa, dσ =
0.4 GPa, and rσ = 12.5%.

To demonstrate the influence of fiber strength deviation on the strength of a unidi-
rectional ply, consider a bundle of fibers, i.e., a system of approximately parallel fibers
with different strength and slightly different lengths, as in Fig. 3.13. Typical stress–strain
diagrams for fibers tested under tension in a bundle are shown in Fig. 3.14 (Vasiliev and
Tarnopol’skii, 1990). As can be seen, the diagrams have two nonlinear segments. The
nonlinearity in the vicinity of zero stresses is associated with different lengths of fibers
in the bundles, whereas the nonlinear behavior of the bundle under stresses close to the
ultimate values is caused by fracture of the fibers with lower strength.

Useful qualitative results can be obtained if we consider model bundles consisting of
five fibers with different strengths. Five such bundles are presented in Table 3.1, showing
the normalized strength of each fiber. As can be seen, the deviation of fiber strength is
such that the mean strength, �σm = 1, is the same for all the bundles, whereas the variation
coefficient, rσ , changes from 31.6% for bundle No. 1 to zero for bundle No. 5. The last
row in the table shows the effective (observed) ultimate force, �F , for a bundle. Consider,
for example, the first bundle. When the force is increased to F = 3, the stresses in all the
fibers become σj = 0.6, and fiber No. 1 fails. After this happens, the force F = 3 is taken

L

j

Fig. 3.13. Tension of a bundle of fibers.
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Fig. 3.14. Stress–strain diagrams for bundles of carbon (1) and aramid (2) fibers.

Table 3.1
Strength of bundles consisting of fibers of different strengths.

Fiber number Bundle number

1 2 3 4 5

1 0.6 0.7 0.85 0.9 1.0
2 0.8 0.9 0.9 0.95 1.0
3 1.0 1.0 1.0 1.0 1.0
4 1.2 1.1 1.1 1.05 1.0
5 1.4 1.3 1.15 1.1 1.0

σm 1.0 1.0 1.0 1.0 1.0

rσ (%) 31.6 22.4 12.8 7.8 0

F 3.2 3.6 4.25 4.5 5.0

by four fibers, and σj = 0.75 (j = 2, 3, 4, 5). When the force reaches the value F = 3.2,
the stresses become σj = 0.8, and fiber No. 2 fails. After that, σj = 1.07 (j = 3, 4, 5).
This means that fiber No. 3 also fails at force F = 3.2. Then, for the two remaining fibers,
σ4 = σ5 = 1.6, and they also fail. Thus, �F = 3.2 for bundle No. 1. In a similar way,
�F can be calculated for the other bundles in the table. As can be seen, the lower the fiber
strength variation, the higher the �F , which reaches its maximum value, �F = 5, for bundle
No. 5, consisting of fibers of the same strength.

Table 3.2 demonstrates that strength variation can be more important than the mean
strength. In fact, while the mean strength, �σm, goes down for bundles No. 1–5, the
ultimate force, �F , increases. So, it can be better to have fibers with relatively low strength
and low strength variation rather than high-strength fibers with high strength variation.
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Table 3.2
Strength of bundles consisting of fibers of different strengths.

Fiber number Bundle number

1 2 3 4 5

1 0.6 0.7 0.85 0.9 0.95
2 0.8 0.9 0.9 0.85 0.95
3 1.0 1.2 1.1 1.0 0.95
4 1.6 1.4 1.15 1.05 0.95
5 3.0 1.6 1.4 1.1 0.95

σm 1.4 1.16 1.08 1.0 0.95

rσ (%) 95.0 66.0 22.0 7.8 0

F 3.2 3.6 4.25 4.5 4.75

3.2.3. Stress diffusion in fibers interacting through the matrix

The foregoing discussion concerned individual fibers or bundles of fibers that are not
joined together. This is not the case for composite materials in which the fibers are embed-
ded in the matrix material. Usually, the stiffness of the matrix is much lower than that of
fibers (see Table 1.1), and the matrix practically does not take the load applied in the fiber
direction. However, the fact that the fibers are bonded with the matrix even having rela-
tively low stiffness changes the mechanism of fiber interaction and considerably increases
their effective strength. To show this, the strength of dry fiber bundles can be compared
with the strength of the same bundles after they were impregnated with epoxy resin and
cured. The results are listed in Table 3.3. As can be seen, composite bundles in which
fibers are joined together by the matrix demonstrate significantly higher strength, and the
higher the fiber sensitivity to damage, the higher the difference in strength of dry and
composite bundles. The influence of a matrix on the variation of strength is even more
significant. As follows from Table 3.4, the variation coefficients of composite bundles are
lower by an order of magnitude than those of individual fibers.

To clarify the role of a matrix in composite materials, consider the simple model of
a unidirectional ply shown in Fig. 3.15 and apply the method of analysis developed for
stringer panels (Goodey, 1946).

Table 3.3
Strength of dry bundles and composite bundles.

Fibers Sensitivity of fibers
to damage

Ultimate tensile load F (N) Strength
increase (%)

Dry bundle Composite bundle

Carbon High 14 26 85.7
Glass Moderate 21 36 71.4
Aramid Low 66 84 27.3
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Table 3.4
Variation coefficients for fibers and unidirectional composites.

Fibers Variation coefficient rσ (%)

Fibers Composite

Glass 29 2.0
Carbon 30 4.7
Aramid 24 5.0
Boron 23 3.0

(n−1)
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Fig. 3.15. Model of a unidirectional ply with a broken fiber.

Let the ply of thickness δ consist of 2k fibers symmetrically distributed on both sides
of the central fiber n = 0. The fibers are joined with layers of the matrix material, and the
fiber volume fraction is

vf = af

a
, a = af + am (3.17)

Let the central fiber have a crack induced by the fiber damage or by the shortage of this
fiber’s strength. At a distance from the crack, the fibers are uniformly loaded with stress σ

(see Fig. 3.15).
First, derive the set of equations describing the ply under study. Since the stiffness of

the matrix is much less than that of fibers, we neglect the stress in the matrix acting in
the x direction and assume that the matrix works only in shear. We also assume that there
are no displacements in the y direction.
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Considering equilibrium of the last (n = k) fiber, an arbitrary fiber, and the central
(n = 0) fiber shown in Fig. 3.16, we arrive at the following equilibrium equations

af σ
′
k − τk = 0

af σ
′
n + τn+1 − τn = 0 (3.18)

af σ
′
0 + 2τ1 = 0

in which ( )
′ = d( ) /dx.

sk
k

k

n+1

n

n

sn

1

0 (s0 +
ds0

dx
dx)

(sk +
dsk

dx
dx)

(sn +
dsn

dx
dx)

s0

(c)

(b)

(a)

tn+1

tn

t1

t1

tk

Fig. 3.16. Stresses acting in fibers and matrix layers for the last (a), arbitrary n-th fiber (b), and the central
n = 0 fiber (c).
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Constitutive equations for fibers and the matrix can be written as

σn = Ef εn, τn = Gmγn (3.19)

Here, Ef is the fiber elasticity modulus and Gm is the matrix shear modulus, whereas

εn = u′
n (3.20)

is the fiber strain expressed in terms of the displacement in the x direction. The shear
strain in the matrix follows from Fig. 3.17, i.e.,

γn = 1

am
(un − un−1) (3.21)

This set of equations, Eqs. (3.18)–(3.21), is complete – it includes 10k + 3 equations and
contains the same number of unknown stresses, strains, and displacements.

Consider the boundary conditions. If there is no crack in the central fiber, the solution of
the problem is evident and has the form σn = σ, τn = 0. Assuming that the perturbation
of the stressed state induced by the crack vanishes at a distance from the crack, we
arrive at

σn(x → ∞) = σ, τn(x → ∞) = 0 (3.22)

As a result of the crack in the central fiber, we have

σ0(x = 0) = 0 (3.23)

For the remaining fibers, symmetry conditions yield

un(x = 0) = 0 (n = 1, 2, 3 . . . k) (3.24)

n un

am

n−1 un−1

g n

Fig. 3.17. Shear strain in the matrix layer.
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To solve the problem, we use the stress formulation and, in accordance with Section 2.10,
should consider equilibrium equations in conjunction with compatibility equations
expressed in terms of stresses.

First, transform equilibrium equations introducing the stress function, F(x), such that

τn = F ′
n, Fn(x → ∞) = 0 (3.25)

Substituting Eqs. (3.25) into the equilibrium equations, Eqs. (3.18), integrating them from
x to ∞, and taking into account Eqs. (3.22) and (3.25), we obtain

σk = σ + 1

af
Fk

σn = σ − 1

af
(Fn+1 − Fn) (3.26)

σ0 = σ − 2

af
F1

Compatibility equations follow from Eqs. (3.20) and (3.21), i.e.,

γ ′
n = 1

am
(εn − εn−1)

Using constitutive equations, Eqs. (3.19), we can write them in terms of stresses

τ ′
n = Gm

amEf
(σn − σn−1)

Substituting stresses from Eqs. (3.25) and (3.26), and introducing the dimensionless coor-
dinate x = x/a (see Fig. 3.15), we finally arrive at the following set of governing
equations:

F ′′
k − µ2(2Fk − Fk−1) = 0

F ′′
n + µ2(Fn+1 − 2Fn + Fn−1) = 0 (3.27)

F ′′
1 + µ2(F2 − 3F1) = 0

in which, in accordance with Eqs. (3.17),

µ2 = Gma2

af amEf
= Gm

vf (1 − vf )Ef
(3.28)

With due regard to the second equation in Eqs. (3.25), we can take the general solution
of Eqs. (3.27) in the form

Fn(x) = Ane
−λx (3.29)
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Substitution in Eqs. (3.27) yields:

Ak

(
2 − λ2

µ2

)
− Ak−1 = 0 (3.30)

An+1 − An

(
2 − λ2

µ2

)
+ An−1 = 0 (3.31)

A2 − A1

(
3 − λ2

µ2

)
= 0 (3.32)

The finite-difference equation, Eq. (3.31), can be reduced to the following form

An+1 − 2An cos θ + An−1 = 0 (3.33)

where

cos θ = 1 − λ2

2µ2
(3.34)

As can be readily checked, the solution for Eq. (3.33) is

An = B cos nθ + C sin nθ (3.35)

whereas Eq. (3.34) yields, after some transformation,

λ = 2µ sin
θ

2
(3.36)

Substituting the solution, Eq. (3.35), into Eq. (3.30), we obtain, after some transformation,

B = −C tan(k + 1)θ

Thus, Eq. (3.35) can be written as

An = C[sin nθ − cos nθ · tan(k + 1)θ ] (3.37)

Substituting Eq. (3.37) into Eq. (3.32) and performing rather cumbersome trigonometric
transformations, we arrive at the following equation for θ

tan kθ = − tan
θ

2
(3.38)

The periodic properties of the tangent function in Eq. (3.38) mean that it has k+1 different
roots corresponding to intersection points of the curves z = tan kθ and z = − tan θ/2.
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Fig. 3.18. Geometric interpretation of Eq. (3.38) for k = 4.

For the case k = 4, considered below as an example, these points are shown in Fig. 3.18.
Further transformation allows us to reduce Eq. (3.38) to

sin
2k + 1

2
θ = 0

from which it follows that

θi = 2πi

2k + 1
(i = 0, 1, 2 . . . k) (3.39)

The first root, θ0 = 0, corresponds to λ = 0 and Fn = const, i.e., to a ply without a crack
in the central fiber. So, Eq. (3.39) specifies k roots (i = 1, 2, 3, . . . , k) for the ply under
study, and the solution in Eqs. (3.29) and (3.37) can be generalized as

Fn(x) =
k∑

i=1

Ci[sin nθi − cos nθi · tan(k + 1)θi]e−λix (3.40)

where, in accordance with Eq. (3.36),

λi = 2µ sin
θi

2
(3.41)

and θi are determined by Eq. (3.39).
Using Eq. (3.38), we can transform Eq. (3.40) to the following final form

Fn(x) =
k∑

i=1

CiSn(θi)e
−λix (3.42)



Chapter 3. Mechanics of a unidirectional ply 77

where

Sn(θi) = sin(2n − 1/2)θi

cos(θi/2)
(3.43)

Applying Eqs. (3.25) and (3.26), we can find shear and normal stresses, i.e.,

τn(x) = −1

a

k∑
i=1

λiCiSn(θi)e
−λix (n = 1, 2, 3 . . . k) (3.44)

σk(x) = σ + 1

af

k∑
i=1

CiSk(θi)e
−λix (3.45)

σn(x) = σ − 1

af

k∑
i=1

Ci[Sn+1(θi) − Sn(θi)]e−λix (n = 1, 2, 3 . . . k − 1) (3.46)

σ0(x) = σ − 2

af

k∑
i=1

CiS1(θi)e
−λix (3.47)

Displacements can be determined with the aid of Eqs. (3.19), (3.21), and (3.25). Changing
x for x = x/a, we get

un(x) = am

aGm
F ′

n(x) + un−1(x)

For the first fiber (n = 1), we have

u1(x) = am

aGm
F ′

1(x) + u0(x)

Substituting Eq. (3.42) into these equations, we arrive at

un(x) = − am

aGm

k∑
i=1

CiλiSn(θi)e
−λix + un−1(x) (n = 2, 3, 4 . . . k) (3.48)

u1(x) = − am

aGm

k∑
i=1

CiλiS1(θi)e
−λix + u0(x) (3.49)

To determine coefficients Ci , we should apply the boundary conditions and write
Eqs. (3.23) and (3.24) in the explicit form using Eqs. (3.47)–(3.49). Substituting Sn from
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Eq. (3.43) and λi from Eq. (3.41), we have

k∑
i=1

Ci tan
θi

2
= σaf

2

k∑
i=1

Ci tan
θi

2
sin

2n − 1

2
θi = 0 (n = 2, 3, 4 . . . k)

k∑
i=1

Ci tan
θi

2
sin

θi

2
= aGm

2µam
u0(0)

Introducing new coefficients

Di = Ci tan
θi

2
(3.50)

we arrive at the final form of the boundary conditions, i.e.,

k∑
i=1

Di = σaf

2
(3.51)

k∑
i=1

Di sin
2n − 1

2
θi = 0 (n = 2, 3, 4 . . . k) (3.52)

k∑
i=1

Di sin
θi

2
= aGm

2µam
u0(0) (3.53)

This set contains k + 1 equations and includes k unknown coefficients Di and displace-
ment u0(0).

The foregoing set of equations allows us to obtain the exact analytical solution for any
number of fibers, k. To find this solution, some transformations are required. First, multiply
Eq. (3.52) by sin[(2n−1)θs/2] and sum up all the equations from n = 2 to n = k. Adding
Eq. (3.53) for n = 1 multiplied by sin(θs/2), we obtain

k∑
n=1

k∑
i=1

Di sin
2n − 1

2
θi sin

2n − 1

2
θs = aGm

2µam
u0(0) sin

θs

2

Now, the sequence of summation can be changed, as follows

k∑
i=1

Di

k∑
n=1

sin
2n − 1

2
θi sin

2n − 1

2
θs = aGm

2µam
u0(0) sin

θs

2
(3.54)
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Using the following known series

k∑
n=1

cos(2n − 1)θ = sin 2kθ

2 sin θ

we get in several steps

Ris =
k∑

n=1

sin
2n − 1

2
θi sin

2n − 1

2
θs

= 1

2

k∑
n=1

[
cos

2n − 1

2
(θi − θs) − cos

2n − 1

2
(θi + θs)

]

= 1

4

[
sin k(θi − θs)

sin 1
2 (θi − θs)

− sin k(θi + θs)

sin 1
2 (θi + θs)

]

= cos(θi/2) cos kθi cos(θs/2) cos kθs

cos θs − cos θi

(
tan kθi tan

θi

2
− tan kθs tan

θs

2

)

Using Eq. (3.38), we can conclude that Ris = 0 for i �= s. For the case i = s, we have

Rss =
k∑

n=1

sin2 2n − 1

2
θs = 1

2

k∑
n=1

[1 − cos(2n − 1)θs] = 1

2

(
k − sin 2kθs

2 sin θs

)

As a result, Eq. (3.54) yields

Ds = 2aGmu0(0) sin(θs/2) sin θs

µam(2k sin θs − sin 2kθs)
(s = 1, 2, 3 . . . k) (3.55)

Substituting these coefficients into Eq. (3.51), we can find u0(0), i.e.,

u0(0) = σµaf am

4aGm

(
k∑

i=1

sin(θi/2) sin θi

2k sin θi − sin 2kθi

)−1

(3.56)

Thus, the solution for the problem under study is specified by Eqs. (3.44)–(3.50), (3.55),
and (3.56).

For example, consider a carbon–epoxy ply with the following parameters: Ef =
250 GPa, Gm = 1 GPa, vf = 0.6, and k = 4. The distribution of the normalized stresses
in the fibers along the ply is shown in Fig. 3.19, whereas the same distribution of shear
stresses in the matrix is presented in Fig. 3.20. As can be seen, in the vicinity of the crack
in the central fiber, the load carried by this fiber is transmitted by shear through the matrix
to adjacent fibers. At a distance from the end of the fiber, greater than li , the stress in
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Fig. 3.19. Distribution of normal stresses along the fibers n = 0, 1, 2, 3, 4 for k = 4, Ef = 250 GPa, and
Gm = 1 GPa.
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Fig. 3.20. Distribution of shear stresses along the fibers for k = 4, Ef = 250 GPa, and Gm = 1 GPa.
Numbers of the matrix layers: n = 1; .......... n = 2; n = 3; n = 4.

the broken fiber becomes close to σ , and for x > li , the fiber behaves as if there is no
crack. A portion of the broken fiber corresponding to 0 ≤ x ≤ li is not fully effective in
resisting the applied load, and li = lia is referred to as the fiber ineffective length. Since
the fiber defects are randomly distributed along its length, their influence on the strength
of the ply is minimal if there are no other defects in the central and its adjacent fibers
within distance li from the crack. To minimize the probability of such defects, we should
minimize li , which depends on fiber and matrix stiffnesses and material microstructure.

To evaluate li , consider Eq. (3.47) and assume that σ0(x) becomes close to σ if

e−λi li = k
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where k is some small parameter indicating how close σ0(x) should be to σ to neglect the
difference between them (as a matter of fact, this difference vanishes only for x → ∞).
Taking approximately λi = 2µ in accordance with Eq. (3.41) and using Eq. (3.28)
specifying µ, we arrive at

li = −1

2
ln k ·

√
vf (1 − vf )

Ef

Gm

For k = 0.01, we get

li = 2.3a ·
√

vf (1 − vf )
Ef

Gm
(3.57)

For a typical carbon–epoxy ply (see Fig. 3.19) with a = 0.016 mm and vf = 0.6, Eq. (3.57)
yields 0.29 mm.

Thus, for real composites, the length li is very small, and this explains why a uni-
directional composite demonstrates much higher strength in longitudinal tension than a
dry bundle of fibers (see Table 3.3). Reducing Gm, i.e., the matrix stiffness, we increase
the fiber ineffective length, which becomes infinitely large for Gm → 0. This effect is
demonstrated in Fig. 3.21, which corresponds to a material whose matrix shear stiffness is
much lower than that in the foregoing example (see Fig. 3.19). For this case, li = 50, and
Eq. (3.57) yields li = 0.8 mm. The distribution of shear stresses in this material is shown
in Fig. 3.22. Experiments with unidirectional glass–epoxy composites (Ef = 86.8 GPa,
vf = 0.68, and a = 0.015) have shown that reduction of the matrix shear modulus from
1.08 GPa (li = 0.14 mm) to 0.037 GPa (li = 0.78 mm) results in reduction of longitudinal
tensile strength from 2010 MPa to 1290 MPa, i.e., by 35.8% (Chiao, 1979).

The ineffective length of a fiber in a matrix can be found experimentally by using the
single-fiber fragmentation test. For this test, a fiber is embedded in a matrix, and tensile
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Fig. 3.21. Distribution of normal stresses along the fibres n = 0, 1, 2, 3, 4 for k = 4, Ef = 250 GPa, and
Gm = 0.125 GPa.
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Fig. 3.22. Distribution of shear stresses along the fibers for k = 4, Ef = 250 GPa, and Gm = 0.125 GPa.
Numbers of the matrix layers: n = 1; .......... n = 2; n = 3; n = 4.

load is applied to the fiber through the matrix until the fiber breaks. Further loading results
in fiber fragmentation, and the length of the fiber fragment that no longer breaks is the fiber
ineffective length. For a carbon fiber in epoxy matrix, li = 0.3 mm (Fukuda et al., 1993).

According to the foregoing reasoning, it looks as though the stiffness of the matrix
should be as high as possible. However, there exists an upper limit of this stiffness.
Comparing Figs. 3.20 and 3.22, we can see that the higher the value of Gm, the higher is
the shear stress concentration in the matrix in the vicinity of the crack. If the maximum
shear stress, τm, acting in the matrix reaches its ultimate value, τm, delamination will
occur between the matrix layer and the fiber, and the matrix will not transfer the load
from the broken fiber to the adjacent ones. This maximum shear stress depends on the
fiber stiffness – the lower the fiber modulus, the higher the value of τm. This is shown
in Figs. 3.23 and 3.24, where shear stress distributions are presented for aramid fibers
(Ef = 150 GPa) and glass fibers (Ef = 90 GPa), respectively.
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Fig. 3.23. Distribution of shear stresses along the fibers for k = 4, Ef = 150 GPa, and Gm = 1 GPa. Numbers
of the matrix layers: n = 1; .......... n = 2; n = 3; n = 4.
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Fig. 3.24. Distribution of shear stresses along the fibers for k = 4, Ef = 90 GPa, and Gm = 1 GPa. Numbers
of the matrix layers: n = 1; .......... n = 2; n = 3; n = 4.

Finally, it should be emphasized that the plane model of a ply, considered in this section
(see Fig. 3.15), provides only qualitative results concerning fibers and matrix interaction.
In real materials, a broken fiber is surrounded by more than two fibers (at least 5 or 6,
as can be seen in Fig. 3.2), so the stress concentration in these fibers and in the matrix
is much lower than would be predicted by the foregoing analysis. For a hexagonal fiber
distribution (see Fig. 3.4), the stress concentration factor for the fibers does not exceed
1.105 (Tikhomirov and Yushanov, 1980). The effect of fiber breakage on tensile strength
of unidirectional composites has been studied by Abu-Farsakh et al. (2000).

3.2.4. Fracture toughness

Fracture toughness is a very important characteristic of a structural material indicating
resistance of a material to cracks and governed by the work needed to destroy a material
(work of fracture). It is well known that there exist brittle and ductile metal alloys, whose
typical stress–strain diagrams are shown in Fig. 3.25. Comparing alloys with one and
the same basic metal (e.g., steel alloys) we can see that while brittle alloys have higher
strength, σ , ductile alloys have higher ultimate elongation, ε, and, as a result, higher work
of fracture that is proportional to the area under the stress–strain diagram. Though brittle
materials have, in general, higher strength, they are sensitive to cracks that, by propagating,
can cause material failure for a stress that is much lower than the static strength. That is why
design engineers usually prefer ductile materials with lower strength but higher fracture
toughness. A typical dependence of fracture toughness on static strength for metals is
shown in Fig. 3.26 (line 1). For composites, this dependence is entirely different (line 2) –
a higher static strength corresponds usually to higher fracture toughness (Mileiko, 1982).
This phenomenon is demonstrated for a unidirectional boron–aluminum composite in
Fig. 3.27 (Mileiko, 1982). As can be seen, an increase in fiber volume fraction, vf , results
not only in higher static strength along the fibers (line 1), which is quite natural; it is also
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Fig. 3.25. Typical stress–strain diagrams of brittle (1) and ductile (2) metal alloys.
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Fig. 3.26. Typical relations between fracture toughness (K) and strength (σ) for metals (1) and composites (2).

accompanied by an increase in the work of fracture (curve 2) and, consequently, in an
increase in the material fatigue strength (bending under 106 cycles, line 3), which shows
a material’s sensitivity to cracks.

The reason for such a specific behavior in composite materials is associated with their
inhomogeneous microstructure, particularly, with fiber–matrix interfaces that restrain free
propagation of a crack (see Fig. 3.28). Of some importance are also fiber defects, local
delaminations and fiber strength deviation, which reduce the static strength but increase
the fracture toughness. As a result, by combining brittle fibers and brittle matrix, we
usually arrive at a composite material whose fracture toughness is higher than that of its
components.

Thus, we can conclude that composites comprise a new class of structural materials that
are entirely different from traditional man-made materials for several reasons. Firstly, using
thin fibers we make an attempt to utilize the high strength capacity that is naturally inherent
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Fig. 3.28. Mechanism of the crack stopping at the fiber–matrix interface.

in all the materials. Secondly, this utilization is provided by the matrix material, which
increases the fiber performance and makes it possible to manufacture composite structures.
Thirdly, combination of fibers and matrices can result in new qualities of composite
materials that are not inherent either in individual fibers or in the matrices, and are not
described by the laws of mechanical mixtures. For example, as noted above, brittle fiber
and matrix materials, both having low fracture toughness, can provide a heterogeneous
composite material with high fracture toughness.
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3.3. Micromechanics of a ply

Consider a unidirectional composite ply under the action of in-plane normal and shear
stresses as in Fig. 3.29. Since the normal stresses do not change the right angle between
axes 1 and 2, and shear stresses do not cause elongations in the longitudinal and transverse
directions 1 and 2, the ply is orthotropic, and the corresponding constitutive equations,
Eqs. (2.48) and (2.53), yield for the case under study

ε1 = σ1

E1
− ν12

σ2

E2

ε2 = σ2

E2
− ν21

σ1

E1
(3.58)

γ12 = 1

G12
τ12

The inverse form of these equations is

σ1 = �E1(ε1 + ν12ε2)

σ2 = �E2(ε2 + ν21ε1) (3.59)

τ12 = G12γ12

where

�E1,2 = E1,2

1 − ν12ν21

and the following symmetry condition is valid

E1ν12 = E2ν21 (3.60)
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Fig. 3.29. A unidirectional ply under in-plane loading.
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The constitutive equations, Eqs. (3.58) and (3.59), include effective or apparent longitudi-
nal, E1, transverse, E2, and shear, G12, moduli of a ply and Poisson’s ratios ν12 and ν21,
only one of which is independent, since the second one can be found from Eq. (3.60).

The elastic constants, E1, E2, G12, and ν12 or ν21, are governed by fibers and matrix
properties and the ply microstructure, i.e., the shape and size of the fibers’ cross-sections,
fiber volume fraction, distribution of fibers in the ply, etc. The task of micromechanics is
to derive the corresponding governing relationships, i.e., to establish the relation between
the properties of a unidirectional ply and those of its constituents.

To achieve this, we should first know the mechanical characteristics of the fibers and
the matrix material of the ply. To determine the matrix modulus, Em, its Poisson’s ratio,
νm, and strength, σm, conventional material testing specimens and testing procedures can
be used (see Figs. 3.30 and 3.31). The shear modulus, Gm, can be calculated with the
aid of Eq. (2.57). To find the fibers’ properties is a more complicated problem. There
exist several methods to test elementary fibers by bending or stretching 10–30-mm-long

Fig. 3.30. Specimens of matrix material.

Fig. 3.31. Testing of the matrix specimen.
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fiber segments. All of them are rather specific because of the small (about 0.01 mm) fiber
diameter, and, what is more important, the fiber properties in a composite material can be
different from those of individual fibers (see Section 3.2.3) with the preassigned lengths
provided by these methods.

It is worth knowing a fiber’s actual modulus and strength, not only for micromechanics
but also to check the fiber’s quality before they are used to fabricate a composite part.
For this purpose, a simple and reliable method has been developed to test the fibers in
simulated actual conditions. According to this method, a fine tow or an assembly of fibers
is carefully impregnated with resin, slightly stretched to avoid fiber waviness and cured
to provide a specimen of the so-called microcomposite material. The microcomposite
strand is wrapped over two discs as in Fig. 3.32, or fixed in special friction grips as in
Fig. 3.33, and tested under tension to determine the ultimate tensile force �F and strain ε

corresponding to some force F < �F . Then, the resin is removed by burning it out, and the
mass of fibers being divided by the strand length and fiber density yields the cross-sectional
area of fibers in the strand, Af . Fiber strength and modulus can be calculated as

σ f = �F
Af

, Ef = F

Af ε

Fig. 3.32. Testing of a microcomposite specimen wrapped over discs.
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Fig. 3.33. Testing of a microcomposite specimen gripped at the ends.

In addition to fiber and matrix mechanical properties, micromechanical analysis requires
information about the ply microstructure. Depending on the level of this information, there
exist micromechanical models of different levels of complexity.

The simplest or zero-order model of a ply is a monotropic model ignoring the strength
and stiffness of the matrix and assuming that the ply works only in the fiber direction.
Taking E2 = 0 and G12 = 0 in Eqs. (3.59) and putting ν12 = 0 in accordance with
Eq. (3.60), we arrive at the following equations describing this model

σ1 = E1ε1, σ2 = 0, τ12 = 0 (3.61)

in which E1 = Ef vf . Being very simple and too approximate to be used in the stress–
strain analysis of composite structures, Eqs. (3.61) are extremely efficient for the design
of optimal composite structures in which the loads are carried mainly by the fibers (see
Chapter 8).

First-order models allow for the matrix stiffness but require only one structural param-
eter to be specified – fiber volume fraction, vf . Since the fiber distribution in the ply is
not important for these models, the ply can be presented as a system of strips shown in
Fig. 3.34 and simulating fibers (shadowed areas) and matrix (light areas). The structural
parameters of the model can be expressed in terms of fiber and matrix volume fractions
only, i.e.,

af

a
= vf ,

am

a
= vm, vf + vm = 1 (3.62)
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Fig. 3.34. First-order model of a unidirectional ply.

Suppose that the model ply is under in-plane loading with some effective stresses σ1, σ2,
and τ12 as in Fig. 3.34, and find the corresponding effective elastic constants E1, E2, G12,
ν12, and ν21 entering Eqs. (3.58). Constitutive equations for isotropic fiber and matrix
strips can be written as

ε
f ,m
1 = 1

Ef ,m

(
σ

f ,m
1 − νf ,mσ

f ,m
2

)

ε
f ,m
2 = 1

Ef ,m

(
σ

f ,m
2 − νf ,mσ

f ,m
1

)
(3.63)

γ
f ,m
12 = 1

Gf ,m
τ

f ,m
12

Here, f and m indices correspond, as stated earlier, to fibers and matrices, respectively.
Let us make some assumptions concerning the model behavior. First, it is natural to

assume that effective stress resultant σ1a is distributed between fiber and matrix strips
and that the longitudinal strains of these strips are the same as the effective (apparent)
longitudinal strain of the ply, ε1, i.e.,

σ1a = σ f
1 af + σm

1 am (3.64)

εf
1 = εm

1 = ε1 (3.65)

Second, as can be seen in Fig. 3.34, under transverse tension, the stresses in the strips are
the same and equal to the effective stress σ2, whereas the ply elongation in the transverse
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direction is the sum of the fiber and matrix strips’ elongations, i.e.,

σ f
2 = σm

2 = σ2 (3.66)

�a = �af + �am (3.67)

Introducing transverse strains

ε2 = �a

a
, εf

2 = �af

af
, εm

2 = �am

am

we can write Eq. (3.67) in the following form

ε2a = εf
2af + εm

2 am (3.68)

The same assumptions can be made for shear stresses and strains, so that

τ f
12 = τm

12 = τ12 (3.69)

γ12a = γ f
12af + γ m

12am (3.70)

With due regard to Eqs. (3.65), (3.66), and (3.69), constitutive equations, Eqs. (3.63) can
be reduced to

ε1 = 1

Ef

(
σ f

1 − νf σ2

)
, ε1 = 1

Em

(
σm

1 − νmσ2
)

(3.71)

εf
2 = 1

Ef

(
σ2 − νf σ

f
1

)
, εm

2 = 1

Em

(
σ2 − νmσm

1

)
(3.72)

γ f
12 = 1

Gf
τ12, γ m

12 = 1

Gm
τ12 (3.73)

The first two equations, Eqs. (3.71), allow us to find longitudinal stresses, i.e.,

σ f
1 = Ef ε1 + νf σ2, σm

1 = Emε1 + νmσ2 (3.74)

Equilibrium equation, Eq. (3.64), can be rearranged with the aid of Eqs. (3.62) to the form

σ1 = σ f
1 vf + σm

1 vm (3.75)

Substituting Eqs. (3.74) into this equation, we can express ε1 in terms of σ1 and σ2.
Combining this result with the first constitutive equation in Eqs. (3.58), we arrive at

E1 = Ef vf + Emvm (3.76)

ν12

E2
= νf vf + νmvm

Ef vf + Emvm
(3.77)
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The first of these equations specifies the apparent longitudinal modulus of the ply and
corresponds to the so-called rule of mixtures, according to which the property of a com-
posite can be calculated as the sum of its constituent material properties, multiplied by
the corresponding volume fractions.

Now consider Eq. (3.67), which can be written as

ε2 = εf
2vf + εm

2 vm

Substituting strains εf
2 and εm

2 from Eqs. (3.72), stresses σ f
1 and σm

1 from Eqs. (3.74),
and ε1 from Eqs. (3.58) with due regard to Eqs. (3.76) and (3.77), we can express ε2 in
terms of σ1 and σ2. Comparing this expression with the second constitutive equation in
Eqs. (3.58), we get

1

E2
= vf

Ef
+ vm

Em
− vf vm(Ef νm − Emνf )

2

Ef Em(Ef vf + Emvm)
(3.78)

ν21

E1
= νf vf + νmvm

Ef vf + Emvm
(3.79)

Using Eqs. (3.76) and (3.79), we have

ν21 = νf vf + νmvm (3.80)

This result corresponds to the rule of mixtures. The second Poisson’s ratio can be found
from Eqs. (3.77) and (3.78). Finally, Eqs. (3.58), (3.70), and (3.73) yield the apparent
shear modulus

1

G12
= vf

Gf
+ vm

Gm
(3.81)

This expression can be derived from the rule of mixtures if we use compliance coefficients
instead of stiffnesses, as in Eq. (3.76).

Since the fiber modulus is typically many times greater than the matrix modulus,
Eqs. (3.76), (3.78), and (3.81) can be simplified, neglecting small terms, and presented in
the following approximate form

E1 = Ef vf , E2 = Em

vm
(
1 − ν2

m

) , G12 = Gm

vm

Only two of the foregoing expressions, namely Eq. (3.76) for E1 and Eq. (3.80) for ν21,
both following from the rule of mixtures, demonstrate good agreement with experimen-
tal results. Moreover, expressions analogous to Eqs. (3.76) and (3.80) follow practically
from the numerous studies based on different micromechanical models. Comparison of
predicted and experimental results is presented in Figs. 3.35–3.37, where theoretical
dependencies of normalized moduli on the fiber volume fraction are shown with lines.
The dots correspond to the test data for epoxy composites reinforced with different fibers
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Fig. 3.35. Dependence of the normalized longitudinal modulus on fiber volume fraction. zero-order
model, Eqs. (3.61); first-order model, Eqs. (3.76); • experimental data.
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Fig. 3.37. Dependence of the normalized in-plane shear modulus on fiber volume fraction. first-order
model, Eq. (3.81); .......... second-order model, Eq. (3.90); higher-order model (elasticity solution)

(Van Fo Fy, 1966); • experimental data.

that have been measured by the authors or taken from publications of Tarnopol’skii and
Roze (1969), Kondo and Aoki (1982), and Lee et al. (1995). As can be seen in Fig. 3.35,
not only the first-order model, Eq. (3.76), but also the zero-order model, Eqs. (3.61),
provide fair predictions for E1, whereas Figs. 3.36 and 3.37 for E2 and G12 call for
an improvement to the first-order model (the corresponding results are shown with solid
lines).

Second-order models allow for the fiber shape and distribution, but, in contrast to
higher-order models, ignore the complicated stressed state in the fibers and matrix under
loading of the ply as shown in Fig. 3.29. To demonstrate this approach, consider a layer-
wise fiber distribution (see Fig. 3.5) and assume that the fibers are absolutely rigid and
the matrix is in the simplest uniaxial stressed state under transverse tension. The typical
element of this model is shown in Fig. 3.38, from which we can obtain the following
equation

vf = πR2

2Ra
= πR

2a
(3.82)

Since 2R < a, vf < π/4 = 0.785. The equilibrium condition yields

2Rσ2 =
∫ R

−R

σmdx3 (3.83)
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Fig. 3.38. Microstructural model of the second order.

where x3 = R cos α and σ2 is some average transverse stress that induces average strain

ε2 = �a

a
(3.84)

such that the effective (apparent) transverse modulus is calculated as

E2 = σ2

ε2
(3.85)

The strain in the matrix can be determined with the aid of Fig. 3.38 and Eq. (3.84), i.e.,

εm = �a

l(α)
= �a

a − 2R sin α
= ε2

1 − λ

√
1 − (x3/R)2

(3.86)

where, in accordance with Eq. (3.82),

λ = 2R

a
= 4vf

π
(3.87)

Assuming that there is no strain in the matrix in the fiber direction and there is no stress
in the matrix in the x3 direction, we have

σm = Emεm

1 − ν2
m

(3.88)
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Substituting σ2 from Eq. (3.85) and σm, from Eq. (3.88) into Eq. (3.83) and using Eq. (3.86)
to express εm, we arrive at

E2 = Em

2R
(
1 − ν2

m

)
∫ R

−R

dx3

1 − λ

√
1 − x2

3

Calculating the integral and taking into account Eq. (3.87), we finally get

E2 = πEmr(λ)

2vf
(
1 − ν2

m

) (3.89)

where

r(λ) = 1√
1 − λ2

tan−1

√
1 + λ

1 − λ
− π

4

Similar derivation for an in-plane shear yields

G12 = πGm

2vf
r(λ) (3.90)

The dependencies of E2 and G12 on the fiber volume fraction corresponding to Eqs. (3.89)
and (3.90) are shown in Figs. 3.36 and 3.37 (dotted lines). As can be seen, the second-
order model of a ply provides better agreement with the experimental results than the
first-order model. This agreement can be further improved if we take a more realistic
microstructure of the material. Consider the actual microstructure shown in Fig. 3.2 and
single out a typical square element with size a as in Fig. 3.39. The dimension a should
provide the same fiber volume fraction for the element as for the material under study.
To calculate E2, we divide the element into a system of thin (h � a) strips parallel to

a

a

i

j

h

lij

x2

x3

Fig. 3.39. Typical structural element.
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axis x2. The ith strip is shown in Fig. 3.39. For each strip, we measure the lengths, lij,
of the matrix elements, the j th of which is shown in Fig. 3.39. Then, equations analogous
to Eqs. (3.83), (3.88), and (3.86) take the form

σ2a = h
∑

i

σ (i)
m , σ (i)

m = Em

1 − ν2
m

ε(i)
m , ε(i)

m = ε2a∑
j lij

and the final result is

E2 = Emh

1 − ν2
m

∑
i

⎛
⎝∑

j

lij

⎞
⎠

−1

where h = h/a, lij = lij/a. The second-order models considered above can be readily
generalized to account for the fiber transverse stiffness and matrix nonlinearity.

Numerous higher-order microstructural models and descriptive approaches have been
proposed, including
• analytical solutions in the problems of elasticity for an isotropic matrix having regular

inclusions – fibers or periodically spaced groups of fibers,
• numerical (finite element, finite difference methods) stress analysis of the matrix in the

vicinity of fibers,
• averaging of stress and strain fields for a media filled in with regularly or randomly

distributed fibers,
• asymptotic solutions of elasticity equations for inhomogeneous solids characterized by

a small microstructural parameter (fiber diameter),
• photoelasticity methods.
Exact elasticity solution for a periodical system of fibers embedded in an isotropic matrix
(Van Fo Fy (Vanin), 1966) is shown in Figs. 3.36 and 3.37. As can be seen, due to the
high scatter in experimental data, the higher-order model does not demonstrate significant
advantages with respect to elementary models.

Moreover, all the micromechanical models can hardly be used for practical analysis of
composite materials and structures. The reason for this is that irrespective of how rigorous
the micromechanical model is, it cannot describe sufficiently adequately real material
microstructure governed by a particular manufacturing process, taking into account voids,
microcracks, randomly damaged or misaligned fibers, and many other effects that cannot
be formally reflected in a mathematical model. As a result of this, micromechanical
models are mostly used for qualitative analysis, providing us with the understanding of
how material microstructural parameters affect the mechanical properties rather than with
quantitative information about these properties. Particularly, the foregoing analysis should
result in two main conclusions. First, the ply stiffness along the fibers is governed by the
fibers and linearly depends on the fiber volume fraction. Second, the ply stiffness across
the fibers and in shear is determined not only by the matrix (which is natural), but by the
fibers as well. Although the fibers do not take directly the load applied in the transverse
direction, they significantly increase the ply transverse stiffness (in comparison with the
stiffness of a pure matrix) acting as rigid inclusions in the matrix. Indeed, as can be seen
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in Fig. 3.34, the higher the fiber fraction, af , the lower the matrix fraction, am, for the
same a, and the higher stress σ2 should be applied to the ply to cause the same transverse
strain ε2 because only matrix strips are deformable in the transverse direction.

Due to the aforementioned limitations of micromechanics, only the basic models were
considered above. Historical overview of micromechanical approaches and more detailed
description of the corresponding results can be found elsewhere (Bogdanovich and Pastore,
1996; Jones, 1999).

To analyze the foregoing micromechanical models, we used the traditional approach
based on direct derivation and solution of the system of equilibrium, constitutive, and
strain–displacement equations. Alternatively, the same problems can be solved with the aid
of variational principles discussed in Section 2.11. In their application to micromechanics,
these principles allow us not only to determine the apparent stiffnesses of the ply, but also
to establish the upper and the lower bounds on them.

Consider, for example, the problem of transverse tension of a ply under the action of
some average stress σ2 (see Fig. 3.29) and apply the principle of minimum strain energy
(see Section 2.11.2). According to this principle, the actual stress field provides the value
of the body strain energy, which is equal to or less than that of any statically admissible
stress field. Equality takes place only if the admissible stress state coincides with the
actual one. Excluding this case, i.e., assuming that the class of admissible fields under
study does not contain the actual field, we can write the following strict inequality

W adm
σ > W act

σ (3.91)

For the problem of transverse tension, the fibers can be treated as absolutely rigid, and
only the matrix strain energy needs to be taken into account. We can also neglect the
energy of shear strain and consider the energy corresponding to normal strains only. With
due regard to these assumptions, we use Eqs. (2.51) and (2.52) to get

W =
∫ ∫ ∫

Vm

UdVm (3.92)

where Vm is the volume of the matrix, and

U = 1

2

(
σm

1 εm
1 + σm

2 εm
2 + σm

3 εm
3

)
(3.93)

To find energy Wσ entering inequality (3.91), we should express strains in terms of stresses
with the aid of constitutive equations, i.e.,

εm
1 = 1

Em

(
σm

1 − νmσm
2 − νmσm

3

)

εm
2 = 1

Em

(
σm

2 − νmσm
1 − νmσm

3

)
(3.94)

εm
3 = 1

Em

(
σm

3 − νmσm
1 − νmσm

2

)
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Consider first the actual stress state. Let the ply in Fig. 3.29 be loaded with stress σ2
inducing apparent strain ε2 such that

ε2 = σ2

Eact
2

(3.95)

Here, Eact
2 is the actual apparent modulus, which is not known. With due regard to

Eqs. (3.92) and (3.93) we get

W = 1

2
σ2ε2V, W act

σ = σ 2
2

2Eact
2

V (3.96)

where V is the volume of the material. As an admissible field, we can take any state of
stress that satisfies the equilibrium equations and force boundary conditions. Using the
simplest first-order model shown in Fig. 3.34, we assume that

σm
1 = σm

3 = 0, σm
2 = σ2

Then, Eqs. (3.92)–(3.94) yield

W adm
σ = σ 2

2

2Em
Vm (3.97)

Substituting Eqs. (3.96) and (3.97) into the inequality (3.91), we arrive at

Eact
2 > El

2

where, in accordance with Eqs. (3.62) and Fig. 3.34,

El
2 = EmV

Vm
= Em

vm

This result, specifying the lower bound on the apparent transverse modulus, follows from
Eq. (3.78) if we put Ef → ∞. Thus, the lower (solid) line in Fig. 3.36 represents actually
the lower bound on E2.

To derive the expression for the upper bound, we should use the principle of minimum
total potential energy (see Section 2.11.1), according to which (we again assume that the
admissible field does not include the actual state)

Tadm > Tact (3.98)

where T = Wε − A. Here, Wε is determined with Eq. (3.92), in which stresses are
expressed in terms of strains with the aid of Eqs. (3.94), and A, for the problem under
study, is the product of the force acting on the ply and the ply extension induced by this
force. Since the force is the resultant of stress σ2 (see Fig. 3.29), which induces strain ε2,
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and same for actual and admissible states, A is also the same for both states, and we can
present inequality (3.98) as

W adm
ε > W act

ε (3.99)

For the actual state, we can write equations similar to Eqs. (3.96), i.e.,

W = 1

2
σ2ε2V, W act

ε = 1

2
Eact

2 ε2
2V (3.100)

in which V = 2Ra in accordance with Fig. 3.38. For the admissible state, we use the
second-order model (see Fig. 3.38) and assume that

εm
1 = 0, εm

2 = εm, εm
3 = 0

where εm is the matrix strain specified by Eq. (3.86). Then, Eqs. (3.94) yield

σm
1 = µmσm

2 , σm
3 = µmσm

2 , σm
2 = Emεm

1 − 2νmµm
(3.101)

where

µm = νm(1 + νm)

1 − ν2
m

Substituting Eqs. (3.101) into Eq. (3.93) and performing integration in accordance with
Eq. (3.92), we have

W adm
ε = Emε2

2

1 − 2νmµm
·
∫ R

−R

dx3

∫ a
2 y

0

dx2

y2
= πRaEmε2

2r(λ)

2vf (1 − 2νmµm)
(3.102)

Here,

y = 1 − λ

√
1 −

(x3

R

)2

and r(λ) is given above; see also Eq. (3.89). Applying Eqs. (3.100) and (3.102) in
conjunction with inequality (3.99), we arrive at

Eact
2 < Eu

2

where

Eu
2 = πEm

2vf (1 − 2νmµm)

is the upper bound on E2 shown in Fig. 3.36 with a dashed curve.
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Taking statically and kinematically admissible stress and strain fields that are closer to
the actual states of stress and strain, one can increase El

2 and decrease Eu
2 , making the

difference between the bounds smaller (Hashin and Rosen, 1964).
It should be emphasized that the bounds established thus are not the bounds imposed

on the modulus of a real composite material but on the result of calculation corresponding
to the accepted material model. Indeed, we can return to the first-order model shown in
Fig. 3.34 and consider in-plane shear with stress τ12. As can be readily proved, the actual
stress–strain state of the matrix in this case is characterized with the following stresses
and strains

σm
1 = σm

2 = σm
3 = 0, τm

12 = τ12, τm
13 = τm

23 = 0,

εm
1 = εm

2 = εm
3 = 0, γ m

12 = γ12, γ m
13 = γ m

23 = 0
(3.103)

Assuming that the fibers are absolutely rigid and considering stresses and strains in
Eqs. (3.103) as statically and kinematically admissible, we can readily find that

Gact
12 = Gl

12 = Gu
12 = Gm

vm

Thus, we have found the exact solution, but its agreement with experimental data is rather
poor (see Fig. 3.37) because the material model is not sufficiently adequate.

As follows from the foregoing discussion, micromechanical analysis provides only
qualitative prediction of the ply stiffness. The same is true for ply strength. Although
the micromechanical approach, in principle, can be used for strength analysis (Skudra
et al., 1989), it provides mainly better understanding of the failure mechanism rather
than the values of the ultimate stresses for typical loading cases. For practical appli-
cations, these stresses are determined by experimental methods described in the next
section.

3.4. Mechanical properties of a ply under tension, shear, and compression

As is shown in Fig. 3.29, a ply can experience five types of elementary loading, i.e.,
• tension along the fibers,
• tension across the fibers,
• in-plane shear,
• compression along the fibers,
• compression across the fibers.
Actual mechanical properties of a ply under these loading cases are determined experi-
mentally by testing specially fabricated specimens. Since the thickness of an elementary
ply is very small (0.1–0.02 mm), the specimen usually consists of tens of plies having the
same fiber orientations.

Mechanical properties of composite materials depend on the processing method and
parameters. So, to obtain the adequate material characteristics that can be used for analysis
of structural elements, the specimens should be fabricated by the same processes that are
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Table 3.5
Typical properties of unidirectional composites.

Property Glass–
epoxy

Carbon–
epoxy

Carbon–
PEEK

Aramid–
epoxy

Boron–
epoxy

Boron–
Al

Carbon–
Carbon

Al2O3–
Al

Fiber volume fraction, vf 0.65 0.62 0.61 0.6 0.5 0.5 0.6 0.6
Density, ρ (g/cm3) 2.1 1.55 1.6 1.32 2.1 2.65 1.75 3.45
Longitudinal modulus,
E1 (GPa)

60 140 140 95 210 260 170 260

Transverse modulus, E2

(GPa)
13 11 10 5.1 19 140 19 150

Shear modulus, G12

(GPa)
3.4 5.5 5.1 1.8 4.8 60 9 60

Poisson’s ratio, ν21 0.3 0.27 0.3 0.34 0.21 0.3 0.3 0.24
Longitudinal tensile
strength, σ+

1 (MPa)
1800 2000 2100 2500 1300 1300 340 700

Longitudinal compressive
strength, σ−

1 (MPa)
650 1200 1200 300 2000 2000 180 3400

Transverse tensile
strength, σ+

2 (MPa)
40 50 75 30 70 140 7 190

Transverse compressive
strength, σ−

2 (MPa)
90 170 250 130 300 300 50 400

In-plane shear strength,
τ 12 (MPa)

50 70 160 30 80 90 30 120

used to manufacture the structural elements. In connection with this, there exist two
standard types of specimens – flat ones that are used to test materials made by hand or
machine lay-up and cylindrical (tubular or ring) specimens that represent materials made
by winding.

Typical mechanical properties of unidirectional advanced composites are presented in
Table 3.5 and in Figs. 3.40–3.43. More data relevant to the various types of particular
composite materials could be found in Peters (1998).

We now consider typical loading cases.

3.4.1. Longitudinal tension

Stiffness and strength of unidirectional composites under longitudinal tension are deter-
mined by the fibers. As follows from Fig. 3.35, material stiffness linearly increases with
increase in the fiber volume fraction. The same law following from Eq. (3.75) is valid for
the material strength. If the fiber’s ultimate elongation, εf , is less than that of the matrix
(which is normally the case), the longitudinal tensile strength is determined as

σ+
1 = (Ef vf + Emvm)εf (3.104)

However, in contrast to Eq. (3.76) for E1, this equation is not valid for very small and very
high fiber volume fractions. The dependence of σ+

1 on vf is shown in Fig. 3.44. For very
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Fig. 3.40. Stress–strain curves for unidirectional glass–epoxy composite material under longitudinal tension and
compression (a), transverse tension and compression (b), and in-plane shear (b).

low vf , the fibers do not restrain the matrix deformation. Being stretched by the matrix,
the fibers fail because their ultimate elongation is less than that of the matrix and the
induced stress concentration in the matrix can reduce material strength below the strength
of the matrix (point B). Line BC in Fig. 3.44 corresponds to Eq. (3.104). At point C, the
amount of the matrix reduces below the level necessary for a monolithic material, and the
material strength at point D approximately corresponds to the strength of a dry bundle
of fibers, which is less than the strength of a composite bundle of fibers bound with the
matrix (see Table 3.3).

Strength and stiffness under longitudinal tension are determined using unidirectional
strips or rings. The strips are cut out of unidirectionally reinforced plates, and their ends
are made thicker (usually glass–epoxy tabs are bonded onto the ends) to avoid specimen
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Fig. 3.41. Stress–strain curves for unidirectional carbon–epoxy composite material under longitudinal tension
and compression (a), transverse tension and compression (b), and in-plane shear (b).

failure in the grips of the testing machine (Jones, 1999; Lagace, 1985). Rings are cut
out of a circumferentially wound cylinder or wound individually on a special mandrel, as
shown in Fig. 3.45. The strips are tested using traditional approaches, whereas the rings
should be loaded with internal pressure. There exist several methods to apply the pressure
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Fig. 3.42. Stress–strain curves for unidirectional aramid–epoxy composite material under longitudinal tension
and compression (a), transverse tension and compression (b), and in-plane shear (b).

(Tarnopol’skii and Kincis, 1985), the simplest of which involves the use of mechanical
fixtures with various numbers of sectors as in Figs. 3.46 and 3.47. The failure mode is
shown in Fig. 3.48. Longitudinal tension yields the following mechanical properties of the
material
• longitudinal modulus, E1,
• longitudinal tensile strength, σ+

1 ,
• Poisson’s ratio, ν21.
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Fig. 3.43. Stress–strain curves for unidirectional boron–epoxy composite material under longitudinal tension
and compression (a), transverse tension and compression (b), and in-plane shear (b).

Typical values of these characteristics for composites with various fibers and matrices are
listed in Table 3.5. It follows from Figs. 3.40–3.43, that the stress–strain diagrams are
linear practically up to failure.

3.4.2. Transverse tension

There are three possible modes of material failure under transverse tension with stress
σ2 shown in Fig. 3.49 – failure of the fiber–matrix interface (adhesion failure), failure



Chapter 3. Mechanics of a unidirectional ply 107

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

vf

C

D

B

A

s1
+

Fig. 3.44. Dependence of normalized longitudinal strength on fiber volume fraction (© – experimental results).

Fig. 3.45. A mandrel for test rings.
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Fig. 3.46. Two-, four-, and eight-sector test fixtures for composite rings.

Fig. 3.47. A composite ring on a eight-sector test fixture.

Fig. 3.48. Failure modes of unidirectional rings.
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Fig. 3.49. Modes of failure under transverse tension: 1 – adhesion failure; 2 – cohesion failure; 3 – fiber failure.

of the matrix (cohesion failure), and fiber failure. The last failure mode is specific for
composites with aramid fibers, which consist of thin filaments (fibrils) and have low
transverse strength. As follows from the micromechanical analysis (Section 3.3), material
stiffness under tension across the fibers is higher than that of a pure matrix (see Fig. 3.36).

For qualitative analysis of transverse strength, consider again the second-order model in
Fig. 3.38. As can be seen, the stress distribution σm(x3) is not uniform, and the maximum
stress in the matrix corresponds to α = 90◦. Using Eqs. (3.85), (3.86), and (3.88), we
obtain

σmax
m = Emσ2(

1 − ν2
m

)
E2(1 − λ)

Taking σmax
m = σm and σ2 = σ+

2 , where σm and σ+
2 are the ultimate stresses for the matrix

and composite material, respectively, and substituting for λ and E2 their expressions in
accordance with Eqs. (3.87) and (3.89), we arrive at

σ+
2 = σm

r(λ)

2vf
(π − 4vf ) (3.105)

The variation of the ratio σ+
2 /σm for epoxy composites is shown in Fig. 3.50. As can be

seen, the transverse strength of a unidirectional material is considerably lower than the
strength of the matrix. It should be noted that for the first-order model, which ignores the
shape of the fiber cross sections (see Fig. 3.34), σ+

2 is equal to σm. Thus, the reduction
of σ+

2 is caused by stress concentration in the matrix induced by cylindrical fibers.
However, both polymeric and metal matrices exhibit, as follows from Figs. 1.11 and

1.14, elastic–plastic behavior, and it is known that plastic deformation reduces the effect of
stress concentration. Nevertheless, the stress–strain diagrams σ+

2 –ε2, shown in Figs. 3.40–
3.43, are linear up to the failure point. To explain this phenomenon, consider element A

of the matrix located in the vicinity of a fiber as in Fig. 3.38. Assuming that the fiber is
absolutely rigid, we can conclude that the matrix strains in directions 1 and 3 are close to
zero. Taking εm

1 = εm
3 = 0 in Eqs. (3.94), we arrive at Eqs. (3.101) for stresses, according

to which σm
1 = σm

3 = µmσm
2 . The dependence of parameter µm on the matrix Poisson’s
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Fig. 3.50. Dependence of material strength under transverse tension on fiber volume fraction:
( ) Eq. (3.105); (•) experimental data.

ratio is presented in Fig. 3.51. As follows from this figure, in the limiting case νm = 0.5,
we have µm = 1 and σm

1 = σm
2 = σm

3 , i.e., the state of stress under which all the materials
behave as absolutely brittle. For epoxy resin, νm = 0.35 and µm = 0.54, which, as can be
supposed, does not allow the resin to demonstrate its rather limited (see Fig. 1.11) plastic
properties.

Strength and stiffness under transverse tension are experimentally determined using
flat strips (see Fig. 3.52) or tubular specimens (see Fig. 3.53). These tests allow us to
determine
• transverse modulus, E2,
• transverse tensile strength, σ+

2 .
For typical composite materials, these properties are given in Table 3.5.

3.4.3. In-plane shear

The failure modes in unidirectional composites under in-plane pure shear with stress τ12
shown in Fig. 3.29 are practically the same as those for the case of transverse tension
(see Fig. 3.49). However, there is a significant difference in material behavior. As follows
from Figs. 3.40–3.43, the stress–strain curves τ12−γ12 are not linear, and τ 12 exceeds σ+

2 .
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Fig. 3.52. Test fixture for transverse tension and compression of unidirectional strips.

This means that the fibers do not restrict the free shear deformation of the matrix, and the
stress concentration in the vicinity of the fibers does not significantly influence material
strength because of matrix plastic deformation.

Strength and stiffness under in-plane shear are determined experimentally by testing
plates and thin-walled cylinders. A plate is reinforced at 45◦ to the loading direction and



Fig. 3.53. Test fixture for transverse tension or compression of unidirectional tubular specimens.
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Fig. 3.54. Simulation of pure shear in a square frame.
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Fig. 3.55. A tubular specimen for shear test.

is fixed in a square frame consisting of four hinged members, as shown in Fig. 3.54.
Simple equilibrium consideration and geometric analysis with the aid of Eq. (2.27) yield
the following equations

τ12 = P√
2ah

, γ12 = εy − εx, G12 = τ12

γ12

in which h is the plate thickness. Thus, knowing P and measuring strains in the x and
y directions, we can determine τ 12 and G12. More accurate and reliable results can be
obtained if we induce pure shear in a twisted tubular specimen reinforced in the circum-
ferential direction (Fig. 3.55). Again, using simple equilibrium and geometric analysis,
we get

τ12 = M

2πR2h
, γ12 = ϕR

l
, G12 = τ12

γ12

Here, M is the torque, R and h are the cylinder radius and thickness, and ϕ is the
twist angle between two cross-sections located at some distance l from each other. Thus,
knowing M and measuring ϕ, we can find τ 12 and G12.

3.4.4. Longitudinal compression

Failure under compression along the fibers can occur in different modes, depending on
the material microstructural parameters, and can hardly be predicted by micromechanical
analysis because of the rather complicated interaction of these modes. Nevertheless, useful
qualitative results allowing us to understand material behavior and, hence, to improve
properties, can be obtained with microstructural models.
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Fig. 3.56. Shear failure under compression.

Consider typical compression failure modes. The usual failure mode under compression
is associated with shear in some oblique plane as in Fig. 3.56. The shear stress can be
calculated using Eq. (2.9), i.e.,

τ = σ1 sin α cos α

and reaches its maximum value at α = 45◦. Shear failure under compression is usually typ-
ical for unidirectional composites that demonstrate the highest strength under longitudinal
compression. On the other hand, materials showing the lowest strength under compres-
sion exhibit a transverse extension failure mode typical of wood compressed along the
fibers, and is shown in Fig. 3.57. This failure is caused by tensile transverse strain, whose
absolute value is

ε2 = ν21ε1 (3.106)

where ν21 is Poisson’s ratio and ε1 = σ1/E1 is the longitudinal strain. Consider Table 3.6,
showing some data taken from Table 3.5 and the results of calculations for epoxy compos-
ites. The fourth column displays the experimental ultimate transverse strains ε+

2 = σ+
2 /E2

s1s1

1

2

Fig. 3.57. Transverse extension failure mode under longitudinal compression.

Table 3.6
Characteristics of epoxy composites.

Material Characteristic

σ−
1 (MPa) ε−

1 (%) ν21 ε+
2 (%) ε2 = ν21ε

−
1

Glass–epoxy 600 1.00 0.30 0.31 0.30
Carbon–epoxy 1200 0.86 0.27 0.45 0.23
Aramid–epoxy 300 0.31 0.34 0.59 0.11
Boron–epoxy 2000 0.95 0.21 0.37 0.20
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Fig. 3.58. Dependence of strain concentration factor on the fiber volume fraction.

calculated with the aid of data presented in Table 3.5, whereas the last column shows the
results following from Eq. (3.106). As can be seen, the failure mode associated with
transverse tension under longitudinal compression is not dangerous for the composites
under consideration because ε+

2 > ε2. However, this is true only for fiber volume frac-
tions vf = 0.50−0.65, to which the data presented in Table 3.6 correspond. To see what
happens for higher fiber volume fractions, let us use the second-order micromechanical
model and the corresponding results in Figs. 3.36 and 3.50. We can plot the strain con-
centration factor kε (which is the ratio of the ultimate matrix elongation, εm, to ε+

2 for
the composite material) versus the fiber volume fraction. As can be seen in Fig. 3.58, this
factor, being about 6 for vf = 0.6, becomes as high as 25 for vf = 0.75. This means
that ε+

2 dramatically decreases for higher vf , and the fracture mode shown in Fig. 3.57
becomes quite usual for composites with high fiber volume fractions.

Both fracture modes shown in Figs. 3.56 and 3.57 are accompanied with fibers bending
induced by local buckling of fibers. According to N.F. Dow and B.W. Rosen (Jones, 1999),
there can exist two modes of fiber buckling, as shown in Fig. 3.59 – a shear mode and
a transverse extension mode. To study the fiber’s local buckling (or microbuckling, which
means that the material specimen is straight, whereas the fibers inside the material are
curved), consider a plane model of a unidirectional ply, shown in Figs. 3.15 and 3.60, and
take am = a and af = δ = d , where d is the fiber diameter. Then, Eqs. (3.17) yield

vf = d

1 + d
, d = d

a
(3.107)
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Fig. 3.59. Shear (a) and transverse extension (b) modes of fiber local buckling.
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Fig. 3.60. Local buckling of fibers in unidirectional ply.

Because of the symmetry conditions, consider two fibers 1 and 2 in Fig. 3.60 and the
matrix between these fibers. The buckling displacement, v, of the fibers can be represented
with a sine function as

v1(x) = V sin λnx, v2(x) = V sin λn(x − c) (3.108)

where V is an unknown amplitude value, the same for all the fibers, λn = π/ln, ln is
a half of a fiber wavelength (see Fig. 3.60), and c = (a + d) cot α is a phase shift.
Taking c = 0, we can describe the shear mode of buckling (Fig. 3.59(a)), whereas c = ln
corresponds to the extension mode (Fig. 3.59(b)). To find the critical value of stress σ1, we
use the Timoshenko energy method (Timoshenko and Gere, 1961), yielding the following
buckling condition

A = W (3.109)

Here, A is the work of external forces, and W is the strain energy accumulated in the
material while the fibers undergo buckling. Work A and energy W are calculated for a
typical ply element consisting of two halves of fibers 1 and 2 and the matrix between
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Fig. 3.61. A typical ply element.

them (see Fig. 3.61). The work, A, can be calculated as

A = σ1(a + d)d · δ (3.110)

with displacement δ following from Fig. 3.62, i.e.,

δ = ln −
∫ ln−δ

0

√
1 +

(
dv1

dx

)2

dx

Using conventional assumptions, i.e., taking (dv1/dx) � 1 and δ � l and substituting v1
from Eqs. (3.108), we arrive at

δ = 1

2

∫ ln

0

(
dv1

dx

)2

dx = 1

4
V 2λ2

nln

v1

x

ln

dx

dv1
d

Fig. 3.62. Deformation of a fiber.
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Thus, Eq. (3.110) yields

A = π2

4ln
σ1V

2ad(1 + d) (3.111)

Strain energy consists of three parts, i.e.,

W = Wf + W s
m + W e

m (3.112)

where Wf is the energy of buckled fibers, whereas W s
m and W e

m correspond to shear strain
and transverse extension of the matrix that supports the fibers. The strain energy of fibers
deformed in accordance with Eqs. (3.108) and shown in Fig. 3.61 has the form

Wf = 1

4
Df

∫ ln

0

[(
d2v1

dx2

)2

+
(

d2v2

dx2

)2]
dx

where Df is the fiber bending stiffness. Substituting Eqs. (3.108) and calculating the
integrals, we get

Wf = π4

4l3
n

Df V
2 (3.113)

To determine the strain energy of the matrix, we assume that the matrix element shown
in Fig. 3.61 is in a state of plane stress (nonzero stresses are σx , σy , and τxy), and the
equilibrium equations, Eqs. (2.5), can be written as

∂σx

∂x
+ ∂τxy

∂y
= 0,

∂σy

∂y
+ ∂τxy

∂x
= 0 (3.114)

To simplify the solution, we assume that the longitudinal stress, σx , acting in the matrix
can be neglected in comparison with the corresponding stress acting in the fibers. Thus,
we can set σx = 0. Then, Eqs. (3.114) can be integrated and yield

τxy = τ(x), σy = σ(x) − τ ′(x)y (3.115)

Here, τ(x) and σ(x) are arbitrary functions of integration and ( )′ = d( )/dx. Neglecting
also the Poisson effects, we can express the strains as follows

γxy = τ(x)

Gm
, εy = 1

Em
[σ(x) − τ ′(x)y] (3.116)

which can in turn be expressed in terms of displacements with the aid of Eqs. (2.22), i.e.,

γxy = ∂ux

∂y
+ ∂uy

∂x
, εy = ∂uy

∂y
(3.117)
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Substituting Eqs. (3.116) into Eqs. (3.117) and integrating, we can determine the
displacements as

ux = u(x) +
[
τ(x)

Gm
− v′(x)

]
y − 1

2Em

[
σ ′(x)y2 − 1

3
τ ′′(x)y3

]

uy = v(x) + 1

Em

[
σ(x)y − 1

2
τ ′(x)y2

]

Here, u(x) and v(x) are functions of integration that, in addition to the functions τ(x) and
σ(x), should be found using compatibility conditions at fiber–matrix interfaces. Using
Fig. 3.63, we can write these conditions in the following form:

ux(y = 0) = −d

2
v′

1(x), ux(y = a) = d

2
v′

2(x)

uy(y = 0) = v1(x), uy(y = a) = v2(x)

Satisfying them, we can find u(x) and v(x) directly as

u(x) = −d

2
V λn cos λnx, v(x) = V sin λnx

v2(x)

v1(x)

v′1(x)

d  2

d  2

d  2

d  2

1

2

v′2(x)

Fig. 3.63. Compatible fiber–matrix deformation.
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and derive the following equations for σ(x) and τ(x)

σ (x) = Em

a
V [sin λn(x − c) − sin λnx] + 1

2
τ ′(x)a (3.118)

a2

6Em
τ ′′(x) − 2

Gm
τ(x) = −V λn(1 + d)[cos λn(x − c) + cos λnx] (3.119)

We need a periodic solution of Eq. (3.119) and can find it in the following form

τ(x) = C[cos λn(x − c) + cos λnx] (3.120)

Substituting into Eq. (3.119) and taking into account that λn = π/ln, we have

C = V
πGm(1 + d)

2ln(1 + βn)
, βn = π2a2Gm

12l2
nEm

(3.121)

Now, using Eqs. (3.115), (3.118), and (3.120), we can write the final expressions for the
stresses acting in the matrix

τxy = C[cos λn(x − c) + cos λnx]

σy = −
[
Cλn

(a

2
− y

)
− Em

a
V

]
sin λn(x − c) −

[
Cλn

(a

2
− y

)
+ Em

a
V

]
sin λnx

(3.122)

in which C is specified with Eqs. (3.121). The corresponding strain energies of the typical
element in Fig. 3.61 are

W s
m = ad

2Gm

∫ ln

0
τ 2
xydx, W e

m = ad

2Em

∫ ln

0
σ 2

y dx

Substituting Eqs. (3.122) and integrating, we arrive at

Ws
m = adln

2Gm
C2(1 + cos λnc)

W e
m = adln

2Em

[
π2a2

12l2
n

C2(1 + cos λnc) + E2
m

a2
V 2(1 − cos λnc)

]
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In conjunction with these results, Eqs. (3.109), (3.111)–(3.113), and (3.121) allow us to
determine σ1, which takes the following final form

σ1 = π2Df

l
2
nd

(
1 + d

)
a4

+ Gm
(
1 + d

)
2
(

1 +
(
π2Gm/

(
12l

2
nEm

)))
(

1 + cos
πc

ln

)

+ 2Eml
2
n

π2
(
1 + d

)
(

1 − cos
πc

ln

)
(3.123)

where d = d/a, ln = ln/a, and c = c/a. The critical value of σ1 can be found by
minimization of the right-hand part of Eq. (3.123) with respect to ln and c. However,
having in mind only qualitative analysis, we can omit this cumbersome procedure and use
Eq. (3.123) for qualitative assessments and estimates.

As follows from this equation, the strength of a unidirectional composite under lon-
gitudinal compression should increase with an increase in the fiber bending stiffness.
This prediction is definitely supported with experimental data presented in Table 3.6. The
highest strength is demonstrated by composites reinforced with boron fibers that have
relatively high diameter and high modulus, providing very high fiber bending stiffness.
Carbon fibers, also having high modulus but smaller diameter than boron fibers, provide
compressive strength that is 40% lower than that of boron composites, but is twice the
strength of a composite reinforced with glass fibers having the same diameter as that of
carbon fibers, but lower modulus. The lowest strength in compression is demonstrated
by composites with aramid fibers. As was already noted, these fibers, although having
high tensile stiffness, consist of a system of poorly bonded thin filaments and possess low
bending stiffness. As can be seen in Eq. (3.123), compressive strength also increases with
an increase in the matrix stiffness. Available experimental results (Woolstencroft et al.,
1982; Crasto and Kim, 1993) show that the strength of carbon composites in compression
increases linearly, while the matrix shear modulus rises up to Gm = 1500 MPa, which
is the value typical for epoxy resins. For higher values of Gm, the compressive strength
does not change, and we can expect that there exists some maximum value of Gm, beyond
which the matrix does not allow fibers to buckle, and the material strength is controlled
by the fiber strength in compression. Results listed in Table 3.5 support this conclusion.
As can be seen, changing an epoxy matrix for an aluminum one with higher stiffness,
we do not increase the compressive strength of boron fiber composites. Moreover, by
increasing the matrix stiffness, we usually reduce its ultimate elongation. As a result, the
material can fail under relatively low stress because of delamination (see Fig. 3.57). An
example of such a material can also be found in Table 3.5. Carbon–carbon unidirectional
composites with brittle carbon matrix possessing very high stiffness demonstrate very low
strength under longitudinal compression.

Fracture of actual unidirectional composites occurs usually as a result of interaction of
fracture modes discussed above. Such a fracture is shown in Fig. 3.64. The ultimate stress
depends on material structural and manufacturing parameters, has considerable scatter, and
can hardly be predicted theoretically. For example, the compressive strength of composites
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Fig. 3.64. Failure mode of a unidirectional carbon–epoxy composite under longitudinal compression.

with the same fibers and matrices having the same stiffness but different nature (thermoset
or thermoplastic) can be different (Crasto and Kim, 1993).

The strength of composites under longitudinal compression is determined experimen-
tally using ring or flat specimens and special methods to prevent the specimen buckling
(Tarnopol’skii and Kincis, 1985). The most accurate results are provided by compres-
sion of sandwich specimens with composite facings made from the material under study
(Crasto and Kim, 1993).

3.4.5. Transverse compression

Under compression across the fibers, unidirectional composites exhibit conventional
shear mode of fracture of the type shown in Fig. 3.65. The transverse compression strength
is higher than in-plane shear strength (see Table 3.5) due to two main reasons. Firstly,
the area of the oblique failure plane is larger than the area of the orthogonal longitudinal
ply cross-section in which the ply fails under in-plane shear and, secondly, additional
compression across the oblique failure plane (see Fig. 3.65) increases the shear strength.
Strength under transverse compression is measured using flat or tubular specimens shown
in Figs. 3.52 and 3.53.

s2s2

Fig. 3.65. Failure under transverse compression.
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3.5. Hybrid composites

The foregoing sections of this chapter are concerned with the properties of unidirec-
tional plies reinforced with fibers of a certain type – glass, carbon, aramid, etc. In hybrid
composites, the plies can include fibers of two or may be more types, e.g., carbon and
glass, glass and aramid, and so on. Hybrid composites provide wider opportunities to
control material stiffness, strength, and cost. A promising application of these materials is
associated with the so-called thermostable structures, which do not change their dimen-
sions under heating or cooling. For some composites, e.g., with glass or boron fibers, the
longitudinal coefficient of thermal expansion is positive, whereas for other materials, e.g.,
with carbon or aramid fibers, it is negative (see Table 7.1 and Section 7.1.2 of Chapter 7).
So, the appropriate combination of fibers with positive and negative coefficients can result
in material with zero thermal expansion.

Consider the problem of micromechanics for a unidirectional ply reinforced with two
types of fibers. Naturally, the stiffness of these fibers should be different, and we assume
that E

(1)
f > E

(2)
f . The first-order model of the ply that generalizes the model in Fig. 3.34

is presented in Fig. 3.66. For tension in the fiber direction, the apparent stress and strain,
σ1 and ε1, are linked by Hooke’s law

σ1 = E1ε1 (3.124)

in which the effective modulus is specified by the following equation, generalizing
Eq. (3.76)

E1 = E
(1)
f v

(1)
f + E

(2)
f v

(2)
f + Emvm (3.125)

2

3

s1

s1

1

Fig. 3.66. First-order microstructural model of a hybrid unidirectional ply.
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Here, v
(1)
f and v

(2)
f are volume fractions of the fibers of the first and second type, and

vm is the matrix volume fraction, so that

v
(1)
f + v

(2)
f + vm = 1

We also introduce the total volume fraction of the fibers

vf = v
(1)
f + v

(2)
f

and normalized volume fractions of fibers as

w
(1)
f = v

(1)
f

vf
, w

(2)
f = v

(2)
f

vf

Obviously,

w
(1)
f + w

(2)
f = 1

Then, Eq. (3.125) can be written in the form

E1 = vf

[
E

(1)
f w

(1)
f + E

(2)
f

(
1 − w

(1)
f

)]
+ Em(1 − vf ) (3.126)

The linear dependence of E1 on w
(1)
f predicted by Eq. (3.126) is in good correlation with

the experimental data reported by Zabolotskii and Varshavskii (1984) and is presented in
Fig. 3.67.

Since the fibers of hybrid composites have different stiffness, they are characterized, as
a rule, with different ultimate elongations. As follows from Fig. 3.68, plotted with the data
listed in Table 3.5, there exists an inverse linear dependence between the ply longitudinal
modulus and the ultimate elongation ε1. So, assuming E

(1)
f > E

(2)
f , we should take

into account that ε
(1)
f < ε

(2)
f . This means that Eq. (3.124) is valid for ε1 ≤ ε

(1)
f . Strain

ε1 = ε
(1)
f is accompanied with the failure of fibers of the first type. The corresponding

part of a possible stress–strain diagram is shown in Fig. 3.69 with the line OA. The stress
at point A is σ

(1)
1 = E1ε

(1)
f . After the fibers of the first type fail, the material modulus

reduces to

E∗
1 = E

(2)
f vf

(
1 − w

(1)
f

)
+ Em(1 − vf )

This modulus determines the slope of line OC in Fig. 3.69.
Since E∗

1 < E1, the ply experiences a jump in strain under constant stress σ1 = σ
(1)
1 .

As follows from Fig. 3.69, the final strain is

ε∗
1 = σ

(1)
1

E∗
1
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Fig. 3.67. Experimental dependencies of longitudinal modulus on the volume fraction of the higher modulus
fibers in hybrid unidirectional composites: 1 – boron–carbon, 2 – boron–aramid, 3 – boron–glass, 4 – carbon–
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Fig. 3.68. Longitudinal modulus versus ultimate tensile strain for advanced epoxy unidirectional composites.
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Fig. 3.69. Typical stress–strain diagrams for hybrid unidirectional composites.

There are two possible scenarios of the further material behavior, depending on the relation
between strain ε∗

1 and the ultimate strain of the fibers of the second type, ε
(2)
f . If ε∗

1 ≥
ε
(2)
f , these fibers will also fail under stress σ

(1)
1 , and the material stress–strain diagram

corresponds to the dashed line OA in Fig. 3.69. If ε
(2)
f > ε∗

1 , the material would work up
to point C in this figure. Experimental diagrams supporting this prediction are shown in
Fig. 3.70 (Gunyaev, 1981).
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Fig. 3.70. Experimental stress–strain diagrams for hybrid carbon–glass epoxy unidirectional composite with
various volume fraction of glass fibers vg and carbon fibers vc: 1 − vg = 0; 2 − vg = 0.07; 3 − vg = 0.14;

4 − vg = 0.25; 5 − vg = 0.5; 6 − vc = 0.



Chapter 3. Mechanics of a unidirectional ply 127

0

400

800

1200

0 0.2 0.4 0.8 1

s1, MPa

wf
(2)

wf
(2)

Fig. 3.71. Dependence of the longitudinal strength of unidirectional carbon–glass epoxy composite on the
volume fraction of glass fibers.

The threshold value of w
(2)
f indicating the minimum amount of the second-type fibers

that is sufficient to withstand the load after the failure of the first-type fibers can be found
from the condition ε∗

1 = ε
(2)
f (Skudra et al., 1989). The final result is as follows

w
(2)
f =

E
(1)
f vf ε

(1)
f − (1 − vf )Em

(
ε
(2)
f − ε

(1)
f

)

vf

[
E

(1)
f ε

(1)
f + E

(2)
f

(
ε
(2)
f − ε

(1)
f

)]

For w
(2)
f < w

(2)
f , material strength can be calculated as σ 1 = E1ε

(1)
f whereas for w

(2)
f >

w
(2)
f , σ 1 = E∗

1ε
(2)
f . The corresponding theoretical prediction of the dependence of material

strength on w
(2)
f is shown in Fig. 3.71 (Skudra et al., 1989).

3.6. Composites with high fiber fraction

We now return to Fig. 3.44, which shows the dependence of the tensile longitudinal
strength of unidirectional composites on the fiber volume fraction vf . As follows from
this figure, the strength increases up to vf , which is close to 0.7 and becomes lower for
higher fiber volume fractions. This is a typical feature of unidirectional fibrous composites
(Andreevskaiya, 1966). However, there are some experimental results (e.g., Roginskii
and Egorov, 1966) showing that material strength can increase up to vf = 0.88, which
corresponds to the maximum theoretical fiber volume fraction discussed in Section 3.1.
The reason that the material strength usually starts to decrease at higher fiber volume
fractions is associated with material porosity, which becomes significant for materials
with a shortage of resin. By reducing the material porosity, we can increase material
tensile strength for high fiber volume fractions.
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(a) (b)

Fig. 3.72. Cross-section of aramid–epoxy composite with high fiber fraction: (a) initial structure; (b) structure
with delaminated fibers.

Moreover, applying the correct combination of compacting pressure and temperature to
composites with organic (aramid or polyethylene) fibers, we can deform the fiber cross-
sections and reach a value of vf that would be close to unity. Such composite materials
studied by Golovkin (1985), Kharchenko (1999), and other researchers are referred to as
composites with high fiber fraction (CHFF). The cross-section of a typical CHFF is shown
in Fig. 3.72.

Table 3.7
Properties of aramid–epoxy composites with high fiber fraction.

Property Fiber volume fraction, vf

0.65 0.92 0.96

Density, ρ (g/cm3) 1.33 1.38 1.41
Longitudinal modulus, E1 (GPa) 85 118 127
Transverse modulus, E2 (GPa) 3.3 2.1 4.5
Shear modulus, G12 (GPa) 1.6 1.7 —
Longitudinal tensile strength, σ+

1 (MPa) 2200 2800 2800
Longitudinal compressive strength, σ−

1 (MPa) 293 295 310
Transverse tensile strength, σ+

2 (MPa) 22 12 —
Transverse compressive strength, σ−

2 (MPa) 118 48 —
In-plane shear strength, τ 12 (MPa) 41 28 18
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The properties of aramid–epoxy CHFF are listed in Table 3.7 (Kharchenko, 1999).
Comparing traditional composites (vf = 0.65) with CHFF, we can conclude that CHFF
have significantly higher longitudinal modulus (up to 50%) and longitudinal tensile
strength (up to 30%), whereas the density is only 6% higher. However, the transverse
and shear strengths of CHFF are lower than those of traditional composites. Because of
this, composites with high fiber fraction can be efficient in composite structures whose
loading induces high tensile stresses acting mainly along the fibers, e.g., in cables, pressure
vessels, etc.

3.7. Phenomenological homogeneous model of a ply

It follows from the foregoing discussion that micromechanical analysis provides very
approximate predictions for the ply stiffness and only qualitative information concerning
the ply strength. However, the design and analysis of composite structures require quite
accurate and reliable information about the properties of the ply as the basic element
of composite structures. This information is provided by experimental methods as dis-
cussed above. As a result, the ply is presented as an orthotropic homogeneous material
possessing some apparent (effective) mechanical characteristics determined experimen-
tally. This means that, on the ply level, we use a phenomenological model of a composite
material (see Section 1.1) that ignores its actual microstructure.

It should be emphasized that this model, being quite natural and realistic for the majority
of applications, sometimes does not allow us to predict actual material behavior. To demon-
strate this, consider a problem of biaxial compression of a unidirectional composite in the
23-plane as in Fig. 3.73. Testing a glass–epoxy composite material described by Koltunov
et al. (1977) shows a surprising result – its strength is about σ = 1200 MPa, which is
quite close to the level of material strength under longitudinal tension, and material failure
is accompanied by fiber breakage typical for longitudinal tension.

The phenomenological model fails to predict this mode of failure. Indeed, the average
stress in the longitudinal direction specified by Eq. (3.75) is equal to zero under loading
shown in Fig. 3.73, i.e.,

σ1 = σ f
1 vf + σm

1 vm = 0 (3.127)

To apply the first-order micromechanical model considered in Section 3.3, we generalize
constitutive equations, Eqs. (3.63), for the three-dimensional stress state of the fibers and
the matrix as

ε
f ,m
1 = 1

Ef ,m

[
σ

f ,m
1 − νf ,m

(
σ

f ,m
2 + σ

f ,m
3

)]
(1, 2, 3) (3.128)

Changing 1 for 2, 2 for 3, and 3 for 1, we can write the corresponding equations for ε2
and ε3.
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Suppose that the stresses acting in the fibers and in the matrix in the plane of loading
are the same, i.e.,

σ f
2 = σ f

3 = σm
2 = σm

3 = −σ (3.129)

and that εf
1 = εm

1 . Substituting εf
1 and εm

1 from Eqs. (3.128), we get with due regard to
Eqs. (3.129)

1

Ef

(
σ f

1 + 2νf σ
)

= 1

Em

(
σm

1 + 2νmσ
)

In conjunction with Eq. (3.127), this equation allows us to find σ f
1 , which has the form

σ f
1 = 2σ(Ef νm − Emνf )vm

Ef vf + Emvm

Simplifying this result for the situation Ef 
 Em, we arrive at

σ f
1 = 2σ

νmvm

vf

Thus, the loading shown in Fig. 3.73 indeed induces tension in the fibers as can be revealed
using the micromechanical model. The ultimate stress can be expressed in terms of the
fibers’ strength σ f as

σ = 1

2
σ f

vf

νmvm

1

s

s

s

s

3
2

Fig. 3.73. Biaxial compression of a unidirectional composite.
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The actual material strength is not as high as follows from this equation, which is
derived under the condition that the adhesive strength between the fibers and the matrix is
infinitely high. Tension of fibers is induced by the matrix that expands in the 1-direction
(see Fig. 3.73) due to Poisson’s effect and interacts with fibers through shear stresses
whose maximum value is limited by the fiber–matrix adhesion strength. Under high shear
stress, debonding of the fibers can occur, reducing the material strength, which is, nev-
ertheless, very high. This effect is utilized in composite shells with radial reinforcement
designed to withstand an external pressure of high intensity (Koltunov et al., 1977).
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Chapter 4

MECHANICS OF A COMPOSITE LAYER

A typical composite laminate consists of individual layers (see Fig. 4.1) which are
usually made of unidirectional plies with the same or regularly alternating orientation.
A layer can also be made from metal, thermosetting or thermoplastic polymer, or fabric
or can have a spatial three-dimensionally reinforced structure. In contrast to a ply as
considered in Chapter 3, a layer is generally referred to the global coordinate frame x, y,
and z of the structural element rather than to coordinates 1, 2, and 3 associated with the
ply orientation. Usually, a layer is much thicker than a ply and has a more complicated
structure, but this structure does not change through its thickness, or this change is ignored.
Thus, a layer can be defined as a three-dimensional structural element that is uniform in
the transverse (normal to the layer plane) direction.

4.1. Isotropic layer

The simplest layer that can be observed in composite laminates is an isotropic layer of
metal or thermoplastic polymer that is used to protect the composite material (Fig. 4.2)
and to provide tightness. For example, filament-wound composite pressure vessels usually
have a sealing metal (Fig. 4.3) or thermoplastic (Fig. 4.4) internal liner, which can also be
used as a mandrel for winding. Since the layer is isotropic, we need only one coordinate
system and let it be the global coordinate frame as in Fig. 4.5.

4.1.1. Linear elastic model

The explicit form of Hooke’s law in Eqs. (2.48) and (2.54) can be written as

εx = 1

E
(σx − νσy − νσz), γxy = τxy

G

εy = 1

E
(σy − νσx − νσz), γxz = τxz

G

εz = 1

E
(σz − νσx − νσy), γyz = τyz

G

(4.1)
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Fig. 4.1. Laminated structure of a composite pipe.

Fig. 4.2. Composite drive shaft with external metal protection layer. Courtesy of CRISM.
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Fig. 4.3. Aluminum liner for a composite pressure vessel.

Fig. 4.4. Filament-wound composite pressure vessel with a polyethylene liner. Courtesy of CRISM.
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Fig. 4.5. An isotropic layer.

where E is the modulus of elasticity, ν the Poisson’s ratio, and G is the shear modulus
which can be expressed in terms of E and ν with Eq. (2.57). Adding Eqs. (4.1) for normal
strains we get

ε0 = 1

K
σ0 (4.2)

where

ε0 = εx + εy + εz (4.3)

is the volume deformation. For small strains, the volume dV1 of an infinitesimal material
element after deformation can be found knowing the volume dV before the deformation
and ε0 as

dV1 = (1 + ε0)dV

Volume deformation is related to the mean stress

σ0 = 1

3
(σx + σy + σz) (4.4)

through the volume or bulk modulus

K = E

3(1 − 2ν)
(4.5)

For ν = 1/2, K → ∞, ε0 = 0, and dV1 = dV for any stress. Such materials are called
incompressible – they do not change their volume under deformation and can change only
their shape.
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The foregoing equations correspond to the general three-dimensional stress state of a
layer. However, working as a structural element of a thin-walled composite laminate, a
layer is usually loaded with a system of stresses one of which, namely, transverse normal
stress σz is much less than the other stresses. Bearing this in mind, we can neglect the
terms in Eqs. (4.1) that include σz and write these equations in a simplified form

εx = 1

E
(σx − νσy), εy = 1

E
(σy − νσx)

γxy = τxy

G
, γxz = τxz

G
, γyz = τyz

G

(4.6)

or

σx = E(εx + νεy), σy = E(εy + νεx)

τxy = Gγxy, τxz = Gγxz, τyz = Gγyz

(4.7)

where E = E/(1 − ν2).

4.1.2. Nonlinear models

Materials of metal and polymeric layers considered in this section demonstrate linear
response only under moderate stresses (see Figs. 1.11 and 1.14). Further loading results
in nonlinear behavior, to describe which we need to apply one of the nonlinear material
models discussed in Section 1.1.

A relatively simple nonlinear constitutive theory suitable for polymeric layers can be
constructed using a nonlinear elastic material model (see Fig. 1.2). In the strict sense,
this model can be applied to materials whose stress–strain curves are the same for active
loading and unloading. However, normally structural analysis is undertaken only for active
loading. If unloading is not considered, an elastic model can be formally used for materials
that are not perfectly elastic.

There exist a number of models developed to describe the nonlinear behavior of highly
deformable elastomers such as rubber (Green and Adkins, 1960). Polymeric materials
used to form isotropic layers of composite laminates admitting, in principal, high strains
usually do not demonstrate them in composite structures whose deformation is governed
by fibers with relatively low ultimate elongation (1–3%). So, creating the model, we can
restrict ourselves to the case of small strains, i.e., to materials whose typical stress–strain
diagram is shown in Fig. 4.6.

A natural way is to apply Eqs. (2.41) and (2.42), i.e., (we use tensor notations for
stresses and strains introduced in Section 2.9 and the rule of summation over repeated
subscripts)

dU = σij dεij , σij = ∂U
∂εij

(4.8)
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Fig. 4.6. A typical stress–strain diagram (circles) for a polymeric film and its cubic approximation (solid line).

Approximation of elastic potential U as a function of εij with some unknown parameters
allows us to write constitutive equations directly using the second relation in Eqs. (4.8).
However, the polynomial approximation similar to Eq. (2.43), which is the most simple
and natural results in a constitutive equation of the type σ = Sεn, in which S is some
stiffness coefficient and n is an integer. As can be seen in Fig. 4.7, the resulting stress–
strain curve is not typical for the materials under study. Better agreement with nonlinear
experimental diagrams presented, e.g., in Fig. 4.6, is demonstrated by the curve specified
by the equation ε = Cσn, in which C is some compliance coefficient. To arrive at this
form of a constitutive equation, we need to have a relationship similar to the second one in
Eqs. (4.8) but allowing us to express strains in terms of stresses. Such relationships exist
and are known as Castigliano’s formulas. To derive them, introduce the complementary
elastic potential Uc in accordance with the following equation

dUc = εij dσij (4.9)

The term ‘complementary’ becomes clear if we consider a bar in Fig. 1.1 and the corre-
sponding stress–strain curve in Fig. 4.8. The area 0BC below the curve represents U in
accordance with the first equation in Eqs. (4.8), whereas the area 0AC above the curve is
equal to Uc. As shown in Section 2.9, dU in Eqs. (4.8) is an exact differential. To prove
the same for dUc, consider the following sum

dU + dUc = σij dεij + εij dσij = d(σij εij )



Chapter 4. Mechanics of a composite layer 139

s

s = Sen

e = Cs n

e

Fig. 4.7. Two forms of approximation of the stress–strain curve.

A

ds

s

s

0

B

Uc

U

dee

e
C

Fig. 4.8. Geometric interpretation of elastic potential, U, and complementary potential, Uc.
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which is obviously an exact differential. Since dU in this sum is also an exact differential,
dUc should have the same property and can be expressed as

dUc = ∂Uc

∂σij

dσij

Comparing this result with Eq. (4.9), we arrive at Castigliano’s formulae

εij = ∂Uc

∂σij

(4.10)

which are valid for any elastic solid (for a linear elastic solid, Uc = U).
The complementary potential, Uc, in general, depends on stresses, but for an isotropic

material, Eq. (4.10) should yield invariant constitutive equations that do not depend on the
direction of coordinate axes. This means that Uc should depend on stress invariants I1, I2,
and I3 in Eqs. (2.13). Using different approximations for the function Uc (I1, I2, I3), we
can construct different classes of nonlinear elastic models. Existing experimental verifi-
cation of such models shows that the dependence of Uc on I3 can be neglected. Thus, we
can present the complementary potential in a simplified form Uc (I1, I2) and expand this
function as a Taylor series as

Uc = c0 + c11I1 + 1

2
c12I

2
1 + 1

3!c13I
3
1 + 1

4!c14I
4
1 + · · ·

+ c21I2 + 1

2
c22I

2
2 + 1

3!c23I
3
2 + 1

4!c24I
4
2 + · · ·

+ 1

2
c1121I1I2 + 1

3!c1221I
2
1 I2 + 1

3!c1122I1I
2
2 + · · ·

+ 1

4!c1321I
3
1 I2 + 1

4!c1222I
2
1 I 2

2 + 1

4!c1123I1I
3
2 + · · ·

(4.11)

where

cin = ∂nUc

∂In
i

∣∣∣∣
σij = 0

, cinjm = ∂n+mUc

∂In
i ∂Im

j

∣∣∣∣∣
σij = 0

Constitutive equations follow from Eq. (4.10) and can be written in the form

εij = ∂Uc

∂I1

∂I1

∂σij

+ ∂Uc

∂I2

∂I2

∂σij

(4.12)

Assuming that for zero stresses Uc = 0 and εij = 0 we should take c0 = 0 and c11 = 0
in Eq. (4.11).
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Consider a plane stress state with stresses σx , σy , τxy shown in Fig. 4.5. The stress
invariants in Eqs. (2.13) to be substituted into Eq. (4.12) are

I1 = σx + σy, I2 = −σxσy + τ 2
xy (4.13)

A linear elastic material model is described with Eq. (4.11) if we take

Uc = 1

2
c12I

2
1 + c21I2 (4.14)

Using Eqs. (4.12)–(4.14) and engineering notations for stresses and strains, we arrive at

εx = c12(σx + σy) − c21σy, εy = c12(σx + σy) − c21σx, γxy = 2c21τxy

These equations coincide with the corresponding equations in Eqs. (4.6) if we take

c12 = 1

E
, c21 = 1 + ν

E

To describe a nonlinear stress–strain diagram of the type shown in Fig. 4.6, we can
generalize Eq. (4.14) as

Uc = 1

2
c12I

2
1 + c21I2 + 1

4!c14I
4
1 + 1

2
c22I

2
2

Then, Eq. (4.12) yields the following cubic constitutive law

εx = c12(σx + σy) − c21σy + 1

6
c14(σx + σy)

3 + c22(σxσy − τ 2
xy)σy

εy = c12(σx + σy) − c21σx + 1

6
c14(σx + σy)

3 + c22(σxσy − τ 2
xy)σx

γxy = 2
[
c21 − c22

(
σxσy − τ 2

xy

)]
τxy

The corresponding approximation is shown in Fig. 4.6 with a solid line. Retaining more
higher order terms in Eq. (4.11), we can describe the nonlinear behavior of any isotropic
polymeric material.

To describe the nonlinear elastic–plastic behavior of metal layers, we should use consti-
tutive equations of the theory of plasticity. There exist two basic versions of this theory –
the deformation theory and the flow theory which are briefly described below.

According to the deformation theory of plasticity, the strains are decomposed into two
components – elastic strains (with superscript ‘e’) and plastic strains (superscript ‘p’), i.e.,

εij = εe
ij + ε

p
ij (4.15)
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We again use the tensor notations of strains and stresses (i.e., εij and σij ) introduced in
Section 2.9. Elastic strains are related to stresses by Hooke’s law, Eqs. (4.1), which can
be written with the aid of Eq. (4.10) in the form

εe
ij = ∂Ue

∂σij

(4.16)

where Ue is the elastic potential that for a linear elastic solid coincides with the comple-
mentary potential Uc in Eq. (4.10). An explicit expression for Ue can be obtained from
Eq. (2.51) if we change strains for stresses with the aid of Hooke’s law, i.e.,

Ue = 1

2E

[
σ 2

11+σ 2
22+σ 2

33−2ν(σ11σ22+σ11σ33+σ22σ33)
]
+ 1

2G

(
σ 2

12+σ 2
13+σ 2

23

)
(4.17)

Now describing the plastic strains in Eq. (4.15) in a form similar to Eq. (4.16)

ε
p
ij = ∂Up

∂σij

(4.18)

where Up is the plastic potential. To approximate the dependence of Up on stresses,
a special generalized stress characteristic, i.e., the so-called stress intensity σ , is introduced
in the classical theory of plasticity as

σ = 1√
2

[
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ11 − σ33)

2 + 6
(
σ 2

12 + σ 2
13 + σ 2

23

)] 1
2

(4.19)

Transforming Eq. (4.19) with the aid of Eqs. (2.13), we can reduce it to the following form

σ =
√

I 2
1 + 3I2

This means that σ is an invariant characteristic of a stress state, i.e., that it does not depend
on the orientation of a coordinate frame. For unidirectional tension as in Fig. 1.1, we have
only one nonzero stress, e.g., σ11. Then, Eq. (4.19) yields σ = σ11. In a similar way, the
strain intensity ε can be introduced as

ε =
√

2

3

[
(ε11 − ε22)

2 + (ε22 − ε33)
2 + (ε11 − ε33)

2 + 6
(
ε2

12 + ε2
13 + ε2

23

)] 1
2

(4.20)

The strain intensity is also an invariant characteristic. For uniaxial tension (Fig. 1.1) with
stress σ11 and strain ε11 in the loading direction, we have ε22 = ε33 = −νpε11, where
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νp is the elastic–plastic Poisson’s ratio which, in general, depends on σ11. For this case,
Eq. (4.20) yields

ε = 2

3
(1 + νp)ε11 (4.21)

For an incompressible material (see Section 4.1.1), νp = 1/2 and ε = ε11. Thus, the
numerical coefficients in Eqs. (4.19) and (4.20) provide σ = σ11 and ε = ε11 for uniaxial
tension of an incompressible material. The stress and strain intensities in Eqs. (4.19) and
(4.20) have an important physical meaning. As known from experiments, metals do not
demonstrate plastic properties under loading with stresses σx = σy = σz = σ0 resulting
only in a change of material volume. Under such loading, materials exhibit only elastic
volume deformation specified by Eq. (4.2). Plastic strains occur in metals if we change
the material shape. For a linear elastic material, the elastic potential U in Eq. (2.51) can
be reduced after rather cumbersome transformation with the aid of Eqs. (4.3), (4.4) and
(4.19), (4.20) to the following form

U = 1

2
σ0ε0 + 1

2
σε (4.22)

The first term in the right-hand side part of this equation is the strain energy associated with
the volume change, whereas the second term corresponds to the change of material shape.
Thus, σ and ε in Eqs. (4.19) and (4.20) are stress and strain characteristics associated with
the change of material shape under which it demonstrates the plastic behavior.

In the theory of plasticity, the plastic potential Up is assumed to be a function of stress
intensity σ , and according to Eq. (4.18), the plastic strains are given by

ε
p
ij = dUp

dσ

∂σ
∂σij

(4.23)

Consider further a plane stress state with stresses σx , σy , and τxy in Fig. 4.5. For this case,
Eq. (4.19) takes the form

σ =
√

σ 2
x + σ 2

y − σxσy + 3τ 2
xy (4.24)

Using Eqs. (4.15)–(4.17), (4.23), and (4.24), we finally arrive at the following constitutive
equations

εx = 1

E
(σx − νσy) + ω(σ)

(
σx − 1

2
σy

)

εy = 1

E
(σy − νσx) + ω(σ)

(
σy − 1

2
σx

)

γxy = 1

G
τxy + 3ω(σ)τxy

(4.25)
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in which

ω(σ) = 1

σ

dUp

dσ
(4.26)

To find ω(σ), we need to specify the dependence of Uc on σ . The most simple and suitable
for practical applications is the power approximation

Up = Cσn (4.27)

where C and n are some experimental constants. As a result, Eq. (4.26) yields

ω(σ) = Cnσn−2 (4.28)

To determine coefficients C and n, we introduce the basic assumption of the plasticity
theory concerning the existence of a universal stress–strain diagram (master curve).
According to this assumption, for any particular material, there exists a relationship
between stress and strain intensities, i.e., σ = ϕ(ε) (or ε = f (σ)), that is one and
the same for all loading cases. This fact enables us to find coefficients C and n from a test
under uniaxial tension and thus extend the obtained results to an arbitrary state of stress.

Indeed, consider uniaxial tension as in Fig. 1.1 with stress σ11. For this case, σ = σx ,
and Eqs. (4.25) yield

εx = σx

E
+ ω(σx)σx (4.29)

εy = − ν

E
σx − 1

2
ω(σx)σx (4.30)

γxy = 0

Solving Eq. (4.29) for ω(σx), we get

ω(σx) = 1

Es(σx)
− 1

E
(4.31)

where Es = σx/εx is the secant modulus introduced in Section 1.1 (see Fig. 1.4). Using
now the existence of the universal diagram for stress intensity σ and taking into account
that σ = σx for uniaxial tension we can generalize Eq. (4.31) and write it for an arbitrary
state of stress as

ω(σ) = 1

Es(σ )
− 1

E
(4.32)

To determine Es(σ ) = σ/ε, we need to plot the universal stress–strain curve. For this
purpose, we can use an experimental diagram σx(εx) for the case of uniaxial tension, e.g.,
the one shown in Fig. 4.9 for an aluminum alloy with a solid line. To plot the universal



Chapter 4. Mechanics of a composite layer 145

0
0 1 2 3 4

50

100

150

200

250

sx, s, MPa

ex, e, %

Fig. 4.9. Experimental stress–strain diagram for an aluminum alloy under uniaxial tension (solid line), the
universal stress–strain curve (dashed line) and its power approximation (dots).

curve σ(ε), we should put σ = σx and change the scale on the strain axis in accordance
with Eq. (4.21). To do this, we need to know the plastic Poisson’s ratio νp which can be
found from νp = −εy/εx . Using Eqs. (4.29) and (4.30), we arrive at

νp = 1

2
− Es

E

(
1

2
− ν

)

It follows from this equation that, νp = ν if Es = E and νp → 1/2 for Es → 0. The
dependencies of Es and νp on ε for the aluminum alloy under consideration are presented
in Fig. 4.10. With the aid of this figure and Eq. (4.21) in which we should take ε11 = εx

we can calculate ε and plot the universal curve shown in Fig. 4.9 with a dashed line. As
can be seen, this curve is slightly different from the diagram corresponding to a uniaxial
tension. For the power approximation in Eq. (4.27), we get from Eqs. (4.26) and (4.32)
the following equations

ω(σ) = Cnσn−2, ω(σ ) = ε

σ
− 1

E

Matching these results, we find

ε = σ

E
+ Cnσn−1 (4.33)
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Fig. 4.10. Dependencies of the secant modulus (Es), tangent modulus (Et), and the plastic Poisson’s ratio (νp),
on strain for an aluminum alloy.

This is a traditional approximation for a material with a power hardening law. Now, we
can find C and n using Eq. (4.33) to approximate the dashed line in Fig. 4.9. The results
of this approximation are shown in this figure with dots that correspond to E = 71.4 GPa,
n = 6, and C = 6.23 × 10−15 (MPa)−5.

Thus, constitutive equations of the deformation theory of plasticity are specified by
Eqs. (4.25) and (4.32). These equations are valid only for active loading that can be iden-
tified by the condition dσ > 0. Being applied for unloading (i.e., for dσ < 0), Eqs. (4.25)
correspond to nonlinear elastic material with stress–strain diagram shown in Fig. 1.2. For
an elastic–plastic material (see Fig. 1.5), the unloading diagram is linear. So, if we reduce
the stresses by some decrements �σx , �σy , and �τxy , the corresponding decrements of
strains will be

�εx = 1

E
(�σx − ν�σy), �εy = 1

E
(�σy − ν�σx), �γxy = 1

G
�τxy

Direct application of the nonlinear equations (4.25) substantially hinders the problem of
stress–strain analysis because these equations include function ω(σ) in Eq. (4.32) which,
in turn, contains the secant modulus Es(σ ). For the power approximation corresponding
to Eq. (4.33), Es can be expressed analytically, i.e.,

1

Es
= 1

E
+ Cnσn−2
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However, in many cases Es is given graphically as in Fig. 4.10 or numerically in the
form of a table. Thus, Eqs. (4.25) sometimes cannot be even written in an explicit ana-
lytical form. This implies application of numerical methods in conjunction with iterative
linearization of Eqs. (4.25).

There exist several methods of such linearization that will be demonstrated using the
first equation in Eqs. (4.25), i.e.,

εx = 1

E
(σx − νσy) + ω(σ)

(
σx − 1

2
σy

)
(4.34)

In the method of elastic solutions (Ilyushin, 1948), Eq. (4.34) is used in the following
form

εs
x = 1

E
(σ s

x − νσ s
y ) + ηs−1 (4.35)

where s is the number of the iteration step and

ηs−1 = ω(σs−1)

(
σ s−1

x − 1

2
σ s−1

y

)

For the first step (s = 1), we take η0 = 0 and solve the problem of linear elasticity with
Eq. (4.35) in the form

ε1
x = 1

E
(σ 1

x − νσ 1
y ) (4.36)

Finding the stresses, we calculate η1 and write Eq. (4.35) as

ε2
x = 1

E
(σ 2

x − νσ 2
y ) + η1

where the first term is linear, whereas the second term is a known function of coordinates.
Thus, we have another linear problem resolving which we find stresses, calculate η2, and
switch to the third step. This process is continued until the strains corresponding to some
step become sufficiently close within the stipulated accuracy to the results found at the
previous step.

Thus, the method of elastic solutions reduces the initial nonlinear problem to a sequence
of linear problems of the theory of elasticity for the same material but with some initial
strains that can be transformed into initial stresses or additional loads. This method read-
ily provides a nonlinear solution for any problem that has a linear solution, analytical
or numerical. The main shortcoming of the method is its poor convergence. Graphical
interpretation of this process for the case of uniaxial tension with stress σ is presented in
Fig. 4.11a. This figure shows a simple way to improve the convergence of the process.
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Fig. 4.11. Geometric interpretation of (a) the method of elastic solutions, (b) the method of variable elasticity
parameters, (c) Newton’s method, and (d) method of successive loading.

If we need to find the strain at the point of the curve that is close to point A, it is not
necessary to start the process with initial modulus E. Taking E′ < E in Eq. (4.36) we can
reach the result with much fewer steps.

According to the method of elastic variables (Birger, 1951), we should present
Eq. (4.34) as

εs
x = 1

E
(σ s

x − νσ s
y ) + ω(σs−1)

(
σ s

x − 1

2
σ s

y

)
(4.37)

In contrast to Eq. (4.35), stresses σ s
x and σ s

y in the second term correspond to the current
step rather than to the previous one. This enables us to write Eq. (4.37) in a form analogous
to Hooke’s law, i.e.,

εs
x = 1

Es−1
(σ s

x − νs−1σ
s
y ) (4.38)
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where

Es−1 =
[

1

E
+ ω(σs−1)

]−1

, νs−1 = Es−1

[
ν

E
+ 1

2
ω(σs−1)

]
(4.39)

are elastic variables corresponding to the step with number s − 1. The iteration procedure
is similar to that described above. For the first step we take E0 = E and ν0 = ν in
Eq. (4.38). We then find σ 1

x , σ 1
y , and σ1, determine E1, ν1, switch to the second step

and so on. Graphical interpretation of the process is shown in Fig. 4.11b. Convergence of
this method is by an order faster than that of the method of elastic solutions. However,
elastic variables in the linear constitutive equation of the method, Eq. (4.38), depend
on stresses and hence, on coordinates whence the method has obtained its name. This
method can be efficiently applied in conjunction with the finite element method according
to which the structure is simulated with the system of elements with constant stiffness
coefficients. Being calculated for each step with the aid of Eqs. (4.39), these stiffnesses
will change only with transition from one element to another, which is as apparent would
not practically hinder the calculation procedure for the finite element method.

The iteration process having the best convergence is provided by the classical Newton’s
method requiring the following form of Eq. (4.34)

εs
x = εs−1

x + cs−1
11

(
σ s

x − σ s−1
x

)
+ cs−1

12

(
σ s

y − σ s−1
y

)
+ cs−1

13

(
τ s
xy − τ s−1

xy

)
(4.40)

where

cs−1
11 = 1

E
+ ω(σs−1) +

(
σ s−1

x − 1

2
σ s−1

y

)
∂

∂σ s−1
x

ω(σs−1)

cs−1
12 = − ν

E
− 1

2
ω(σs−1) +

(
σ s−1

x − 1

2
σ s−1

y

)
∂

∂σ s−1
y

ω(σs−1)

cs−1
13 =

(
σ s−1

x − 1

2
σ s−1

y

)
∂

∂τ s−1
xy

ω(σs−1)

Since coefficients c are known from the previous step (s − 1), Eq. (4.40) is linear with
respect to stresses and strains corresponding to step number s. Graphical interpretation
of this method is presented in Fig. 4.11c. In contrast to the methods discussed above,
Newton’s method has no physical interpretation and being characterized with very high
convergence, is rather cumbersome for practical applications.

The iteration methods discussed above are used to solve direct problems of stress
analysis, i.e., to find stresses and strains induced by a given load. However, there
exists another class of problems requiring us to evaluate the load-carrying capacity of
the structure. To solve these problems, we need to trace the evolution of stresses while
the load increases from zero to some ultimate value. To do this, we can use the method of
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successive loading. According to this method, the load is applied with some increments,
and for each s-step of loading the strain is determined as

εs
x = εs−1

x + 1

Es−1

(
�σs

x − νs−1�σs
y

)
(4.41)

where Es−1 and νs−1 are specified by Eqs. (4.39) and correspond to the previous loading
step. Graphical interpretation of this method is shown in Fig. 4.11d. To obtain reliable
results, the load increments should be as small as possible, because the error of calculation
is cumulative in this method. To avoid this effect, the method of successive loading can
be used in conjunction with the method of elastic variables. Being applied after several
loading steps (black circles in Fig. 4.11d) the latter method allows us to eliminate the
accumulated error and to start again the process of loading from a ‘correct’ initial state
(light circles in Fig. 4.11d).

Returning to the constitutive equations of the deformation theory of plasticity,
Eq. (4.25), it is important to note that these equations are algebraic. This means that strains
corresponding to some combination of loads are determined by the stresses induced by
these loads and do not depend on the history of loading, i.e., on what happened to the
material before this combination of loads was reached.

However, existing experimental data show that, in general, strains should depend on
the history of loading. This means that constitutive equations should be differential rather
than algebraic as they are in the deformation theory. Such equations are provided by the
flow theory of plasticity. According to this theory, decomposition in Eq. (4.15) is used for
infinitesimal increments of stresses, i.e.,

dεij = dεe
ij + dε

p
ij (4.42)

Here, increments of elastic strains are related to the increments of stresses by Hooke’s
law, e.g., for the plane stress state

dεe
x = 1

E
(dσx − νdσy), dεe

y = 1

E
(dσy − νdσx), dγxy = 1

G
dτxy (4.43)

whereas increments of plastic strains

dε
p
ij = ∂Up

∂σij

dλ

are expressed in the form of Eq. (4.18) but include a parameter λ which characterizes the
loading process.

Assuming that Up = Up(σ ), where σ is the stress intensity specified by Eq. (4.19) or
(4.24), we get

dε
p
ij = dUp

dσ

∂σ
∂σij

dλ
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The explicit form of these equations for the plane stress state is

dε
p
x = dω(σ)

(
σx − 1

2
σy

)

dε
p
y = dω(σ)

(
σy − 1

2
σx

)
(4.44)

dγ
p
xy = 3dω(σ)τxy

where

dω(σ) = 1

σ

dUp

dσ
dλ (4.45)

To determine the parameter λ, assume that the plastic potential Up, being on the one hand
a function of σ , can be treated as the work performed by stresses on plastic strains, i.e.,

dUp = ∂Up

∂σ
dσ

= σxdε
p
x + σydε

p
y + τxydγ

p
xy

Substituting strain increments from Eqs. (4.44) and taking into account Eq. (4.24) for σ ,
we have

∂Up

∂σ
dσ = σ 2dω(σ)

With due regard to Eq. (4.45), we arrive at the following simple and natural relationship
dλ = dσ/σ . Thus, Eq. (4.45) takes the form

dω(σ) = dσ

σ 2

dUp

dσ
(4.46)

and Eqs. (4.42)–(4.44) result in the following constitutive equations for the flow theory

dεx = 1

E
(dσx − νdσy) + dω(σ)

(
σx − 1

2
σy

)

dεy = 1

E
(dσy − νdσx) + dω(σ)

(
σy − 1

2
σx

)

dγxy = 1

G
dτxy + 3dω(σ)τxy

(4.47)

As can be seen, in contrast to the deformation theory, stresses govern the increments of
plastic strains rather than the strains themselves.
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In the general case, irrespective of any particular approximation of plastic potential
Up, we can obtain for function dω(σ) in Eqs. (4.47) an expression similar to Eq. (4.32).
Consider uniaxial tension for which Eqs. (4.47) yield

dεx = dσx

E
+ dω(σx)σx

Repeating the derivation of Eq. (4.32), we finally have

dω(σ) = dσ

σ

(
1

Et(σ )
− 1

E

)
(4.48)

where Et(σ ) = dσ/dε is the tangent modulus introduced in Section 1.1 (see Fig. 1.4).
The dependence of Et on strain for an aluminum alloy is shown in Fig. 4.10. For the
power approximation for plastic potential

Up = Bσn (4.49)

matching Eqs. (4.46) and (4.48), we arrive at the following equation

dε

dσ
= 1

E
+ Bnσn−2

Upon integration, we get

ε = σ

E
+ Bn

n − 1
σn−1 (4.50)

As can be seen, this equation has the same form as Eq. (4.33). The only difference is in the
form of coefficients C and B. As in the theory of deformation, Eq. (4.50) can be used to
approximate the experimental stress–strain curve and to determine coefficients B and n.
Thus, the constitutive equations for the flow theory of plasticity are specified by Eqs. (4.47)
and (4.48).

For a plane stress state, introduce the stress space shown in Fig. 4.12 and referred to
a Cartesian coordinate frame with stresses as coordinates. In this space, any loading can
be presented as a curve specified by the parametric equations σx = σx(p), σy = σy(p),
and τxy = τxy(p), in which p is the loading parameter. To find strains corresponding
to point A on the curve, we should integrate Eqs. (4.47) along this curve, thus taking
into account the whole history of loading. In the general case, the obtained result will
be different from what follows from Eqs. (4.25) of the deformation theory for point A.
However, there exists one loading path (the straight line 0A in Fig. 4.12) that is completely
determined by the location of its final point A. This is the so-called proportional loading
during which the stresses increase in proportion to parameter p, i.e.,

σx = σ 0
x p, σy = σ 0

y p, τxy = τ 0
xyp (4.51)
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sx

sy

txy

A

0

Fig. 4.12. Loading path (0A) in the stress space.

where stresses with superscript ‘0’ can depend on coordinates only. For such loading,
σ = σ0p, dσ = σ0dp, and Eqs. (4.46) and (4.49) yield

dω(σ) = Bnσn−3dσ = Bnσn−2
0 pn−3dp (4.52)

Consider, for example, the first equation of Eqs. (4.47). Substituting Eqs. (4.51) and (4.52),
we have

dεx = 1

E

(
σ 0

x − νσ 0
y

)
dp + Bnσn−2

0

(
σ 0

x − 1

2
σ 0

y

)
pn−2dp

This equation can be integrated with respect to p. Using again Eqs. (4.51), we arrive at
the constitutive equation of the deformation theory

εx = 1

E
(σx − νσy) + B

n

n − 1
σn−2

(
σx − 1

2
σy

)

Thus, for a proportional loading, the flow theory reduces to the deformation theory of
plasticity. Unfortunately, before the problem is solved and the stresses are found we
do not know whether the loading is proportional or not and which particular theory of
plasticity should be used. There exists a theorem of proportional loading (Ilyushin, 1948)
according to which the stresses increase proportionally and the deformation theory can be
used if:
(1) external loads increase in proportion to one loading parameter,
(2) the material is incompressible and its hardening can be described with the power law

σ = Sεn.
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In practice, both conditions of this theorem are rarely met. However, existing experience
shows that the second condition is not very important and that the deformation theory of
plasticity can be reliably (but approximately) applied if all the loads acting on the structure
increase in proportion to one parameter.

4.2. Unidirectional orthotropic layer

A composite layer with the simplest structure consists of unidirectional plies whose
material coordinates, 1, 2, and 3, coincide with coordinates of the layer, x, y, and z, as
in Fig. 4.13. An example of such a layer is presented in Fig. 4.14 – the principal material
axes of an outer circumferential unidirectional layer of a pressure vessel coincide with
global (axial and circumferential) coordinates of the vessel.

4.2.1. Linear elastic model

For the layer under study, the constitutive equations, Eqs. (2.48) and (2.53), yield

ε1 = σ1

E1
− ν12

σ2

E2
− ν13

σ3

E3

ε2 = σ2

E2
− ν21

σ1

E1
− ν23

σ3

E3

ε3 = σ3

E3
− ν31

σ1

E1
− ν32

σ2

E2

γ12 = τ12

G12
, γ13 = τ13

G13
, γ23 = τ23

G23

(4.53)

 

 

 t23

t23

t13
t13

t12

t12

s2

s3

s1

x,1

y,2

z,3

Fig. 4.13. An orthotropic layer.
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Fig. 4.14. Filament-wound composite pressure vessel.

where

ν12E1 = ν21E2, ν13E1 = ν31E3, ν23E2 = ν32E3

The inverse form of Eqs. (4.53) is

σ1 = A1(ε1 + µ12ε2 + µ13ε3)

σ2 = A2(ε2 + µ21ε1 + µ23ε3)

σ3 = A3(ε3 + µ31ε1 + µ32ε2)

τ12 = G12γ12, τ13 = G13γ13, τ23 = G23γ23

(4.54)

where

A1 = E1

D
(1 − ν23ν32), A2 = E2

D
(1 − ν13ν31), A3 = E3

D
(1 − ν12ν21)

D = 1 − ν12ν23ν31 − ν13ν21ν32 − ν13ν31 − ν12ν21 − ν23ν32

µ12 = ν12 + ν13ν32

1 − ν23ν32
, µ21 = ν21 + ν23ν31

1 − ν13ν31
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µ13 = ν13 + ν12ν23

1 − ν23ν32
, µ31 = ν31 + ν21ν32

1 − ν12ν21

µ23 = ν23 + ν13ν21

1 − ν13ν31
, µ32 = ν31 + ν21ν32

1 − ν12ν21

As for an isotropic layer considered in Section 4.1, the terms including the transverse
normal stress σ3 can be neglected for a thin layer in Eqs. (4.53) and (4.54), and they can
be written in the following simplified forms

ε1 = σ1

E1
− ν12

σ2

E2
, ε2 = σ2

E2
− ν21

σ1

E1

γ12 = τ12

G12
, γ13 = τ13

G13
, γ23 = τ23

G23

(4.55)

and

σ1 = E1(ε1 + ν12ε2), σ2 = E2(ε2 + ν21ε1)

τ12 = G12γ12, τ13 = G13γ13, τ23 = G23γ23

(4.56)

where

E1, 2 = E1, 2

1 − ν12ν21

The constitutive equations presented above include elastic constants for a layer that are
determined experimentally. For in-plane characteristics E1, E2, G12, and ν12, the corre-
sponding test methods are discussed in Chapter 3. The transverse modulus E3 is usually
found by testing the layer under compression in the z-direction. The transverse shear
moduli G13 and G23 can be obtained by various methods, e.g., by inducing pure shear
in two symmetric specimens shown in Fig. 4.15 and calculating the shear modulus as
G13 = P/(2Aγ ), where A is the in-plane area of the specimen.

P

g
1

3

1

3

Fig. 4.15. A test to determine transverse shear modulus.
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Table 4.1
Transverse shear moduli of unidirectional composites (Herakovich, 1998).

Material Glass–epoxy Carbon–epoxy Aramid–epoxy Boron–Al

G23 (GPa) 4.1 3.2 1.4 49.1

For unidirectional composites, G13 = G12 (see Table 3.5) whereas typical values of
G23 are listed in Table 4.1 (Herakovich, 1998).

Poisson’s ratios ν31 and ν32 can be determined by measuring the change in the layer
thickness under in-plane tension in directions 1 and 2.

4.2.2. Nonlinear models

Consider Figs. 3.40–3.43 showing typical stress–strain diagrams for unidirectional
advanced composites. As can be seen, the materials demonstrate linear behavior only
under tension. The curves corresponding to compression are slightly nonlinear, whereas
the shear curves are definitely nonlinear. It should be emphasized that this does not mean
that the linear constitutive equations presented in Section 4.2.1 are not valid for these
materials. First, it should be taken into account that the deformations of properly designed
composite materials are controlled by the fibers, and they do not allow the shear strain
to reach the values at which the shear stress–strain curve is highly nonlinear. Second, the
shear stiffness is usually very small in comparison with the longitudinal one, and so is its
contribution to the apparent material stiffness. The material behavior is usually close to
linear even if the shear deformation is nonlinear. Thus, a linear elastic model provides, as
a rule, a reasonable approximation to the actual material behavior. However, there exist
problems to solve in which we need to allow for material nonlinearity and apply one of
the nonlinear constitutive theories discussed below.

First, note that material behavior under elementary loading (pure tension, compression,
and shear) is specified by experimental stress–strain diagrams of the type shown in
Figs. 3.40–3.43, and we do not need any theory. The necessity for a theory occurs if
we are to study the interaction of simultaneously acting stresses. Because for the layer
under study this interaction usually takes place for in-plane stresses σ1, σ2, and τ12 (see
Fig. 4.13), we consider further the plane state of stress.

In the simplest, but quite useful for practical engineering analysis approach, the stress
interaction is ignored completely, and the linear constitutive equations, Eqs. (4.55), are
generalized as

ε1 = σ1

Es
1

− νs
12

σ2

Es
2
, ε2 = σ2

Es
2

− νs
21

σ1

Es
1
, γ12 = τ12

Gs
12

(4.57)

where the superscript ‘s’ indicates the corresponding secant characteristics specified by
Eqs. (1.8). These characteristics depend on stresses and are determined using experimental
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diagrams similar to those presented in Figs. 3.40–3.43. Particularly, diagrams σ1(ε1) and
ε2(ε1) plotted under uniaxial longitudinal loading yield Es

1(σ1) and νs
21(σ1), secant moduli

Es
2(σ2) and Gs

12(τ12) are determined from experimental curves for σ2(ε2) and τ12(γ12),
respectively, whereas νs

12 is found from the symmetry condition in Eqs. (4.53). In a more
rigorous model (Jones, 1977), the secant characteristics of the material in Eqs. (4.57) are
also functions but in this case they are functions of strain energy U in Eq. (2.51) rather
than of individual stresses. Models of this type provide adequate results for unidirectional
composites with moderate nonlinearity.

To describe pronounced nonlinear elastic behavior of a unidirectional layer, we can use
Eq. (4.10). Expanding the complementary potential Uc into a Taylor series with respect
to stresses, we have

Uc = c0 + cij σij + 1

2
cijklσij σkl + 1

3!cijklmnσij σklσmn + 1

4!cijklmnpqσij σklσmnσpq

+ 1

5!cijklmnpqrsσij σklσmnσpqσrs + 1

6!cijklmnpqrstwσij σklσmnσpqσrsσtw + · · ·
(4.58)

where

c0 = Uc (σij = 0), cij = ∂Uc

∂σij

∣∣∣∣
σij =0

, cijkl = ∂2Uc

∂σij ∂σkl

∣∣∣∣
σij =0, σkl=0

, etc.

A sixth-order approximation with the terms presented in Eq. (4.58) (where summation
over repeated subscripts is implied) allows us to construct constitutive equations includ-
ing stresses in the fifth power. The coefficients ‘c’ should be found from experiments
with material specimens. Since these coefficients are particular derivatives that do not
depend on the sequence of differentiation, the sequence of their subscripts is not impor-
tant. As a result, the sixth-order polynomial in Eq. (4.58) includes 84 ‘c’-coefficients.
This is clearly far too many for the practical analysis of composite materials. To reduce
the number of coefficients, we can first use some general considerations. Namely,
assume that Uc = 0 and εij = 0 if there are no stresses (σij = 0). Then, c0 = 0
and cij = 0. Second, we should take into account that the material under study is
orthotropic. This means that normal stresses do not induce shear strain, and shear stresses
do not cause normal strains. Third, the direction of shear stresses should influence only
shear strains, i.e., shear stresses should have only even powers in constitutive equations
for normal strains, whereas the corresponding equation for shear strain should include
only odd powers of shear stresses. As a result, the constitutive equations will con-
tain 37 coefficients and take the following form (in new notations for coefficients and
stresses)

ε1 = a1σ1 + a2σ
2
1 + a3σ

3
1 + a4σ

4
1 + a5σ

5
1 + d1σ1 + 2d2σ1σ2 + d3σ

2
2 + 3d4σ

2
1 σ2

+ d5σ
3
2 + d6σ1σ

2
2 + 4d7σ

3
1 σ2 + 3d8σ

2
1 σ 2

2 + 2d9σ1σ
3
2 + d10σ

4
2 + 5d11σ

4
1 σ2



Chapter 4. Mechanics of a composite layer 159

+ 4d12σ
3
1 σ 2

2 + 3d13σ
2
1 σ 3

2 + 2d14σ1σ
4
2 + d15σ

5
2 + k1σ1τ

2
12 + k2σ2τ

2
12

+ 3k3σ
2
1 τ 2

12 + 4k4σ
3
1 τ 2

12 + 2k5σ1τ
4
12

ε2 = b1σ2 + b2σ
2
2 + b3σ

3
2 + b4σ

4
2 + b5σ

5
2 + d1σ1 + d2σ

2
1 + 2d3σ1σ2 + d4σ

3
1

+ 3d5σ1σ
2
2 + d6σ

2
1 σ2 + d7σ

4
1 + 2d8σ

3
1 σ2 + 3d9σ

2
1 σ 2

2 + 4d10σ1σ
3
2 + d11σ

5
1

+ 2d12σ
4
1 σ2 + 3d13σ

3
1 σ 2

2 + 2d14σ
2
1 σ 3

2 + 5d15σ1σ
4
2 + m1σ2τ

2
12 + k2σ1τ

2
12

+ 3m2σ
2
2 τ 2

12 + 4m3σ
3
2 τ 2

12 + 2m4σ2τ
4
12 (4.59)

γ12 = c1τ12 + c2τ
3
12 + c3τ

5
12 + k1τ12σ

2
1 + m1τ12σ

2
2 + 2k2τ12σ1σ2

+ 2k3τ12σ
3
1 + 2m2τ12σ

3
2 + 2k4τ12σ

4
1 + 4k5τ

3
12σ

2
1 + 2m3τ12σ

4
2 + 4m4τ

3
12σ

2
2

For unidirectional composites, the dependence ε1(σ1) is linear which means that we should
put d2 = . . . d15 = 0, k1 = . . . k5 = 0. Then, the foregoing equations reduce to

ε1 = a1σ1 + d1σ2

ε2 = b1σ2 + b2σ
2
2 + b3σ

3
2 + b4σ

4
2 + b5σ

5
2 + d1σ1 + m1σ2τ

2
12 + 3m2σ

2
2 τ 2

12

+ 4m3σ
3
2 τ 2

12 + 2m4σ2τ
4
12 (4.60)

γ12 = c1τ12 + c2τ
3
12 + c3τ

5
12 + m1τ12σ

2
2 + 2m2τ12σ

3
2 + 2m3τ12σ

4
2 + 4m4τ

3
12σ

2
2

As an example, consider a specific unidirectional two-matrix fiberglass composite with
high in-plane transverse and shear deformation (see Section 4.4.3 for further details).
The stress–strain curves corresponding to transverse tension, compression, and in-plane
shear are shown in Fig. 4.16. Solid lines correspond to Eqs. (4.60) used to approximate
the experimental results (circles in Fig. 4.16). The coefficients a1 and d1 in Eqs. (4.60)
are found using diagrams ε1(σ1) and ε2(σ2) which are linear and not shown here. The
coefficients b1 . . . b5 and c1, c2, and c3 are determined using the least-squares method to
approximate curves σ+

2 (ε2), σ−
2 (ε2), and τ12(γ12). The other coefficients, i.e. m1 . . . m4,

should be determined with the aid of a more complicated experiment involving loading
that induces both stresses σ2 and τ12 acting simultaneously. This experiment is described
in Section 4.3.

As follows from Figs. 3.40–3.43, unidirectional composites demonstrate pronounced
nonlinearity only under shear. Assuming that the dependence ε2(σ2) is also linear, we can
reduce Eqs. (4.60) to

ε1 = a1σ1 + d1σ2, ε2 = b1σ2 + d1σ1, γ12 = c1τ12 + c2τ
3
12 + c3τ

5
12

For practical analysis, an even simpler form of these equations (with c3 = 0) can be used
(Hahn and Tsai, 1973).
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Fig. 4.16. Calculated (solid lines) and experimental (circles) stress–strain diagrams for a two-matrix unidirec-
tional composite under in-plane transverse tension (σ+

2 ), compression (σ−
2 ) and shear (τ12).

Nonlinear behavior in composite materials can also be described with the aid of the
theory of plasticity which can be constructed as a direct generalization of the classical
plasticity theory developed for metals and described in Section 4.1.2.

To construct such a theory, we decompose strains in accordance with Eq. (4.15) and
use Eqs. (4.16) and (4.18) to determine elastic and plastic strains as

εe
ij = ∂Ue

∂σij

, ε
p
ij = ∂Up

∂σij

(4.61)

where Ue and Up are elastic and plastic potentials. For elastic potential, elasticity theory
yields

U = cijklσij σkl (4.62)

where cijkl are compliance coefficients, and summation over repeated subscripts is
implied. The plastic potential is assumed to be a function of stress intensity, σ , which is
constructed for a plane stress state as a direct generalization of Eq. (4.24), i.e.,

σ = aij σij + √
aijklσij σkl + 3

√
aijklmnσij σklσmn + · · · (4.63)

where the coefficients ‘a’ are material constants characterizing its plastic behavior. Finally,
we use the power law in Eq. (4.27) for the plastic potential.
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To write constitutive equations for a plane stress state, we return to engineering notations
for stresses and strains and use conditions that should be imposed on an orthotropic
material and are discussed above in application to Eqs. (4.59). Finally, Eqs. (4.15), (4.27)
and (4.61)–(4.63) yield

ε1 =a1σ1+d1σ2+nσn−1

[
1

R1
(b11σ1+c12σ2)+ 1

R2
2

(
d11σ

2
1 +2e12σ1σ2+e21σ

2
2

)]

ε2 =b1σ2+d1σ1+nσn−1

[
1

R1
(b22σ2+c12σ1)+ 1

R2
2

(
d22σ

2
2 +2e21σ2σ1+e12σ

2
1

)]

(4.64)

γ12 =c1τ12+2nσn−1 b12

R1
τ12

where

σ = R1 + R2

R1 =
√

b11σ
2
1 + b22σ

2
2 + b12τ

2
12 + 2c12σ1σ2

R2 = 3
√

d11σ
3
1 + d22σ

3
2 + 3e12σ

2
1 σ2 + 3e21σ1σ

2
2

Deriving Eqs. (4.64), we use new notations for coefficients and restrict ourselves to the
three-term approximation for σ as in Eq. (4.63).

For independent uniaxial loading along the fibers, across the fibers, and in pure shear,
Eqs. (4.64) reduce to

ε1 = a1σ1 + n

(√
b11σ

2
1 + σ1

3
√

d11

)n−1

⎛
⎜⎝√b11

σ1√
σ 2

1

+ 3
√

d11

⎞
⎟⎠

ε2 = b1σ2 + n

(√
b22σ

2
2 + σ2

3
√

d22

)n−1

⎛
⎜⎝√b22

σ2√
σ 2

2

+ 3
√

d22

⎞
⎟⎠

γ12 =
[
c1 + 2n

√
bn

12

(√
τ 2

12

)n−1]
τ12

(4.65)

If nonlinear material behavior does not depend on the sign of normal stresses, then d11 =
d22 = 0 in Eqs. (4.65). In the general case, Eqs. (4.65) allow us to describe materials with
high nonlinearity and different behavior under tension and compression.
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As an example, consider a boron–aluminum unidirectional composite whose experi-
mental stress–strain diagrams (Herakovich, 1998) are shown in Fig. 4.17 (circles) along
with the corresponding approximations (solid lines) plotted with the aid of Eqs. (4.65).

4.3. Unidirectional anisotropic layer

Consider now a unidirectional layer studied in the previous section and assume that its
principal material axis 1 makes some angle φ with the x-axis of the global coordinate
frame (see Fig. 4.18). An example of such a layer is shown in Fig. 4.19.

4.3.1. Linear elastic model

Constitutive equations of the layer under study referred to the principal material coor-
dinates are given by Eqs. (4.55) and (4.56). We need now to derive such equations for
the global coordinate frame x, y, and z (see Fig. 4.18). To do this, we should transfer
stresses σ1, σ2, τ12, τ13, τ23 acting in the layer and the corresponding strains ε1, ε2, γ12,
γ13, γ23 into stress and strain components σx , σy , τxy , τxz, τyz and εx , εy , γxy , γxz, γyz

using Eqs. (2.8), (2.9) and (2.21), (2.27) for coordinate transformation of stresses and
strains. According to Fig. 4.18, the directional cosines, Eqs. (2.1), for this transformation
are (we take x′ = 1, y′ = 2, z′ = 3)

lx1x = c, lx1y = s, lx1z = 0

ly1x = −s, ly1y = c, ly1z = 0

lz1x = 0, lz1y = 0, lz1z = 1

(4.66)

where c = cos φ and s = sin φ. Using Eqs. (2.8) and (2.9), we get

σ1 = σxc
2 + σys

2 + 2τxycs

σ2 = σxs
2 + σyc

2 − 2τxycs

τ12 = (σy − σx)cs + τxy

(
c2 − s2)

τ13 = τxzc + τyzs

τ12 = −τxzs + τyzc

(4.67)

The inverse form of these equations is

σx = σ1c
2 + σ2s

2 − 2τ12cs

σy = σ1s
2 + σ2c

2 + 2τ12cs
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Fig. 4.17. Calculated (solid lines) and experimental (circles) stress–strain diagrams for a boron–aluminum
composite under transverse loading (a) and in-plane shear (b).
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Fig. 4.18. A composite layer consisting of a system of unidirectional plies with the same orientation.

Fig. 4.19. An anisotropic outer layer of a composite pressure vessel. Courtesy of CRISM.

τxy = (σ1 − σ2)cs + τ12
(
c2 − s2) (4.68)

τxz = τ13c − τ23s

τyz = τ13s + τ23c

The corresponding transformation for strains follows from Eqs. (2.21) and (2.27), i.e.,

ε1 = εxc
2 + εys

2 + γxycs

ε2 = εxs
2 + εyc

2 − γxycs
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γ12 = 2(εy − εx)cs + γxy

(
c2 − s2) (4.69)

γ13 = γxzc + γyzs

γ23 = −γxzs + γyzc

or

εx = ε1c
2 + ε2s

2 − γ12cs

εy = ε1s
2 + ε2c

2 + γ12cs

γxy = 2(ε1 − ε2)cs + γ12
(
c2 − s2)

γxz = γ13c − γ23s

γyz = γ13s + γ23c

(4.70)

To derive constitutive equations for an anisotropic unidirectional layer, we substitute
strains, Eqs. (4.69), into Hooke’s law, Eqs. (4.56), and the derived stresses – into
Eqs. (4.68). The final result is as follows

σx = A11εx + A12εy + A14γxy

σy = A21εx + A22εy + A24γxy

τxy = A41εx + A42εy + A44γxy

τxz = A55γxz + A56γyz

τyz = A65γxz + A66γyz

(4.71)

The stiffness coefficients in these equations are

A11 = E1c
4 + E2s

4 + 2E12c
2s2

A12 = A21 = E1ν12 + (E1 + E2 − 2E12)c
2s2

A14 = A41 =
[
E1c

2 − E2s
2 − E12

(
c2 − s2)] cs

A22 = E1s
4 + E2c

4 + 2E12c
2s2

A24 = A42 =
[
E1s

2 − E2c
2 + E12

(
c2 − s2)] cs (4.72)

A44 = (E1 + E2 − 2E1ν12)c
2s2 + G12

(
c2 − s2)2

A55 = G13c
2 + G23s

2

A56 = A65 = (G13 − G23)cs

A66 = G13s
2 + G23c

2
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where

E1, 2 = E1, 2

1 − ν12ν21
, E12 = E1ν12 + 2G12, c = cos φ, s = sin φ

The dependence of stiffness coefficients Amn in Eqs. (4.72) on φ has been studied by
Tsai and Pagano (see, e.g., Tsai, 1987; Verchery, 1999). Changing the powers of sin φ

and cos φ in Eqs. (4.72) for multiple-angle trigonometric functions, we can reduce these
equations to the following form (Verchery, 1999)

A11 = S1 + S2 + 2S3 cos 2φ + S4 cos 4φ

A12 = −S1 + S2 − S4 cos 4φ

A14 = S3 sin 2φ + S4 sin 4φ

A22 = S1 + S2 − 2S3 cos 2φ + S4 cos 4φ

A24 = S3 sin 2φ − S4 sin 4φ

A44 = S1 − S4 cos 4φ

A55 = S5 + S6 cos 2φ

A56 = 4S6 sin 2φ

A66 = S5 − S6 cos 2φ

(4.73)

In these equations,

S1 = 1

8

(
A0

11 + A0
22 − 2A0

12 + 4A0
44

)

S2 = 1

4

(
A0

11 + A0
22 + 2A0

12

)

S3 = 1

4

(
A0

11 − A0
22

)

S4 = 1

8

(
A0

11 + A0
22 − 2A0

12 − 4A0
44

)

S5 = 1

2

(
A0

55 + A0
66

)

S6 = 1

2

(
A0

55 − A0
66

)
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where A0
n are stiffness coefficients corresponding to φ = 0. It follows from Eqs. (4.72)

that,

A0
11 = E1, A0

12 = E1ν12, A0
14 = A0

24 = A0
56 = 0

A0
22 = E2, A0

44 = G12, A0
55 = G13, A0

66 = G23

As can be seen in Eqs. (4.73), there exist the following differential relationships between
tensile and coupling stiffnesses (Verchery and Gong, 1999)

dA11

dφ
= −4A14,

dA22

dφ
= 4A24

It can be directly checked that Eqs. (4.73) provide three invariant stiffness characteristics
whose forms do not depend on φ, i.e.,

A11(φ) + A22(φ) + 2A12(φ) = A0
11 + A0

22 + 2A0
12

A44(φ) − A12(φ) = A0
44 − A0

12

A55(φ) + A66(φ) = A0
55 + A0

66

(4.74)

Any linear combination of these equations is also an invariant combination of stiffness
coefficients.

The inverse form of Eqs. (4.71) can be obtained if we substitute stresses, Eqs. (4.67),
into Hooke’s law, Eqs. (4.55), and the derived strains in Eqs. (4.70). As a result, we arrive
at the following particular form of Eqs. (2.48) and (2.49)

εx = σx

Ex

− νxy

σy

Ey

+ ηx,xy

τxy

Gxy

, εy = σy

Ey

− νyx

σx

Ex

+ ηy,xy

τxy

Gxy

γxy = τxy

Gxy

+ ηxy, x

σx

Ex

+ ηxy, y

σy

Ey

, γxz = τxz

Gxz

+ λxz, yz

τyz

Gyz

γyz = τyz

Gyz

+ λyz, xz

τxz

Gxz

(4.75)

in which the compliance coefficients are

1

Ex

= c4

E1
+ s4

E2
+
(

1

G12
− 2ν21

E1

)
c2s2

νxy

Ey

= νyx

Ex

= ν21

E1
−
(

1

E1
+ 1

E2
+ ν21

E1
− 1

G12

)
c2s2

ηx,xy

Gxy

= ηxy,x

Ex

=2

[
c2

E1
− s2

E2
−
(

1

2G12
− ν21

E1

)(
c2−s2

)]
cs
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1

Ey

= s4

E1
+ c4

E2
+
(

1

G12
− 2ν21

E1

)
c2s2 (4.76)

ηy,xy

Gxy

= ηxy,y

Ey

=2

[
s2

E1
− c2

E2
+
(

1

2G12
− ν21

E1

)(
c2−s2

)]
cs

1

Gxy

=4

(
1

E1
+ 1

E2
+ 2ν21

E1

)
c2s2+ 1

G12

(
c2−s2

)2

1

Gxz

= c2

G13
+ s2

G23
,

λxz,yz

Gyz

= λyz,xz

Gxz

=
(

1

G13
− 1

G23

)
cs,

1

Gyz

= s2

G13
+ c2

G23

There exist the following dependencies between the coefficients of Eqs. (4.71) and (4.75)

1

Ex

= 1

D1

(
A22A44−A2

24

)
,

νxy

Ey

= νyx

Ex

= 1

D1
(A12A44−A14A24)

ηx,xy

Gxy

= ηxy,x

Ex

= 1

D1
(A12A24−A22A14),

1

Ey

= 1

D1

(
A11A44−A2

14

)

ηy,xy

Gxy

= ηxy,y

Ey

= 1

D1
(A12A14−A11A24),

1

Gxy

= 1

D1

(
A11A22−A2

12

)

1

Gxz

= A66

D2
,

1

Gyz

= A55

D2
,

λxz,yz

Gyz

= λyz,xz

Gxz

=−A56

D2

Here,

D1 = A11A22A44 − A11A
2
24 − A22A

2
14 − A44A

2
12 + 2A12A14A24

D2 = A55A66 − A2
56

and

A11 = 1 − ηy, xyηxy, y

D3EyGxy

, A12 = νxy − ηx, xyηxy, y

D3EyGxy

A14 = −ηx, xy + νxyηy, xy

D3EyGxy

, A22 = 1 − ηx, xyηxy, y

D3ExGxy

A24 = −ηy, xy + νyxηx, xy

D3ExGxy

, A44 = 1 − νxyνyx

D3ExEy

A55 = 1

D4Gyz

, A56 = − λxz, yz

D4Gyz

, A66 = 1

D4Gxz
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where

D3 = 1

ExEyGxy

(1 − νxyνyx − ηx, xyηxy, x − ηy, xyηxy, y − νxyηy, xyηxy, x

− νyxηx, xyηxy, y)

D4 = 1

GxzGyz

(1 − λxz, yzλyz, xz)

As can be seen in Eqs. (4.71) and (4.75), the layer under study is anisotropic in plane
xy because the constitutive equations include shear–extension and shear–shear coupling
coefficients η and λ. For φ = 0, the foregoing equations degenerate into Eqs. (4.55) and
(4.56) for an orthotropic layer.

The dependencies of stiffness coefficients on the orientation angle for a carbon–epoxy
composite with properties listed in Table 3.5 are presented in Figs. 4.20 and 4.21.

Uniaxial tension of the anisotropic layer (the so-called off-axis test of a unidirectional
composite) is often used to determine material characteristics that cannot be found in
tests with orthotropic specimens or to evaluate constitutive and failure theories. Such a

0
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Fig. 4.20. Dependencies of tensile (A11, A22) and shear (A44) stiffnesses of a unidirectional carbon–epoxy layer
on the orientation angle.
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Fig. 4.21. Dependencies of coupling stiffnesses of a unidirectional carbon–epoxy layer on the orientation angle.

test is shown in Fig. 4.22. To study this loading case, we should take σy = τxy = 0 in
Eqs. (4.75). Then,

εx = σx

Ex

, εy = −νxy

σx

Ex

, γxy = ηxy, x

σx

Ex

(4.77)

As can be seen in these equations, tension in the x-direction is accompanied not only
with transverse contraction, as in orthotropic materials, but also with shear. This results
in the deformed shape of the sample shown in Fig. 4.23. This shape is natural because
the material stiffness in the fiber direction is much higher than that across the fibers.

Such an experiment, in cases where it can be performed, allows us to determine the
in-plane shear modulus, G12 in principle material coordinates using a simple tensile test
rather than the much more complicated tests described in Section 3.4.3 and shown in
Figs. 3.54 and 3.55. Indeed, if we know Ex from the tensile test in Fig. 4.23 and find E1,
E2, and ν21 from tensile tests along and across the fibers (see Sections 3.4.1 and 3.4.2),
we can use the first equation of Eqs. (4.76) to determine

G12 = sin2 φ cos2 φ

(1/Ex) − (
cos4 φ/E1

) − (
sin4 φ/E2

) + (2ν21/E1) sin2 φ cos2 φ
(4.78)

In connection with this, a question arises as to what angle should be substituted into this
equation to provide the most accurate result. The answer is given in Fig. 4.24, which
displays the strains in principal material coordinates for a carbon–epoxy layer calculated
with the aid of Eqs. (4.69) and (4.77). As can be seen in this figure, the most appropriate
angle is about 10◦. At this angle, the shear strain γ12 is much higher than normal strains
ε1 and ε2, so that material deformation is associated mainly with shear. An off-axis test
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Fig. 4.22. An off-axis test.

sx
sx

g

g 

Fig. 4.23. Deformation of a unidirectional layer loaded at an angle to fiber orientation.
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Fig. 4.24. Dependencies of normalized strains in the principle material coordinates on the angle of the
off-axis test.

with φ = 10◦ can also be used to evaluate material strength in shear τ 12 (Chamis, 1979).
Stresses acting under off-axis tension in the principal material coordinates are statically
determinate and can be found directly from Eqs. (4.67) as

σ1 = σx cos2 φ, σ2 = σx sin2 φ, τ12 = −σx sin φ cos φ (4.79)

Thus, applying stress σx and changing φ we can induce proportional loading with different
combinations of stresses σ1, σ2, and τ12 to evaluate putative constitutive or failure theories
for a material under study.

However, the test shown in Fig. 4.23 can hardly be performed because the test fixture
(see Fig. 4.22) restrains the shear deformation of the specimen and induces a corresponding
shear stress. The constitutive equations for the specimen loaded with uniaxial tension as
in Fig. 4.23 and fixed as in Fig. 4.22 follow from Eqs. (4.75) if we take σy = 0, i.e.,

εx = σx

Ex

+ ηx, xy

τxy

Gxy

(4.80)

γxy = τxy

Gxy

+ ηxy, x

σx

Ex

(4.81)
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in which elastic constants are specified by Eqs. (4.76). The shear stress, being of a reactive
nature, can be found from Eq. (4.81) if we put γxy = 0. Then,

τxy = −ηxy, x

Gxy

Ex

σx

Substituting this result into Eq. (4.80), we arrive at

εx = σx

Ea
x

(4.82)

Here,

Ea
x = Ex

1 − ηx, xyηxy, x

(4.83)

is the apparent elastic modulus that can be found from the test shown in Fig. 4.22. As
follows from Eq. (4.83), Ea

x , in general, does not coincide with Ex as used in Eq. (4.78)
for G12.

Thus, measuring σx and εx we can determine Ex from Eq. (4.82) only under the condi-
tion Ea

x = Ex , which means that the shear–extension coupling coefficient η must be zero.
Applying Eqs. (4.76) and assuming that φ �= 0 and φ �= 90◦, we arrive at the following
condition providing η = 0

sin2 φ0 = e1

e2
(4.84)

in which

e1 = 1 + ν21

E1
− 1

2G12
, e2 = 1 + ν21

E1
+ 1 + ν12

E2
− 1

G12

Since 0 ≤ sin2 φ ≤ 1, there exist two cases in which Eq. (4.84) is valid. The first case
corresponds to the following set of inequalities

e1 ≥ 0, e2 > 0, e2 ≥ e1 (4.85)

whereas for the second case,

e1 ≤ 0, e2 < 0, e2 ≤ e1 (4.86)

To be specific, suppose that E1 > E2. Then, taking into account the symmetry condition
ν12E1 = ν21E2 we have

1 + ν12

E2
>

1 + ν21

E1
(4.87)
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Consider the first set of inequalities in Eqs. (4.85) and assume that the first of them, which
has the following explicit form

1 + ν21

E1
≥ 1

2G12
(4.88)

is valid. Then, Eq. (4.87) yields

1 + ν12

E2
>

1 + ν21

E1
≥ 1

2G12
or

1 + ν12

E2
>

1

2G12

Matching this result with the last inequality in Eqs. (4.85) presented in the form

1 + ν12

E2
≥ 1

2G12
(4.89)

we can conclude that if the first condition in Eqs. (4.85) is valid, then the last of these
conditions is valid too.

Consider the second condition in Eqs. (4.85) and write it in explicit form, i.e.,

1 + ν12

E2
+ 1 + ν21

E1
≥ 1

G12
(4.90)

Transforming Eq. (4.87) and using Eq. (4.89), we have

1 + ν12

E2
+ 1 + ν21

E1
> 2

1 + ν21

E1
≥ 1

G12

which means that the condition in Eq. (4.90) is valid.
So, the set of conditions in Eqs. (4.85) can be reduced to one inequality in Eq. (4.88),

which can be written in a final form as

G12 ≥ E1

2(1 + ν21)
(4.91)

Consider conditions (4.86) and assume that the last of them, which can be presented in
the following explicit form

1 + ν12

E2
≤ 1

2G12
(4.92)

is valid. Using Eqs. (4.87) and (4.92), we get

1 + ν21

E1
<

1 + ν12

E2
≤ 1

2G12
or

1 + ν21

E1
<

1

2G12
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Since the first condition in Eqs. (4.86) can be presented as

1 + ν21

E1
≤ 1

2G12

we can conclude that it is satisfied.
Consider the second inequality in Eqs. (4.86) and write it in an explicit form, i.e.,

1 + ν21

E1
+ 1 + ν12

E2
<

1

G12
(4.93)

Using Eqs. (4.87) and (4.92), we get

1 + ν21

E1
+ 1 + ν12

E2
< 2

1 + ν12

E2
≤ 1

G12

which means that the condition in Eq. (4.93) is satisfied.
So, the set of conditions in Eqs. (4.86) is reduced to one inequality in Eq. (4.92), which

can be written in the following final form

G12 ≤ E2

2(1 + ν12)
(4.94)

Thus, Eq. (4.84) determines the angle φ0 for the orthotropic materials whose mechanical
characteristics satisfy the conditions in Eqs. (4.91) or (4.94). Such materials, being loaded
at an angle φ = φ0, do not experience shear–stretching coupling. The shear modulus can
be found from Eq. (4.78) in which Ex = σx/εx , where σx and εx are the stress and the
strain determined in the off-axis tension test shown in Fig. 4.22.

Consider as examples unidirectional composites with typical properties (Table 3.5).
(1) For fiberglass–epoxy composite, we have E1 = 60 GPa, E2 = 13 GPa,

G12 = 3.4 GPa, ν12 = 0.065, ν21 = 0.3
Calculation in accordance with Eqs. (4.91) and (4.94) yields

E1

2(1 + ν21)
= 23.08 GPa,

E2

2(1 + ν12)
= 6.1 GPa

Thus, the condition in Eq. (4.94) is satisfied, and Eq. (4.84) gives φ0 = 54.31◦.
(2) For aramid–epoxy composite, E1 = 95 GPa, E2 = 5.1 GPa, G12 = 1.8 GPa,

ν12 = 0.018, ν21 = 0.34

E1

2(1 + ν21)
= 36.45 GPa,

E2

2(1 + ν12)
= 2.5 GPa, and φ0 = 61.45◦

(3) For carbon–epoxy composite with E1 = 140 GPa, E2 = 11 GPa, G12 = 5.5 GPa,
ν12 = 0.021, ν21 = 0.27, we have

E1

2(1 + ν21)
= 55.12 GPa,

E2

2(1 + ν12)
= 5.39 GPa
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As can be seen, the conditions in Eqs. (4.91) and (4.94) are not satisfied, and angle φ0
does not exist for this material.

As can be directly checked with the aid of Eqs. (4.76), there exists the following rela-
tionship between the elastic constants of anisotropic materials (Verchery and Gong, 1999)

d

dφ

(
1

Ex

)
= −2

ηx, xy

Gxy

This equation means that ηx, xy = 0 for materials whose modulus Ex reaches the extremum
value in the interval 0 < φ < 90◦. The dependencies of Ex/E1 on φ for the materials
considered above as examples, are shown in Fig. 4.25.

As can be seen, curves 1 and 2 corresponding to glass and aramid composites reach
the minimum value at φ0 = 54.31◦ and φ0 = 61.45◦, respectively, whereas curve 3 for
carbon composite does not have a minimum at 0 < φ < 90◦.

The dependence Ex(φ) with the minimum value of Ex reached at φ = φ0, where
0 < φ < 90◦, is typical for composites reinforced in two orthogonal directions. For
example, for a fabric composite having E1 = E2 and ν12 = ν21, Eq. (4.84) yields the
well-known result φ0 = 45◦. For a typical fiberglass fabric composite with E1 = 26 GPa,
E2 = 22 GPa, G12 = 7.2 GPa, ν12 = 0.11, ν21 = 0.13, we have

E1

2(1 + ν21)
= 11.5 GPa,

E2

2(1 + ν12)
= 9.9 GPa, and φ0 = 49.13◦
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Fig. 4.25. Dependencies of Ex/E1 on φ for fiberglass (1), aramid (2) and carbon (3) epoxy composites.
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In conclusion, it should be noted that the actual application of Eq. (4.78) is hindered by
the fact that the angle φ0 specified by Eq. (4.84) depends on G12, which is not known and
needs to be determined from Eq. (4.78). To find G12, we actually need to perform several
tests for several values of G12 in the vicinity of the expected value and the corresponding
values of φ0 following from Eq. (4.84) and to select the correct value of G12, which
satisfies in conjunction with the corresponding value of φ0, both equations – Eqs. (4.78)
and (4.84) (Morozov and Vasiliev, 2003).

Consider the general case of an off-axis test (see Fig. 4.22) for a composite specimen
with an arbitrary fiber orientation angle φ (see Fig. 4.26). To describe this test, we need
to study the coupled problem for an anisotropic strip in which shear is induced by tension
but is restricted at the strip ends by the jaws of a test frame as in Figs. 4.22 and 4.26.
As follows from Fig. 4.26, the action of the grip can be simulated if we apply a bending
moment M and a transverse force V such that the rotation of the strip ends (γ in Fig. 4.23)
will become zero. As a result, bending normal and shear stresses appear in the strip that
can be analyzed with the aid of composite beam theory (Vasiliev, 1993).

To derive the corresponding equations, introduce the conventional assumptions of beam
theory according to which axial, ux , and transverse, uy , displacements can be presented as

ux = u(x) + yθ, uy = v(x)

where u and θ are the axial displacement and the angle of rotation of the strip cross section
x = constant and v is the strip deflection in the xy-plane (see Fig. 4.26). The strains
corresponding to these displacements follow from Eqs. (2.22), i.e.,

εx = ∂ux

∂x
= u′ + yθ ′ = ε + yθ ′

γxy = ∂ux

∂y
+ ∂uy

∂x
= θ + v′

(4.95)

where ( )′ = d ( ) /dx and ε is the elongation of the strip axis. These strains are related
to stresses by Eqs. (4.75) which reduce to

εx = σx

Ex

+ ηx, xy

τxy

Gxy

γxy = τxy

Gxy

+ ηxy, x

σx

Ex

(4.96)
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Fig. 4.26. Off-axis tension of a strip fixed at the ends.
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The inverse form of these equations is

σx = B11εx + B14γxy, τxy = B41εx + B44γxy (4.97)

where

B11 = Ex

1 − ηx, xyηxy,x

, B44 = Gxy

1 − ηx, xyηxy, x

B14 = B41 = − Exηx, xy

1 − ηx, xyηxy, x

= − Gxyηxy, x

1 − ηx, xyηxy, x

(4.98)

Now, decompose the strip displacements, strains, and stresses into two components
corresponding to
(1) free tension (see Fig. 4.23), and
(2) bending.
For free tension, we have τxy = 0 and v = 0. So, Eqs. (4.95) and (4.96) yield

ε(1)
x = ε1 + yθ ′

1, γ (1)
xy = θ1

ε(1)
x = σ

(1)
x

Ex

, γ (1)
xy = ηxy, x

σ
(1)
x

Ex

(4.99)

Here, ε1 = u′
1 and σ

(1)
x = σ = F/ah, where F is the axial force applied to the strip,

a the strip width, and h is its thickness. Since σ
(1)
x = constant, Eqs. (4.99) give

θ1 = ηxy, x

σ

Ex

= constant, ε1
x = ε1 = σ

Ex

= F

ah
(4.100)

Adding components corresponding to bending (with index 2), we can write the total
displacements and strains as

ux = u1 + u2 + y(θ1 + θ2), uy = v2

εx = ε1 + ε2 + yθ ′
2, γxy = θ1 + θ2 + v′

2

The total stresses can be expressed with the aid of Eqs. (4.97), i.e.,

σx = B11
(
ε1 + ε2 + yθ ′

2

) + B14
(
θ1 + θ2 + v′

2

)

τxy = B41
(
ε1 + ε2 + yθ ′

2

) + B44
(
θ1 + θ2 + v′

2

)

Transforming these equations with the aid of Eqs. (4.98) and (4.100), we arrive at

σx = σ + B11
(
ε2 + yθ ′

2

) + B14
(
θ2 + v′

2

)

τxy = B41
(
ε2 + yθ ′

2

) + B44(θ2 + v′
2)

(4.101)
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These stresses are statically equivalent to the axial force P , the bending moment M , and
the transverse force V , which can be introduced as

P = h

∫ a/2

−a/2
σxdy, M = h

∫ a/2

−a/2
σxydy, V = h

∫ a/2

−a/2
τxydy

Substitution of Eqs. (4.101) and integration yields

P = ah
[
σ + B11ε2 + B14

(
θ2 + v′

2

)]
, (4.102)

M = B11h
a3

12
θ ′

2 (4.103)

V = ah
[
B41ε2 + B44

(
θ2 + v′

2

)]
(4.104)

These forces and moments should satisfy the equilibrium equation that follows from
Fig. 4.27, i.e.,

P ′ = 0, V ′ = 0, M ′ = V (4.105)

Solution of the first equation is P = F = σah. Then, Eq. (4.102) gives

ε2 = −B14

B11

(
θ2 + v′

2

)
(4.106)

The second equation of Eqs. (4.105) shows that V = C1, where C1 is a constant of
integration. Then, substituting this result into Eq. (4.104) and eliminating ε2 with the aid
of Eq. (4.106), we have

θ2 + v′
2 = C1

ahB44
(4.107)

where B44 = B44 − B14B41.
Taking in the third equation of Eqs. (4.105) V = C1 and substituting M from

Eq. (4.103), we arrive at the following equation for θ2

θ ′′
2 = 12C1

a3hB11

P

M
V

dx

P + P ′ dx

V + V ′ dx

M + M ′ dx

Fig. 4.27. Forces and moments acting on the strip element.
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Integration yields

θ2 = 6C1

a3hB11
+ C2x + C3

The total angle of rotation θ = θ1 + θ2, where θ1 is specified by Eqs. (4.100), should be
zero at the ends of the strip, i.e., θ(x = ±l/2) = 0. Satisfying these conditions, we have

θ2 = 3C1

a3hB11

(
2x2 − l2

2

)
− ηxy, x

σ

Ex

(4.108)

Substitution into Eq. (4.107) and integration allows us to find the deflection

v2 = C1x

ahB44
− 3C1x

a3hB11

(
2x2

3
− l2

2

)
+ ηxy, x

σ0x

Ex

+ C4 (4.109)

This expression includes two constants, C1 and C4, which can be determined from the
boundary conditions v2(x = ± l/2) = 0. The final result, following from Eqs. (4.100),
(4.108), and (4.109), is

v = lηxy, x

σx

Ex

[
1 − B11 + l

2
B44

(
3/2 − 2x 2)

B11 + l
2
B44

]

θ = ηxy, x

3σ l
2

Ex

B44
(
2x 2 − 1/2

)
B11 + l

2
B44

(4.110)

where l = l/a and x = x/l. The deflection of a carbon–epoxy strip having φ = 45◦ and
l = 10 is shown in Fig. 4.28.
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Fig. 4.28. Normalized deflection of a carbon–epoxy strip (φ = 45◦, l = 10).
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Now, we can write the relationship between modulus Ex corresponding to the ideal test
shown in Fig. 4.23 and apparent modulus Ea

x that can be found from the real test shown
in Figs. 4.22 and 4.26. Using Eqs. (4.98), (4.100), (4.106), and (4.110), we finally get

σ = Ea
xε

where

Ea
x = Ex

1 − {
Exηx, xyηxy, x

/[
Ex + l

2
Gxy(1 − ηx, xyηxy, x)

]}

Consider two limiting cases. For an infinitely long strip (l → ∞), we have Ea
x = Ex . This

result corresponds to the case of free shear deformation specified by Eqs. (4.77). For an
infinitely short strip (l → 0), taking into account Eqs. (4.98), we get

Ea
x = Ex

1 − ηx, xyηxy, x

= B11

In accordance with Eq. (4.97), this result corresponds to a restricted shear deformation
(γxy = 0). For a strip with finite length, Ex <Ea

x <B11. The dependence of the normalized
apparent modulus on the length-to-width ratio for a 45◦ carbon–epoxy layer is shown in
Fig. 4.29. As can be seen, the difference between Ea

x and Ex becomes less than 5%
for l > 3a.

1

1.1

1.2

1.3

1.4

0 2 4 6 8

Ex
a Ex

l

Fig. 4.29. Dependence of the normalized apparent modulus on the strip length-to-width ratio for a 45◦ carbon–
epoxy layer.
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4.3.2. Nonlinear models

Nonlinear deformation of an anisotropic unidirectional layer can be studied rather
straightforwardly because stresses σ1, σ2, and τ12 in the principal material coordinates
(see Fig. 4.18) are statically determinate and can be found using Eqs. (4.67). Substituting
these stresses into the nonlinear constitutive equations, Eqs. (4.60) or Eqs. (4.64), we can
express strains ε1, ε2, and γ12 in terms of stresses σx , σy , and τxy . Further substitution of
the strains ε1, ε2, and γ12 into Eqs. (4.70) yields constitutive equations that link strains
εx , εy , and γxy with stresses σx , σy , and τxy thus allowing us to find strains in the global
coordinates x, y, and z if we know the corresponding stresses.

As an example of the application of a nonlinear elastic material model described by
Eqs. (4.60), consider a two-matrix fiberglass composite (see Section 4.4.3) whose stress–
strain curves in the principal material coordinates are presented in Fig. 4.16. These curves
allowed us to determine coefficients ‘b’ and ‘c’ in Eqs. (4.60). To find the coupling
coefficients ‘m,’ we use a 45◦ off-axis test. Experimental results (circles) and the corre-
sponding approximation (solid line) are shown in Fig. 4.30. Thus, the constructed model
can be used now to predict material behavior under tension at any other (different from 0,
45, and 90◦) angle (the corresponding results are given in Fig. 4.31 for 60◦) or to study
more complicated material structures and loading cases (see Section 4.5).

As an example of the application of the elastic–plastic material model specified by
Eq. (4.64), consider a boron–aluminum composite whose stress–strain diagrams in prin-
cipal material coordinates are shown in Fig. 4.17. Theoretical and experimental curves
(Herakovich, 1998) for 30 and 45◦ off-axis tension of this material are presented in
Fig. 4.32.
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Fig. 4.30. Calculated (solid line) and experimental (circles) stress–strain diagram for 45◦ off-axis tension of a
two-matrix unidirectional composite.
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Fig. 4.31. Theoretical (solid line) and experimental (dashed line) stress–strain diagrams for 60◦ off-axis tension
of a two-matrix unidirectional composite.
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Fig. 4.32. Theoretical (solid lines) and experimental (dashed lines) stress–strain diagrams for 30◦ and 45◦
off-axis tension of a boron–aluminum composite.

4.4. Orthogonally reinforced orthotropic layer

The simplest layer reinforced in two directions is the so-called cross-ply layer that
consists of alternating plies with 0 and 90◦ orientations with respect to the global coordi-
nate frame x, y, and z as in Fig. 4.33. Actually, this is a laminated structure, but being
formed with a number of plies, it can be treated as a homogeneous orthotropic layer (see
Section 5.4.2).
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Fig. 4.33. A cross-ply layer.

4.4.1. Linear elastic model

Let the layer consist of m longitudinal (0◦) plies with thicknesses h
(i)
0 (i = 1,

2, 3, . . . , m) and n transverse (90◦) plies with thicknesses h
(j)

90 (j = 1, 2, 3, . . . , n) made
from one and the same composite material. Then, stresses σx , σy , and τxy that comprise
the plane stress state in the global coordinate frame can be expressed in terms of stresses
in the principal material coordinates of the plies as

σxh =
m∑

i=1

σ
(i)
1 h

(i)
0 +

n∑
j=1

σ
(j)

2 h
(j)

90

σyh =
m∑

i=1

σ
(i)
2 h

(i)
0 +

n∑
j=1

σ
(j)

1 h
(j)

90

τxyh =
m∑

i=1

τ
(i)
12 h

(i)
0 +

n∑
j=1

τ
(j)

12 h
(j)

90

(4.111)

Here, h is the total thickness of the layer (see Fig. 4.33), i.e.,

h = h0 + h90

where

h0 =
m∑

i=1

h
(i)
0 , h90 =

n∑
j=1

h
(j)

90

are the total thicknesses of the longitudinal and transverse plies.
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The stresses in the principal material coordinates of the plies are related to the
corresponding strains by Eqs. (3.59) or Eqs. (4.56)

σ
(i, j)

1 = E1

(
ε
(i, j)

1 + ν12ε
(i, j)

2

)

σ
(i, j)

2 = E2

(
ε
(i, j)

2 + ν21ε
(i, j)

1

)

τ
(i, j)

12 = G12γ
(i, j)

12

(4.112)

in which, as earlier E1, 2 = E1, 2/(1 − ν12ν21) and E1ν12 = E2ν21. Now assume that
the deformation of all the plies is the same as that of the deformation of the whole layer,
i.e., that

ε
(i)
1 = ε

(j)

2 = εx, ε
(i)
2 = ε

(j)

1 = εy, γ
(i)
12 = γ

(j)

12 = γxy

Then, substituting the stresses, Eqs. (4.112), into Eqs. (4.111), we arrive at the following
constitutive equations

σx = A11εx + A12εy

σy = A21εx + A22εy

τxy = A44γxy

(4.113)

in which the stiffness coefficients are

A11 = E1h0 + E2h90, A22 = E1h90 + E2h0

A12 = A21 = E1ν12 = E2ν21, A44 = G12

(4.114)

and

h0 = h0

h
, h90 = h90

h

The inverse form of Eqs. (4.113) is

εx = σx

Ex

− νxy

σy

Ey

, εy = σy

Ey

− νyx

σx

Ex

, γxy = τxy

Gxy

(4.115)

where

Ex = A11 − A2
12

A22
, Ey = A22 − A2

12

A11
, Gxy = A44

νxy = A12

A11
, νyx = A12

A22

(4.116)
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Fig. 4.34. Pure transverse shear of a cross-ply layer.

To determine the transverse shear moduli Gxz and Gyz, consider, e.g., pure shear in the
xz-plane (see Fig. 4.34). It follows from the equilibrium conditions for the plies that

τ
(i)
13 = τ

(j)

23 = τxz, τ
(i)
23 = τ

(j)

13 = τyz (4.117)

The total shear strains can be found as

γxz = 1

h

⎛
⎝ m∑

i=1

γ
(i)
13 h0 +

n∑
j=1

γ
(j)

23 h90

⎞
⎠

γyz = 1

h

⎛
⎝ m∑

i=1

γ
(i)
23 h0 +

n∑
j=1

γ
(j)

13 h90

⎞
⎠

(4.118)

where in accordance with Eqs. (4.56)

γ
(i, j)

13 = τ
(i, j)

13

G13
, γ

(i, j)

23 = τ
(i, j)

23

G23
(4.119)

Substituting Eqs. (4.119) into Eqs. (4.118) and using Eqs. (4.117), we arrive at

γxz = τxz

Gxz

, γyz = τyz

Gyz

where

1

Gxz

= h0

G13
+ h90

G23
,

1

Gyz

= h0

G23
+ h90

G13
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4.4.2. Nonlinear models

The nonlinear behavior of a cross-ply layer associated with nonlinear material response
under loading in the principal material coordinates (see, e.g., Figs. 4.16 and 4.17) can
be described using nonlinear constitutive equations, Eqs. (4.60) or Eqs. (4.64) instead of
linear equations (4.113).

However, this layer can demonstrate nonlinearity which is entirely different from that
studied in the previous sections. This nonlinearity is observed in the cross-ply layer
composed of linear elastic plies and is caused by microcracking of the matrix.

To study this phenomenon, consider a cross-ply laminate consisting of three plies as in
Fig. 4.35. Equilibrium conditions yield the following equations

2
(
σx1h1 + σx2h2

) = σ

2
(
σy1h1 + σy2h2

) = 0
(4.120)

in which

h1 = h1/h, h2 = h2/h, h = 2(h1 + h2)

The constitutive equations are

σx1, 2 = E1, 2(εx + ν12, 21εy)

σy1, 2 = E2, 1(εy + ν21, 12εx)
(4.121)

in which E1, 2 = E1, 2/(1 − ν12ν21). We assume that strains εx and εy do not change
through the laminate thickness. Substituting Eqs. (4.121) in Eqs. (4.120), we can find
strains and then stresses using again Eqs. (4.121). The final result is

σx1, 2 = σE1, 2
[
E2h1 + E1h2 − E1, 2ν

2
12, 21(h1 + h2)

]
2
[
(E1h1 + E2h2)(E2h1 + E1h2) − E2

1ν2
12(h1 + h2)2

]

x

z

y

b

h1

h1

2h2

1

1

2

s s

Fig. 4.35. Tension of a cross-ply laminate.
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To simplify the analysis, neglect Poisson’s effect, i.e., taking ν12 = ν21 = 0. Then

σx1 = σ 0
1 = σE1

2(E1h1 + E2h2)
, σx2 = σ 0

2 = σE2

2(E1h1 + E2h2)
(4.122)

Consider, for example, the case h1 = h2 = 0.5 and find the ultimate stresses corresponding
to the failure of longitudinal plies or to the failure of the transverse ply. Putting σ 0

1 = σ+
1

and σ 0
2 = σ+

2 , we get

σ (1)
x = σ+

1

(
1 + E2

E1

)
, σ (2)

x = σ+
2

(
1 + E1

E2

)

The results of calculation for the composites listed in Table 3.5 are presented in Table 4.2.
As can be seen, σ

(1)
x 
 σ

(2)
x . This means that the first failure occurs in the transverse

ply under stress

σ = σ = 2σ+
2

(
h2 + E1

E2
h1

)
(4.123)

This stress does not cause failure of the whole laminate because the longitudinal plies
can carry the load, but the material behavior becomes nonlinear. Actually, the effect
under consideration is the result of the difference between the ultimate elongations of the
unidirectional plies along and across the fibers. From the data presented in Table 4.2 we
can see that for all the materials listed in this table ε1 
 ε2. As a result, transverse plies
drawn under tension by longitudinal plies that have much higher stiffness and elongation
fail because their ultimate elongation is smaller. This failure is accompanied with a system
of cracks parallel to the fibers which can be observed not only in cross-ply layers but also
in many other laminates that include unidirectional plies experiencing transverse tension
caused by interaction with the adjacent plies (see Fig. 4.36).

Now assume that the acting stress σ ≥ σ , where σ is specified by Eq. (4.123) and
corresponds to the load causing the first crack in the transverse ply as in Fig. 4.37. To study

Table 4.2
Ultimate stresses causing the failure of longitudinal

(
σ

(1)
x

)
or transverse

(
σ

(2)
x

)
plies and deformation

characteristics of typical advanced composites.

σ (MPa); ε (%) Glass–
epoxy

Carbon–
epoxy

Carbon–
PEEC

Aramid–
epoxy

Boron–
epoxy

Boron–
Al

Carbon–
Carbon

Al2O3–Al

σ
(1)
x 2190 2160 2250 2630 1420 2000 890 1100

σ
(2)
x 225 690 1125 590 840 400 100 520

ε1 3 1.43 1.5 2.63 0.62 0.50 0.47 0.27
ε2 0.31 0.45 0.75 0.2 0.37 0.1 0.05 0.13
ε1/ε2 9.7 3.2 2 13.1 1.68 5 9.4 2.1
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Fig. 4.36. Cracks in the circumferential layer of the failed pressure vessel induced by transverse (for the vessel,
axial) tension of the layer.
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1

h1
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2h2s s

Fig. 4.37. A cross-ply layer with a crack in the transverse ply.

the stress state in the vicinity of the crack, decompose the stresses in the three plies shown
in Fig. 4.37 as

σx1 = σx3 = σ 0
1 + σ1, σx2 = σ 0

2 − σ2 (4.124)

and assume that the crack induces also transverse through-the-thickness shear and normal
stresses

τxzi = τi, σzi = si, i = 1, 2, 3 (4.125)

The stresses σ 0
1 and σ 0

2 in Eqs. (4.124) are specified by Eqs. (4.122) with σ = σ , cor-
responding to the acting stress under which the first crack appears in the transverse ply.
Stresses σ1 and σ2 should be self-balanced, i.e.,

σ1h1 = σ2h2 (4.126)
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The total stresses in Eqs. (4.124) and (4.125) should satisfy equilibrium equations,
Eq. (2.5), which yield for the problem under study

∂σxi

∂x
+ ∂τxzi

∂z
= 0,

∂σzi

∂z
+ ∂τxzi

∂x
= 0 (4.127)

where i = 1, 2, 3.
To simplify the problem, suppose that the additional stresses σ1 and σ2 do not depend

on z, i.e., that they are uniformly distributed through the thickness of longitudinal plies.
Then, Eqs. (4.127), upon substitution of Eqs. (4.124) and (4.125), can be integrated with
respect to z. The resulting stresses should satisfy the following boundary and interface
conditions (see Fig. 4.37)

τ1(z = h1 + h2) = 0 s1(z = h1 + h2) = 0

τ1(z = h2) = τ2(z = h2) s1(z = h2) = s2(z = h2)

τ2(z = −h2) = τ3(z = −h2) s2(z = −h2) = s3(z = −h2)

τ3(z = −h1 − h2) = 0 s3(z = −h1 − h2) = 0

Finally, using Eq. (4.126) to express σ1 in terms of σ2, we arrive at the following stress
distribution (Vasiliev et al., 1970)

σx1 = σx3 = σ 0
1 + σ2(x)

h2

h1
, σx2 = σ 0

2 − σ2(x)

τ1 = −h2

h1
σ ′

2(x)z1, τ2 = σ ′
2(x)z, τ3 = −h2

h1
σ ′

2(x)z2 (4.128)

s1 = h2

2h1
σ ′′

2 (x)z2
1, s2 = −1

2
σ ′′

2 (x)
(
z2 − h1h2 − h2

2

)
, s3 = h2

2h1
σ ′′

2 (x)z2
2

where

z1 = z − h1 − h2, z2 = z + h1 + h2, and ( )′ = d( )/dx

Thus, we need to find only one unknown function: σ2(x). To do this, we can use the
principle of minimum strain energy (see Section 2.11.2) according to which the function
σ2(x) should deliver the minimum value of

Wσ = 1

2

∫ l

0

3∑
i=1

∫
hi

(
σ 2

xi

Exi

+ σ 2
zi

Ezi

− 2
νxzi

Ezi

σxiσzi + τ 2
xzi

Gxzi

)
dx (4.129)

where Ex1 = Ex3 = E1, Ex2 = E2, Ezi = E2, Gxz1 = Gxz3 = G13, Gxz2 = G23,
νxz1 = νxz3 = ν13, νxz2 = ν23 and E1, E2, G13, G23, ν13, ν23 are elastic constants of a
unidirectional ply. Substituting stresses, Eqs. (4.128), into the functional in Eq. (4.129),
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integrating with respect to z, and using the traditional procedure of variational calculus
providing δWσ = 0, we arrive at the following equation for σ2(x)

d4σ2

dx4
− 2a2 d2σ2

dx2
+ b4σ2 = 0

in which

a2 = 1

d

[
h2

3G23
+ h1

3G13
− ν23

E2

(
h1+ 2

3
h2

)
+ h1ν23

3E2

]
, b4 = 1

d

(
1

h1E1
+ 1

h2E2

)

d = 1

2E2

[
1

5

(
h3

1+h3
2

)
− 2

3
h2

2(h1+h2)+h2(h1+h2)
2
]

The general solution for this equation is

σ2 = e−k1x(c1 sin k2x + c2 cos k2x) + ek1x(c3 sin k2x + c4 cos k2x) (4.130)

where

k1 =
√

1

2
(a2 + b2), k2 =

√
1

2
(b2 − a2)

Suppose that the strip shown in Fig. 4.37 is infinitely long in the x-direction. Then, we
should have σ1 → 0 and σ2 → 0 for x → ∞ in Eqs. (4.124). This means that we should
put c3 = c4 = 0 in Eq. (4.130). The other two constants, c1 and c2, should be determined
from the conditions on the crack surface (see Fig. 4.37), i.e.,

σx2(x = 0) = 0, τxz2(x = 0) = 0

Satisfying these conditions, we obtain the following expressions for stresses

σx1 = σx3 = σ 0
1 + σ 0

2
h2

h1
e−k1x

(
k1

k2
sin k2x + cos k2x

)

σx2 = σ 0
2

[
1 − e−k1x

(
k1

k2
sin k2x + cos k2x

)]

τxz2 = −σ 0
2

k2

(
k2

1 + k2
2

)
ze−k1x sin k2x

σz2 = − σ 0
2

2k2

(
k2

1 + k2
2

)
[z2 − h2(h1 + h2)]e−k1x(k1 sin k2x − k2 cos k2x)

(4.131)

As an example, consider a glass–epoxy sandwich layer with the following
parameters: h1 = 0.365 mm, h2 = 0.735 mm, E1 = 56 GPa, E2 = 17 GPa,
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G13 = 5.6 GPa, G23 = 6.4 GPa, ν13 = 0.095, ν23 = 0.35, σ+
2 = 25.5 MPa. The

distributions of stresses normalized to the acting stress σ are presented in Fig. 4.38.
As can be seen, there is a stress concentration in the longitudinal plies in the vicinity
of the crack, whereas the stress in the transverse ply, being zero on the crack surface,
practically reaches σ 0

2 at a distance of about 4 mm (or about twice the thickness of the
laminate) from the crack. The curves have the expected forms for this problem of stress
diffusion. However, analysis of the second equation of Eqs. (4.131) allows us to reveal
an interesting phenomenon which can be demonstrated if we increase the vertical scale of
the graph in the vicinity of points A and B (see Fig. 4.38). It follows from this analysis
that stress σx2 becomes equal to σ 0

2 at point A with coordinate

xA = 1

k2

[
π − tan−1

(
k2

k1

)]

and reaches a maximum value at point B with coordinate xB = π/k2. This maximum
value

σmax
x2 = σ 0

2

(
1 + e

−π
k1
k2

)
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Fig. 4.38. Variation of normalized normal stresses in longitudinal (σx1) and transverse (σx2) plies with a distance
from the crack.
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Fig. 4.39. A system of cracks in the transverse ply.

is higher than stress σ 0
2 which causes failure of the transverse ply. This means that a

single crack cannot exist. When stress σ 0
2 reaches its ultimate value σ+

2 , a regular system
of cracks located at a distance of lc = π/k2 from one another appears in the transverse
ply (see Fig. 4.39). For the example considered above, lc = 12.6 mm.

To study the stress state of a layer with cracks shown in Fig. 4.39, we can use solution
(4.130) but should write it in a different form, i.e.,

σ2 = C1 sinh k1x sin k2x + C2 sinh k1x cos k2x

+ C3 cosh k1x sin k2x + C4 cosh k1x cos k2x (4.132)

Since the stress state of an element −lc/2 ≤ x ≤ lc/2 is symmetric with respect to
coordinate x, we should put C2 = C3 = 0 and find constants C1 and C4 from the
following boundary conditions

σx2(x = lc/2) = 0, τxz2(x = lc/2) = 0 (4.133)

where lc = π/k2.
The final expressions for stresses are

σx1 =σx3 =σ 0
1 +σ 0

2
h2

h1c

(
k1

k2
coshk1x cosk2x+sinhk1x sink2x

)

σx2 =σ 0
2

[
1− 1

c

(
k1

k2
coshk1x cosk2x+sinhk1x sink2x

)]

τxz2 = σ 0
2

k2c

(
k2

1 +k2
2

)
zsinhk1x cosk2x (4.134)

σz2 =− σ 0
2

2k2c

(
k2

1 +k2
2

)[
z2−h2(h1+h2)

]
(k1 coshk1x cosk2x−k2 sinhk1x sink2x)

in which c = sinh(πk1/2k2).
For the layer considered above as an example, stress distributions corresponding to

σ = σ = 44.7 MPa are shown in Figs. 4.40 and 4.41. Under further loading (σ > σ), two
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Fig. 4.40. Distribution of normalized stresses in longitudinal (σx1) and transverse (σx2) plies between the cracks.

modes of the layer failure are possible. The first one is the formation of another transverse
crack separating the block with length lc in Fig. 4.39 into two pieces. The second one is
a delamination in the vicinity of the crack caused by stresses τxz and σz (see Fig. 4.41).
Usually, the first situation takes place because stresses τxz and σz are considerably lower
than the corresponding ultimate stresses, whereas the maximum value of σx2 is close to
the ultimate stress σ 0

2 = σ+
2 . Indeed, the second equation of Eqs. (4.134) yields

σmax
x2 = σx2(x = 0) = σ 0

2 (1 − k)

where k = k1/(k2c). For the foregoing example, k = 3.85 × 10−4. So, σmax
x2 is so close

to σ 0
2 that we can presume that under practically the same load, another crack occurs in

the central cross section x = 0 of the central block in Fig. 4.39 (as well as in all the
other blocks). Thus, the distance between the cracks becomes lc = π/2k2 (6.4 mm for
the example under study). The corresponding stress distribution can be determined with
the aid of Eqs. (4.128) and (4.132), and boundary conditions (4.133) in which we should
take lc = π/2k2. The next crack will again appear at the block center and this process
will be continued until failure of the longitudinal plies.

To plot the stress–strain diagram of the cross-ply layer with allowance for the cracks
in the transverse ply, we introduce the mean longitudinal strain

εx = 2

h2lc

∫ lc/2

0
dx

∫ h2

0
εx2dz
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Fig. 4.41. Distribution of normalized shear (τxz2) and transverse normal stresses (σz2) at the ply interface
(z = h2) between the cracks.

where

εx2 = 1

E2
(σx2 − ν23σz2)

For a layer with the properties given above, such a diagram is shown in Fig. 4.42 with
a solid line and is in good agreement with experimental results (circles). The formation
of cracks is accompanied with horizontal jumps and reduction in material stiffness. The
stress–strain diagram for the transverse layer that is formally singled out of the diagram
in Fig. 4.42 is presented in Fig. 4.43.

To develop a nonlinear phenomenological model of the cross-ply layer, we need to
approximate the diagram in Fig. 4.43. As follows from this figure and numerous exper-
iments, the most suitable and simple approximation is that shown by the dashed line.
It implies that the ply is linear elastic until its transverse stress σ2 reaches its ultimate
value σ+

2 , and after that σ2 = σ+
2 , i.e., σ2 remains constant up to failure of the longitu-

dinal plies. This means that under transverse tension, a unidirectional ply is in a state of
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Fig. 4.42. Stress–strain diagram for a glass–epoxy cross-ply layer: © experiment; theoretical predic-
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Fig. 4.43. Stress–strain diagram for a transverse ply.

permanent failure and takes from the longitudinal plies the necessary load to support this
state (Vasiliev and Elpatievskii, 1967). The stress–strain diagram of the cross-ply layer
corresponding to this model is shown in Fig. 4.42 with a dashed line.

Now consider a general plane stress state with stresses σx , σy , and τxy as in Fig. 4.44.
As can be seen, stress σx induces cracks in the inner ply, stress σy causes cracks in
the outer orthogonal plies, whereas shear stress τxy can give rise to cracks in all the
plies. The ply model that generalizes the model introduced above for a uniaxial tension is
demonstrated in Fig. 4.45. To determine strains corresponding to a given combination of
stresses σx , σy , and τxy , we can use the following procedure.
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Fig. 4.44. A cross-ply layer in a plane stress state.
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Fig. 4.45. Stress–strain diagrams of a unidirectional ply simulating its behavior in the laminate and allowing
for cracks in the matrix.

(1) For the first stage of loading (before the cracks appear), the strains are calculated with
the aid of Eqs. (4.114) and (4.115) providing ε

(1)
x (σ ), ε

(1)
y (σ ), and γ

(1)
xy (σ ), where

σ = (σx, σy, τxy) is the given combination of stresses. Using Eqs. (4.112), we find
stresses σ1, σ2 and τ12 in principal material coordinates for all the plies.

(2) We determine the combination of stresses σ ∗
1k , σ ∗

2k , and τ ∗
12k which induce the first

failure of the matrix in some ply and indicate the number of this ply, say k, applying
the appropriate strength criterion (see Section 6.2). Then, the corresponding stresses
σ ∗ = (σ ∗

x , σ ∗
y , τ ∗

xy) and strains ε
(1)
x (σ ∗), ε

(1)
y (σ ∗), and γ

(1)
xy (σ ∗) are calculated.

(3) To proceed, i.e., to study the material behavior for σ > σ ∗, we need to consider two
possible cases for the layer stiffnesses. For this purpose, we should write Eqs. (4.114)
for stiffness coefficients in a more general form, i.e.,
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A11 =
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1 h
(i)
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2 h
(j)

90 , A22 =
m∑
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E
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(i)
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(j)
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(j)

90

A12 =
m∑

i=1

ν
(i)
12 E

(i)

1 h
(i)
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j=1

ν
(j)

12 E
(j)
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(j)

90 , A44 =
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(i)
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G
(j)

12 h
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(4.135)

where h
(i)

0 = h
(i)
0 /h and h

(j)

90 = h
(j)

90 /h.

(a) If σ2k > 0 in the kth ply, it can work only along the fibers, and we should calculate
the stiffnesses of the degraded layer taking Ek

2 = 0, Gk
12 = 0, and νk

12 = 0 in
Eqs. (4.135).

(b) If σ2k < 0 in the kth ply, it cannot work only in shear, so we should take Gk
12 = 0 in

Eqs. (4.135).
Thus, we find coefficients A

(2)
st (st = 11, 12, 22, 44) corresponding to the second stage

of loading (with one degraded ply). Using Eqs. (4.116) and (4.115) we can determine
E

(2)
x , E

(2)
y , G

(2)
xy , ν

(2)
xy , ν

(2)
yx and express the strains in terms of stresses, i.e., ε

(2)
x (σ ),

ε
(2)
y (σ ), γ

(2)
xy (σ ). The final strains corresponding to the second stage of loading are

calculated as

εf
x = ε(1)

x (σ ∗) + ε(2)
x (σ − σ ∗), εf

y = ε(1)
y (σ ∗) + ε(2)

y (σ − σ ∗)

γ f
xy = γ (1)

xy (σ ∗) + γ (2)
xy (σ − σ ∗)

To study the third stage, we should find σ1, σ2, and τ12 in all the plies, except the kth
one, identify the next degraded ply and repeat step 3 of the procedure which is continued
up to failure of the fibers. The resulting stress–strain curves are multi-segmented broken
lines with straight segments and kinks corresponding to degradation of particular plies.

The foregoing procedure was described for a cross-ply layer consisting of plies with
different properties. For the layer made of one and the same material, there are only three
stages of loading – first, before the plies degradation, second, after the degradation of the
longitudinal or the transverse ply only, and third, after the degradation of all the plies.

As a numerical example, consider a carbon–epoxy cylindrical pressure vessel consisting
of axial plies with total thickness h0 and circumferential plies with total thickness h90.
The vessel has the following parameters: radius R = 500 mm, total thickness of the
wall h = 7.5 mm, h0 = 2.5 mm, h90 = 5 mm. The mechanical characteristics of
a carbon–epoxy unidirectional ply are E1 = 140 GPa, E2 = 11 GPa, ν12 = 0.0212,
ν21 = 0.27, σ +

1 = 2000 MPa, σ +
2 = 50 MPa. Axial, σx , and circumferential, σy , stresses

are expressed as (see Fig. 4.46)

σx = pR

2h
, σy = pR

h
(4.136)

where p is the internal pressure.
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Fig. 4.46. Element of a composite pressure vessel.

Using Eqs. (4.114) and (4.116), we calculate first the stiffness coefficients. The result
is as follows

A11 = 54.1 GPa, A12 = 3 GPa, A22 = 97.1 GPa

Ex = 54 GPa, Ey = 97 GPa, νxy = 0.055, νyx = 0.031
(4.137)

Substituting stresses, Eqs. (4.136) into the constitutive equations, Eqs. (4.115), we obtain

ε(1)
x (p) = pR

h

(
1

2Ex

− νxy

Ey

)
= 0.58 × 10−3p

ε(1)
y (p) = pR

h

(
1

Ey

− νyx

2Ex

)
= 0.66 × 10−3p

where p is measured in mega pascals. For axial plies, εx = ε1, 0 and εy = ε2, 0. The
corresponding stresses are

σ
(1)
1, 0(p) = E1(ε1, 0 + ν12ε2, 0) = 83.2p, σ

(1)
2, 0(p) = E2(ε2, 0 + ν21ε1, 0) = 9.04p

For circumferential plies, εx = ε2, 90, εy = ε1, 90 and

σ
(1)
1,90(p)=E1(ε1,90+ν12ε2,90)=94.15p, σ

(1)
2,90(p)=E2(ε2,90+ν21ε1,90)=8.4p

As can be seen, σ
(1)
2, 0 > σ

(1)
2, 90. This means that the cracks appear first in the axial plies

under the pressure p∗ that can be found from the equation σ
(1)
2, 0(p

∗) = σ+
2 . The result is

p∗ = 5.53 MPa.
To study the second stage of loading for p > p∗, we should put E2 = 0, and ν12 = 0 in

Eqs. (4.135) for the axial plies. Then, the stiffness coefficients and elastic constants become

A11 = 54.06 GPa, A12 = 2 GPa, A22 = 93.4 GPa

Ex = 54 GPa, Ey = 93.3 GPa, νxy = 0.037, νyx = 0.021
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The strains and stresses in the plies are

ε(2)
x (p) = 0.59 × 10−3p, ε(2)

y p) = 0.7 × 10−3p, σ
(2)
1, 0(p) = 82.6p

σ
(2)
1, 90 p) = 99.8p, σ

(2)
2, 90(p) = 8.62p

The total transverse stress in the circumferential plies can be calculated as

σ2, 90 = σ
(1)
2, 90(p

∗) + 8.62(p − p∗)

Using the condition σ2, 90(p
∗∗) = σ+

2 , we find the pressure p∗∗ = 5.95 MPa at which
cracks appear in the matrix of the circumferential plies.

For p ≥ p∗∗, we should take E2 = 0 and ν12 = 0 for all the plies. Then

A11 = 46.2 GPa, A12 = 0, A22 = 93.4 GPa

Ex = 46.2 GPa, Ey = 93.4 GPa, νxy = νyx = 0 (4.138)

ε(3)
x (p) = 0.72 × 10−3p, ε(3)

y (p) = 0.71 × 10−3p

σ
(3)
1,0 (p) = 100.8p, σ

(3)
1,90(p) = 99.4p

The total stresses acting along the fibers are

σ1, 0(p) = σ
(1)
1, 0(p

∗) + σ
(2)
1, 0(p

∗∗ − p∗) + σ
(3)
1, 0(p − p∗∗) = 100.8p − 105

σ1, 90(p) = σ
(1)
1, 90(p

∗) + σ
(2)
1, 90(p

∗∗ − p∗) + σ
(3)
1, 90(p − p∗∗) = 99.4p − 28.9

To determine the ultimate pressure, we can use two possible strength conditions – for axial
fibers and for circumferential fibers. The criterion σ1,0(p) = σ+

1 yields p = 20.9 MPa,
whereas the criterion σ1,90(p) = σ+

1 gives p = 20.4 MPa. Thus, the burst pressure
governed by failure of the fibers in the circumferential plies, is p = 20.4 MPa.

The strains can be calculated for all three stages of loading using the following equations
• for p ≤ p∗

εx, y(p) = ε(1)
x, y(p)

• for p∗ < p ≤ p∗∗

εx, y(p) = ε(1)
x, y(p

∗) + ε(2)
x, y(p − p∗)

• for p∗∗ < p ≤ p

εx, y(p) = ε(1)
x, y(p

∗) + ε(2)
x, y(p

∗∗ − p∗) + ε(3)
x, y(p − p∗∗)
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Fig. 4.47. Dependence of the axial and the circumferential strains of the carbon–epoxy pressure vessel on
pressure: model allowing for cracks in the matrix; model ignoring cracks in the matrix;

model ignoring the matrix.

For the pressure vessel under study, the dependency of the circumferential strain on
pressure is shown in Fig. 4.47 (solid line). The circles correspond to failure of the matrix
and fibers.

For comparison, consider two limiting cases. First, assume that no cracks occur in the
matrix, and the material stiffness is specified by Eqs. (4.137). The corresponding diagram
is shown in Fig. 4.47 with a dashed line. Second, suppose that the load is taken by the
fibers only, i.e., use the monotropic model of a ply introduced in Section 3.3. Then, the
material stiffnesses are given by Eqs. (4.138). The corresponding result is also presented
in Fig. 4.47. It follows from this figure that all three models give close results for the
burst pressure (which is expected since σ+

2 � σ+
1 ), but different strains.

4.4.3. Two-matrix composites

The problem of the analysis of a cracked cross-ply composite laminate has been studied
by Tsai and Azzi (1966), Vasiliev and Elpatievckii (1967), Vasiliev et al. (1970), Hahn and
Tsai (1974), Reifsnaider (1977), Hashin (1987), and many other authors. In spite of this,
the topic is still receiving repeated attention in the literature (Lungren and Gudmundson,
1999). Taking into account that matrix degradation leads to reduction of material stiffness
and fatigue strength, absorption of moisture and many other consequences that are difficult
to predict but are definitely undesirable, it is surprising how many efforts have been
undertaken to study this phenomenon rather than try to avoid it. At first glance, the
problem looks simple – all we need is to synthesize unidirectional composite whose
ultimate elongations along and across the fibers, i.e., ε1 and ε2 are the same. Actually,
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the problem is even simpler, because ε2 can be less than ε1 by a factor that is equal to
the safety factor of the structure. This means that matrix degradation can occur but at the
load that exceeds the operational level (the safety factor is the ratio of the failure load to
the operational load and can vary from 1.25 up to 3 or more depending on the application
of a particular composite structure). Returning to Table 4.2, in which ε1 and ε2 are given
for typical advanced composites, we can see that ε1 > ε2 for all the materials and that
for polymeric matrices the problem could be, in principle, solved if we could increase ε2
up to about 1%.

Two main circumstances hinder the direct solution of this problem. The first is that
being locked between the fibers, the matrix does not show the high elongation that it
has under uniaxial tension and behaves as a brittle material (see Section 3.4.2). To study
this effect, epoxy resins were modified to have different ultimate elongations. The corre-
sponding curves are presented in Fig. 4.48 (only the initial part of curve 4 is shown in
this figure, the ultimate elongation of this resin is 60%). Fiberglass composites that have
been fabricated with these resins were tested under transverse tension. As can be seen
in Fig. 4.49, the desired value of ε2 (that is about 1%) is reached if the matrix elonga-
tion is about 60%. However, the stiffness of this matrix is relatively low, and the second
circumstance arises – matrix material with low stiffness cannot provide sufficient stress
diffusion in the vicinity of damaged or broken fibers (see Section 3.2.3). As a result, the
main material characteristic – its longitudinal tensile strength – decreases. Experimental
results corresponding to composites with resins 1, 2, 3, and 4 are presented in Fig. 4.50.
Thus, a significant increase in transverse elongation is accompanied with an unacceptable
drop in longitudinal strength (see also Chiao, 1979).

One of the possible ways for synthesizing composite materials with high transverse
elongation and high longitudinal strength is to combine two matrix materials – one with
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Fig. 4.48. Stress–strain curves for epoxy matrices modified for various ultimate elongations.
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Fig. 4.49. Stress–strain curves for transverse tension of unidirectional fiberglass composites with various epoxy
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Fig. 4.50. Dependence of the longitudinal strength on the matrix ultimate elongation (numbers on the curve
correspond to Figs. 4.48 and 4.49).
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high stiffness to bind the fibers and the other with high elongation to provide the appro-
priate transverse deformability (Vasiliev and Salov, 1984). The manufacturing process
involves two-stage impregnation. At the first stage, a fine tow is impregnated with a high-
stiffness epoxy resin (of the type 2 in Fig. 4.48) and cured. The properties of the composite
fiber fabricated in this way are as follows
• number of elementary glass fibers in the cross section – 500;
• mean cross-sectional area – 0.15 mm2;
• fiber volume fraction – 0.75;
• density – 2.2 g/cm3;
• longitudinal modulus – 53.5 GPa;
• longitudinal strength – 2100 MPa;
• longitudinal elongation – 4.5%;
• transverse modulus – 13.5 GPa;
• transverse strength – 400 MPa;
• transverse elongation – 0.32%.
At the second stage, a tape formed of composite fibers is impregnated with a highly
deformable epoxy matrix whose stress–strain diagram is presented in Fig. 4.51. The
microstructure of the resulting two-matrix unidirectional composite is shown in Fig. 4.52
(the dark areas are cross sections of composite fibers, the magnification is not sufficient
to see the elementary glass fibers). Stress–strain diagrams corresponding to transverse
tension, compression, and in-plane shear of this material are presented in Fig. 4.16.

The main mechanical characteristics of the two-matrix fiberglass composite are listed
in Table 4.3 (material No. 1). As can be seen, two-stage impregnation results in relatively
low fiber volume content (about 50%). Material No. 2 that is composed of composite
fibers and a conventional epoxy matrix has also low fiber fraction, but its transverse
elongation is 10 times lower than that of material No. 1. Material No. 3 is a conventional
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Fig. 4.51. Stress–strain diagram of a deformable epoxy matrix.
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Fig. 4.52. Microstructure of a unidirectional two-matrix composite.

Table 4.3
Properties of glass–epoxy unidirectional composites.

No. Material components Fiber
volume
fraction

Longitudinal
strength σ+

1
(MPa)

Ultimate
transverse
strain ε+

2 (%)

Density
ρ (g/cm3)

Specific strength
σ+

1 /ρ × 103 (m)

1 Composite fibers and
deformable matrix

0.51 1420 3.0 1.83 77.6

2 Composite fibers and
high-stiffness matrix

0.52 1430 0.3 1.88 76.1

3 Glass fibers and high-
stiffness matrix

0.67 1470 0.2 2.07 71.0

4 Glass fibers and
deformable matrix

0.65 1100 1.2 2.02 54.4

glass–epoxy composite that has the highest longitudinal strength and the lowest transverse
strain. Comparing materials No. 1 and No. 3, we can see that although the fiber volume
fraction of the two-matrix composite is lower by 24%, its longitudinal strength is less
than that of a traditional composite by 3.4% only (because the composite fibers are not
damaged in the processing of composite materials), whereas its specific strength is a bit
higher (due to its lower density). Material No. 4 demonstrates that direct application of
a highly deformable matrix allows us to increase transverse strains but results in a 23%
reduction in longitudinal specific strength.

Thus, two-matrix glass–epoxy composites have practically the same longitudinal
strength as conventional materials but their transverse elongation is greater by an order
of magnitude.

Comparison of a conventional cross-ply glass–epoxy layer and a two-matrix one is
presented in Fig. 4.53. Line 1 corresponds to a traditional material and has, typical for
this material, a kink corresponding to matrix failure in the transverse plies (see also
Fig. 4.37). A theoretical diagram was plotted using the procedure described above. Line 2
corresponds to a two-matrix composite and was plotted using Eqs. (4.60). As can be seen,
there is no kink on the stress–strain diagram. To prove that no cracks appear in the matrix
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Fig. 4.53. Stress–strain diagrams of a conventional (1) and two-matrix (2) cross-ply glass–epoxy layers under
tension: theoretical prediction; © experiment.

Fig. 4.54. Intensity of acoustic emission for a cross-ply two-matrix composite (above) and a conventional
fiberglass composite (below).

of this material under loading, the intensity of acoustic emission was recorded during
loading. The results are shown in Fig. 4.54.

Composite fibers of two-matrix materials can also be made from fine carbon or aramid
tows, and the deformable thermosetting resin can be replaced with a thermoplastic matrix
(Vasiliev et al., 1997). The resulting hybrid thermoset–thermoplastic unidirectional com-
posite is characterized by high longitudinal strength and transverse strain exceeding 1%.
Having high strength, composite fibers are not damaged in the process of laying-up
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or winding, and the tapes formed from these fibers are readily impregnated even with
high-viscosity thermoplastic polymers.

4.4.4. Composites with controlled cracks

Now we return to the conventional composites discussed in Section 4.4.2. Since the
transverse ultimate elongation of a ply, ε2, is less than the corresponding longitudinal
elongation, ε1, (see Table 4.2), the stress σ in Eq. (4.123) induces a system of cracks in
the matrix of the transverse ply as in Fig. 4.39. As has been already noted, these cracks
do not cause laminate failure because its strength is controlled by the longitudinal plies.
What is actually not desirable is matrix failure in the process of laminate loading. So, since
the cracks shown in Fig. 4.39 will occur anyway at some stress σ , suppose that the material
has these cracks before loading, i.e., that the transverse ply consists of individual strips
with width lc as in Fig. 4.39. The problem is to find the width lc for which no other cracks
will appear in the transverse ply up to failure of the fibers in the longitudinal plies.

Consider the solution in Eq. (4.132), take C2 = C3 = 0 and find the constants C1 and
C4 from the boundary conditions in Eqs. (4.133) in which lc is some unknown width.
The resulting expression for the stress in the transverse ply is

σx2 = σ 0
2

{
1 − 1

k1 sin λ2 cos λ2 + k2 sinh λ1 cosh λ1
[(k2 cosh λ1 sin λ2

−k1 sinh λ1 cos λ2) sinh k1x sin k2x

+(k1 cosh λ1 sin λ2 + k2 sinh λ1 cos λ2) cosh k1x cos k2x]
}

in which λ1 = k1lc/2 and λ2 = k2lc/2. The maximum stress acts at x = 0 (see Fig. 4.40)
and can be presented as

σm
2 = σ 0

2 [1 − F(lc)] (4.139)

where

F(lc) = 2(k1 cosh λ1 sin λ2 + k2 sinh λ1 cos λ2)

k1 sin 2λ2 + k2 sinh 2λ1
(4.140)

The stress σ 0
2 in Eq. (4.139) is specified by the second equation of Eqs. (4.122). Taking

into account the first equation, we have

σ 0
2 = E2

E1
σ 0

1
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where σ 0
1 is the stress in the longitudinal plies. So, Eq. (4.139) can be written as

σm
2 = E2

E1
σ 0

1 [1 − F(lc)] (4.141)

Now suppose that σ1 = σ 1, i.e., that the longitudinal stress reaches the corresponding
ultimate value. The cracks in the matrix of the transverse ply do not appear if σm

2 ≤ σ 2,
where σ 2 is the transverse tensile strength of the ply. Then, Eq. (4.141) yields

F(lc) ≥ t (4.142)

where t = 1 − E1σ 2

E2σ 1
.

As an example, consider a cross-ply (see Fig. 4.35) carbon–epoxy composite with the
following parameters

E1 = 140 GPa, E2 = 11 GPa, G13 = 5.5 GPa, G23 = 4.1 GPa,

ν23 = 0.3, σ 1 = 2000 MPa, σ 2 = 50 MPa

for which t = 0.68. Introduce normalized thicknesses of the plies as

h1 = 2h1

h
, h2 = 2h2

h

where h = 2(h1 + h2) (see Fig. 4.37). Let h1 = 1 − α, h2 = α, where the parameter α

specifies the relative thickness of the transverse ply. The dependencies of the coefficients
k1 = k1/h and k2 = k2/h (in which k1 and k2 are given in the notations to Eq. (4.130))
on the parameter α are shown in Fig. 4.55. The dependence of function F in Eq. (4.140)
on the normalized distance between the cracks lc = lc/h is presented in Fig. 4.56 for
α = 0.1, 0.5, and 0.9. The intersections of the horizontal line F = t = 0.68 give the
values of lc for which no new cracks appear in the transverse ply up to the fibers’ failure.
The final dependence of lc on α is shown in Fig. 4.57. As can be seen, lc varies from
about 2 up to 4 thicknesses of the laminate. For h1 = h2 = δ, where δ = 0.15 mm is the
thickness of the unidirectional ply, we get h = 4δ, α = 0.5, and lc = 1.9 mm. A yarn of
such width is typical for carbon fabrics made of 3K carbon tows. Experiments with such
fabric composites show that the tensile stress–strain diagram of the material is linear up
to failure, and no cracks are observed in the matrix.

4.5. Angle-ply orthotropic layer

The angle-ply layer is a combination of an even number of alternating plies with angles
+φ and −φ as in Fig. 4.58. The structure of this layer is typical for the process of
filament winding (see Fig. 4.59). As for the cross-ply layer considered in the previous
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Fig. 4.55. Dependencies of the coefficients k1 and k2 on the relative thickness of the transverse ply α.

section, an angle-ply layer is actually a laminate, but for a large number of plies it can be
approximately treated as a homogeneous orthotropic layer (see Section 5.4.3).

4.5.1. Linear elastic model

Consider two symmetric systems of unidirectional anisotropic plies (see Section 4.3)
consisting of the same number of plies, made of one and the same material and having
alternating angles +φ and −φ. Then, the total stresses σx , σy , and τxy acting on the layer
can be expressed in terms of the corresponding stresses acting in the +φ and −φ plies as

σxh = σ+
x

h

2
+ σ−

x

h

2
, σyh = σ+

y

h

2
+ σ−

y

h

2
, τxyh = τ+

xy

h

2
+ τ−

xy

h

2
(4.143)

where h is the total thickness of the layer. Stresses with superscripts ‘+’ and ‘−’ are
related to strains εx , εy , and γxy (which are presumed to be the same for all the plies)
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Fig. 4.58. Two symmetric plies forming an angle-ply layer.

Fig. 4.59. Angle-ply layer of a filament-wound shell. Courtesy of CRISM.

by Eqs. (4.71), i.e.,

σ±
x = A±

11εx + A±
12εy + A±

14γxy, σ±
y = A±

21εx + A±
22εy + A±

24γxy,

τ±
xy = A±

41εx + A±
42εy + A±

44γxy

(4.144)

in which A+
11 = A−

11 = A11, A+
12 = A−

12 = A12, A+
22 = A−

22 = A22, A+
14 = −A−

14 =
A14, A+

24 = −A−
24 = A24, A+

44 = A−
44 = A44, where Amn (mn = 11, 12, 22, 14, 24, 44)

are specified by Eqs. (4.72). Substituting Eqs. (4.144) into Eqs. (4.143), we arrive at the
following constitutive equations for an angle-ply layer

σx = A11εx + A12εy

σy = A21εx + A22εy

τxy = A44γxy

(4.145)
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The inverse form of these equations is

εx = σx

Ex

− νxy

σy

Ey

, εy = σy

Ey

− νyx

σx

Ex

, γxy = τxy

Gxy

(4.146)

where

Ex = A11 − A2
12

A22
, Ey = A22 − A2

12

A11
, Gxy = A44,

νxy = A12

A11
, νyx = A12

A22

(4.147)

It follows from Eqs. (4.145) and (4.146) that the layer under study is orthotropic.
Now derive constitutive equations relating transverse shear stresses τxz and τyz and

the corresponding shear strains γxz and γyz. Let the angle-ply layer be loaded by stress
τxz. Then for all the plies, τ+

xz = τ−
xz = τxz and because the layer is orthotropic, γ +

xz =
γ −
xz = γxz, γ +

yz = γ −
yz = γyz = 0. In a similar way, applying stress τyz we have

τ+
yz = τ−

yz = τyz, γ +
yz = γ −

yz = γyz, γ +
xz = γ −

xz = γxz = 0. Writing the last two
constitutive equations of Eqs. (4.71) for these two cases, we arrive at

τxz = A55γxz, τyz = A66γyz (4.148)

where the stiffness coefficients A55 and A66 are specified by Eqs. (4.72).
The dependencies of Ex and Gxy on φ, plotted using Eqs. (4.147), are shown in

Fig. 4.60 with solid lines. The theoretical curve for Ex is in very good agreement with
experimental data shown with circles (Lagace, 1985). For comparison, the same moduli
are presented for the +φ anisotropic layer considered in Section 4.3.1. As can be seen,
Ex(±φ) ≥ E+

x . To explain this effect, consider uniaxial tension of both layers in the
x-direction. Whereas tension of the +φ and −φ individual plies shown in Fig. 4.61 is
accompanied with shear strain, the system of these plies does not demonstrate shear under
tension and, as a result, has higher stiffness. Working as plies of a symmetric angle-ply
layer, individual anisotropic +φ and −φ plies are loaded not only with a normal stress σx

that is applied to the layer, but also with shear stress τxy that restricts the shear of individual
plies (see Fig. 4.61). In order to find the reactive shear stress, which is balanced between
the plies, we can use Eqs. (4.75). Taking σy = 0, we can simulate the stress–strain state
of the ply in the angle-ply layer putting γxy = 0. Then, the third equation yields

τxy = −η+
xy, x

G+
xy

E+
x

σx

Superscript ‘+’ indicates that elastic constants correspond to an individual +φ ply. Sub-
stituting this shear stress into the first equation of Eqs. (4.75), we arrive at σx = Exεx,
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214 Advanced mechanics of composite materials

where

Ex = E+
x

1 − η+
x, xyη

+
xy, x

= E+
x

1 − G+
xy

E+
x

(η+
xy, x)

2
(4.149)

is the modulus of the ±φ angle-ply layer.
Under pure shear of an angle-ply layer, its plies are loaded with the additional normal

stresses. These stresses can be found if we take εx = 0 and εy = 0 in the first two
equations of Eqs. (4.75). The result is

σx = −τxy

E+
x (η+

x, xy − ν+
xyη

+
y, xy)

G+
xy(1 − ν+

xyν
+
yx)

, σy = −τxy

E+
y (η+

y, xy − ν+
yxη

+
x, xy)

G+
xy(1 − ν+

xyν
+
yx)

Substituting these expressions into the third equation, we get τxy = Gxyγxy , where

Gxy = G+
xy(1 − ν+

xyν
+
yx)

1 − ν+
xyν

+
yx − η+

x, xyη
+
xy, x − η+

y, xyη
+
xy, y − ν+

xyη
+
y, xyη

+
xy, x − ν+

yxη
+
x, xyη

+
xy, y

is the shear modulus of an angle-ply layer which is much higher than G+
xy (see Fig. 4.60).

Tension of ±45◦angle-ply specimen provides a simple way to determine the in-plane
shear modulus of a unidirectional ply, G12. Indeed, for this layer, Eqs. (4.72) and (4.147)
yield

A45
11 = A45

22 = 1

4
(E1 + E2 + 2E1ν12 + 4G12)

A45
12 = E1ν12 + 1

4
(E1 + E2 − 2E1ν12 − 4G12)

and

E45 = 1

A45
11

(
A45

11 + A45
12

) (
A45

11 − A45
12

)
, 1 + ν45 = 1

A45
11

(
A45

11 + A45
12

)

Taking into account that A45
11 − A45

12 = 2G12, we have

G12 = E45

2(1 + ν45)
(4.150)

Thus, to find G12, we can test a ±45◦ specimen under tension, measure εx and εy ,
determine E45 = σx/εx , ν45 = −εy/εx , and use Eq. (4.150) rather than perform the
cumbersome tests described in Section 3.
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4.5.2. Nonlinear models

To describe nonlinear behavior of an angle-ply layer associated with material non-
linearity in its plies, we can use nonlinear constitutive equations, Eqs. (4.60) or (4.64)
instead of Hooke’s law. Indeed, assuming that the ply behavior is linear under tension or
compression along the fibers, we can write these equations in the following general form

ε1 =c11σ1+c12σ2, ε2 =c12σ1+c22σ2+ω2(σ2,τ12), γ12 =c44τ12+ω12(σ2,τ12)

Functions ω2 and ω12 include all the nonlinear terms. The inverse form of these equations is

σ1 = C11ε1 + C12ε2 − C12ω2, σ2 = C12ε1 + C22ε2 − C22ω2,

τ12 = C44γ12 − C44ω12

(4.151)

in which

C11 = c22

c
, C22 = c11

c
, C44 = 1

c44
, C12 = −c12

c
, c = c11c22 − c2

12

Repeating the derivation of Eqs. (4.145) but using this time Eqs. (4.151) as the constitutive
equations for the ply, we arrive at

σx = A11εx + A12εy − Aω
11, σy = A21εx + A22εy − Aω

22, τxy = A44γxy − Aω
44

where s = sin φ and c = cos φ.

Aω
11 =

(
C22s

2+C12c
2
)
ω2−2C44csω12, Aω

22 =
(
C22c

2+C12s
2
)
ω2+2C44csω12,

Aω
44 = (C12−C22)csω2+C44

(
c2−s2

)
ω12

These equations can be used in conjunction with the method of elastic solutions described
in Section 4.1.2.

As an example, consider the two-matrix glass–epoxy composite described in
Section 4.4.3 (see also Figs. 4.16, 4.30, and 4.31). Theoretical (solid lines) and exper-
imental (dashed lines) stress–strain diagrams for ±30, ±45, and ±75◦ angle-ply layers
under tension along the x-axis are shown in Fig. 4.62.

Angle-ply layers demonstrate a specific type of material nonlinearity – structural non-
linearity that can occur in the layers composed of linear elastic plies due to the change of
the plies’ orientations caused by loading. Since this effect manifests itself at high strains,
consider a geometrically nonlinear problem of the ply deformation. This deformation can
be described with the longitudinal, ε1, transverse, ε2, and shear, γ12, strains that follow
from Fig. 4.63 and can be expressed as

ε1 = 1

ds1
(ds′

1 − ds1), ε2 = 1

ds2
(ds′

2 − ds2), γ12 = π

2
− ψ (4.152)
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Fig. 4.63. Ply element before and after deformation.

In addition to this, we introduce strain ε′′
2 in the direction normal to the fibers

ε′′
2 = 1

ds2
(ds′′

2 − ds2) (4.153)

and the angle of rotation of the element as a solid in the 12-plane

ω12 = 1

2
(ω1 − ω2)

where ω1 = φ′ − φ, ω2 = π
2 + φ − (φ′ + ψ) are the angles of rotation of axes 1′ and 2′

(see Fig. 4.63). Thus,

ω12 = φ′ − φ + ψ

2
− π

4
(4.154)

Consider some arbitrary element dsα , shown in Fig. 4.64, and introduce its strain

dsα = 1

dsα
(ds′

α − dsα) (4.155)

Repeating the derivation described in Section 2.5, we have

ds2
α = dx2 + dy2

(ds′
α)2 = (dx′)2 + (dy′)2 = (dx + dux)

2 + (dy + duy)
2

= (1 + εx)
2dx2 + (1 + εy)

2dy2 + 2εxydxdy
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Fig. 4.64. Linear element before and after deformation.

where

(1 + εx)
2 = 1 + 2

[
∂ux

∂x
+ 1

2

(
∂ux

∂x

)2

+ 1

2

(
∂uy

∂x

)2
]

(1 + εy)
2 = 1 + 2

[
∂uy

∂y
+ 1

2

(
∂ux

∂y

)2

+ 1

2

(
∂uy

∂y

)2
]

(4.156)

εxy = ∂ux

∂y
+ ∂uy

∂x
+ ∂ux

∂x
∂ux

∂y
+ ∂uy

∂x
∂uy

∂y

Using Eq. (4.155), we arrive at

(1 + εα)2 = (1 + εx)
2 cos2 α + (1 + εy)

2 sin2 α + εxy sin 2α (4.157)

where cos α = dx/dsα and sin α = dy/dsα .
In a similar way, we can find the angle α′ after the deformation, i.e.,

sin α′ = dy′

dsα
= 1

1 + εα

[(
1 + ∂uy

∂y

)
sin α + ∂uy

∂x
cos α

]

cos α′ = dx′

dsα
= 1

1 + εα

[(
1 + ∂ux

∂x

)
cos α + ∂ux

∂y
sin α

] (4.158)
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Now return to the ply element in Fig. 4.63. Taking α = φ in Eqs. (4.157) and (4.158), we
obtain

(1 + ε1)
2 = (1 + εx)

2 cos2 φ + (1 + εy)
2 sin2 φ + εxy sin 2φ

sin φ′ = 1

1 + ε1

[(
1 + ∂uy

∂y

)
sin φ + ∂uy

∂x
cos φ

]

cos φ′ = 1

1 + ε1

[(
1 + ∂ux

∂x

)
cos φ + ∂ux

∂y
sin φ

]
(4.159)

Putting α = π
2 + φ, we have

(1 + ε2)
2 = (1 + εx)

2 sin2 φ + (1 + εy)
2 cos2 φ − 2εxy sin 2φ

sin(φ′ + ψ) = 1

1 + ε2

[(
1 + ∂uy

∂y

)
cos φ − ∂uy

∂x
sin φ

]

cos(φ′ + ψ) = 1

1 + ε2

[
−
(

1 + ∂ux

∂x

)
cos φ + ∂ux

∂y
sin φ

]
(4.160)

Using the last equation of Eqs. (4.152), we can find the shear strain as sin γ12 = cos ψ .
After some rearrangement, with the aid of Eqs. (4.159) and (4.160), we arrive at

sin γ12 = 1

(1 + ε1)(1 + ε2)

{[
(1 + εy)

2 − (1 + εx)
2
]

sin φ cos φ + εxy cos 2φ
}

(4.161)

For φ = 0, axes 1 and 2 coincide, respectively, with axes x and y (see Fig. 4.63), and
Eq. (4.161) yields

sin γxy = εxy

(1 + εx)(1 + εy)
(4.162)

Using this result to express εxy , we can write Eqs. (4.159)–(4.161) in the following final
form

(1 + ε1)
2 = (1 + εx)

2 cos2 φ + (1 + εy)
2 sin2 φ + (1 + εx)(1 + εy) sin γxy sin 2φ

(1 + ε2)
2 = (1 + εx)

2 sin2 φ + (1 + εy)
2 cos2 φ − (1 + εx)(1 + εy) sin γxy sin 2φ

sin γ12 = 1

(1 + ε1)(1 + ε2)

{[
(1 + εy)

2 − (1 + εx)
2] sin φ cos φ

+(1 + εx)(1 + εy) sin γxy cos 2φ
}

(4.163)
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It follows from Fig. 4.63 and the last equation of Eqs. (4.152), that ds′′
2 = ds′

2 sin ψ =
ds′

2 cos γ12. So, in accordance with Eqs. (4.152) and (4.153),

1 + ε′′
2 = (1 + ε2) cos γ12

Using Eqs. (4.163) to transform this equation we get

1 + ε′′
2 = (1 + εx)(1 + εy)

1 + ε1
cos γxy (4.164)

To express φ′ in terms of φ and strains referred to the global coordinate frame x, y,
consider Eq. (4.154). After rather cumbersome transformation with the aid of Eqs. (4.159)
and (4.160), we obtain

sin 2ω12 = 1

(1 + ε1)(1 + ε2)

{(
∂uy

∂x
− ∂ux

∂y
+ ∂uy

∂x
∂uy

∂y
− ∂ux

∂x
∂ux

∂y

)
cos2 2φ

+
(

∂uy

∂x
− ∂ux

∂y
+ ∂ux

∂x
∂uy

∂x
− ∂ux

∂y
∂uy

∂y

)
sin2 2φ

+ 1

4

[(
∂ux

∂x
− ∂uy

∂y

)2

−
(

∂uy

∂x
+ ∂ux

∂y

)2
]

sin 4φ

}

Taking φ = 0, we can write rotation angle ωz around the z-axis of the global coordinate
frame, i.e.,

sin 2ωz = 1

(1 + εx)(1 + εy)

(
∂uy

∂x
− ∂ux

∂y
+ ∂uy

∂x
∂uy

∂y
− ∂ux

∂x
∂ux

∂y

)
(4.165)

Consider now Eqs. (4.156), (4.162), and (4.165) which form a set of four algebraic
equations with respect to the derivatives of the displacements. Omitting the solution
procedure, we can write the final outcome as

∂ux

∂x
= (1 + εx) cos

(γxy

2
+ ωz

)
− 1,

∂ux

∂y
= (1 + εy) sin

(γxy

2
− ωz

)
,

∂uy

∂x
= (1 + εx) sin

(γxy

2
+ ωz

)
,

∂uy

∂y
= (1 + εy) cos

(γxy

2
− ωz

)
− 1

Substituting these expressions into Eqs. (4.159), we have

sin φ′ = 1

1 + ε1
[(1 + εx) sin

(γxy

2
+ ωz

)
cos φ + (1 + εy) cos

(γxy

2
− ωz

)
sin φ

cos φ′ = 1

1 + ε1
[(1 + εx) cos

(γxy

2
+ ωz

)
cos φ + (1 + εy) sin

(γxy

2
− ωz

)
sin φ

(4.166)
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The derived nonlinear equations, Eqs. (4.163), generalize Eqs. (4.69) for the case of large
strains, whereas Eqs. (4.166) allow us to find the fiber orientation angle after deformation.

The equilibrium equations, Eqs. (4.68), retain their form but should be written for the
deformed state, i.e.,

σx = σ ′
1 cos2 φ′ + σ ′′

2 sin2 φ′ − τ ′
12 sin 2φ′

σy = σ ′
1 sin2 φ′ + σ ′′

2 cos2 φ′ + τ ′
12 sin 2φ′

τxy = (σ ′
1 − σ ′′

2 ) sin φ′ cos φ′ + τ ′
12 cos 2φ′

(4.167)

where σ ′
1, σ ′′

2 , and τ ′
12 are stresses referred to coordinate frame 1′2′′ (see Fig. 4.63) and

to the current thickness of the ply.
Consider a problem of uniaxial tension of a ±φ angle-ply layer with stress σx . For this

case, γxy = 0, ωz = 0, and Eqs. (4.163), (4.164), (4.166) take the form

(1 + ε1)
2 = (1 + εx)

2 cos2 φ + (1 + εy)
2 sin2 φ

(1 + ε2)
2 = (1 + εx)

2 sin2 φ + (1 + εy)
2 cos2 φ

sin γ12 = sin φ cos φ

(1 + ε1)(1 + ε2)
[(1 + εy)

2 − (1 + εx)
2]

1 + ε′′
2 = (1 + εx)(1 + εy)

1 + ε1

sin φ′ = 1 + εy

1 + ε1
sin φ, cos φ′ = 1 + εx

1 + ε1
cos φ

For composite materials, the longitudinal strain ε1 is usually small, and these equations
can be further simplified as follows

ε1 = εx cos2 φ + εy sin2 φ + 1

2

(
ε2
x cos2 φ + ε2

y sin2 φ
)

(1 + ε2)
2 = (1 + εx)

2 sin2 φ + (1 + εy)
2 cos2 φ

sin γ12 = 1

1 + ε2

[
(1 + εy)

2 − (1 + εx)
2
]

sin φ cos φ

1 + ε′′
2 = (1 + εx)(1 + εy)

tan φ′ = 1 + εy

1 + εx

tan φ

(4.168)

As an example, consider a specially synthesized highly deformable composite mate-
rial made from glass composite fibers and thermoplastic matrix as discussed in
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Section 4.4.3. Neglecting interaction of strains, we take constitutive equations for the
unidirectional ply as

σ ′
1 = E1ε1

1 + ε′′
2
, σ ′

2 = ω2(ε
′′
2), τ ′

12 = ω12(γ12) (4.169)

where E1 in the first equation is the longitudinal elasticity modulus, whereas ε′′
2 in the

denominator takes account of the decrease of the ply stiffness due to the increase in
the fiber spacing. The constant E1 and functions ω2 and ω12 are determined from the
experimental stress–strain diagrams for 0, 90, and ±45◦ specimens that are shown in
Fig. 4.65. The results of calculations with the aid of Eqs. (4.167)–(4.169) are presented
together with the corresponding experimental data in Fig. 4.66.

The foregoing equations comprise the analytical background for a promising manu-
facturing process allowing us to fabricate composite parts with complicated shapes by
deforming partially cured preforms of simple shapes made by winding or laying-up (see,
e.g., Cherevatsky, 1999). An example of such a part is presented in Fig. 4.67. The curved
composite pipe shown in this figure was fabricated from a straight cylinder that was par-
tially cured, loaded with pre-assigned internal pressure and end forces and moments, and
cured completely in this state. The desired deformation of the part under loading is pro-
vided by the appropriate change of the fibers’ orientation angles governed by Eqs. (4.163),
(4.166), and (4.167).

Angle-ply layers can also demonstrate nonlinear behavior caused by the matrix cracking
described in Section 4.4.2. To illustrate this type of nonlinearity, consider carbon–epoxy
±15, ±30, ±45, ±60, and ±75◦ angle-ply specimens studied experimentally by Lagace
(1985). The unidirectional ply has the following mechanical properties: E1 = 131 GPa,
E2 = 11 GPa, G12 = 6 GPa, ν21 = 0.28, σ+

1 = 1770 MPa, σ+
2 = 54 MPa,
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Fig. 4.65. Experimental stress–strain diagrams for 0, ±45, and 90◦ angle-ply layers.
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Fig. 4.66. Calculated (circles) and experimental (solid lines) stress–strain diagrams for ±15, ±30, ±60, and
±75◦ angle-ply layers.

Fig. 4.67. A curved angle-ply pipe made by deformation of a filament-wound cylinder.

σ −
2 = 230 MPa, and τ 12 = 70 MPa. The dependencies σ1(ε1) and σ2(ε2) are linear,

whereas for in-plane shear, the stress–strain diagram is not linear and is shown in Fig. 4.68.
To take into account the material nonlinearity associated with shear, we use the constitutive
equation derived in Section 4.2.2, i.e.,

γ12 = c1τ12 + c2τ
3
12

in which c1 = 1/G12 and c2 = 5.2 × 10−8(MPa)−3.
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Fig. 4.68. Experimental stress–strain diagrams for transverse tension (1) and in-plane shear (2) of a carbon–
epoxy unidirectional ply.

The specimens were tested in uniaxial tension in the x-direction. To calculate the applied
stress σx that causes failure of the matrix, we use the simplest maximum stress strength
criterion (see Chapter 6) which ignores the interaction of stresses, i.e.,

−σ−
2 ≤ σ2 ≤ σ+

2 , |τ12| ≤ τ 12

Nonlinear behavior associated with ply degradation is predicted applying the proce-
dure described in Section 4.4.2. Stress–strain diagrams are plotted using the method of
successive loading (see Section 4.1.2).

Consider a ±15◦ angle-ply layer. Point 1 on the theoretical diagram, shown in Fig. 4.69,
corresponds to cracks in the matrix caused by shear. These cracks do not result in complete
failure of the matrix because the transverse normal stress σ2 is compressive (see Fig. 4.70)
and does not reach σ−

2 before the failure of fibers under tension (point 2 on the diagram).
As can be seen, the theoretical prediction of the material stiffness is quite good, whereas
the predicted material strength (point 2) is much higher than the experimental (dot on the
solid line). The reasons for this are discussed in the next section.

The theoretical diagram corresponding to the ±30◦ layer (see Fig. 4.69) also has two
specific points. Point 1 again corresponds to cracks in the matrix induced by the shear stress
τ12, whereas point 2 indicates complete failure of the matrix caused by the compressive
stress σ2 which reaches σ−

2 at this point. After the matrix fails, the fibers of an angle-ply
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Fig. 4.69. Experimental (solid lines) and calculated (dashed lines) stress–strain diagrams for 0, ±15, and ±30◦
angle-ply carbon–epoxy layers.
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layer cannot take the load. Indeed, putting E2 = G12 = ν12 = 0 in Eqs. (4.72), we obtain
the following stiffness coefficients

A11 = E1 cos4 φ, A22 = E1 sin4 φ, A12 = E1 sin2 φ cos2 φ

With these coefficients, the first equation of Eqs. (4.147) yields Ex = 0, which means
that the system of fibers becomes a mechanism, and the stresses in the fibers, no matter
how high they are, cannot balance the load. A typical failure mode for a ±30◦ angle-ply
specimen is shown in Fig. 4.71.

Angle-ply layers with fiber orientation angles exceeding 45◦ demonstrate a different
type of behavior. As can be seen in Fig. 4.70, the transverse normal stress σ2 is tensile for
φ ≥ 45◦. This means that the cracks induced in the matrix by normal, σ2, or shear, τ12,
stresses cause failure of the layer. The stress–strain diagrams for ±60 and ±75◦ layers are
shown in Fig. 4.72. As follows from this figure, the theoretical curves are linear and are
close to the experimental ones, whereas the predicted ultimate stresses (circles) are again
higher than the experimental values (dots).

Now consider the ±45◦ angle-ply layer which demonstrates a very specific behavior.
For this layer, the transverse normal stress, σ2, is tensile but not high (see Fig. 4.70), and
the cracks in the matrix are caused by the shear stress, τ12. According to the ply model
we use, to predict material response after the cracks appeared, we should take G12 = 0
in the stiffness coefficients. Then, Eqs. (4.72) yield

A11 = A12 = A22 = 1

4
(E1 + E2) + 1

2
E1ν12

whereas Eqs. (4.146) and (4.147) give

εx = A22σx

A11A22 − A2
12

, εy = − A12σx

A11A22 − A2
12

The denominator of both expressions is zero, so it looks as though the material becomes
a mechanism and should fail under the load that causes cracks in the matrix. However,

Fig. 4.71. A failure mode of ±30◦ angle-ply specimen.
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Fig. 4.72. Experimental (solid lines) and calculated (dashed lines) stress–strain diagrams for ±60 and ±75◦
angle-ply carbon–epoxy layers.

this is not the case. To explain why, consider the last equation of Eqs. (4.168), i.e.,

tan φ′ = 1 + εy

1 + εx

tan φ

For the layer under study, tan φ = 1, εy < 0, εx > 0, so tan φ′ < 1 and φ′ < 45◦.
However, in the plies with φ < 45◦ the transverse normal stresses, σ2, become compres-
sive (see Fig. 4.70) and close the cracks. Thus, the load exceeding the level at which the
cracks appear due to shear locks the cracks and induces compression across the fibers thus
preventing material failure. Since φ′ is only slightly less than 45◦, the material stiffness,
Ex , is very low and slightly increases with the increase in strains and decrease of φ′. For
the material under study, the calculated and experimental diagrams are shown in Fig. 4.73.
The circle on the theoretical curve indicates the stress σx that causes cracks in the matrix.
More pronounced behavior of this type is demonstrated by the glass–epoxy composites
whose stress–strain diagram is presented with curve 1 in Fig. 4.74 (Alfutov and Zinoviev,
1982). A specific plateau on the curve and material hardening at high strain are the result
of the angle variation as is also shown in Fig. 4.74 (line 2).

4.5.3. Free-edge effects

As shown in the previous section, there is a significant difference between the pre-
dicted and measured strength of an angle-ply specimen loaded in tension. This difference
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Fig. 4.74. Experimental dependencies of stress (1) and ply orientation angle (2) on strain for ±45◦ angle-ply
glass–epoxy composite.

is associated with the stress concentration that occurs in the vicinity of the specimen
longitudinal edges and was not taken into account in the analysis.

To study a free-edge effect in an angle-ply specimen, consider a strip whose initial width
a is much smaller than the length l. Under tension with longitudinal stress σ , symmetric
plies with orientation angles +φ and −φ tend to deform as shown in Fig. 4.75. As can
be seen, deformation of the plies in the y-direction is the same, whereas the deformation
in the x-direction tends to be different. This means that symmetric plies forming the
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Fig. 4.75. Deformation of symmetric plies under tension.

angle-ply layer interact through the interlaminar shear stress τxz acting between the plies
in the longitudinal direction. To describe the ply interaction, introduce the model shown in
Fig. 4.76 according to which the in-plane stresses in the plies are applied to their middle
surfaces, whereas transverse shear stresses act in some hypothetical layers introduced
between these surfaces.

To simplify the problem, we further assume that the transverse stress can be neglected,
i.e., σy = 0, and that the axial strain in the middle part of the long strip is constant,
i.e., εx = ε = constant. Thus, the constitutive equations, Eqs. (4.75), for a +φ ply have
the form

εx = σx

E+
x

+ η+
x, xy

τxy

G+
xy

(4.170)

εy = −ν+
yx

σx

E+
x

+ η+
y, xy

τxy

G+
xy

(4.171)

γxy = η+
xy, x

σx

E+
x

+ τxy

G+
xy

(4.172)

where the elastic constants for an individual ply are specified by Eqs. (4.76). The strain-
displacement equations, Eqs. (2.22), for the problem under study are

εx = ε = ∂ux

∂x
, εy = ∂uy

∂y
, γxy = ∂ux

∂y
+ ∂uy

∂x
(4.173)
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Fig. 4.76. A model simulating the plies interaction.



230 Advanced mechanics of composite materials

Integration of the first equation yields for the +φ and −φ plies

u+φ
x = ε · x + u(y), u−φ

x = ε · x − u(y) (4.174)

where u(y) is the displacement shown in Fig. 4.76. This displacement results in the
following transverse shear deformation and transverse shear stress

γxz = 2

δ
u(y), τxz = Gxzγxz (4.175)

where Gxz is the transverse shear modulus of the ply specified by Eqs. (4.76). Consider
the equilibrium state of +φ ply element shown in Fig. 4.77. Equilibrium equations can
be written as

δ
∂τxy

∂x
= 0, δ

∂τxy

∂y
− 2τxz = 0 (4.176)

The first of these equations shows that τxy does not depend on x. Since the axial stress, σx ,
in the middle part of a long specimen also does not depend on x, Eqs. (4.171) and (4.173)
allow us to conclude that εy, and hence uy, do not depend on x. As a result, the last
equation of Eqs. (4.173) yields in conjunction with the first equation of Eqs. (4.174)

γxy = ∂ux

∂y
= du

dy

Using this expression and substituting ε from Eq. (4.170) in Eq. (4.172), we arrive at

τxy = G+
xy

1 − η

(
du

dy
− ηxy, xε

)
(4.177)

where η = η+
x, xyη

+
xy, x .
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Fig. 4.77. Forces acting on the infinitesimal element of a ply.
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Substitution of Eqs. (4.175) and (4.177) into the second equation of Eqs. (4.176) provides
the following governing equation for the problem under study

d2u

dy2
− k2u = 0 (4.178)

in which

k2 = 4Gxz(1 − η)

G+
xyδ

2

Using the symmetry conditions, we can present the solution of Eq. (4.178) as

u = C sinh ky

The constant C can be determined from the boundary conditions for the free longitudinal
edges of the specimen (see Fig. 4.75) according to which τxy(y = ±a/2) = 0. Satisfying
these conditions and using Eqs. (4.170), (4.171), (4.175), and (4.177), we finally obtain

εx = ε

εy = ε

1 − η

[
η+

y, xyη
+
xy, x

(
cosh λy

cosh λ
− 1

)
+ ν+

yx

(
η

cosh λy

cosh λ
− 1

)]

γxy = εη+
xy, x

cosh λy

cosh λ

σx = εE+
x

[
1 − η

1 − η

(
cosh λy

cosh λ
− 1

)]
(4.179)

τxy = G+
xyη

+
xy, x

1 − η

(
cosh λy

cosh λ
− 1

)

τxz = 2ε

kδ
Gxzη

+
xy, x

sinh λy

cosh λ

where

λ = ka

2
= a

δ

√
(1 − η)

Gxz

G+
xy

, y = 2y

a
(4.180)

The axial stress, σx , should provide the stress resultant equal to σa (see Fig. 4.75), i.e.,

∫ a/2

−a/2
σxdy = σa
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This condition allows us to determine the axial strain as

ε = σ

Ex

where

Ex = E+
x

[
1 + η

1 − η

(
1 − 1

λ
tanh λ

)]
(4.181)

is the apparent modulus of an angle-ply specimen.
Consider two limiting cases. First, suppose that Gxz = 0, i.e., that the plies are not

bonded. Then, λ = 0 and because

lim
1

λ
tanh λ = 1

λ→0

Ex = E+
x . Second, assume that Gxz → ∞, i.e., that the interlaminar shear stiffness is

infinitely high. Then λ → ∞ and Eq. (4.181) yields

Ex = E+
x

1 − η
(4.182)

This result coincides with Eq. (4.149), which specifies the modulus of an angle-ply layer.
For finite values of Gxz, the parameter λ in Eqs. (4.180) is rather large because it

includes the ratio of the specimen width, a, to the ply thickness, δ, which is, usually,
a large number. Taking into account that tanh λ ≤ 1, we can neglect the last term in
Eq. (4.181) in comparison with unity. Thus, this equation reduces to Eq. (4.182). This
means that tension of angle-ply specimens allows us to measure material stiffness with
good accuracy despite the fact that the fibers are cut on the longitudinal edges of the
specimens.

However, this is not true for the strength. The distribution of stresses over the half-
width of the carbon–epoxy specimen with the properties given above and a/δ = 20,
φ = 45◦ is shown in Fig. 4.78. The stresses σx , τxy , and τxz were calculated with the aid
of Eqs. (4.179), whereas stresses σ1, σ2, and τ12 in the principal material directions of the
plies were found using Eqs. (4.69) for the corresponding strains and Hooke’s law for the
plies. As can be seen in Fig. 4.78, there exists a significant concentration of stress σ2 that
causes cracks in the matrix. Moreover, the interlaminar shear stress τxz that appears in the
vicinity of the specimen edge can induce delamination of the specimen. The maximum
value of stress σ2 is

σmax
2 = σ2(y = 1) = E2ε [(1 − ν21ν

+
yx) sin2 φ

+ (ν21 − νyx) cos2 φ − (1 − ν21)η
+
xy, x sin φ cos φ]

Using the modified strength condition, i.e., σmax
2 = σ+

2 to evaluate the strength of ±60◦
specimen, we arrive at the result shown with a triangular symbol in Fig. 4.72. As can



Chapter 4. Mechanics of a composite layer 233

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

σsx

y

σs1

σt12

σtxy

σs2
σtxz

Fig. 4.78. Distribution of normalized stresses over the width of a ±45◦ angle-ply carbon–epoxy specimen.

be seen, the allowance for the stress concentration results is in fair agreement with the
experimental strength (dot).

Thus, the strength of angle-ply specimens is reduced by the free-edge effects, which
causes a dependence of the observed material strength on the width of the specimen. Such
dependence is shown in Fig. 4.79 for 105-mm diameter and 2.5-mm-thick fiberglass rings
made by winding at ±35◦angles with respect to the axis and loaded with internal pressure
by two half-disks as in Fig. 3.46 (Fukui et al., 1966).

It should be emphasized that the free-edge effect occurs in specimens only and does
not show itself in composite structures which, being properly designed, must not have
free edges of such a type.

4.6. Fabric layers

Textile preforming plays an important role in composite technology providing glass,
aramid, carbon (see Fig. 4.80), and hybrid fabrics that are widely used as reinforcing
materials. The main advantages of woven composites are their cost efficiency and high pro-
cessability, particularly, in lay-up manufacturing of large-scale structures (see Figs. 4.81
and 4.82). However, on the other hand, processing of fibers and their bending in the pro-
cess of weaving results in substantial reduction of material strength and stiffness. As can
be seen in Fig. 4.83, in which a typical woven structure is shown the warp (lengthwise)
and fill (crosswise) yarns forming the fabric make angle α ≥ 0 with the plane of the fabric
layer.

To demonstrate how this angle influences material stiffness, consider tension of the
structure shown in Fig. 4.83 in the warp direction. The apparent modulus of elasticity can
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Fig. 4.79. Experimental dependence of strength of a ±35◦angle-ply layer on the width of the specimen.

Fig. 4.80. A carbon fabric tape.



Fig. 4.81. A composite body of a boat made of fiberglass fabric by lay-up method. Courtesy of CRISM.

Fig. 4.82. A composite leading edge of an aeroplane wing made of carbon fabric by lay-up method. Courtesy
of CRISM.
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Fig. 4.83. Unit cell of a fabric structure.
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be expressed as

EaAa = Ef Af + EwAw (4.183)

where Aa = h(2t1 + t2) is the apparent cross-sectional area and

Af = h

2
(2t1 + t2), Aw = h

4
(4t1 + t2)

are the areas of the fill and warp yarns in the cross section. Substitution into Eq. (4.183)
yields

Ea = 1

2

[
Ef + Ew(4t1 + t2)

2(2t1 + t2)

]

Since the fibers of the fill yarns are orthogonal to the loading direction, we can take Ef =
E2, where E2 is the transverse modulus of a unidirectional composite. The compliance of
the warp yarn can be decomposed into two parts corresponding to t1 and t2 in Fig. 4.83, i.e.,

2t1 + t2

Ew
= 2t1

E1
+ t2

Eα

where E1 is the longitudinal modulus of a unidirectional composite, whereas Eα can be
determined with the aid of the first equation of Eqs. (4.76) if we change φ for α, i.e.,

1

Eα

= cos4 α

E1
+ sin4 α

E2
+
(

1

G12
− 2ν21

E1

)
sin2 α cos2 α (4.184)

The final result is as follows

Ea = E2

2
+ E1(4t1 + t2)

4
{

2t1 + t2

[
cos4 α + E1

E2
sin4 α +

(
E1
G12

− 2ν21

)
sin2 α cos2 α

]}
(4.185)

For example, consider a glass fabric with the following parameters: α = 12◦, t2 = 2t1.

Taking elastic constants for a unidirectional material from Table 3.5, we get for the fabric
composite Ea = 23.5 GPa. For comparison, a cross-ply [0◦/90◦] laminate made of the
same material has E = 36.5 GPa. Thus, the modulus of a woven structure is lower by
37% than the modulus of the same material but reinforced with straight fibers. Typical
mechanical characteristics of fabric composites are listed in Table 4.4.

The stiffness and strength of fabric composites depend not only on the yarns and matrix
properties, but also on the material structural parameters, i.e., on fabric count and weave.
The fabric count specifies the number of warp and fill yarns per inch (25.4 mm), whereas
the weave determines how the warp and the fill yarns are interlaced. Typical weave
patterns are shown in Fig. 4.84 and include plain, twill, and triaxial woven fabrics. In the
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Table 4.4
Typical properties of fabric composites.

Property Glass
fabric–epoxy

Aramid
fabric–epoxy

Carbon
fabric–epoxy

Fiber volume fraction 0.43 0.46 0.45
Density (g/cm3) 1.85 1.25 1.40
Longitudinal modulus (GPa) 26 34 70
Transverse modulus (GPa) 22 34 70
Shear modulus (GPa) 7.2 5.6 5.8
Poisson’s ratio 0.13 0.15 0.09
Longitudinal tensile strength (MPa) 400 600 860
Longitudinal compressive strength (MPa) 350 150 560
Transverse tensile strength (MPa) 380 500 850
Transverse compressive strength (MPa) 280 150 560
In-plane shear strength (MPa) 45 44 150

(a) (b)

(c) (d)

Fig. 4.84. Plain (a), twill (b) and (c), and triaxial (d) woven fabrics.

plain weave (see Fig. 4.84a) which is the most common and the oldest, the warp yarn
is repeatedly woven over the fill yarn and under the next fill yarn. In the twill weave,
the warp yarn passes over and under two or more fill yarns (as in Fig. 4.84b and c) in a
regular way.
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Fig. 4.85. Stress–strain curves for fiberglass fabric composite loaded in tension at different angles with respect
to the warp direction.

Being formed from one and the same type of yarns, plain and twill weaves provide
approximately the same strength and stiffness of the fabric in the warp and the fill direc-
tions. Typical stress–strain diagrams for a fiberglass fabric composite of such a type are
presented in Fig. 4.85. As can be seen, this material demonstrates relatively low stiffness
and strength under tension at an angle of 45◦ with respect to the warp or fill directions.
To improve these properties, multiaxial woven fabrics, one of which is shown in Fig. 4.84d,
can be used.

Fabric materials whose properties are closer to those of unidirectional composites are
made by weaving a greater number of larger yarns in the longitudinal direction and fewer
and smaller yarns in the orthogonal direction. Such a weave is called unidirectional.
It provides materials with high stiffness and strength in one direction, which is specific
for unidirectional composites and high processability typical of fabric composites.

Being fabricated as planar structures, fabrics can be shaped on shallow surfaces using
the material’s high stretching capability under tension at 45◦ to the yarns’ directions. Many
more possibilities for such shaping are provided by the implementation of knitted fabrics
whose strain to failure exceeds 100%. Moreover, knitting allows us to shape the fibrous
preform in accordance with the shape of the future composite part. There exist different
knitting patterns, some of which are shown in Fig. 4.86. Relatively high curvature of the
yarns in knitted fabrics, and possible fiber breakage in the process of knitting, result in
materials whose strength and stiffness are less than those of woven fabric composites, but
whose processability is better, and the cost is lower. Typical stress–strain diagrams for
composites reinforced by knitted fabrics are presented in Fig. 4.87.

Material properties close to those of woven composites are provided by braided
structures which, being usually tubular in form, are fabricated by mutual intertwining,
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Fig. 4.86. Typical knitted structures.
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Fig. 4.87. Typical stress–strain curves for fiberglass-knitted composites loaded in tension at different angles
with respect to direction indicated by the arrow Fig. 4.86.

or twisting of yarns around each other. Typical braided structures are shown in Fig. 4.88.
The biaxial braided fabrics in Fig. 4.88 can incorporate longitudinal yarns forming a
triaxial braid whose structure is similar to that shown in Fig. 4.84d. Braided preforms
are characterized with very high processability providing near net-shape manufacturing
of tubes and profiles with various cross-sectional shapes.

Although microstructural models of the type shown in Fig. 4.83 which lead to equations
similar to Eq. (4.185) have been developed to predict the stiffness and even strength
characteristics of fabric composites (e.g., Skudra et al., 1989), for practical design and
analysis, these characteristics are usually determined by experimental methods. The elastic



240 Advanced mechanics of composite materials

(a) (b)

Fig. 4.88. Diamond (a) and regular (b) braided fabric structures.

constants entering the constitutive equations written in principal material coordinates,
e.g., Eqs. (4.55), are determined by testing strips cut out of fabric composite plates at
different angles with respect to the orthotropy axes. The 0 and 90◦ specimens are used to
determine moduli of elasticity E1 and E2 and Poisson’s ratios ν12 and ν21 (or parameters
for nonlinear stress–strain curves), whereas the in-plane shear stiffness can be obtained
with the aid of off-axis tension described in Section 4.3.1. For fabric composites, the elastic
constants usually satisfy conditions in Eqs. (4.85) and (4.86), and there exists the angle
φ specified by Eq. (4.84) such that off-axis tension under this angle is not accompanied
with shear–extension coupling.

Since Eq. (4.84) specifying φ includes the shear modulus G12, which is not known, we
can transform the results presented in Section 4.3.1. Using Eqs. (4.76) and assuming that
there is no shear–extension coupling (ηx, xy = 0), we can write the following equations

1

Ex

= 1 + ν21

E1
cos4 φ + 1 + ν12

E2
sin4 φ − ν21

E1
+ 1

G12
sin2 φ cos2 φ

νyx

Ex

= ν21

E1
−
(

1 + ν21

E1
+ 1 + ν12

E2
− 1

G12

)
sin2 φ cos2 φ

1 + ν21

E1
cos2 φ − 1 + ν12

E2
sin2 φ − 1

2G12
cos 2φ = 0

(4.186)

Summing up the first two of these equations, we get

1 + νyx

Ex

=
(

1 + ν21

E1
cos2 φ − 1 + ν12

E2
sin2 φ

)
cos 2φ + 2

G12
sin2 φ cos2 φ

Using the third equation, we arrive at the following remarkable result

G12 = Ex

2(1 + νyx)
(4.187)

similar to the corresponding formula for isotropic materials, Eq. (2.57). It should be
emphasized that Eq. (4.187) is valid for off-axis tension in the x-direction making some
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special angle φ with the principal material axis 1. This angle is given by Eq. (4.84). Another
form of this expression follows from the last equation of Eqs. (4.186) and (4.187), i.e.,

sin2 φ =
[
(1 + νyx)/Ex

] − [(1 + ν21)/E1]

2
[
(1 + νyx)/Ex

] − (1 + ν21)/E1 − (1 + ν12)/E2
(4.188)

For fabric composites whose stiffness in the warp and the fill directions is the same
(E1 = E2), Eq. (4.188) yields φ = 45◦.

4.7. Lattice layer

A layer with a relatively low density and high stiffness can be obtained with a lattice
structure which can be made by a winding modified in such a way that the tapes are
laid onto preceding tapes and not beside them, as in conventional filament winding (see
Fig. 4.89). The lattice layer can be the single layer of the structure as in Fig. 4.90, or can
be combined with a skin as in Fig. 4.91. As a rule, lattice structures have the form of
cylindrical or conical shells in which the lattice layer is formed with two systems of ribs –
a symmetric system of helical ribs and a system of circumferential ribs (see Figs. 4.90 and
4.91). However, there exist lattice structures with three systems of ribs as in Fig. 4.92.

In general, a lattice layer can consist of k symmetric systems of ribs making angles
±φj (j = 1, 2, 3 . . . k) with the x-axis and having geometric parameters shown in
Fig. 4.93. Particularly, the lattice layer presented in this figure has k = 2, φ1 = φ,
and φ2 = 90◦.

Fig. 4.89. Winding of a lattice layer. Courtesy of CRISM.
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Fig. 4.90. Carbon–epoxy lattice spacecraft fitting in the assemble fixture. Courtesy of CRISM.

Fig. 4.91. Interstage composite lattice structure. Courtesy of CRISM.
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Fig. 4.92. A composite lattice shear web structure.

Since the lattice structure is formed with dense and regular systems of ribs, the ribs
can be smeared over the layer surface when modeled, which is thus simulated with a
continuous layer having some effective (apparent) stiffnesses. Taking into account that
the ribs work in their axial directions only, neglecting the ribs’ torsion and bending in the
plane of the lattice layer, and using Eqs. (4.72), we get

A11 =
k∑

j=1

Bj cos4 φj , A22 =
k∑

j=1

Bj sin4 φj ,

A12 = A21 = A44 =
k∑

j=1

Bj sin2 φj cos2 φj ,

A44 =
k∑

j=1

Cj cos2 φj , A55 =
k∑

j=1

Cj sin2 φj

(4.189)

Here, Bj = Ejδj /aj and Cj = Gjδj /aj , where Ej and Gj are the modulus of elasticity
and the shear modulus of the ribs’ materials, δj are the ribs’ widths, and aj are the ribs’
spacings (see Fig. 4.93).

4.8. Spatially reinforced layers and bulk materials

The layers considered in the previous sections and formed of unidirectionally rein-
forced plies and tapes (Sections 4.2–4.5 and 4.7) or fabrics reinforced in the layer plane
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aj
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+fj
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X

Fig. 4.93. Geometric parameters of a lattice structure.

(Section 4.6) suffer from a serious shortcoming – their transverse (normal to the layer
plane) stiffness and strength are substantially lower than the corresponding in-plane
characteristics. To improve the material properties under tension or compression in the
z-direction and in shear in the xz- and the yz-planes (see, e.g., Fig. 4.18), the material
should be additionally reinforced with fibers or yarns directed along the z-axis or making
some angles (less than a right angle) with this axis.

A simple and natural way of such triaxial reinforcement is provided by the implemen-
tation of three-dimensionally woven or braided fabrics. Three-dimensional weaving or
braiding is a variant of the corresponding planar process wherein some yarns are going
in the thickness direction. An alternative method involves assembling elementary fabric
layers or unidirectional plies into a three-dimensionally reinforced structure by sewing
or stitching. Depending on the size of the additional yarn and frequency of sewing or
stitching, the transverse mechanical properties of the two-dimensionally reinforced com-
posite can be improved to a greater or lesser extent. A third way is associated with the
introduction of composite or metal pins parallel to the z-axis that can be inserted in the
material before or after it is cured. A similar effect can be achieved by the so-called needle
punching. The needles puncture the fabric, break the fibers that compose the yarns, and
direct the broken fibers through the layer thickness. Short fibers (or whiskers) may also be
introduced into the matrix with which the fabrics or the systems of fibers are impregnated.

Another class of spatially reinforced composites, used mainly in carbon–carbon technol-
ogy, is formed by bulk materials multi-dimensionally reinforced with fine rectilinear yarns
composed of carbon fibers bound with a polymeric or carbon matrix. The basic structural
element of these materials is a parallelepiped shown in Fig. 4.94. The simplest spatial struc-
ture is the so-called 3D (three-dimensionally reinforced) in which reinforcing elements
are directed along the ribs AA1, AB, and AD of the basic parallelepiped in Fig. 4.94. This
structure is shown in Fig. 4.95 (Vasiliev and Tarnopol’skii, 1990). A more complicated
4D structure with reinforcing elements directed along the diagonals AC1, A1C, BD1,

and B1D (see Fig. 4.94) is shown in Fig. 4.96 (Tarnopol’skii et al., 1987). An example of
this structure is presented in Fig. 1.22. A cross section of a 5D structure reinforced along
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A1
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D1

B

B1

C

C1

Fig. 4.94. The basic structural element of multi-dimensionally reinforced materials.

Fig. 4.95. 3D spatially reinforced structure.
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Fig. 4.96. 4D spatially reinforced structure.

Fig. 4.97. Cross section of a 5D spatially reinforced structure.

diagonals AD1, A1D and ribs AA1, AB, and AD is shown in Fig. 4.97 (Vasiliev and
Tarnopol’skii, 1990). There exist structures with a greater number of reinforcing direc-
tions. For example, combination of a 4D structure (Fig. 4.96) with reinforcements along
the ribs AB and AD (see Fig. 4.94) results in a 6D structure; addition of reinforcements in
the direction of the rib AA1 gives a 7D structure, and so on up to 13D which is the most
complicated of the spatial structures under discussion.
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The mechanical properties of multi-dimensional composite structures can be qualita-
tively predicted with the microstructural models discussed, e.g., by Tarnopol’skii et al.
(1992). However, for practical applications these characteristics are usually obtained by
experimental methods. Being orthotropic in the global coordinates of the structure x, y,
and z, spatially reinforced composites are described within the framework of a phenomeno-
logical model ignoring their microctructure by three-dimensional constitutive equations
analogous to Eqs. (4.53) or Eqs. (4.54) in which 1 should be changed for x, 2 for y, and
3 for z. These equations include nine independent elastic constants. Stiffness coefficients
in the basic plane, i.e., Ex, Ey, Gxy , and νxy , are determined using traditional tests devel-
oped for unidirectional and fabric composites as discussed in Sections 3.4, 4.2, and 4.6.
The transverse modulus Ez and the corresponding Poisson’s ratios νxz and νyz can be
determined using material compression in the z-direction. Transverse shear moduli Gxz

and Gyz can be calculated using the results of a three-point beam bending test shown
in Fig. 4.98. A specimen cut out of the material is loaded with force P , and the deflec-
tion at the central point, w, is measured. According to the theory of composite beams
(Vasiliev, 1993)

w = P l3

4bh3Ex

(
1 + h2Ex

l2Gxz

)

Knowing P , the corresponding w and modulus Ex (or Ey), we can calculate Gxz (or
Gyz). It should be noted that for reliable calculation the beam should be rather short,
because for high ratios of l/h the second term in parenthesis is small in comparison with
unity.

The last spatially reinforced structure that is considered here is formed by a unidirec-
tional composite material whose principal material axes 1, 2, and 3 make some angles with
the global structural axes x, y, and z (see Fig. 4.99). In the principal material coordinates,
the constitutive equations have the form of Eqs. (4.53) or Eqs. (4.54). Introducing direc-
tional cosines lxi , lyi , and lzi which are cosines of the angles that the i-axis (i = 1, 2, 3)

makes with axes x, y, and z, respectively, applying Eqs. (2.8), (2.9), and (2.31) to trans-
form stresses and strains in coordinates 1, 2, and 3 to stresses and strains referred to
coordinates x, y, and z, and using the procedure described in Section 4.3.1, we finally

z P

x

2l

w

h

b

y

z

2l

Fig. 4.98. Three-point bending test.
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Fig. 4.99. Material elements referred to the global structural coordinate frame x, y, and z and to the principal
material axes 1, 2, and 3.

arrive at the following constitutive equations in the global structural coordinate frame

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τxy

τxz

τyz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= [S]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γxy

γxz

γyz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.190)

in which

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎣

S1111 S1122 S1133 S1112 S1113 S1123
S2222 S2233 S2212 S2213 S2223

S3333 S3312 S3313 S3323
S1212 S1213 S1223

sym S1313 S1323
S2323

⎤
⎥⎥⎥⎥⎥⎥⎦
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is the stiffness matrix where

S1111 = A1l
4
x1 + A2l

4
x2 + A3l

4
x3 + 2A112l

2
x1l

2
x2 + 2A113l

2
x1l

2
x3 + 2A223l

2
x2l

2
x3 (1, 2, 3)

S1122 = A1l
2
x1l

2
y1 + A2l

2
x2l

2
y2 + A3l

2
x3l

2
y3 + A1µ12

(
l2
x1l

2
y2 + l2

x2l
2
y1

)

+ A1µ13

(
l2
x1l

2
y3 + l2

x3l
2
y1

)
+ A2µ23

(
l2
x2l

2
y3 + l2

x3l
2
y3

)

+ 4(G12lx1lx2ly1ly2 + G13lx1lx3ly1ly3 + G23lx2lx3ly2ly3) (1, 2, 3)

S1112 = A1l
3
x1ly1 + A2l

3
x2ly2 + A3l

3
x3ly3 + A112(lx1ly2 + lx2ly1)lx1l

2
x

+ A113(lx1ly3 + lx3ly1)lx1lx3 + A223(lx2ly3 + lx3ly2)lx2lx3 (1, 2, 3)

S1113 = A1l
3
x3lz1 + A2l

3
x2lz2 + A3l

3
x3lz3 + A112(lx1lz2 + lx2lz1)lx1lx2

+ A113(lx1lz2 + lx3lz1)lx1lx3 + A223(lx2lz3 + lx3lz2)lx2lx3 (1, 2, 3)

S1123 = A1l
2
x1ly1lz1 + A2l

2
x2ly2lz2 + A3l

2
x3ly3lz3

+ A1µ12

(
l2
x1ly2lz2 + l2

x2ly1lz1

)
+ A1µ13

(
l2
x1ly3lz3 + l2

x3ly1lz1

)

+ A2µ23(l
2
x2ly3lz3 + l2

x3ly2lz2) + 2 [G12(ly1lz2 + lz1ly2)lx1lx2

+ G13(ly1lz2 + lz1ly2)lx1lx3 + G23(ly3lz2 + ly2lz3)lx2lx3] (1, 2, 3)

S1212 = A1l
2
x1l

2
y1 + A2l

2
x2l

2
y2 + A3l

2
x3l

2
y3

+ 2(A1µ12lx1lx2ly1ly2 + A1µ13lx1lx3ly1ly3 + A2µ23lx2lx3ly2ly3)

+ G12(lx1ly2 + lx2ly1)
2 + G13(lx1ly3 + lx3ly1)

2 + G23(lx2ly3 + lx3ly2)
2

(1, 2, 3)

S1213 =A1l
2
x1ly1lz1+A2l

2
x2ly2lz2+A3l

2
x3ly3lz3

+A1µ12(ly1lz2+ly2lz1)lx1lx2+A1µ13(ly1lz3+ly2lz1)lx1lx3

+A2µ23(ly2lz3+ly3lz2)lx1lx3+G12(lx1ly2+lx2ly1)(lx1ly2+lx2lz1)

+G13(lx1ly3+lx3ly1)(lx1lz3+lx3lz2)

+G23(lx2ly3+lx3ly2)(lx2lz3+lx3lz2) (1, 2, 3) (4.191)
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It should be noted that stiffness coefficients are symmetric with respect to the couples of
subscripts (Sijkl = Sklij ) and that notation (1, 2, 3) means that performing permutation,
i.e., changing 1 for 2, 2 for 3, and 3 for 1, we can use Eqs. (4.191) to write the expres-
sions for all the stiffness coefficients entering Eq. (4.190). The coefficients Ai and µij in
Eqs. (4.191) are given in the notations to Eqs. (4.54) and

A112 = A1µ12 + 2G12, A113 = A1µ13 + 2G13, A223 = A2µ23 + 2G23

Resolving Eqs. (4.190) for strains, we arrive at Eq. (2.48) with the following coefficients
for the compliance matrix in Eq. (2.49)

1

Ex

= l4
x1

E1
+ l4

y1

E2
+ l4

z1

E3
+C122l

2
x1l

2
y1+C133l

2
x1l

2
z1+C233l

2
y1l

2
z1 (1, 2, 3), (x, y, z)

νxy

Ey

= νyx

Ex

= ν12

E2

(
l2
x1l

2
y2+l2

x2l
2
y1

)
+ ν13

E3

(
l2
x1l

2
z2+l2

x2l
2
z1

)

+ ν23

E3

(
l2
y1l

2
z2+l2

y2l
2
z1

)
− l2

x1l
2
x2

E1
− l2

y1l
2
y2

E2
− l2

z1l
2
z2

E3

− 1

G12
lx1lx2ly1ly2− 1

G13
lx1lx2lz1lz2− 1

G23
ly1ly2lz1lz2 (1, 2, 3), (x, y, z)

(4.192)

ηx, xy

Gxy

= ηxy, x

Ex

= 2

(
l3
x1lx2

E1
+ l3

y1ly2

E2
+ l3

z1lz2

E3

)

+ C122(lx1ly2 + lx2ly1)lx1ly1 + C133(lx1lz2 + lx2lz1)lx1lz1

+ C233(ly1lz2 + ly2lz1)ly1lz1 (1, 2, 3), (x, y, z),

ηx, xz

Gxz

= ηxz, x

Ex

= 2

(
l3
x1lx3

E1
+ l3

y1ly3

E2
+ l3

z1lz3

E3

)

+ C122(lx1ly3 + ly1lx3)lx1ly1 + C133(lx1lz3 + lx3lz1)lx1lz1

+ C233(ly1lz3 + ly3lz1)ly1lz1 (1, 2, 3), (x, y, z),

ηx, yz

Gyz

= ηyz, x

Ex

= 2

[
l2
x1lx2lx3

E1
+ l2

y1ly2ly3

E2
+ l2

z1lz2lz3

E3

− ν12

E2

(
l2
x1ly2ly3 + l2

y1lx2lx3

)
− ν13

E3

(
l2
x1lz2lz3 + l2

z1lx2lx3

)
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−ν23

E3

(
l2
y1lz2lz3 + l2

z1ly2ly3

)]
+ lx1ly1

G12
(lx2ly3 + lx3ly2)

+ lx1lz1

G13
(lx2lz3 + lx3lz2) + ly1lz1

G23
(ly2lz3 + ly3lz2) (1, 2, 3), (x, y, z)

1

Gxy

= 4

[
l2
x1l

2
x2

E1
+ l2

y1l
2
y2

E2
+ l2

z1l
2
z2

E3
− 2

(
ν12

E2
lx1lx2ly1ly2 + ν13

E3
lx1lx2lz1lz2

+ν23

E3
ly1ly2lz1lz2
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+ 1

G12
(lx1ly2 + lx2ly1)

2 + 1

G13
(lx1lz2 + lx2lz1)

2

+ 1

G23
(ly1lz2 + ly2lz1)

2 (1, 2, 3), (x, y, z)

λxy, xz

Gxz

= λxz, xy

Gxy

= 4

[
l2
x1lx2lx3

E1
+ l2

y1ly2ly3

E2
+ l2

z1lz2lz3

E3

− ν12

E2
(lx3ly2 + lx2ly3)lx1ly1 − ν13

E3
(lx2lz3 + lz2lx3)lx1lz1

−ν23

E3
(ly2lz3 + ly3lz2)ly1lz1

]
+ 1

G12
(lx1ly3 + lx3ly1)(lx1ly2 + lx2ly1)

+ 1

G13
(lx1lz3 + lx3lz1)(lx1lz2 + lx2lz1)

+ 1

G23
(ly1lz3 + ly3lz1)(ly1lz2 + ly2lz1) (1, 2, 3), (x, y, z)

in which

C122 = 1

G12
− 2ν12

E2
, C133 = 1

G13
− 2ν13

E3
, C233 = 1

G23
− 2ν23

E3

Consider a special spatial structure (Pagano and Whitford, 1985) formed by a fabric
composite in which the plies reinforced at angle φ (warp direction) with respect to the
x-axis make angles α and β with the x-axis and the y-axis, respectively, as in Fig. 4.100.
The directional cosines for this structure are

lx1 = cos λ cos ψ, lx2 = − sin λ cos ψ

lx3 = − sin ψ, ly1 = sin λ cos β − cos λ sin β sin ψ

ly2 = cos λ cos β + sin λ sin β sin ψ, ly3 = − sin β cos ψ
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Fig. 4.100. Orientation angles in a spatial composite structure.

lz1 = sin λ sin β + cos λ cos β sin ψ

lz2 = cos λ sin β − sin λ cos β sin ψ, lz3 = cos β cos ψ

where

λ = φ + tan−1(tan β sin ψ), ψ = tan−1(tan α cos β)

The dependencies of elastic constants Ex , Ey , Gxz, and Gyz calculated with the aid
of Eqs. (4.192) for the material with E1 = 12.9 GPa, E2 = 5.2 GPa, E3 = 3 GPa,
G12 = G13 = 1.5 GPa, G23 = 1 GPa, ν21 = 0.15, ν31 = 0.2, and ν32 = 0.2 are presented
in Fig. 4.101 (Vasiliev and Morozov, 1988).

For planar structures (α = β = 0), Eqs. (4.191) and (4.192) generalize Eqs. (4.72) and
(4.76) for a three-dimensional stress state of a layer.
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Fig. 4.101. Dependencies of the elastic constants of a spatially reinforced composite on the orientation angles:
1 − α = β = 0◦, 2 − α = β = 8◦, 3 − α = β = 16◦.
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Chapter 5

MECHANICS OF LAMINATES

A typical composite structure consists of a system of layers bonded together. The layers
can be made of different isotropic or anisotropic materials, and have different structures
(see Chapter 4), thicknesses, and mechanical properties. In contrast to typical layers which
are described in Chapter 4 and whose basic properties are determined experimentally,
the laminate characteristics are usually calculated using the information concerning the
number of layers, their stacking sequence, geometric and mechanical properties, which
must be known. A finite number of layers can be combined to form so many different
laminates that the concept of studying them using experimental methods does not seem
realistic. Whereas the most complicated typical layer is described with nine stiffness
coefficients Amn (mn = 11, 22, 12, 14, 24, 44, 55, 56, 66), some of which can be
calculated, the laminate is characterized by 21 coefficients and demonstrates coupling
effects that are difficult to simulate in experiments.

Thus, the topic of this chapter is to provide equations allowing us to predict the behavior
of a laminate as a system of layers with given properties. The only restriction that is
imposed on the laminate as an element of a composite structure concerns its total thickness,
which is assumed to be much smaller than the other dimensions of the structure.

5.1. Stiffness coefficients of a generalized anisotropic layer

For the sake of brevity, consider first a thin homogeneous layer, which is anisotropic
in the xy-plane and whose mechanical properties are some functions of the normal
coordinate z (see Fig. 5.1). Coordinate axes x and y belong to some plane which is
referred to as a reference plane such that z = 0 on this plane and −e ≤ z ≤ s for the layer
under study. There exist some special locations of the reference plane discussed below,
but in this section its coordinates e and s are not specified. We introduce two assumptions
both based on the fact that thickness h = e + s is small.

First, it is assumed that the layer thickness, h, does not change under the action of
stresses shown in Fig. 5.1. Actually, the thickness does change, but because it is small,
this change is negligible. This means that there is no strain in the z-direction, and in
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Fig. 5.1. An element of a generalized layer.

accordance with Eqs. (2.22),

εz = ∂uz

∂z
= 0, uz = w(x, y) (5.1)

Here, w(x, y) is the so-called normal deflection which is a translational displacement of
a normal element a–b (see Fig. 5.1) as a solid in the z-direction.

Second, we suppose that in-plane displacements ux and uy are linear functions of the
thickness coordinate z, i.e.,

ux(x, y, z) = u(x, y) + zθx(x, y)

uy(x, y, z) = v(x, y) + zθy(x, y)
(5.2)

where u and v are the displacements of the points of the reference plane z = 0 or, which
is the same, the translational displacements of the normal element a–b (see Fig. 5.1) as
a solid in the x- and y-direction, whereas θx and θy are the angles of rotations (usually
referred to as ‘rotations’) of the normal element a–b in the xz- and yz-planes. Geometric
interpretation of the first expression in Eqs. (5.2) is presented in Fig. 5.2.

In-plane strains of the layer, εx , εy , and γxy, can be found using Eqs. (2.22), (5.1), and
(5.2) as

εx = ∂ux

∂x
= ε0

x + zκx

εy = ∂uy

∂y
= ε0

y + zκy

γxy = ∂ux

∂y
+ ∂uy

∂x
= γ 0

xy + zκxy

(5.3)
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Fig. 5.2. Decomposition of displacement ux of point A into translational (u) and rotation (zθx ) components.

where

ε0
x = ∂u

∂x
, ε0

y = ∂v
∂y

, γ 0
xy = ∂u

∂y
+ ∂v

∂x
,

κx = ∂θx

∂x
, κy = ∂θy

∂y
, κxy = ∂θx

∂y
+ ∂θy

∂x

These generalized strains correspond to the following four basic deformations of the layer
shown in Fig. 5.3:

• in-plane tension or compression
(
ε0
x, ε

0
y

)
,

• in-plane shear
(
γ 0
xy

)
,

• bending in the xz- and yz-planes (κx, κy), and
• twisting (κxy).
The constitutive equations for an anisotropic layer, Eqs. (4.71), upon substitution of
Eqs. (5.3), yield

σx = A11ε
0
x + A12ε

0
y + A14γ

0
xy + z(A11κx + A12κy + A14κxy)

σy = A21ε
0
x + A22ε

0
y + A24γ

0
xy + z(A21κx + A22κy + A24κxy)

τxy = A41ε
0
x + A42ε

0
y + A44γ

0
xy + z(A41κx + A42κy + A44κxy)

(5.4)

where Amn = Anm are the stiffness coefficients of the material that will depend, in general,
on the coordinate z.

It follows from Eqs. (5.4), that the stresses depend on six generalized strains ε, γ , and
κ which are functions of coordinates x and y only. To derive the constitutive equations for
the layer under study, we introduce the corresponding force functions as stress resultants
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Fig. 5.3. Basic deformations of the layer: (a) in-plane tension and compression
(
ε0
x , ε0

y

)
; (b) in-plane

shear
(
γ 0

xy

)
; (c) bending (κx); (d) twisting (κxy).

and couples shown in Fig. 5.4 and specified as (see also Fig. 5.1)

Nx =
∫ s

−e

σxdz, Ny =
∫ s

−e

σydz, Nxy =
∫ s

−e

τxydz,

Mx =
∫ s

−e

σxzdz, My =
∫ s

−e

σyzdz, Mxy =
∫ s

−e

τxyzdz
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Fig. 5.4. Stress resultants and couples applied to the reference plane of the layer.

Substituting the stresses, Eqs. (5.4), into these equations, we arrive at constitutive
equations that relate stress resultants and couples to the corresponding generalized
strains, i.e.,

Nx = B11ε
0
x + B12ε

0
y + B14γ

0
xy + C11κx + C12κy + C14κxy

Ny = B21ε
0
x + B22ε

0
y + B24γ

0
xy + C21κx + C22κy + C24κxy

Nxy = B41ε
0
x + B42ε

0
y + B44γ

0
xy + C41κx + C42κy + C44κxy

Mx = C11ε
0
x + C12ε

0
y + C14γ

0
xy + D11κx + D12κy + D14κxy

My = C21ε
0
x + C22ε

0
y + C24γ

0
xy + D21κx + D22κy + D24κxy

Mxy = C41ε
0
x + C42ε

0
y + C44γ

0
xy + D41κx + D42κy + D44κxy

(5.5)

These equations include membrane stiffness coefficients

Bmn = Bnm =
∫ s

−e

Amndz (5.6)

which specify the layer stiffness under in-plane deformation (Fig. 5.3a and b), bending
stiffness coefficients

Dmn = Dnm =
∫ s

−e

Amnz
2dz (5.7)

which are associated with the layer bending and twisting (Fig. 5.3c and d), and membrane–
bending coupling coefficients

Cmn = Cnm =
∫ s

−e

Amnzdz (5.8)
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through which in-plane stress resultants are related to bending deformations, and stress
couples are linked with in-plane strains.

Coefficients with subscripts 11, 12, 22, and 44 compose the basic set of the layer stiff-
nesses associated with in-plane extension, contraction, and shear (B11, B12, B22, B44),

bending and twisting (D11, D12, D22, D44), and coupling effects (C11, C12, C22, C44).

For an anisotropic layer there also exists coupling between extension (a) and
shear (b) in Fig. 5.3 (coefficients B14, B24), extension (a) and twisting (d) in
Fig. 5.3 (coefficients C14, C24), bending (c) and twisting (d) in Fig. 5.3 (coefficients
D14, D24).

The forces and moments N and M specified by Eqs. (5.5) are resultants and couples
of in-plane stresses σx, σy , and τxy (see Fig. 5.1). However, there are also transverse
shear stresses τxz and τyz which should be expressed in terms of the corresponding shear
strains. Unfortunately, we cannot apply for this purpose the direct approach that was used
above to derive Eqs. (5.5). This different approach involves strain–displacement equations,
Eqs. (2.22),

γxz = ∂ux

∂z
+ ∂uz

∂x
, γyz = ∂uy

∂z
+ ∂uz

∂y
(5.9)

in conjunction with Hooke’s law

τxz = A55γxz + A56γyz, τyz = A65γxz + A66γyz (5.10)

or

γxz = a55τxz + a56τyz, γyz = a65τxz + a66τyz (5.11)

where Amn and amn are stiffness and compliance coefficients, respectively. The problem
is associated with Eqs. (5.2) which specify only approximate dependence of displace-
ments ux and uy on coordinate z (the actual distribution of ux and uy through the layer
thickness is not known) and must not be differentiated with respect to z. So we cannot sub-
stitute Eqs. (5.2) into Eqs. (5.9) which include derivatives of ux and uy with respect to z.
To see what can happen if we violate this well-known mathematical restriction, consider
a sandwich laminate shown in Fig. 5.5. It can be seen that while linear approximation of
u(z) (dashed line) looks reasonable, the derivatives of the actual displacements and the
approximate ones have little in common.

To derive constitutive equations for transverse shear, consider Fig. 5.6. The actual dis-
tribution of shear stresses τxz and τyz across the layer thickness is not known, but we
can assume that it is not important. Indeed, as follows from Eqs. (5.1), elements a–b

(see Fig. 5.6) along which the shear stresses act are absolutely rigid. This means
(in accordance with the corresponding theorem of Statics of Solids) that the displace-
ments of these elements in the z-direction depend only on the resultants of the shear
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Fig. 5.5. Actual (solid lines) and approximate (dashed lines) distributions of a displacement (a) and its
derivative (b) through the thickness of a sandwich laminate.
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Fig. 5.6. Reduction of transverse shear stresses to stress resultants (transverse shear forces).

stresses, i.e., on transverse shear forces

Vx =
∫ s

−e

τxzdz, Vy =
∫ s

−e

τyzdz (5.12)

Since the particular distributions of τxz and τyz do not influence the displacements, we
can introduce some average stresses having the same resultants as the actual ones, i.e.,

τx = Vx

h
= 1

h

∫ s

−e

τxzdz, τy = Vy

h
= 1

h

∫ s

−e

τyzdz

However, according to Eqs. (5.11), shear strains are linear combinations of shear stresses.
So, we can use the same law to introduce average shear strains as

γx = 1

h

∫ s

−e

γxzdz, γy = 1

h

∫ s

−e

γyzdz (5.13)
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Average shear strains γx and γy can be readily expressed in terms of displacements if we
substitute Eqs. (5.9) into Eqs. (5.13), i.e.,

γx = 1

h

[
ux(s) − ux(−e) +

∫ s

−e

∂uz

∂x
dz

]

γy = 1

h

[
uy(s) − ux(−e) +

∫ s

−e

∂uz

∂y
dz

]

These equations, in contrast to Eqs. (5.9), do not include derivatives with respect to z.
So, we can substitute Eqs. (5.1) and (5.2) to get the final result

γx = θx + ∂w
∂x

, γy = θy + ∂w
∂y

(5.14)

Consider Eqs. (5.10) and (5.11). Integrating them over the layer thickness and using
Eqs. (5.12) and (5.13), we get

Vx =
∫ s

−e

(A55γxz + A56γyz)dz, Vy =
∫ s

−e

(A65γxz + A66γyz)dz

γx = 1

h

∫ s

−e

(a55τxz + a56τyz)dz, γy = 1

h

∫ s

−e

(a65τxz + a66τyz)dz

Since the actual distribution of stresses and strains according to the foregoing reasoning
is not significant, we can change them for the corresponding average stresses and strains:

Vx = S55γx + S56γy, Vy = S65γx + S66γy (5.15)

γx = s55Vx + s56Vy, γy = s65Vx + s66Vy (5.16)

where

Smn = Snm =
∫ s

−e

Amndz (5.17)

smn = snm = 1

h2

∫ s

−e

amndz (5.18)

It should be emphasized that Eqs. (5.16) are not the inverse form of Eqs. (5.15). Indeed,
solving Eqs. (5.16), using Eqs. (5.18), and taking into account that

a55 = A66, a56 = −A56, a66 = A55,

�Amn = Amn

A55A66 − A2
56
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we arrive at Eqs. (5.15) in which Smn should be changed to

Smn = h2
∫ s

−e
Amndz(∫ s

−e
A55dz

) (∫ s

−e
A66dz

) − (∫ s

−e
A56dz

)2
(5.19)

These expressions, in general, do not coincide with Eqs. (5.17).
Thus, the constitutive equations for transverse shear are specified by Eqs. (5.15),

and there exist two, in general different, approximate forms of stiffness coefficients –
Eqs. (5.17) and (5.19). The fact that equations obtained in this way are approximate
is quite natural because the assumed displacement field, Eqs. (5.1) and (5.2), is also
approximate.

To compare two possible forms of constitutive equations for transverse shear, consider
for the sake of brevity an orthotropic layer for which

A56 = 0, a56 = 0, A55 = Gxz, A66 = Gyz,

a55 = A66 = 1

Gxz

, a66 = A55 = 1

Gyz

For transverse shear in the xz-plane, Eqs. (5.15) yield

Vx = S55γx or Vx = S55γx (5.20)

in which, in accordance with Eq. (5.17)

S55 =
∫ s

−e

Gxzdz (5.21)

whereas Eq. (5.19) yields

S55 = h2∫ s

−e
dz

Gxz

(5.22)

If the shear modulus does not depend on z, both equations, Eq. (5.21) and (5.22), give the
same result S55 = S55 = Gxzh. The same, of course, holds true for the transverse shear
in the yz-plane.

Using the energy method applied in Section 3.3, we can show that the Eqs. (5.21) and
(5.22) provide the upper and the lower bounds for the exact transverse shear stiffness.
Indeed, consider a strip with unit width experiencing transverse shear induced by force
Vx as in Fig. 5.7. Assume that Eq. (5.20) links the actual force Vx with the exact angle
γx = �/l through the exact shear stiffness Se

55 which we do not know, and which we
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Fig. 5.7. Transverse shear of a strip with unit width.

would like to evaluate. To do this, we can use the two variational principles described in
Section 2.11. According to the principle of minimum total potential energy

Text ≤ Tadm (5.23)

where

Text = Uε
ext − Aext, Tadm = Uε

adm − Aadm

are the total energies of the exact state and some admissible kinematic state expressed
in terms of the strain energy, U , and work A performed by force Vx on displacement �

(see Fig. 5.7). For both states

Aext = Aadm = Vx�

and condition (5.23) reduces to

Uε
ext ≤ Uε

adm (5.24)

For the exact state, with due regard to Eq. (5.20), we get

Uext = l

2
Vxγx = l

2
Se

55γ
2
x (5.25)

For the admissible state, we should use the following general equation

U = 1

2

∫ l

0
dx

∫ s

−e

τxzγxzdz = 1

2

∫ l

0
dx

∫ s

−e

Gxzγ
2
xzdz = Uε

and admit some approximation for γxz. The simplest one is γxz = γx , so that

Uε
adm = l

2
γ 2
x

∫ s

−e

Gxzdz (5.26)
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Then, Eqs. (5.24)–(5.26) yield

Se
55 ≤

∫ s

−e

Gxzdz

Comparing this inequality with Eq. (5.21), we can conclude that this equation specifies
the upper bound for Se

55.
To determine the lower bound, we should apply the principle of minimum strain energy,

according to which

Uext ≤ Uσ
adm (5.27)

where

Uext = l

2
Vxγx = l

2
· V 2

x

Se
55

For the admissible state we should apply

U = 1

2

∫ l

0
dx

∫ s

−e

τxzγxzdz = 1

2

∫ l

0
dx

∫ s

−e

τ 2
xz

Gxz

dz = Uσ

and use some admissible distribution for τxz. The simplest approximation is τxz = Vx/h

so that

Uσ
adm = l

2h2
V 2

x

∫ s

−e

dz

Gxz

Substitution in the condition (5.27) yields

Se
55 ≥ h2∫ s

−e
dz

Gxz

Thus, Eq. (5.22) provides the lower bound for Se
55, and the exact stiffness satisfies the

following inequality

h2∫ s

−e
dz

Gxz

≤ Se
55 ≤

∫ s

−e

Gxzdz

It should be emphasized that Se
55 in this analysis is not the actual shear stiffness coef-

ficient of the laminate. It is the exact value of the stiffness coefficient which can be
found using the exact stress and strain fields following from three-dimensional elasticity
equations.
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Fig. 5.8. Coordinates of an arbitrary point A.

So, constitutive equations for the generalized layer under study are specified by
Eqs. (5.5) and (5.15). Stiffness coefficients, which are given by Eqs. (5.6)–(5.8), and
(5.17) or (5.19), can be written in a form more suitable for calculations. To do this, intro-
duce the new coordinate t = z + e such that 0 ≤ t ≤ h (see Fig. 5.8). Transforming the
integrals to this new variable, we have

Bmn = I (0)
mn, Cmn = I (1)

mn − eI(0)
mn, Dmn = I (2)

mn − 2eI (1)
mn + e2I (0)

mn (5.28)

where mn = 11, 12, 22, 14, 24, 44 and

I (r)
mn =

∫ h

0
Amnt

rdt, r = 0, 1, 2 (5.29)

The transverse shear stiffnesses, Eqs. (5.17) and (5.19), take the form

Smn = I (0)
mn (5.30)

and

Smn = h2I
(0)

mn

I
(0)

55 I
(0)

66 −
(
I

(0)

56

)2
(5.31)

where mn = 55, 56, 66 and

I
(0)

mn =
∫ h

0
Amndt (5.32)

The coefficients Amn are specified by the expression given in notations to Eq. (5.19).
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5.2. Stiffness coefficients of a homogeneous layer

Consider a layer whose material stiffness coefficients Amn do not depend on coordi-
nate z. Then

I (r)
mn = Amn

r + 1
h

r+1
, I

(0)

mn = Amnh (5.33)

and Eqs. (5.28), (5.30), and (5.31) yield the following stiffness coefficients for the layer

Bmn = Amnh, Cmn = Amn

(
h

2
− e

)
,

Dmn = Amn

(
h3

3
− eh + e2

)
, Smn = Amnh

(5.34)

Both Eqs. (5.30) and (5.31) give the same result for Smn. It follows from the second of
Eqs. (5.34), that the membrane–bending coupling coefficients Cmn become equal to zero
if we take e = h/2, i.e., if the reference plane coincides with the middle-plane of the layer
shown in Fig. 5.9. In this case, Eqs. (5.5) and (5.15) take the following de-coupled form

Nx = B11ε
0
x + B12ε

0
y + B14γ

0
xy, Ny = B21ε

0
x + B22ε

0
y + B24γ

0
xy,

Nxy = B41ε
0
x + B42ε

0
y + B44γ

0
xy,

Mx = D11κx + D12κy + D14κxy, My = D21κx + D22κy + D24κxy,

Mxy = D41κx + D42κy + D44κxy,

Vx = S55γx + S56γy, Vy = S65γx + S66γy

(5.35)

As can be seen, we have arrived at three independent groups of constitutive equations,
i.e., for in-plane stressed state of the layer, bending and twisting, and transverse shear.

h / 2

h / 2
x

z

y

Fig. 5.9. Middle-plane of a laminate.
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The stiffness coefficients, Eqs. (5.34), become

Bmn = Amnh, Dmn = Amn

12
h3, Smn = Amnh (5.36)

For an orthotropic layer, there are no in-plane stretching–shear coupling (B14 = B24 = 0)

and transverse shear coupling (S56 = 0). Then, Eqs. (5.35) reduce to

Nx = B11ε
0
x + B12ε

0
y, Ny = B21ε

0
x + B22ε

0
y, Nxy = B44γ

0
xy

Mx = D11κx + D12κy, My = D21κx + D22κy, Mxy = D44κxy

Vx = S55γx, Vy = S66γy

(5.37)

In terms of engineering elastic constants, the material stiffness coefficients of an
orthotropic layer can be expressed as

A11 =Ex, A12 =νxyEx, A22 =Ey, A44 =Gxy, A55 =Gxz, A66 =Gyz

(5.38)

where Ex,y = Ex,y/(1 − νxyνyx). Then, Eqs. (5.36) yield

B11 = Exh, B12 = νxyExh, B22 = Eyh, B44 = Gxyh

D11 = 1

12
Exh

3, D12 = νxy

12
Exh

3, D22 = 1

12
Eyh

3, D44 = 1

12
Gxyh

3

S55 = Gxzh, S66 = Gyzh

(5.39)

Finally, for an isotropic layer, we have

Ex = Ey = E, νxy = νyx = ν, Gxy = Gxz = Gyz = G = E

2(1 + ν)

and

B11 = B22 = Eh, B12 = νEh, B44 = S55 = S66 = Gh

D11 = D22 = 1

12
Eh3, D12 = ν

12
Eh3, D44 = 1

12
Gh3

(5.40)

where E = E/(1 − ν2).
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5.3. Stiffness coefficients of a laminate

Consider the general case, i.e., a laminate consisting of an arbitrary number of layers
with different thicknesses hi and stiffnesses A

(i)
mn (i = 1, 2, 3, . . . , k). The location of an

arbitrary ith layer of the laminate is specified by the coordinate ti , which is the distance
from the bottom plane of the laminate to the top plane of the ith layer (see Fig. 5.10).
Assuming that the material stiffness coefficients do not change within thickness of the
layer, and using piece-wise integration, we can write parameter Imn in Eqs. (5.29) and
(5.32) as

I (r)
mn = 1

r + 1

k∑
i=1

A(i)
mn

(
t r+1
i − t r+1

i−1

)
, I

(0)

mn =
k∑

i=1

A
(i)

mn(ti − ti−1) (5.41)

where r = 0, 1, 2 and t0 = 0, tk = h (see Fig. 5.10). For thin layers, Eqs. (5.41) can be
reduced to the following form, which is more suitable for calculations

I (0)
mn =

k∑
i=1

A(i)
mnhi, I

(0)

mn =
k∑

i=1

A
(i)

mnhi,

I (1)
mn = 1

2

k∑
i=1

A(i)
mnhi(ti + ti−1),

I (2)
mn = 1

3

k∑
i=1

A(i)
mnhi

(
t2
i + ti ti−1 + t2

i−1

)

(5.42)

in which hi = ti − ti−1 is the thickness of the ith layer.
The membrane, coupling, and bending stiffness coefficients of the laminate are specified

by Eqs. (5.28) and (5.42).

s

etiti−1

tk = h

hi

t1

tk

t2

t0 = 0

x

z

y 1
2

i

k

Fig. 5.10. Structure of the laminate.
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Consider transverse shear stiffnesses that have two different forms determined by
Eqs. (5.30) and (5.31) in which

I (0)
mn =

k∑
i=1

A(i)
mnhi, I

(0)

mn =
k∑

i=1

A
(i)

mnhi (5.43)

A particular case, important for practical applications, is an orthotropic laminate for
which Eqs. (5.5) take the form

Nx = B11ε
0
x + B12ε

0
y + C11κx + C12κy

Ny = B21ε
0
x + B22ε

0
y + C12κx + C22κy

Nxy = B44γ
0
xy + C44κxy

Mx = C11ε
0
x + C12ε

0
y + D11κx + D12κy

My = C21ε
0
x + C22ε

0
y + D21κx + D22κy

Mxy = C44γ
0
xy + D44κxy

(5.44)

Here, membrane, coupling, and bending stiffnesses, Bmn, Cmn, and Dmn, are specified by
Eqs. (5.28), i.e.,

Bmn = I (0)
mn, Cmn = I (1)

mn − eI(0)
mn, Dmn = I (2)

mn − 2eI(1)
mn + e2I (0)

mn (5.45)

where mn = 11, 12, 22, 44.
Transverse shear forces Vx and Vy are specified by equations similar to Eqs. (5.20)

Vx = S55γx, Vy = S66γy

in which the corresponding stiffness coefficients, Eqs. (5.30) and (5.31) reduce to
(mn = 55, 66)

Smn =
k∑

i=1

A(i)
mnhi, Smm = h2

∑k
i=1

hi

A
(i)
mm

(5.46)

Laminates composed of unidirectional plies have special stacking-sequence notations. For
example, notation [0◦

2/ +45◦/ −45◦/90◦
2] means that the laminate consists of 0◦ layer

having two plies, ±45◦ angle-ply layer, and 90◦ layer also having two plies. Notation
[0◦/90◦]5 means that the laminate has five cross-ply layers.
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5.4. Symmetric laminates

Symmetric laminates are composed of layers that are symmetrically arranged with
respect to the laminate’s middle plane as shown in Fig. 5.11. Introduce the layer
coordinate zi, (see Fig. 5.11). Since for any layer which is above the middle surface
z = 0 and has the coordinate zi there is a similar layer which is located under the middle
surface and has the coordinate (−zi), the integration over the laminate thickness can be
performed from z = 0 to z = h/2 (see Fig. 5.11). Then, the integrals for Bmn and Dmn

similar to Eqs. (5.6) and (5.7) must be doubled, whereas the integral for Cmn similar to
Eqs. (5.8) is equal to zero. Thus, the stiffness coefficients entering Eqs. (5.5) become

Bmn = 2
∫ h/2

0
Amndz, Dmn = 2

∫ h/2

0
Amnz

2dz, Cmn = 0 (5.47)

For a symmetric laminate shown in Fig. 5.11, we get

Bmn = 2
k/2∑
i=1

A(i)
mn(zi − zi−1) = 2

k/2∑
i=1

A(i)
mnhi

Cmn = 0

Dmn = 2

3

k/2∑
i=1

A(i)
mn

(
z3
i − z3

i−1

)
= 2

3

k/2∑
i=1

A(i)
mnhi

(
z2
i + zizi−1 + z2

i−1

)
(5.48)

where hi = zi − zi−1. The transverse shear stiffness coefficients are given by Eqs. (5.30)
and (5.31) in which

I (0)
mn = 2

k∑
i=1

A(i)
mnhi, I

(0)

mn = 2
k/2∑
i=1

A
(i)

mnhi, A
(i)

mn = A
(i)
mn

A
(i)
55 A

(i)
66 −

(
A

(i)
56

)2
(5.49)

k/ 2

k/ 2

i

i

zi−1 zi

2
h

2
h

Fig. 5.11. Layer coordinates of a symmetric laminate.
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To indicate symmetric laminates, a contracted stacking-sequence notation is used, e.g.,
[0◦/90◦/45◦]s instead of [0◦/90◦/45◦/45◦/90◦/0◦]. Symmetric laminates are character-
ized by a specific feature – their bending stiffness is higher than the bending stiffness of
any asymmetric laminate composed of the same layers. To show this property of sym-
metric laminates, consider Eqs. (5.28) and (5.29) and apply them to calculate stiffness
coefficients with some combination of subscripts, e.g., m = 1 and n = 1. Since the
coordinate of the reference plane, e, is an arbitrary parameter, we can find it from the
condition C11 = 0. Then,

e = I
(1)
11

I
(0)
11

(5.50)

and

D11 = I
(2)
11 −

⎡
⎢⎣
(
I

(1)
11

)2

I
(0)
11

⎤
⎥⎦ (5.51)

Introduce a new coordinate for an arbitrary point A in Fig. 5.12 as z = t−(h/2). Changing
t to z, we can present Eq. (5.29) in the form

I
(r)
11 =

∫ h/2

−h/2
A11

(
h

2
+ z

)r

dz

Substituting these integrals into Eqs. (5.50) and (5.51), we have

e = h

2
+ J

(1)
11

J
(0)
11

(5.52)

and

D11 = J
(2)
11 −

⎡
⎢⎣
(
J

(1)
11

)2

J
(0)
11

⎤
⎥⎦ (5.53)

h /2

h /2t

z
A

Fig. 5.12. Coordinate of point A referred to the middle plane.
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where

J
(r)
11 =

∫ h/2

−h/2
A11z

rdz (5.54)

and r = 0, 1, 2.
Now decompose A11 as a function of z into symmetric and antisymmetric compo-

nents, i.e.,

A11(z) = As
11(z) + Aa

11(z)

Then, Eq. (5.54) yields

J
(0)
11 =

∫ h/2

−h/2
As

11dz, J
(1)
11 =

∫ h/2

−h/2
Aa

11zdz, J
(2)
11 =

∫ h/2

−h/2
As

11z
2dz

As can be seen from Eq. (5.53), D11 reaches its maximum value if J
(1)
11 = 0 or Aa

11 = 0
and A11 = As

11. In this case, Eq. (5.52) gives e = h/2.
Thus, symmetric laminates provide the maximum bending stiffness for a given num-

ber and mechanical properties of layers and, being referred to the middle-plane, do
not have membrane–bending coupling effects. This essentially simplifies the behavior
of the laminate under loading and constitutive equations which have the form specified
by Eqs. (5.35).

5.5. Engineering stiffness coefficients of orthotropic laminates

It follows from Eqs. (5.28) that the laminate stiffness coefficients depend, in the general
case, on the coordinate of the reference surface e. By changing e, we can change the
bending stiffness coefficient Dmn. Naturally, the result of the laminate analysis undertaken
with the aid of the constitutive equations, Eqs. (5.5) does not depend on the particular
pre-assigned value of the coordinate e because of the coupling coefficients Cmn which
also depend on e. To demonstrate this, consider an orthotropic laminated element loaded
with axial forces N and bending moments M uniformly distributed over the element width
as in Fig. 5.13. Suppose that the element displacement does not depend on coordinate y.
Then, taking Nx = N , Mx = M , ε0

y = 0 and κy = 0 in Eqs. (5.44), we get

N = B11ε
0
x + C11κx, M = C11ε

0
x + D11κx (5.55)

where, in accordance with Eqs. (5.28),

B11 = I
(0)
11 , C11 = I

(1)
11 − eI(0)

11 , D11 = I
(2)
11 − 2eI(1)

11 + e2I
(0)
11 (5.56)
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M
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h
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xy

z

Fig. 5.13. Laminated element under tension and bending.

Here, as follows from Eqs. (5.41)

I
(r)
11 = 1

r + 1

k∑
i=1

A
(i)
11

(
t r+1
i − t r+1

i−1

)
(5.57)

(r = 0, 1, 2) are coefficients which do not depend on the coordinate of the reference
plane e. It is important to emphasize that forces N in Fig. 5.13 act in the reference plane
z = 0, and the strain ε0

x in Eqs. (5.55) is the strain of the reference plane.
Solving Eqs. (5.55) for ε0

x and κx , we have

ε0
x = 1

D1
(D11N − C11M), κx = 1

D1
(B11M − C11N) (5.58)

where

D1 = B11D11 − C2
11 (5.59)

Substituting B, D, and C from Eqs. (5.56), we find

D1 = I
(0)
11 I

(2)
11 −

(
I

(1)
11

)2

As can be seen, the parameter D1 does not depend on e.
Consider now the same element but loaded with forces P applied to the middle plane of

the element as in Fig. 5.14. As follows from Fig. 5.15 showing the element cross section,
the forces and the moments in Fig. 5.13 induced by the forces in Fig. 5.14 are

N = P, M = P

(
h

2
− e

)
(5.60)

P

h /2
h /2

Fig. 5.14. Laminated element under tension.
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e
t

A

z

h /2

h /2

Fig. 5.15. Cross section of the element.

Substitution of Eqs. (5.60) into Eqs. (5.58) yields

ε0
x = P

D1

[
I

(2)
11 − eI(1)

11 − h

2

(
I

(1)
11 − eI(0)

11

)]
(5.61)

κx = P

D1

(
h

2
I

(0)
11 − I

(1)
11

)
(5.62)

It follows from Eq. (5.62), that κx does not depend on e, which is expected because the
curvature induced by forces P in Fig. 5.14 is the same for all the planes z = constant
of the element. However, Eq. (5.61) includes e which is also expected because ε0

x is the
strain in the plane z = 0 located at the distance e from the lower plane of the element
(see Fig. 5.15). Let us find the strain εt

x at some arbitrary point A of the cross section for
which z = t − e (see Fig. 5.15). Using the first equation of Eqs. (5.3), we have

εt
x = ε0

x + (t − e) κx = P

D1

[
I

(2)
11 − h

2

(
tI(0)

11 − I
(1)
11

)
− tI(1)

11

]

This equation includes the coordinate of point A and does not depend on e. Thus, taking
an arbitrary coordinate of the reference plane, and applying Eqs. (5.56) for the stiffness
coefficients, we arrive at values of C11 and D11, the combination of which provides the
final result that does not depend on e. However, the derived stiffness coefficient D11 is
not the actual bending stiffness of the laminate which cannot depend on e.

To determine the actual stiffness of the laminate, return to Eqs. (5.58) for ε0
x and κx .

Suppose that C11 = 0, which means that the laminate has no bending–stretching coupling
effects. Then, Eq. (5.59) yields D = B11D11 and Eqs. (5.58) become

ε0
x = N

B11
, κx = M

D11
(5.63)

It is obvious that now B11 is the actual axial stiffness and D11 is the actual bending
stiffness of the laminate. However, Eqs. (5.63) are valid only if C11 = 0. Using the
second equation of Eqs. (5.56), we get

e = I
(1)
11

I
(0)
11

(5.64)
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Substituting this result into Eqs. (5.56) and introducing new notations Bx = B11 and
Dx = D11 for the actual axial and bending stiffness of the laminate in the x-direction, we
arrive at

Bx = I
(0)
11 , Dx = I

(2)
11 −

(
I

(1)
11

)2

I
(0)
11

(5.65)

Here, coefficients I
(r)
11 (r = 0, 1, 2) are specified by Eqs. (5.57). The corresponding

stiffnesses in the y-direction (see Fig. 5.13) are determined from similar equations, i.e.,

By = I
(0)
22 , Dy = I

(2)
22 −

(
I

(1)
22

)2

I
(0)
22

(5.66)

in which

I
(r)
22 = 1

r + 1

k∑
i=1

A
(i)
22

(
t r+1
i − t r+1

i−1

)

For symmetric laminates, as discussed in Section 5.4, Cmn = 0 and coefficients Dmn in
Eqs. (5.48) specify the actual bending stiffnesses of the laminate, i.e.,

Dx = 2

3

k/2∑
i=1

A
(i)
11 hi

(
z2
i + zizi−1 + z2

i−1

)

Dy = 2

3

k/2∑
i=1

A
(i)
22 hi

(
z2
i + zizi−1 + z2

i−1

) (5.67)

where coordinates zi and zi−1 are shown in Fig. 5.11. Note, that if the number of layers
k is not even, the central layer is divided by the plane z = 0 into two identical layers,
so k becomes even.

To find the shear stiffness, consider the element in Fig. 5.13 but loaded with shear
forces, S, and twisting moments H , uniformly distributed along the element edges as
shown in Fig. 5.16. It should be recalled that forces and moments are applied to the
element reference plane z = 0 (see Fig. 5.13). Taking Nxy = S and Mxy = H in the
corresponding Eqs. (5.44), we get

S = B44γ
0
xy + C44κxy, H = C44γ

0
xy + D44κxy (5.68)

in which, in accordance with Eqs. (5.28) and (5.41),

B44 = I
(0)
44 , C44 = I

(1)
44 − eI(0)

44 , D44 = I
(2)
44 − 2eI(1)

44 + e2I
(0)
44 (5.69)
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x
y H

S

Fig. 5.16. Shear and torsion of the element.

where

I
(r)
44 = 1

r + 1

k∑
i=1

A
(i)
44

(
t r+1
i − t r+1

i−1

)

The solution of Eqs. (5.68) is

γ 0
xy = 1

D4
(D44S − C44H), κxy = 1

D4
(B44M − C44S) (5.70)

in which D4 = I
(0)
44 I

(2)
44 −

(
I

(1)
44

)2
.

A further transformation is used similar to that for Eqs. (5.58) and (5.59). Taking the
coordinate of the reference plane as

e = I
(1)
44

I
(0)
44

(5.71)

we get C44 = 0, and Eqs. (5.70) reduce to

γ 0
xy = S

B44
, κxy = H

D44
(5.72)

Using the new notations B44 = Bxy and D44 = Dxy and applying Eqs. (5.69) and (5.71),
we arrive at

Bxy = I
(0)
44 , Dxy = I

(2)
44 −

(
I

(1)
44

)2

I
(0)
44

(5.73)

where Bxy is the actual in-plane shear stiffness of the laminate, whereas Dxy needs some
comments. The second equation of Eqs. (5.72) yields

H = Dxyκxy (5.74)
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Fig. 5.17. Deformation of the element under torsion.

where κxy is given in notations to Eqs. (5.3), i.e.,

κxy = ∂θx

∂y
+ ∂θy

∂x
(5.75)

The deformed state of the laminated element (see Fig. 5.16) loaded with twisting moments
only is shown in Fig. 5.17. Consider the deflection of point A with coordinates x and y.
It follows from Fig. 5.17 that w = xθx or w = yθy . Introduce the gradient of the torsional
angle

θ ′ = ∂θx

∂y
= ∂θy

∂x

Since θ ′ does not depend on x and y, θx = yθ ′, θy = xθ ′ and w = xyθ ′. Using Eq. (5.75),
we have κxy = 2θ . Then, Eq. (5.74) yields

H = D
p
t θ ′ (5.76)

where

D
p
t = 2Dxy (5.77)

is the plate torsional stiffness specifying the stiffness of the element which is loaded with
twisting moments applied to all four edges of the element as shown in Fig. 5.16.

However, in practice we usually need the torsional stiffness of the element loaded with
twisting moments applied to only two opposite edges of the element, whereas the two other
edges are free. Since such loading induces not only twisting moments (see Fig. 5.4) but
also transverse shear forces V (see Fig. 5.6), we must first determine the actual transverse
(through-the-thickness) stiffnesses of a laminate.
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Fig. 5.18. Laminated element loaded with transverse shear forces.

Consider an orthotropic laminated element loaded with transverse shear forces Vx = V

uniformly distributed over the element edge as in Fig. 5.18. From Eqs. (5.20), we have
two possible constitutive equations, i.e.,

V = S55γx, V = S55γx (5.78)

in which, in accordance with Eqs. (5.46),

S55 =
k∑

i=1

A
(i)
55 hi, S55 = h2

∑k
i=1

hi

A
(i)
55

(5.79)

For the orthotropic material, A
(i)
55 = G

(i)
xz , where G

(i)
xz is the transverse shear modulus of

the ith layer. Thus, Eqs. (5.79) take the form

S55 =
k∑

i=1

G(i)
xzhi, S55 = h2

∑k
i=1

hi

G
(i)
xz

(5.80)

As shown in Section 5.1, S55 gives the upper bound and S55 gives the lower bound of
the actual transverse shear stiffness of the laminate. For a laminate consisting of identical
layers, i.e., for the case G

(i)
xz = Gxz for all the layers, both equations of Eqs. (5.80) give

the same result S55 = S55 = Gxzh. However, in some cases, following from Eqs. (5.80)
the results can be dramatically different, whereas for engineering applications we must
have instead of Eqs. (5.78) a unique constitutive equation, i.e.,

V = Sxγx (5.81)

and the question arises whether S55 or S55 should be taken as Sx in this equation. Since for
a homogeneous material there is no difference between S55 and S55, we can expect that
this difference shows itself in the laminates consisting of layers with different transverse
shear moduli.

Consider, for example, sandwich structures composed of high-stiffness thin facing
layers (facings) and low-stiffness light foam core (Fig. 5.19a). The facings are made
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Fig. 5.19. Three-layered (sandwich) and two-layered laminates.

of aluminum alloy with modulus Ef = 70 GPa and shear modulus Gf = 26.9 GPa. The
foam core has Ec = 0.077 GPa and Gc = 0.0385 GPa. The geometric and stiffness
parameters of two sandwich beams studied experimentally (Aleksandrov et al., 1960) are
presented in Table 5.1. The beams with length l = 280 mm have been tested under trans-
verse bending. The coefficient Sa in the table corresponds to the actual shear stiffness
found from experimental results. Actually, experimental study allows us to determine the
shear parameter (Vasiliev, 1993)

kG = D

Sal2
(5.82)

which is presented in the third column of the table and depends on the bending stiffness, D,
and the beam length, l. Since the sandwich structure is symmetric, we can use Eq. (5.67)
for Dx in which 2k = 2 (the core is divided into two identical layers as in Fig. 5.19a)

A
(1)
11 = Ec, A

(2)
11 = Ef ,

h1 = hc

2
, h2 = hf , z0 = 0, z1 = hc

2
, z2 = hc

2
+ hf

The final expression is

Dx = 2

3

[
1

8
Ech

3
c + Ef hf

(
3

4
h2

c + 3

2
hchf + h2

f

)]

The results of the calculation are listed in the last column of Table 5.1. The shear stiffness
coefficients S55 and S55 can be found from Eqs. (5.80) which for the structure in Fig. 5.19a

Table 5.1
Parameters of sandwich structures.

hf (mm) hc (mm) kG Shear stiffness (GPa × mm) Bending stiffness
(GPa × mm3)

Sa S55 S55

2.4 18.8 0.444 1.09 1.14 130 37 960
1.0 17.0 0.184 0.79 0.82 54.5 11 380
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take the form

S55 = hcGc + 2hf Gf

S55 = (hc + 2hf )
2

hc

Gc
+ 2hf

Gf

The results of the calculation are presented in Table 5.1. As can be seen, coefficients S55
are in good agreement with the corresponding experimental data, whereas coefficients S55
are higher by an order of magnitude. Note, that S55, providing the lower boundary for
the exact shear stiffness, is higher than the actual stiffness Sa. The reason for this effect
has been discussed in Section 5.1. Coefficient S55 specifies the lower boundary for the
theoretical exact stiffness corresponding to the applied model of the laminate, but not for
the actual stiffness following from experiment. For example, the actual shear stiffness
of the sandwich beams described above can be affected by the compliance of adhesive
layers which bond the facings and the core and are not allowed for in the laminate model.

So, it can be concluded that the shear stiffness coefficient S55 specified by the corre-
sponding equation of Eqs. (5.79) can be used to describe the transverse shear stiffness
of composite laminates. However, there are special structures for which coefficient S55
provides a better approximation of shear stiffness than coefficient S55. Consider, for exam-
ple, a two-layered structure shown in Fig. 5.19b and composed of a high-stiffness facing
and a low-stiffness core. Assume, as for the sandwich structure considered above, that
Gf = 26.9 GPa and Gc = 0.0385 GPa, so that Gf /Gc = 699, and take hc = 9.9 mm,
and hf = 2.4 mm. It is obvious that the core, having such a low shear modulus, does not
work, and the transverse shear stiffness of the laminate is governed by the facing layer.
For this layer only, we get

S55 = S55 = Gf hf = 64.6 GPa · mm

whereas for the laminate, Eqs. (5.80) yield

S55 = hcGc + hf Gf = 65 GPa · mm

S55 = (hc + hf )
2

hc

Gc
+ hf

Gf

= 0.59 GPa · mm

As can be seen, coefficient S55 is very far from the value that would be expected. However,
structures of type for which the stiffness coefficient S55 is more appropriate than the
coefficient S55 are not typical in composite technology and, being used, they usually do
not require the calculation of transverse shear stiffnesses. For laminated composites it can
be recommended to use the coefficient S55 (Chen and Tsai, 1996). Thus, the transverse
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shear stiffness coefficient in Eq. (5.81) can be taken in the following form

Sx = h2

∑k
i=1

hi

G
(i)
xz

(5.83)

For shear in the yz-plane (see Fig. 5.18), we get a similar expression, i.e.,

Sy = h2

∑k
i=1

hi

G
(i)
yz

(5.84)

In engineering analysis of laminated composites, transverse shear stiffnesses are mainly
used to study the problems of transverse bending of composite beams and plates. Note,
that the so-called classical theory of laminated beams and plates ignores the transverse
shear deformation of the laminate. Consider the constitutive equations for the shear forces
and write them in the following form

γx = Vx

Sx

, γy = Vy

Sy

Taking Sx → ∞ and Sy → ∞, we get γx = 0 and γy = 0. Applying Eqs. (5.14) for γx

and γy , we can express the rotation angles in terms of the deflection as

θx = − ∂w
∂x

, θy = − ∂w
∂y

Then, the expressions for curvatures entering Eqs. (5.3) take the form

κx = − ∂2w

∂x2
, κy = − ∂2w

∂y2
, κxy = −2

∂2w

∂x ∂y

For actual laminates, the transverse shear stiffness coefficients are not infinitely high, but
nevertheless, the classical theories ignoring the corresponding deformation are widely used
in the analysis of composite structures. To evaluate the possibility of neglecting transverse
shear deformation, we can use parameter kG specified by Eq. (5.82) and compare it with
unity. The effect of the transverse shear deformation is demonstrated in Table 5.2 for
the problem of transverse bending of simply supported sandwich beams with various
parameters kG listed in the table. The right hand column of the table shows the ratio
of the maximum deflections of the beam, w, found with allowance for transverse shear
deformation (wG) and corresponding to the classical beam theory (w∞). As can be seen,
for beams number 4 and 5, having parameter kG which is negligible in comparison with
unity, the shear deformation practically does not affect the beams deflections.

Returning to the problem of torsion, we consider an orthotropic laminated strip with
width b loaded with a torque Mt as in Fig. 5.20. In contrast to the laminate shown



Chapter 5. Mechanics of laminates 283

Table 5.2
The effect of transverse shear deformation on the deflection of sandwich beams.

Beam number kG = D

Sl2

wG

w∞

1 0.444 5.386
2 0.184 2.805
3 0.015 1.152
4 0.0015 1.014
5 0.0004 1.002

Mt
b

txy

txz

h

e

xy

zMt

Fig. 5.20. Torsion of a laminated strip.

Mt

z

eMxy

Vx
Nxy y

Fig. 5.21. Forces and moments acting in the strip cross section.

in Fig. 5.6, the strip in Fig. 5.20 is loaded only at the transverse edges, whereas the
longitudinal edges y = ±b/2 are free. The shear stresses τxz and τyz induced by torsion
give rise to the shear forces Nxy , twisting moment Mxy and transverse shear force Vx

shown in Fig. 5.21. Applying the corresponding constitutive equations, Eqs. (5.44) and
(5.81), we get

Nxy = B44γ
0
xy + C44κxy, Mxy = C44γ

0
xy + D44κxy (5.85)

Vx = Sxγx (5.86)

where the stiffness coefficients B, C, D, and S are specified by Eqs. (5.69) and
(5.82). Pre-assign the coordinate of the reference plane e in accordance with Eq. (5.71).
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Then, C44 = 0 and Eqs. (5.85) reduce to

Nxy = Bxyγ
0
xy (5.87)

Mxy = Dxyκxy (5.88)

where Bxy and Dxy are given by Eqs. (5.73). Since the strip is loaded with a torque Mt
only (see Fig. 5.20), Nxy = 0, and as follows from Eq. (5.87), γ 0

xy = 0. So, we have
only two constitutive equations, i.e., Eqs. (5.86) and (5.88) for Vx and Mxy which are
expressed in terms of the transverse shear strain γx and the twisting deformation κxy .
Applying Eqs. (5.14) and (5.75), we have

γx = θx + ∂w
∂x

, κxy = ∂θx

∂y
+ ∂θy

∂x
(5.89)

Consider the deformation of the strip. Assume that the strip cross section rotates around
the longitudinal axis x through an angle θ which depends only on x (Fig. 5.22). Then, as
follows from Fig. 5.22,

w = −yθ, θy = θ

Substitution into Eqs. (5.89) yields

γx = θx − θ ′y, κxy = ∂θx

∂y
+ θ ′

where θ ′ = dθ/dx. Using the first of these equations to transform the second one, we get

κxy = ∂γx

∂y
+ 2θ ′

z, w

y

wqy

q

Fig. 5.22. Rotation of the strip cross section.
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dx
dy

h

Mxy

Mxy

Vx

dy
∂y

∂MxyMxy +

dy
∂x

∂MxyMxy +

dx
∂x

∂VxVx +

Fig. 5.23. Forces and moments acting on the strip element.

Thus, the constitutive equations, Eqs. (5.86) and (5.88) take the following final form

Vx = Sxγx, Mxy = Dxy

(
∂γx

∂y
+ 2θ ′

)
(5.90)

Consider the equilibrium of the strip element shown in Fig. 5.23. The equilibrium
equations in this case are

∂Vx

∂x
= 0,

∂Mxy

∂x
= 0 (5.91)

∂Mxy

∂y
− Vx = 0 (5.92)

The first two equations, Eqs. (5.91) show that Vx = Vx(y) and Mxy = Mxy(y). Then, as
follows from Eq. (5.90) for Vx , γx = γx(y). Substituting Mxy and Vx from Eqs. (5.90)
into Eq. (5.92) and taking into account that θ ′ does not depend on y, we arrive at the
following ordinary differential equation for γx

d2γx

dy2
− k2γx = 0

in which k2 = Sx/Dxy . The general solution of this equation is

γx = C1 sinh ky + C2 cosh ky

Substitution in Eq. (5.90) for Mxy yields

Mxy = Dxy[2θ ′ + k(C1 cosh ky + C2 sinh ky)]
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The integration constants C1 and C2 can be found from the boundary conditions according
to which Mxy (y = ±b/2) = 0 (see Fig. 5.20). The final solution is

Vx = −2Sx sinh ky

k cosh λ
θ ′, Mxy = 2Dxyθ

′
(

1 − cosh ky

cosh λ

)
(5.93)

in which

λ = 1

2
kb = b

2

√
Sx

Dxy

(5.94)

Consider Fig. 5.21 and express the applied torque Mt in terms of internal forces and
moments Vx and Mxy as

Mt =
∫ b/2

−b/2
(Mxy − Vxy)dy

Substituting Mxy and Vx from Eqs. (5.93), we arrive at

Mt = Dtθ
′

where

Dt = 4Dxyb

(
1 − 1

λ
tanh λ

)
(5.95)

is the torsional stiffness of the strip. For a homogeneous orthotropic laminate discussed
in Section 5.2,

Dxy = 1

12
Gxyh

3, Sx = Gxzh

and Eq. (5.95) reduces to

Dt = 1

3
bh3Gxy

(
1 − 1

λ
tanh λ

)
(5.96)

where

λ = b

h

√
3Gxz

Gxy

The stiffness coefficient in Eq. (5.96) is in good agreement with the exact elasticity theory
solutions (Vasiliev, 1993). Particularly, for b/h ≥ 3 the difference between Dt given by
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Eq. (5.96) and the exact result is less than 2%. For a wide strip with relatively large b,
the parameter λ in Eq. (5.94) is also large, and Eq. (5.95) can be approximately reduced to

Dt = 4Dxyb (5.97)

Dividing Dt by b, we can find the stiffness of the laminate with a unit width, i.e.,

Db
t = 4Dxy (5.98)

This is a beam torsional stiffness which is twice as high as the plate stiffness specified by
Eq. (5.77). The difference between Eqs. (5.77) and (5.98) is natural because Eq. (5.77)
corresponds to torsion with the moments acting on all four edges of the element (see
Fig. 5.16), whereas Eq. (5.98) describes torsion with only two moments applied at the
transverse edges (see Fig. 5.20).

Thus, the laminate membrane, bending, transverse shear, and torsional stiffness coeffi-
cients are specified by Eqs. (5.65), (5.66), (5.82), (5.83), and (5.95).

5.6. Quasi-homogeneous laminates

Some typical layers considered in Chapter 4 were actually quasi-homogeneous lami-
nates (see Sections 4.4 and 4.5), but being composed of a number of identical plies, they
were treated as homogeneous layers. The accuracy of this assumption is evaluated below.

5.6.1. Laminate composed of identical homogeneous layers

Consider a laminate composed of layers with different thicknesses but the same
stiffnesses, i.e., A

(i)
mn = Amn for all i = 1, 2, 3, . . . , k. Then, Eqs. (5.29) and (5.32) yield

I (r)
mn = Amn

r + 1
hr+1, I

(0)

mn = Amnh

This result coincides with Eqs. (5.33), which means that a laminate consisting of layers
with the same mechanical properties is a homogeneous laminate (layer) as studied in
Section 5.2.

5.6.2. Laminate composed of inhomogeneous orthotropic layers

Let the laminate have the following structure [0◦/90◦]p, where p = 1, 2, 3, . . . specifies
the number of elementary cross-ply couples of 0 and 90◦ plies. In Section 4.4, this
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laminate was treated as a homogeneous layer with material stiffness coefficients specified
by Eqs. (4.114). Taking h0 = h90 = 0.5 in these equations, we have

A11 = A22 = 1

2

(
E1 + E2

)
, A12 = E1ν12, A44 = G12 (5.99)

In accordance with Eqs. (5.36), the stiffness coefficients of this layer should be

B0
mn = Amnh, C0

mn = 0, D0
mn = 1

12
Amnh

3 (5.100)

To calculate the actual stiffnesses of the laminate, we should put hi = δ, ti = iδ, k = 2p,

e = h/2, and h = 2pδ (see Fig. 5.10), where δ is the thickness of a unidirectional ply.
Then, Eqs. (5.28) and (5.42) yield

Bmn = I (0)
mn, Cmn = I (1)

mn − pδI (0)
mn,

Dmn = I (2)
mn − 2pδI (1)

mn + p2δ2I (0)
mn

(5.101)

Here,

I
(0)
11 = I

(0)
22 = pδE1(1 + α) = h

2
E1(1 + α), I

(0)
12 = 2pδE1ν12 = E1ν12h,

I
(0)
44 = 2pδG12 = G12h, I

(1)
11 = δ2

2
E1

p∑
j=1

[4j (1 + α) − (3 + α)],

I
(1)
22 = δ2

2
E1

p∑
j=1

[4j (1 + α) − (3α + 1)], I
(1)
12 = 1

2
E1ν12h

2,

I
(1)
44 = 1

2
G12h

2,

I
(2)
11 = δ3

3
E1

p∑
j=1

[
12j2(1 + α) − 6j (3 + α) + 7 + α

]
,

I
(2)
22 = δ3

3
E1

p∑
j=1

[
12j2(1 + α) − 6j (3α + 1) + 7α + 1

]
,

I
(2)
12 = 1

3
E1ν12h

3, I
(2)
44 = 1

3
G12h

3

(5.102)

where α = E2/E1.
Matching Eqs. (5.99), (5.100), (5.101), and (5.102), we can see that Bmn = B0

mn,
i.e., membrane stiffnesses are the same for both models of the laminate. The coupling
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and bending stiffnesses are also the same for mn = 12, 44. There is no difference between
the models for α = 1 because the laminate reduces in this case to a homogeneous layer.

Summing up the series in Eqs. (5.102) and using Eqs. (5.101), we arrive at

C11 = −C22 = 1

2
E1δ

2p(α − 1), C12 = C44 = 0,

D11 = D22 = 1

3
E1δ

3p3(1 + α), D12 = D0
12, D44 = D0

44

(5.103)

Taking into account that in accordance with Eqs. (5.100) and accepted notations

D0
11 = D0

22 = 1

3
E1δ

3p3(1 + α)

we can conclude that the only difference between the homogeneous and the laminated
models is associated with the coupling coefficients C11 and C22 which are equal to zero
for the homogeneous model and are specified by Eqs. (5.103) for the laminated one.
Since pδ = h/2, we can write these coefficients in the form

C11 = −C22 = 1

4
E1hδ(1 + α)

showing that Cmn → 0 for δ → 0.

5.6.3. Laminate composed of angle-ply layers

Consider a laminate with the following structure [+φ/−φ]p, where p is the number of
layers each consisting of +φ and −φ unidirectional plies. Constitutive equations Eqs. (5.5)
for this laminate are

Nx = B11ε
0
x + B12ε

0
y + C14κxy

Ny = B21ε
0
x + B22ε

0
y + C24κxy

Nxy = B44γ
0
xy + C41κx + C42κy

Mx = C14γ
0
xy + D11κx + D12κy

My = C24γ
0
xy + D21κx + D22κy

Mxy = C41ε
0
x + C42ε

0
y + D44κxy

(5.104)

in which

Bmn = Amnh, Cmn = −1

2
Amnhδ, Dmn = 1

12
Amnh

3
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where, h is the laminate thickness, δ the ply thickness, and Amn are material stiffness
coefficients specified by Eqs. (4.72). As can be seen, the laminate is anisotropic because
+φ and −φ plies are located in different planes. The homogeneous model of the laminate
ignores this fact and yields C14 = C24 = 0. Calculations show that these coefficients,
although not actually equal to zero, have virtually no influence practically on the laminate
behavior for h/δ ≥ 20.

Laminates in which any ply or layer with orientation angle +φ is accompanied by
the same ply or layer but with angle −φ are referred to as balanced laminates. Being
composed of only angle-ply layers, these laminates have no shear–extension coupling
(B14 = B24 = 0), bending–stretching and shear–twisting coupling (C11 = C12 = C22 =
C44 = 0). As follows from Eqs. (5.104), only stretching–twisting and bending–shear
coupling can exist in balanced laminates. These laminates can include also 0 and 90◦
layers, but membrane–bending coupling can appear in such laminates.

5.7. Quasi-isotropic laminates

The layers of a laminate can be arranged in such a way that the laminate will behave
as an isotropic layer under in-plane loading. Actually, the laminate is not isotropic (that
is why it is called a quasi-isotropic laminate) because under transverse (normal to the
laminate plane) loading and under interlaminar shear its behavior is different from that of
an isotropic (e.g., metal) layer.

To derive the conditions that should be met by the structure of a quasi-isotropic laminate,
consider in-plane loading with stresses σx , σy , and τxy that are shown in Fig. 5.1 and
induce only in-plane strains ε0

x, ε
0
y , and γ 0

xy . Taking κx = κy = κxy = 0 in Eqs. (5.5) and
introducing average (through the laminate thickness h) stresses as

σx = Nx/h, σy = Ny/h, τxy = Nxy/h

we can write the first three equations of Eqs. (5.5) in the following form

σx = B11ε
0
x + B12ε

0
y + B14γ

0
xy

σy = B21ε
0
x + B22ε

0
y + B24γ

0
xy

τxy = B41ε
0
x + B42ε

0
y + B44γ

0
xy

(5.105)

in which, in accordance with Eqs. (5.28) and (5.42)

Bmn =
k∑

i=1

A(i)
mnhi, hi = hi/h (5.106)

where, hi is the thickness of the ith layer normalized to the laminate thickness and Amn are
the stiffness coefficients specified by Eqs. (4.72). For an isotropic layer, the constitutive
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equations analogous to Eqs. (5.105) are

σx = E
(
ε0
x + νε0

y

)
, σy = E

(
ε0
y + νε0

x

)
, τxy = Gγ 0

xy (5.107)

where

E = E

1 − ν2
, G = E

2(1 + ν)
= 1

2
(1 − ν)E (5.108)

Comparing Eqs. (5.105) and (5.107), we can see that the shear–stretching coefficients
of the laminate, i.e., B14 = B41 and B24 = B42, should be equal to zero. As follows
from Eqs. (4.72) and Section 5.6.3, this means that the laminate should be balanced,
i.e., it should be composed of 0◦, ±φi (or φi and π − φi), and 90◦ layers only. Since
the laminate stiffness in the x- and the y-directions must be the same, we require that
B11 = B22. Using Eqs. (4.72), taking hi = h for all i, and performing the appropriate
transformation, we arrive at the following condition

k∑
i=1

cos 2φi = 0

As can be checked by direct substitutions, for k = 1 this equation is satisfied if φ1 = 45◦
and for k = 2 if φ1 = 0 and φ2 = 90◦. Naturally, such one- and two-layered materials
cannot be isotropic even in one plane. So, consider the case k ≥ 3, for which the solution
has the form

φi = (i − 1)
π

k
, i = 1, 2, 3, . . . , k (5.109)

Using the sums that are valid for angles specified by Eq. (5.109), i.e.,

k∑
i=1

sin2 φi =
k∑

i=1

cos2 φi = k

2

k∑
i=1

sin4 φi =
k∑

i=1

cos4 φi = 3k

8

k∑
i=1

sin2 φi cos2 φi = k

8
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and calculating stiffness coefficients from Eqs. (5.106) and (4.72), we get

B11 = B22 = 1

8

[
3
(
E1 + E2

) + 2
(
E1ν12 + 2G12

)]

B12 = 1

8

[
E1 + E2 + 2

(
3E1ν12 − 2G12

)]

B44 = 1

8

[
E1 + E2 − 2

(
E1ν12 − 2G12

)]

These stiffnesses provide constitutive equations in the form of Eqs. (5.107) and satisfy
the conditions in Eqs. (5.108) which can be written as

B11 = B22 = E

1 − ν2
, B44 = G

if

E =
(
E1 + E2 + 2E1ν12

)(
E1 + E2 − 2E1ν12 + 4G12

)
3
(
E1 + E2

) + 2
(
E1ν12 + 2G12

)

ν = E1 + E2 + 2
(
3E1ν12 − 2G12

)
3
(
E1 + E2

) + 2
(
E1ν12 + 2G12

) , G = E

2(1 + ν)

(5.110)

Possible solutions to Eqs. (5.109) providing quasi-isotropic properties of the laminates
with different number of layers are listed in Table 5.3 for k ≤ 6.

All quasi-isotropic laminates, having different structures determined by Eq. (5.109)
for a given number of layers, k, possess the same apparent modulus and Poisson’s ratio
specified by Eqs. (5.110). For typical advanced composites with the properties listed in
Table 3.5, these characteristics are presented in Table 5.4.

As follows from Tables 5.4 and 1.1, the specific stiffness of quasi-isotropic compos-
ites with carbon and boron fibers exceeds the corresponding characteristic of traditional
isotropic structural materials – steel, aluminum, and titanium.

Table 5.3
Angles providing quasi-isotropic properties of the laminates.

Number of layers, k Orientation angle of the ith layer

φ◦
1 φ◦

2 φ◦
3 φ◦

4 φ◦
5 φ◦

6

3 0 60 120 – – –
4 0 45 90 135 – –
5 0 36 72 108 144 –
6 0 30 60 90 120 150
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Table 5.4
Modulus of elasticity and Poisson’s ratio of quasi-isotropic laminates made of typical advanced composites.

Property Glass–epoxy Carbon–epoxy Aramid–epoxy Boron–epoxy Boron–Al

Modulus,
E (GPa)

27.0 54.8 34.8 80.3 183.1

Poisson’s
ratio, ν

0.34 0.31 0.33 0.33 0.28

Specific
modulus,
kE ×103 (m)

1290 3530 2640 3820 6910

5.8. Antisymmetric laminates

In antisymmetric laminates, symmetrically located layers have mutually reversed ori-
entations. For example, whereas laminates [0◦/90◦/90◦/0◦] and [+φ/−φ/−φ/+φ] are
symmetric, laminates [0◦/90◦/0◦/90◦] or [0◦/0◦/90◦/90◦] and [+φ/−φ/+φ/−φ] are
antisymmetric. In contrast to symmetric laminates which have maximum bending and zero
coupling stiffness coefficients, antisymmetric laminates demonstrate pronounced coupling
that can be important for some special applications (e.g., robotic parts undergoing compli-
cated deformation under simple loading, rotor blades that twist under centrifugal forces,
airplane wings twisting under bending etc.).

The simplest antisymmetric laminate is a cross-ply layer consisting of two plies with
angles 0 and 90◦, and the same thickness h/2 (see Fig. 5.24). Taking e = h/2 and using
Eqs. (5.28) and (5.41), we arrive at the following stiffness coefficients entering Eqs. (5.44)

B11 = B22 = h

2

(
E1 + E2

)
, B12 = E1ν12h, B44 = G12h,

C11 = −C22 = h2

8

(
E2 − E1

)
, C12 = 0, C44 = 0,

D11 = D22 = h3

24

(
E1 + E2

)
, D12 = h3

12
E1ν12, D44 = h3

12
G12

x

y

z

h /2

h /2

Fig. 5.24. An antisymmetric cross-ply laminate.
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z

x

y

h /2

h /2

−f

+f

Fig. 5.25. Unbonded view of an antisymmetric angle-ply laminate.

Comparing these results with Eqs. (5.99) and (5.100), corresponding to a quasi-
homogeneous cross-ply laminate, we can see that the antisymmetric cross-ply laminate has
the same membrane and bending stiffnesses but nonzero coupling coefficients C11 and C22.
This fact shows, in accordance with Eqs. (5.44), that in-plane tension or compression of
this laminate induces bending.

As another typical example of an antisymmetric laminate, consider an angle-ply struc-
ture consisting of two plies with the same thickness h/2 and orientation angles +φ and
−φ, respectively (see Fig. 5.25). The plies (or layers) are characterized with the following
stiffness coefficients

A
(1)
11 = A

(2)
11 = A11, A

(1)
12 = A

(2)
12 = A12, A

(1)
22 = A

(2)
22 = A22,

A
(1)
14 = −A

(2)
14 = A14, A

(1)
24 = −A

(2)
24 = A24, A

(1)
44 = A

(2)
44 = A44

where coefficients Amn are specified by Eqs. (4.72). Taking again e = h/2, we arrive at
constitutive equations in Eqs. (5.104) in which

Bmn = Amnh, Cmn = −h2

4
Amn, Dmn = h3

12
Amn (5.111)

Comparing these coefficients with those entering Eqs. (5.104) and corresponding to a
quasi-homogeneous angle-ply laminate, we can conclude that the antisymmetric laminate
has much larger coupling coefficients C14 and C24, and thus a much more pronounced
extension–twisting coupling effect.

In composite technology, an antisymmetric ±φ angle-ply laminate is usually fabricated
by a continuous filament winding process. A typical structure made by filament winding
is shown in Fig. 4.59 of Chapter 4. As can be seen in this figure, the angle-ply layer
is composed from two plies with +φ and −φ orientation of the fibers and these plies
are interlaced in the process of filament winding. As a result, the structure of the layer
is characterized by the distinctive regular mosaic pattern consisting of triangular-shaped,
repeating in chess-board fashion, two-ply segments (T -segments) with alternating ±φ and
∓φ reinforcement. The T -segments are arranged in regular geometric pattern around the



Chapter 5. Mechanics of laminates 295

(a) (b) (c) (d)

Fig. 5.26. Filament-wound cylinders with various numbers nT of T -segments: nT = 2 (a), 4 (b), 8 (c),
and 16 (d).

circumference and along the axis forming the so-called cross-over circles (see Fig. 4.59).
Depending on the parameters of the winding process, various numbers nT of T -segments
located along the circumference can be obtained. For a cylindrical shell, the structures
corresponding to nT = 2, 4, 8, and 16 are shown in Fig. 5.26.

Each T -segment consists of two plies with either [+φ/−φ] or [−φ/+φ] structure and
the plies are not interlaced within the T -segment area. If, for instance, a T -segment
consists of the top triangular-shaped ply, reinforced with fibers oriented at angle +φ, and
the bottom one reinforced with an angle −φ, then the neighboring adjacent T -segments
have an inverse structure: their top plies are reinforced at angle −φ, and the bottom ones
are reinforced at +φ.

The traditional approach used to analyze the laminates under consideration is based
on the model discussed in Section 4.5 according to which the laminate is treated as a
homogeneous orthotropic layer with stiffness coefficients specified by Eqs. (4.72) and
(4.147). The constitutive equations are taken in accordance with Eqs. (5.44), i.e.,

Nx = B11ε
0
x + B12ε

0
y, Ny = B21ε

0
x + B22ε

0
y, Nxy = B44γ

0
xy,

Mx = D11κx + D12κy, My = D21κx + D22κy, Mxy = D44κxy

where

Bmn = Amnh, Dmn = h3

12
Amn

and Amn are specified by Eqs. (4.72). The approach based on these constitutive equations
corresponds to an infinite number of T -segments, i.e., to nT → ∞.
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Considering a T -segment as an antisymmetric laminate, we must apply a more general
version of Eqs. (5.44) including the coupling stiffness coefficients, i.e.,

Nx = B11ε
0
x + B12ε

0
y + C14κxy

Ny = B21ε
0
x + B22ε

0
y + C24κxy

Nxy = B44γ
0
xy + C41κx + C42κy

Mx = C14γ
0
xy + D11κx + D12κy

My = C24γ
0
xy + D21κx + D22κy

Mxy = C41ε
0
x + C42ε

0
y + D44κxy

where the stiffness coefficients are specified by Eqs. (5.111). It is important that whereas for
the laminate with [+φ/−φ] structure shown in Fig. 5.25 the coupling stiffness coefficient
is negative, for the adjacent T -segment having [−φ/+φ], this coefficient is positive.
This difference results in the specific behavior of the two different laminate structures
of T -segments that exhibit antisymmetric opposite anisotropic stretching–twisting and
bending–shear coupling effects alternating along the circumference and axis of rotation of
the shell. Due to the general alternating pattern of the T -segments (chess-board structure)
and their interactions within a layer, the anisotropic effects are balancing each other,
inducing at the same time, additional stresses in the plies.

To study the effect of the filament-wound mosaic pattern, the stress analysis of cylin-
drical shells has been performed (Morozov, 2006). The shells under consideration consist
of one filament-wound ±φ angle-ply layer and loaded with internal pressure. The solid
modeling (Solid Edge) and finite-element analysis (MSC NASTRAN) techniques have
been employed to model the shells with different mosaic pattern structures. Each shell is
partitioned into triangular-shaped T -segments according to the particular filament-wound
pattern. Correspondingly, the finite elements are also combined into the respective alternat-
ing groups. The material structure of the finite elements for each of these groups is defined
as either [+φ/−φ] or [−φ/+φ] laminate. The cylindrical shells under consideration are
reinforced with a winding angle φ = ±60◦ and loaded with internal pressure of 1 MPa.
The mechanical properties of the unidirectional glass–epoxy composite ply correspond to
Table 3.5. The ends of the shells are clamped and the distance between the ends (length
of the cylinder) is fixed and equal to 140 mm. The diameter of the cylinder is 60 mm and
total thickness of the wall is h = 1.4 mm (with the thickness of the unidirectional ply
0.7 mm). The stress analysis was performed for four types of shells.

The first cylinder is modeled with homogeneous orthotropic angle-ply layer and ana-
lyzed using finite-element models available within the MSC NASTRAN software. This
model corresponds to nT → ∞. The other three cylinders have 2, 4, and 8 triangular-
shaped segments around the circumference (nT = 2, 4, 8) and are analyzed using the
FE modeling of the shells with allowance for their mosaic structure. The finite-element
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(b)(a)
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Y
Z

nT  = 4

nT  = 2

nT  → ∞

Fig. 5.27. Finite-element models (a) and deformed shapes (b) of the cylinders with nT → ∞, nT = 2, and
nT = 4.

models and the deformed shapes for nT → ∞, nT = 2, and nT = 4 are shown in
Fig. 5.27.

As can be seen, the deformation of the shells distinctively reflects the corresponding
filament-wound mosaic texture. The calculated maximum values of stresses along and
across fibers, σ1, σ2, and shear stresses, τ12, acting in the plies are presented in Table 5.5.
It can be noted from this table that the maximum stresses strongly depend on the laminate
structure. The traditional model (nT → ∞) significantly underestimated the stresses.

Table 5.5
Maximum stresses in the plies of the shells with various filament-wound structures.

Structural parameter, nT σ1 (MPa) σ2 (MPa) τ12 (MPa)

∞ 24.9 3.79 1.98
2 40.99 17.7 4.82
4 33.2 20.3 5.33
8 27.30 18.2 4.94



298 Advanced mechanics of composite materials

p, MPa

 1.0

 1.5

−150.10−5ex

.10−5ex

.10−5ex
.10−5ey

.10−5ey

.10−5ey−100 −50 0 50

 0.5

(a) (b)

(c) (d)

p, MPa

 1.0

 1.5

−150 −100 −50 0 50

 0.5

−200

p, MPa

 1.0

 1.5

  2.0

−200 −100 0 100

 0.5

Fig. 5.28. Dependencies of the axial (εx) and the circumferential (εy) strains on internal pressure (p) for
cylindrical shells with nT = 2 (a), nT = 4 (b), nT = 16 (c) and the corresponding failure modes (d).

With an increase in the structural parameter nT , the stresses acting along the fibers reduce
and approach the value following from the traditional laminate model.

Thus, it can be expected that the higher the parameter nT , the higher the strength of
±φ angle-ply filament-wound structures. This prediction is confirmed by the test results
presented in Fig. 5.28 (Vorobey et al., 1992). Carbon–phenolic cylindrical shells with the
geometrical parameters given above have been loaded with internal pressure up to the
failure. As follows from Fig. 5.28, the increase of parameter nT from 2 (Fig. 5.28a) to 16
(Fig. 5.28c) results in a significant increase in the burst pressure.

In conclusion, it should be noted that the effect under discussion shows itself mainly
in ±φ angle-ply structures consisting of two symmetric plies. For laminated structures
consisting of a system of ±φ angle-ply layers, the coupling stiffness coefficient which
causes the specific behavior discussed above is given in notations to Eqs. (5.104) and has
the form

Cmn = −1

2
Amnhδ (5.112)

in which h is the laminate thickness and δ is the thickness of the ply. Since δ is relatively
small, the coefficient Cmn in Eq. (5.112) is smaller than the corresponding coefficient in
Eqs. (5.111), and the coupling effect caused by this coefficient is less pronounced.
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5.9. Sandwich structures

Sandwich structures are three-layered laminates consisting of thin facings and a light-
weight honeycomb or foam core as in Figs. 5.29 and 5.30. Since the in-plane stiffnesses
of the facings are much higher than those of the core, whereas their transverse shear
compliance is much lower than the same parameter of the core, the stiffness coefficients
of sandwich structures are usually calculated presuming that the in-plane stiffnesses of
the core are equal to zero. The transverse shear stiffnesses of the facings are assumed to
be infinitely high. For the laminate shown in Fig. 5.31 this means that

A(2)
mn = 0, mn = 11, 12, 14, 24, 44,

A(1, 2)
mn → ∞, mn = 55, 56, 66

Fig. 5.29. Composite sandwich panel with honeycomb core.

Fig. 5.30. Composite sandwich rings with foam core.
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Now, a natural question as to whether it is possible to reduce Eqs. (5.5) to this form in
the general case arises. Taking Cmn = 0 in Eqs. (5.28), we have

e = I
(1)
mn

I
(0)
mn

(5.114)

It is important that the reference plane should be one and the same for all mn = 11, 12,
22, 14, 24, 44, and these six equations should give the same value of e. In the general
case, this is not possible, so a universal reference plane providing Cmn = 0 cannot exist.

However, there are some other (in addition to homogeneous and symmetric structures)
particular laminates for which this condition can be met. For example, consider a laminate
composed of isotropic layers (see Sections 4.1 and 5.2). For such laminates,

A
(i)
11 = A

(i)
22 = Ei

1 − ν2
i

, A
(i)
12 = Eiνi

1 − ν2
i

, A
(i)
44 = Ei

2(1 + νi)

and in accordance with Eqs. (5.42)

I
(0)
11 = I

(0)
22 =

k∑
i=1

Eihi

1 − ν2
i

, I
(0)
12 =

k∑
i=1

Eiνihi

1 − ν2
i

, I
(0)
44 =

k∑
i=1

Eihi

2(1 + νi)
,

I
(1)
11 = I

(1)
22 = 1

2

k∑
i=1

Eihi

1 − ν2
i

(ti + ti−1), I
(1)
12 = 1

2

k∑
i=1

Eiνihi

1 − ν2
i

(ti + ti−1),

I
(1)
44 = 1

2

k∑
i=1

Eihi

2(1 + νi)
(ti + ti−1)

As can be seen, these parameters, when substituted into Eq. (5.114), do not provide one
and the same value of e. However, if Poisson’s ratio is the same for all the layers, i.e.,
νi = ν (i = 1, 2, 3,…, k), we get

e =
∑k

i=1 Eihi(ti + ti−1)

2
∑k

i=1 Eihi

For practical analysis, this result is often used even if the Poisson’s ratios of the layers are
different. In these cases, it is assumed that all the layers can be approximately characterized
with some average value of Poisson’s ratio, i.e.,

ν = 1

h

k∑
i=1

νihi

As another example, consider the sandwich structure described in Section 5.9. In the
general case, we again fail to find the desired reference plane. However, if we assume that



302 Advanced mechanics of composite materials

the facings are made of one and the same material (only the thicknesses are different),
Eqs. (5.113) and (5.114) yield

e = h2
1 + h3(h3 + 2h1 + 2h2)

2(h1 + h3)

Returning to the general case, we should emphasize that the reference plane providing
Cmn = 0 for all the mn values does not exist in this case only if the laminate structure is
given. If the stacking-sequence of the layers is not pre-assigned and there are sufficient
number of layers, they can be arranged in such a way that Cmn = 0. Indeed, consider
a laminate in Fig. 5.32 and suppose that its structure is, in general, not symmetric, i.e.,
z′
i �= zi and k′ �= k. Using plane z = 0 as the reference plane, we can write the membrane–

bending coupling coefficients as

Cmn = 1

2

k/2∑
i=1

A(i)
mnhi(zi + zi−1) − 1

2

k′/2∑
i′=1

A(i′)
mnh′

i

(
z′
i + z′

i−1

)

where, zi ≥ 0 and z′
i ≥ 0. Introduce a new layer coordinate zi = (zi + zi−1)/2, which

is the distance between the reference plane of the laminate and the middle plane of the
ith layer. Then, the condition Cmn = 0 yields

k/2∑
i=1

A(i)
mnhizi =

k′/2∑
i′=1

A(i′)
mnh′

iz
′
i

k′

i′

z′i−1 z′i

zi−1 zi

z

i

k

e

x

Fig. 5.32. Layer coordinates with respect to the reference plane.
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Now assume that we have a group of identical layers or plies with the same stiffness
coefficients Amn and thicknesses. For example, the laminate could include a 1.5 mm thick
0◦ unidirectional layer which consists of 10 plies (the thickness of an elementary ply is
0.15 mm). Arranging these plies above (zi) and below (z′

i ) the reference plane in such a
way that

10∑
j=1

(
zj − z′

j

)
= 0 (5.115)

we have no coupling for this group of plies. Doing the same with the other layers, we
arrive at a laminate with no coupling. Naturally, some additional conditions following
from the fact that the laminate is a continuous structure should be satisfied. However even
with these conditions, Eq. (5.115) can be met with several systems of ply coordinates, and
symmetric arrangement of the plies (zj = z′

j ) is only one of these systems. The general
analysis of the problem under discussion has been presented by Verchery (1999).

Return to laminates with pre-assigned stacking-sequences for the layers. It follows from
Eq. (5.114), we can always make one of the coupling stiffness coefficients equal to zero,
e.g., taking e = est where

est = I
(1)
st

I
(0)
st

(5.116)

we get Cst = 0 (the rest of coupling coefficients are not zero).
Another way to simplify the equations for stiffnesses is to take e = 0, i.e., to take the

surface of the laminate as the reference plane. In this case, Eqs. (5.28) take the form

Bmn = I (0)
mn, Cmn = I (1)

mn, Dmn = I (2)
mn

In practical analysis, the constitutive equations for laminates with arbitrary structure
are often approximately simplified using the method of reduced or minimum bending
stiffnesses described, e.g., by Ashton (1969), Karmishin (1974), and Whitney (1987).
To introduce this method, consider the corresponding equation of Eqs. (5.28) for bending
stiffnesses, i.e.,

Dmn = I (2)
mn − 2eI(1)

mn + e2I (0)
mn (5.117)

and find the coordinate e delivering the minimum value of Dmn. Using the minimum
conditions

d

de
Dmn = 0,

d2

de2
Dmn > 0



304 Advanced mechanics of composite materials

we have

e = emn = I
(1)
mn

I
(0)
mn

(5.118)

This result coincides with Eq. (5.116) and yields Cmn = 0. Thus, calculating I
(1)
mn and

I
(0)
mn , we use for each mn = 11, 12, 22, 14, 24, 44 the corresponding value emn specified

by Eq. (5.118). Substitution yields

Dr
mn = I (2)

mn −
(
I

(1)
mn

)2

I
(0)
mn

, Cr
mn = 0 (5.119)

and the constitutive equations, Eqs. (5.5) become uncoupled. Naturally, this approach
is only approximate because the reference plane coordinate should be the same for all
stiffnesses, but it is not in the method under discussion. It follows from the foregoing
derivation that the coefficients Dr

mn specified by Eqs. (5.119) do not exceed the actual
values of bending stiffnesses, i.e., Dr

mn ≤ Dmn. So, the method of reduced bending
stiffnesses leads to underestimation of the laminate bending stiffness. In conclusion, it
should be noted that this method is not formally grounded and can yield both good and
poor approximation of the laminate behavior, depending on the laminate structure.

5.11. Stresses in laminates

The constitutive equations derived in the previous sections of this chapter relate forces
and moments acting on the laminate to the corresponding generalized strains. For compos-
ite structures, forces and moments should satisfy equilibrium equations, whereas strains
are expressed in terms of displacements. As a result, a complete set of equations is formed
allowing us to find forces, moments, strains, and displacements corresponding to a given
system of loads acting on the structure. Since the subject of structural mechanics is beyond
the scope of this book and is discussed elsewhere (Vasiliev, 1993), we assume that this
problem has already been solved, i.e., we know either generalized strains ε, γ , and κ

entering Eqs. (5.5) or forces and moments N and M . If this is the case, we can use
Eqs. (5.5) to find ε, γ , and κ . Now, to complete the analysis, we need to determine the
stress acting in each layer of the laminate.

To do this, we should first find strains in any ith layer using Eqs. (5.3) which yield

ε(i)
x = ε0

x + ziκx, ε(i)
y = ε0

y + ziκy, γ (i)
xy = γ 0

xy + ziκxy (5.120)

where zi is the layer normal coordinate changing over the thickness of the ith layer.
If the ith layer is orthotropic with principal material axes coinciding with axes x and y,
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(e.g., made of fabric), Hooke’s law provides the stresses we need, i.e.,

σ (i)
x = E

(i)

x

(
ε(i)
x + ν(i)

xy ε(i)
y

)
, σ (i)

y = E
(i)

y

(
ε(i)
y + ν(i)

yx ε(i)
x

)
, τ (i)

xy = G(i)
xyγ (i)

xy

(5.121)

where E
(i)

x,y = E
(i)
x,y/

(
1 − ν

(i)
xy ν

(i)
yx

)
and E

(i)
x , E

(i)
y , G

(i)
xy , ν

(i)
xy , ν

(i)
yx are the elastic constants

of the layer referred to the principal material axes. For an isotropic layer (e.g., metal or
polymeric), we should take in Eqs. (5.121), E

(i)
x = E

(i)
y = Ei, ν

(i)
xy = ν

(i)
yx = νi, Gi

xy =
Gi = Ei/2(1 + νi).

Consider a layer composed of unidirectional plies with orientation angle φi . Using
Eqs. (4.69), we can express strains in the principal material coordinates as

ε
(i)
1 = ε(i)

x cos2 φi + ε(i)
y sin2 φi + γ (i)

xy sin φi cos φi

ε
(i)
2 = ε(i)

x sin2 φi + ε(i)
y cos2 φi − γ (i)

xy sin φi cos φi

γ
(i)
12 = 2

(
ε(i)
y − ε(i)

x

)
sin φi cos φi + γ (i)

xy cos 2φi

(5.122)

and find the corresponding stresses, i.e.,

σ
(i)
1 = E

(i)

1

(
ε
(i)
1 + ν

(i)
12 ε

(i)
2

)
, σ

(i)
2 = E

(i)

2

(
ε
(i)
2 + ν

(i)
21 ε

(i)
1

)
, τ

(i)
12 = G

(i)
12 γ

(i)
12

(5.123)

where E
(i)

1,2 = E
(i)
1,2/

(
1 − ν

(i)
12 ν

(i)
21

)
and E

(i)
1 , E

(i)
2 , G

(i)
12 , ν

(i)
12 , ν

(i)
21 are the elastic constants

of a unidirectional ply.
Thus, Eqs. (5.120)–(5.123) allow us to find in-plane stresses acting in each layer or in

an elementary composite ply.
Compatible deformation of the layers is provided by interlaminar stresses τxz, τyz,

and σz. To find these stresses, we need to use the three-dimensional equilibrium equations,
Eqs. (2.5), which yield

∂τxz

∂z
= −

(
∂σx

∂x
+ ∂τxy

∂y

)
,

∂τyz

∂z
= −

(
∂σy

∂y
+ ∂τxy

∂x

)
,

∂σz

∂z
= −

(
∂τxz

∂x
+ ∂τxz

∂y

)

(5.124)

Substituting stresses σx , σy , and τxy from Eqs. (5.4) and integrating Eqs. (5.124) with due
regard to the forces that can act on the laminate surfaces, we can calculate the transverse
shear and normal stresses τxz, τyz, and σz.
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5.12. Example

As an example, consider the two-layered cylinder shown in Fig. 5.33 which consists
of a ±36◦ angle-ply layer with total thickness h1 = 0.62 mm and 90◦ unidirectional
layer with thickness h2 = 0.60 mm. The 200 mm diameter cylinder is made by filament
winding from glass–epoxy composite with the following mechanical properties: E1 =
44 GPa, E2 = 9.4 GPa, G12 = 4 GPa, ν21 = 0.26. Consider two loading cases – axial
compression with force P and torsion with torque T as in Fig. 5.33.

The cylinder is orthotropic, and to study the problem, we need to apply Eqs. (5.44)
with some simplifications specific for this problem. First, we assume that applied loads
do not induce interlaminar shear and we can take γx = 0 and γy = 0 in Eqs. (5.83)
and (5.84). Hence, Vx = 0 and Vy = 0. In this case, deformations κx , κy , and κxy in
Eqs. (5.3) become the changes of curvatures of the laminate. Since the loads shown in
Fig. 5.33 deform the cylinder into another cylinder inducing only its axial shortening,
change of radius, and rotation of the cross sections, there is no bending in the axial
direction (see Fig. 5.3c) or out-of-plane twisting (see Fig. 5.3d) of the laminate. So,
we can take κx = 0 and κxy = 0 and write constitutive equations, Eqs. (5.44), in the
following form

Nx = B11ε
0
x + B12ε

0
y + C12κy

Ny = B21ε
0
x + B22ε

0
y + C22κy

Nxy = B44γ
0
xy

Mx = C11ε
0
x + C12ε

0
y + D12κy

My = C21ε
0
x + C22ε

0
y + D22κy

Mxy = C44γ
0
xy

(5.125)

To determine the change of the circumferential curvature κy , we should take into
account that the length of the cross-sectional contour being equal to 2πR before

deformation becomes equal to 2πR
(

1 + ε0
y

)
after deformation. Thus, the curvature

x, u
z, w

y, v

R T

T
P

P

36°
36°

Fig. 5.33. Experimental cylinder.
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Fig. 5.34. Forces and moments acting on an element of the cylinder under axial compression.

change is

κy = 1

R
(

1 + ε0
y

) − 1

R
≈ −ε0

y

R
(5.126)

The final result is obtained with the assumption that the strain is small
(ε0

y �1).
Consider the case of axial compression. The free body diagram for the laminate element

shown in Fig. 5.34 yields (see Fig. 5.33)

Nx = − P

2πR
, Ny = 0

As a result, the constitutive equations of Eqs. (5.125) that we need to use for the analysis
of this case become

B11ε
0
x + B12ε

0
y = − P

2πR
, B21ε

0
x + B22ε

0
y = 0 (5.127)

Mx = C11ε
0
x + C12ε

0
y, My = C21ε

0
x + C22ε

0
y (5.128)

in which

B12 = B12 − C12

R
, B22 = B22 − C22

R
,

C12 = C12 − D12

R
, C22 = C22 − D22

R

(5.129)
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The first two equations, Eqs. (5.127), allow us to find strains, i.e.,

ε0
x = − PB22

2πRB
, ε0

y = PB21

2πRB
(5.130)

where B = B11B22 − B12B21 and B21 = B12.
The bending moments can be determined with the aid of Eqs. (5.128). The axial moment,

Mx , has a reactive nature in this problem. The asymmetric laminate in Fig. 5.34 tends
to bend in the xz-plane under axial compression of the cylinder. However, the cylinder
meridian remains straight at a distance from its ends. As a result, a reactive axial bending
moment appears in the laminate. The circumferential bending moment, My , associated
with the change in curvature of the cross-sectional contour in Eq. (5.126) is very small.

For numerical analysis, we first use Eqs. (4.72) to calculate stiffness coefficients for the
angle-ply layer, i.e.,

A
(1)
11 = 25 GPa, A

(1)
12 = 10 GPa, A

(1)
22 = 14.1 GPa, A

(1)
44 = 11.5 GPa (5.131)

and for the hoop layer

A
(2)
11 = 9.5 GPa, A

(2)
12 = 2.5 GPa, A

(2)
22 = 44.7 GPa, A

(2)
44 = 4 GPa (5.132)

Then, we apply Eqs. (5.41) to find the I -coefficients that are necessary for the cases (axial
compression and torsion) under study:

I
(0)
11 = 21.2 GPa mm, I

(0)
12 = 7.7 GPa mm, I

(0)
22 = 35.6 GPa mm,

I
(0)
44 = 9.5 GPa mm; I

(1)
11 = 10.1 GPa mm2, I

(1)
12 = 3.3 GPa mm2,

I
(1)
22 = 27.4 GPa mm2, I

(1)
44 = 4.4 GPa mm2; I

(2)
11 = 21.7 GPa mm3,

I
(2)
12 = 5.9 GPa mm3, I

(2)
22 = 94 GPa mm3

To determine the stiffness coefficients of the laminate, we should pre-assign the coordinate
of the reference surface (a cylindrical surface for the cylinder). Let us put e = 0 for
simplicity, i.e., we take the inner surface of the cylinder as the reference surface (see
Fig. 5.34). Then, Eqs. (5.28) yield

B11 = I
(0)
11 = 21.2 GPa mm, B12 = I

(0)
12 = 7.7 GPa mm,

B22 = I
(0)
22 = 35.6 GPa mm; C11 = I

(1)
11 = 10.1 GPa mm2,

C12 = I
(1)
12 = 3.3 GPa mm2, C22 = I

(1)
22 = 27.4 GPa mm2;

D12 = I
(2)
12 = 5.9 GPa mm3, D22 = I

(2)
22 = 94 GPa mm3
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and in accordance with Eqs. (5.129) for R = 100 mm,

B12 = 7.7 GPa mm, B22 = 35.3 GPa mm,

C12 = 3.2 GPa mm2, C22 = 26.5 GPa mm2

Calculation with the aid of Eqs. (5.130) gives

ε0
x = −8.1 · 10−5P, ε0

y = 1.8 · 10−5P

where P should be substituted in kN. Comparison of the obtained results with experimental
data for the cylinder in Fig. 5.35 is presented in Fig. 5.36.

To determine the stresses, we first use Eqs. (5.120) which, in conjunction with
Eq. (5.126) yield

ε(1)
x = ε(2)

x = ε0
x, ε(1)

y = ε0
y

(
1 − z1

R

)
, ε(2)

y = ε0
y

(
1 − z2

R

)
(5.133)

where 0 ≤ z1 ≤ h1 and h1 ≤ z2 ≤ h1 + h2. Since (h1 + h2)/R = 0.0122 for the cylinder
under study, we can neglect z1/R and z2/R in comparison with unity and write

ε(1)
y = ε(2)

y = ε0
y (5.134)

Fig. 5.35. Experimental composite cylinder in test fixtures.
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Fig. 5.36. Dependence of axial
(
ε0
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)
and circumferential

(
ε0
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)
strains of a composite cylinder on the axial force:

analysis; ◦ experiment.

Applying Eqs. (5.122) to calculate the strains in the plies’ principal material coordinates
and Eqs. (5.123) to find the stresses, we get
• in the angle-ply layer,

σ
(1)
1 = −0.26

P

Rh
, σ

(1)
2 = −0.028

P

Rh
, τ

(1)
12 = 0.023

P

Rh

• in the hoop layer,

σ
(2)
1 = 0.073

P

Rh
, σ

(2)
2 = −0.089

P

Rh
, τ

(2)
12 = 0

where h = h1 + h2 is the total thickness of the laminate. To calculate the interlaminar
stresses acting between the angle-ply and the hoop layers, we apply Eqs. (5.124). Using
Eqs. (5.4) and taking Eqs. (5.133) and (5.134) into account, we first find the stresses in
the layers referred to the global coordinate frame x, y, z, i.e.,

σ (i)
x = A

(i)
11 ε0

x + A
(i)
12 ε0

y, σ (i)
y = A

(i)
21 ε0

x + A
(i)
22 ε0

y, τ (i)
xy = 0 (5.135)

where i = 1, 2 and A
(i)
mn are given by Eqs. (5.131) and (5.132). Since these stresses do

not depend on x and y, the first two equations in Eqs. (5.124) yield

∂τxz

∂z
= 0,

∂τyz

∂z
= 0

This means that both interlaminar shear stresses do not depend on z. However, on the inner
and on the outer surfaces of the cylinder the shear stresses are equal to zero, so τxz = 0
and τyz = 0. The fact that τyz = 0 is natural. Both layers are orthotropic and do not tend
to twist under axial compression of the cylinder. Concerning τxz = 0, a question arises as
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to how compatibility of the axial deformations of the layers with different stiffnesses can
be provided without interlaminar shear stresses. The answer follows from the model used
above to describe the stress state of the cylinder. According to this model, the transverse
shear deformation γx is zero. Actually, this condition can be met if part of the axial force
applied to the layer is proportional to the layer stiffness, i.e., as

P1 = −2πσ (1)
x h1 = 2πh1

(
A

(1)
11 ε0

x + A
(1)
12 ε0

y

)

P2 = −2πσ (2)
x h2 = 2πh2

(
A

(2)
11 ε0

x + A
(2)
12ε

0
y

) (5.136)

Substituting strains from Eqs. (5.130), we can conclude that within the accuracy of a
small parameter h/R (which was neglected in comparison with unity when we calculated
stresses) P1 + P2 = −P, and that the axial strains are the same even if the layers are not
bonded together. In the middle part of a long cylinder, the axial forces are automatically
distributed between the layers in accordance with Eqs. (5.136). However, in the vicinity of
the cylinder ends, this distribution depends on the loading conditions. The corresponding
boundary problem will be discussed further in this section.

The third equation in Eqs. (5.124) formally yields σz = 0. However, this result is
not correct because the equation corresponds to a plane laminate and is not valid for the
cylinder. In cylindrical coordinates, the corresponding equation has the following form
(see e.g., Vasiliev, 1993)

∂
∂z

[(
1 + z

R

)
σz

]
= −

[(
1 + z

R

) ∂τxz

∂x
+ ∂τyz

∂y
− σy

R

]

Taking τxz = 0 and τyz = 0, substituting σy from Eqs. (5.135), and integrating, we obtain

σz = R

R + z

[
1

R

∫ z

0

(
A21ε

0
x + A22ε

0
y

)
dz + C

]
(5.137)

where, Amn (mn = 21, 22) are the step-wise functions of z, i.e.,

Amn = A(1)
mn for 0 ≤ z ≤ h1

Amn = A(2)
mn for h1 ≤ z ≤ h = h1 + h2

and C is the constant of integration. Since no pressure is applied to the inner surface of the
cylinder, σz(z = 0) = 0 and C = 0. Substitution of the stiffness coefficients, Eqs. (5.131),
(5.132), and strains, Eqs. (5.130), into Eq. (5.137) yields

σ (1)
z = −0.068

P

Rh
· z

R + z

σ (2)
z = σ (1)

z (z = h1) + 0.07
P

Rh
· z − h1

R + z

(5.138)
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Fig. 5.37. Distribution of the normalized radial stress σz = σzRh/P over the laminate thickness.

On the outer surface of the cylinder, z = h and σ
(2)
z = 0 which is natural because this

surface is free of any loading. The distribution of σz over the laminate thickness is shown
in Fig. 5.37. As can be seen, interaction of the layers under axial compression of the
cylinder results in radial compression that occurs between the layers.

We now return to transverse shear stress τxz and try to determine the transverse stresses
taking into account the transverse shear deformation of the laminate. To do this, we
should first specify the character of loading, e.g., suppose that axial force T in Fig. 5.33
is uniformly distributed over the cross-sectional contour of the angle-ply layer middle
surface as in Fig. 5.38. As a result, we can take T = 2πRN (since the cylinder is very
thin, we neglect the radius change over its thickness).

To study this problem, we should supplement constitutive equations, Eqs. (5.125), with
the missing equation for transverse shear, Eq. (5.83) and add the terms including the

N

N
e

R

h1

h2

h1

N

2

Fig. 5.38. Application of the axial forces.
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change of the meridian curvature κx , which is no longer zero. As a result, we arrive at the
following constitutive equations

Nx = B11ε
0
x + B12ε

0
y + C11κx (5.139)

Ny = B21ε
0
x + B22ε

0
y + C21κx (5.140)

Mx = C11ε
0
x + C12ε

0
y + D11κx (5.141)

My = C21ε
0
x + C22ε

0
y + D21κx (5.142)

Vx = Sxγx (5.143)

Forces and moments in the left-hand sides of these equations are linked by equilibrium
equations that can be written as (see Fig. 5.39)

N ′
x = 0, M ′

x − Vx = 0, V ′
x − Ny

R
= 0 (5.144)

in which ( )′ = d( )/dx. The generalized strains entering Eqs. (5.139)–(5.143) are related
to displacements by formulas given as notations to Eqs. (5.3) and (5.14), i.e.,

ε0
x = u′, κx = θ ′

x, θx = γx − w′ (5.145)

Here, u is the axial displacement and w is the radial displacement (deflection) of the points
belonging to the reference surface (see Fig. 5.33), whereas θx is the angle of rotation of
the normal to this surface in the xz-plane and γx is the transverse shear deformation
in this plane. The foregoing strain–displacement equations are the same as those for flat
laminates. The cylindrical shape of the structure under study shows itself in the expression
for circumferential strain ε0

y . Since the radius of the cylinder after deformation becomes
equal to (R + w), we get

ε0
y = 2π(R + w) − 2πR

2πR
= w

R
(5.146)

Mx
Vx

Nx dx

dy

My

Ny Vx + Vx
′dx

Mx + Mx
′dx

Nx + Nx
′dx

Fig. 5.39. Forces and moments acting on the cylindrical element.
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To proceed with the derivation, we introduce the coordinate of the laminate reference
surface, e, which gives C11 = 0, i.e., in accordance with Eq. (5.116), e = I

(1)
11 /I

(0)
11 . For

the laminate under study, e = 0.48 mm, i.e., the reference surface is located within the
internal angle-ply layer. Then, Eqs. (5.139)–(5.141), and (5.143), upon substitution of
strains from Eqs. (5.145) and (5.146) can be written as

Nx = B11u
′ + B12

w

R
(5.147)

Ny = B21u
′ + B22

w

R
+ C21θ

′
x (5.148)

Mx = C12
w

R
+ D11θ

′
x (5.149)

Vx = Sx(θx + w′) (5.150)

where stiffness coefficients B11, B12, B21 = B12, C21 = C12, C12 are presented above and

D11 = I
(2)
11 −

(
I

(1)
11

)2

I
(0)
11

, Sx = h2

h1

A
(1)
55

+ h2

A
(2)
55

(5.151)

For the unidirectional ply, we take transverse shear moduli G13 = G12 = 4 GPa and
G23 = 3 GPa. Using Eqs. (4.72), we get

A
(1)
55 = G13 cos2 φ + G23 sin2 φ = 3.7 GPa and A

(2)
55 = 3 GPa

Now, calculation with the aid of Eqs. (5.151) yields D11 = 16.9 GPa mm3 and Sx =
4.05 GPa mm.

The equilibrium equations, Eqs. (5.144), in conjunction with the constitutive equations,
Eqs. (5.147)–(5.150) compose a set of seven ordinary differential equations including
the same number of unknown functions – Nx, Ny, Mx, Vx, u, w, and θx . Thus, the set is
complete and can be reduced to one governing equation for deflection w.

To do this, we integrate the first equilibrium equation in Eqs. (5.144) which shows that
Nx = constant. Since at the cylinder ends Nx = −N , this result is valid for the whole
cylinder. Using Eqs. (5.145) and (5.147), we obtain

ε0
x = u′ = − 1

B11

(
N + B12

w

R

)
(5.152)

Substitution in Eq. (5.148) yields

Ny = B

B11R
w − B21

B11
N + C21θ

′
x (5.153)
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where B = B11B22 − B11B21. We can express θx from Eq. (5.150) and, after differen-
tiation, change V ′

x for Ny with the aid of the last equilibrium equation in Eqs. (5.144).
Substituting Ny from Eq. (5.153), we arrive at

θ ′
x = 1

C

[
1

SxR

(
B

B11R
w − B21

B11
N

)
− w′′

]
(5.154)

where C = 1− (C21/(SxR)). Using Eqs. (5.149) and (5.154), we can express the bending
moment in terms of deflection, i.e.,

Mx = D11

C

[
1

SxR

(
B

B11R
w − B21

B11
N

)
− w′′

]
+ C12

w

R
(5.155)

The governing equation follows now from the second equilibrium equation in Eqs. (5.144)
if we differentiate it, substitute M ′′

x from Eq. (5.155), express V ′
x in terms of θ ′

x and w′′
using Eq. (5.150) and substitute θ ′

x from Eq. (5.154). The final equation is as follows

wIV − 2α2w′′ + β4w = p (5.156)

in which

α2 = 1

2R

(
C21

D11
+ B

B11SxR

)
, β4 = B

D11B11R2
,

p = B21N

D11B11R
= B21P

2πR2D11B11

For the cylinder under study, α2 = 14/R2 and β2 = 139/R2. Since β > α, the solution
of Eq. (5.156) can be written in the following form

w =
4∑

n=1

CnFn(x) + wp (5.157)

in which Cn are constants of integration and

F1 = e−rx cos tx, F2 = e−rx sin tx, F3 = erx cos tx, F4 = erx sin tx

r =
√

1

2
(β2 − α2), t =

√
1

2
(β2 + α2), wp = B21P

2πB

To analyze the local effects in the vicinity of the cylinder end, e.g., x = 0 (the stress state
of the cylinder at a distance from its ends is presented above), we should take C3 = 0
and C4 = 0 in Eq. (5.157) which reduces to

w = C1F1(x) + C2F2(x) + wp (5.158)
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To differentiate the functions entering this solution, the following relationships can be used

F ′
1 = −(tF2 + rF1), F ′

2 = tF1 − rF2,

F ′′
1 =

(
r2 − t2

)
F1 + 2rtF2, F ′′

2 =
(
r2 − t2

)
F2 − 2rtF1,

F ′′′
1 = −r

(
r2 − 3t2

)
F1 + t

(
t2 − 3r2

)
F2,

F ′′′
2 = −r

(
r2 − 3t2

)
F2 − t

(
t2 − 3r2

)
F1

The constants of integration C1 and C2 entering Eq. (5.158) can be determined from the
boundary conditions at x = 0. As follows from Figs. 5.38 and 5.39

Mx(x = 0) = N

(
e − h1

2

)
, Vx(x = 0) = 0

in which Mx is specified by Eqs. (5.155) and (5.158), whereas Vx can be found from the
second equilibrium equation in Eqs. (5.144).

For the cylinder under study, the final expressions for the strains and the rotation
angle are

ε0
x = −PB22

2πRB

[
1 + e−rx(0.11 sin tx − 0.052 cos tx)

]

ε0
y = PB21

2πRB

[
1 + e−rx(0.51 sin tx − 0.24 cos tx)

]

θx = PB21

2πRB
e−rx(6.3 cos tx − 2.3 sin tx),

(5.159)

in which r = 7.9/R and t = 8.75/R. Thus, the solution in Eqs. (5.130) is supplemented
with a boundary-layer solution that vanishes at a distance from the cylinder end.

To determine the transverse shear stress τxz, we integrate the first equation in
Eqs. (5.124) subject to the condition τxz (z = 0) = 0. As a result, the shear stress
acting in the angle-ply layer is specified by the following expression

τ (1)
xz = −

∫ z

0

dσ
(1)
x

dx
dz

in which

σ (1)
x = A

(1)
11 ε(1)

x + A
(1)
12 ε(1)

y ,

ε(1)
x = ε0

x + zκx, ε(1)
y = ε0

y + zκy,

κx = θ ′
x, κy = −ε0

y

R
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Substitution of Eqs. (5.159) and rearranging yields

τ (1)
xz = PB22

2πR2B
e−rx

[
(23.75 cos tx − 9.75 sin tx)z + (6.3 cos tx + 24.9 sin tx)z2

]
(5.160)

The transverse normal stress can be found from the following equation similar to
Eq. (5.137)

σz = R

R + z

∫ z

0

[
1

R

(
A21ε

0
x + A22ε

0
y

)
−
(

1 + z

R

) ∂τxz

∂x

]
dz

For a thin cylinder, we can neglect z/R in comparison with unity. Using Eqs. (5.159) and
(5.160) for the angle-ply layer, we have

σ (1)
z = −0.068

P

R2h

{
z + e−rx

[
(0.18 cos tx − 0.0725 sin tx)z

− (0.12 cos tx + 0.059 sin tx)z2 + (0.05 cos tx − 0.076 sin tx)z3
]}

As can be seen, the first equation in Eqs. (5.138) follows from this solution if x → ∞.
The distribution of shear stress τ

(1)
xz (z = h1) and normal stress σ

(1)
z (z = h1) acting at

the interface between the angle-ply and the hoop layer of the cylinder along its length is
shown in Fig. 5.40.
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Fig. 5.40. Distribution of normalized transverse shear stress τ xz = τ
(1)
xz Rh/P and normal stress σz = σ

(1)
z Rh/P

acting on the layers interface (z = h1) along the cylinder axis.
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Consider now the problem of torsion (see Fig. 5.33). The constitutive equations in
Eqs. (5.125) that we need to use for this problem are

Nxy = B44γ
0
xy, Mxy = C44γxy (5.161)

Taking the coordinate of the reference surface in accordance with Eq. (5.116), i.e.,

e = I
(1)
44

I
(0)
44

(5.162)

we get C44 = 0 and M44 = 0. For the cylinder under study, e = 0.46 mm, i.e., the
reference surface is within the angle-ply layer. The free-body diagram for the cylinder
loaded with torque T , (see Figs. 5.33 and 5.41) yields

Nxy = T

2πR2

Thus,

γ 0
xy = T

2πR2B44
(5.163)

For the experimental cylinder, shown in Fig. 5.35, normal strains were measured in the
directions making ±45◦ angles with the cylinder meridian. To find these strains, we can
use Eqs. (5.122) with φi = ±45◦, i.e.,

ε±
45 = ±1

2
γ 0

xy

Mxy

Nxy

Mxy

Mxy

Mxy

Nxy

Nxy

Nxy

Fig. 5.41. Forces and moments acting on an element of the cylinder under torsion.
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Fig. 5.42. Dependence of ε±
45 on the torque T for a composite cylinder: analysis; ◦ experiment.

For the cylinder under study with B44 = I
(0)
44 = 9.5 GPa mm and R = 100 mm, we get

ε±
45 = ± T

4πR2B44
= ±0.84 · 10−6T

where T is measured in Nm. A comparison of the calculated results with experimental
data is shown in Fig. 5.42.

To find the stresses acting in the plies, we should first use Eqs. (5.120) which for the
case under study yield

ε(i)
x = ε(i)

y = 0, γ (i)
xy = γ 0

xy (i = 1, 2)

Then, Eqs. (5.122) enable us to determine the strains
• in ±φ plies of the angle-ply layer,

ε±
1 = ±γ 0

xy sin φ cos φ, ε±
2 = ∓γ 0

xy sin φ cos φ, γ ±
12 = γ 0

xy cos 2φ;

• in unidirectional plies of a hoop layer (φ = 90◦),

ε90
1 = ε90

2 = 0, γ 90
12 = γ 0

xy
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Finally, the stresses can be obtained with the aid of Eqs. (5.123). For the cylinder under
study, we get:
• in the angle-ply layer,

σ±
1 = ±0.41

T

R2h
, σ±

2 = ∓0.068
T

R2h
, τ±

12 = 0.025
T

R2h
;

• in the hoop layer,

σ 90
1 = σ 90

2 = 0, τ 90
12 = 0.082

T

R2h

where h = 1.22 mm is the total thickness of the laminate.

5.13. References

Aleksandrov, A.Ya., Brukker, L.E., Kurshin, L.M. and Prusakov, A.P. (1960). Analysis of Sandwich Plates.
Mashinostroenie, Moscow (in Russian).

Ashton, J.E. (1969). Approximate solutions for unsymmetrically laminated plates. Journal of Composite
Materials, 3, 189–191.

Chen, H.-J. and Tsai, S.W. (1996). Three-dimensional effective moduli of symmetric laminates. Journal of
Composite Materials, 30(8).

Karmishin, A.V. (1974). Equations for nonhomogeneous thin-walled elements based on minimum stiffnesses.
Applied Mechanics, (Prikladnaya Mekhanika), 10(6), 34–42 (in Russian).

Morozov, E.V. (2006). The effect of filament-winding mosaic patterns on the strength of thin-walled composite
shells. Composite Structures, 76, 123–129.

Vasiliev, V.V. (1993). Mechanics of Composite Structures. Taylor & Francis, Washington.
Verchery, G. (1999). Designing with anisotropy. Part 1: Methods and general results for laminates. In Proc.

12th Int. Conf. on Composite Materials (ICCM-12), Paris, France, 5–9 July 1999, ICCM12/TCA
(CD-ROM), 11 p.

Vorobey, V.V., Morozov, E.V. and Tatarnikov, O.V. (1992). Analysis of Thermostressed Composite Structures.
Mashinostroenie, Moscow (in Russian).

Whitney, J.M. (1987). Structural Analysis of Laminated Anisotropic Plates. Technomic Publishing Co., Inc.,
Lancaster, PA, USA.



Chapter 6

FAILURE CRITERIA AND STRENGTH OF LAMINATES

Consider a laminate consisting of orthotropic layers or plies whose principal material
axes 1, 2, and 3, in general, do not coincide with the global coordinates of the laminate
(x, y, z) and suppose that this layer or ply is in a state of plane stress as in Fig. 6.1. It should
be emphasized that, in contrast to a laminate that can be anisotropic and demonstrate
coupling effects, the layer under consideration is orthotropic and is referred to its principal
material axes. Using the procedure that is described in Section 5.11, we find stresses σ1,
σ2, and τ12 corresponding to a given system of loads acting on the laminate. The problem
that we approach now is to evaluate the laminate load-carrying capacity, i.e., to calculate
the loads that cause failure of the individual layers and of the laminate as a whole. For
the layer, this problem can be readily solved if we have a failure or strength criterion

F(σ1, σ2, τ12) = 1 (6.1)

specifying the combination of stresses that causes layer fracture. In other words, the layer
works while F <1, fails if F = 1, and does not exist as a load-carrying structural element
if F >1. In the relevant stress space, i.e., σ1, σ2, and τ12, Eq. (6.1) specifies the so-called
failure surface (or failure envelope) shown in Fig. 6.2. Each point in this space corresponds
to a particular stress state, and if the point is inside the surface, the layer withstands the
corresponding combination of stresses without failure.

Thus, the problem of strength analysis is reduced to the construction of a failure cri-
terion in its analytical, Eq. (6.1), or graphical (Fig. 6.2) form. Up to the present time,
numerous variants of these forms have been proposed for traditional and composite struc-
tural materials (Gol’denblat and Kopnov, 1968; Wu, 1974; Rowlands, 1975; Tsai and
Hahn, 1975; Vicario and Toland, 1975; etc.) and these have been described by the authors
of many textbooks in composite materials. Omitting the history and comparative analysis
of particular criteria that can be found elsewhere, we discuss here mainly the practical
aspects of the problem.

6.1. Failure criteria for an elementary composite layer or ply

There exist, in general, two approaches to construct the failure surface, the first of which
can be referred to as the microphenomenological approach. The term ‘phenomenological’

321
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Fig. 6.1. An orthotropic layer or ply in a plane-stressed state.
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Fig. 6.2. Failure surface in the stress space.

means that the actual physical mechanisms of failure at the microscopic material level
are not considered and that we deal with stresses and strains, i.e., with conventional and
not actually observed state variables introduced in Chapter 2. In the micro-approach, we
evaluate the layer strength using microstresses acting in the fibers and in the matrix and
failure criteria proposed for homogeneous materials. Being developed up to a certain
extent (see, e.g., Skudra et al., 1989), this approach requires the minimum number of
experimental material characteristics, i.e., only those determining the strengths of fibers
and matrices. As a result, coordinates of all the points of the failure surface in Fig. 6.2
including points A, B, and C corresponding to uniaxial and pure shear loading are found by
calculation. To do this, we should simulate the layer or the ply with a suitable microstruc-
tural model (see, e.g., Section 3.3), apply a pre-assigned system of average stresses σ1, σ2,
and τ12, (e.g., corresponding to vector 0D in Fig. 6.2), find the stresses acting in the
material components, specify the failure mode that can be associated with the fibers or
with the matrix, and determine the ultimate combination of average stresses correspond-
ing, e.g., to point D in Fig. 6.2. Thus, the whole failure surface can be constructed.
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However, the uncertainty and approximate character of the existing micromechanical
models discussed in Section 3.3 results in relatively poor accuracy using this method
which, being in principle rather promising, has not found wide practical application at the
present time.

The second basic approach which can be referred to as the macrophenomenological
one deals with the average stresses σ1, σ2, and τ12 shown in Fig. 6.1 and ignores the ply
microstructure. For a plane stress state in an orthotropic ply, this approach requires at least
five experimental results specifying material strength under:
• longitudinal tension, σ+

1 (point A in Fig. 6.2),
• longitudinal compression, σ−

1 ,
• transverse tension, σ+

2 (point B in Fig. 6.2),
• transverse compression, σ−

2 , and
• in-plane shear, τ 12 (point C in Fig. 6.2).
Obviously, these data are not enough to construct the complete failure surface, and two
possible ways leading to two types of failure criteria can be used.

The first type referred to as structural failure criteria involves some assumptions con-
cerning the possible failure modes that can help us to specify the shape of the failure
surface. According to the second type, which provides a failure surface of an approximate
form, experiments simulating a set of complicated stress states (such that two or all three
stresses σ1, σ2, and τ12 are induced simultaneously) are undertaken. As a result, a system
of points, like point D in Fig. 6.2, is determined and approximated with some suitable
surface.

The experimental data that are necessary to construct the failure surface are usually
obtained by testing thin-walled tubular specimens such as those shown in Figs. 6.3 and 6.4.
These specimens are loaded with internal or external pressure p, tensile or compressive
axial forces P , and end torques T , providing a known combination of axial stress, σx ,
circumferential stress, σy , and shear stress τxy that can be calculated as

σx = P

2πRh
, σy = pR

h
, τxy = T

2πR2h

Here, R is the cylinder radius and h is its thickness. For the tubular specimens shown in
Fig. 6.4, which were made from unidirectional carbon–epoxy composite by circumferential
winding, σx = σ2, σy = σ1, and τxy = τ12 (see Fig. 6.1).

We shall now consider typical structural and approximation strength criteria developed
for typical composite layers and plies.

6.1.1. Maximum stress and strain criteria

These criteria belong to a structural type and are based on the assumption that there can
exist three possible modes of failure caused by stresses σ1, σ2, and τ12 or strains ε1, ε2,

and γ12, when they reach the corresponding ultimate values.
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Fig. 6.3. Glass fabric–epoxy test tubular specimens.

The maximum stress criterion can be presented in the form of the following inequalities

σ1 ≤ σ+
1 , σ2 ≤ σ+

2 if σ1 > 0 σ2 > 0

|σ1| ≤ σ−
1 , |σ2| ≤ σ−

2 if σ1 < 0 σ2 < 0

|τ12| ≤ τ 12

(6.2)

It should be noted here and subsequently that all the ultimate stresses σ and τ including
compressive strength values are taken as positive quantities. The failure surface corre-
sponding to the criterion in Eqs. (6.2) is shown in Fig. 6.5. As can be seen, according
to this criterion failure is associated with independently acting stresses, and any possible
stress interaction is ignored.

It can be expected that the maximum stress criterion describes adequately the behavior of
those materials in which stresses σ1, σ2, and τ12 are taken by different structural elements.
A typical example of such a material is the fabric composite layer discussed in Section 4.6.
Indeed, warp and filling yarns (see Fig. 4.83) working independently provide material
strength under tension and compression in two orthogonal directions (1 and 2), whereas
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Fig. 6.4. Carbon–epoxy test tubular specimens made by circumferential winding (the central cylinder failed
under axial compression and the right one under torsion).

t12

t12

−s2
−

−s1
− s1

+

s2
+

s1

s2

Fig. 6.5. Failure surface corresponding to maximum stress criterion.

the polymeric matrix controls the layer strength under in-plane shear. A typical failure
envelope in the plane (σ1, σ2) for a glass–epoxy fabric composite is shown in Fig. 6.6
(the experimental data are from G. Prokhorov and N. Volkov). The corresponding results
in the plane (σ1, τ12), but for a different glass fabric experimentally studied by Annin and
Baev (1979), are presented in Fig. 6.7. It follows from Figs. 6.6 and 6.7, that the maximum
stress criterion provides a satisfactory prediction of strength for fabric composites within
the accuracy determined by the scatter of experimental results. As has been already noted,
this criterion ignores the interaction of stresses. However, this interaction takes place
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Fig. 6.6. Failure envelope for glass–epoxy fabric composite in plane (σ1, σ2). ( ) maximum stress
criterion, Eqs. (6.2); (©) experimental data.
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Fig. 6.7. Failure envelope for glass–epoxy fabric composite in plane (σ1, τ12). ( ) maximum stress
criterion, Eqs. (6.2); (©) experimental data.

in fabric composites which are loaded with compression in two orthogonal directions,
because compression of the filling yarns increases the strength in the warp direction and
vice versa. The corresponding experimental results from Belyankin et al. (1971) are shown
in Fig. 6.8. As can be seen, there is a considerable discrepancy between the experimental
data and the maximum stress criterion shown with solid lines. However, even in such
cases this criterion is sometimes used to design composite structures, because it is simple
and conservative, i.e., it underestimates material strength, thus increasing the safety factor
for the structure under design. There exist fabric composites for which the interaction
of normal stresses is exhibited in tension as well. An example of such a material is
presented in Fig. 6.9 (experimental data from Gol’denblat and Kopnov (1968)). Naturally,
the maximum stress criterion (solid lines in Fig. 6.9) should not be used in this case
because it overestimates the material strength, and the structure can fail under loads that
are lower than those predicted by this criterion.
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Fig. 6.8. Failure envelope for glass–phenolic fabric composite loaded with compression in plane (σ1, σ2).
( ) maximum stress criterion, Eqs. (6.2); (- - -) polynomial criterion, Eqs. (6.16); (©) experimental data.
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Fig. 6.9. Failure envelope for glass–epoxy fabric composite in plane (σ1, σ2). ( ) maximum stress cri-
terion, Eqs. (6.2); ( ) approximation criterion, Eqs. (6.11) and (6.12); (· · · · · · · · · ) approximation criterion,

Eqs. (6.15); (©) experimental data.

The foregoing discussion concerns fabric composites. Now consider a unidirectional
ply and try to apply the maximum stress criterion in this situation. First of all, because the
longitudinal strength of the ply is controlled by the fibers whose strength is much higher
than that of the matrix, it is natural to neglect the interaction of stress σ1 on one side and
stresses σ2 and τ12, on the other side. In other words, we can apply the maximum stress
criterion to predict material strength under tension or compression in the fiber direction
and, hence, use the first part of Eqs. (6.2), i.e.,

σ1 ≤ σ+
1 if σ1 > 0

|σ1| ≤ σ−
1 if σ1 < 0

(6.3)
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Fig. 6.10. Failure envelope for carbon–carbon unidirectional composite in plane (σ2, τ12). ( ) maximum
stress criterion, Eqs. (6.2); (©) experimental data.

Actually, there exist unidirectional composites with a very brittle matrix (carbon or
ceramic) for which the other conditions in Eqs. (6.2) can also be applied. As an exam-
ple, Fig. 6.10 displays the failure envelope for a carbon–carbon unidirectional material
(experimental data from Vorobey et al., 1992). However, for the majority of unidirectional
composites, the interaction of transverse normal and shear stresses is essential and should
be taken into account. This means that we should apply Eq. (6.1) but can simplify it as
follows

F(σ2, τ12) = 1 (6.4)

The simplest way to induce a combined stress state for a unidirectional ply is to use the
off-axis tension or compression test as discussed in Section 4.3.1. Applying stress σx as
in Figs. 4.22 and 4.23, we have stresses σ1, σ2, and τ12 specified by Eq. (4.78). Then,
Eqs. (6.2) yield the following ultimate stresses:
For σx > 0,

σx = σ+
1

cos2 φ
, σx = σ+

2

sin2 φ
, σx = τ 12

sin φ cos φ
(6.5)

For σx < 0,

σx = σ−
1

cos2 φ
, σx = σ−

2

sin2 φ
, σx = τ 12

sin φ cos φ
(6.6)

The actual ultimate stress is the minimum σx value of the three values provided by
Eqs. (6.5) for tension or Eqs. (6.6) for compression. The experimental data of S.W. Tsai
taken from (Jones, 1999) and corresponding to a glass–epoxy unidirectional composite
are presented in Fig. 6.11. As can be seen, the maximum stress criterion (solid lines)
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Fig. 6.11. Dependence of the stress on the fiber orientation angle for off-axes tension (a) and compression (b) of
glass–epoxy unidirectional composite. ( . ) maximum stress criterion, Eqs. (6.2); ( ) approximation

criterion, Eqs. (6.3) and (6.17); ( ) approximation criterion, Eqs. (6.3) and (6.18).

demonstrates fair agreement with experimental results for angles close to 0 and 90◦ only.
An important feature of this criterion belonging to a structural type is its ability to predict
the failure mode. Curves 1, 2, and 3 in Fig. 6.11 correspond to the first, the second, and
the third equations of Eqs. (6.5) and (6.6). It follows from Fig. 6.11a, that fiber failure
occurs only for φ = 0◦. For 0◦ < φ < 30◦, material failure is associated with in-plane
shear, whereas for 30◦ < φ ≤ 90◦, it is caused by the transverse normal stress σ2.

The maximum strain failure criterion is similar to the maximum stress criterion
discussed above, but is formulated in terms of strains, i.e.,

ε ≤ ε+
1 , ε2 ≤ ε+

2 if ε1 > 0 ε2 > 0

|ε1| ≤ ε−
1 , |ε2| ≤ ε−

2 if ε1 < 0 ε2 < 0

|γ12| ≤ γ 12

(6.7)

where

ε1 = σ1

E1
− ν12

σ2

E2
, ε2 = σ2

E2
− ν21

σ1

E1
, γ12 = τ12

G12
(6.8)

The maximum strain criterion ignores the strain interaction but allows for the stress inter-
action due to Poisson’s effect. This criterion provides results that are generally closely
similar to those following from the maximum stress criterion.

There exists a unique stress state which can only be studied using the maximum strain
criterion. This is longitudinal compression of a unidirectional ply as discussed earlier
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Fig. 6.12. Failure modes of a unidirectional glass–epoxy composite under longitudinal compression.

in Section 3.4.4. Under this type of loading, only longitudinal stress σ1 is induced,
whereas σ2 = 0 and τ12 = 0. Nevertheless, fracture is accompanied with cracks
parallel to the fibers (see Fig. 6.12 showing tests performed by Katarzhnov (1982)).
These cracks are caused by transverse tensile strain ε2 induced by Poisson’s effect.
The corresponding strength condition follows from Eqs. (6.7) and (6.8) and can be
written as

|σ1| ≤ ε+
2

E1

ν21

It should be emphasized that the test shown in Fig. 6.12 can be misleading because
transverse deformation of the ply is not restricted in this test, whereas it is normally
restricted in actual laminated composite structural elements. Indeed, a long cylinder
with material structure [0◦

11] being tested under compression yields a material strength
σ−

1 = 300 MPa whereas the same cylinder with material structure [0◦
10/90◦] gives

σ−
1 = 505 MPa (Katarzhnov, 1982). Thus, if we change one longitudinal ply for a circum-

ferential ply that practically does not bear any of the load in compression along the cylinder
axis, but restricts its circumferential deformation, we increase the material strength
in compression by 68.3%. Correspondingly, the failure mode becomes quite different
(see Fig. 6.13).
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(a) (b)

Fig. 6.13. Failure mode of a glass–epoxy tubular specimen with 10 longitudinal plies and one outside
circumferential ply: (a) inside view; (b) outside view.

6.1.2. Approximation strength criteria

In contrast to structural strength criteria, approximation criteria do not indicate the
mode of failure and are constructed by approximation of available experimental results
with some appropriate function depending on stresses σ1, σ2, and τ12. The simplest and
the most widely used criterion is a second-order polynomial approximation, typical forms
of which are presented in Fig. 6.14. In the stress space shown in Fig. 6.2, the polynomial
criterion corresponding to Fig. 6.14a can be written as

F(σ1, σ2, τ12) = R11σ
2
1 + R22σ

2
2 + S12τ

2
12 = 1 (6.9)

To determine the coefficients R and S, we need to perform three tests providing material
strength under uniaxial loading in 1 and 2 directions and in shear. Then, applying the
following conditions

F(σ1 = σ 1, σ2 = 0, τ12 = 0) = 1

F(σ1 = 0, σ2 = σ 2, τ12 = 0) = 1

F(σ1 = 0, σ2 = 0, τ12 = τ 12) = 1

(6.10)
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Fig. 6.14. Typical shapes of the curves corresponding to the second-order polynomials.

we can find R and S and write Eq. (6.9) in its final form

(
σ1

σ 1

)2

+
(

σ2

σ 2

)2

+
(

τ12

τ 12

)2

= 1 (6.11)

It appears as though this criterion yields the same strength estimate in tension and compres-
sion. However, it can be readily made specific for tension or compression. It is important
to realize that when evaluating a material’s strength we usually know the stresses acting
in this material. Thus, we can take in Eq. (6.10)

σ 1 = σ+
1 if σ1 > 0 or σ 1 = σ−

1 if σ1 < 0

σ 2 = σ+
2 if σ2 > 0 or σ 2 = σ−

2 if σ2 < 0
(6.12)

thus describing the cases of tension and compression. The failure criterion given by
Eqs. (6.11) and (6.12) is demonstrated in Fig. 6.9 with application to a fabric composite
loaded with stresses σ1 and σ2 (τ12 = 0). Naturally, this criterion is specified by different
equations for different quadrants in Fig. 6.9.



Chapter 6. Failure criteria and strength of laminates 333

For some problems, e.g., for the problem of design, for which we usually do not know
the signs of stresses, we may need to use a universal form of the polynomial criterion
valid both for tension and compression. In this case, we should apply an approximation
of the type shown in Fig. 6.14b and generalize Eq. (6.9) as

F(σ1, σ2, τ12) = R1σ1 + R2σ2 + R11σ
2
1 + R22σ

2
2 + S12τ

2
12 = 1 (6.13)

Using criteria similar to Eqs. (6.10), i.e.,

F(σ1 = σ+
1 , σ2 = 0, τ12 = 0) = 1 if σ1 > 0

F(σ1 = −σ−
1 , σ2 = 0, τ12 = 0) = 1 if σ1 < 0

F(σ1 = 0, σ2 = σ+
2 , τ12 = 0) = 1 if σ2 > 0

F(σ1 = 0, σ2 = −σ−
2 , τ12 = 0) = 1 if σ2 < 0

F(σ1 = 0, σ2 = 0, τ12 = τ 12) = 1

(6.14)

we arrive at

σ1

(
1

σ+
1

− 1

σ−
1

)
+ σ2

(
1

σ+
2

− 1

σ−
2

)
+ σ 2

1

σ+
1 σ−

1

+ σ 2
2

σ+
2 σ−

2

+
(

τ12

τ 12

)2

= 1 (6.15)

Comparison of this criterion with the criteria discussed above and with experimental results
is presented in Fig. 6.9. As can be seen, the criteria specified by Eqs. (6.11), (6.12), and
(6.15) provide close results which are in fair agreement with the experimental data for all
the stress states except, possibly, biaxial compression for which there are practically no
experimental results shown in Fig. 6.9. Such results are presented in Fig. 6.8 and allow
us to conclude that the failure envelope can be approximated in this case by a polynomial
of the type shown in Fig. 6.14c, i.e.,

F(σ1, σ2, τ12) = R11σ
2
1 + R12σ1σ2 + R22σ

2
2 + S12τ

2
12 = 1

The coefficients R11, R22, and S12 can be found as earlier from Eqs. (6.10), and we
need to use an additional strength condition to determine the coupling coefficient, R12.
A reasonable form of this condition is F(σ1 = −σ−

1 , σ2 = −σ−
2 , τ12 = 0) = 1. This

means that whereas for |σ1| < σ−
1 and |σ2| < σ−

2 the interaction of stresses increases
material strength under compression, the combination of compressive failure stresses
|σ1| = σ−

1 and |σ2| = σ−
2 results in material failure. Then

(
σ1

σ−
1

)2

− σ1σ2

σ−
1 σ−

2

+
(

σ2

σ−
2

)2

+
(

τ12

τ 12

)2

= 1 (6.16)

Comparison of this criterion with experimental data is presented in Fig. 6.8.
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Now consider unidirectional composites and return to Fig. 6.11. As can be seen, the
maximum stress criterion (solid lines), ignoring the interaction of stresses σ2 and τ12
demonstrates rather poor agreement with experimental data. The simplest approximation
criterion, Eqs. (6.11) and (6.12), takes, for the case under study, the form

F(σ2, τ12) =
(

σ2

σ 2

)2

+
(

τ12

τ 12

)2

= 1 (6.17)

and the corresponding failure envelope is shown in Fig. 6.11 with dotted lines. Although
providing fair agreement with experimental results for tension (Fig. 6.11a), this criterion
fails to predict material strength under compression (Fig. 6.11b). Moreover, for this case,
the approximation criterion yields worse results than those demonstrated by the maximum
stress criterion. There are simple physical reasons for this discrepancy. In contrast to the
maximum stress criterion, Eq. (6.17) allows for stress interaction, but in such a way that
the transverse stress σ2 reduces the material strength under shear. However, this holds true
only if the transverse stress is tensile. As can be seen in Fig. 6.15, in which the experimental
results taken from Barbero’s (1998) book are presented, a compressive stress σ2 increases
the ultimate value of shear stress τ12. As a result, the simplest polynomial criterion in
Eq. (6.17), being, as it has been already noted, quite adequate for σ2 > 0, significantly
underestimates material strength for σ2 < 0 (solid line in Fig. 6.15). As also follows from
Fig. 6.15, a reasonable approximation to the experimental results can be achieved if we
use a curve of the type shown in Fig. 6.14b, (but moved to the left with respect to the
y-axis), i.e., if we apply for this case the criterion presented by Eq. (6.15) which can be
written as

F(σ2, τ12) = σ2

(
1

σ+
2

− 1

σ−
2

)
+ σ 2

2

σ+
2 σ−

2

+
(

τ12

τ 12

)2

= 1 (6.18)

The corresponding approximations are shown in Figs. 6.11 and 6.15 with dashed lines.
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Fig. 6.15. Failure envelope for glass–epoxy unidirectional composite in plane (σ2, τ12). ( ) approximation
criterion, Eqs. (6.12) and (6.17); ( ) approximation criterion, Eqs. (6.18); (©) experimental data.
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In conclusion, it should be noted that there exist more complicated polynomial strength
criteria than those considered above, e.g., the fourth-order criterion of Ashkenazi (1966)
and cubic criterion proposed by Tennyson et al. (1980).

6.1.3. Tensor strength criteria

The polynomial approximation strength criteria discussed in Section 6.1.2 have been
introduced as some formal approximations of the experimental data in the principal mate-
rial coordinates. When written in some other coordinate frame, these criteria become much
more complicated. Consider for example an orthotropic material shown in Fig. 6.16 and
referred to the principal material axes 1 and 2 and to some axes 1′ and 2′ which make an
angle φ = 45◦ with the principal axes. For the principal material axes 1 and 2, apply a
generalized form of the criterion in Eq. (6.13), i.e.,

F(σ1, σ2, τ12) = R1σ1 + R2σ2 + R11σ
2
1 + R12σ1σ2 + R22σ

2
2 + S12τ

2
12 = 1 (6.19)

Using the strength conditions in Eqs. (6.14) to determine the coefficients R and S, we
arrive at

F(σ1, σ2, τ12) =
(

1

σ+
1

− 1

σ−
1

)
σ1 +

(
1

σ+
2

− 1

σ−
2

)
σ2 + σ 2

1

σ+
1 σ−

1

+ R12σ1σ2

+ σ 2
2

σ+
2 σ−

2

+
(

τ12

τ 12

)2

= 1 (6.20)

This criterion is similar to the criterion in Eq. (6.15), but it includes the coefficient
R12 which cannot be found from simple tests using Eqs. (6.14). Treating Eq. (6.20) as
the approximation strength criterion, we can apply some additional testing or additional
assumptions similar to those used to derive Eq. (6.16) and determine the coefficient R12.

1′

1

2′

2

f = 45°

Fig. 6.16. An orthotropic material referred to coordinates (1, 2) and (1′, 2′).
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We can also simplify the problem and take R12 = 0 arriving at Eq. (6.15), i.e.,

F(σ1, σ2, τ12) =
(

1

σ+
1

− 1

σ−
1

)
σ1 +

(
1

σ+
2

− 1

σ−
2

)
σ2 + σ 2

1

σ+
1 σ−

1

+ σ 2
2

σ+
2 σ−

2

+
(

τ12

τ 12

)2

= 1 (6.21)

which is in good agreement with experimental results (see Fig. 6.9). To simplify the
analysis, assume that the material strength in tension and compression is the same for
both principal directions 1 and 2, i.e.,

σ+
1 = σ−

1 = σ+
2 = σ−

2 = σ 0, τ 12 = τ 0 (6.22)

Then, Eq. (6.21) reduces to

F(σ1, σ2, τ12) =
(
σ 2

1 + σ 2
2

)
σ 2

0

+
(

τ12

τ 0

)2

= 1 (6.23)

Now, let us write Eq. (6.23) in coordinates 1′ and 2′ (see Fig. 6.16). To transform the
stresses σ1, σ2, and τ12 to the stresses σ 45

1 , σ 45
2 , and τ 45

12 corresponding to coordinates
1′ and 2′, we can use Eqs. (4.68). Taking φ = 45◦, σx = σ1, σy = σ2, τxy = τ12 and
σ1 = σ 45

1 , σ2 = σ 45
2 , τ12 = τ 45

12 , we get

σ1 = 1

2

(
σ 45

1 + σ 45
2

)
− τ 45

12

σ2 = 1

2

(
σ 45

1 + σ 45
2

)
+ τ 45

12

τ12 = 1

2

(
σ 45

1 − σ 45
2

)
(6.24)

Substitution in Eq. (6.23) yields

F
(
σ 45

1 , σ 45
2 , τ 45

12

)
= 1

4

(
2

σ 2
0

+ 1

τ 2
0

)[(
σ 45

1

)2 +
(
σ 45

2

)2
]

+ 1

2

(
2

σ 2
0

− 1

τ 2
0

)
σ 45

1 σ 45
2

+ 2

σ 2
0

(
τ 45

12

)2 = 1 (6.25)
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For tension in the directions of axes 1′ and 2′ in Fig. 6.16 and for shear in plane 1′2′, we
can write Eq. (6.25) in the following forms similar to Eqs. (6.10)

F
(
σ 45

1 = σ 45, σ
45
2 = 0, τ 45

12 = 0
)

= 1

F
(
σ 45

1 = 0, σ 45
2 = σ 45, τ

45
12 = 0

)
= 1

F
(
σ 45

1 = 0, σ 45
2 = 0, τ 45

12 = τ 45

)
= 1

(6.26)

Here, σ 45 and τ 45 determine material strength in coordinates 1′ and 2′ (see Fig. 6.16).
Then, Eq. (6.25) can be reduced to

F
(
σ 45

1 ,σ 45
2 ,τ 45

12

)
= 1

σ 2
45

[(
σ 45

1

)2+
(
σ 45

2

)2
]
+
(

1

τ 2
45

− 2

σ 2
45

)
σ 45

1 σ 45
2 +

(
τ 45

12

τ 45

)
=1

(6.27)

where σ 45 and τ 45 are given by

1

σ 2
45

= 1

4

(
2

σ 2
0

+ 1

τ 2
0

)
, τ 2

45 = 1

2
σ 2

0

Comparing Eq. (6.27) with Eq. (6.23), we can see that Eq. (6.27), in contrast to Eq. (6.23),
includes a term with the product of stresses σ 45

1 and σ 45
2 . So, the strength criterion under

study changes its form with a transformation of the coordinate frame (from 1 and 2 to 1′
and 2′ in Fig. 6.16) which means that the approximation polynomial strength criterion in
Eq. (6.23) and, hence, the original criterion in Eq. (6.21) is not invariant with respect to
the rotation of the coordinate frame.

Consider the class of invariant strength criteria which are formulated in a tensor-
polynomial form as linear combinations of mixed invariants of the stress tensor σij and
the strength tensors of different ranks Sij , Sijkl , etc., i.e.,

∑
i, k

Sikσik +
∑

i, k, m, n

Sikmnσikσmn + · · · = 1 (6.28)

Using the standard transformation for tensor components we can readily write this equation
for an arbitrary coordinate frame. However, the fact that the strength components form
a tensor induces some conditions that should be imposed on these components and not
necessarily correlate with experimental data.

To be specific, consider a second-order tensor criterion. Introducing contracted nota-
tions for tensor components and restricting ourselves to the consideration of orthotropic
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materials referred to the principal material coordinates 1 and 2 (see Fig. 6.16), we can
present Eq. (6.22) as

F(σ1, σ2, τ12) = R0
1σ1 + R0

2σ2 + R0
11σ

2
1 + 2R0

12σ1σ2 + R0
22σ

2
2 + 4S0

12τ
2
12 = 1

(6.29)

which corresponds to Eq. (6.28) if we put

σ11 = σ1, σ12 = τ12, σ22 = σ2 and S11 = R1, S22 = R2, S1111 = R0
11,

S1122 = S2211 = R0
12, S2222 = R0

22, S1212 = S2121 = S1221 = S2112 = S0
12

The superscript ‘0’ indicates that the components of the strength tensors are referred to
the principal material coordinates. Applying the strength conditions in Eqs. (6.14), we can
reduce Eq. (6.29) to the following form

F(σ1, σ2, τ12) = σ1

(
1

σ+
1

− 1

σ−
1

)
+ σ2

(
1

σ+
2

− 1

σ−
2

)

+ σ 2
1

σ+
1 σ−

1

+ 2R0
12σ1σ2 + σ 2

2

σ+
2 σ−

2

+
(

τ12

τ 12

)2

= 1 (6.30)

This equation looks similar to Eq. (6.20), but there is a principal difference between them.
Whereas Eq. (6.20) is only an approximation to the experimental results, and we can take
any suitable value of coefficient R12 (in particular, we put R12 = 0), the criterion in
Eq. (6.30) has an invariant tensor form, and coefficient R0

12 should be determined using
this property of the criterion.

Following Gol’denblat and Kopnov (1968) consider two cases of pure shear in coordi-
nates 1′ and 2′ shown in Fig. 6.17 and assume that τ+

45 = τ+
45 and τ−

45 = τ−
45, where the

overbar denotes, as earlier, the ultimate value of the corresponding stress. In the general
case, τ+

45 �= τ−
45. Indeed, for a unidirectional composite, stress τ+

45 induces tension in

1′

1

2′

2

t −
45t +

45

1′

1

2′

2

45° 45°

(a) (b)

Fig. 6.17. Pure shear in coordinates (1′, 2′) rotated by 45◦ with respect to the principal material
coordinates (1, 2).
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the fibers, whereas τ−
45 causes compression of the fibers, and the corresponding ultimate

values can be different. Using the results presented in Section 2.4, we can conclude that
for the loading case shown in Fig. 6.17a, σ1 = τ+

45, σ2 = −τ+
45, and τ12 = 0, whereas for

the case in Fig. 6.17b, σ1 = −τ−
45, σ2 = τ−

45, and τ12 = 0. Applying the strength criterion
in Eq. (6.30) for these loading cases, we arrive at

F(σ1 = τ+
45, σ2 = −τ+

45, τ12 = 0)

= τ+
45

(
1

σ+
1

− 1

σ−
1

− 1

σ+
2

+ 1

σ−
2

)
+ (

τ+
45

)2

(
1

σ+
1 σ−

1

+ 1

σ+
2 σ−

2

− 2R0
12

)
= 1

F(σ1 = −τ−
45, σ2 = τ−

45, τ12 = 0)

= τ−
45

(
1

σ−
1

− 1

σ+
1

+ 1

σ+
2

− 1

σ−
2

)
+ (

τ−
45

)2

(
1

σ+
1 σ−

1

+ 1

σ+
2 σ−

2

− 2R0
12

)
= 1

In general, these two equations give different solutions for R0
12. A unique solution exists

if the following compatibility condition is valid

1

σ+
1

− 1

σ−
1

− 1

σ+
2

+ 1

σ−
2

= 1

τ+
45

− 1

τ−
45

(6.31)

If the actual material strength characteristics do not satisfy this equation, the strength
criteria in Eq. (6.30) cannot be applied to this material. If they do, the coefficient R0

12 can
be found as

R0
12 = 1

2

(
1

σ+
1 σ−

1

+ 1

σ+
2 σ−

2

− 1

τ+
45τ

−
45

)
(6.32)

For further analysis, consider for the sake of brevity a special orthotropic material shown
in Fig. 6.16 for which, in accordance with Eqs. (6.22), σ+

1 = σ−
1 = σ+

2 = σ−
2 = σ 0,

τ+
45 = τ−

45 = τ 45, and τ 12 = τ 0. As can be seen, Eq. (6.31) is satisfied in this case, and
the strength criterion, Eq. (6.30), referred to the principal material coordinates (1, 2) in
Fig. 6.16 takes the form

1

σ 2
0

(
σ 2

1 + σ 2
2

)
+ 2R0

12σ1σ2 +
(

τ12

τ 0

)2

= 1 (6.33)

where, in accordance with Eq. (6.32),

R0
12 = 1

σ 2
0

− 1

2τ 2
45

(6.34)
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Substituting Eq. (6.34) into Eq. (6.33), we arrive at the final form of the criterion under
consideration

F(σ1, σ2, τ12) =
(
σ 2

1 + σ 2
2

)
σ 2

0

+
(

2

σ 2
0

− 1

τ 2
45

)
σ1σ2 +

(
τ12

τ 0

)2

= 1 (6.35)

Now, presenting Eq. (6.32) in the following matrix form

{σ }T
[
R0

]
{σ } = 1 (6.36)

where

{σ } =

⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ ,

[
R0

]
=
⎡
⎢⎣

R0
11 R0

12 0

R0
12 R0

11 0

0 0 4S0
12

⎤
⎥⎦

R0
11 = 1

σ 2
0

, R0
12 = 1

σ 2
0

− 1

2τ 2
45

, S0
12 = 1

4τ 2
0

(6.37)

Superscript ‘T’ means transposition converting the column vector {σ } into the row
vector {σ }T.

Let us transform stresses referred to axes (1, 2) into stresses corresponding to axes
(1′ and 2′) shown in Fig. 6.16. Such a transformation can be performed with the aid of
Eqs. (6.24). The matrix form of this transformation is

{σ } = [T ]
{
σ 45

}
, (6.38)

where

[T ] =

⎡
⎢⎢⎢⎢⎢⎣

1

2

1

2
−1

1

2

1

2
1

1

2
−1

2
0

⎤
⎥⎥⎥⎥⎥⎦

Substitution of the stresses in Eq. (6.38) into Eq. (6.36) yields

{
σ 45

}T
[T ]T

[
R0

]
[T ]

{
σ 45

}
= 1

This equation, being rewritten as

{
σ 45

}T [
R45

] {
σ 45

}
= 1 (6.39)
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specifies the strength criterion for the same material but referred to coordinates (1′, 2′).
The strength matrix has the following form

[
R45

]
= [T ]T

[
R0

]
[T ] =

⎡
⎢⎣

R45
11 R45

12 0

R45
12 R45

11 0

0 0 4S45
12

⎤
⎥⎦

where

R45
11 = 1

σ 2
0

+ 1

4

(
1

τ 2
0

− 1

τ 2
45

)

R45
12 = 1

σ 2
0

− 1

4

(
1

τ 2
0

+ 1

τ 2
45

)
(6.40)

S45
12 = 1

4τ 2
45

The explicit form of Eq. (6.39) is

[
1

σ 2
0

+ 1

4

(
1

τ 2
0

− 1

τ 2
45

)] [(
σ 45

1

)2 +
(
σ 45

2

)2
]

+ 2

[
1

σ 2
0

− 1

4

(
1

τ 2
0

+ 1

τ 2
45

)]
σ 45

1 σ 45
2 +

(
τ 45

12

τ 45

)2

= 1 (6.41)

Now apply the strength conditions in Eqs. (6.26) to give

1

σ 2
45

= 1

σ 2
0

+ 1

4

(
1

τ 2
0

− 1

τ 2
45

)
(6.42)

Then, the strength criterion in Eq. (6.41) can be presented as

F
(
σ 45

1 , σ 45
2 , τ 45

12

)
= 1

σ 2
45

[(
σ 45

1

)2 +
(
σ 45

2

)2
]

+
(

2

σ 2
45

− 1

τ 2
0

)
σ 45

1 σ 45
2 +

(
τ 45

12

τ 45

)2

= 1 (6.43)

Thus, we have two formulations of the strength criterion under consideration which are
specified by Eq. (6.35) for coordinates 1 and 2 and by Eq. (6.43) for coordinates 1′ and 2′
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(see Fig. 6.16). As can be seen, Eqs. (6.35) and (6.43) have similar forms and follow from
each other if we change the stresses in accordance with the following rule

σ1 ↔ σ 45
1 , σ2 ↔ σ 45

2 , τ12 ↔ τ 45
12 , σ 0 ↔ σ 45, τ 0 ↔ τ 45

However, such correlation is possible under the condition imposed by Eq. (6.42) which
can be presented in the form

Is = 1

σ 2
0

+ 1

4τ 2
0

= 1

σ 2
45

+ 1

4τ 2
45

(6.44)

This result means that Is is the invariant of the strength tensor, i.e., that its value does not
depend on the coordinate frame for which the strength characteristics entering Eq. (6.44)
have been found.

If the actual material characteristics do not satisfy Eq. (6.44), the tensor strength criterion
cannot be applied to this material. However, if this equation is consistent with experimental
data, the tensor criterion offers considerable possibilities to study material strength. Indeed,
restricting ourselves to two terms presented in Eq. (6.28) let us write this equation in
coordinates (1′, 2′) shown in Fig. 6.16 and suppose that φ �= 45◦. Then

∑
i, k

S
φ
ikσ

φ
ik +

∑
i, k, m, n

S
φ
ikmnσ

φ
ikσ

φ
mn = 1 (6.45)

Here, S
φ
ik and S

φ
ikmn are the components of the second and the fourth rank strength tensors

which are transformed in accordance with tensor calculus as

S
φ
ik =

∑
p, q

liplkqS0
pq

S
φ
ikmn =

∑
p, q, r, s

liplkq lmr lnsS
0
pqrs

(6.46)

Here, l are directional cosines of axes 1′ and 2′ on the plane referred to coordinates 1 and 2
(see Fig. 6.16), i.e., l11 = cos φ, l12 = sin φ, l21 = − sin φ, and l22 = cos φ. Substitution
of Eqs. (6.46) in Eq. (6.45) yields the strength criterion in coordinates (1′, 2′) but written
in terms of strength components corresponding to coordinates (1, 2), i.e.,

∑
i, k

∑
p, q

liplkqS0
pqσ

φ
ik +

∑
i, k, m, n

∑
p, q, r, s

liplkq lmr lnsS
0
pqrsσ

φ
ikσ

φ
mn = 1 (6.47)
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Apply Eq. (6.47) to the special orthotropic material studied above (see Fig. 6.16) and for
which, in accordance with Eq. (6.22),

Spq = 0, S1111 = S2222 = R0
11 = R0

22 = 1

σ 2
0

S1122 = S2211 = R0
12 = 1

σ 2
0

− 1

2τ 2
45

S1212 = S2121 = S1221 = S2112 = S0
12 = 1

4τ 2
0

(6.48)

Following Gol’denblat and Kopnov (1968), consider the material strength under tension
in the 1′-direction and in shear in plane (1′, 2′). Taking first σ

φ
11 = σφ, σ

φ
22 = 0, τ

φ
12 = 0

and then τ
φ
12 = τφ, σ

φ
11 = 0, σ

φ
22 = 0, we get from Eq. (6.47)

σ 2
φ = 1∑

p, q, r, s

l1pl1q l1r l1sS0
pqrs

, τ 2
φ = 1∑

p, q, r, s

l1pl2q l1r l2sS0
pqrs

or in explicit form

σ 2
φ =

[
R0

11

(
cos4 φ + sin4 φ

)
+ 2

(
S0

12 + 2R0
12

)
sin2 φ cos2 φ

]−1

τ 2
φ = 4

[
2
(
R0

11 − R0
12

)
sin2 φ cos2 φ + S0

12 cos2 2φ
]−1

(6.49)

These equations allow us to calculate the material strength in any coordinate frame whose
axes make angle φ with the corresponding principal material axes. Taking into account
Eqs. (6.44) and (6.48), we can derive the following relationship from Eqs. (6.49)

1

σ 2
φ

+ 1

4τ 2
φ

= 1

σ 2
0

+ 1

4τ 2
0

= Is (6.50)

So, Is is indeed the invariant of the strength tensor whose value for a given material does
not depend on φ.

Thus, tensor-polynomial strength criteria provide universal equations that can be readily
written in any coordinate frame, but on the other hand, material mechanical characteristics,
particularly material strength in different directions, should follow the rules of tensor
transformation, i.e., composed invariants (such as Is) must be the same for all coordinate
frames.

6.1.4. Interlaminar strength

The failure of composite laminates can also be associated with interlaminar frac-
ture caused by transverse normal and shear stresses σ3 and τ13, τ23 or σz and τxz, τyz
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(see Fig. 4.18). Since σ3 = σz and shear stresses in coordinates (1, 2, 3) are linked with
stresses in coordinates (x, y, z) by simple relationships in Eqs. (4.67) and (4.68), the
strength criterion is formulated here in terms of stresses σz, τxz, τyz which can be found
directly from Eqs. (5.124). Since the laminate strength in tension and compression across
the layers is different, we can use the polynomial criterion similar to Eq. (6.15). For the
stress state under study, we get

σz

(
1

σ+
3

− 1

σ−
3

)
+
(

τr

τ i

)2

= 1 (6.51)

where

τr =
√

τ 2
13 + τ 2

23 =
√

τ 2
xz + τ 2

yz

is the resultant transverse shear stress, and τ i determines the interlaminar shear strength
of the material.

In thin-walled structures, the transverse normal stress is usually small and can be
neglected in comparison with the shear stress. Then, Eq. (6.51) can be simplified and
written as

τr = τ i (6.52)

As an example, Fig. 6.18 displays the dependence of the normalized maximum deflection
w/R on the force P for a fiberglass–epoxy cross-ply cylindrical shell of radius R loaded
with a radial concentrated force P (Vasiliev, 1970). The shell failure was caused by
delamination. The shadowed interval shows the possible values of the ultimate force

0
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1.6

2

0 0.004 0.008 0.012 0.016 0.02

P, kN

Rw

Fig. 6.18. Experimental dependence of the normalized maximum deflection of a fiberglass–epoxy cylindrical
shell on the radial concentrated force.
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calculated with the aid of Eq. (6.52) (this value is not unique because of the scatter in
interlaminar shear strength).

6.2. Practical recommendations

As follows from the foregoing analysis, for practical strength evaluation of fabric com-
posites, we can use either the maximum stress criterion, Eqs. (6.2) or second-order
polynomial criterion in Eq. (6.15) in conjunction with Eq. (6.16) for the case of biax-
ial compression. For unidirectional composites with polymeric matrices, we can apply
Eqs. (6.3) and (6.4) in which function F is specified by Eq. (6.18). It should be empha-
sized that experimental data usually have rather high scatter, and the accuracy of more
complicated and rigorous strength criteria can be more apparent than real.

Comparing tensor-polynomial and approximation strength criteria, we can conclude the
following. The tensor criteria should be used if our purpose is to develop a theory of mate-
rial strength, because a consistent physical theory must be covariant, i.e., the constraints
that are imposed on material properties within the framework of this theory should not
depend on a particular coordinate frame. For practical applications, the approximation cri-
teria are more suitable, but in the forms they are presented here they should be used only
for orthotropic unidirectional plies or fabric layers in coordinates whose axes coincide
with the fibers’ directions.

To evaluate the laminate strength, we should first determine the stresses acting in the
plies or layers (see Section 5.11), identify the layer that is expected to fail first and
apply one of the foregoing strength criteria. The fracture of the first ply or layer may not
necessarily result in failure of the whole laminate. Then, simulating the failed element with
a suitable model (see, e.g., Section 4.4.2), the strength analysis is repeated and continued
up to failure of the last ply or layer.

In principle, failure criteria can be constructed for the whole laminate as a quasi-
homogeneous material. This is not realistic for design problems, since it would be
necessary to compare the solutions for numerous laminate structures which cannot prac-
tically be tested. However, this approach can be used successfully for structures that are
well developed and in mass production. For example, the segments of two structures of
composite drive shafts – one made of fabric and the other of unidirectional composite,
are shown in Fig. 6.19. Testing these segments in tension, compression, and torsion, we
can plot the strength envelope on the plane (M , T ), where M is the bending moment and
T is the torque, and evaluate the shaft strength for different combinations of M and T

with high accuracy and reliability.

6.3. Examples

For the first example, consider a problem of torsion of a thin-walled cylindrical
drive shaft (see Fig. 6.20) made by winding a glass–epoxy fabric tape at angles ±45◦.
The material properties are E1 = 23.5 GPa, E2 = 18.5 GPa, G12 = 7.2 GPa, ν12 = 0.16,
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Fig. 6.19. Segments of composite drive shafts with test fixtures. Courtesy of CRISM.
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Fig. 6.20. Torsion of a drive shaft.
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ν21 = 0.2, σ+
1 = 510 MPa, σ−

1 = 460 MPa, σ+
2 = 280 MPa, σ−

2 = 260 MPa,
τ 12 = 85 MPa. The shear strain induced by torque T is (Vasiliev, 1993)

γxy = T

2πR2B44

Here, T is the torque, R = 0.05 m is the shaft radius, and B44 is the shear stiffness of
the wall. According to Eqs. (5.39), B44 = A44h, where h = 5 mm is the wall thickness,
and A44 is specified by Eqs. (4.72) and can be presented as (φ = 45◦)

A44 = 1

4(1 − ν12ν21)
(E1 + E2 − 2E1ν12)

Using Eqs. (5.122), we can determine strains in the principal material coordinates 1 and
2 of ±45◦ layers (see Fig. 6.20)

ε±
1 = ±1

2
γxy, ε±

2 = ∓1

2
γxy, γ ±

12 = 0

Applying Eqs. (5.123) and the foregoing results, we can express stresses in terms
of T as

σ±
1 = ± TE1(1 − ν12)

πR2h(E1 + E2 − 2E1ν12)

σ±
2 = ∓ TE2(1 − ν21)

πR2h(E1 + E2 − 2E1ν12)

τ±
12 = 0

The task is to determine the ultimate torque, T u.
First, use the maximum stress criterion, Eqs. (6.2), which gives the following four

values of the ultimate torque corresponding to tensile or compressive failure of ±45◦
layers

σ+
1 = σ+

1 , Tu = 34 kNm

σ−
1 = σ−

1 , Tu = 30.7 kNm

σ+
2 = σ+

2 , Tu = 25.5 kNm

σ−
2 = σ−

2 , Tu = 23.7 kNm

The actual ultimate torque is the lowest of these values, i.e., T u = 23.7 kNm.
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Now apply the polynomial criterion in Eq. (6.15), which has the form

σ±
1

(
1

σ+
1

− 1

σ−
1

)
+ σ±

2

(
1

σ+
2

− 1

σ−
2

)
+

(
σ±

1

)2

σ+
1 σ−

1

+
(
σ±

2

)2

σ+
2 σ−

2

= 1

For +45 and −45◦ layers, we get, respectively Tu = 21.7 kNm and Tu = 17.6 kNm.
Thus, Tu = 17.6 kNm.

As a second example, consider the cylindrical shell described in Section 5.12 (see
Fig. 5.30) and loaded with internal pressure p. Axial, Nx , and circumferential, Ny , stress
resultants can be found as

Nx = 1

2
pR, Ny = pR

where R = 100 mm is the shell radius. Applying constitutive equations, Eqs. (5.125),
and neglecting the change in the cylinder curvature (κy = 0), we arrive at the following
equations for strains

B11ε
0
x + B12ε

0
y = 1

2
pR, B12ε

0
x + B22ε

0
y = pR (6.53)

Using Eqs. (5.122) and (5.123) to determine strains and stresses in the principal material
coordinates of the plies, we have

σ
(i)
1 = pR

2B
E1

[
(B22 − 2B12)

(
cos2 φi + ν12 sin2 φi

)

+ (2B11 − B12)
(

sin2 φi + ν12 cos2 φi

)]

σ
(i)
2 = pR

2B
E2

[
(B22 − 2B12)

(
sin2 φi + ν21 cos2 φi

)

+ (2B11 − B12)
(

cos2 φi + ν21 sin2 φi

)]

τ
(i)
12 = pR

2B
G12 (2B11 + B12 − B22) sin 2φi

(6.54)

Here, B = B11B22 −B2
12, and the membrane stiffnesses Bmn for the shell under study are

presented in Section 5.12. Subscript ‘i’ in Eqs. (6.54) indicates the helical plies for which
i = 1, φ1 = φ = 36◦ and circumferential plies for which i = 2 and φ2 = 90◦.

The task that we consider is to find the ultimate pressure pu. For this purpose, we use
the strength criteria in Eqs. (6.3), (6.4), and (6.17), and the following material properties
σ+

1 = 1300 MPa, σ+
2 = 27 MPa, τ 12 = 45 MPa.
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Calculation with the aid of Eqs. (6.54) yields

σ
(1)
1 = 83.9p, σ

(1)
2 = 24.2p, τ

(1)
12 = 1.9p,

σ
(2)
1 = 112p, σ

(2)
2 = 19.5p, τ

(2)
12 = 0

Applying Eqs. (6.3) to evaluate the plies’ strength along the fibers, we get

σ
(1)
1 = σ+

1 , pu = 14.9 MPa

σ
(2)
1 = σ+

1 , pu = 11.2 MPa

The failure of the matrix can be identified using Eq. (6.17), i.e.,

(
σ

(1)
2

σ+
2

)2

+
(

τ
(1)
12

τ 12

)2

= 1, pu = 1.1 MPa

(
σ

(2)
2

σ+
2

)2

+
(

τ
(2)
12

τ 12

)2

= 1, pu = 1.4 MPa

Thus, we can conclude that failure occurs initially in the matrix of helical plies and takes
place at an applied pressure p

(1)
u = 1.1 MPa. This pressure destroys only the matrix of the

helical plies, whereas the fibers are not damaged and continue to work. According to the
model of a unidirectional layer with failed matrix discussed in Section 4.4.2, we should
take E2 = 0, G12 = 0, and ν12 = 0 in the helical layer. Then, the stiffness coefficients,
Eqs. (4.72) for this layer, become

A
(1)
11 = E1 cos4 φ, A

(1)
12 = E1 sin2 φ cos2 φ, A

(1)
22 = E1 sin4 φ (6.55)

Calculating again the membrane stiffnesses Bmn (see Section 5.12) and using Eqs. (6.53),
we get for p ≥ p

(1)
u

σ
(1)
1 = 92.1p, σ

(1)
2 = 24.2p(1)

u = 26.6 MPa, τ
(1)
12 = 1.9p(1)

u = 2.1 MPa,

σ
(2)
1 = 134.6p, σ

(2)
2 = 22.6p, τ

(2)
12 = 0

For a pressure p ≥ p
(1)
u , three modes of failure are possible. The pressure causing failure

of the helical plies under longitudinal stress σ
(1)
1 can be calculated from the following

equation

σ
(1)
1 = 83.9p(1)

u + 92.1
(
pu − p(1)

u

)
= σ+

1
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which yields pu = 14.2 MPa. The analogous value for the circumferential ply is
determined by the following condition

σ
(2)
1 = 112p(1)

u + 134.6
(
pu − p(1)

u

)
= σ+

1

which gives pu = 9.84 MPa. Finally, the matrix of the circumferential layer can fail under
tension across the fibers. Since τ

(2)
12 = 0, we put

σ
(2)
2 = 19.5p(1)

u + 22.6
(
pu − p(1)

u

)
= σ+

2

and find pu = 1.4 MPa
Thus, the second failure stage takes place at p

(2)
u = 1.4 MPa and is associated with

cracks in the matrix of the circumferential layer (see Fig. 4.36).
For p ≥ p

(2)
u , we should put E2 = 0, G12 = 0, and ν12 = 0 in the circumferential

layer whose stiffness coefficients become

A
(2)
11 = 0, A

(2)
12 = 0, A

(2)
22 = E1 (6.56)

The membrane stiffnesses of the structure now correspond to the monotropic model of a
composite unidirectional ply (see Section (3.3)) and can be calculated as

Bmn = A(1)
mnh1 + A(2)

mnh2

where Amn are specified by Eqs. (6.55) and (6.56), and h1 = 0.62 mm and h2 = 0.6 mm
are the thicknesses of the helical and the circumferential layers. Using again Eqs. (6.54),
we have for p ≥ p

(2)
u

σ
(1)
1 = 137.7p, σ

(2)
1 = 122.7p

The cylinder’s failure can now be caused by fracture of either helical fibers or circum-
ferential fibers. The corresponding values of the ultimate pressure can be found from the
following equations

σ
(1)
1 = 83.9p(1)

u + 92.1
(
p(2)

u − p(1)
u

)
+ 137.7

(
pu − p(2)

u

)
= σ+

1

σ
(2)
1 = 112p(1)

u + 134.6
(
p(2)

u − p(1)
u

)
+ 122.7

(
pu − p(2)

u

)
= σ+

1

in which p
(1)
u = 1.1 MPa, and p

(2)
u = 1.4 MPa.

The first of these equations yields pu = 10 MPa, whereas the second gives pu =
10.7 MPa.

Thus, failure of the structure under study occurs at pu = 10 MPa as a result of fiber
fracture in the helical layer.
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Fig. 6.21. Dependence of the axial (a) and the circumferential (b) strains on internal pressure. ( ) analysis;
(©) experimental data.

The dependencies of strains, which can be calculated using Eqs. (6.53), and the appro-
priate values of Bmn are shown in Fig. 6.21 (solid lines). As can be seen, the theoretical
prediction is in fair agreement with the experimental results. The same conclusion can be
drawn for the burst pressure which is listed in Table 6.1 for two types of filament-wound
fiberglass pressure vessels. A typical example of the failure mode for the vessels presented
in Table 6.1 is shown in Fig. 6.22.

6.4. Allowable stresses for laminates consisting of unidirectional plies

It follows from Section 6.3 (see also Section 4.4.2) that a unidirectional fibrous
composite ply can experience two modes of failure associated with
• fiber failure, and
• cracks in the matrix.
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Table 6.1
Burst pressure for the filament-wound fiberglass pressure vessels.

Diameter of
the vessel
(mm)

Layer
thickness (mm)

Calculated burst
pressure (MPa)

Number of
tested
vessels

Experimental burst
pressure

h1 h2 Mean
value (MPa)

Variation
coefficient (%)

200 0.62 0.60 10 5 9.9 6.8
200 0.92 0.93 15 5 13.9 3.3

Fig. 6.22. The failure mode of a composite pressure vessel.

The first mode can be identified using the strength criterion in Eqs. (6.3), i.e.,

σ
(i)
1 ≤ σ+

1 if σ
(i)
1 > 0

∣∣∣σ (i)
1

∣∣∣ ≤ σ−
1 if σ

(i)
1 < 0

(6.57)

in which σ+
1 and σ−

1 are the ultimate stresses of the ply under tension and compression
along the fibers, and i is the ply number. For the second failure mode, we have the strength
criterion in Eq. (6.18), i.e.,

σ
(i)
2

(
1

σ+
2

− 1

σ−
2

)
+

(
σ

(i)
2

)2

σ+
2 σ−

2

+
(

τ
(i)
12

τ 12

)2

= 1 (6.58)
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sy

txy
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sxsx

Fig. 6.23. A laminate loaded with normal and shear stresses.

in which σ+
2 and σ−

2 are the ultimate stresses of the ply under tension and compression
across the fibers, and τ 12 is the ultimate in-plane shear stress.

Consider a laminate loaded with normal, σx and σy , and shear, τxy , stresses as
in Fig. 6.23. Assume that the stresses are increased in proportion to some loading
parameter p. Applying the strength criteria in Eqs. (6.57) and (6.58), we can find two
values of this parameter, i.e., p = pf which corresponds to fiber failure in at least one
of the plies and p = pm for which the loading causes matrix failure in one or more
plies. Since the parameters pf and pm usually do not coincide with each other for modern
composites, a question concerning the allowable level of stresses acting in the laminate
naturally arises. Obviously, the stresses under which the fibers fail must not be treated as
allowable stresses. Moreover, the allowable value pa of the loading parameter must be
less than pf by a certain safety factor sf , i.e.,

pf
a = pf /sf (6.59)

However, for matrix failure, the answer is not evident, and at least two different situations
may take place.

First, the failure of the matrix can result in failure of the laminate. As an example,
we can take a ±φ angle-ply layer discussed in Section 4.5 whose moduli in the x- and
y-directions are specified by Eqs. (4.147), i.e.,

Ex = A11 − A2
12

A22
, Ey = A22 − A2

12

A11

Ignoring the load-carrying capacity of the failed matrix, i.e., taking E2 = 0, G12 = 0,

and ν12 = ν21 = 0 in Eqs. (4.72) to get

A11 = E1 cos4 φ, A12 = E1 sin2 φ cos2 φ, A22 = E1 cos4 φ
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we arrive at Ex = 0 and Ey = 0 which means that the layer under consideration cannot
work without the matrix. For such a mode of failure, we should take the allowable loading
parameter as

pm
a = pm/sm (6.60)

where sm is the corresponding safety factor.
Second, the matrix fracture does not result in laminate failure. As an example of such

a structure, we can take the pressure vessel considered in Section 6.3 (see Figs. 6.21
and 6.22). Now we have another question as to whether the cracks in the matrix are
allowed even if they do not affect the structure’s strength. The answer to this question
depends on the operational requirements for the structure. For example, suppose that the
pressure vessel in Fig. 6.22 is a model of a filament-wound solid propellant rocket motor
case which works only once and for a short period of time. Then, it is appropriate to
ignore the cracks appearing in the matrix and take the allowable stresses in accordance
with Eq. (6.59). We can also suppose that the vessel may be a model of a pressurized
passenger cabin in a commercial airplane for which no cracks in the material are allowed
in flight. Then, in principle, we must take the allowable stresses in accordance with
Eq. (6.60). However, it follows from the examples considered in Sections 4.4.2 and 6.3,
that for modern composites the loading parameter pm is reached at the initial stage of the
loading process. As a result, the allowable loading parameter, pm

a in Eq. (6.60), is so small
that modern composite materials cannot demonstrate their high strength governed by the
fibers and cannot compete with metal alloys. A more realistic approach allows the cracks
in the matrix to occur but only if pm is higher than the operational loading parameter po.
Using Eq. (6.60), we can presume that

po = pm
a = pm/sm

The ultimate loading parameter p is associated with fiber failure, so that p = pf . Thus,
the actual safety factor for the structure becomes

s = p

po
= pf

pm
sm (6.61)

and depends on the ratio pf /pm.
To be specific, consider a four-layered [0◦/45◦/−45◦/90◦] quasi-isotropic carbon–

epoxy laminate shown in Fig. 6.23 which is widely used in aircraft composite structures.
The mechanical properties of quasi-isotropic laminates are discussed in Section 5.7. The
constitutive equations for such laminates have the form typical for isotropic materials, i.e.,

εx = 1

E
(σx − νσy), εy = 1

E
(σy − νσx), γxy = τxy

G
(6.62)

where E, ν, and G are given by Eqs. (5.110). For a typical carbon–epoxy fibrous com-
posite, Table 5.4 yields E = 54.8 GPa, ν = 0.31, G = 20.9 GPa. The strains in the plies’
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principal coordinates (see Fig. 4.18) can be found using Eqs. (4.69) from which we have
for the 0◦ layer,

ε1 = εx, ε2 = εy, γ12 = γxy

for the ±45◦ layer,

ε1 = 1

2
(εx + εy ± γxy), ε2 = 1

2
(εx + εy ∓ γxy), γ12 = ±(εy − εx)

for the 90◦ layer,

ε1 = εy, ε2 = εx, γ12 = γxy

The stresses in the plies are

σ1 = E1(ε1 + ν12ε2), σ2 = E2(ε2 + ν21ε1), τ12 = G12γ12 (6.63)

where E1, 2 = E1, 2/(1 − ν12ν21), ν12E1 = ν21E2, and the elastic constants E1, E2, ν21,
and G12, are given in Table 3.5. For given combinations of the acting stresses σx, σy ,
and τxy (see Fig. 6.23), the strains εx, εy , and γxy , found with the aid of Eqs. (6.62),
are transformed to the ply strains ε1, ε2, and γ12, and then substituted into Eqs. (6.63)
for the stresses σ1, σ2, and τ12. These stresses are substituted into the strength criteria in
Eqs. (6.57) and (6.58), the first of which gives the combination of stresses σx , σy , and τxy

causing failure of the fibers, whereas the second one enables us to determine the stresses
inducing matrix failure.

Consider the biaxial loading with stresses σx and σy as shown in Fig. 6.23. The cor-
responding failure envelopes are presented in Fig. 6.24. The solid lines determine the
domain within which the fibers do not fail, whereas within the area bound by the dashed
lines no cracks in the matrix appear. Consider, for example, the cylindrical pressure vessel
discussed in Section 6.3 for which

σx = pR

2h
, σy = pR

h
(6.64)

are the axial and circumferential stresses expressed in terms of the vessel radius and
thickness, R and h, and the applied internal pressure p. Let us take R/h = 100. Then,
σx = 50p and σy = 100p, whereby σy/σx = 2. This combination of stresses is shown
with the line 0BA in Fig. 6.24. Point A corresponds to failure of the fibers in the circum-
ferential (90◦) layer and gives the ultimate loading parameter (which is the pressure in
this case) p = pf = 8 MPa. Point B corresponds to matrix failure in the axial (0◦) layer
and to the loading parameter pm = 2.67 MPa. Taking sm = 1.5, which is a typical value
of the safety factor preventing material damage under the operational pressure, we get
s = 4.5 from Eq. (6.61). In case we do not need such a high safety factor, we should
either allow the cracks in the matrix to appear under the operational pressure, or to change
the carbon–epoxy composite to some other material. It should be noted that the significant
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Fig. 6.24. Failure envelopes for biaxial loading corresponding to the failure criteria in Eqs. (6.57)
( ), and (6.58) ( ).
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Fig. 6.25. Failure envelopes for uniaxial tension and compression combined with shear corresponding to the
failure criteria in Eqs. (6.57) ( ), and (6.58) ( ).
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difference between the loading parameters pf and pm is typical mainly for tension. For
compressive loads, the fibers usually fail before the matrix (see point C in Fig. 6.24).

Similar results for uniaxial tension with stresses σx combined with shear stresses τxy

(see Fig. 6.23) are presented in Fig. 6.25. As can be seen, shear can induce the same effect
as tension.

The problem of matrix failure discussed above significantly reduces the application
of modern fibrous composites to structures subjected to long-term cyclic loading. It
should be noted that Figs. 6.24 and 6.25 correspond to static loading at room temper-
ature. Temperature, moisture, and fatigue can considerably reduce the areas bounded by
the dashed lines in Figs. 6.24 and 6.25 (see Sections 7.1.2 and 7.3.3). Some methods
developed to solve the problem of matrix failure are discussed in Sections 4.4.3 and 4.4.4.
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Chapter 7

ENVIRONMENTAL, SPECIAL LOADING, AND
MANUFACTURING EFFECTS

The properties of composite materials, as well as those of all structural materials, are
affected by environmental and operational conditions. Moreover, for polymeric com-
posites, this influence is more pronounced than for conventional metal alloys, because
polymers are more sensitive to temperature, moisture, and time, than are metals. There
exists also a specific feature of composites associated with the fact that they do not exist
apart from composite structures and are formed while these structures are fabricated. As a
result, the material characteristics depend on the type and parameters of the manufactur-
ing process, e.g., unidirectional composites made by pultrusion, hand lay-up, and filament
winding can demonstrate different properties.

This section of the book is concerned with the effect of environmental, loading, and
manufacturing factors on the mechanical properties and behavior of composites.

7.1. Temperature effects

Temperature is the most important of environmental factors affecting the behavior
of composite materials. First of all, polymeric composites are rather sensitive to tem-
perature and have relatively low thermal conductivity. This combination of properties
allows us, on one hand, to use these materials in structures subjected to short-term heat-
ing, and on the other hand, requires the analysis of these structures to be performed
with due regard to temperature effects. Secondly, there exist composite materials, e.g.,
carbon–carbon and ceramic composites, that are specifically developed for operation under
intense heating and materials such as mineral-fiber composites that are used to form
heatproof layers and coatings. Thirdly, the fabrication of composite structures is usu-
ally accompanied with more or less intensive heating (e.g., for curing or carbonization),
and the subsequent cooling induces thermal stresses and strains, to calculate which we
need to utilize the equations of thermal conductivity and thermoelasticity, as discussed
below.

359
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7.1.1. Thermal conductivity

Heat flow through a unit area of a surface with normal n is related to the temperature
gradient in the n-direction according to Fourier’s law as

q = −λ
∂T
∂n

(7.1)

where λ is the thermal conductivity of the material. The temperature distribution along
the n-axis is governed by the following equation

∂
∂n

(
λ

∂T
∂n

)
= cρ

∂T
∂t

(7.2)

in which c and ρ are the specific heat and density of the material, and t is time. For a
steady (time-independent) temperature distribution, ∂T/∂t = 0, and Eq. (7.2) yields

T = C1

∫
dn

λ
+ C2 (7.3)

Consider a laminated structure referred to coordinates x, z as shown in Fig. 7.1. To
determine the temperature distribution along the x axis only, we should take into account
that λ does not depend on x, and assume that T does not depend on z. Using conditions
T (x = 0) = T0 and T (x = l) = Tl to find the constants C1 and C2 in Eq. (7.3), in which
n = x, we get

T = T0 + x

l
(Tl − T0)

Introduce the apparent thermal conductivity of the laminate in the x direction, λx, and
write Eq. (7.1) for the laminate as

qx = −λx

Tl − T0

l

Th

T0
Tl

z

x

i

1

l

hi

zi−1

zi

h
z

Fig. 7.1. Temperature distribution in a laminate.
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The same equation can be written for the ith layer, i.e.,

qi = −λi

Tl − T0

l

The total heat flow through the laminate in the x direction is

qxh =
k∑

i=1

qihi

Combining the foregoing results, we arrive at

λx =
k∑

i=1

λihi (7.4)

where hi = hi/h.
Consider the heat transfer in the z direction and introduce the apparent thermal

conductivity λz in accordance with the following form of Eq. (7.1)

qz = −λz

Th − T0

h
(7.5)

Taking n = z and λ = λi for zi−1 ≤ z ≤ zi in Eq. (7.3), using step-wise integration and
the conditions T (z = 0) = T0, T (z = h) = Th to find constants C1, and C2, we obtain
for the ith layer

Ti = T0 + Th − T0∑k
i=1

hi
λi

⎛
⎝z − zi−1

λi

+
i−1∑
j=1

hj

λj

⎞
⎠ (7.6)

The heat flow through the ith layer follows from Eqs. (7.1) and (7.6), i.e.,

qi = −λi

∂Ti

∂z
= − Th − T0∑k

i=1
hi
λi

Obviously, qi = qz (see Fig. 7.1), and with due regard to Eq. (7.5)

1

λz

=
k∑

i=1

hi

λi

(7.7)

where, as earlier, hi = hi/h.
The results obtained, Eqs. (7.4) and (7.7), can be used to determine the thermal con-

ductivity of a unidirectional composite ply. Indeed, comparing Fig. 7.1 with Fig. 3.34
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showing the structure of the first-order ply model, we can write the following equa-
tions specifying thermal conductivity of a unidirectional ply along and across the
fibers

λ1 = λ1f vf + λmvm

1

λ2
= vf

λ2f
+ vm

λm

(7.8)

Here, λ1f and λ2f are the thermal conductivities of the fiber in the longitudinal and trans-
verse directions (for some fibers, they are different), λm is the corresponding characteristic
of the matrix, and vf , vm = 1 − vf are the fiber and matrix volume fractions, respectively.
The conductivity coefficients in Eqs. (7.8) are analogous to elastic constants specified by
Eqs. (3.76) and (3.78), and the discussion presented in Section 3.3 is valid for Eqs. (7.8)
as well. In particular, it should be noted that application of higher-order microstruc-
tural models has practically no effect on λ1, but substantially improves λ2 determined
by Eqs. (7.8). Typical properties for unidirectional and fabric composites are listed in
Table 7.1.

Consider heat transfer in an orthotropic ply or layer in coordinate frame x, y whose
axes x and y make angle φ with the principal material coordinates x1 and x2 as in Fig. 7.2.
Heat flows in coordinates x, y and x1, x2 are linked by the following equations

qx = q1 cos φ − q2 sin φ, qy = q1 sin φ + q2 cos φ (7.9)

Here, in accordance with Eq. (7.1)

q1 = −λ1
∂T
∂x1

, q2 = −λ2
∂T
∂x2

Table 7.1
Typical thermal conductivity and expansion coefficients of composite materials.

Property Glass–
epoxy

Carbon–
epoxy

Aramid–
epoxy

Boron–
epoxy

Glass fabric–
epoxy

Aramid
fabric–epoxy

Longitudinal
conductivity
λ1 (W/mK)

0.6 1 0.17 0.5 0.35 0.13

Transverse
conductivity
λ2 (W/mK)

0.4 0.6 0.1 0.3 0.35 0.13

Longitudinal
CTE 106

α1 (1/◦C)

7.4 −0.3 −3.6 4.1 8 0.8

Transverse
CTE 106

α2 (1/◦C)

22.4 34 60 19.2 8 0.8
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x2

y

q1

q1

q2

q2−

qy

qx

f

Fig. 7.2. Heat flows in coordinates x, y and x1, x2.

Changing variables x1, x2 to x, y with the aid of the following transformation relationships

x = x1 cos φ − x2 sin φ, y = x1 sin φ + x2 cos φ

and substituting q1 and q2 into Eqs. (7.9), we arrive at

qx = −λx

∂T
∂x

− λxy

∂T
∂y

, qy = −λy

∂T
∂y

+ λxy

∂T
∂x

where

λx = λ1 cos2 φ + λ2 sin2 φ

λy = λ1 sin2 φ + λ2 cos2 φ

λxy = (λ2 − λ1) sin φ cos φ

(7.10)

can be treated as the ply thermal conductivities in coordinates x, y. Since the ply is
anisotropic in these coordinates, the heat flow in the, for example x direction, induces
a temperature gradient not only in the x direction, but in the y direction as well. Using
Eq. (7.4), we can now determine the in-plane thermal conductivities of the laminate as

�x =
k∑

i=1

λ(i)
x hi, �y =

k∑
i=1

λ(i)
y hi, �xy =

k∑
i=1

λ(i)
xyhi (7.11)

where λ
(i)
x,y are specified by Eqs. (7.10) in which λ1,2 = λ

(i)
1,2 and φ = φi . For ±φ angle-ply

laminates that are orthotropic, �xy = 0.
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Fig. 7.3. A composite section of a space telescope. Courtesy of CRISM.

As an example, consider the composite body of a space telescope, the section of
which is shown in Fig. 7.3. The cylinder having diameter D = 1 m and total thickness
h = 13.52 mm consists of four layers, i.e.,
• ±φs angle-ply carbon–epoxy external skin with the following parameters:

φs = 20◦, he
s = 3.5 mm, Ee

1 = 120 GPa,
Ee

2 = 11 GPa, Ge
12 = 5.5 GPa, νe

21 = 0.27,

λe
1 = 1 W/m K, λe

2 = 0.6 W/m K,

αe
1 = −0.3 · 10−6 1/◦C, αe

2 = 34 · 10−6 1/◦C,

• carbon–epoxy lattice layer (see Fig. 4.93) formed by a system of ±φr helical ribs with
φr = 26◦, hr = 9 mm, δr = 4 mm, ar = 52 mm, Er = 80 GPa,
λr = 0.9 W/m K, αr = −1 · 10−6 1/◦C,

• internal skin made of aramid fabric with
hi

s = 1 mm, Ei
x = Ei

y = 34 GPa, Gi
xy = 5.6 GPa,

νi
xy = νi

yx = 0.15, λi
x = λi

y = 0.13 W/m K,

αi
x = αi

y = 0.8 · 10−6 1/◦C (x and y are the axial and circumferential coordinates of
the cylinder),

• internal layer of aluminum foil with hf = 0.02 mm, Ef = 70 GPa, νf = 0.3,

λf = 210 W/m K, αf = 22.3 · 10−6 1/◦C
The apparent thermal conductivity of the cylinder wall can be found with the aid of
Eqs. (7.10), (7.11), and the continuum model of the lattice layer described in Section 4.7 as

�x = 1

h

[(
λe

1 cos2 φe + λe
2 sin2 φe

)
he

s + 2

ar

hrδrλr cos2 φr + λi
xh

i
s + λf hf

]
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Calculation yields �x = 0.64 W/mK. The thermal resistance of a unit length of this
structure is

rx = 1

�xπDh
= 36.8

K

W m

7.1.2. Thermoelasticity

It is known that heating gives rise to thermal strains that, when restricted, induce thermal
stresses. Assume that the temperature distribution in a composite structure is known, and
consider the problem of thermoelasticity.

Consider first the thermoelastic behavior of a unidirectional composite ply studied in
Section 3.3 and shown in Fig. 3.29. The generalized Hooke’s law, Eqs. (3.58), allowing
for temperature effects, can be written as

ε1T = ε1 + εT
1 , ε2T = ε2 + εT

2 , γ12T = γ12 (7.12)

Here, and subsequently, the subscript “T” shows the strains that correspond to the problem
of thermoelasticity, whereas the superscript “T” indicates temperature terms. Elastic strains
ε1, ε2, and γ12 in Eqs. (7.12) are related to stresses by Eqs. (3.58). Temperature strains,
to a first approximation, can be taken as linear functions of the temperature change, i.e.,

εT
1 = α1�T, εT

2 = α2�T (7.13)

where α1 and α2 are the coefficients of thermal expansion (CTE) along and across the
fibers, and �T = T − T0 is the difference between the current temperature T and some
initial temperature T0 at which thermal strains are zero. The inverse form of Eqs. (7.12) is

σ1 = E1(ε1T + ν12ε2T ) − E1

(
εT

1 + ν12ε
T
2

)

σ2 = E2(ε2T + ν21ε1T ) − E2

(
εT

2 + ν21ε
T
1

)

τ12 = G12γ12T

(7.14)

where E1,2 = E1,2/(1 − ν12ν21).
To describe the thermoelastic behavior of a ply, apply the first-order micromechanical

model shown in Fig. 3.34. Since the CTE (and elastic constants) of some fibers can be
different in the longitudinal and transverse directions, generalize the first two equations
of Eqs. (3.63) as

ε
f ,m
1T = 1

Ef1,m

(
σ

f ,m
1 − νf 2,mσ

f ,m
2

)
+ αf1,m�T

ε
f ,m
2T = 1

Ef 2,m

(
σ

f ,m
2 − νf1,mσ

f ,m
1

)
+ αf 2,m�T

(7.15)
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Repeating the derivation of Eqs. (3.76)–(3.79), we arrive at

E1 = Ef 1vf + Emvm, ν21 = νf 2vf + νmvm

1

E2
= (1 − νf 1νf 2)

vf

Ef2
+
(

1 − ν2
m

) vm

Em
+ ν2

21

E1

α1 = 1

E1
(Ef 1αf 1vf + Emαmvm)

α2 = (αf 2 + νf 2αf1) vf + (1 + νm) αmvm − ν21α1

(7.16)

These equations generalize Eqs. (3.76)–(3.79) for the case of anisotropic fibers and specify
the apparent CTE of a unidirectional ply.

As an example, consider the high-modulus carbon–epoxy composite tested by
Rogers et al. (1977). The microstructural parameters for this material are as follows
(T = 27◦C)

Ef1 = 411 GPa, Ef 2 = 6.6 GPa, νf1 = 0.06

νf 2 = 0.35, αf1 = −1.2 · 10−6 1/◦C, αf 2 = 27.3 · 10−6 1/◦C

Em = 5.7 GPa, νm = 0.316, αm = 45 · 10−6 1/◦C, vf = vm = 0.5

For these properties, Eqs. (7.16) yield

E1 = 208.3 GPa, E2 = 6.5 GPa, ν21 = 0.33

α1 = −0.57 · 10−6 1/◦C, α2 = 43.4 · 10−6 1/◦C

whereas the experimental results were

E1 = 208.6 GPa, E2 = 6.3 GPa, ν21 = 0.33

α1 = −0.5 · 10−6 1/◦C, α2 = 29.3 · 10−6 1/◦C

Thus, it can be concluded that the first-order microstructural model provides good results
for the longitudinal material characteristics, but fails to predict α2 with the required accu-
racy. The discussion and conclusions concerning this problem presented in Section 3.3 for
elastic constants are valid for thermal expansion coefficients as well. For practical applica-
tions, α1 and α2 are normally determined by experimental methods. However, in contrast
to the elasticity problem for which the knowledge of experimental elastic constants and
material strength excludes consideration of the micromechanical models, for the thermo-
elasticity problems, these models provide us with useful information even if we know the
experimental thermal expansion coefficients. Indeed, consider a unidirectional ply that is
subjected to uniform heating that induces only thermal strains, i.e., ε1T = εT

1 , ε2T = εT
2 ,
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and γ12T = 0. Then, Eqs. (7.14) yield σ1 = 0, σ2 = 0, and τ12 = 0. For homogeneous
materials, this means that no stresses occur under uniform heating. However, this is not
the case for a composite ply. Generalizing Eqs. (3.74) that specify longitudinal stresses in
the fibers and in the matrix, we obtain

σ f
1 = Ef 1(α1 − αf 1)�T , σm

1 = Em(α1 − αm)�T

where α1 and α2 are specified by Eqs. (7.16). Thus, because the thermal expansion coef-
ficients of the fibers and the matrix are different from those of the material, there exist
microstructural thermal stresses in the composite structural elements. These stresses are
self-balanced.

Indeed,

σ1 = σ f
1 vf + σm

1 vm = 0

Consider an orthotropic layer referred to coordinate axes x, y making angle φ with the
principal material coordinate axes (see Fig. 7.2). Using Eqs. (7.14) instead of Eqs. (4.56)
and repeating the derivation of Eqs. (4.71), we arrive at

σx = A11εxT + A12εyT + A14γxyT − AT
11

σy = A21εxT + A22εyT + A24γxyT − AT
22

τxy = A41εxT + A42εyT + A44γxyT − AT
12

(7.17)

where Amn are specified by Eqs. (4.72), and the thermal terms are

AT
11 = E1ε

T
12 cos2 φ + E2ε

T
21 sin2 φ

AT
22 = E1ε

T
12 sin2 φ + E2ε

T
21 cos2 φ

AT
12 =

(
E1ε

T
12 − E2ε

T
21

)
sin φ cos φ

(7.18)

Here,

εT
12 = εT

1 + ν12ε
T
2 , εT

21 = εT
2 + ν21ε

T
1

and εT
1 , εT

2 are determined by Eqs. (7.13). The inverse form of Eqs. (7.17) is

εxT = εx + εT
x , εyT = εy + εT

y , γxyT = γxy + γ T
xy (7.19)
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Here, εx, εy , and γxy are expressed in terms of stresses σx, σy , and τxy by Eqs. (4.75),
whereas the thermal strains are

εT
x = εT

1 cos2 φ + εT
2 sin2 φ

εT
y = εT

1 sin2 φ + εT
2 cos2 φ

γ T
xy =

(
εT

1 − εT
2

)
sin 2φ

Introducing thermal expansion coefficients in the xy coordinate frame with the following
equations

εT
x = αx�T, εT

y = αy�T, γ T
xy = αxy�T (7.20)

and using Eqs. (7.13), we obtain

αx = α1 cos2 φ + α2 sin2 φ

αy = α1 sin2 φ + α2 cos2 φ

αxy = (α1 − α2) sin 2φ

(7.21)

It follows from Eqs. (7.19) that, in an anisotropic layer, uniform heating induces not only
normal strains, but also a shear thermal strain. As can be seen in Fig. 7.4, Eqs. (7.21)
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Fig. 7.4. Calculated (lines) and experimental (circles) dependencies of thermal expansion coefficients on
the ply orientation angle for unidirectional thermoplastic carbon composite ( , ©) and a ±φ angle-ply

layer ( , •).
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provide fair agreement with the experimental results of Barnes et al. (1989) for composites
with carbon fibers and thermoplastic matrix (dashed line and light circles).

Consider a symmetric ±φ angle-ply layer (see Section 4.5.1). This layer is orthotropic,
and the corresponding constitutive equations of thermoelastisity have the form of
Eqs. (7.17) in which A14 = A41 = 0, A24 = A42 = 0, and AT

12 = 0. The inverse form of
these equations is

εxT = εx + εT
x , εyT = εy + εT

y , γxyT = γxy

where εx, εy , and γxy are expressed in terms of stresses by Eqs. (4.146), whereas the
thermal strains are

εT
x = AT

11A22 − AT
22A12

A11A22 − A2
12

, εT
y = AT

22A11 − AT
11A12

A11A22 − A2
12

Using Eqs. (4.147), (7.13), (7.18), and (7.20), we arrive at the following expressions for
apparent thermal expansion coefficients

αx = 1

Ex

(
aT

11 − νyxa
T
22

)
, αy = 1

Ey

(
aT

22 − νxya
T
11

)
(7.22)

in which

aT
11 = E1(α1 + ν12α2) cos2 φ + E2(α2 + ν21α1) sin2 φ

aT
22 = E1(α1 + ν12α2) sin2 φ + E2(α2 + ν21α1) cos2 φ

Comparison of αx with the experimental results of Barnes et al. (1989) for a thermoplastic
carbon composite is presented in Fig. 7.4 (solid line and dots). As can be seen in this figure,
there exists an interval (0 ≤ φ ≤ 40◦) within which the coefficient αx of the angle-ply
layer is negative. The same type of behavior is demonstrated by aramid epoxy angle-ply
composites. A comparison of calculated values based on Eqs. (7.22) with the experimental
results of Strife and Prevo (1979) is presented in Fig. 7.5. Looking at Figs. 7.4 and 7.5,
we can hypothesize that supplementing an angle-ply laminate with plies having small
thermal elongations in the x direction, we can synthesize composite materials with zero
thermal expansion in this direction. Such materials are important, for example, for space
telescopes (Fig. 7.3), antennas, measuring instruments, and other high-precision, thermally
stable structures (Hamilton and Patterson, 1993).

Consider laminates with arbitrary structural parameters (see Chapter 5). Repeating the
derivation of Eqs. (5.5) and using the thermoelasticity constitutive equations, Eqs. (7.17),
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Fig. 7.5. Calculated (line) and experimental (circles) dependencies of thermal expansion coefficient on the
ply orientation angle for an aramid–epoxy ±φ angle-ply layer.

instead of Eqs. (4.71), we arrive at

Nx =B11ε
0
xT +B12ε

0
yT +B14γ

0
xyT +C11κxT +C12κyT +C14κxyT −NT

11

Ny =B21ε
0
xT +B22ε

0
yT +B24γ

0
xyT +C21κxT +C22κyT +C24κxyT −NT

22

Nxy =B41ε
0
xT +B42ε

0
yT +B44γ

0
xyT +C41κxT +C42κyT +C44κxyT −NT

12

Mx =C11ε
0
xT +C12ε

0
yT +C14γ

0
xyT +D11κxT +D12κyT +D14κxyT −MT

11

My =C21ε
0
xT +C22ε

0
yT +C24γ

0
xyT +D21κxT +D22κyT +D24κxyT −MT

22

Mxy =C41ε
0
xT +C42ε

0
yT +C44γ

0
xyT +D41κxT +D42κyT +D44κxyT −MT

12

(7.23)

These equations should be supplemented with Eqs. (5.15) for transverse shear forces, i.e.,

Vx = S55γxT + S56γyT , Vy = S65γxT + S66γyT (7.24)

The temperature terms entering Eqs. (7.23) have the following form

NT
mn =

∫ s

−e

AT
mndz, MT

mn =
∫ s

−e

AT
mnzdz
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where AT
mn are specified by Eqs. (7.18). Performing the transformation that is used in

Section 5.1 to reduce Eqs. (5.6), (5.7), and (5.8) to Eqs. (5.28) and (5.29), we get

NT
mn = J (0)

mn , MT
mn = J (1)

mn − eJ (0)
mn (7.25)

Here (see Fig. 5.8),

J (r)
mn =

∫ h

0
AT

mnt
rdt (7.26)

where r = 0, 1 and mn = 11, 12, 22.
For a laminate, the temperature governed by Eq. (7.6) is linearly distributed over the

layers’ thicknesses (see Fig. 7.1). The same law can be, obviously, assumed for the
temperature coefficients in Eqs. (7.18), i.e., for the ith layer in Fig. 5.10

AT i
mn =

(
AT

mn

)
i−1

+ 1

hi

[(
AT

mn

)
i
−
(
AT

mn

)
i−1

]
(t − ti−1)

where
(
AT

mn

)
i−1 = AT

mn (t = ti−1) and
(
AT

mn

)
i

= AT
mn (t = ti ). Then, Eq. (7.26) takes

the form

J (r)
mn =

k∑
i=1

1

hi

{[(
AT

mn

)
i−1

ti −
(
AT

mn

)
i
ti−1

]
t r+1
i − t r+1

i−1

r + 1

+
[(

AT
mn

)
i
−
(
AT

mn

)
i−1

]
t r+2
i − t r+2

i−1

r + 2

}

If the temperature variation over the thickness of the ith layer can be neglected, we can
introduce some average value

(
A

T

mn

)
i
= 1

2

[(
AT

mn

)
i−1

+
(
AT

mn

)
i

]

and present Eq. (7.26) as

J (r)
mn = 1

r + 1

k∑
i=1

(
A

T

mn

)
i

(
t r+1
i − t r+1

i−1

)
(7.27)

Total (elastic and temperature) generalized strains εT , γT , and κT entering Eqs. (7.23)
and (7.24) can be expressed in terms of the displacements and rotational angles of the
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laminate element with the aid of Eqs. (5.3) and (5.14), i.e.,

ε0
xT = ∂u

∂x
, ε0

yT = ∂v
∂y

, γ 0
xyT = ∂u

∂y
+ ∂v

∂x
(7.28)

κxT = ∂θx

∂x
, κyT = ∂θy

∂y
, κxyT = ∂θx

∂y
+ ∂θy

∂x
(7.29)

γxT = θx + ∂w
∂x

, γyT = θy + ∂w
∂y

(7.30)

It follows from Eqs. (7.23) that in the general case, uniform heating of laminates induces,
in contrast to homogeneous materials, not only in-plane strains but also changes to the
laminate curvatures and twist. Indeed, assume that the laminate is free from edge and
surface loads so that forces and moments in the left-hand sides of Eqs. (7.23) are equal to
zero. Since the CTE of the layers, in the general case, are different, the thermal terms NT

and MT in the right-hand sides of Eqs. (7.23) are not equal to zero even for a uniform
temperature field, and these equations enable us to find εT , γT , and κT specifying the
laminate in-plane and out-of-plane deformation. Moreover, using the approach described
in Section 5.11, we can conclude that uniform heating of the laminate is accompanied, in
the general case, by stresses acting in the layers and between the layers.

As an example, consider the four-layered structure of the space telescope described in
Section 7.1.1.

First, we calculate the stiffness coefficients of the layers, i.e.,
• for the internal layer of aluminum foil,

A
(1)
11 = A

(1)
22 = Ef = 76.92 GPa, A

(1)
12 = νf Ef = 23.08 GPa

• for the inner skin,

A
(2)
11 = A

(2)
22 = E

i

x = 34.87 GPa, A
(2)
12 = νi

xyE
i

x = 5.23 GPa

• for the lattice layer,

A
(3)
11 = 2Er

δr

ar

cos4 φr = 14.4 GPa

A
(3)
22 = 2Er

δr

ar

sin4 φr = 0.25 GPa

A
(3)
12 = 2Er

δr

ar

sin2 φ cos2 φ = 1.91 GPa

• for the external skin,

A
(4)
11 = E

e
1 cos4 φe + E

e
2 sin4 φe + 2

(
E

e
1 νe

12 + 2Ge
12

)
sin2 φe cos2 φe = 99.05 GPa
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A
(4)
22 = E

e
1 sin4 φe + E

e
2 cos4 φe + 2

(
E

e
1 νe

12 + 2Ge
12

)
sin2 φe cos2 φe = 13.39 GPa

A
(4)
12 = E

e
1 νe

12 +
[
E

e
1 + E

e
2 − 2

(
E

e
1 νe

12 + 2Ge
12

)]
sin2 φe cos2 φe = 13.96 GPa

Using Eqs. (7.18), we find the thermal coefficients of the layers (the temperature is
uniformly distributed over the laminate thickness)

(
AT

11

)
1

=
(
AT

22

)
1

= E f αf �T = 1715 · 10−6�T GPa/◦C

(
AT

11

)
2

=
(
AT

22

)
2

= E
i

x

(
1 + νi

xy

)
αi

x�T = 32.08 · 10−6�T GPa/◦C

(
AT

11

)
3

= 2Er

δr

ar

αr cos2 φr�T = 4.46 · 10−6�T GPa/◦C

(
AT

22

)
3

= 2Er

δr

ar

αr sin2 φr�T = 1.06 · 10−6�T GPa/◦C

(
AT

11

)
4

=
[
E

e
1

(
αe

1 + νe
12α

e
2

)
cos2 φ + E

e
2

(
αe

2 + νe
21α

e
1

)
sin2 φ

]
�T

= 132.43 · 10−6�T GPa/◦C
(
AT

22

)
4

=
[
E

e
1

(
αe

1 + νe
12α

e
2

)
sin2 φ + E

e
2

(
αe

2 + νe
21α

e
1

)
cos2 φ

]
�T

= 317.61 · 10−6�T GPa/◦C

Since the layers are orthotropic, AT
12 = 0 for all of them. Specifying the coordinates of

the layers (see Fig. 5.10) i.e.,

t0 = 0 mm, t1 = 0.02 mm, t2 = 1.02 mm, t3 = 10.02 mm, t4 = 13.52 mm

and applying Eq. (7.27), we calculate the parameters J
(r)
mn for the laminate

J
(0)
11 =

(
AT

11

)
1
(t1 − t0) +

(
AT

11

)
2
(t2 − t1) +

(
AT

11

)
3
(t3 − t2)

+
(
AT

11

)
4
(t4 − t3) = 570 · 10−6�T GPa mm/◦C

J
(0)
22 = 1190 · 10−6�T GPa mm/◦C

J
(1)
11 = 1

2

[(
AT

11

)
1

(
t2
1 − t2

0

)
+
(
AT

11

)
2

(
t2
2 − t2

1

)

+
(
AT

11

)
3

(
t2
3 − t2

2

)
+
(
AT

11

)
4

(
t2
4 − t2

3

)]
= 5690 · 10−6�T GPa mm/◦C

J
(1)
22 = 13150 · 10−6�T GPa mm/◦C
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To determine MT
mn, we need to specify the reference surface of the laminate. Assume

that this surface coincides with the middle surface, i.e., that e = h/2 = 6.76 mm. Then,
Eqs. (7.25) yield

NT
11 = J

(0)
11 = 570 · 10−6�T GPa mm/◦C

NT
22 = J

(0)
22 = 1190 · 10−6�T GPa mm/◦C

MT
11 = J

(1)
11 − eJ

(0)
11 = 1840 · 10−6�T GPa mm/◦C

MT
22 = 5100 · 10−6�T GPa mm/◦C

Thus, the thermal terms entering the constitutive equations of thermoplasticity, Eqs. (7.23),
are specified. Using these results, we can determine the apparent coefficients of thermal
expansion for the space telescope section under study (see Fig. 7.3). We can assume that,
under uniform heating, the curvatures do not change in the middle part of the cylinder
so that κxT = 0 and κyT = 0. Since there are no external loads, the free body diagram
enables us to conclude that Nx = 0 and Ny = 0. As a result, the first two equations of
Eqs. (7.23) for the structure under study become

B11ε
0
xT + B12ε

0
yT = NT

11

B21ε
0
xT + B22ε

0
yT = NT

22

Solving these equations for thermal strains and taking into account Eqs. (7.20), we get

ε0
xT = 1

B

(
B22N

T
11 − B12N

T
22

)
= αx�T

ε0
yT = 1

B

(
B11N

T
22 − B12N

T
11

)
= αy�T

where B = B11B22 − B2
12. For the laminate under study, calculation yields

αx = −0.94 · 10−6 1/◦C, αy = 14.7 · 10−6 1/◦C

Return to Eqs. (7.13) and (7.20) based on the assumption that the coefficients of thermal
expansion do not depend on temperature. For moderate temperatures, this is a reasonable
approximation. This conclusion follows from Fig. 7.6, in which the experimental results
of Sukhanov et al. (1990) (shown with solid lines) are compared with Eqs. (7.20), in which
�T = T − 20◦C (dashed lines) represent carbon–epoxy angle-ply laminates. However,
for relatively high temperatures, some deviation from linear behavior can be observed.
In this case, Eqs. (7.13) and (7.20) for thermal strains can be generalized as

εT =
∫ T

T0

α(T )dT
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Fig. 7.6. Experimental dependencies of thermal strains on temperature (solid lines) for ±φ angle-ply carbon–
epoxy composite and the corresponding linear approximations (dashed lines).

Temperature variations can also result in a change in material mechanical properties.
As follows from Fig. 7.7, in which the circles correspond to the experimental data of
Ha and Springer (1987), elevated temperatures result in either higher or lower reduction
of material strength and stiffness characteristics, depending on whether the corresponding
material characteristic is controlled mainly by the fibers or by the matrix. The curves
presented in Fig. 7.7 correspond to a carbon–epoxy composite, but they are typical
for polymeric unidirectional composites. The longitudinal modulus and tensile strength,
being controlled by the fibers, are less sensitive to temperature than longitudinal com-
pressive strength, and transverse and shear characteristics. Analogous results for a more
temperature-sensitive thermoplastic composite studied by Soutis and Turkmen (1993) are
presented in Fig. 7.8. Metal matrix composites demonstrate much higher thermal resis-
tance, whereas ceramic and carbon–carbon composites have been specially developed to
withstand high temperatures. For example, carbon–carbon fabric composite under heat-
ing up to 2500◦C demonstrates only a 7% reduction in tensile strength and about 30%
reduction in compressive strength without significant change of stiffness.

Analysis of thermoelastic deformation for materials whose stiffness characteristics
depend on temperature presents substantial difficulties because thermal strains are caused
not only by material thermal expansion, but also by external forces. Consider, for example,
a structural element under temperature T0 loaded with some external force P0, and assume
that the temperature is increased to a value T1. Then, the temperature change will cause a
thermal strain associated with material expansion, and the force P0, being constant, also
induces additional strain because the material stiffness at temperature T1 is less than its
stiffness at temperature T0. To determine the final stress and strain state of the structure,
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we should describe the process of loading and heating using, e.g., the method of successive
loading (and heating) presented in Section 4.1.2.

7.2. Hygrothermal effects and aging

Effects that are similar to temperature variations, i.e., expansion and degradation of
properties, can also be caused by moisture. Moisture absorption is governed by Fick’s
law, which is analogous to Fourier’s law, Eq. (7.1), for thermal conductivity, i.e.,

qW = −D
∂W
∂n

(7.31)

in which qW is the diffusion flow through a unit area of surface with normal n, D is the
diffusivity of the material whose moisture absorption is being considered, and W is the
relative mass moisture concentration in the material, i.e.,

W = �m

m
(7.32)

where �m is the increase in the mass of a unit volume material element due to mois-
ture absorption and m is the mass of the dry material element. Moisture distribution
in the material is governed by the following equation, similar to Eq. (7.2) for thermal
conductivity

∂
∂n

(
D

∂W
∂n

)
= ∂W

∂t
(7.33)

Consider a laminated composite material shown in Fig. 7.9 for which n coincides with the
z axis. Despite the formal correspondence between Eq. (7.2) for thermal conductivity and
Eq. (7.32) for moisture diffusion, there is a difference in principle between these problems.
This difference is associated with the diffusivity coefficient D, which is much lower than

z

WmWm

Wm

hh

xx

z

(b)(a)

Fig. 7.9. Composite material exposed to moisture on both surfaces z = 0 and z = h (a), and on the surface
z = 0 only (b).
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the thermal conductivity λ of the same material. As is known, there are materials, e.g.,
metals, with relatively high λ and practically zero D coefficients. Low D-value means
that moisture diffusion is a rather slow process. As shown by Shen and Springer (1976),
the temperature increase in time inside a surface-heated composite material reaches a
steady (equilibrium) state temperature about 106 times faster than the moisture content
approaching the corresponding stable state. This means that, in contrast to Section 7.1.1 in
which the steady (time-independent) temperature distribution is studied, we must consider
the time-dependent process of moisture diffusion. To simplify the problem, we can neglect
the possible variation of the mass diffusion coefficient D over the laminate thickness,
taking D = constant for polymeric composites. Then, Eq. (7.33) reduces to

D
∂2W

∂z2
= ∂W

∂t
(7.34)

Consider the laminate in Fig. 7.9a. Introduce the maximum moisture content Wm that
can exist in the material under the preassigned environmental conditions. Naturally, Wm

depends on the material nature and structure, temperature, relative humidity (RH) of the
gas (e.g., humid air), or on the nature of the liquid (distilled water, salted water, fuel,
lubricating oil, etc.) to the action of which the material is exposed. Introduce also the
normalized moisture concentration as

w(z, t) = W(z, t)

Wm

(7.35)

Obviously, for t → ∞, we have w → 1. Then, the function w(z, t) can be presented in
the form

w(z, t) = 1 −
∞∑

n=1

wn(z)e
−knt (7.36)

Substitution into Eq. (7.34), with due regard to Eq. (7.35), yields the following ordinary
differential equation

w
′′
n + r2

nwn = 0

in which r2
n = kn/D and ( )′ = d( )/dz. The general solution is

wn = C1n sin rnz + C2n cos rnz

The integration constants can be found from the boundary conditions on the surfaces z = 0
and z = h (see Fig. 7.9a). Assume that on these surfaces W = Wm or w = 1. Then, in
accordance with Eq. (7.36), we get

wn(0, t) = 0, wn(h, t) = 0 (7.37)



Chapter 7. Environmental, special loading, and manufacturing effects 379

The first of these conditions yields C2n = 0, whereas from the second condition we have
sin rnh = 0, which yields

rnh = (2n − 1)π (n = 1, 2, 3, . . .) (7.38)

Thus, the solution in Eq. (7.36) takes the form

w(z, t) = 1 −
∞∑

n=1

C1n sin

(
2n − 1

h
πz

)
exp

[
−
(

2n − 1

h

)2

π2Dt

]
(7.39)

To determine C1n, we must use the initial condition, according to which

w(0 < z < h, t = 0) = 0

Using the following Fourier series

1 = 4

π

∞∑
n=1

sin(2n − 1)z

2n − 1

we get C1n = 4/(2n − 1)π, and the solution in Eq. (7.39) can be written in its final form

w(z, t) = 1 − 4

π

∞∑
n=1

sin(2n − 1)πz

2n − 1
exp

[
−
(

2n − 1

h

)2

π2Dt

]
(7.40)

where z = z/h.
For the structure in Fig. 7.9b, the surface z = h is not exposed to moisture, and hence

qW (z = h) = 0. So, in accordance with Eq. (7.31), the second boundary condition in
Eqs. (7.37) must be changed to w′(h, t) = 0. Then, instead of Eq. (7.38), we must use

rnh = π

2
(2n − 1)

Comparing this result with Eq. (7.38), we can conclude that for the laminate in Fig. 7.9b,
w(z, t) is specified by the solution in Eq. (7.40) in which we must change h to 2h.

The mass increase of the material with thickness h is

�M = A

∫ h

0
�mdz

where A is the surface area. Using Eqs. (7.32) and (7.35), we get

�M = AmWm

∫ h

0
wdz
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Switching to a dimensionless variable z = z/h and taking the total moisture content as

C = �M

Amh
(7.41)

we arrive at

C = Wm

∫ 1

0
w dz

where w is specified by Eq. (7.40). Substitution of this equation and integration yields

C = C

Wm

= 1 − 8

π2

∞∑
n=1

1

(2n − 1)2
exp

[
−
(

2n − 1

h

)2

π2Dt

]
(7.42)

For numerical analysis, consider a carbon–epoxy laminate for which D = 10−3 mm2/

hour (Tsai, 1987) and h = 1 mm. The distributions of the moisture concentration over the
laminate thickness are shown in Fig. 7.10 for t = 1, 10, 50, 100, 200, and 500 h. As can be
seen, complete impregnation of 1-mm-thick material takes about 500 h. The dependence
of Con t found in accordance with Eq. (7.42) is presented in Fig. 7.11.

An interesting interpretation of the curve in Fig. 7.11 can be noted if we change the vari-
able t to

√
t . The resulting dependence is shown in Fig. 7.12. As can be seen, the initial
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Fig. 7.10. Distribution of the normalized moisture concentration w over the thickness of 1-mm-thick carbon–
epoxy composite for various exposure times t .
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Fig. 7.11. Dependence of the normalized moisture concentration C on time t .
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Fig. 7.12. Dependence of the normalized moisture concentration on
√

t .

part of the curve is close to a straight line whose slope can be used to determine the
diffusion coefficient of the material matching the theoretical dependence C(t) with the
experimental one. Note that experimental methods usually result in rather approximate
evaluation of the material diffusivity D with possible variations up to 100% (Tsai, 1987).
The maximum value of the function C(t) to which it tends to approach determines the
maximum moisture content Cm = Wm.
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Fig. 7.13. Dependence of the moisture content on time for a carbon–epoxy composite exposed to air with
45% RH (1), 75% RH (2), 95% RH (3).

Thus, the material behavior under the action of moisture is specified by two experimen-
tal parameters – D and Cm – which can depend on the ambient media, its moisture content,
and temperature. The experimental dependencies of C in Eq. (7.41) on t for 0.6-mm-thick
carbon–epoxy composite exposed to humid air with various relative humidity (RH ) levels
are shown in Fig. 7.13 (Survey, 1984). As can be seen, the moisture content is approxi-
mately proportional to the air humidity. The gradients of the curves in Fig. 7.13 depend
on the laminate thickness (Fig. 7.14, Survey, 1984).
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Fig. 7.14. Dependencies of the moisture content on time for a carbon–epoxy composite with thickness
3.6 mm (1), 1.2 mm (2), and 0.6 mm (3) exposed to humid air with 75% RH.



Chapter 7. Environmental, special loading, and manufacturing effects 383

Among polymeric composites, the highest capacity for moisture absorption under room
temperature is demonstrated by aramid composites (7 ± 0.25% by weight) in which both
the polymeric matrix and fibers are susceptible to moisture. Glass and carbon polymeric
composites are characterized with moisture content 3.5±0.2% and 2±0.75%, respectively.
In real aramid–epoxy and carbon–epoxy composite structures, the moisture content is
usually about 2% and 1%, respectively. The lowest susceptibility to moisture is demon-
strated by boron composites. Metal matrix, ceramic, and carbon–carbon composites are
not affected by moisture.

The material diffusivity coefficient D depends on temperature in accordance with the
Arrhenius relationship (Tsai, 1987)

D(Ta) = D0

ek/Ta

in which D0 and k are some material constants and Ta is the absolute temperature. Exper-
imental dependencies of the moisture content on time in a 1.2-mm-thick carbon–epoxy
composite exposed to humid air with 95% RH at various temperatures are presented
in Fig. 7.15 (Survey, 1984). The most pronounced effect of temperature is observed
for aramid–epoxy composites. The corresponding experimental results of Milyutin et al.
(1989) are shown in Fig. 7.16.

When a material absorbs moisture, it expands, demonstrating effects that are similar to
thermal effects, which can be modeled using the equations presented in Section 7.1.2, if
we treat α1, α2 and αx, αy as coefficients of moisture expansion and change �T for C.
Similar to temperature, increase in moisture reduces material strength and stiffness. For
carbon–epoxy composites, this reduction is about 12%, for aramid–epoxy composites,
about 25%, and for glass–epoxy materials, about 35%. After drying out, the effect of
moisture usually disappears.
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Fig. 7.15. Dependencies of the moisture content on time for 1.2-mm-thick carbon–epoxy composite exposed to
humid air with 95% RH under temperatures 25◦C (1), 50◦C (2), and 80◦C (3).
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Fig. 7.16. Moisture content as a function of time and temperature for aramid–epoxy composites.

The cyclic action of temperature, moisture, or sun radiation results in material aging, i.e.,
in degradation of the material properties during the process of material or structure storage.
For some polymeric composites, exposure to elevated temperature, which can reach 70◦C,
and radiation, whose intensity can be as high as 1 kW/m2, can cause more complete curing
of the resin and some increase of material strength in compression, shear, or bending.
However, under long-term action of the aforementioned factors, the material strength
and stiffness decrease. To evaluate the effect of aging, testing under transverse bending
(see Fig. 4.98) is usually performed. The flexural strength obtained

σ f = 3P l

2bh2

allows for both fiber and matrix material degradation in the process of aging. Experimental
results from G.M. Gunyaev et al. showing the dependence of the normalized flexural
strength on time for advanced composites are presented in Fig. 7.17. The most dramatic
is the effect of aging on the ultimate transverse tensile deformation ε2 of unidirectional
composites: the low value of which results in cracking of the matrix as discussed in
Sections 4.4.2 and 6.4. After accelerated aging, i.e., long-term moisture conditioning at
temperature 70◦C, a 0.75% moisture content in carbon–epoxy composites results in about
20% reduction of ε2, whereas a 1.15% moisture content causes about 45% reduction.

Environmental effects on composite materials are discussed in detail elsewhere
(Tsai, 1987; Springer, 1981, 1984, 1988).



Chapter 7. Environmental, special loading, and manufacturing effects 385

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
t, year

1

2

4
3

s f

Fig. 7.17. Dependence of the normalized flexural strength on the time of aging for boron (1), carbon (2),
aramid (3), and glass (4) epoxy composites.

7.3. Time and time-dependent loading effects

7.3.1. Viscoelastisity

Polymeric matrices are characterized with pronounced viscoelastic properties result-
ing in time-dependent behavior of polymeric composites that manifests itself in creep
(see Section 1.1), stress relaxation, and dependence of the stress–strain diagram on the
rate of loading. It should be emphasized that in composite materials, viscoelastic defor-
mation of the polymeric matrix is restricted by the fibers that are usually linear elastic
and do not demonstrate time-dependent behavior. The one exception to existing fibers
is represented by aramid fibers that are actually polymeric themselves by their nature.
The properties of metal matrix, ceramic, and carbon–carbon composites under normal
conditions do not depend on time. Rheological (time-dependent) characteristics of struc-
tural materials are revealed in creep tests allowing us to plot the dependence of strain on
time under constant stress. Such diagrams are shown in Fig. 7.18 for the aramid–epoxy
composite described by Skudra et al. (1989). An important characteristic of the mate-
rial can be established if we plot the so-called isochrone stress–strain diagrams shown in
Fig. 7.19. Three curves in this figure are plotted for t = 0, t = 100, and t = 1000 days,
and the points on these curves correspond to points 1, 2, 3 in Fig. 7.18. As can be seen,
the initial parts of the isochrone diagrams are linear, which means that under moderate
stress, the material under study can be classified as a linear-viscoelastic material. To char-
acterize such a material, we need to have only one creep diagram, whereby the other
curves can be plotted, increasing strains in proportion to stress. For example, the creep
curve corresponding to σ1 = 450 MPa in Fig. 7.18 can be obtained if we multiply strains
corresponding to σ1 = 300 MPa by 1.5.
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Fig. 7.18. Creep strain response of unidirectional aramid–epoxy composite under tension in longitudinal
direction with three constant stresses.
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Fig. 7.19. Isochrone stress–strain diagrams corresponding to creep curves in Fig. 7.18.

Linear-viscoelastic material behavior is described with reasonable accuracy by the
hereditary theory, according to which the dependence of strain on time is expressed as

ε(t) = 1

E

[
σ(t) +

∫ t

0
C(t − τ)σ (τ )dτ

]
(7.43)

Here, t is the current time, τ is some moment of time in the past (0 ≤ τ ≤ t) at which
stress σ(τ) acts, and C(t − τ) is the creep compliance (or creep kernel) depending on
time passing from the moment τ to the moment t . The constitutive equation of hereditary
theory, Eq. (7.43), is illustrated in Fig. 7.20. As can be seen, the total strain ε(t) is
composed of the elastic strain εe governed by the current stress σ(t) and the viscous
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Fig. 7.20. Geometric interpretation of the hereditary constitutive theory.

strain εv depending on the loading process as if the material ‘remembers’ this process.
Within the framework of this interpretation, the creep compliance C(θ), where θ = t − τ

can be treated as some ‘memory function’ that should, obviously, be infinitely high at
θ = 0 and tend to zero for θ → ∞, as in Fig. 7.21.

The inverse form of Eq. (7.43) is

σ(t) = E

[
ε(t) −

∫ t

0
R(t − τ)ε(τ )dτ

]
(7.44)

Here, R(t − τ) is the relaxation modulus or the relaxation kernel that can be expressed,
as shown below, in terms of C(t − τ).

The creep compliance is determined using experimental creep diagrams. Transforming
to a new variable θ = t − τ, we can write Eq. (7.43) in the following form

ε(t) = 1

E

[
σ(t) +

∫ t

0
C(θ)σ (θ − t)dθ

]
(7.45)
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q = t – t

C(q)

Fig. 7.21. Typical form of the creep compliance function.

For a creep test, the stress is constant, so σ = σ 0, and Eq. (7.44) yields

ε(t) = ε0
[

1 +
∫ t

0
C(θ)dθ

]
(7.46)

where ε0 = σ 0/E = ε(t = 0) is the instantaneous elastic strain (see Fig. 7.18). Differen-
tiating this equation with respect to t , we get

C(t) = 1

ε0

dε(t)

dt
x

This expression allows us to determine the creep compliance by differentiating the given
experimental creep diagram or its analytical approximation. However, for practical analy-
sis, C(θ) is usually determined directly from Eq. (7.46) introducing some approximation
for C(θ) and matching the function obtained ε(t) with the experimental creep diagram.
For this purpose, Eq. (7.46) is written in the form

ε(t)

ε0
= 1 +

∫ t

0
C(θ)dθ (7.47)

Experimental creep diagrams for unidirectional glass–epoxy composite are presented in
this form in Fig. 7.22 (solid lines).

The simplest form is an exponential approximation of the type

C(θ) =
N∑

n=1

Ane−αnθ (7.48)
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Substituting Eq. (7.48) into Eq. (7.47), we obtain

ε(t)

ε0
= 1 +

N∑
n=1

An

αn

(1 − e−αnt )

For the curves presented in Fig. 7.22, calculation yields
• longitudinal tension: N = 1, A1 = 0;
• transverse tension: N = 1, A1 = 0.04, α1 = 0.06 1/day;
• in-plane shear: N = 2, A1 = 0.033, α1 = 0.04 1/day, A2 = 0.06, α2 = 0.4 1/day.
The corresponding approximations are shown in Fig. 7.22 with dashed lines. The main
shortcoming of the exponential approximation in Eq. (7.48) is associated with the fact
that, in contrast to Fig. 7.21, C(θ) has no singularity at θ = 0, which means that it cannot
properly describe material behavior in the vicinity of t = 0.

It should be emphasized that the one-term exponential approximation corresponds to
a simple rheological mechanical model shown in Fig. 7.23. The model consists of two
linear springs simulating material elastic behavior in accordance with Hooke’s law

σ1 = E1ε1, σ2 = E2ε2 (7.49)

and one dash-pot simulating material viscous behavior obeying the Newton flow law

σv = η
dεv

dt
(7.50)
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Fig. 7.23. Three-element mechanical model.

Equilibrium and compatibility conditions for the model in Fig. 7.23 are

σ = σ2 + σv, σ1 = σ

εv = ε2, ε1 + ε2 = ε

Using the first of these equations and Eqs. (7.49)–(7.50), we get

σ = E2ε2 + η
dεv

dt

Taking into account that

ε2 = εv = ε − σ

E

we finally arrive at the following constitutive equation relating the apparent stress σ to
the apparent strain ε

σ

(
1 + E2

E1

)
+ η

E1

dσ

dt
= E2ε + η

dε

dt
(7.51)

This equation allows us to introduce some useful material characteristics. Indeed, consider
a very fast loading, i.e., such that stress σ and strain ε can be neglected in comparison
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with their rates. Then, integration yields σ = Eiε, where Ei = E1 is the instantaneous
modulus of the material. Now assume that the loading is so slow that stress and strain
rates can be neglected. Then, Eq. (7.51) yields σ = Elε, where

El = E1E2

E1 + E2
(7.52)

is the long-time modulus.
We can now apply the model under study to describe material creep. Taking σ = σ0

and integrating Eq. (7.51) with initial condition ε0(0) = σ0/E, we get

ε = σ0

E1

[
1 + E1

E2

(
1 − e

E2
η t

)]

The corresponding creep diagram is shown in Fig. 7.24. As follows from this figure,
ε(t → ∞) = σ0/El , where El is specified by Eq. (7.52). This means that there exists
some limit for the creep strain, and materials that can be described with this model should
possess the so-called limited creep.

Now assume that the model is loaded in such a way that the apparent strain is
constant, i.e., that ε = ε0. Then, the solution of Eq. (7.51) that satisfies the condition
σ(0) = E1ε0 is

σ = E1ε0

E1 + E2

(
E2 + E1e−t/tr

)
, tr = η

E1 + E2

The corresponding dependence is presented in Fig. 7.25 and illustrates the process of
stress relaxation. The parameter tr is called the time of relaxation. During this time, the
stress decreases by the factor of e.

Consider again Eq. (7.51) and express E1, E2, and η in terms of Ei, El , and tr . The
resulting equation is as follows

σ + tr
dσ

dt
= Elε + Eitr

dε

dt
(7.53)
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t
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e

Fig. 7.24. Creep diagram corresponding to the mechanical model in Fig. 7.23.
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This first-order differential equation can be solved for ε in the general case. Omitting
rather cumbersome transformations, we arrive at the following solution

ε(t) = 1

Ei

[
σ(t) + 1

tr

(
1 − El

Ei

)∫ t

0
e
− El

Ei tr
(t−τ)

σ (τ )dτ

]

This result corresponds to Eq. (7.45) of the hereditary theory with one-term exponential
approximation of the creep compliance in Eq. (7.48), in which N = 1. Taking more terms
in Eq. (7.48), we get more flexibility in the approximation of experimental results with
exponential functions. However, the main features of material behavior are, in principle,
the same as that for the one-term approximation (see Figs. 7.23 and 7.24). In particular,
there exists the long-time modulus that follows from Eq. (7.46) if we examine the limit
for t → ∞, i.e.,

ε(t) → σ0

El

, El = E

1 + ∫∞
0 C(θ)dθ

For the exponential approximation in Eq. (7.48),

I =
∫ ∞

0
C(θ)dθ =

N∑
n=1

An

αn

Since the integral I has a finite value, the exponential approximation of the creep com-
pliance can be used only for materials with limited creep. There exist more complicated
singular approximations, e.g.,

C(θ) = A

θα
, C(θ) = A

θα
e−βθ
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for which I → ∞ and El = 0. This means that for such materials, the creep strain can
be infinitely high.

A useful interpretation of the hereditary theory constitutive equations can be constructed
with the aid of the integral Laplace transformation, according to which a function f (t) is
associated with its Laplace transform f ∗(p) as

f ∗(p) =
∫ ∞

0
f (t)e−ptdt

For some functions that we need to use for the examples presented below, we have

f (t) = 1, f ∗(p) = 1

p

f (t) = e−αt , f ∗(p) = 1

α + p

(7.54)

The importance of the Laplace transformation for the hereditary theory is associated with
the existence of the so-called convolution theorem, according to which

[∫ t

0
f1(θ)f2(θ − t)dθ

]∗
= f ∗

1 (p)f ∗
2 (p)

Using this theorem and applying Laplace transformation to Eq. (7.45), we get

ε∗(p) = 1

E

[
σ ∗(p) + C∗(p)σ ∗(p)

]

This result can be presented in a form similar to Hookes’s law, i.e.,

σ ∗(p) = E∗(p)ε∗(p) (7.55)

where

E∗ = E

1 + C∗(p)

Applying Laplace transformation to Eq. (7.44), we arrive at Eq. (7.55) in which

E∗ = E[1 − R∗(p)] (7.56)

Comparing Eqs. (7.55) and (7.56), we can relate Laplace transforms of the creep
compliance to the relaxation modulus, i.e.,

1

1 + C∗(p)
= 1 − R∗(p)

With due regard to Eq. (7.55), we can formulate the elastic–viscoelastic analogy or
the correspondence principle, according to which the solution of the linear viscoelasticity
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problem can be obtained in terms of the corresponding Laplace transforms from the
solution of the linear elasticity problem if E is replaced with E∗ and all the stresses,
strains, displacements, and external loads are replaced with their Laplace transforms.

For an orthotropic material in a plane stress state, e.g., for a unidirectional composite ply
or layer referred to the principal material axes, Eqs. (4.55) and (7.43) can be generalized as

ε1(t) = 1

E1

[
σ1(t) +

∫ t

0
C11(t − τ)σ1(τ )dτ

]

− ν12

E2

[
σ2(t) +

∫ t

0
C12(t − τ)σ2(τ )dτ

]

ε2(t) = 1

E2

[
σ2(t) +

∫ t

0
C22(t − τ)σ2(τ )dτ

]

− ν21

E1

[
σ1(t) +

∫ t

0
C21(t − τ)σ1(τ )dτ

]

γ12(t) = 1

G12

[
τ12(t) +

∫ t

0
K12(t − τ)τ12(τ )dτ

]

Applying Laplace transformation to these equations, we can reduce them to a form similar
to Hooke’s law, Eqs. (4.55), i.e.,

ε∗
1(p) = σ ∗

1 (p)

E∗
1 (p)

− ν∗
12(p)

E∗
2 (p)

σ ∗
2 (p)

ε∗
2(p) = σ ∗

2 (p)

E∗
2 (p)

− ν∗
21(p)

E∗
1 (p)

σ ∗
1 (p)

γ ∗
12(p) = τ ∗

12(p)

G∗
12(p)

(7.57)

where

E∗
1 (p) = E1

1 + C∗
11(p)

, E∗
2 (p) = E2

1 + C∗
22(p)

, G∗
12(p) = G12

1 + K∗
12(p)

ν∗
12(p) = 1 + C∗

12(p)

1 + C∗
22(p)

ν12, ν∗
21(p) = 1 + C∗

21(p)

1 + C∗
11(p)

ν21

(7.58)

For the unidirectional composite ply whose typical creep diagrams are shown in Fig. 7.22,
the foregoing equations can be simplified by neglecting material creep in the longitudinal
direction (C11 = 0) and assuming that Poisson’s effect is linear elastic and symmetric,
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i.e., that

ν∗
12

E∗
2

= ν12

E2
,

ν∗
21

E∗
1

= ν21

E1

Then, Eqs. (7.57) take the form

ε∗
1(p) = σ ∗

1 (p)

E1
− ν12

E2
σ ∗

2 (p)

ε∗
2(p) = σ ∗

2 (p)

E∗
2

− ν21

E1
σ ∗

1 (p)

γ ∗
12(p) = τ ∗

12(p)

G∗
12(p)

(7.59)

Supplementing constitutive equations, Eqs. (7.57) or (7.59), with strain-displacement and
equilibrium equations written in terms of Laplace transforms of stresses, strains, displace-
ments, and external loads and solving the problem of elasticity, we can find Laplace
transforms for all the variables. To represent the solution obtained in this way in terms of
time t , we need to take the inverse Laplace transformation, and this is the most difficult
stage of the problem solution. There exist exact and approximate analytical and numerical
methods for performing the inverse Laplace transformation discussed, for example, by
Schapery (1974). The most commonly used approach is based on approximation of the
solution written in terms of the transformation parameter p with some functions for which
the inverse Laplace transformation is known.

As an example, consider the problem of torsion for an orthotropic cylindrical shell
similar to that shown in Fig. 6.20. The shear strain induced by torque T is specified
by Eq. (5.163). Using the elastic–viscoelastic analogy, we can write the corresponding
equation for the creep problem as

γ ∗
xy(p) = T ∗(p)

2πR2B∗
44(p)

(7.60)

Here, B∗
44(p) = A∗

44(p)h, where h is the shell thickness.
Let the shell be made of glass–epoxy composite whose mechanical properties are listed

in Table 3.5 and creep diagrams are shown in Fig. 7.22. To simplify the analysis, we
suppose that for the unidirectional composite under study E2/E1 = 0.22, G12/E1 = 0.06,
and ν12 = ν21 = 0, and introduce the normalized shear strain

γ = γxy

(
T

R2hE1

)−1
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Consider a ±45◦ angle-ply material discussed in Section 4.5 for which, with due regard
to Eqs. (4.72), and (7.58), we can write

A∗
44(p) = 1

4

(
E1 + E∗

2

) = 1

4

[
E1 + E2

1 + C∗
22(p)

]

Exponential approximation, Eq. (7.48), of the corresponding creep curve in Fig. 7.22 (the
lower dashed line) is

C22 = A1e−α1θ

where A1 = 0.04 and α1 = 0.06 1/day. Using Eqs. (7.54), we arrive at the following
Laplace transforms of the creep compliance and the torque which is constant

C∗
22(p) = A1

α1 + p
, T ∗(p) = T

p

The final expression for the Laplace transform of the normalized shear strain is

γ ∗(p) = 2E(α1 + A1 + p)

πp(α1 + A1E + p)
(7.61)

where E = E1/(E1 + E2)

To use Eqs. (7.54) for the inverse Laplace transformation, we should decompose the
right-hand part of Eq. (7.61) as

γ ∗(p) = 2E

π(α1 + A1E)

[
α1 + A1

p
− A1(1 − E)

α1 + A1E + p

]

Applying Eqs. (7.54), we get

γ (t) = 2E

π(α1 + A1E)

[
α1 + A1 − A1(1 − E)e−(α1+A1E)t

]

This result is demonstrated in Fig. 7.26. As can be seen, there is practically no creep
because the cylinder’s deformation is controlled mainly by the fibers.

Quite different behavior is demonstrated by the cylinder made of 0◦/90◦ cross-ply
composite material discussed in Section 4.4. In accordance with Eqs. (4.114) and (7.58),
we have

A∗
44(p) = G∗

12(p) = G12

1 + K∗
12(p)

Exponential approximation, Eq. (7.48), of the shear curve in Fig. 7.22 (the upper dashed
line) results in the following equation for the creep compliance

K12 = A1e−α1θ + A2e−α2θ
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Fig. 7.26. Dependencies of the normalized shear strain on time for 0◦/90◦ cross-ply and ±45◦ angle-ply
glass–epoxy composite cylinders under torsion.

in which A1 = 0.033, α1 = 0.04 1/day, A2 = 0.06, and α2 = 0.4 1/day. Omitting simple
transformations, we finally get

γ = E1

2πG12

[
1 + A1

α1

(
1 − e−α1t

) + A2

α2

(
1 − e−α2t

)]

The corresponding creep diagram is shown in Fig. 7.26.
Under relatively high stresses, polymeric composites demonstrate nonlinear viscoelastic

behavior. The simplest approach to study nonlinear creep problems is based on experi-
mental isochrone stress–strain diagrams of the type shown in Fig. 7.19. Using the curves
corresponding to time moments t1 < t2 < t3, etc., we can solve a sequence of nonlinear
elasticity problems for these time moments and thus determine the change of strains and
stresses with time. This approach, sometimes referred to as the aging theory, is approxi-
mate and can be used to study structures loaded with forces that do not change with time,
or change very slowly.

There also exist several variants of nonlinear hereditary theory described, e.g., by
Rabotnov (1980). According to the most common versions, Eq. (7.43) is general-
ized as

ε(t) = 1

E

[
σ(t) +

∫ t

0
C1(t − τ)σ (τ )dτ

+
∫ t

0

∫ t

0
C2(t − τ1, t − τ2)σ (τ1)σ (τ2)dτ1dτ2 + · · ·

]
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or

ε(t) =
∑

k

Ak

[
σ(t) +

∫ t

0
C(t − τ)σ (τ )dτ

]k

or

f [ε(t)] = 1

E

[
σ(t) +

∫ t

0
C(t − τ)σ (τ )dτ

]

or

ε(t) = φ[σ(t)] +
∫ t

0
C(t − τ)ψ[σ(τ)]dτ

In conclusion, it should be noted that correctly designed composite structures (see the
next chapter) in which the material behavior is controlled by fibers usually do not
exhibit pronounced time-dependent behavior. For example, consider the filament-wound
glass–epoxy pressure vessel studied in Section 6.3 (see Fig. 6.22 and the second row
in Table 6.1 for parameters of the vessel). The vessel consists of ±36◦ helical plies
and circumferential plies, and has structural parameters that are close to optimal (see
Section 8.3.1). The experimental dependence of circumferential strain on time for step-
wise loading with internal pressure p presented in Fig. 7.27 does not indicate any
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Fig. 7.27. Dependence of the circumferential strain on time for a glass–epoxy cylindrical pressure vessel loaded
in steps with internal pressure p.
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significant creep deformation. It should be emphasized that this conclusion is valid for nor-
mal conditions only; at elevated temperatures, composite structures can exhibit significant
creep deformation.

7.3.2. Durability

Composite materials, to be applied to structures with long service life, need to be guar-
anteed for the corresponding period of time from failure, which is usually a result of
an evolutionary process of material degradation in the service environment. To provide
proper durability of the material, we need, in turn, to study its long-term behavior under
load and its endurance limits. The most widely used durability criteria establishing the
dependence of material strength on the time of loading are based on the concept of the
accumulation of material damage induced by acting stresses and intensified by the degrad-
ing influence of service conditions such as temperature, moisture, etc. Particular criteria
depend on the accepted models simulating the material damage accumulation. Although
there exist microstructural approaches to the durability evaluation of composite materials
(see, e.g., Skudra et al., 1989), for practical purposes, the experimental dependencies of
the ultimate stresses on the time of their action are usually evaluated. In particular, these
experiments allow us to conclude that fibers, which are the major load-carrying elements
of composite materials, possess some residual strength σ∞ = σ(t → ∞), which is about
50% to 70% of the corresponding static strength σ 0 = σ(t = 0), depending on the fiber
type. Typical dependencies of the long-term strength of composite materials on time are
presented in Fig. 7.28. As can be seen, the time of loading dramatically affects mate-
rial strength. However, being unloaded at any moment of time t , composite materials
demonstrate practically the same static strength that they had before long-term loading.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

t, Days (24 hours)

2

1

s1(t)/s1(0)

Fig. 7.28. Normalized long-term longitudinal strength of aramid–epoxy (1) and glass–epoxy (2) unidirectional
composites.
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Approximation of the curves shown in Fig. 7.28 can be performed using exponential
functions as follows

σ(t) = σ∞ +
∑
n

Ane−λnt (7.62)

in which σ∞, An, and λn are coefficients providing the appropriate approximation. The
initial static strength is

σ(0) = σ 0 = σ∞ +
∑
n

An

The simplest is a one-term approximation

σ(t) = σ∞ + (σ 0 − σ∞)e−λt (7.63)

To approximate the initial part of the curve, we can put σ∞ = 0 and arrive at the following
equation

σ(t) = σ 0e−λt (7.64)

Now assume that we can solve Eqs. (7.62), (7.63), or (7.64) for t and find the material
durability td (σ ), i.e., the time during which the material can withstand stress σ . Consider
the process of loading as a system of k stages such that the duration of each stage is ti
and the stress acting at this stage is σi (i = 1, 2, 3, . . . , k). Then, the whole period of
time during which the material can withstand such step-wise loading can be calculated
with the aid of the following equation

k∑
i=1

ti

td (σi)
= 1

in which td (σi) is the material durability corresponding to stress σi .
The strength criteria discussed in Chapter 6 can be generalized for the case of long-

term loading if we change the static ultimate stresses entering these criteria for the
corresponding long-term strength characteristics.

7.3.3. Cyclic loading

Consider the behavior of composite materials under the action of loads periodically
changing with time. For qualitative analysis, consider first a material that can be simulated
with the simple mechanical model shown in Fig. 7.23. Applying stress acting according
to the following form

σ(t) = σ0 sin ωt (7.65)
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where σ0 is the amplitude of stress and ω is the frequency, we can solve Eq. (7.53), which
describes the model under study for strain ε(t). The result is

ε(t) = ε0 sin(ωt + θ) (7.66)

where

ε0 = σ0

√
1 + t2

r ω2

E2
l + E2

i t2
r ω2

tan θ = − trω(Ei − El)

El + Eit2
r ω2

(7.67)

It follows from these equations that a viscoelastic material is characterized with a phase
shift of strain with respect to stress. Eliminating the time variable from Eqs. (7.65) and
(7.66), we arrive at the following relationship between stress and strain

(
σ

σ0

)2

+
(

ε

ε0

)2

− 2 cos θ
σε

σ0ε0
= sin2 θ

This is the equation of an ellipse shown in Fig. 7.29a. The absolute value of the area A,
inside this ellipse (its sign depends on the direction of integration along the contour)
determines the energy dissipation per single cycle of vibration, i.e.,

�W = |A| = πσ0ε0 |sin θ | (7.68)

Folowing Zinoviev and Ermakov (1994), we can introduce the dissipation factor as the
ratio of energy loss in a loading cycle, �W , to the value of the elastic potential energy in

(a) (b)

s0 s0

e0e0

e e

s s

Fig. 7.29. Stress–strain diagrams for viscoelastic (a) and elastic (b) materials.
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a cycle, W , as

ψ = �W

W

where, in accordance with Fig. 7.29b, W = (1/2)σ0ε0. Transforming Eq. (7.68) with the
aid of Eqs. (7.67), we arrive at

ψ = 2πtrω

1 + t2
r ω2

(
1 − El

Ei

)

As follows from this equation, ψ depends on the number of oscillations accomplished
during the period of time equal to the material relaxation time, tr , and reaches a maximum
value for trω = 1.

As shown by Zinoviev and Ermakov (1994), for anisotropic materials, the dissipation
factor depends also on the direction of loading. Particularly, for a unidirectional composite
ply, referred to axes x and y and making angle φ with the principal material axes 1 and 2
as in Fig. 4.18, the dissipation factors are

ψx = Ex

[(
ψ1

E1
cos2 φ − ψ2

E2
sin2 φ

)
cos 2φ + ψ45µ12 sin2 φ cos2 φ

]

ψy = Ey

[(
ψ2

E2
cos2 φ − ψ1

E1
sin2 φ

)
cos 2φ + ψ45µ12 sin2 φ cos2 φ

]

ψxy = Gxy

[(
2ψ1

E1
+ 2ψ2

E2
− ψ45µ12

)
sin2 φ cos2 φ + ψ12

G12
cos2 2φ

]

where

µ12 = 1 − ν12

E1
+ 1 − ν21

E2
+ 1

G12

Ex, Ey, and Gxy are specified by Eqs. (4.76), and ψ1, ψ2, ψ12, and ψ45 are the ply
dissipation factors corresponding to loading along the fibers, across the fibers, under
in-plane shear, and at 45◦ with respect to principal material axes 1 and 2. As follows
from Fig. 7.30, calculations based on the foregoing equations provide fair agreement with
experimental results of Ni and Adams (1984).

Energy dissipation in conjunction with the relatively low heat conductivity of com-
posite materials induces their self-heating during cyclic loading. The dependence of an
aramid–epoxy composite material’s temperature on the number of cycles under tensile and
compressive loading with frequency 103 cycles per minute is shown in Fig. 7.31 (Tamuzh
and Protasov, 1986).

Under cyclic loading, structural materials experience a fatigue fracture caused by mate-
rial damage accumulation. As already noted in Section 3.2.4, the heterogeneous structure
of composite materials provides relatively high resistance of these materials to crack
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Fig. 7.30. Calculated (lines) and experimental (circles) dependencies of dissipation factor on the ply orientation
for glass–epoxy ( •) and carbon–epoxy ( ©) unidirectional composites.
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Fig. 7.31. Temperature of an aramid–epoxy composite as a function of the number of cycles under tension (1)
and compression (2).
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Fig. 7.32. Typical fatigue diagrams for carbon–epoxy composite (solid lines) and aluminum alloy (dashed lines)
specimens without (1) and with (2) stress concentration (fatigue strength is normalized to static strength of

specimens without stress concentration).

propagation, resulting in their specific behavior under cyclic loading. It follows from
Fig. 7.32, showing experimental results obtained by V. F. Kutinov, that stress concentration
in aluminum specimens, which has practically no effect on the material’s static strength
due to plasticity of aluminum, dramatically reduces its fatigue strength. Conversely, the
static strength of carbon–epoxy composites, which are brittle materials, is reduced by
stress concentration that has practically no effect on the slope of the fatigue curve. On
average, the residual strength of carbon composites after 106 loading cycles is 70–80%
of the material’s static strength, in comparison to 30–40% for aluminum alloys. Qualita-
tively, this comparative evaluation is true for all fibrous composites that are widely used
in structural elements subjected to intensive vibrations, such as helicopter rotor blades,
airplane propellers, drive shafts, automobile leaf springs, etc.

The forgoing discussion concerns the fatigue strength of unidirectional composites
loaded along the fibers. However, composites are anisotropic materials having differ-
ent strength in different directions and, naturally, different response under cyclic loading.
As shown in Fig. 7.33 presenting the approximations of the experimental results given by
Tsai (1987), the degradation of material strength under tension across the fibers (line 2) is
much higher than under tension along the fibers (line 1). Recall that the stress σ2 induces
the cracks in the matrix discussed in Sections 4.4.2 and 6.4.

A typical composite materials fatigue diagram, constructed from the experimental results
of Apinis et al. (1991), is shown in Fig. 7.34. Standard fatigue diagrams usually determine
the material strength for 103 ≤ N ≤ 106 and are approximated as

σR = a − b log N (7.69)
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Fig. 7.33. Normalized fatigue strength of carbon–epoxy composites loaded along (1) and across (2) the fibers.
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Fig. 7.34. Normalized fatigue diagram for fabric carbon–carbon composite material (σ static strength),• © experimental part of the diagram for the loading frequency of 6 Hz (•) and 330 Hz (©),
extrapolation.
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Here, N is the number of cycles to failure under stress σR , a and b are experimental
constants depending on frequency of cyclic loading, temperature and other environmental
factors, and on the stress ratio R = σmin/σmax, where σmax and σmin are the maximum
and the minimum stresses. It should be taken into account that the results for fatigue tests
are characterized, as a rule, with high scatter.

Factor R specifies the cycle type. The most common bending fatigue test provides a
symmetric cycle for which σmin = −σ , σmax = σ , and R = −1. A tensile load cycle
(σmin = 0, σmax = σ) has R = 0, whereas a compressive cycle (σmin = −σ , σmax = 0)

has R → −∞. Cyclic tension with σmax > σmin > 0 corresponds to 0 < R < 1, whereas
cyclic compression with 0 > σmax > σmin corresponds to 1 < R < ∞. Fatigue diagrams
for unidirectional aramid–epoxy composite studied by Limonov and Anderson (1991)
corresponding to various R-values are presented in Fig. 7.35. Similar results (Anderson
et al., 1991) for carbon–epoxy composites are shown in Fig. 7.36.

Since only σ−1 is usually available from standard tests under cyclic bending, fatigue
strengths for other load cycles are approximated as

σR = σ−1 + σm

(
1 − σ−1

σ t

)

where σm = (σmin + σmax)/2 is the mean stress of the load cycle and σ t is the material
long-term strength (see Section 7.3.2) for the period of time equal to that of the cyclic
loading.
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Fig. 7.35. Fatigue diagrams for unidirectional aramid–epoxy composite loaded along the fibers with various
stress ratios.
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Fig. 7.36. Fatigue diagrams for a unidirectional carbon–epoxy composite loaded along the fibers with various
stress ratios.

Fabric composites are more susceptible to cyclic loading than materials reinforced with
straight fibers. This fact is illustrated in Fig. 7.37 showing the experimental results of
Schulte et al. (1987).

The foregoing discussion deals with high-cycle fatigue. The initial interval 1 ≤ N ≤ 103

corresponding to so-called low-cycle fatigue is usually studied separately, because the
slope of the approximation in Eq. (7.69) can be different for high stresses. A typical
fatigue diagram for this case is shown in Fig. 7.38 (Tamuzh and Protasov, 1986).
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Fig. 7.37. Tensile fatigue diagrams for a cross-ply (1) and fabric (2) carbon–epoxy composites.
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Fig. 7.38. Low-cycle fatigue diagram for unidirectional aramid–epoxy composite loaded along the fibers
with R = 0.1.

Fatigue has also some effect on the stiffness of composite materials. This can be seen
in Fig. 7.39 demonstrating a reduction in the elastic modulus for a glass–fabric–epoxy–
phenolic composite under low-cycle loading (Tamuzh and Protasov, 1986). This effect
should be accounted for in the application of composites to the design of structural
members such as automobile leaf-springs that, being subjected to cyclic loading, are
designed under stiffness constraints.

Stiffness degradation can be used as an indication of material damage to predict fatigue
failure. The most sensitive characteristic of the stiffness change is the tangent modulus Et

specified by the second equation in Eqs. (1.8). The dependence of Et on the number
of cycles, N , normalized to the number of cycles that cause material fatigue fracture
under the preassigned stress, is presented in Fig. 7.40 corresponding to a ±45◦ angle-ply
carbon–epoxy laminate studied by Murakami et al. (1991).

7.3.4. Impact loading

Thin-walled composite laminates possessing high in-plane strength and stiffness are
rather susceptible to damage initiated by transverse impact loads that can cause fiber
breakage, cracks in the matrix, delamination, and even material penetration by the
impactor. Depending on the impact energy determined by the impactor mass and veloc-
ity and the properties of laminate, impact loading can result in considerable reduction
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Fig. 7.39. Dependence of elastic modulus of glass fabric–epoxy–phenolic composite on the number of cycles
at stress σ = 0.5σ̄ (σ̄ is the static ultimate stress).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Et

N

Fig. 7.40. Dependence of the tangent modulus normalized to its initial value on the number of cycles related
to the ultimate number corresponding to fatigue failure under stress σmax = 120 MPa and R = −1 for ±45◦

angle-ply carbon–epoxy laminate.



410 Advanced mechanics of composite materials

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

−− s0si   /

Ei, J/mm

1

2

3

Fig. 7.41. Dependence of compression strength after impact normalized to the initial compressive strength on
the impact energy related to the plate thickness for glass fabric–epoxy (1), unidirectional glass–epoxy (2), and

carbon–epoxy composite plates (3).

in material strength under tension, compression, and shear. One of the most dangerous
consequences of an impact loading is an internal delamination in laminates, which can
sometimes be hardly noticed by visual examination. This type of defect causes a dra-
matic reduction in the laminate compressive strength and results in unexpected failure of
thin-walled composite structures due to microbuckling of fibers or local buckling of plies.
As follows from Fig. 7.41, showing the experimental results of Verpoest et al. (1989)
for unidirectional and fabric composite plates, impact can reduce material strength in
compression by a factor of 5 or more.

To study the mechanism of material interlaminar delamination, consider the problem of
wave propagation through the thickness of the laminate shown in Fig. 7.42. The motion
equation has the following well-known form

∂
∂z

(
Ez

∂uz

∂z

)
= ρ

∂2uz

∂t2
(7.70)

Here, uz is the displacement in the z-direction, Ez is material modulus in the same
direction depending, in the general case on z, and ρ is the material density. For the
laminate in Fig. 7.42, the solution of Eq. (7.70) should satisfy the following boundary and
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Fig. 7.42. Laminate under impact load.

initial conditions

σz(z = 0, t) = −p(t), σz(z = h, t) = 0 (7.71)

uz(z, t = 0) = 0,
∂uz

∂t
(z > 0, t = 0) = 0 (7.72)

in which

σz = Ez

∂uz

∂z
(7.73)

is the interlaminar normal stress.
Consider first a homogeneous layer such that Ez and ρ do not depend on z. Then,

Eq. (7.70) takes the form

c2 ∂2uz

∂z2
= ∂2uz

∂t2

where c2 = Ez/ρ. Transform this equation introducing new variables, i.e., x1 = z + ct

and x2 = z− ct. Performing conventional transformation and rearrangement, we arrive at

∂2uz

∂x1 ∂x2
= 0
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The solution for this equation can be readily found and presented as

uz = φ1(x1) + φ2(x2) = φ1(z + ct) + φ2(z − ct)

Here, φ1 and φ2 are some arbitrary functions. Using Eq. (7.73), we get

σz = Ez[f1(x + ct) + f2(x − ct)]

where

f1 = ∂φ1

∂z
, f2 = ∂φ2

∂z

Applying the boundary and initial conditions, Eqs. (7.71) and (7.72), we arrive at the
following final result

σz = E[f (x + ct) − f (x − ct)] (7.74)

in which the form of function f is governed by the shape of the applied pulse. As can be
seen, the stress wave is composed of two components having opposite signs and moving
in opposite directions with one and the same speed c, which is the speed of sound in
the material. The first term in Eq. (7.74) corresponds to the applied pulse that propagates
to the free surface z = h (see Fig. 7.43, demonstrating the propagation of a rectangular
pulse), whereas the second term corresponds to the pulse reflected from the free surface
z = h. It is important that for a compressive direct pulse (which is usually the case),
the reflected pulse is tensile and can cause material delamination since the strength of
laminated composites under tension across the layers is very low.

P z
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P

P

s

C

C

Fig. 7.43. Propagation of direct and reflected pulses through the layer thickness.
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Note that the speed of sound in a homogeneous material, i.e.,

c =
√

Ez

ρ
(7.75)

is the same for the tensile and compressive waves in Fig. 7.43. This means that the elastic
modulus in Eq. (7.75) must be the same for both tension and compression. For compos-
ite materials, tensile and compressive tests sometimes produce modulus values that are
slightly different. Usually, the reason for such a difference is that the different specimens
and experimental techniques are used for tensile and compression tests. Testing of fiber-
glass fabric coupons (for which the difference in the experimental values of tensile and
compressive moduli is sometimes observed) involving continuous loading from compres-
sion to tension through zero load does not show any ‘kink’ in the stress–strain diagram at
zero stress. Naturally, for heterogeneous materials, the apparent (effective) stiffness can
be different for tension and compression as, for example, in materials with cracks that
propagate under tension and close under compression. Sometimes stress–strain diagrams
with a ‘kink’ at the origin are used to approximate nonlinear experimental diagrams that,
actually, do not have a ‘kink’ at the zero stress level at all.

For laminates, such as in Fig. 7.42, the boundary conditions, Eqs. (7.71), should be
supplemented with the interlaminar conditions u

(i)
z = u

(i−1)
z and σ

(i)
z = σ

(i−1)
z . Omitting

the rather cumbersome solution that can be found elsewhere (Vasiliev and Sibiryakov,
1985), we present some numerical results.

Consider the two-layered structure: the first layer of which has thickness 15 mm and
is made of aramid–epoxy composite material with E

(1)
z = 4.2 GPa, ρ1 = 1.4 g/cm3, and

the second layer is made of boron–epoxy composite material and has E
(2)
z = 4.55 GPa,

ρ2 = 2 g/cm3, and h2 = 12 mm. The duration of a rectangular pulse of external pressure p

acting on the surface of the first layer is tp = 5×10−6 s. The dependence of the interlaminar
(z = 15 mm) stress on time is shown in Fig. 7.44. As can be seen, at t ≈ 3tp the tensile
interface stress exceeds the intensity of the pulse of pressure by the factor of 1.27. This
stress is a result of interaction of the direct stress wave with the waves reflected from the
laminate’s inner, outer, and interface surfaces. Thus, in a laminate, each interface surface
generates elastic waves.

For laminates consisting of more than two layers, the wave interaction becomes more
complicated and, what is more important, can be controlled by the appropriate stacking
sequence of layers. As an example, consider a sandwich structure shown in Fig. 7.45a.
The first (loaded) layer is made of aluminum and has h1 = 1 mm, E

(1)
z = 72 GPa, ρ1 =

2.7 g/cm3, the second layer is a foam core with h2 = 10 mm, E
(2)
z = 0.28 GPa, ρ2 =

0.25 g/cm3, and the third (load-carrying) composite layer has h3 = 12 mm, E(3)
z = 10 GPa,

ρ3 = 1.4 g/cm3. The duration of a rectangular pulse of external pressure is 10−6 s. The
maximum tensile stress occurs in the middle plane of the load-carrying layer (plane a–a

in Fig. 7.45). The normal stress induced in this plane is presented in Fig. 7.46a. As can
be seen, at the moment of time t equal to about 1.75 × 10−5 s, this stress is tensile and
can cause delamination of the structure.
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Fig. 7.44. Dependence of the interlaminar stress referred to the acting pressure on time.
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Fig. 7.45. Structure of the laminates under study.

Now introduce an additional aluminum layer in the foam core as shown in Fig. 7.45b.
As follows from Fig. 7.46b, this layer suppresses the tensile stress in section a–a. Two
intermediate aluminum layers (Fig. 7.45c) working as generators of compressive stress
waves eliminate the appearance of tensile stress in this section. Naturally, the effect under
discussion can be achieved for a limited period of time. However, in reality, the impact-
generated tensile stress is dangerous soon after the application of the pulse. The damping
capacity of real structural materials (which is not taken into account in the foregoing
analysis) dramatically reduces the stress amplitude in time.

A flying projectile with relatively high kinetic energy can penetrate through the laminate.
As is known, composite materials, particularly, high-strength aramid fabrics, are widely
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Fig. 7.46. Normal stress related to external pressure acting in section a–a of the laminates in Fig. 7.45 (a)–(c),
respectively.

used for protection against flying objects. To demonstrate the mechanism of this protection,
consider a square composite plate clamped in the steel frame shown in Fig. 7.47 and
subjected to impact by a rectangular plane projectile (see Fig. 7.47) simulating the blade
of the turbojet engine compressor. The plate consists of layers of thin aramid fabric
impregnated with epoxy resin at a distance from the window in the frame (see Fig. 7.47)
and co-cured together as shown in Fig. 7.48. The front (loaded) surface of the plate has
a 1-mm-thick cover sheet made of glass fabric–epoxy composite. The results of ballistic
tests are presented in Table 7.2. Front and back views of plate No. 2 are shown in Fig. 7.47,
and the back view of plate No. 3 can be seen in Fig. 7.48. Since the mechanical properties
of the aramid fabric used to make the plates are different in the warp and fill directions,
the plates consist of couples of mutually orthogonal layers of fabric that are subsequently
referred to as 0◦/90◦ layers. All the plates listed in Table 7.2 have n = 32 of such
couples.
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(a)

(b)

Fig. 7.47. Plate no. 2 (see Table 7.2) after the impact test: (a) – front view; (b) – back view.

Fig. 7.48. Back view of plate no. 3 (see Table 7.2) after the impact test.
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Table 7.2
Ballistic test of plates made of aramid fabric.

Plate no. Projectile velocity (m/s) Test results

1 315 No penetration
2 320 The projectile is ‘caught’

by the containment
3 325 Penetration

To calculate the projectile velocity below which it fails to perforate the plate (the
so-called ballistic limit), we use the energy conservation law, according to which

1

2
mp

(
V 2

s − V 2
r

)
= n(W + T ) (7.76)

where Vs is the projectile striking velocity, Vr is its residual velocity, mp = 0.25 kg is
the projectile mass, n = 32 is the number of the 0◦/90◦ layers, W is the fracture work
for the 0◦/90◦ layers, and T is the kinetic energy of the layer. All other factors and the
fiberglass cover of the plate are neglected.

The fracture work can be evaluated using the quasi-static test shown in Fig. 7.49.
A couple of mutually orthogonal fabric layers is fixed along the plate contour and loaded
by the projectile. The area under the force–deflection curve (solid line in Fig. 7.49) can
be treated as the work of fracture which, for the fabric under study, has been found to be
W = 120 Nm.

To calculate T , the deformed shape of the fabric membrane has been measured. Assum-
ing that the velocities of the membrane points are proportional to deflections f and that
dfm/dt = Vs , the kinetic energy of the fabric under study (the density of the layer unit
surface is 0.2 kg/m2) turns out to be Tc = 0.0006 V 2

s .
To find the ballistic limit, we should take Vr = 0 in Eq. (7.76). Substituting the fore-

going results in this equation, we get Vb = 190.5 m/s, which is much lower than the
experimental result (Vb = 320 m/s) following from Table 7.2.

Let us change the model of the process and assume that the fabric layers fail one
after another rather than all of them at once, as is assumed in Eq. (7.76). The result is
expected to be different because the problem under study is not linear, and the principle of
superposition is not applicable. Bearing this in mind, we write Eq. (7.76) in the following
incremental form

1

2
mp

(
V 2

k−1 − V 2
k

)
= W + Tk−1 (7.77)

Here, Vk−1 and Vk are the projectile velocities before and after the failure of the kth
couple of fabric layers, W is, as earlier, the fracture work consumed by the kth couple of
layers, Tk−1 = 0.0006 V 2

k−1, and the last term in the right-hand side of Eq. (7.77) means
that we account for the kinetic energy of only those fabric layers that have been already
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Fig. 7.49. Force–deflection diagrams for square aramid fabric membranes, couple of layers with
orthogonal orientations, superposition of the diagrams for individually tested layers.

penetrated by the projectile. Solving Eq. (7.77) for Vk , we arrive at

Vk =
√

[1 − 0.0048(k − 1)]V 2
k−1 − 2

mp

W (7.78)

For k = 1, we take V0 = 320 m/s, in accordance with the experimental ballistic limit,
and have V1 = 318.5 m/s from Eq. (7.78). Taking k = 2, we repeat the calculation and
find that, after the failure of the second couple of fabric layers, V2 = 316.2 m/s. This
process is repeated until Vk = 0, and the number k thus determined gives an estimate
of the minimum number of 0◦/90◦ layers that can stop a projectile with striking velocity
Vs = 320 m/s. The result of the calculation is presented in Fig. 7.50, from which it follows
that k = 32. This is exactly the same number of layers that have been used to construct
the experimental plates.

Thus, it can be concluded that the high impact resistance of aramid fabrics is determined
by two main factors. The first factor is the relatively high work of fracture, which is
governed not only by the high strength, but also by the interaction of the fabric layers.
The dashed line in Fig. 7.49 shows the fracture process constructed as a result of the
superposition of experimental diagrams for individual 0◦ and 90◦ layers. The solid line
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Fig. 7.50. Dependence of the residual velocity of the projectile on the number of penetrated layers.

corresponds, as noted, to 0◦ and 90◦ layers tested together (the ratio of the fabric strength
under tension in the warp and the fill direction is 1.3). As can be seen, the area under the
solid line is much larger that under the dashed one, which indicates the high contribution
of the layers interaction to the work of fracture. If this conclusion is true, we can expect
that for layers with higher anisotropy and for laminates in which the principal material
axes of the adjacent layers are not orthogonal, the fracture work would be higher than for
the orthotropic laminate under study. The second factor increasing the impact resistance of
aramid fabrics is associated with a specific process of the failure, during which the fabric
layers fail one after another, but not all at once. Plates of the same number of layers, but
consisting of resin impregnated and co-cured layers that fail at once, demonstrate much
lower impact resistance.

7.4. Manufacturing effects

As has been already noted, composite materials are formed in the process of fabrication
of a composite structure, and their properties are strongly dependent on the type and
parameters of the processing technology. This means that material specimens that are used
to determine mechanical properties should be fabricated using the same manufacturing
method that is expected to be applied to fabricate the structure under study.
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7.4.1. Circumferential winding and tape overlap effect

To demonstrate the direct correlation that can exist between processing and material
properties, consider the process of circumferential winding on a cylindrical surface as in
Fig. 7.51. As a rule, the tapes are wound with some overlap w0 shown in Fig. 7.52a.
Introducing the dimensionless parameter

λ = w0

w
(7.79)

Fig. 7.51. Winding of a circumferential layer. Courtesy of CRISM.

w

w0

ww

B C D

R

(a) (b)

δ

δ

Fig. 7.52. Circumferential winding with (a) partial overlap w0 < w and (b) complete overlap w0 = w.
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we can conclude that for the case of complete overlap (Fig. 7.52b) we have λ = 1. The
initial position of the tape placed with overlap w0 as in Fig. 7.52a is shown in this figure
with a dashed line, whereas the final position of the tapes is shown with solid lines. Assume
that after the winding and curing are over, the resulting structure is a unidirectionally
reinforced ring that is removed from the mandrel and loaded with internal pressure, so
that the ring radius, being R before the loading, becomes R1. Decompose the resultant
force acting in the ring cross-section into two components, i.e.,

F = F ′ + F ′′ (7.80)

and introduce the apparent stress acting along the fibers of the ring as

σ1 = F

A
(7.81)

where A = 2wδ is the cross-sectional area of the ring made from two tapes as shown in
Fig. 7.52. The force F ′corresponds to part BC of the ring (Fig. 7.52a) and can be found as

F ′ = A′E1
R1 − R

R

where A′ = (w + w0)δ is the cross-sectional area of this part of the ring and E1 is the
modulus of elasticity of the cured unidirectional composite. To calculate the force F ′′ that
corresponds to part CD of the ring (Fig. 7.52a), we should take into account that the fibers
start to take the load only when this part of the tape reaches the position indicated with
dashed lines, i.e.,

F ′′ = A′′E1
R1 − (R + δ)

R

where A′′ = (w − w0)δ. With due regard to Eqs. (7.79), (7.80), and (7.81), we can write
the result of the foregoing analysis in the following form

σ1 = E1

[
ε1 − δ

2R
(1 − λ)

]
(7.82)

Here, ε1 = (R1 − R)/R is the apparent strain in the fiber direction. For complete overlap
in Fig. 7.52b, λ = 1, and σ1 = E1ε1. It should be noted that there exists also the so-called
tape-to-tape winding for which λ = 0. This case cannot be described by Eq. (7.82)
because of assumptions introduced in the derivation, and the resulting equation for this
case is σ1 = E1ε1.

It follows from Eq. (7.81), which is valid for winding without tension, that overlap
of the tape results in reduction of material stiffness. Since the levels of loading for the
fibers in the BC and CD parts of the ring (Fig. 7.52a) are different, a reduction in material
strength can also be expected.
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Filament winding is usually performed with some initial tension of the tape. This ten-
sion improves the material properties because it straightens the fibers and compacts the
material. However, high tension may result in fiber damage and reduction in material
strength. For glass and carbon fibers, the preliminary tension usually does not exceed
5% of the tape strength, whereas for aramid fibers, that are less susceptible to dam-
age, the level of initial tension can reach 20% of the tape strength. Preliminary tension
reduces the effect of the tape overlap discussed above and described by Eq. (7.82).
However, this effect can show itself in a reduction in material strength, because the
initial stresses which are induced by preliminary tension in the fibers can be differ-
ent, and some fibers can be overloaded or underloaded by the external forces acting
on the structure in operational conditions. Strength reduction of aramid–epoxy unidi-
rectional composites with tape overlap has been observed in the experiments of Rach
and Ivanovskii (1986) for winding on a 200-mm-diameter mandrel, as demonstrated in
Fig. 7.53.

The absence of tape preliminary tension or low tension can cause ply waviness as shown
in Fig. 7.54, which can occur in filament-wound laminates as a result of the pressure
exerted by the overwrapped plies on the underwrapped plies or in flat laminates due to
material shrinkage in the process of curing.

The simplest model for analysis is a regular waviness as presented in Fig. 7.54(a).
To determine the apparent modulus in the x direction, we can use an expression similar to
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Fig. 7.53. Dependence of the normalized longitudinal strength of unidirectional aramid–epoxy composite on
the tape overlap.
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Fig. 7.54. Regular (a), through-the-thickness (b), and local (c) ply waviness.

the one presented in Eqs. (4.76), i.e.,

1

Ex

= cos4 α

E1
+ sin4 α

E3
+
(

1

G13
− 2ν31

E1

)
sin2 α cos2 α (7.83)

Then, because the structure is periodic,

1

E
(r)
x

= 1

l

∫ l

0

dx

Ex

(7.84)
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Approximating the ply wave as

z = a sin
πx

l

where a is the amplitude, we get

tan α = dz

dx
= f cos

πx

l

where f = πa/l. Substitution into Eqs. (7.83) and (7.84) and integration yields
(Tarnopol’skii and Roze, 1969)

1

E
(r)
x

= 1

2λ

[
2 + f 2

E1
+ 1

E3

(
2λ − 2 − 3f 2

)
+
(

1

G13
− 2ν31

E1

)
f 2

]

where λ = (1 + f 2)3/2. Simplifying this result using the assumption that f 2 �1, we
arrive at

E(r)
x = E1

1 + E1f 2

2G13

(7.85)

For glass–, carbon–, and aramid–epoxy composites with properties listed in Table 3.5, the
dependencies corresponding to Eq. (7.85) are presented in comparison to the experimental
results of Tarnopol’skii and Roze (1969) in Fig. 7.55.

If the ply waviness varies over the laminate thickness, as in Fig. 7.54(b), Eq. (7.85)
can be generalized as

E(t)
x = E1

h

∫ h

0

dz

1 + E1
2G13

f 2(z)
(7.86)

Finally, for only local waviness (see Fig. 7.54c), we obtain

1

E
(l)
x

= l
0
1

E1
+ lw

E
(t)
x

+ l
0
2

E1

where

l
0
1,2 = l 0

1,2

l0
1 + lw + l0

2

, lw = lw

l0
1 + lw + l0

2

and E
(t)
x is specified by Eq. (7.86).

Even moderate ply waviness dramatically reduces material strength under compression
along the fibers, as can be seen in Fig. 7.56, which illustrates the experimental results of
V. F. Kutinov for a unidirectional carbon–epoxy composite. The other strength character-
istics of unidirectional composites are only slightly affected by the ply waviness.
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Fig. 7.55. Reduction of the normalized modulus with the ply waviness parameter, f , for (1) glass–, (2) carbon–,
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7.4.2. Warping and bending of laminates in fabrication process

There exist also some manufacturing operations that are specific for composites that
cause stresses and strains appearing in composite structural elements in the process of
their fabrication.

As an example, consider the problem of bending and warping of unsymmetric laminates
during their fabrication. Assume that a laminated polymeric composite panel is cured at
temperature Tc and cooled to room temperature T0. Under slow cooling, the temperature
change, �T = T0 − Tc, is the same for all the layers. Since the thus-fabricated panel is
free of loading (i.e., no loads are applied to its edges or surfaces), the forces and moments
in the left-hand sides of Eqs. (7.23) and (7.24) are zero, and these equations form a
linear algebraic system for generalized strains εT , γT and κT . Integration of the strain-
displacement equations, Eqs. (7.28), allows us to determine the shape of the fabricated
panel.

Analysis of Eqs. (7.25) and (7.26), similar to that performed in Section 5.4, shows that
for symmetric laminates MT

mn = 0. Since Cmn = 0 for such laminates, the last three equa-
tions of Eqs. (7.23) in which Mx = My = Mxy = 0 form a set of homogeneous equations
whose solution is κxT = κyT = κxyT = 0. This means that a flat symmetric panel does not
acquire curvature in the process of cooling. Naturally, the in-plane dimensions of the panel
become different from those that the panel had before cooling. The corresponding thermal
strains ε0

xT , ε0
yT , and γ 0

xyT can be found from the first three equations of Eqs. (7.23) in

which Nx = Ny = Nxy = 0, but NT
11, NT

22, and NT
12 are not zero.

However, for unsymmetric laminates, in general, MT
mn �= 0, and these laminates expe-

rience bending and warping in the process of cooling. To demonstrate this, consider the
two antisymmetric laminates studied in Section 5.8.

The first one is a two-layered orthotropic cross-ply laminate shown in Fig. 5.24. Using
the stiffness coefficients calculated in Section 5.8, taking into account that for a cross-ply
laminate NT

12 = MT
12 = 0, and applying Eqs. (7.23) for Nxy and Mxy , we get γ 0

xyT = 0
and κxyT = 0. Thus, cooling of such a cross-ply laminated panel does not induce in-plane
shear or twisting in it. The other four parts of Eqs. (7.23) take the form

axxε
0
xT + axyε

0
yT − cxxκxT = nx

ayxε
0
xT + ayyε

0
yT + cyyκyT = ny

− cxxε
0
xT + bxxκxT + bxyκyT = mx

cyyε
0
yT + bxyκxT + byyκyT = my

(7.87)

where

axx = ayy = hE, axy = ayx = E1ν12h

cxx = cyy = h2

8
(E1 − E2), bxx = byy = h3E

12
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bxy = byx = h3

12
E1ν12, E = 1

2
(E1 + E2)

nx = ny = h

2
[E1(α1 + ν12α2) + E2(α2 + ν21α1)]�T

− mx = my = h2

8
[E1(α1 + ν12α2) − E2(α2 + ν21α1)]�T

The solutions to Eqs. (7.87) can be written as

ε0
xT = nx

axx + axy

+ cxx

a2
xx − a2

xy

(axxκxT + axyκyT )

ε0
yT = nx

axx + axy

− cxx

a2
xx − a2

xy

(axxκyT + axyκxT )

(7.88)

κxT = m̃x

exx − exy

, κyT = − m̃x

exx − exy

(7.89)

where

m̃x = mx + cxxnx

axx + axy

exx = bxx − axxc
2
xx

a2
xx − a2

xy

, exy = bxy − axyc
2
xx

a2
xx − a2

xy

As follows from Eqs. (7.88) and (7.89), ε and κ do not depend on x and y.
To find the in-plane displacements, we should integrate Eqs. (7.28), which have the form

∂u
∂x

= ε0
xT ,

∂v
∂y

= ε0
yT ,

∂u
∂y

+ ∂v
∂x

= 0

Referring the panel to coordinates x and y shown in Fig. 7.57 and assuming that
u(x = 0, y = 0) = 0 and v(x = 0, y = 0) = 0, we get

u = ε0
xT x, v = ε0

yT y (7.90)

Now consider Eqs. (7.24) in which Vx = Vy = 0. Thus, γxT = γyT = 0, and Eqs. (7.30)
yield θx = −∂w/∂x, θy = −∂w/∂y. The plate deflection can be found from Eqs. (7.29),
which reduce to

∂2w

∂x2
= −κxT ,

∂2w

∂y2
= −κyT ,

∂2w

∂x ∂y
= 0
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Fig. 7.57. Deformed shape of a cross-ply antisymmetric panel.

Assuming that w(x = 0, y = 0) = 0, θx(x = 0, y = 0) = 0, and θy(x = 0, y = 0) = 0,
we can write the result of the integration as

w = −1

2

(
κxT x2 + κyT y2

)
(7.91)

To present this solution in an explicit form, consider, for the sake of brevity, material with
zero Poisson’s ratios (ν12 = ν21 = 0). Then, Eqs. (7.88)–(7.91) yield

u = �T x

E1 + E2

[
E1α1 + E2α2 + 6(E1 − E2)

E1E2(α2 − α1)

E2
1 + 14E1E2 − E2

2

]

v = �Ty

E1 + E2

[
E1α1 + E2α2 + 6(E1 − E2)

E1E2(α2 − α1)

E2
1 + 14E1E2 − E2

2

]

w = −12�T

h
· E1E2(α2 − α1)

E2
1 + 14E1E2 − E2

2

(
x2 − y2

)

The deformed shape of the panel is shown in Fig. 7.57. Note that displacements u

and v correspond to the panel reference plane, which is the contact plane of the 0◦ and
90◦ layers (see Fig. 5.24).

Another typical antisymmetric structure is the two-layered angle-ply laminate shown in
Fig. 5.25. Using the stiffness coefficients for this laminate calculated in Section 5.8 and
Eqs. (7.25) and (7.27), we can write Eqs. (7.23) in the following form

A11ε
0
xT + A12ε

0
yT − h

4
A14κxyT = AT

11

A12ε
0
xT + A22ε

0
yT − h

4
A24κxyT = AT

22
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A44γ
0
xyT − h

4
(A14κxT + A24κyT ) = 0

− A14γ
0
xyT + h

3
(A11κxT + A12κyT ) = 0

− A24γ
0
xyT + h

3
(A12κxT + A22κyT ) = 0

A14ε
0
xT + A24ε

0
yT − h

3
A44κxyT = AT

12

where

AT
11 =

[
E1(α1 + ν12α2) cos2 φ + E2(α2 + ν21α1) sin2 φ

]
�T

AT
22 =

[
E1(α1 + ν12α2) sin2 φ + E2 (α2 + ν21α1) cos2 φ

]
�T

AT
12 =[

E1(α1 + ν12α2) − E2 (α2 + ν21α1)
]
�T sin φ cos φ

The solution is

ε0
xT = 1

A

[
AT

11A22 − AT
22A12 + h

4
(A14A22 − A24A12)κxyT

]

ε0
yT = 1

A

[
AT

22A11 − AT
11A12 + h

4
(A24A11 − A14A22)κxyT

]

γ 0
xyT = 0, κxT = 0, κyT = 0

κxyT = A14(A
T
11A22 − AT

22A12) + A24
(
AT

22A11 − AT
11A12

) − AT
12

h
[

A
3 A44 + 1

4

(
2A14A24A12 − A2

14A22 − A2
24A11

)]

where A = A11A22 − A2
12.

Thus, the panel under study experiences only in-plane deformation and twisting. Dis-
placements u and v can be determined by Eqs. (7.28), whereas the following equations
should be used to find w

∂2w

∂x2
= 0,

∂2w

∂y2
= 0,

∂2w

∂x ∂y
= −κxyT

The result is

w = −κxyT xy

The deformed shape of the panel is shown in Fig. 7.58.
Depending on the laminates structures and dimensions, there exists a whole class of

stable and unstable laminate configurations as studied by Hyer (1989).
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x

y

Fig. 7.58. Deformed shape of an angle-ply antisymmetric panel.

7.4.3. Shrinkage effects and residual strains

Deformation and warping of laminates appearing after the manufacturing process is
completed can occur not only due to cooling of the cured composite but also as a result
of material shrinkage due to release of tension in the fibers after the composite part is
removed from the mandrel or chemical setting of the polymeric matrix.

To demonstrate these effects, consider a thin unidirectional layer formed from circum-
ferential plies wound on a metallic cylindrical mandrel (see Fig. 7.59) under a tension.
Since the stiffness of the mandrel is much higher than that of the layer, we can assume
that, on cooling from the curing temperature Tc to room temperature T0, the strains in the
principal material coordinates of the layer are governed by the mandrel with which the
cured layer is bonded, i.e.,

εT
1 = εT

2 = α0�T (7.92)

y,1

x,2

Fig. 7.59. A unidirectional circumferential layer on a cylindrical mandrel.
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where α0 is the CTE of the mandrel material, and � T = T0 − Tc. On the other hand, if
the layer is cooled after being removed from the mandrel, its strains can be calculated as

ε1 = α1�T + ε0
1, ε2 = α2�T + ε0

2 (7.93)

The first terms in the right-hand sides of these equations are the free temperature strains
along and across the fibers (see Fig. 7.59), whereas ε0

1 and ε0
2 correspond to the possible

layer shrinkage in these directions.
Using Eqs. (7.92) and (7.93), we can determine the strains that appear in the layer when

it is removed from the mandrel, i.e.,

ε1 = ε1 − εT
1 = ε0

1 + (α1 − α0)�T

ε2 = ε2 − εT
2 = ε0

2 + (α2 − α0)�T

(7.94)

These strains can be readily found if we measure the layer diameter and length before and
after it is removed from the mandrel. Then, the shrinkage strains can be determined as

ε0
1 = ε1 − (α1 − α0)�T

ε0
2 = ε2 − (α2 − α0)�T

For a glass–epoxy composite with the following thermo-mechanical properties

E1 = 37.24 GPa, E2 = 2.37 GPa, G12 = 1.2 GPa

ν12 = 0.26, α1 = 3.1 × 10−61/◦C, α2 = 25 × 10−61/◦C

The measurements of Morozov and Popkova (1987) gave ε0
1 = −93.6 × 10−5, ε0

2 =
−64 × 10−5. Further experiments performed for different winding tensions and mandrel
materials have shown that, although the strain ε0

1 strongly depends on these parameters,
the strain ε0

2 practically has no variation. This supports the assumption that the strain ε0
2 is

caused by chemical shrinkage of the resin and depends only on the resin’s characteristics
and properties.

For a cylinder in which the fibers make angle φ with the x-axis in Fig. 7.59, the strains
induced by removal of the mandrel can be found from Eqs. (4.70), i.e.,

εx = ε1 cos2 φ + ε2 sin2 φ

εy = ε1 sin2 φ + ε2 cos2 φ

γ xy = (ε1 − ε2) sin 2φ

(7.95)

where ε1 and ε2 are specified by Eqs. (7.94). The dependencies of εx, εy , and γ xy on φ,
plotted with the aid of Eqs. (7.95), are shown in Fig. 7.60, together with the experimental
data of Morozov and Popkova (1987). As can be seen, the composite cylinder experiences
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Fig. 7.60. Dependence of residual strains in a glass–epoxy filament wound cylinder on the winding angle:
calculation, © experiment.

in the general case not only a change in its length (εx) and diameter
(
εy

)
, but also

twist
(
γ xy

)
.

To study the ±φ angle-ply layer, we should utilize the thermoelasticity constitutive
equations, Eqs. (7.23). Neglecting the bending and coupling stiffness coefficients, we can
write for the case under study

Nx = B11εx + B12εy − N1T

Ny = B21εx + B22εy − N2T

(7.96)

Applying these equations to an angle-ply composite cylinder removed from its mandrel,
we should put Nx = 0, Ny = 0 because the cylinder is free of loads, and take εT

1 =
ε1, ε

T
2 = ε2 in Eqs. (7.18), (7.25), and (7.26) that specify N1T and N2T . Then, Eqs. (7.96)

yield the following expressions for the strains that appear in the angle-ply cylinder after
it is removed from the mandrel

εx = 1

B
(N1T B22 − N2T B12)

εy = 1

B
(N2T B11 − N1T B12)
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Fig. 7.61. Residual strains ±φ angle-ply filament wound glass–epoxy cylinder, calculation,
© experiment.

where B = B11B22 − B2
12,

N1T = h
[
E1(ε1 + ν12ε2) cos2 φ + E2(ε2 + ν21ε1) sin2 φ

]

N2T = h
[
E1(ε1 + ν12ε2) sin2 φ + E2(ε2 + ν21ε1) cos2 φ

]

Here, ε1 and ε2 are given by Eqs. (7.94), Bmn = Amnh, where Amn are specified by
Eqs. (4.72), and h is the cylinder thickness. The results of calculations for the experimental
cylinder studied by Morozov and Popkova (1987) are presented in Fig. 7.61.

As follows from Figs. 7.60 and 7.61, the approach described above, based on con-
stitutive equations for laminates, Eqs. (7.23), with the shrinkage characteristics of
a unidirectional ply or an elementary layer determined experimentally, provides fair
agreement between the predicted results and the experimental data.
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Chapter 8

OPTIMAL COMPOSITE STRUCTURES

Advanced composite materials are characterized by high specific strength and stiffness
and, in combination with automatic manufacturing processes, make it possible to fabricate
composite structures with high levels of weight and cost efficiency. The replacement of
metal alloys by composite materials, in general, reduces the structure’s mass by 20–30%.
However, in some special cases, the number of which progressively increases, the com-
bination of material directional properties with design concept utilizing these properties,
being supported by the advantages of modern composite technology, provides a major
improvement in the structural performance. Such efficiency is demonstrated by composite
structures of uniform strength in which the load is taken by uniformly stressed fibers.

To introduce composite structures of uniform strength, consider a laminated panel
shown in Fig. 8.1 and loaded with in-plane forces Nx, Ny, and Nxy uniformly distributed
along the panel edges. Let the laminate consist of k unidirectional composite layers char-
acterized with thicknesses hi and fiber orientation angles φi (i = 1, 2, 3, . . . , k). For a
plane stress state, the stacking-sequence of the layers is not important.

8.1. Optimal fibrous structures

To derive the optimality criterion specifying the best structure for the panel in Fig. 8.1,
we first use the simplest monotropic model of a unidirectional composite (see Section 3.3)
assuming that the forces Nx, Ny, and Nxy are taken by the fibers only. For the design
problem, this is a reasonable approach because the transverse and shear strengths of a
unidirectional composite ply (stresses σ 2 and τ 12) are much lower than the ply strength
in the longitudinal direction (stress σ 1). Using Eqs. (4.68) in which we put σ2 = 0 and
τ12 = 0, we can write the following equilibrium equations relating the applied forces to
the stresses σ

(1)
1 in the direction of the fibers of the ith layer

Nx =
k∑

i=1

σ (i)
x hi =

k∑
i=1

σ
(i)
1 hi cos2 φi, Ny =

k∑
i=1

σ (i)
y hi =

k∑
i=1

σ
(i)
1 hi sin2 φi

Nxy =
k∑

i=1

τ (i)
xy hi =

k∑
i=1

σ
(i)
1 hi sin φi cos φi

(8.1)

437



438 Advanced mechanics of composite materials

Nxy

Nxy

Nx

Nx

x

h

hi

fi

y

2
1

Fig. 8.1. A laminated plate in a plane state of stress.

The strain ε
(i)
1 in the fiber direction in the ith layer can be expressed in terms of strains

in coordinates x, y with the aid of the first equation of Eqs. (4.69). Using the constitutive
equations for the monotropic model of the ply, Eqs. (3.61), we arrive at

σ
(i)
1 = E1ε

(i)
1 = E1(εx cos2 φi + εy sin2 φi + γxy sin φi cos φi) (8.2)

It is assumed that the layers are made of one and the same material.
Consider the design problem and stipulate, for example, that the best structure for the

laminate is the one providing the minimum total thickness

h =
k∑

i=1

hi (8.3)

for the given combination of loads. Thus, we should minimize the laminate thickness in
Eq. (8.3) subject to the constraints imposed by Eqs. (8.1) and (8.2). To solve this problem,
we can use the method of Lagrange multipliers, according to which we should introduce
multipliers λ and minimize the following augmented function

L =
k∑

i=1

hi + λx

(
Nx −

k∑
i=1

σ
(i)
1 hi cos2 φi

)
+ λy

(
Ny −

k∑
i=1

σ
(i)
1 hi sin2 φi

)

+ λxy

(
Nxy −

k∑
i=1

σ
(i)
1 hi sin φi cos φi

)

+
k∑

i=1

λi

[
σi − E1(εx cos2 φi + εy sin2 φi + γxy sin φi cos φi)

]
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with respect to the design variables hi, φi, and multipliers λ, i.e.,

∂L
∂hi

= 0,
∂L
∂φi

= 0,
∂L
∂λx

= ∂L
∂λy

= ∂L
∂λxy

= ∂L
∂λi

= 0 (8.4)

Minimization with respect to λ gives, obviously, the constraints in Eqs. (8.1) and (8.2),
whereas the first two of Eqs. (8.4) yield

σ
(i)
1 (λx cos2 φi + λy sin2 φi + λxy sin φi cos φi) = 1 (8.5)

hiσ
(i)
1

[
(λy − λx) sin 2φi + λxy cos 2φi

] = E1λi

[
(εy − εx) sin 2φi + εxy cos 2φi

]
(8.6)

The solution of Eq. (8.6) is

λx = E1εx

λi

hiσ
(i)
1

, λy = E1εy

λi

hiσ
(i)
1

, λxy = E1γxy

λi

hiσ
(i)
1

These equations allow us to conclude that

λi

hiσ
(i)
1

= λx

E1εx

= λy

E1εy

= λxy

E1γxy

= 1

c2

where c is some constant. Substituting λx, λy , and λxy from these equations into Eq. (8.5)
and taking into account Eq. (8.2), we have

(
σ

(i)
1

)2 = c2 (8.7)

This equation has two solutions: σ
(i)
1 = ±c.

Consider the first case, i.e., σ
(i)
1 = c. Adding the first two equations of Eqs. (8.1) and

taking into account Eq. (8.9), we have

h = 1

c
(Nx + Ny)

Obviously, the minimum value of h corresponds to c = σ 1, where σ 1 is the ultimate
stress. Thus, the total thickness of the optimal plate is

h = 1

σ 1
(Nx + Ny) (8.8)

Taking now σ
(i)
1 = σ 1 in Eqs. (8.1) and eliminating σ 1 with the aid of Eq. (8.8),

we arrive at the following two optimality conditions in terms of the design variables
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and acting forces

k∑
i=1

hi(Nx sin2 φi − Ny cos2 φi) = 0 (8.9)

k∑
i=1

hi[(Nx + Ny) sin φi cos φi − Nxy] = 0 (8.10)

Thus, 2k design variables, i.e., k values of hi and k values of φi , should satisfy these
three equations, Eqs. (8.8)–(8.10). All possible optimal laminates have the same total
thickness in Eq. (8.8). As follows from Eq. (8.2), the condition σ

(i)
1 = σ 1 is valid, in

the general case, if εx = εy = ε and γxy = 0. Applying Eqs. (4.69) to determine the
strains in the principal material coordinates of the layers, we arrive at the following result
ε1 = ε2 = ε and γ12 = 0. This means that the optimal laminate is the structure of
uniform stress and strain in which the fibers in each layer coincide with the directions
of principal strains. An important feature of the optimal laminate follows from the last
equation of Eqs. (4.168) which yields φ′

i = φi . Thus, the optimal angles do not change
under loading.

Introducing the new variables

hi = hi

h
, ny = Ny

Nx

, nxy = Nxy

Nx

, λ = 1

1 + ny

and taking into account that

k∑
i=1

hi = 1 (8.11)

we can transform Eqs. (8.8)–(8.10) that specify the structural parameters of the optimal
laminate to the following final form

h = Nx

λσ 1
(8.12)

k∑
i=1

hi cos2 φi = λ,

k∑
i=1

hi sin2 φi = λny (8.13)

k∑
i=1

hi sin φi cos φi = λnxy (8.14)

For uniaxial tension in the x-direction, we have ny = nxy = 0, λ = 1. Then,
Eqs. (8.13) yield φi = 0 (i = 1, 2, 3, . . . , k) and Eq. (8.12) gives the obvious result
h = Nx/σ .
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(a) (b)

Fig. 8.2. Cross-ply (a) and ±45◦ angle-ply (b) optimal structures for uniform tension.

To describe tension in two orthogonal directions x and y, we should put nxy = 0.
It follows from Eq. (8.14) that the laminate structure in this case should be symmetric,
i.e., each layer with angle +φi should be accompanied by a layer of the same thickness
but with angle −φi .

Consider, for example, uniform biaxial tension such that Nx = Ny = N , Nxy = 0,
ny = 1, nxy = 0, λ = 0.5. For this case, Eqs. (8.12) and (8.13) yield

h = 2N

σ 1
,

k∑
i=1

hi cos 2φi = 0 (8.15)

The natural structure for this case corresponds to the cross-ply laminate for which k = 2,
φ1 = 0◦, φ2 = 90◦ (Fig. 8.2a). Then, the second equation of Eqs. (8.15) gives the evident
result h1 = h2.

Consider the first equation, from which it follows that the total thickness of the optimal
laminate is twice the thickness of a metal plate under the same loading conditions. This
result is quite natural because, in contrast to isotropic materials, the monotropic layer can
work in only one direction – along the fibers. So, we need to have the 0◦-layer to take
Nx = N and the same, but 90◦-layer to take Ny = N . From this we can conclude that
the directional character of a composite ply’s stiffness and strength is actually a material
shortcoming rather than its advantage. The real advantages of composite materials are
associated with their high specific strength provided by thin fibers (see Section 3.2.1),
and if we had isotropic materials with such specific strength, no composites would be
developed and implemented.

Return now to the second equation of Eqs. (8.15) which shows that, in addition to a
cross-ply laminate, there exists an infinite number of optimal structures. For example, this
equation is satisfied for a symmetric ±45◦ angle-ply laminate (Fig. 8.2b). Moreover, all
the quasi-isotropic laminates discussed in Section 5.7 and listed in Table 5.3 satisfy the
optimality conditions for uniform tension.

A loading case, which is important for actual applications, corresponds to a cylindrical
pressure vessel, as considered in Section 6.3. The winding of such a vessel is shown in
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Fig. 7.51. For this type of loading,

Nx = 1

2
pR, Ny = pR, Nxy = 0

where Nx and Ny are the circumferential and axial stress resultants, respectively, p the
internal pressure and R is the cylinder radius. Thus, we have ny = 2 and λ = 1/3. Since
Nxy = 0, the structure of the laminate is symmetric with respect to the cylinder meridian,
and Eqs. (8.12)–(8.14) can be reduced to

h = 3pR

2σ 1
(8.16)

k∑
i=1

hi(3 cos2 φi − 1) = 0 (8.17)

Comparing Eq. (8.16) with the corresponding expression for the thickness of a metal
pressure vessel, which is hm = pR/σ , we can see that the thickness of an optimal
composite vessel is 1.5 times more than hm. Nevertheless, because of their higher strength
and lower density, composite pressure vessels are significantly lighter than metal ones.
To show this, consider pressure vessels with radius R = 100 mm made of different
materials and designed for a burst pressure p = 20 MPa. The results are listed in Table 8.1.
As can be seen, the thickness of a glass–epoxy vessel is the same as that for the thickness
of a steel vessel, because the factor 1.5 in Eq. (8.16) is compensated by the composite’s
strength which is 1.5 times greater than the strength of steel. However, the density of a
glass–epoxy composite is much lower than the density of steel, and as a result, the mass
of unit surface area of the composite vessel is only 27% of the corresponding value for
a steel vessel. The most promising materials for pressure vessels are aramid and carbon
composites, which have the highest specific tensile strength (see Table 8.1).

Consider Eq. (8.17) which shows that there can exist an infinite number of optimal
laminates with one and the same thickness specified by Eq. (8.16).

Table 8.1
Parameters of metal and composite pressure vessels.

Parameter Material

Steel Aluminum Titanium Glass–
epoxy

Carbon–
epoxy

Aramid–
epoxy

Strength, σ , σ 1 (MPa) 1200 500 900 1800 2000 2500
Density, ρ (g/cm3) 7.85 2.7 4.5 2.1 1.55 1.32
Thickness of the vessel,
hm, h (mm)

1.67 4.0 2.22 1.67 1.5 1.2

Mass of the unit surface
area, ρh (kg/m2)

13.11 10.8 10.0 3.51 2.32 1.58
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The simplest is a cross-ply laminate having k = 2, φ1 = 0◦, h1 = h0, and φ2 = 90◦,
h2 = h90. For this structure, Eq. (8.17) yields h90 = 2h0. This result seems obvious
because Ny/Nx = 2. For symmetric ±φ angle-ply laminate, we should take k = 2,
h1 = h2 = hφ/2, φ1 = +φ, φ2 = −φ. Then,

cos2 φ = 1

3
, φ = φ0 = 54.44◦

As a rule, helical plies are combined with circumferential plies as in Fig. 7.51. For this
case, k = 3, h1 = h2 = hφ/2, φ1 = −φ2 = φ, h3 = h90, φ3 = 90◦, and Eq. (8.17)
gives

h90

hφ

= 3 cos2 φ − 1 (8.18)

Since the thickness cannot be negative, this equation is valid for 0 ≤ φ ≤ φ0. For
φ0 ≤ φ ≤ 90◦, the helical layers should be combined with an axial one, i.e., we should
put k = 3, h1 = h2 = hφ/2, φ1 = −φ2 = φ and h3 = h0, φ3 = 0◦. Then,

h0

hφ

= 1

2
(1 − 3 cos2 φ) (8.19)

The dependencies corresponding to Eqs. (8.18) and (8.19) are presented in Fig. 8.3.
As an example, consider a filament wound pressure vessel whose parameters are listed
in Table 6.1. The cylindrical part of the vessel shown in Figs. 4.14 and 6.22 consists of
a ±36◦ angle-ply helical layer and a circumferential layer whose thicknesses h1 = hφ

and h2 = h90 are presented in Table 6.1. The ratio h90/hφ for two experimental vessels
is 0.97 and 1.01, whereas Eq. (8.18) gives for this case h90/hφ = 0.96 which shows
that both vessels are close to optimal structures. Laminates reinforced with uniformly
stressed fibers can exist under some restrictions imposed on the acting forces Nx, Ny,

and Nxy . Such restrictions follow from Eqs. (8.13) and (8.14) under the conditions that
hi ≥ 0, 0 ≤ sin2 φi, cos2 φi ≤ 1 and have the form

0 ≤ λ ≤ 1, −1

2
≤ λnxy ≤ 1

2

In particular, Eqs. (8.13) and (8.14) do not describe the case of pure shear for which
only the shear stress resultant, Nxy , is not zero. This is quite natural because the strength

condition σ
(i)
1 = σ 1 under which Eqs. (8.12)–(8.14) are derived is not valid for shear

inducing tension and compression in angle-ply layers.
To study in-plane shear of the laminate, we should use both solutions of Eq. (8.7) and

assume that for some layers, e.g., with i = 1, 2, 3, . . . , n− 1, σ
(i)
1 = σ 1 whereas for the

other layers (i = n, n + 1, n + 2, . . . , k), σ
(i)
1 = −σ 1. Then, Eqs. (8.1) can be reduced to
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Fig. 8.3. Optimal thickness ratios for a cylindrical pressure vessel consisting of ±φ helical plies combined with
circumferential (90◦) or axial (0◦) plies.

the following form

Nx + Ny = σ 1(h
+ − h−) (8.20)

Nx − Ny = σ 1

(
n−1∑
i=1

h+
i cos 2φi −

k∑
i=n

h−
i cos 2φi

)
(8.21)

Nxy = 1

2
σ 1

(
n−1∑
i=1

h+
i sin 2φi −

k∑
i=n

h−
i sin 2φi

)
(8.22)

where

h+ =
n−1∑
i=1

h+
i , h− =

k∑
i=n

h−
i

are the total thicknesses of the plies with tensile and compressive stresses in the fibers,
respectively.

For the case of pure shear (Nx = Ny = 0), Eqs. (8.20) and (8.21) yield h+ = h−
and φi = ±45◦. Then, assuming that φi = +45◦ for the layers with hi = h+

i , whereas
φi = −45◦ for the layers with hi = h−

i , we get from Eq. (8.22)

h = h+ + h− = 2Nxy

σ 1
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The optimal laminate, as follows from the foregoing derivation, corresponds to a ±45◦
angle-ply structure as shown in Fig. 8.2b.

8.2. Composite laminates of uniform strength

Consider again the panel in Fig. 8.1 and suppose that unidirectional plies or fabric
layers, that form the panel are orthotropic, i.e., in contrast to the previous section, we
do not now neglect stresses σ2 and τ12 in comparison with σ1 (see Fig. 3.29). Then, the
constitutive equations for the panel in a plane stress state are specified by the first three
equations in Eqs. (5.35), i.e.,

Nx = B11εx + B12εy + B14γxy

Ny = B21εx + B22εy + B24γxy

Nxy = B41εx + B42εy + B44γxy

(8.23)

where, in accordance with Eqs. (4.72), (5.28), and (5.42)

B11 =
k∑

i=1

hi

(
E

(i)

1 cos4 φi + E
(i)

2 sin4 φi + 2E
(i)
12 sin2 φi cos2 φi

)

B12 = B21 =
k∑

i=1

hi

[
E

(i)

1 ν
(i)
12 +

(
E

(i)

1 + E
(i)

2 − 2E
(i)
12

)
sin2 φi cos2 φi

]

B22 =
k∑

i=1

hi

(
E

(i)

1 sin4 φi + E
(i)

2 cos4 φi + 2E
(i)
12 sin2 φi cos2 φi

)

B14 = B41 =
k∑

i=1

hi

(
E

(i)

1 cos2 φi − E
(i)

2 sin2 φi − E
(i)
12 cos 2φi

)
sin φi cos φi

B24 = B42 =
k∑

i=1

hi

(
E

(i)

1 sin2 φi − E
(i)

2 cos2 φi + E
(i)
12 cos 2φi

)
sin φi cos φi

B44 =
k∑

i=1

hi

[(
E

(i)

1 + E
(i)

2 − 2E
(i)

1 ν
(i)
12

)
sin2 φi cos2 φi + G

(i)
12 cos2 2φi

]

(8.24)

and E
(i)

1, 2 = E
(i)
1, 2

1 − ν
(i)
12 ν

(i)
21

, E
(i)
12 = E

(i)

1 ν
(i)
12 + 2G

(i)
12 .

In the general case, the panel can consist of layers made of different composite materials.
Using the optimality criterion developed in the previous section for fibrous structures,
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we suppose that the fibers in each layer are directed along the lines of principal strains,
or principal stresses because τ

(i)
12 = G12γ

(i)
12 for an orthotropic layer and the condition

γ
(i)
12 = 0 is equivalent to the condition τ

(i)
12 = 0 (see Section 2.4). Using the third equation

in Eqs. (4.69), we can write these conditions as

2(εy − εx) sin φi cos φi + γxy cos 2φi = 0 (8.25)

This equation can be satisfied for all the layers if we take

εx = εy = ε, γxy = 0 (8.26)

Then, Eqs. (8.23) yield

Nx = (B11 + B12)ε, Ny = (B21 + B22)ε, Nxy = (B41 + B42)ε

These equations allow us to find the strain, i.e.,

ε = Nx + Ny

B11 + 2B12 + B22
(8.27)

and to write two relationships specifying the optimal structural parameters of the laminate

(B11 + B12)Ny − (B21 + B22)Nx = 0

(B41 + B42)(Nx + Ny) − (B11 + 2B12 + B22)Nxy = 0

Substitution of Bmn from Eqs. (8.24) results in the following explicit form of these
conditions

k∑
i=1

hi

[
E

(i)

1

(
1 + ν

(i)
12

)(
Nx sin2 φi − Ny cos2 φi

)

+E
(i)

2

(
1 + ν

(i)
21

)(
Nx cos2 φi − Ny sin2 φi

)]
= 0

k∑
i=1

hi

{(
Nx + Ny

)(
E

(i)

1 − E
(i)

2

)
sin φi cos φi

−Nxy

[
E

(i)

1

(
1 + ν

(i)
12

)
+ E

(i)

2

(
1 + ν

(i)
21

)]}
= 0

(8.28)

To determine the stresses that act in the optimal laminate, we use Eqs. (4.69) and (8.26)
that specify the strains in the principal material coordinates of the layers as ε1 = ε2 = ε,
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γ12 = 0. Applying constitutive equations, Eqs. (4.56), substituting ε from Eq. (8.27) and
writing the result in explicit form with the aid of Eqs. (8.24), we arrive at

σ
(i)
1 = E

(i)

1

Si

(
1 + ν

(i)
12

)(
Nx + Ny

)

σ
(i)
2 = E

(i)

2

Si

(
1 + ν

(i)
21

)(
Nx + Ny

)

τ
(i)
12 = 0

(8.29)

where

Si =
k∑

i=1

hi

[
E

(i)

1

(
1 + ν

(i)
12

)
+ E

(i)

2

(
1 + ν

(i)
21

)]

is the laminate stiffness coefficient.
If all the layers are made from the same material, Eqs. (8.28) and (8.29) are simplified as

k∑
i=1

hi

[
Nx sin2 φi − Ny cos2 φi + n

(
Nx cos2 φi − Ny sin2 φi

)]
= 0

k∑
i=1

hi

[
m
(
Nx + Ny

)
sin φi cos φi − (1 + n) Nxy

] = 0

(8.30)

σ
(i)
1 = σ1 = Nx + Ny

h(1 + n)
, σ

(i)
2 = σ2 = n(Nx + Ny)

h(1 + n)
, τ

(i)
12 = 0 (8.31)

in which

n = E2(1 + ν21)

E1(1 + ν12)
, m = E1 − E2

E1(1 + ν12)
, h =

k∑
i=1

hi

Laminates of uniform strength exist under the following restrictions

n

1 + n
≤ Nx

Nx + Ny

≤ 1

1 + n
,

∣∣∣∣ Nxy

Nx + Ny

∣∣∣∣ ≤ 1 − n

2(1 + n)

For the monotropic model of a unidirectional ply considered in the previous section, n = 0,
m = 1, and Eqs. (8.30) reduce to Eqs. (8.9) and (8.10).

To determine the thickness of the optimal laminate, we should use Eqs. (8.31) in con-
junction with one of the strength criteria discussed in Chapter 6. For the simplest case,
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using the maximum stress criterion in Eqs. (6.2), the thickness of the laminate can be
found from the following conditions σ1 = σ 1 or σ2 = σ 2, so that

h1 = Nx + Ny

(1 + n)σ 1
, h2 = n(Nx + Ny)

(1 + n)σ 2
(8.32)

Obviously, for the optimal structure, we would like to have h1 = h2. However, this can
happen only if material characteristics meet the following condition

σ 2

σ 1
= n = E2(1 + ν21)

E1(1 + ν12)
(8.33)

The results of calculations for typical materials whose properties are listed in Tables 3.5 and
4.4 are presented in Table 8.2. As can be seen, Eq. (8.33) is approximately valid for fabric
composites whose stiffness and strength in the warp and fill directions (see Section 4.6)
are controlled by fibers of the same type. However, for unidirectional polymeric and
metal matrix composites, whose longitudinal stiffness and strength are governed by the
fibers and transverse characteristics are determined by the matrix properties, σ 2/σ 1 � n.
In accordance with Eqs. (8.32), this means that h1 � h2, and the ratio h2/h1 varies from
12.7 for glass–epoxy to 2.04 for boron–epoxy composites. Now, return to the discussion
presented in Section 4.4.2 from which it follows that in laminated composites, transverse
stresses σ2 reaching their ultimate value, σ 2, cause cracks in the matrix, which do not
result in failure of the laminate whose strength is controlled by the fibers. To describe
the laminate with cracks in the matrix (naturally, if cracks are allowable for the structure
under design), we can use the monotropic model of the ply and, hence, the results of
optimization are presented in Section 8.1.

Consider again the optimality condition Eq. (8.25). As can be seen, this equation can
be satisfied not only by strains in Eqs. (8.26), but also if we take

tan 2φi = γxy

εx − εy

(8.34)

Since the left-hand side of this equation is a periodic function with period π, Eq. (8.34)
determines two angles, i.e.,

φ1 = φ = 1

2
tan−1 γxy

εx − εy

, φ2 = π

2
+ φ (8.35)

Table 8.2
Parameters of typical advanced composites.

Parameter Fabric–epoxy composites Unidirectional-epoxy composites Boron–A1

Glass Carbon Aramid Glass Carbon Aramid Boron

σ 2/σ 1 0.99 0.99 0.83 0.022 0.025 0.012 0.054 0.108
n 0.85 1.0 1.0 0.28 0.1 0.072 0.11 0.7
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Thus, the optimal laminate consists of two layers, and the fibers in both layers are directed
along the lines of principal stresses. Suppose that the layers are made of the same com-
posite material and have the same thickness, i.e., h1 = h2 = h/2, where h is the thickness
of the laminate. Then, using Eqs. (8.24) and (8.35), we can show that B11 = B22 and
B24 = −B14 for this laminate. After some transformation involving elimination of γ 0

xy

from the first two equations of Eqs. (8.23) with the aid of Eq. (8.34) and similar transfor-
mation of the third equation from which ε0

x and ε0
y are eliminated using again Eq. (8.34),

we get

Nx = (B11 + B14 tan 2φ)ε0
x + (B12 − B14 tan 2φ)ε0

y

Ny = (B12 − B14 tan 2φ)ε0
x + (B11 + B14 tan 2φ)ε0

y

Nxy = (B44 + B14 cot 2φ)γ 0
xy

Upon substitution of coefficients Bmn from Eqs. (8.24) we arrive at

Nx = h

2

[(
E1 + E2

)
ε0
x + (

E1ν12 + E2ν21
)
ε0
y

]

Ny = h

2

[(
E1ν12 + E2ν21

)
ε0
x + (

E1 + E2
)
ε0
y

]

Nxy = h

4

[
E1(1 − ν12) + E2(1 − ν21)

]
γ 0
xy

Introducing average stresses σx = Nx/h, σy = Ny/h, and τxy = Nxy/h and solving
these equations for strains, we have

ε0
x = 1

E
(σx − νσy), ε0

y = 1

E
(σy − νσx), γ 0

xy = τxy

G
(8.36)

where

E = 1

2(E1 + E2)

[
2E1E2 + E2

1

(
1 − ν2

12

) + E2
2

(
1 − ν2

21

)
1 − ν12ν21

]

ν = E1ν12 + E2ν21

E1 + E2
, G = E

2(1 + ν)

(8.37)

Changing strains for stresses in Eqs. (8.35), we can write the expression for the optimal
orientation angle as

φ = 1

2
tan−1 2τxy

σx − σy

(8.38)

It follows from Eqs. (8.36) that a laminate consisting of two layers reinforced along the
directions of principal stresses behaves like an isotropic layer, and Eqs. (8.37) specify the
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Table 8.3
Effective elastic constants of an optimal laminate.

Property Glass–
epoxy

Carbon–
epoxy

Aramid–
epoxy

Boron–
epoxy

Boron–
Al

Carbon–
carbon

Al2O3–
Al

Elastic modulus, E (GPa) 36.9 75.9 50.3 114.8 201.1 95.2 205.4
Poisson’s ratio, ν 0.053 0.039 0.035 0.035 0.21 0.06 0.176

elastic constants of the corresponding isotropic material. For typical advanced composites,
these constants are listed in Table 8.3 (the properties of unidirectional plies are taken
from Table 3.5). Comparing the elastic moduli of the optimal laminates with those for
quasi-isotropic materials (see Table 5.1), we can see that for polymeric composites the
characteristics of the first group of materials are about 40% higher than those for the
second group. However, it should be emphasized that whereas the properties of quasi-
isotropic laminates are universal material constants, the optimal laminates demonstrate
characteristics shown in Table 8.3 only if the orientation angles of the fibers are found
from Eqs. (8.35) or (8.38) and correspond to a particular distribution of stresses σx, σy ,
and τxy .

As follows from Table 8.3, the modulus of a carbon–epoxy laminate is close to the
modulus of aluminum, whereas the density of the composite material is lower by a factor
of 1.7. This is the theoretical weight saving factor that can be expected if we change from
aluminum to carbon–epoxy composite in a thin-walled structure. Since the stiffness of
both materials is approximately the same, to find the optimal orientation angles of the
structure elements, we can substitute in Eq. (8.38) the stresses acting in the aluminum
prototype structure. A composite structure designed in this way will have approximately
the same stiffness as the prototype structure and, as a rule, higher strength because carbon
composites are stronger than aluminum alloys.

To evaluate the strength of the optimal laminate, we should substitute strains from
Eqs. (8.36) into Eqs. (4.69) and thence these strains in the principal material coordinates
of the layers – into constitutive equations, Eqs. (4.56), that specify the stresses σ1 and
σ2(τ12 = 0) acting in the layers. Applying the appropriate failure criterion (see Chapter 6),
we can evaluate the laminate strength.

Comparing Tables 1.1 and 8.3, we can see that boron–epoxy optimal laminates have
approximately the same stiffness as titanium (but is lighter by a factor of about 2). Boron–
aluminum can be used to replace steel with a weight saving factor of about 3.

For preliminary evaluation, we can use a monotropic model of unidirectional plies
neglecting the stiffness and load-carrying capacity of the matrix. Then, Eqs. (8.37) take
the following simple form

E = E1

2
, ν = 0, G = E1

4
(8.39)

As an example, consider an aluminum shear web with thickness h = 2 mm, elastic
constants Ea = 72 GPa, νa = 0.3 and density ρa = 2.7 g/cm3. This panel is loaded with
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shear stress τ . Its shear stiffness is Ba
44 = 57.6 GPa · mm and the mass of a unit surface

is ma = 5.4 kg/m2. For the composite panel, taking σx = σy = 0 in Eq. (8.38) we have
φ = 45◦. Thus, the composite panel consists of +45◦ and −45◦ unidirectional layers of
the same thickness. The total thickness of the laminate is h = 2 mm, i.e., the same as for an
aluminum panel. Substituting E1 = 140 GPa and taking into account that ρ = 1.55 g/cm3

for a carbon–epoxy composite which is chosen to substitute for aluminum we get Bc
44 =

70 GPa · mm and mc = 3.1 kg/m3. The stresses acting in the fiber directions of the
composite plies are σ c

1 = ±2τ . Thus, the composite panel has a 21.5% higher stiffness and
its mass is only 57.4% of the mass of a metal panel. The composite panel also has higher
strength because the longitudinal strength of unidirectional carbon–epoxy composite under
tension and compression is more than twice the shear strength of aluminum.

The potential performance of the composite structure under discussion can be enhanced
if we use different materials in the layers with angles φ1 and φ2 specified by Eqs. (8.35).
According to the derivation of Obraztsov and Vasiliev (1989), the ratio of the layers’
thicknesses is

h2

h1
= E

(1)

1 − E
(1)

2

E
(2)

1 − E
(2)

2

and the elastic constants in Eqs. (8.37) are generalized as

E = E

1 − ν2
= E

(1)

1 E
(2)

1 − E
(1)

2 E
(2)

2

E
(1)

1 + E
(2)

1 − E
(1)

2 − E
(2)

2

ν =
E

(1)

1 E
(2)

1

(
ν

(1)
12 + ν

(2)
12

)
− E

(1)

2 E
(2)

2

(
ν

(1)
21 + ν

(2)
21

)

E
(1)

1 E
(2)

1 − E
(1)

2 E
(2)

2

Superscripts 1 and 2 correspond to layers with orientation angles φ1 and φ2, respectively.

8.3. Application to optimal composite structures

As stated in the introduction to this chapter, there exists special composite structures for
which the combination of the specific properties of modern composites with the appropriate
design concepts and potential of composite technology provide a major improvement of
these structures in comparison with the corresponding metal prototypes. Three such special
structures, i.e., geodesic filament-wound pressure vessels, composite flywheels, and an
anisogrid lattice structure are described in this section.

8.3.1. Composite pressure vessels

As the first example of the application of the foregoing results, consider filament-wound
membrane shells of revolution, that are widely used as pressure vessels, solid propellant
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Fig. 8.4. Axisymmetrically loaded membrane shell of revolution.

rocket motor cases, tanks for gases and liquids, etc. (see Figs. 4.14 and 7.51). The shell is
loaded with uniform internal pressure p and axial forces T uniformly distributed along the
contour of the shell cross section r = r0 as in Fig. 8.4. Meridional, Nα , and circumferential,
Nβ, stress resultants acting in the shell follow from the corresponding free body diagrams
of the shell element and can be written as (see e.g., Vasiliev, 1993)

Nα = −Q

[
1 + (z′)2

]1/2

rz′

Nβ = − 1

z′
[
1 + (z′)2]1/2

{
pr − Qz′′

z′[1 + (z′)2
]
} (8.40)

where z(r)specifies the form of the shell meridian, z′ = dz/dr and

Q = T r0 + p

2

(
r2 − r2

0

)
(8.41)

Let the shell be made by winding an orthotropic tape at angles +φ and −φ with respect to
the shell meridian as in Fig. 8.4. Then, Nα and Nβ can be expressed in terms of stresses
σ1, σ2, and τ12, referred to the principal material coordinates of the tape with the aid of
Eqs. (4.68), i.e.,

Nα = h
(
σ1 cos2 φ + σ2 sin2 φ − τ12 sin 2φ

)

Nβ = h
(
σ1 sin2 φ + σ2 cos2 φ + τ12 sin 2φ

) (8.42)
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in which h is the shell thickness. Stresses σ1, σ2, and τ12 are related to the corresponding
strains by Hooke’s law, Eqs. (4.55), as

ε1 = 1

E1
(σ1 − ν21σ2), ε2 = 1

E2
(σ2 − ν12σ1), γ12 = τ12

G12
(8.43)

whereas strains ε1, ε2, and γ12 can be expressed in terms of the meridional, εα , and
circumferential, εβ , strains of the shell using Eqs. (4.69), i.e.,

ε1 = εα cos2 φ + εβ sin2 φ

ε2 = εα sin2 φ + εβ cos2 φ

γ12 = (εβ − εα) sin 2φ

(8.44)

Since the right-hand parts of these three equations include only two strains, εα and εβ ,
there exists a compatibility equation linking ε1, ε2, and γ12. This equation is

(ε1 − ε2) sin 2φ + γ12 cos 2φ = 0

Writing this equation in terms of stresses with the aid of Eqs. (8.43), we have

[
σ1

E1
(1 + ν21) − σ2

E2
(1 + ν12)

]
sin 2φ + τ12

G12
cos 2φ = 0

In conjunction with Eqs. (8.42), this equation allows us to determine stresses as

σ1 = 1

2hC

{
(Nα + Nβ)

[
1 + 2G12

E2
(1 + ν12) tan2 2φ

]
+ Nα − Nβ

cos 2φ

}

σ2 = 1

2hC

{
(Nα + Nβ)

[
1 + 2G12

E1
(1 + ν21) tan2 2φ

]
− Nα − Nβ

cos 2φ

}

τ12 = G12 tan 2φ

hC cos 2φ

[
Nβ

(
1 + ν21

E1
sin2 φ + 1 + ν12

E2
cos2 φ

)

−Nα

(
1 + ν21

E1
cos2 φ + 1 + ν12

E2
sin2 φ

)]

(8.45)

where

C = 1 + G12

(
1 + ν21

E1
+ 1 + ν12

E2

)
tan2 2φ

Now, assume that in accordance with the results presented in the previous section the
optimal shell is reinforced along the lines of principal stresses, i.e., in such a way that
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τ12 = 0. In accordance with the last equation of Eqs. (8.43), for such a shell γ12 = 0 and,
as follows from Eqs. (8.44), εα = εβ = ε1 = ε2.

Putting τ12 = 0 in the last equation of Eqs. (8.45), we can conclude that for the optimal
shell

Nβ

Nα

= 1 − (1 − n) cos2 φ

n + (1 − n) cos2 2φ
(8.46)

where as above

n = E2(1 + ν21)

E1(1 + ν12)
(8.47)

Substituting Nα and Nβ from Eqs. (8.40) into Eq. (8.46), we arrive at the following
equation for the meridian of the optimal shell

rz′′

z′[1 + (z′)2
] = pr2

Q
− 1 − (1 − n) cos2 φ

n + (1 − n) cos2 φ
(8.48)

The first two equations of Eqs. (8.45) yield the following expressions for stresses acting
in the tape of the optimal shell

σ1 = σ2

n
= Nα

h
[
n + (1 − n) cos2 φ

] , τ12 = 0 (8.49)

Taking into account that in accordance with Eqs. (8.45)

σ1 + σ2 = 1

h
(Nα + Nβ)

we arrive at the following relationships

σ1 = Nα + Nβ

h(1 + n)
, σ2 = n(Nα + Nβ)

h(1 + n)
, τ12 = 0

which coincide with Eqs. (8.31).
Substituting Nα from the first equation of Eqs. (8.40) into Eq. (8.49), we have

σ1h = − Q
[
1 + (z′)2

]1/2

rz′[n + (1 − n) cos2 φ
] (8.50)

Assume that the optimal shell is a structure of uniform stress. Differentiating Eq. (8.50)
with respect to r and taking into account that according to the foregoing assumption
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σ1 = constant, we arrive at the following equation in which z′′ is eliminated with the aid
of Eq. (8.48)

d

dr

{
rh
[
n + (1 − n) cos2 φ

]} − h
[
1 − (1 − n) cos2 φ

] = 0 (8.51)

This equation specifies either the thickness or the orientation angle of the optimal shell.
Consider two particular cases. First, consider a fabric tape of variable width w(r) being

laid up on the surface of the mandrel along the meridians of the shell of revolution to be
fabricated. Then, φ = 0, and Eq. (8.51) takes the form

d

dr
(rh) − nh = 0

The solution of this equation is

h = hR

( r

R

)n−1
(8.52)

where hR = h(r = R) is the shell thickness at the equator r = R (see Fig. 8.4). Assuming
that there is no polar opening in the shell (r0 = 0) or that it is closed (T = pr0/2), we
have from Eq. (8.41), Q = pr2/2. Substituting this result into Eqs. (8.48) and (8.50), we
obtain

rz′′

z′[1 + (z′)2
] = 2 − n (8.53)

σ1 = − pr

2z′h
√

1 + (z′)2 (8.54)

Integrating Eq. (8.53) with the condition 1/z′ = 0 for r = R which means that the
tangent line to the shell meridian is parallel to the axis z at r = R (see Fig. 8.4), we
arrive at

z′ = − r2−n√
R2(2−n) − r2(2−n)

(8.55)

Further integration results in the following parametric equation for the shell meridian

r

R
= (1 − t)λ

z

R
= λ

∫ t

0
t−

1
2 (1 − t)−λdt = λBx

(
1

2
, 1 − λ

)

λ = 1

2(2 − n)
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Here, Bx is the β-function (or the Euler integral of the first type). The constant of inte-
gration is found from the condition z(r = R) = 0. Meridians corresponding to various
n-numbers are presented in Fig. 8.5. For n = 1 the optimal shell is a sphere, whereas for
n = 2 it is a cylinder. As follows from Eq. (8.52), the thickness of the spherical (n = 1)
and cylindrical (n = 2, r = R) shells is a constant. Substituting Eqs. (8.52) and (8.55) in
Eq. (8.54) and taking into account Eq. (8.49), we have

σ1 = σ2

n
= pR

2hR

This equation allows us to determine the shell thickness at the equator (r = R), hR ,
matching σ1 or σ2 with material strength characteristics.

As has been noted already, the shells under study can be made by laying up fabric tapes
of variable width, w(r), along the shell meridians. The tape width can be related to the
shell thickness, h(r), as

kw(r)δ = 2πrh(r) (8.56)

where k is the number of tapes in the shell cross section (evidently, k is the same for
all the cross sections) and δ is the tape thickness. Substituting h(r) from Eq. (8.52),
we get

w(r) = 2πhRrn

κδ Rn−1

Consider the second special case – a shell made by winding unidirectional composite
tapes at angles ±φ with respect to the shell meridian (see Fig. 8.4). The tape width, w0,
does not depend on r , and its thickness is δ. Then, the relevant equation similar to
Eq. (8.56) can be written as

kw0δ

cos φ(r)
= 2πrh(r)

where k is the number of tapes with angles +φ and −φ. Thus, the shell thickness is

h(r) = kw0δ

2πrcos φ(r)
(8.57)

It can be expressed in terms of the thickness value at the shell equator hR = h (r = R) as

h(r) = hR

R cos φR

rcos φ(r)
(8.58)

where φR = φ (r = R). It should be noted that this equation is not valid for the shell part
in which the tapes are completely overlapped close to the polar opening.
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Fig. 8.5. Meridians of optimal composite shells.
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Substituting h(r) from Eq. (8.58) in Eq. (8.51), we arrive at the following equation for
the tape orientation angle

r
dφ

dr
· sin φ[n − (1 − n) cos2 φ]

cos φ[1 − (1 − n) cos2 φ] = 1

The solution of this equation that satisfies the boundary condition φ(r = R) = φR is
presented as follows

r
[
1 − (1 − n) cos2 φ(r)

] 1−n
2 cosn φ(r) = R

[
1 − (1 − n) cos2 φR

] 1−n
2 cosn φR (8.59)

Consider monotropic filament-wound shells. As noted in the previous section, the simplest
and sufficiently adequate model of unidirectional fibrous composites for design problems
is the monotropic model, which ignores the stiffness of the matrix. For this model, we
should take n = 0 in the foregoing equations. Particularly, Eq. (8.59) yields in this case

r sin φ(r) = R sin φR (8.60)

This is the equation of a geodesic line on the surface of revolution. Thus, in the optimal
filament-wound shells the fibers are directed along the geodesic trajectories. This substan-
tially simplifies the winding process because the tape placed on the surface under tension
automatically takes the form of the geodesic line, provided there is no friction between
the tape and the surface. As follows from Eq. (8.60), for φ = 90◦, the tape touches the
shell parallel to radius

r0 = R sin φR (8.61)

and a polar opening of this radius is formed in the shell (see Fig. 8.4).
Transforming Eq. (8.48) with the aid of Eqs. (8.60) and (8.61) and taking n = 0,

we arrive at the following equation which specifies the meridian of the optimal filament
wound shell

z′′

z′[1 + (z′)2
] = 2r

r2 − η2
− r2

0

r
(
r2 − r2

0

) (8.62)

where

η2 = r2
0 − 2T

p
r0

Integrating Eq. (8.62) with due regard for the condition 1/z′(R) = 0 which, as above,
requires that for r = R the tangent to the meridian be parallel to z-axis, we have

z′ = −
r
(
r2 − η2

)√
R2 − r2

0√
R2

(
r2 − r2

0

)(
R2 − η2

)2 − r2
(
R2 − r2

0

)(
r2 − η2

)2
(8.63)
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Using this equation to transform Eq. (8.50) in which we take n = 0 and substitut-
ing h from Eq. (8.58), we obtain the following equation for the longitudinal stress in
the tape

σ1 = p
(
R2 − r2

0

) + 2r0T

2RhR cos2 φR

(8.64)

As can be seen, σ1 does not depend on r , and the optimal shell is a structure reinforced
with uniformly stressed fibers.

Such fibrous structures are referred to as isotensoids. To study the types of isotensoids
corresponding to the loading shown in Fig. 8.4, factor the expression in the denominator
of Eq. (8.63). The result can be presented as

z′ = − r
(
r2 − η2

)
√(

R2 − r2
)(

r2 − r2
1

)(
r2 + r2

2

) , (8.65)

where

r2
1, 2 =

(
R2

2
− η2

)⎧⎨
⎩
√√√√ R2

R2 − r2
0

[
1 +

(
3R2 − 4η2

)
r2

0(
R2 − 2η2

)2

]
± 1

⎫⎬
⎭ (8.66)

It follows from Eq. (8.65) that the parameters R and r1 are the maximum and minimum
distances from the meridian to the rotation axis. Meridians of isotensoids corresponding
to various loading conditions are shown in Fig. 8.6. For p = 0, i.e., under axial tension,
a hyperbolic shell is obtained with the meridian determined as

r2 − z2 tan2 φR = R2

This meridian corresponds to line 1 in Fig. 8.6. For φR = 0, the hyperbolic shell degener-
ates into a cylinder (line 2). Curve 3 corresponds to T = pr0/2, i.e., to a shell for which
the polar opening of radius r0 is closed. For the special angle φR = φ0 = 54◦44′, the
shell degenerates into a circular cylindrical shell (line 2) as discussed in Section 8.1. For
T = 0, i.e., in the case of an open polar hole, the meridian has the form corresponding
to curve 4. The change in the direction of axial forces T yields a toroidal shell (line 5).
Performing integration of Eq. (8.65) and introducing dimensionless parameters

r = r

R
, z = z

R
, r0 = r0

R
, η = η

R

we finally arrive at

z = k2 − η2

√
1 − k2

F(k, θ) + √
1 − k2E(k, θ) (8.67)
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Fig. 8.6. Isotensoids corresponding to various loading conditions.

where

F(k, θ) =
∫ θ

0

dθ√
1 − k2 sin2 θ

, E(k, θ) =
∫ θ

0

√
1 − k2 sin2 θdθ

are the first-kind and the second-kind elliptic integrals and

k1, 2 =
(

1

2
− η2

)⎧⎨
⎩±

√√√√ 1

1 − r2
0

[
1 + 3 − 4η2

(
1 − 2η2

)2

]
− 1

⎫⎬
⎭

k2 = 1 − k1

1 − k2
, sin θ =

√
1 − r2

1 − k1

As an application of the foregoing equations consider the optimal structure of the end
closure of the pressure vessel shown in Fig. 4.14. The cylindrical part of the vessel consists
of ±φR angle-ply layer with thickness hR that can be found from Eq. (8.64) in which
we should take T = pr0/2, and a circumferential (φ = 90◦) layer whose thickness is
specified by Eq. (8.18), i.e.,

h90 = hR(3 cos2 φR − 1)

The polar opening of the dome (see Fig. 4.14) is closed. So T = pr0/2, η = 0, and
the dome meridian corresponds to curve 3 in Fig. 8.6. As has already been noted, upon
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r0

r1

b

R

Fig. 8.7. Combined meridian of the pressure vessel dome.

winding, an opening of radius r0 is formed at the shell apex. However, the analysis of
Eq. (8.65) for r1 that determines the minimum distance from the meridian to the z-axis
(see Fig. 8.7) shows that r1 is equal to r0 only if a shell has an open polar hole (curve 4
in Fig. 8.6). For a pressure vessel whose polar hole is closed, r1 ≥ r0 and the equality
takes place only for φ = 0, i.e., for r1 = r0 = 0. In real vessels, polar holes are closed
with rigid polar bosses as shown in Fig. 8.8. The meridian of the shell under consideration
can be divided into two segments. For R ≥ r ≥ b, the meridian corresponds to curve 3
in Fig. 8.6 for which T = pr0/2 and η = 0. In Fig. 8.7 this segment of the meridian
is shown with a solid line. The meridian segment b ≥ r ≥ r0, where the shell touches
the polar boss, corresponds to curve 4 in Fig. 8.6 for which T = 0. In Fig. 8.7, this
segment of the meridian is indicated with the dashed line. The radius b in Figs. 8.7 and
8.8 can be set as the coordinate of an inflection point of this curve determined by the
condition z′′(r = b) = 0. Differentiating Eq. (8.65) and taking η = 0 for the closed

r0

b

R

p

p1

Fig. 8.8. Isotensoid dome with a polar boss.
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polar opening, we get

b =
√

3

2
· r0 = 1.225r0

Since the segment (b − r0) is relatively small, we can assume that the contact pressure p1
between the shell and the boss is uniform. Then, from the condition of boss equilibrium
(the hole in the boss is closed), we have

p1 = pb2

b2 − r2
0

(8.68)

Constructing the combined meridian, we should take into account that functions
z(r) and z′(r) must be continuous for r = b. Finally, using Eqs. (8.65) and (8.67),
we obtain:
For R ≥ r ≥ b (T = pr0/2, η = 0)

z′ = −
r3
√

R2 − r2
0√

R6
(
r2 − r2

0

) − r6
(
R2 − r2

0

) (8.69)

and

z = k2√
1 − k2

F(k, θ1) + √
1 − k2E(k, θ1)

where

k1, 2 = 1

2

(
±
√

1 + 3r2
0

1 − r2
0

− 1

)
, sin θ1 =

√
1 − r2

1 − k1
, k2 = 1 − k1

1 − k2

For b ≥ r ≥ r0 (T = 0, η = r0)

z′ = −
rb2

√(
r2 − r2

0

)(
R2 − r2

0

)
√

R6
(
b2 − r2

0

)2 − r2b4
(
r2 − r2

0

)(
R2 − r2

0

) (8.70)

and

z = − m1√
m1 + m2

[F(m, θ2) − F(m, θ∗
2 )] + √

m1 + m2[E(m, θ2) − E(m, θ∗
2 )]

+ k2√
1 − k2

F(k, θ∗
1 ) + √

1 − k2E(k, θ∗
1 )
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where

m1, 2 = r2
0

2

⎡
⎣
√√√√1 − 4

(
b

2 − r2
0

)2

b
4
r4

0

(
1 − r2

0

) ± 1

⎤
⎦, m2 = m2

m1 + m2
,

cos θ2 =
√

r2 − r2
0

m2
, sin θ∗

1 =
√

1 − b
2

1 − k1

cos θ∗
2 =

√
b

2 − r2
0

m2
, b = b

R

Meridians plotted in accordance with Eqs. (8.69) and (8.70) and corresponding to various
values of parameter r0 specifying the radius of the polar opening (which is closed) are
presented in Fig. 8.9. The curve r0 = 0 corresponds to a shell reinforced along the
meridians and is the same as that for the curve n = 0 in Fig. 8.5. This isotensoid shape
can be readily obtained experimentally if we load a balloon reinforced along the meridians
with internal pressure as in Fig. 8.10.

Stresses acting along the fibers of the shells whose meridians are presented in Fig. 8.9 are
determined by Eq. (8.50) in which we should take n = 0. Substituting h from Eq. (8.58),

z /R

r0=0
0.6

0.5

0.4

0.3

0.2

0.1

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 r/R

r0=0.1 r0=0.2
r0=0.3 r0=0.4 r0=0.5

Fig. 8.9. Meridians of isotensoids corresponding to various normalized radii of the polar openings r0 = r0/R.
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Fig. 8.10. A model isotensoid reinforced along the meridians.

φ from Eqs. (8.60), (8.61), we should consider two segments of the meridian. For the
first segment, we take T = pr0/2 and z′ in accordance with Eq. (8.69), whereas for the
second one we substitute z′ from Eq. (8.70) and put T = 0, p = p1, where p1 is specified
by Eq. (8.68). For both segments, we arrive at the same result, i.e.,

σ1 = pR

2hR cos2 φR

The shell mass and internal volume can be found as

M = 2πρhR cos φR

∫ R

r0

√
1 + (z′)2 dr

cos φ

V = π

∫ R

r0

z′r2dr

where ρ is the density of the material. The mass of a composite pressure vessel is often
evaluated by using the parameter µ in the equation

M = µ
puV

σ 1/ρ
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Fig. 8.11. Mass efficiency parameter µ and the normalized internal volume V = V/R3 of the isotensoid pressure
vessel as functions of the polar opening radius.

Here, pu is the ultimate pressure, and σ 1/ρ is the specific strength of the material. The
variation of the parameter µ and the normalized internal volume V = V/R3 as a function
of the radius of the polar opening are shown in Fig. 8.11.

8.3.2. Spinning composite disks

As the second example of optimal composite structure, consider a disk rotating around
its axis with an angular velocity ω. Let the disk be reinforced with fibers making angles
+φ and −φ with the radius as in Fig. 8.12 and find the optimal trajectories of the fibers
(Kyser, 1965; Obraztsov and Vasiliev, 1989). The radial, Nr , and circumferential, Nβ ,
stress resultants are related to the stresses σ1 acting in the composite material along the
fibers by Eqs. (8.42). Using the monotropic material model and putting σ2 = 0 and τ12 = 0

R

r

w

+f

−f

r0

Fig. 8.12. Fibers’ trajectories in the spinning disk.
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Nr + Nr′ dr

Nb

Nb

Nr

rdb

dr
Fr

Fig. 8.13. Forces acting on the disk element.

in these equations, we get

Nr = hσ1 cos2 φ, Nβ = hσ1 sin2 φ (8.71)

Consider a disk element shown in Fig. 8.13. The equilibrium condition yields

(rNr)
′ − Nβ + Fr = 0 (8.72)

where ( )′ = d( )/dr and Fr = ρhω2r2 with ρ being the material density. The disk
thickness is specified by Eq. (8.57), i.e.,

h(r) = kw0δ

2πr cos φ
(8.73)

where k is the number of fibrous tapes passing through the circumference r = constant,
and w0 and δ are the tape width and thickness.

For a disk of uniform strength, we take σ1 = σ 1 in which σ 1 is the ultimate stress for
the unidirectional composite under tension along the fibers. Correspondingly, we take
ω = ω, where ω is the ultimate angular velocity of the disk. Then, substituting Eq. (8.73)
into Eqs. (8.71) and the obtained stress resultants Nr and Nβ into Eq. (8.72), we arrive at
the following equation for the fibers’ angle

rφ′ sin φ cos φ + sin2 φ = 1

σ 1
ρω2r2 (8.74)

The solution of this equation must satisfy the boundary conditions. For a disk with radius R

and with a central opening of radius r0 as in Fig. 8.12, we must have Nr = 0 at r = r0 and
r = R. Taking into account the first expression in Eqs. (8.71), we arrive at the following
boundary conditions for Eq. (8.74)

φ(r = r0) = π

2
, φ(r = R) = π

2
(8.75)
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Since Eq. (8.75) is of the first order, its solution can, in general, satisfy only one of these
conditions. Using the second condition in Eqs. (8.75), we get

sin φ = R

r

√
1 − λ

2

(
1 − r4

R4

)
(8.76)

where

λ = ρω2R2

σ 1
(8.77)

Applying the first condition in Eqs. (8.75), we arrive at the following equation specifying
the parameter λ

λ = 2

1 +
( r0

R

)4
(8.78)

In conjunction with Eq. (8.77), this result enables us to determine the maximum value of
the disk angular velocity, i.e.,

ω2 = 2σ 1

ρR2
(
1 + r4

0

) (8.79)

where r0 = r0/R. It follows from Eq. (8.79) that the maximum value of the ultimate
angular velocity corresponds to r0 = 0, i.e., to a disk without a central opening, for which
Eq. (8.79) reduces to

ω2
m = 2σ 1

ρR2
(8.80)

Note that relatively small central openings have practically no effect on the ultimate
angular velocity. For example, for r0 = 0.1, Eq. (8.79) gives ω which is only 0.005% less
than the maximum value ωm following from Eq. (8.80).

For further analysis, we take r0 = 0 and consider disks without a central opening.
Then, Eq. (8.78) yields λ = 2, and Eq. (8.76) for the fiber angle becomes

sin φ = r

R
(8.81)

To find the fiber trajectory, consider Fig. 8.14 showing the tape element in Cartesian x, y

and polar r , β coordinate frames. As follows from the figure,

x = r sin β, y = r cos β, tan φ = rdβ

dr
(8.82)
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Fig. 8.14. A tape element in Cartesian and polar coordinate frames.

Applying the last equation of Eqs. (8.82) and using Eq. (8.81) for φ, we arrive at the
following differential equation

dβ

dr
= 1√

R2 − r2

whose general solution is

sin(β − β0) = r

R
(8.83)

in which β0 is the constant of integration. Changing β and r to x and y with the aid of
Eqs. (8.82), we can write Eq. (8.83) in Cartesian coordinates as

(
x − R

2
cos β0

)2

+
(

y − R

2
sin β0

)2

= R2

4

For each value of β0, this equation specifies a circle with radius R/2 and center located on
the circumference r = R/2. Changing β0, we get the system of circles shown in Fig. 8.15.

Composite disks can be efficiently used as inertial accumulators of mechanical energy –
flywheels such as that shown in Fig. 8.16. Note that the disk in Fig. 8.16 can be made
using the technology described in Section 4.5.2. The disk composite structure is made by
winding onto an inflated elastic mandrel similar to that shown in Fig. 8.10. After the shell
with the appropriate winding patterns is fabricated, the pressure is continuously reduced
and the shell is compressed in the axial direction between two plates. Once the shell is
transformed into a disk, the resin in the composite material is cured.

The maximum kinetic energy that can be stored and the mass of the disk are

E = πω2ρ

∫ R

0
hr3dr, M = 2πρ

∫ R

0
hrdr
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y

x

Fig. 8.15. Fiber patterns in the spinning optimal composite disk.

Fig. 8.16. Carbon–epoxy flywheel.
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Substituting h in accordance with Eq. (8.73) and using Eq. (8.81) for the winding patterns,
we get

E = π

8
R3ρω2kw0δ, M = π

2
Rρ kw0δ (8.84)

where k, w0, and δ are specified in notations to Eq. (8.73). Transforming Eq. (8.84) for E

with the aid of the corresponding equation for M , we have

E = 1

4
MR2ω2

Substituting ω from Eq. (8.80), we finally arrive at

E = Mσ 1

2ρ

Introducing the linear circumferential velocity at the outer circumference r = R of the
disk as vR = ωR and using Eq. (8.80) for ω, we obtain the following result

vR =
√

2σ 1

ρ
(8.85)

which means that vR depends only on the material longitudinal specific strength (σ 1 /ρ).
The results of calculations for the composites whose properties are listed in Table 3.5 are
presented in Table 8.4. Note that in order to use Eq. (8.85) for vR we must substitute σ 1
in N/m2, ρ in kg/m3 and take into account that 1 N = 1 kg · m/s2.

8.3.3. Anisogrid composite lattice structures

Anisogrid (anisotropic grid) composite lattice structures (Vasiliev et al., 2001; Vasiliev
and Razin, 2006) are usually made in the form of a cylindrical shell consisting of helical
and circumferential (hoop) unidirectional composite ribs formed by continuous winding
shown in Fig. 8.17 (see also Section 4.7). In the process of winding, glass, carbon, or
aramid tows impregnated with epoxy resin are placed into the grooves formed in the
elastic coating that covers the surface of the mandrel (see Fig. 8.17).

Table 8.4
Maximum values of the circumferential velocities for fibrous composite disks of uniform strength.

Composite material Glass–epoxy Carbon–epoxy Aramid–epoxy

vR (m/s) 1309 1606 1946



Chapter 8. Optimal composite structures 471

Fig. 8.17. Winding of a composite lattice structure.

Fig. 8.18. Removal of elastic coating.

After curing, elastic coating is pulled out of the structure as shown in Fig. 8.18.
Cylindrical anisogrid lattice structures with given diameter D and length L are

characterized with six design variables, i.e., (Fig. 8.19)
• the shell thickness (the height of the rib cross section), h,
• the angle of helical ribs with respect to the shell meridian, φ,
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Fig. 8.19. Lattice structure.

• the widths of the helical and the circumferential (hoop) ribs cross sections, δh and δc
(for the structure in Fig. 8.19, δc is the total width of the adjacent hoop ribs),

• the spacings of the helical and the hoop ribs, ah and ac, taken along the normal elements
to the axes.
The ribs are the principal load-bearing elements of the structure, whereas the skin,

the presence of which can be justified by design requirements, is not considered as a
load-bearing element in the design of lattice structures. Moreover, the skin thickness,
being treated as a design variable, degenerates in the process of optimization because the
skin contribution to the mass of the structure is higher than that to the structural strength
and stiffness. Thus, the optimal lattice structure design does not require a skin. If the
actual structure needs a skin, its thickness and composition are pre-assigned to meet the
operational and manufacturing requirements.

High performance and weight efficiency of composite lattice structures are provided by
unidirectionally reinforced ribs that have a high strength and stiffness. In comparison with
the known isogrid structures (Rehfield et al., 1980), consisting of helical and circumfer-
ential ribs forming equilateral triangles and having the same cross-sectional dimensions,
the anisogrid structures under consideration provide additional mass savings because the
thicknesses of the helical and circumferential ribs are different and are found, as well as
the angle of the helical ribs, in the process of optimal design.

Anisogrid carbon–epoxy lattice structures are used as interstage sections of space
launchers (Bakhvalov et al., 2005) and are normally designed for axial compression as
the main loading case.

Consider the design of a cylindrical lattice shell with given diameter, D, and length, L.
The shell is loaded with axial compressive force, P (see Fig. 5.33). For the shell
referred to axial coordinate x and circumferential coordinate y, the constitutive equations,
(Eqs. (5.5)), can be presented as

Nx = B11ε
0
x + B12ε

0
y, Ny = B21ε

0
x + B22ε

0
y, Nxy = B44γ

0
xy

Mx = D11κx + D12κy, My = D21κx + D22κy, Mxy = D44κxy

(8.86)
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in which, in accordance with Eqs. (4.189), and (5.36) for the stiffness coefficients,

B11 = 2Ehhδhc
4, B12 = B21 = B44 = 2Ehhδhc

2s2

B22 = 2Ehhδhs
4 + Echδc, Dmn = Bmnh

2/12
(8.87)

Here, subscripts ‘h’ and ‘c’ correspond to the helical and circumferential ribs and

δh = δh

ah
, δc = δc

ac
, c = cos φ, s = sin φ (8.88)

The mass of the structure consists of the mass of helical and circumferential ribs, i.e.,

M = Mh + Mc, Mh = nhLhhδhρh, Mc = ncLchδcρc

Here (see Fig. 8.19),

nh = 2π

ah
Dc, nc = L

ac
(8.89)

are the numbers of helical and circumferential ribs in the shell with diameter D and
length L,

Lh = L

c
, Lc = πD

are the lengths of the ribs. Finally, we get

M = πDLhρh(2δh + ρδc) (8.90)

where ρ = ρc/ρh and ρc, ρh are the densities of the circumferential and helical ribs.
To design the lattice structure, we must find the structural parameters, i.e., h, φ, δh,

δc, ah, ac delivering the minimum value of the mass of the structure in Eq. (8.90) and
satisfying the set of constraints providing
• sufficient strength in the helical ribs under compression,
• local stability of the segments of helical ribs between the points of intersection (nodal

points),
• global stability of the lattice shell under axial compression.
Consider the foregoing constraints. The stresses σh acting in helical ribs which take an
axial compressive force P can be found using the free-body diagram, i.e.,

P = nhσhhδh cos φ

Using Eq. (8.89) for nh and notations in Eqs. (8.88), we get

σh = P

2πDhδhc
2

(8.91)
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(b)(a)

lh
lh

Fig. 8.20. Local buckling of helical ribs.

Thus, the strength constraint σh ≤ σ , in which σ is the strength of helical rib under
compression, can be written as

P ≤ 2πDhδcc
2σ (8.92)

Helical ribs can experience local buckling under compression which shows itself as a local
bending of the rib segments between the nodal points. For typical lattice structures, local
buckling is presented in Fig. 8.20. The critical stress causing local buckling is determined
by the Euler formula (see e.g., Vasiliev, 1993), i.e.,

σcr = k
π2EhIh

l2
hAh

(8.93)

The thickness of lattice structures h is usually greater than the width of the helical ribs δc,
and local buckling occurs in the plane of the lattice structure. In this case, the moment of
inertia and the area of the rib cross section are

Ih = h

12
δ3

h, Ah = hδh (8.94)

The length of the rib segment lh shown in Figs. 8.19 and 8.20 can be expressed in terms
of the design variables as

lh = ah

sin 2φ
(8.95)

and the parameter k in Eq. (8.93) is a coefficient depending on the boundary conditions.
In general, k depends on the mutual location and bending stiffnesses of the helical and
circumferential ribs. For both the structures in Fig. 8.20, design can be performed taking
approximately k = 4. The local buckling constraint has the form σh ≤ σcr in which
σh is the stress in the helical ribs specified by Eq. (8.91). Using Eqs. (8.94) and (8.95),
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Fig. 8.21. Nonsymmetrical buckling of a lattice interstage structure.

we finally obtain

P ≤ 2

3
π3kEhDhδ

3
hs

2c4 (8.96)

Consider the global (shell-type) buckling constraint. Under axial compression, lattice
cylindrical shells experience two modes of buckling: axisymmetric and nonsymmetric.
The axisymmetric buckling results in shell bending accompanied by longitudinal waves.
Computer simulation of nonsymmetric buckling of the Proton-M launcher’s anisogrid
interstage section whose winding is shown in Fig. 8.17 (Bakhvalov et al., 2005) is
presented in Fig. 8.21 (the upper part of the structure is a dummy metal Proton-M section).

Taking into account that the bending stiffness for lattice structures Dmn can be expressed
in terms of the membrane stiffnesses Bmn with the aid of the last expression in Eqs. (8.87),
we can arrive at the following equations for the critical axial forces corresponding to the
axisymmetric, P a

cr, and nonsymmetric, P n
cr, modes of buckling (Vasiliev and Razin, 2001)

P a
cr = 2π√

3
h

√
B11B22 − B2

12, P n
cr = 2π

√
2√

3
h

√
B44

(
B12 + √

B11B22
)

Substituting stiffnesses Bmn in accordance with Eqs. (8.87), we get

P a
cr = 2π

√
2√

3
h2c2

√
EhEcδhδc (8.97)

P n
cr = 4π

√
2√

3
Ehh

2δhc
2s2

√√√√1 +
√

1 + Ecδc

2Ehδhs
4

(8.98)
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Apparently, the lowest value of Pcr specified by Eqs. (8.97) and (8.98) should be
selected for the design. Using Eqs. (8.97) and (8.98), we arrive at the following
condition:

P a
cr ≤ P n

cr if s ≤ 1

2
4

√
Ecδc

Ehδh
(8.99)

As shown below, buckling of typical lattice structures corresponds to the axisymmetric
mode because P a

cr is usually less than P n
cr. So, the global buckling constraint P ≤ Pcr can

be taken in the form

P ≤ 2π
√

2√
3

h2c2
√

EhEcδhδc (8.100)

Thus, we should minimize the mass of the structure M in Eq. (8.90) subject to the con-
straints in Eqs. (8.92), (8.96), and (8.100). As can be seen, the structure under consideration
is specified with four design variables: h, φ, δh, and δc. The main problem we face is
associated with the fact that the constraints in Eqs. (8.92), (8.96), and (8.100) are written
in the form of inequalities. To convert them to equalities, let us introduce safety factors
n ≥ 1 for all the modes of failure, i.e., for fracture of the helical ribs under compres-
sion, ns, global buckling, nb, and local buckling, nl. As a result the constraints can be
re-written in the following form

2π

Pns
Dσ hδhc

2 = 1 (8.101)

2π
√

2√
3Pnb

h2c2
√

EhEcδhδc = 1 (8.102)

2π3k

3Pnl
EhDhδ

3
hc

4s2 = 1 (8.103)

We should also take into account that

c2 + s2 = 1 (8.104)

The idea of the method of minimization of safety factors (Vasiliev and Razin, 2001) is
implemented as follows. We apply Eqs. (8.101)–(8.104) to express the design variables
in terms of the safety factors and minimize the mass of the structure with respect to both
sets of unknown variables – the design parameters and the safety factors. If one of the
parameters n is equal to unity, the corresponding constraint is active. If n = n0 > 1,
the constraint is satisfied with some additional safety factor n0. For active constraints,
function M(n) has positive gradients, so to optimize the structure, we should take n = 1,
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and no further optimization is required. So, following this procedure, we should express
h, φ, δh, and δc in terms of the safety factors ns, nb, and nl. Using Eq. (8.101),
we get

c2 = Pns

2πDσ hδh
(8.105)

Substitution of this result into Eqs. (8.102) and (8.103) yields

δc

δh
= 3D2n2

bσ
2

2n2
s EhEch2

(8.106)

s2 = 6nlDσ 2h

πkPn2
s Ehδh

(8.107)

Substituting further Eqs. (8.105) and (8.107) into Eq. (8.104), we obtain

δh = 6nlσ
2Dh

πkPn2
s Eh

+ Pns

2πDσh
(8.108)

Now, Eqs. (8.106) and (8.108) enable us to express the mass of the structure, Eq. (8.90)
in terms of only one design variable – the shell thickness h, i.e.,

M = Lρc

(
12D2nlσ

2h2

Pn2
s kEh

+ 3Pn2
bD

2σ ρ

4nsEhEch2
+ 9D4σ 4nlnbρ

Pn4
s kE2

hEc
+ Pns

σ

)
(8.109)

Applying the condition ∂M/∂h = 0, we have

h4 = P 2n2
bnsρ

16nlEcσ
(8.110)

Substituting this result into Eq. (8.109), we arrive at

M = Lρc

(
9D4σ 4nln

2
bρ

Pn4
s kEh

+ 6D2σ nb

nsEh

√
nlσ ρ

knsEc
+ Pns

σ

)
(8.111)

It follows from this equation that the mass of the structure M increases with an increase
in the buckling safety factors nb and nl, and to minimize the mass, we must take the
minimum allowable values of these factors, i.e., nb = 1 and nl = 1. This means that
the buckling constraints in Eqs. (8.102) and (8.103) are active. To find the strength safety
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factor ns, we need to put ∂M/∂ns = 0, where M is defined by Eq. (8.111). As a result,
we have

ns = σ

(
144D4ρ

P 2kE2
hEc

)1/5

(8.112)

Taking into account that ns ≥ 1, then equation Eq. (8.112) yields

P ≤ Ps = 12D2σ 2

Eh

√
σ ρ

kEc
(8.113)

So, we have two design cases. For P < Ps, we have ns > 1, and the strength constraint,
Eq. (8.101) is not active. There exists some safety factor for this mode of failure specified
by Eq. (8.112). For P > Ps, we have ns = 1, and the strength constraint becomes active,
so all three constraints are active in this case.

To study these two cases, introduce the following mass and force parameters

m = 4M

πD2L
, p = 4P

πD2
(8.114)

Then, Eq. 8.113 gives

ps = 4Ps

πD2
= 48σ 2

πEh

√
σ ρ

kEc
(8.115)

Consider the case p ≤ ps. Substituting ns specified by Eq. (8.112) into Eqs. (8.105),
(8.110), (8.111) and using Eq. (8.114), we arrive at the following equations for the
parameters of the optimal structure

h = h

D
= 1

4

(
48π4k2ρ3

EhE
3
c

p4

)1/10

tan φ = 1

2
, φ = 26.565◦

δh = 5

4π

(
108π2Ec

k4E3
hρ

p2

)1/10

δc = δc

2ρ

m = 25ρh

8

(
72ρ p3

π2kE2
hEc

)1/5

(8.116)
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Consider the case p ≥ ps, repeating the derivation of Eqs. (8.116) and taking ns = 1,

we have

h = h

D
=
(

π2kρ

Ecσ
p2
)1/4

tan2 φ = ps

4p

δh = 2

π sin 2φ

√
3σ

kEh

δc = psδh

2ρ p

m = pρh

σ

(
1 + ps

4p

)2

(8.117)

For p = ps Eqs. (8.116) and (8.117) yield the same results. Note that these equations are
universal ones, i.e., they do not include the structural dimensions.

The Eqs. (8.116) and (8.117) are valid subject to the conditions in Eqs. (8.99). Substi-
tuting the parameters following from Eqs. (8.117) in the second of these conditions, we
can conclude that the axisymmetric mode of shell buckling exists if

p ≤ p0 = ps

√√√√1

2

(√
2Ehρ

Ec
+
√

2Ehρ

Ec
− 1

)
(8.118)

Analysis of this result confirms that the calculated value of p0 corresponds to an axial
force that is much higher than the typical loads for existing aerospace structures. So, the
nonsymmetric mode of buckling does not occur for typical lattice structures.

As an example, consider an interstage section of a space launcher with D = 4 m
designed to withstand an axial force P = 15 MN. The ribs are made from carbon–
epoxy composite with the following properties: Eh = Ec = 90 GPa, σ = 450 MPa,
ρh = ρc = 1450 kg/m3. Taking k = 4 and calculating p, ps, and p0 using Eqs. (8.114),
(8.115), and (8.118), we get p = 1.2 MPa, ps = 1.45 MPa, p0 = 1.6 MPa. As can be
seen, p < ps and the optimal parameters of the structure are specified by Eqs. (8.116)
which give the following results

h = 0.009, φ = 26.565◦, δh = 0.05

δc = 0.025, m = 6.52 kg/m3

Consider a design in which there are 120 helical ribs in the shell cross section and that
the lattice structure corresponds to that in Fig. 8.20b. In this case, the calculation yields
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ah = 188 mm and ac = 210 mm. For a structure with D = 4 m, we have h = 36 mm,
δh = 9.4 mm, δc = 2.35 mm. The mass of the unit surface is 6.52 kg/m2. To confirm
the high weight efficiency of this lattice structure, note that the composite section with
this mass corresponds to a smooth or stringer stiffened aluminum shell with the efficient
thickness h = 2.4 mm. The axial stress induced in this shell by an axial force P = 15 MN
is about 500 MPa, which is higher than the yield stress of typical aluminum alloys.
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