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PREFACE TO THE SECOND EDITION

This book is concerned with the topical problems of mechanics of advanced composite
materials whose mechanical properties are controlled by high-strength and high-stiffness
continuous fibers embedded in polymeric, metal, or ceramic matrix. Although the idea of
combining two or more components to produce materials with controlled properties has
been known and used from time immemorial, modern composites have been developed
only several decades ago and have found by now intensive applications in different fields
of engineering, particularly, in aerospace structures for which high strength-to-weight and
stiffness-to-weight ratios are required.

Due to wide existing and potential applications, composite technology has been devel-
oped very intensively over recent decades, and there exist numerous publications that
cover anisotropic elasticity, mechanics of composite materials, design, analysis, fabrica-
tion, and application of composite structures. According to the list of books on composites
presented in “Mechanics of Fibrous Composites’ by C.T. Herakovich (1998) there were
35 books published in this field before 1995, and this list should be supplemented now
with several new books.

In connection with this, the authors were challenged with a natural question as to what
caused the necessity to publish another book and what is the difference between this
book and the existing ones. Concerning this question, we had at least three motivations
supporting us in this work.

First, this book is of a more specific nature than the published ones which usually cover
not only mechanics of materials but also include analysis of composite beams, plates and
shells, joints, and elements of design of composite structures that, being also important, do
not strictly belong to the field of mechanics of composite materials. This situation looked
quite natural since composite science and technology, having been under intensive devel-
opment only over several past decades, required books of a universal type. Nowadays
however, implementation of composite materials has reached the level at which special
books can be dedicated to each of the aforementioned problems of composite technology
and, first of all, to mechanics of composite materials which is discussed in this book
in conjunction with analysis of composite materials. As we hope, thus constructed com-
bination of material science and mechanics of solids enabled us to cover such specific
features of material behavior as nonlinear elasticity, plasticity, creep, structural nonlin-
earity and discuss in details the problems of material micro- and macromechanics that
are only slightly touched in the existing books, e.g., stress diffusion in a unidirectional
material with broken fibers, physical and statistical aspects of fiber strength, coupling
effects in anisotropic and laminated materials, etc.

Second, this book, being devoted to materials, is written by designers of composite
structures who over the last 35 years were involved in practically all main Soviet and
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then Russian projects in composite technology. This governs the list of problems covered
in the book which can be referred to as material problems challenging designers and
determines the third of its specific features — discussion is illustrated with composite parts
and structures designed and built within the frameworks of these projects. In connection
with this, the authors appreciate the permission of the Russian Composite Center — Central
Institute of Special Machinery (CRISM) to use in the book the pictures of structures
developed and fabricated at CRISM as part of the joint research and design projects.

The primary aim of the book is the combined coverage of mechanics, technology,
and analysis of composite materials at the advanced level. Such an approach enables the
engineer to take into account the essential mechanical properties of the material itself
and special features of practical implementation, including manufacturing technology,
experimental results, and design characteristics.

The book consists of eight chapters progressively covering all structural levels of
composite materials from their components through elementary plies and layers to
laminates.

Chapter 1 is an introduction in which typical reinforcing and matrix materials as well
as typical manufacturing processes used in composite technology are described.

Chapter 2 is also a sort of introduction but dealing with fundamentals of mechanics of
solids, i.e., stress, strain, and constitutive theories, governing equations, and principles
that are used in the next chapters for analysis of composite materials.

Chapter 3 is devoted to the basic structural element of a composite material — unidirec-
tional composite ply. In addition to conventional description of micromechanical models
and experimental results, the physical nature of fiber strength, its statistical characteris-
tics, and interaction of damaged fibers through the matrix are discussed, and an attempt
is made to show that fibrous composites comprise a special class of man-made materials
utilizing natural potentials of material strength and structure.

Chapter 4 contains a description of typical composite layers made of unidirectional,
fabric, and spatially reinforced composite materials. Conventional linear elastic mod-
els are supplemented in this chapter with nonlinear elastic and elastic—plastic analysis
demonstrating specific types of behavior of composites with metal and thermoplastic
matrices.

Chapter 5 is concerned with mechanics of laminates and includes conventional descrip-
tion of the laminate stiffness matrix, coupling effects in typical laminates and procedures
of stress calculation for in-plane and interlaminar stresses.

Chapter 6 presents a practical approach to evaluation of laminate strength. Three main
types of failure criteria, i.e., structural criteria indicating the modes of failure, approx-
imation polynomial criteria treated as formal approximations of experimental data, and
tensor-polynomial criteria are discussed and compared with available experimental results
for unidirectional and fabric composites.

Chapter 7 dealing with environmental and special loading effects includes analysis
of thermal conductivity, hydrothermal elasticity, material aging, creep, and durability
under long-term loading, fatigue, damping, and impact resistance of typical advanced
composites. The effect of manufacturing factors on material properties and behavior
is demonstrated for filament winding accompanied with nonuniform stress distribution
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between the fibers and ply waviness and laying-up processing of nonsymmetric laminate
exhibiting warping after curing and cooling.

Chapter 8 covers a specific problem of material optimal design for composite materials
and presents composite laminates of uniform strength providing high weight efficiency of
composite structures demonstrated for filament-wound pressure vessels, spinning disks,
and anisogrid lattice structures.

This second edition is a revised, updated, and extended version of the first edition,
with new sections on: composites with high fiber fraction (Section 3.6), composites with
controlled cracks (Section 4.4.4), symmetric laminates (Section 5.4), engineering stiffness
coefficients of orthotropic laminates (Section 5.5), tensor strength criteria (Section 6.1.3),
practical recommendations (Section 6.2), allowable stresses for laminates consisting of
unidirectional plies (Section 6.4), hygrothermal effects and aging (Section 7.2), application
to optimal composite structures (Section 8.3), spinning composite disks (Section 8.3.2),
and anisogrid composite lattice structures (Section 8.3.3).

The following sections have been re-written and extended: Section 5.8 Antisymmet-
ric laminates; Section 7.3.3 Cyclic loading; Section 7.3.4 Impact loading; Section 8.3.1
Composite pressure vessels. More than 40 new illustrations and 5 new tables were added.

The new title ‘Advanced Mechanics of Composite Materials’ has been adopted for the
2nd edition, which provides better reflection of the overall contents and improvements,
extensions and revisions introduced in the present version.

The book offers a comprehensive coverage of the topic in full range: from basics
and fundamentals to the advanced modeling and analysis including practical design and
engineering applications and can be used as an up-to-date introductory text book aimed at
senior undergraduates and graduate students. At the same time it includes a detailed and
comprehensive coverage of the contemporary theoretical models at the micro- and macro-
levels of material structure, practical methods and approaches, experimental results, and
optimization of composite material properties and component performance that can be
used by researchers and engineers.

The authors would like to thank several people for their time and effort in making the
book a reality. Specifically, we would like to thank our Elsevier editors who have encour-
aged and participated in the preparation of the first and second editions. These include
lan Salusbury (Publishing editor of the first edition), Emma Hurst and David Sleeman
(Publishing editors of the second edition), and Derek Coleman (Development editor).
Special thanks are due to Prof. Leslie Henshall, for his work on the text improvements
and to Dr. Konstantin Morozov for his help in the development of illustrations in the book.
The authors are also grateful to the Central Institute of Special Machinery (CRISM) that
supplied many illustrations and case studies.

Valery V. Vasiliev Evgeny V. Morozov
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Chapter 1

INTRODUCTION

1.1. Structural materials

Materials are the basic elements of all natural and man-made structures. Figuratively
speaking, these materialize the structural conception. Technological progress is associated
with continuous improvement of existing material properties as well as with the expansion
of structural material classes and types. Usually, new materials emerge due to the necessity
to improve structural efficiency and performance. In addition, new materials themselves
as a rule, in turn provide new opportunities to develop updated structures and technology,
while the latter challenges materials science with new problems and tasks. One of the best
manifestations of this interrelated process in the development of materials, structures, and
technology is associated with composite materials, to which this book is devoted.

Structural materials possess a great number of physical, chemical and other types of
properties, but at least two principal characteristics are of primary importance. These
characteristics are the stiffness and strength that provide the structure with the ability to
maintain its shape and dimensions under loading or any other external action.

High stiffness means that material exhibits low deformation under loading. However, by
saying that stiffness is an important property we do not mean that it should be necessarily
high. The ability of a structure to have controlled deformation (compliance) can also
be important for some applications (e.g., springs; shock absorbers; pressure, force, and
displacement gauges).

Lack of material strength causes an uncontrolled compliance, i.e., in failure after which
a structure does not exist any more. Usually, we need to have as high strength as possible,
but there are some exceptions (e.g., controlled failure of explosive bolts is used to separate
rocket stages).

Thus, without controlled stiffness and strength the structure cannot exist. Naturally, both
properties depend greatly on the structure’s design but are determined by the stiffness and
strength of the structural material because a good design is only a proper utilization of
material properties.

To evaluate material stiffness and strength, consider the simplest test — a bar with cross-
sectional area A loaded with tensile force F' as shown in Fig. 1.1. Obviously, the higher the
force causing the bar rupture, the higher is the bar’s strength. However, this strength does
not only depend on the material properties — it is proportional to the cross-sectional area A.
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o
00

Fig. 1.1. A bar under tension.

F

Thus, it is natural to characterize material strength by the ultimate stress

(1.1

o =

2|

where F is the force causing the bar failure (here and subsequently we use the overbar
notation to indicate the ultimate characteristics). As follows from Eq. (1.1), stress is
measured as force divided by area, i.e., according to international (SI) units, in pascals
(Pa) so that 1 Pa = 1 N/m?2. Because the loading of real structures induces relatively high
stresses, we also use kilopascals (1 kPa = 10° Pa), megapascals (1 MPa = 106 Pa), and
gigapascals (1 GPa = 10° Pa). Conversion of old metric (kilogram per square centimeter)
and English (pound per square inch) units to pascals can be done using the following
relations: 1 kg/cm? = 98 kPa and 1 psi = 6.89 kPa.

For some special (e.g., aerospace or marine) applications, i.e., for which material
density, p, is also important, a normalized characteristic

ke = (12)

D |9

is also used to describe the material. This characteristic is called the ‘specific strength
of a material. If we use old metric units, i.e., measure force and mass in kilograms and
dimensions in meters, substitution of Eq. (1.1) into Eq. (1.2) yields k, in meters. This
result has a simple physical sense, namely k. is the length of the vertically hanging fiber
under which the fiber will be broken by its own weight.

The stiffness of the bar shown in Fig. 1.1 can be characterized by an elongation A cor-
responding to the applied force F or acting stress ¢ = F/A. However, A is proportional
to the bar’s length L. To evaluate material stiffness, we introduce strain

&= — (1.3)

Since ¢ is very small for structural materials the ratio in Eq. (1.3) is normally multiplied
by 100, and ¢ is expressed as a percentage.
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Naturally, for any material, there should be some interrelation between stress and
strain, i.e.,

e= f(o) or o =g (1.4)

These equations specify the so-called constitutive law and are referred to as constitutive
equations. They allow us to introduce an important concept of the material model which
represents some idealized object possessing only those features of the real material that are
essential for the problem under study. The point is that in performing design or analysis
we always operate with models rather than with real materials. Particularly, for strength
and stiffness analysis, such a model is described by constitutive equations, Egs. (1.4), and
is specified by the form of the function f (o) or ¢(¢).

The simplest is the elastic model which implies that f(0) = 0, ¢(0) = 0 and that
Egs. (1.4) are the same for the processes of an active loading and an unloading. The
corresponding stress—strain diagram (or curve) is presented in Fig. 1.2. The elastic model
(or elastic material) is characterized by two important features. First, the corresponding
constitutive equations, Egs. (1.4), do not include time as a parameter. This means that the
form of the curve shown in Fig. 1.2 does not depend on the rate of loading (naturally, it
should be low enough to neglect inertial and dynamic effects). Second, the active loading
and the unloading follow one and the same stress—strain curve as in Fig. 1.2. The work
performed by force F in Fig. 1.1 is accumulated in the bar as potential energy, which is also
referred to as strain energy or elastic energy. Consider some infinitesimal elongation dA
and calculate the elementary work performed by the force F in Fig. 1.1 as dW = FdA.
Then, work corresponding to point 1 of the curve in Fig. 1.2 is

A
W:/ FdA
0

0 €

Fig. 1.2. Stress—strain curve for an elastic material.
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where A1 is the elongation of the bar corresponding to point 1 of the curve. The work W
is equal to elastic energy of the bar which is proportional to the bar’s volume and can be
presented as

el
E = LoA/ ode
0

where 0 = F/A, ¢ = A/Lg, and &1 = A1/Lyg. Integral

U= /8lad£ = /El(p(e)ds (1.5
0 0

is a specific elastic energy (energy accumulated in a unit volume of the bar) that is referred
to as an elastic potential. It is important that U does not depend on the history of loading.
This means that irrespective of the way we reach point 1 of the curve in Fig. 1.2 (e.g., by
means of continuous loading, increasing force F step by step, or using any other loading
program), the final value of U will be the same and will depend only on the value of final
strain g1 for the given material.

A very important particular case of the elastic model is the linear elastic model described
by the well-known Hooke’s law (see Fig. 1.3)

o=Ee¢ (1.6)

Here, E is the modulus of elasticity. It follows from Egs. (1.3) and (1.6), that E = o
if e =1, ie., if A = Lg. Thus, the modulus can be interpreted as the stress causing
elongation of the bar in Fig. 1.1 to be the same as the initial length. Since the majority of
structural materials fail before such a high elongation can occur, the modulus is usually
much higher than the ultimate stress .

0

Fig. 1.3. Stress—strain diagram for a linear elastic material.
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Similar to specific strength &, in Eq. (1.2), we can introduce the corresponding specific
modulus

kp = (1.7)

P
which describes a material’s stiffness with respect to its material density.
Absolute and specific values of mechanical characteristics for typical materials
discussed in this book are listed in Table 1.1.
After some generalization, the modulus can be used to describe nonlinear material
behavior of the type shown in Fig. 1.4. For this purpose, the so-called secant, Es, and
tangent, E¢, moduli are introduced as

Es =

°_ 9 g _%O (L8)
e f(o) de de

While the slope « in Fig. 1.4 determines the conventional modulus E, the slopes 8
and y determine Es and Ey, respectively. As can be seen, Es and Ey, in contrast to E,
depend on the level of loading, i.e., on o or ¢. For a linear elastic material (see Fig. 1.3),
Es=FE =FE.

Hooke’s law, Eq. (1.6), describes rather well the initial part of stress—strain diagram
for the majority of structural materials. However, under a relatively high level of stress
or strain, materials exhibit nonlinear behavior.

One of the existing models is the nonlinear elastic material model introduced above
(see Fig. 1.2). This model allows us to describe the behavior of highly deformable rubber-
type materials.

Another model developed to describe metals is the so-called elastic—plastic material
model. The corresponding stress—strain diagram is shown in Fig. 1.5. In contrast to an
elastic material (see Fig. 1.2), the processes of active loading and unloading are described
with different laws in this case. In addition to elastic strain, e, which disappears after the
load is taken off, the residual strain (for the bar shown in Fig. 1.1, it is plastic strain, ep)
remains in the material. As for an elastic material, the stress—strain curve in Fig. 1.5 does
not depend on the rate of loading (or time of loading). However, in contrast to an elastic
material, the final strain of an elastic—plastic material can depend on the history of loading,
i.e., on the law according to which the final value of stress was reached.

Thus, for elastic or elastic—plastic materials, constitutive equations, Egs. (1.4), do not
include time. However, under relatively high temperature practically all the materials
demonstrate time-dependent behavior (some of them do it even under room temperature).
If we apply some force F to the bar shown in Fig. 1.1 and keep it constant, we can see that
for a time-sensitive material the strain increases under a constant force. This phenomenon
is called the creep of the material.

So, the most general material model that is used in this book can be described with a
constitutive equation of the following type:

= f(o,1,T) (1.9)
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Table 1.1
Mechanical properties of structural materials and fibers.

Material Ultimate Modulus,  Specific Maximum Maximum
tensile E (GPa) gravity specific specific
stress, strength, modulus,
@ (MPa) ke x 108 (M) kg x 103 (m)

Metal alloys

Steel 400-2200 180-210 7.8-7.85 28.8 2750
Aluminum 140-700 69-72 2.7-2.85 26.5 2670
Titanium 420-1200 110 45 26.7 2440
Magnesium 220-320 40 1.8 14.4 2220
Beryllium 620 320 1.85 335 17,300
Nickel 400-500 200 8.9 5.6 2250
Metal wires (diameter, um)
Steel (20-1500) 1500-4400  180-200 7.8 56.4 2560
Aluminum (150) 290 69 2.7 10.7 2550
Titanium (100-800) 1400-1500 120 45 333 2670
Beryllium (50-500) 1100-1450  240-310 1.8-1.85 80.5 17,200
Tungsten (20-50) 3300-4000 410 19-19.3 211 2160
Molybdenum (25-250) 1800-2200 360 10.2 215 3500
Thermoset polymeric resins
Epoxy 60-90 24-42 1.2-1.3 75 350
Polyester 30-70 2.8-3.8 1.2-1.35 5.8 310
Phenol-formaldehyde 40-70 7-11 1.2-1.3 5.8 910
Organosilicone 25-50 6.8-10 1.35-1.4 3.7 740
Polyimide 55-110 3.2 1.3-1.43 85 240
Bismaleimide 80 4.2 1.2 6.7 350
Thermoplastic polymers
Polyethylene 20-45 6-8.5 0.95 4.7 890
Polystyrene 35-45 30 1.05 43 2860
Teflon 15-35 35 2.3 15 150
Nylon 80 2.8 1.14 7.0 240
Polyester (PC) 60 2.5 1.32 45 190
Polysulfone (PSU) 70 2.7 1.24 5.6 220
Polyamide-imide (PAI) 90-190 2.8-44 1.42 134 360
Polyetheretherketone (PEEK) 90-100 3.1-38 13 7.7 300
Polyphenylene sulfide (PPS) 80 35 1.36 5.9 250
Synthetic fibers
Capron 680-780 44 11 70 400
Dacron 390-880 4.9-15.7 1.4 60 1430
Teflon 340-440 29 2.3 190 130
Nitron 390-880 49-8.38 1.2 70 730
Polypropylene 730-930 44 0.9 100 480
Viscose 930 20 1.52 60 1300

Fibers for advanced composites (diameter, pm)
Glass (3-19) 3100-5000  72-95 24-2.6 200 3960
Quarts (10) 6000 74 2.2 270 3360
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Table 1.1 (Contd.)

Material Ultimate Modulus, Specific Maximum Maximum
tensile E (GPa) gravity specific specific
stress, strength, modulus,
@ (MPa) ko x 103 (M) kg x 10% (m)

Basalt (9-13) 3000-3500 90 2.7-3.0 130 3300
Aramid (12-15) 3500-5500  140-180 1.4-1.47 390 12,800
Polyethylene (20-40) 2600-3300 120-170 0.97 310 17,500
Carbon (5-11)

High-strength 7000 300 1.75 400 17,100
High-modulus 2700 850 1.78 150 47,700
Boron (100-200) 2500-3700  390-420 25-2.6 150 16,800
Alumina - Al,03 (20-500) 2400-4100  470-530 3.96 100 13,300
Silicon Carbide - SiC (10-15) 2700 185 24-2.7 110 7700
Titanium Carbide — TiC (280) 1500 450 4.9 30 9100
Boron Carbide — B4C (50) 2100-2500 480 25 100 10,000
Boron Nitride — BN (7) 1400 90 19 70 4700

o Y

e do
de
c
B

€

Fig. 1.4. Introduction of secant and tangent moduli.

where ¢ indicates the time moment, whereas o and T are stress and temperature, corre-
sponding to this moment. In the general case, constitutive equation, Eq. (1.9), specifies
strain that can be decomposed into three constituents corresponding to elastic, plastic and

creep deformation, i.e.,

e=¢e+eptec

(1.10)

However, in application to particular problems, this model can be usually substantially
simplified. To show this, consider the bar in Fig. 1.1 and assume that a force F is applied
at the moment ¢+ = 0 and is taken off at moment r = #; as shown in Fig. 1.6a. At the
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Fig. 1.5. Stress—strain diagram for elastic—plastic material.

o :
——————————————— £g
\F
& t+ £p e
ty t
(b)

Fig. 1.6. Dependence of force (a) and strain (b) on time.
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moment ¢ = 0, elastic and plastic strains that do not depend on time appear, and while
time is running, the creep strain is developed. At the moment # = ¢1, the elastic strain
disappears, while the reversible part of the creep strain, &, disappears with time. Residual
strain consists of the plastic strain, ¢p, and residual part of the creep strain, &(.

Now assume that gy < e Which means that either the material is elastic or the applied
load does not induce high stress and, hence, plastic strain. Then we can neglect gp in
Eq. (1.10) and simplify the model. Furthermore, let & <« g¢ which in turn means that
either the material is not susceptible to creep or the force acts for a short time (#1 is close
to zero). Thus, we arrive at the simplest elastic model, which is the case for the majority of
practical applications. It is important that the proper choice of the material model depends
not only on the material nature and properties but also on the operational conditions of the
structure. For example, a shell-type structure made of aramid-epoxy composite material,
that is susceptible to creep, and designed to withstand the internal gas pressure should
be analyzed with due regard to the creep, if this structure is a pressure vessel for long
term gas storage. At the same time for a solid propellant rocket motor case working for
seconds, the creep strain can be ignored.

A very important feature of material models under consideration is their phenomeno-
logical nature. This means that these models ignore the actual material microstructure
(e.g., crystalline structure of metals or molecular structure of polymers) and represent the
material as some uniform continuum possessing some effective properties that are the
same irrespective of how small the material volume is. This allows us, first, to determine
material properties testing material samples (as in Fig. 1.1). Second, this formally enables
us to apply methods of Mechanics of Solids that deal with equations derived for infinitesi-
mal volumes of material. And third, this allows us to simplify the strength and stiffness
evaluation problem and to reduce it to a reasonable practical level not going into analysis
of the actual mechanisms of material deformation and fracture.

1.2. Composite materials

This book is devoted to composite materials that emerged in the middle of the
20th century as a promising class of engineering materials providing new prospects for
modern technology. Generally speaking any material consisting of two or more compo-
nents with different properties and distinct boundaries between the components can be
referred to as a composite material. Moreover, the idea of combining several components
to produce a material with properties that are not attainable with the individual compo-
nents has been used by man for thousands of years. Correspondingly, the majority of
natural materials that have emerged as a result of a prolonged evolution process can be
treated as composite materials.

With respect to the problems covered in this book we can classify existing composite
materials (composites) into two main groups.

The first group comprises composites that are known as ‘filled materials.” The main
feature of these materials is the existence of some basic or matrix material whose properties
are improved by filling it with some particles. Usually the matrix volume fraction is more
than 50% in such materials, and material properties, being naturally modified by the
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fillers, are governed mainly by the matrix. As a rule, filled materials can be treated as
homogeneous and isotropic, i.e., traditional models of mechanics of materials developed
for metals and other conventional materials can be used to describe their behavior. This
group of composites is not touched on in the book.

The second group of composite materials that is under study here involves composites
that are called ‘reinforced materials.” The basic components of these materials (sometimes
referred to as ‘advanced composites’) are long and thin fibers possessing high strength
and stiffness. The fibers are bound with a matrix material whose volume fraction in a
composite is usually less than 50%. The main properties of advanced composites, due
to which these materials find a wide application in engineering, are governed by fibers
whose types and characteristics are considered below. The following sections provide a
concise description of typical matrix materials and fiber-matrix compositions. Two com-
ments should be made with respect to the data presented in these sections. First, only
brief information concerning material properties that are essential for the problems cov-
ered in this book is presented there, and, second, the given data are of a broad nature
and are not expected to be used in design or analysis of particular composite structures.
More complete description of composite materials and their components including the his-
tory of development and advancement, chemical compaositions, physical characteristics,
manufacturing, and applications can be found elsewhere (Peters, 1998).

1.2.1. Fibers for advanced composites

Continuous glass fibers (the first type of fibers used in advanced composites) are made
by pulling molten glass (at a temperature about 1300°C) through 0.8-3.0 mm diameter
dies and further high-speed stretching to a diameter of 3-19 um. Usually glass fibers
have solid circular cross sections. However there exist fibers with rectangular (square
or plane), triangular, and hexagonal cross sections, as well as hollow circular fibers.
Typical mechanical characteristics and density of glass fibers are listed in Table 1.1,
whereas a typical stress—strain diagram is shown in Fig. 1.7.

Important properties of glass fibers as components of advanced composites for engi-
neering applications are their high strength, which is maintained in humid environments
but degrades under elevated temperatures (see Fig. 1.8), relatively low stiffness (about
40% of the stiffness of steel), high chemical and biological resistance, and low cost. Being
actually elements of monolithic glass, the fibers do not absorb water and do not change
their dimensions in water. For the same reason, they are brittle and sensitive to surface
damage.

Quartz fibers are similar to glass fibers and are obtained by high-speed stretching of
quartz rods made of (under temperature of about 2200°C) fused quartz crystals or sand.
The original process developed for manufacturing glass fibers cannot be used because the
viscosity of molten quartz is too high to make thin fibers directly. However, this more
complicated process results in fibers with higher thermal resistance than glass fibers.

The same process that is used for glass fibers can be employed to manufacture mineral
fibers, e.g., basalt fibers made of molten basalt rocks. Having relatively low strength
and high density (see Table 1.1) basalt fibers are not used for high-performance, e.g.,
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Fig. 1.7. Stress—strain diagrams for typical fibers of advanced composites.

aerospace structures, but are promising reinforcing elements for pre-stressed reinforced
concrete structures in civil engineering.

Substantial improvement of a fiber’s stiffness in comparison with glass fibers has been
achieved with the development of carbon (or graphite) fibers. Modern high-modulus car-
bon fibers have a modulus that is a factor of about four higher than the modulus of steel,
whereas the fiber density is lower by the same factor. Although the first carbon fibers had
lower strength than glass fibers, modern high-strength fibers have a 40% higher tensile
strength compared to the strength of the best glass fibers, whereas the density of carbon
fibers is 30% less than that of glass fibers.

Carbon fibers are made by pyrolysis of organic fibers of which there exist two main
types — PAN-based and pitch-based fibers. For PAN-based fibers the process consists of
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Fig. 1.8. Temperature degradation of fiber strength normalized by the strength at 20°C.

three stages — stabilization, carbonization, and graphitization. In the first step (stabiliza-
tion), a system of polyacrylonitrile (PAN) filaments is stretched and heated up to about
400°C in an oxidation furnace, while in the subsequent step (carbonization under 900°C
in an inert gas media) most elements of the filaments other than carbon are removed or
converted into carbon. During the successive heat treatment at a temperature reaching
2800°C (graphitization) a crystalline carbon structure oriented along the fiber’s length is
formed, resulting in PAN-based carbon fibers. The same process is used for rayon organic
filaments (instead of PAN), but results in carbon fibers with lower modulus and strength
because rayon contains less carbon than PAN. For pitch-based carbon fibers, the initial
organic filaments are made in approximately the same manner as for glass fibers from
molten petroleum or coal pitch and pass through carbonization and graphitization pro-
cesses. Because pyrolysis is accompanied with a loss of material, carbon fibers have a
porous structure and their specific gravity (about 1.8) is less than that of graphite (2.26).
The properties of carbon fibers are affected by the crystallite size, crystalline orientation,
porosity and purity of the carbon structure.

Typical stress—strain diagrams for high-modulus (HM) and high-strength (HS) carbon
fibers are plotted in Fig. 1.7. As components of advanced composites for engineering
applications, carbon fibers are characterized by very high modulus and strength, high
chemical and biological resistance, electric conductivity and very low coefficient of ther-
mal expansion. The strength of carbon fibers practically does not change with temperature
up to 1500°C (in an inert media preventing oxidation of the fibers).
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The exceptional strength of 7.06 GPa is reached in Toray T-1000 carbon fibers, whereas
the highest modulus of 850 GPa is obtained in Carbonic HM-85 fibers. Carbon fibers are
anisotropic, very brittle, and sensitive to damage. They do not absorb water and do not
change their dimensions in humid environments.

There exist more than 50 types of carbon fibers with a broad spectrum of strength,
stiffness and cost, and the process of fiber advancement is not over — one may expect
fibers with strength up to 10 GPa and modulus up to 1000 GPa within a few years.

Organic fibers commonly encountered in textile applications can be employed as rein-
forcing elements of advanced composites. Naturally, only high performance fibers, i.e.,
fibers possessing high stiffness and strength, can be used for this purpose. The most
widely used organic fibers that satisfy these requirements are known as aramid (aromatic
polyamide) fibers. They are extruded from a liquid crystalline solution of the corre-
sponding polymer in sulfuric acid with subsequent washing in a cold water bath and
stretching under heating. Some properties of typical aramid fibers are listed in Table 1.1,
and the corresponding stress—strain diagram is presented in Fig. 1.7. As components
of advanced composites for engineering applications, aramid fibers are characterized
by low density providing high specific strength and stiffness, low thermal conductivity
resulting in high heat insulation, and a negative thermal expansion coefficient allowing
us to construct hybrid composite elements that do not change their dimensions under
heating. Consisting actually of a system of very thin filaments (fibrils), aramid fibers
have very high resistance to damage. Their high strength in the longitudinal direction
is accompanied by relatively low strength under tension in the transverse direction.
Aramid fibers are characterized with pronounced temperature (see Fig. 1.8) and time
dependence for stiffness and strength. Unlike the inorganic fibers discussed above, they
absorb water resulting in moisture content up to 7% and degradation of material properties
by 15-20%.

The list of organic fibers has been supplemented recently with extended chain polyethy-
lene fibers demonstrating outstanding low density (less than that of water) in conjunction
with relatively high stiffness and strength (see Table 1.1 and Fig. 1.7). Polyethylene fibers
are extruded from the corresponding polymer melt in a similar manner to glass fibers.
They do not absorb water and have high chemical resistance, but demonstrate relatively
low temperature and creep resistance (see Fig. 1.8).

Boron fibers were developed to increase the stiffness of composite materials when
glass fibers were mainly used to reinforce composites of the day. Being followed by
high-modulus carbon fibers with higher stiffness and lower cost, boron fibers have now
rather limited application. Boron fibers are manufactured by chemical vapor deposi-
tion of boron onto about 12 um diameter tungsten or carbon fiber (core). Because of
this technology, boron fibers have a relatively large diameter, 100-200 um. They are
extremely brittle and sensitive to surface damage. Typical mechanical properties of
boron fibers are presented in Table 1.1 and Figs 1.7 and 1.8. Being mainly used in
metal matrix composites, boron fibers degrade on contact with aluminum or titanium
matrices at the temperature that is necessary for processing (above 500°C). To pre-
vent this degradation, chemical vapor deposition is used to cover the fiber surface with
about 5 m thick layer of silicon carbide, SiC, (such fibers are called Borsic) or boron
carbide, B4C.
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There exists a special class of ceramic fibers for high-temperature applications com-
posed of various combinations of silicon, carbon, nitrogen, aluminum, boron, and titanium.
The most commonly encountered are silicon carbide (SiC) and alumina (Al,O3) fibers.

Silicon carbide is deposited on a tungsten or carbon core-fiber by the reaction of a gas
mixture of silanes and hydrogen. Thin (8-15uwm in diameter) SiC fibers can be made
by pyrolysis of polymeric (polycarbosilane) fibers at temperatures of about 1400°C in an
inert atmosphere. Silicon carbide fibers have high strength and stiffness, moderate density
(see Table 1.1) and very high melting temperature (2600°C).

Alumina (Al>03) fibers are fabricated by sintering of fibers extruded from the viscous
alumina slurry with rather complicated composition. Alumina fibers, possessing approx-
imately the same mechanical properties as SiC fibers, have relatively large diameter and
high density. The melting temperature is about 2000°C.

Silicon carbide and alumina fibers are characterized by relatively low reduction in
strength at elevated temperatures (see Fig. 1.9).

Promising ceramic fibers for high-temperature applications are boron carbide (B4C)
fibers that can be obtained either as a result of reaction of a carbon fiber with a mixture
of hydrogen and boron chloride at high temperature (around 1800°C) or by pyrolysis of
cellulosic fibers soaked with boric acid solution. Possessing high stiffness and strength and
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moderate density (see Table 1.1), boron carbide fibers have very high thermal resistance
(up to 2300°C).

Metal fibers (thin wires) made of steel, beryllium, titanium, tungsten, and molybdenum
are used for special, e.g., low-temperature and high-temperature applications. Typical
characteristics of metal fibers are presented in Table 1.1 and Figs. 1.7 and 1.9.

In advanced composites, fibers provide not only high strength and stiffness but also a
possibility to tailor the material so that directional dependence of its mechanical properties
matches that of the loading environment. The principle of directional properties can be
traced in all natural materials that have emerged as a result of a prolonged evolution
and, in contrast to man-made metal alloys, are neither isotropic nor homogeneous. Many
natural materials have fibrous structures and utilize high strength and stiffness of natural
fibers listed in Table 1.2. As can be seen (Tables 1.1 and 1.2), natural fibers, having
lower strength and stiffness than man-made fibers, can compete with modern metals and
plastics.

Before being used as reinforcing elements of advanced composites, the fibers are sub-
jected to special finish surface treatments, undertaken to prevent any fiber damage under
contact with processing equipment, to provide surface wetting when the fibers are com-
bined with matrix materials, and to improve the interface bond between fibers and matrices.
The most commonly encountered surface treatments are chemical sizing performed during
the basic fiber formation operation and resulting in a thin layer applied to the surface of the
fiber, surface etching by acid, plasma, or corona discharge, and coating of the fiber surface
with thin metal or ceramic layers.

With only a few exceptions (e.g., metal fibers), individual fibers, being very thin and
sensitive to damage, are not used in composite manufacturing directly, but in the form of
tows (rovings), yarns, and fabrics.

A unidirectional tow (roving) is a loose assemblage of parallel fibers consisting usually
of thousands of elementary fibers. Two main designations are used to indicate the size of

Table 1.2
Mechanical properties of natural fibers.
Fiber Diameter Ultimate tensile Modulus, Specific
(um) stress, o (MPa) E (GPa) gravity
Wood 15-20 160 23 15
Bamboo 15-30 550 36 0.8
Jute 10-50 580 22 15
Cotton 15-40 540 28 15
Wool 75 170 5.9 1.32
Coir 10-20 250 55 15
Bagasse 25 180 9 1.25
Rice 5-15 100 6 1.24
Natural silk 15 400 13 1.35
Spider silk 4 1750 12.7 -
Linen - 270 - -
Sisal - 560 - -

Asbestos 0.2 1700 160 25
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the tow, namely the K-number that gives the number of fibers in the tow (e.g., 3K tow
contains 3000 fibers) and the tex-number which is the mass in grams of 2000 m of the tow.
The tow tex-number depends not only on the number of fibers but also on the fiber diameter
and density. For example, AS4-6K tow consisting of 6000 AS4 carbon fibers has 430 tex.

A yarn is a fine tow (usually it includes hundreds of fibers) slightly twisted (about
40 turns per meter) to provide the integrity of its structure necessary for textile processing.
Yarn size is indicated in tex-numbers or in textile denier-numbers (den) such that
1 tex = 9den. Continuous yarns are used to make fabrics with various weave patterns.
There exists a wide variety of glass, carbon, aramid, and hybrid fabrics whose nomencla-
ture, structure, and properties are described elsewhere (Chou and Ko, 1989; Tarnopol’skii
et al., 1992; Bogdanovich and Pastore, 1996; Peters, 1998).

An important characteristic of fibers is their processability which can be evaluated as
the ratio, Kp = os/a, of the strength demonstrated by fibers in the composite structure,
T, to the strength of fibers before they were processed, &. This ratio depends on fibers’
ultimate elongation, sensitivity to damage, and manufacturing equipment causing damage
to the fibers. The most sensitive to operational damage are boron and high-modulus carbon
fibers possessing relatively low ultimate elongation ¢ (less than 1%, see Fig. 1.7). For
example, for filament wound pressure vessels, K, = 0.96 for glass fibers, while for carbon
fibers, K, = 0.86.

To evaluate fiber processability under real manufacturing conditions, three simple tests
are used — tension of a straight dry tow, tension of tows with loops, and tension of a tow
with a knot (see Fig. 1.10). Similar tests are used to determine the strength of individual
fibers (Fukuda et al., 1997). For carbon tows, normalized strength obtained in these tests
is presented in Table 1.3 (for proper comparison, the tows should be of the same size).
As follows from this table, the tow processability depends on the fiber ultimate strain
(elongation). The best processability is observed for aramid tows whose fibers have high
elongation and low sensitivity to damage (they are not monolithic and consist of thin
fibrils).

1.2.2. Matrix materials

To utilize high strength and stiffness of fibers in a monolithic composite material suitable
for engineering applications, fibers are bound with a matrix material whose strength and
stiffness are, naturally, much lower than those of fibers (otherwise, no fibers would be
necessary). Matrix materials provide the final shape of the composite structure and govern
the parameters of the manufacturing process. The optimal combination of fiber and matrix
properties should satisfy a set of operational and manufacturing requirements that are
sometimes of a contradictory nature, and have not been completely met yet in existing
composites.

First of all, the stiffness of the matrix should correspond to the stiffness of the fibers and
be sufficient to provide uniform loading of fibers. The fibers are usually characterized by
relatively high scatter in strength that may be increased due to damage of the fibers caused
by the processing equipment. Naturally, fracture of the weakest or damaged fiber should
not result in material failure. Instead, the matrix should evenly redistribute the load from
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Fig. 1.10. Testing of a straight tow (a), tows with a loop (b), and tow with a knot (c).

Table 1.3
Normalized strength of carbon tows.
Ultimate strain, g (%) Normalized strength
Straight tow Tow with a loop Tow with a knot
0.75 1 0.25 0.15
1.80 1 0.53 0.18

the broken fiber to the adjacent ones and then load the broken fiber at a distance from the
cross section at which it failed. The higher the matrix stiffness, the smaller is this distance,
and less is the influence of damaged fibers on material strength and stiffness (which should
be the case). Moreover, the matrix should provide the proper stress diffusion (this is the
term traditionally used for this phenomenon in the analysis of stiffened structures (Goodey,
1946)) in the material at a given operational temperature. That is why this temperature is
limited, as a rule, by the matrix rather than by the fibers. But on the other hand, to provide
material integrity up to the failure of the fibers, the matrix material should possess high
compliance. Obviously, for a linear elastic material (see Fig. 1.3), a combination of high
stiffness and high ultimate strain g results in high strength which is not the case for modern
matrix materials. Thus, close to optimal (with respect to the foregoing requirements) and
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realistic matrix material should have a nonlinear stress—strain diagram (of the type shown
in Fig. 1.5) and possess high initial modulus of elasticity and high ultimate strain.

However, matrix properties, even though being optimal for the corresponding fibers,
do not manifest in the composite material if the adhesion (the strength of fiber—matrix
interface bonding) is not high enough. High adhesion between fibers and matrices, pro-
viding material integrity up to the failure of the fibers, is a necessary condition for
high-performance composites. Proper adhesion can be reached for properly selected com-
binations of fiber and matrix materials under some additional conditions. First, a liquid
matrix should have viscosity low enough to allow the matrix to penetrate between the
fibers of such dense systems of fibers as tows, yarns, and fabrics. Second, the fiber sur-
face should have good wettability with the matrix. Third, the matrix viscosity should be
high enough to retain the liquid matrix in the impregnated tow, yarn, or fabric in the pro-
cess of fabrication of a composite part. Finally, the manufacturing process providing the
proper quality of the resulting material should not require high temperature and pressure
to make a composite part.

At present, typical matrices are made from polymeric, metal, carbon, and ceramic
materials.

Polymeric matrices are divided into two main types, thermoset and thermoplastic.
Thermoset polymers, which are the most widely used matrix materials for advanced
composites, include polyester, epoxy, polyimide and other resins (see Table 1.1) cured
under elevated or room temperature. A typical stress—strain diagram for a cured epoxy
resin is shown in Fig. 1.11. Being cured (polymerized), a thermoset matrix cannot be
reset, dissolved, or melted. Heating of a thermoset material results first in degradation of
its strength and stiffness, and then in thermal destruction.
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Fig. 1.11. Stress—strain diagram for a typical cured epoxy matrix.
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Fig. 1.12. Typical thermo-mechanical diagrams for cured epoxy resins with glass transition temperatures
80°C (——) and 130°C (- - —-).

In contrast to thermoset resins, thermoplastic matrices (PSU, PEEK, PPS and others —
see Table 1.1) do not require any curing reaction. They melt under heating and convert to
a solid state under cooling. The possibility to re-melt and dissolve thermoplastic matrices
allows us to reshape composite parts forming them under heating and simplifies their
recycling, which is a problem for thermoset materials.

Polymeric matrices can be combined with glass, carbon, organic, or boron fibers to
yield a wide class of polymeric composites with high strength and stiffness, low den-
sity, high fatigue resistance, and excellent chemical resistance. The main disadvantage of
these materials is their relatively low (in comparison with metals) temperature resistance
limited by the matrix. The so-called thermo-mechanical curves are plotted to determine
this important (for applications) characteristic of the matrix. These curves, presented for
typical epoxy resins in Fig. 1.12, show the dependence of some stiffness parameter on
the temperature and allow us to find the so-called glass transition temperature, 7y, which
indicates a dramatic reduction in material stiffness. There exist several standard meth-
ods to obtain a material’s thermo-mechanical diagram. The one used to plot the curves
presented in Fig. 1.12 involves compression tests of heated polymeric discs. Naturally,
to retain the complete set of properties of polymeric composites, the operating tempera-
ture, in general, should not exceed 7. However, the actual material behavior depends on
the type of loading. As follows from Fig. 1.13, heating above the glass transition tem-
perature only slightly influences material properties under tension in the fiber direction
and dramatically reduces its strength in longitudinal compression and transverse bending.
The glass transition temperature depends on the processing temperature, Tp, at which
a material is fabricated, and higher T}, results, as a rule, in higher Ty. Thermoset epoxy
matrices cured at a temperature in the range 120-160°C have Ty = 60—140°C. There also
exist a number of high temperature thermoset matrices (e.g., organosilicone, polyimide,
and bismaleimide resins) with T; = 250—300°C and curing temperatures up to 400°C.
Thermoplastic matrices are also characterized by a wide range of glass transition temper-
atures — from 90°C for PPS and 140°C for PEEK to 190°C for PSU and 270°C for PAI
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Fig. 1.13. Dependence of normalized longitudinal moduli (1), strength under longitudinal tension (2),
bending (3), and compression (4) on temperature for unidirectional carbon composites with epoxy matrices
having Ty = 130°C (a) and Tg = 80°C (b).

(see Table 1.1 for abbreviations). The processing temperature for different thermoplastic
matrices varies from 300 to 400°C.

Further enhancement in temperature resistance of composite materials is associated
with application of metal matrices in combination with high temperature boron, carbon,
ceramic fibers, and metal wires. The most widespread metal matrices are aluminum,
magnesium, and titanium alloys possessing high plasticity (see Fig. 1.14), whereas for
special applications nickel, copper, niobium, cobalt, and lead matrices can be used. Fiber
reinforcement essentially improves the mechanical properties of such metals. For example,
carbon fibers increase strength and stiffness of such a soft metal as lead by an order of
magnitude.

As noted above, metal matrices allow us to increase operational temperatures
for composite structures. The dependencies of longitudinal strength and stiffness of



o, MPa

500

400

300

200

100

Chapter 1. Introduction 21

5 10 15 20 25

Fig. 1.14. Typical stress—strain curves for aluminum (1), magnesium (2), and titanium (3) matrices.

boron-aluminum unidirectional composite material on temperature, corresponding to the
experimental results that can be found in Karpinos (1985) and Vasiliev and Tarnopol’skii
(1990), are shown in Fig. 1.15. Naturally, higher temperature resistance requires higher
processing temperature, 7,. Indeed, aluminum matrix composite materials are processed
at T, = 550°C, whereas for magnesium, titanium, and nickel matrices the appropriate
temperature is about 800, 1000, and 1200°C respectively. Some processes also require
rather high pressure (up to 150 MPa).

In polymeric composites, the matrix materials play an important but secondary role
of holding the fibers in place and providing good load dispersion into the fibers,
whereas material strength and stiffness are controlled by the reinforcements. In contrast,
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Fig. 1.15. Temperature dependence of tensile strength (e) and stiffness (o) along the fibers for unidirectional

boron-aluminum composite.
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the mechanical properties of metal matrix composites are controlled by the matrix to a
considerably larger extent, though the fibers still provide the major contribution to the
strength and stiffness of the material.

The next step in the development of composite materials that can be treated as matrix
materials reinforced with fibers rather than fibers bonded with matrix (which is the case
for polymeric composites) is associated with ceramic matrix composites possessing very
high thermal resistance. The stiffnesses of the fibers which are usually metal (steel,
tungsten, molybdenum, niobium), carbon, boron, or ceramic (SiC, Al,O3) and ceramic
matrices (oxides, carbides, nitrides, borides, and silicides) are not very different, and
the fibers do not carry the main fraction of the load in ceramic composites. The func-
tion of the fibers is to provide strength and mainly toughness (resistance to cracks) of
the composite, because non-reinforced ceramic materials are very brittle. Ceramic com-
posites can operate under very high temperatures depending on the melting temperature
of the matrix that varies from 1200 to 3500°C. Naturally, the higher the temperature,
the more complicated is the manufacturing process. The main shortcoming of ceramic
composites is associated with a low ultimate tensile elongation of the ceramic matrix
resulting in cracks appearing in the matrix under relatively low tensile stress applied to the
material.

An outstanding combination of high mechanical characteristics and temperature resis-
tance is demonstrated by carbon-carbon composites in which both components — fibers
and matrix are made from one and the same material but with different structure. A carbon
matrix is formed as a result of carbonization of an organic resin (phenolic and furfural resin
or pitch) with which carbon fibers are impregnated, or of chemical vapor deposition of
pyrolitic carbon from a hydrocarbon gas. In an inert atmosphere or in a vacuum, carbon—
carbon composites can withstand very high temperatures (more than 3000°C). Moreover,
their strength increases under heating up to 2200°C while the modulus degrades at tem-
peratures above 1400°C. However in an oxygen atmosphere, they oxidize and sublime
at relatively low temperatures (about 600°C). To use carbon—carbon composite parts in
an oxidizing atmosphere, they must have protective coatings, made usually from silicon
carbide. Manufacturing of carbon—carbon parts is a very energy- and time-consuming
process. To convert an initial carbon—phenolic composite into carbon—carbon, it should
receive a thermal treatment at 250°C for 150 h, carbonization at about 800°C for about
100 h and several cycles of densification (one-stage pyrolisis results in high porosity of the
material) each including impregnation with resin, curing, and carbonization. To refine the
material structure and to provide oxidation resistance, a further high-temperature graphi-
tization at 2700°C and coating (at 1650°C) can be required. Vapor deposition of pyrolitic
carbon is also a time-consuming process performed at 900-1200°C under a pressure of
150-2000 kPa.

1.2.3. Processing
Composite materials do not exist apart from composite structures and are formed while

the structure is fabricated. Being a heterogeneous media, a composite material has two
levels of heterogeneity. The first level represents a microheterogeneity induced by at
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least two phases (fibers and matrix) that form the material microstructure. At the second
level the material is characterized by a macroheterogeneity caused by the laminated or
more complicated macrostructure of the material which consists usually of a set of layers
with different orientations. A number of technologies have been developed by now to
manufacture composite structures. All these technologies involve two basic processes
during which material microstructure and macrostructure are formed.

The first basic process yielding material microstructure involves the application of a
matrix material to the fibers. The simplest way to do it, normally utilized in the manufac-
turing of composites with thermosetting polymeric matrices, is a direct impregnation of
tows, yarns, fabrics, or more complicated fibrous structures with liquid resins. Thermo-
setting resin has relatively low viscosity (10-100Pa s), which can be controlled using
solvents or heating, and good wetting ability for the majority of fibers. There exist two
versions of this process. According to the so-called ‘wet’ process, impregnated fibrous
material (tows, fabrics, etc.) is used to fabricate composite parts directly, without any
additional treatment or interruption of the process. In contrast to that, in ‘dry’ or ‘prepreg’
processes, impregnated fibrous material is dried (not cured) and thus preimpregnated tapes
obtained (prepregs) are stored for further utilization (usually under low temperature to pre-
vent uncontrolled premature polymerization of the resin). An example of a machine for
making prepregs is shown in Fig. 1.16. Both processes, having similar advantages and
shortcomings, are widely used for composites with thermosetting matrices. For thermo-
plastic matrices, application of direct impregnation (‘wet’ processing) is limited by the
relatively high viscosity (about 1012 Pa s) of thermoplastic polymer solutions or melts. For
this reason, ‘prepreg’ processes with preliminary fabricated tapes or sheets in which fibers
are already combined with the thermoplastic matrix are used to manufacture composite
parts. There also exist other processes that involve application of heat and pressure to
hybrid materials including reinforcing fibers and a thermoplastic polymer in the form of
powder, films, or fibers. A promising process (called fibrous technology) utilizes tows,
tapes, or fabrics with two types of fibers — reinforcing and thermoplastic. Under heat and
pressure, thermoplastic fibers melt and form the matrix of the composite material. Metal
and ceramic matrices are applied to fibers by means of casting, diffusion welding, chem-
ical deposition, plasma spraying, processing by compression molding or with the aid of
powder metallurgy methods.

The second basic process provides the proper macrostructure of a composite material
corresponding to the loading and operational conditions of the composite part that is
fabricated. There exist three main types of material macrostructure — linear structure
which is appropriate for bars, profiles, and beams, plane laminated structure suitable for
thin-walled plates and shells, and spatial structure which is necessary for thick-walled and
bulk solid composite parts.

A linear structure is formed by pultrusion, table rolling, or braiding and provides high
strength and stiffness in one direction coinciding with the axis of a bar, profile, or a beam.
Pultrusion results in a unidirectionally reinforced composite profile made by pulling a bun-
dle of fibers impregnated with resin through a heated die to cure the resin and, to provide
the desired shape of the profile cross section. Profiles made by pultrusion and braiding
are shown in Fig. 1.17. Table rolling is used to fabricate small diameter tapered tubular
bars (e.g., ski poles or fishing rods) by rolling preimpregnated fiber tapes in the form of
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Fig. 1.16. Machine making a prepreg from fiberglass fabric and epoxy resin. Courtesy of CRISM.
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Fig. 1.17. Composite profiles made by pultrusion and braiding. Courtesy of CRISM.

flags around the metal mandrel which is pulled out of the composite bar after the resin
is cured. Fibers in the flags are usually oriented along the bar axis or at an angle to the
axis thus providing more complicated reinforcement than the unidirectional one typical of
pultrusion. Even more complicated fiber placement with orientation angle varying from
5 to 85° along the bar axis can be achieved using two-dimensional (2D) braiding which
results in a textile material structure consisting of two layers of yarns or tows interlaced
with each other while they are wound onto the mandrel.

A plane-laminated structure consists of a set of composite layers providing the necessary
stiffness and strength in at least two orthogonal directions in the plane of the laminate.
Such a plane structure would be formed by hand or machine lay-up, fiber placement, or
filament winding.

Lay-up and fiber placement technology provides fabrication of thin-walled composite
parts of practically arbitrary shape by hand or automated placing of preimpregnated uni-
directional or fabric tapes onto a mold. Layers with different fiber orientations (and even
with different fibers) are combined to result in the laminated composite material exhibit-
ing the desired strength and stiffness in given directions. Lay-up processes are usually
accompanied by pressure applied to compact the material and to remove entrapped air.
Depending on the required quality of the material, as well as on the shape and dimensions
of a manufactured composite part, compacting pressure can be provided by rolling or vac-
uum bags, in autoclaves, or by compression molding. A catamaran yacht (length 9.2 m,
width 6.8 m, tonnage 2.2tons) made from carbon—epoxy composite by hand lay-up is
shown in Fig. 1.18.

Filament winding is an efficient automated process of placing impregnated tows or tapes
onto a rotating mandrel (Fig. 1.19) that is removed after curing of the composite material.
Varying the winding angle, it is possible to control the material strength and stiffness within
the layer and through the thickness of the laminate. Winding of a pressure vessel is shown
in Fig. 1.20. Preliminary tension applied to the tows in the process of winding induces
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Fig. 1.18. Catamaran yacht lvan-30 made from carbon-epoxy composite by hand lay-up. Courtesy of CRISM.
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Fig. 1.19. Manufacturing of a pipe by circumferential winding of preimpregnated fiberglass fabric. Courtesy
of CRISM.

Fig. 1.20. Geodesic winding of a pressure vessel.
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Fig. 1.21. A body of a small plane made by filament winding. Courtesy of CRISM.

pressure between the layers providing compaction of the material. Filament winding is the
most advantageous in manufacturing thin-walled shells of revolution though it can also
be used in building composite structures with more complicated shapes (Fig. 1.21).

Spatial macrostructure of the composite material that is specific for thick-walled and
solid members requiring fiber reinforcement in at least three directions (not lying in one
plane) can be formed by 3D braiding (with three interlaced yarns) or using such tex-
tile processes as weaving, knitting, or stitching. Spatial (3D, 4D, etc.) structures used in
carbon—carbon technology are assembled from thin carbon composite rods fixed in dif-
ferent directions. Such a structure that is prepared for carbonization and deposition of
a carbon matrix is shown in Fig. 1.22.

There are two specific manufacturing procedures that have an inverse sequence of the
basic processes described above, i.e., first, the macrostructure of the material is formed
and then the matrix is applied to fibers.

The first of these procedures is the aforementioned carbon-carbon technology that
involves chemical vapor deposition of a pyrolitic carbon matrix on preliminary assembled
and sometimes rather complicated structures made from dry carbon fabric. A carbon-
carbon shell made by this method is shown in Fig. 1.23.

The second procedure is the well-known resin transfer molding. Fabrication of a com-
posite part starts with a preform that is assembled in the internal cavity of a mold from dry
fabrics, tows, yarns, etc., and forms the macrostructure of a composite part. The shape of
this part is governed by the shape of the mold cavity into which liquid resin is transferred
under pressure through injection ports.

The basic processes described above are always accompanied by a thermal treatment
resulting in the solidification of the matrix. Heating is applied to cure thermosetting resins,
cooling is used to transfer thermoplastic, metal, and ceramic matrices to a solid phase,
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Fig. 1.22. A 4D spatial structure. Courtesy of CRISM.

Fig. 1.23. A carbon—carbon conical shell. Courtesy of CRISM.
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whereas a carbon matrix is made by pyrolisis. The final stages of the manufacturing
procedure involve removal of mandrels, molds, or other tooling and machining of a
composite part.

The fabrication processes are described in more detail elsewhere (e.g., Peters, 1998).
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Chapter 2

FUNDAMENTALS OF MECHANICS OF SOLIDS

The behavior of composite materials whose micro- and macrostructures are much more
complicated than those of traditional structural materials such as metals, concrete, and
plastics is nevertheless governed by the same general laws and principles of mechanics
whose brief description is given below.

2.1. Stresses

Consider a solid body referred by Cartesian coordinates as in Fig. 2.1. The body is fixed
at the part S,, of the surface and loaded with body forces ¢,, having coordinate components
4x, 4y, and gz, and with surface tractions ps specified by coordinate components py, p,,
and p,. Surface tractions act on surface S, which is determined by its unit normal » with
coordinate components Iy, I,, and [/, that can be referred to as directional cosines of the
normal, i.e.,

I, =cos(n, x), [, =cos(n,y), I, =cos(n,z) (2.2)

Introduce some arbitrary cross section formally separating the upper part of the body
from its lower part. Assume that the interaction of these parts in the vicinity of some
point A can be simulated with some internal force per unit area or stress o distributed
over this cross section according to some as yet unknown law. Since the mechanics
of solids is a phenomenological theory (see the closure of Section 1.1) we do not care
about the physical nature of stress, which is only a parameter of our model of the real
material (see Section 1.1) and, in contrast to forces F, has never been observed in physical
experiments. Stress is referred to the plane on which it acts and is usually decomposed
into three components — normal stress (o, in Fig. 2.1) and shear stresses (r., and t,
in Fig. 2.1). The subscript of the normal stress and the first subscript of the shear stress
indicate the plane on which the stresses act. For stresses shown in Fig. 2.1, this is the
plane whose normal is parallel to the z-axis. The second subscript of the shear stress shows
the axis along which the stress acts. If we single out a cubic element in the vicinity of
point A (see Fig. 2.1), we should apply stresses to all its planes as in Fig. 2.2 which also
shows notations and positive directions of all the stresses acting inside the body referred
by Cartesian coordinates.
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Fig. 2.1. A solid loaded with body and surface forces and referred by Cartesian coordinates.
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Fig. 2.2. Stress acting on the planes of the infinitely small cubic element.
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2.2. Equilibrium equations

Now suppose that the body in Fig. 2.1 is in a state of equilibrium. Then, we can write
equilibrium equations for any part of this body. In particular we can do this for an infinitely
small tetrahedron singled out in the vicinity of point B (see Fig. 2.1) in such a way that
one of its planes coincides with S, and the other three planes are coordinate planes of
the Cartesian frame. Internal and external forces acting on this tetrahedron are shown
in Fig. 2.3. The equilibrium equation corresponding, for example, to the x-axis can be
written as

—0,dSy — 7,xdS) — 7,08, + p,dS; +¢,dV =0

Here, dS, and dV are the elements of the body surface and volume, whereas dS, = dS, [y,
dS, = dS,ly, and dS; = dS,I;. When the tetrahedron is infinitely diminished, the
term including dV, which is of the order of the cube of the linear dimensions, can be
neglected in comparison with terms containing dS, which is of the order of the square of
the linear dimensions. The resulting equation is

oxly + Tyxly + szlz =px (x, 5,2 (22)

The symbol (x, y, z), which is widely used in this chapter, denotes permutation with
the aid of which we can write two more equations corresponding to the other two axes
changing x for y, y for z, and z for x.

Consider now the equilibrium of an arbitrary finite part C of the body (see Fig. 2.1).
If we single this part out of the body, we should apply to it body forces ¢, and surface
tractions p; whose coordinate components p., py, and p, can be expressed, obviously,
by Eqg. (2.2) in terms of stresses acting inside the volume C. Because the sum of the

(e Iy 1)

Ps (P Py Py)

Fig. 2.3. Forces acting on an elementary tetrahedron.
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components corresponding, for example, to the x-axis must be equal to zero, we have

/v//qxvar[/pxds:O

where v and s are the volume and the surface area of the part of the body under
consideration. Substituting p, from Eq. (2.2) we get

// (oxlx + Tyxly + Toxlz)ds + /f/ gxdv =0 (x,y,2) (2.3)

Thus, we have three integral equilibrium equations, Eq. (2.3), which are valid for any
finite part of the body. To convert them into the corresponding differential equations, we
use Green’s integral transformation

// (felx + foly + fil Z)ds—/// (afx Iy aaf)du (2.4)

which is valid for any three continuous, finite, and single-valued functions f(x, y, z) and
allows us to transform a surface integral into a volume one. Taking f; = oy, fy = Tyx,
and f, = 7, in Eq. (2.4) and using Eq. (2.3), we arrive at

G5+ B o s

Since these equations hold true for whatever the part of the solid may be, provided only
that it is within the solid, they yield

doy Oty 4 0Ty

9ox = v 2.
ntay ta T =0 o) (2.5)

Thus, we have arrived at three differential equilibrium equations that could also be derived
from the equilibrium conditions for the infinitesimal element shown in Fig. 2.2.

However, in order to keep part C of the body in Fig. 2.1 in equilibrium the sum of
the moments of all the forces applied to this part about any axis must be zero. By taking
moments about the z-axis we get the following integral equation

// (gxy — gqyx)dv + / (pxy — pyx)ds =0

Using again Egs. (2.2), (2.4), and taking into account Eq. (2.5) we finally arrive at the
symmetry conditions for shear stresses, i.e.,

Txy = Tyx (x,y,2) (26)



Chapter 2. Fundamentals of mechanics of solids 35

So, we have three equilibrium equations, Eq. (2.5) which include six unknown stresses
Ox, Oy, 07 and Tyy, Tz, Tys.
Eqg. (2.2) can be treated as force boundary conditions for the stressed state of a solid.

2.3. Stress transformation

Consider the transformation of a stress system from one Cartesian coordinate frame
to another. Suppose that the elementary tetrahedron shown in Fig. 2.3 is located inside
the body and that point B coincides with the origin 0 of Cartesian coordinates x, v,
and z in Fig. 2.1. Then, the oblique plane of the tetrahedron can be treated as a coor-
dinate plane 7 = 0 of a new coordinate frame x’, y’, z’ shown in Fig. 2.4 and such
that the normal element to the oblique plane coincides with the z’-axis, whereas axes
x" and y’ are located in this plane. Component p, of the surface traction in Eq. (2.2)
can be treated now as the projection on the x-axis of stress o acting on plane z/ = 0.
Then, Eq. (2.2) can be presented in the following explicit form specifying projections of
stress o

Dx = Oxlyy + Tyxlz/y + Toxly,
py = O-ylz/y + TZylZ/Z + Txylzfx (27)

Pz =0zl + Tazlyy + Tylyy

b4

zx Iz’y' IZ’Z)

Yoy ly)

e X

Fig. 2.4. Rotation of the coordinate frame.
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Here, [ are directional cosines of axis z’ with respect to axes x, y, and z (see Fig. 2.4 in
which the corresponding cosines of axes x’ and y’ are also presented). The normal stress
o, can be found now as

Oy = lez’x + pylz’y + lez’z

= 0ull, +0y15 0l 4+ 2ty Ly + 2Tyl + 2Tylyl. (KLY 2)
(2.8)

The final result was obtained with the aid of Egs. (2.6) and (2.7). Changing x’ for y’, y’
for z/, and z’ for x’, i.e., performing the appropriate permutation in Eq. (2.8) we can write
similar expressions for o,/ and oy.

The shear stress in the new coordinates is

To/x! = Pxlyry + pylx’y + pzlx’z
= lex’xlz’x + Uylx’ylz’y + Uzlx’zlz/z + 1')Cy(lx’xlz’y + lx’ylz’x)

+ sz(lx/xlz/z + lx’zlz’x) + Tyz(lx’ylz’z + lx’xlz’y) ()C/, y/, Z/) (29)

Permutation yields expressions for 7,/ and 7.

2.4. Principal stresses

The foregoing equations, Egs. (2.8) and (2.9), demonstrate stress transformations under
rotation of a coordinate frame. There exists a special position of this frame in which the
shear stresses acting on the coordinate planes vanish. Such coordinate axes are called the
principal axes, and the normal stresses that act on the corresponding coordinate planes
are referred to as the principal stresses.

To determine the principal stresses, assume that coordinates x’, y’, and 7/, in Fig. 2.4 are
the principal coordinates. Then, according to the aforementioned property of the principal
coordinates, we should take 7./, = 7,/,» = 0 and o» = o for the plane z = 0. This means
that py = oly, py =o0olyy, and p; = ol in Egs. (2.7). Introducing new notations for
directional cosines of the principal axis, i.e., taking I/, = lpy, lyy =1py, Ly, =1y, We
have from Egs. (2.7)

(0x =) px + Tuylpy + Tazlp; =0
Toylpx + (0 — 0 py + Tylp, =0 (2.10)
Teglpx + Tyelpy + (0, —0)lp; =0

These equations were transformed with the aid of symmetry conditions for shear stresses,

Eq. (2.6). For some specified point of the body in the vicinity of which the principal
stresses are determined in terms of stresses referred to some fixed coordinate frame x, y, z
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and known, Egs. (2.10) comprise a homogeneous system of linear algebraic equations.
Formally, this system always has the trivial solution, i.e., I,x = I,y = I,; = 0 which we
can ignore because directional cosines should satisfy an evident condition following from
Egs. (2.1), i.e.,

B+, +05, =1 (2.11)

So, we need to find a nonzero solution of Egs. (2.10) which can exist if the determinant
of the set is zero. This condition yields the following cubic equation for o

6 — Lo’ —Dho—I=0 (2.12)
in which
Iy =0y +0y+o0;

b = —0,0, — 0y0; — 0,0, + txzy + tfz + I)Z.Z (2.13)

I3 = 0,00, + 2Ty Ty Ty, — axr)z,z — oyrxzz — Uzrfy

are invariant characteristics (invariants) of the stressed state. This means that if we refer
the body to any Cartesian coordinate frame with directional cosines specified by Egs. (2.1),
take the origin of this frame at some arbitrary point and change stresses in Egs. (2.13)
with the aid of Egs. (2.8) and (2.9), the values of I1, I, I3 at this point will be the same
for all such coordinate frames. Eq. (2.12) has three real roots that specify three principal
stresses o1, o2, and o3. There is a convention according to which o1 > 02 > o3, i.e,,
o1 is the maximum principal stress and o3 is the minimum one. If, for example, the
roots of Eq. (2.12) are 100 MPa, —200 MPa, and O, then o1 = 100 MPa, o2 = 0, and
03 = —200 MPa.

To demonstrate the procedure, consider a particular state of stress relevant to several
applications, namely, pure shear in the xy-plane. Let a thin square plate referred to coordi-
nates x, y, z be loaded with shear stresses = uniformly distributed over the plate thickness
and along the edges (see Fig. 2.5).

One principal plane is evident — it is plane z = 0, which is free of shear stresses. To find
the other two planes, we should take in Egs. (2.13) 0y = 0y = 0; =0, 1, = 1), =0,
and t,, = 7. Then, Eq. (2.12) takes the form

62— 1% =0
The first root of this equation gives o = 0 and corresponds to plane z = 0. The other two
roots are o = +t. Thus, we have three principal stresses, i.e., 01 =1, 02 =0, 03 = —1.
To find the planes corresponding to o1 and o3 we should put /,; = 0, substitute 0 = £t
into Egs. (2.10), write them for the state of stress under study, and supplement this set
with Eq. (2.11). The final equations allowing us to find /,, and [, are

ttlp +tly =0, 12 +15 =1
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Fig. 2.5. Principal stresses under pure shear.

Solution of these equations yields /,, = +1/+/2 and Ipy = +1/+/2, and means that
principal planes (or principal axes) make 45° angles with axes x and y. Principal stresses
and principal coordinates x1, x2, and x3 are shown in Fig. 2.5.

2.5. Displacements and strains

For any point of a solid (e.g., L or M in Fig. 2.1) coordinate component displacements
ux, uy, and u, can be introduced which specify the point displacements in the directions
of coordinate axes.

Consider an arbitrary infinitely small element LM characterized with its directional
cosines

dx dy dz
= — ) = —, = — 2.14
Lx ds’ 7 ds : ds (2.14)

The positions of this element before and after deformation are shown in Fig. 2.6. Suppose
that the displacements of the point L are u,, u,, andu. Then, the displacements of the
point M should be

ufcl) = Uy + duy, u;l) = uy + du,, ugl) =u, + du, (2.15)
Since uy, uy, and u; are continuous functions of x, y, z, we get

aﬂdx + Ehdy + %dz (x,y,2) (2.16)
ox dy 0z

du, =
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dsy oM

N
ds -~ L

L <o i

< 90° ds; ,M1

ds ,M

dx dx,

uld

Fig. 2.6. Displacement of an infinitesimal linear element.

It follows from Fig. 2.6 and Egs. (2.15) and (2.16) that,

dx; = dx —i—uj(cl) —uy =dx+du, =1+ e dx + Ot dy + adez (x,y,2)
ox dy Jz
(2.17)

Introduce the strain of element LM as

e — dS]_ — dS (218)
ds

After some rearrangements we arrive at

1, 1 /ds1)?
et 3° _E[<K> -1
where

ds? = (dx1)? + (dy1)? + (dz1)?

Substituting for dx1, dy1, dz1 in their expressions from Eq. (2.17) and taking into account
Egs. (2.14), we finally get

1
e+ 582 = eaxll + eyyls + e2l? + exylily + el + eyl (2.19)
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where
Juy, 1| [duy ouy, 2 du, 2
Sxx—a—+§|:<a ) +<¥> +(g) (x,y,2)
(2.20)
Ju, Odu Ouy duy  Ouy duy  dug du;
o= T Ty Ty Ty B9

Assuming that the strain is small, we can neglect the second term in the left-hand side of
Eqg. (2.19). Moreover, we further suppose that the displacements are continuous functions
that change rather slowly with the change of coordinates. This allows us to neglect the
products of derivatives in Egs. (2.20). As a result, we arrive at the following equation

£ = el + eyl + 02 + yoylely + yazlelz + yyelyl: (2.21)
in which
. Ouy . duy . du,
YT T T 9yt YT oz
(2.22)
Juy  duy duy  duy duy  du;

ey =gy Ty TeT o Ty Tty

can be treated as linear strain-displacement equations. Taking Iy =1, I, =1, = 0 in
Egs. (2.22), i.e., directing element LM in Fig. 2.6 along the x-axis we can readily see
that &, is the strain along the same x-axis. Similar reasoning shows that ¢, and ¢, in
Egs. (2.22) are strains in the directions of axes y and z. To find out the physical meaning
of strains y in Egs. (2.22), consider two orthogonal line elements LM and LN and find
angle « that they make with each other after deformation (see Fig. 2.6), i.e.,

dx1dx; +dy1dy] + dzadz)

COSax =
dsyds]

(2.23)

Here, dx1, dy1, and dz; are specified with Eq. (2.17), ds; can be found from Eqg. (2.18), and

o= (1425 ) o+ Bray + 2
ox dy 9z (2.24)

ds; =ds’(L+¢")
Introduce directional cosines of element LN as

dy/ dz’
L=g h=g5 L= (2.25)
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Since elements LM and LN are orthogonal, we have
L, + lyl; +1I.=0

Using Egs. (2.14), (2.18), (2.24)—(2.26) and introducing the shear strain y as the difference
between angles M1L1N1 and MLN, i.e., as

J/=§—05

we can write Eq. (2.23) in the following form

1

= T HaTH [2(8”1X1; + eyylylly + ezl 1) + exy (Ll + 1y)

siny
teaclel] + 1) + £ye (bl + 1) | (2.26)

Linear approximation of Eq. (2.26) similar to Eq. (2.21) yields

Yy = Z(lexl; + 8ylyl; + 8zlzl£) + ny(lxl; + l;ly) + sz(lxl; + l)/(lz)
+ Vyz(lylé + l;lz) (2.27)

Here, ey, &y, &; and yyy, vxz, ¥y, COMponents are determined with Egs. (2.22). If we
now direct element LM along the x-axis and element LN along the y-axis putting
k=1 1y==0and I, = 1, I, = [} = 0, Eq. (227) yields y = yyy. Thus,
Yxy» Yxz,» and y,. are shear strains that are equal to the changes of angles between axes
x and y, x and z, y and z, respectively.

2.6. Transformation of small strains

Consider small strains in Egs. (2.22) and study their transformation under rotation of
the coordinate frame. Suppose that x’, y’, 7/ in Fig. 2.4 form a new coordinate frame
rotated with respect to original frame x, y, z. Since Egs. (2.22) are valid for any Cartesian
coordinate frame, we have

Bux/ aux/ Buyr
= _’ 1y = —
T dy’ = ox’

ey (x, ¥, 2) (2.28)

Here, u,/, u,/, and u are displacements along the axes x’, y’, z" which can be related to
displacements u,, uy, and u, of the same point by the following linear equations

Upr = Uxlyry Fuylyy +uzly,  (x,,2) (2.29)
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Similar relations can be written for the derivatives of displacement with respect to variables
X'y, 7 and x, y, z, ie,

Ju Ju Ju

Ju
W = glx/x + @lx/y + _lX/Z (.x, y, Z) (230)

dz

Substituting displacements, Eq. (2.29), into Egs. (2.28), and transforming to variables x,
v, z with the aid of Egs. (2.30), and taking into account Egs. (2.22), we arrive at

e = exl’ + eyl ot 0%+ Vaylualyy + Vaeloxlos + Vyeloylo, (6, 9,2)
Vury = 2&xlyyly + 28yl Ly + 28700 1y, + yay(Lolyry + Loyl (2.31)
+ sz(lx/xly’z + lx’zly’x) + Vyz(lx’yly/z + lx’zly’y) (x,y,2)

These strain transformations are similar to the stress transformations determined by
Egs. (2.8) and (2.9).

2.7. Compatibility equations

Consider strain—displacement equations, Egs. (2.22), and try to determine displacements
Uy, Uy, and u; in terms of strains e, ey, &; and yxy, ¥x; ¥y-. AS can be seen, there are six
equations containing only three unknown displacements. In the general case, such a set
of equations is not consistent, and some compatibility conditions should be imposed on
the strains to provide the existence of a solution. To derive these conditions, decompose
derivatives of the displacements as follows

ouy ou, 1 ou, 1

e Ex, W = Eyxy — wy, 5 = zyxz +owy, (x,¥,2) (2.32)

Here

w; =S| 5"~

1 <8uy Juy
ox dy

> (x,y,2) (2.33)

is the angle of rotation of a body element (such as the cubic element shown in Fig. 2.1)
around the z-axis. Three Egs. (2.32) including one and the same displacement u, allow
us to construct three couples of mixed second-order derivatives of u, with respect to x
and y or y and x, x and z or z and x, y and z or z and y. As long as the sequence
of differentiation does not influence the result and since there are two other groups of
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equations in Egs. (2.32), we arrive at nine compatibility conditions that can be presented as

Owy N l anz _ any (x 2)
ax 2\ a9y oz R

(2.34)
doy 1dy,; dey dwy 10yy, Oe;

5 "3y 9 ©V9 3 =73y ty, @09

These equations are similar to Egs. (2.32), i.e., they allow us to determine rotation angles
only if some compatibility conditions are valid. These conditions compose the set of
compatibility equations for strains and have the following final form

kxy(g, V) = 0’ rx(gs )’) = 0 (-x3 ys Z) (235)
where

e, e, Iy,
kxy(ga 7/)— ayz + axz - axay ()C, Vs Z)

828)( 1 a (ayxy a%cz _ aVyz

(2.36)

rx(gv V) =

dydz 20x \ oz dy ox

) (x,y,2)

If strains ey, &y, &, and yyy, yxz, vy, Satisfy Egs. (2.35), we can find rotation angles
oy, wy, o, integrating Egs. (2.34) and then determine displacements u,, u,, u integrating
Egs. (2.32).

The six compatibility equations, Egs. (2.35), derived formally as compatibility condi-
tions for Egs. (2.32), have a simple physical meaning. Suppose that we have a continuous
solid as shown in Fig. 2.1 and divide it into a set of pieces that perfectly match each
other. Now, apply some strains to each of these pieces. Obviously, for arbitrary strains,
the deformed pieces cannot be assembled into a continuous deformed solid. This will
happen only under the condition that the strains satisfy Eqgs. (2.35). However, even if the
strains do not satisfy Eqgs. (2.35), we can assume that the solid is continuous but in a more
general Riemannian (curved) space rather than in traditional Euclidean space in which the
solid existed before the deformation (Vasiliev and Gurdal, 1999). Then, six quantities k
and r in Egs. (2.36), being nonzero, specify curvatures of the Riemannian space caused by
small strains ¢ and y. The compatibility equations, Eqgs. (2.35), require these curvatures
to be equal to zero which means that the solid should remain in the Euclidean space under
deformation.

2.8. Admissible static and kinematic fields

In solid mechanics, we introduce static field variables which are stresses and kinematic
field variables which are displacements and strains.
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The static field is said to be statically admissible if the stresses satisfy equilibrium
equations, Eq. (2.5), and are in equilibrium with surface tractions on the body surface S,
where these tractions are given (see Fig. 2.1), i.e., if Eq. (2.2) are satisfied on S,.

The kinematic field is referred to as kinematically admissible if displacements and
strains are linked by strain—displacement equations, Egs. (2.22), and displacements satisfy
kinematic boundary conditions on the surface S, where displacements are prescribed (see
Fig. 2.1).

Actual stresses and displacements belong, naturally, to the corresponding admissi-
ble fields though actual stresses must in addition provide admissible displacements,
whereas actual displacements should be associated with admissible stresses. Mutual cor-
respondence between static and kinematic variables is established through the so-called
constitutive equations that are considered in the next section.

2.9. Constitutive equations for an elastic solid

Consider a solid loaded with body and surface forces as in Fig. 2.1. These forces
induce some stresses, displacements, and strains that compose the fields of actual static
and kinematic variables. Introduce some infinitesimal additional displacements du., du,,
and du; such that they belong to a kinematically admissible field. This means that there
exist equations that are similar to Egs. (2.22), i.e.,

d d 0
dgx = a—x(dux), d)/xy = E(dux) + a_x(duy) ()C, y’ Z) (237)

and specify additional strains.

Since additional displacements are infinitely small, we can assume that external forces
do not change under such variation of the displacements (here we do not consider special
cases in which external forces depend on displacements of the points at which these forces
are applied). Then we can calculate the work performed by the forces by multiplying forces
by the corresponding increments of the displacements and writing the total work of body
forces and surface tractions as

dw = /// (qxduy + qyduy + g du;)dV + // (pxduy + pyduy + p.du;)dS
\4 S

(2.38)

Here, V and S are the body volume and external surface of the body in Fig. 2.1. Actu-
ally, we must write the surface integral in Eq. (2.38) only for the surface S, on which
the forces are given. However, since the increments of the displacements belong to a
kinematically admissible field, they are equal to zero on S,, and the integral can be
written for the whole surface of the body. To proceed, we express p., py, and p; in
terms of stresses with the aid of Eq. (2.2) and transform the surface integral into a



Chapter 2. Fundamentals of mechanics of solids 45

volume one using Eq. (2.4). For the sake of brevity, consider only x-components of
forces and displacement in Eq. (2.38). We have in several steps

/// qxdux +// pxduxds = /// QXdux + /:/ (oxly + Tyxly + ‘L’lez)dude
\%4 S Vv S
= /// Qxdux + i(deux) + i(":vxdux) + i('L—z)cdux) dv
ox dy - 0z

\4
_ doy afyx 0T« d
_/// I:(C]x‘l' ox + ay + az >dux +O'x$(dux)

\4

+Tvxi(dux) + szi(dux)i| dv
T dy dz

0 0
= /// [oxdsx + txya(dux) + era—Z(dux)j| dv
1%

The last transformation step has been performed with due regard to Egs. (2.5), (2.6), and
(2.37). Finally, Eq. (2.38) takes the form

dw = //f (deEx + Gdey + Uzdf;‘z + Txydyxy + szd)/xz + ryzdyyz)dV (239)
Vv

Since the right-hand side of this equation includes only internal variables, i.e., stresses
and strains, we can conclude that the foregoing formal rearrangement actually allows us
to transform the work of external forces into the work of internal forces or into potential
energy accumulated in the body. For further derivation, let us introduce for the sake
of brevity new notations for coordinates and use subscripts 1, 2, 3 instead of x, y, z,
respectively. We also use the following notations for stresses and strains

Oy = 011, Oy =022, 07 =033

Txy = 012 = 021, Txz =013 =031, Ty; =023 =032

Ex = &11, &y =¢822, ¢&;=¢E€33

Viy = 2612 = 2821, Yip = 2813 = 2831, Vy; = 2623 = 263

Then, Eq. (2.39) can be written as

dW:///dUdV (2.40)
\%4
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where
dU = Gijdé;‘ij (2.41)

This form of equation implies summation over repeated subscripts i, j = 1, 2, 3.

It should be emphasized that by now dU is just a symbol, which does not mean that
there exists function U and that dU is its differential. This meaning for dU is correct only
if we restrict ourselves to the consideration of an elastic material described in Section 1.1.
For such a material, the difference between the body potential energy corresponding to
some initial state A and the energy corresponding to some other state B does not depend
on the way used to transform the body from state A to state B. In other words, the
integral

B
/ O'ijdgij =U(B)—U(A)
A

does not depend on the path of integration. This means that the element of integration is
a complete differential of function U depending on &;;, i.e., that

dU = a—Ud&‘,'/'
asij ’

Comparing this result with Eq. (2.41) we arrive at Green’s formulas

U

Ojj = =—
J agij

(2.42)

that are valid for any elastic material. The function U (¢;;) can be referred to as specific
strain energy (energy accumulated in the unit of body volume) or elastic potential. The
potential U can be expanded into a Taylor series with respect to strains, i.e.,

1
Ueij) = S0 + sijéij + 5Sijusijen + - (243)
where
oU 9°U
so=Ule;j =0), sij= 35— C o Sijk = 5 (2.44)
1 s,-j:() ijOckl 8ij:Oa ek =0

Assume that for the initial state of the body, corresponding to zero external forces, we
have ¢;; = 0, 0;; =0, U = 0. Then, sop = 0 and s;; = 0 according to Eq. (2.42).
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For small strains, we can neglect high-order terms in Eq. (2.43) and restrict ourselves to
the first system of nonzero terms taking

1
U= o SijkIEij €k

Then, Eq. (2.42) yields
Oij = Sijki€ki (2.45)

These linear equations correspond to a linear elastic model of the material (see Section 1.1)
and, in general, include 3* = 81 coefficients of s. However, because o;j = oj; and
&;j = €j;, we have the following equations s;;x = stz = sijix Which reduce the number
of independent coefficients to 36. Then, taking into account that the mixed derivative spec-
ifying coefficients s;;, in Egs. (2.44) does not depend on the sequence of differentiation,
we get 15 equations s;jx; = swij (ij # kl). Thus, Eq. (2.45) contains only 21 independent
coefficients. Returning to coordinates x, y, z, we can write Eq. (2.45) in the following
explicit form

{o} =[S]{e} (2.46)
where
Ox &x S11 S12 S13 S S5 Sie
Oy &y So1 S22 S23 Soa Sos Soe
o &z S31 S32 833 Sas S3s S3p
o = Er = S =
to} Txy te) Yxy 51 Sa1 Sa2  Sa3 Sas  Sas  Sae
Txz Vxz 851 Ss2 Ss3 Ss4 Ss5 Sse
Tyz Vyz Se1 Se2 Sez Sesa Ses  Ses
(2.47)

Eqg. (2.46) are referred to as constitutive equations. They relate stresses and strains
through 21 stiffness coefficients S;; = S;; that specify material mechanical properties
within the framework of a linear elastic model of the material. The inverse form of
Eq. (2.46) is

{e} = [Cl{o} (2.48)
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Strains are expressed in terms of stresses via the matrix of compliance coefficients that

can be written as

1 vy Ve Meay Meaz Mayz ]

Ex Ey E. Gy Gx: Gy:

_ Vyx i _Vyz o Ny, xy Ny, xz Ny, yz
Ey Ey E. Gy Gx: Gy;
_Vz_x _@ i Nz, xy Nz, xz Nz, yz
E, E, E, Gyy Gy; Gy,

(€= Nxy,x  Nxy,y TNxy, z 1 )ny, Xz )\xy, vz
Ey Ey E; Gy Gx: Gy;

Nxz, x Nxz, y Nxz, z Axz, xy 1 Axz, vz
Ex Ey E; Gy G: Gy:

Nyz,x  Myz,y Nyz, z )‘yz, xy )”yz, Xz 1

Ex Ey E; Gy Gx: Gy;

This matrix is symmetric, and the following 15 symmetry conditions are valid

Vxy _ Vyx Vxz

- ’ — ’

Ey E, E, E, E, Ey

_ Vax Vyz _ Vzy

Mx,xy _ MNxy,x NMx,xz _ Txz, x Nx,yz _ Nyz, x

= = s =

b

Gy E, Gy; E, Gy, E,
Ny, xy _ Nxy,y Ny, xz _ Txz,y Ny, yz _ Nyz, y
= , = , =
Gy E, Gy; Ey Gy, E,
Nz, xy _ Nxy,z Nz, xz _ MNxz,z Nz, yz _ Myz,z
= , = , =
Gy E, Gy; Ey Gy; E,
)Ucy, Xz Axz, Xy )\xy, vz )‘yz, Xy Axz, vz )‘yz, Xz
- 9 - 9 -
Gy Gyy Gy Gxy Gy, Gy

The compliance matrix, Eq. (2.49), includes the following engineering constants:

(2.49)

(2.50)

E, is the modulus of elasticity in the x-direction (x, y, z); vy, the Poisson’s ratio that
determines the strain in the x-direction induced by normal stress acting in the orthog-
onal y-direction (x, y, z); G, the shear modulus in the xy-plane (x, y, z); nx, y; the
extension—shear coupling coefficient indicating normal strain in the x-direction induced
by shear stress acting in the yz-plane (x, y, z); nxy, ; the shear—extension coupling coef-
ficient characterizing shear strain in the xy-plane caused by normal stress acting in the
z-direction (x, y, z); and Ay, . the shear—shear coupling coefficient that determines the
shear strain taking place in the xy-plane under shear stress acting in the yz-plane (x, y, z).
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Having constitutive equations, Eq. (2.46), we can now write the finite expression for
elastic potential, U. Substituting stresses into Eq. (2.41) and integrating it with respect
to strains, we get the following equation after some transformation with the aid of
Eqg. (2.46)

1
U= E(UXSX + 0yEey + 0767 + TayVay + TazVaz + TyzVyz) (2.51)

The potential energy of the body can be found as

114 =/V// udv (2.52)

The compliance matrix, Eq. (2.49), containing 21 independent elastic constants cor-
responds to the general case of material anisotropy that practically never occurs in real
materials. The most common particular case corresponds to an orthotropic (orthogonally
anisotropic) material which has three orthogonal orthotropy (coordinate) axes such that
normal stresses acting along these axes do not induce shear strains, whereas shear stresses
acting in coordinate planes do not cause normal strains in the direction of these axes. As
a result, the stiffness and compliance matrices become uncoupled with respect to normal
stresses and strains on one side and shear stresses and strains on the other side. For the
case of an orthotropic material, with axes x, y, and z coinciding with the orthotropy axes,
Eq. (2.49) takes the form

R
E. E, E:
A
E. E, E

[C] = ) (2.53)

0 0 0 L 0o o
Gy
1
0 0 0 0 0
Gix:
0 0 0 0o o =
GYZ_

Symmetry conditions, Egs. (2.50), reduce to
ViyEx = vy Ey, Vi Ex = v E;, vy Ey=v,E;
These equations have a simple physical meaning. The higher the stiffness, demonstrated

by the material in some direction, the less is the strain in this direction under loading
in the orthogonal directions. Taking into account the foregoing symmetry conditions,
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we can conclude that an orthotropic material is characterized with nine independent elastic
constants.

The simplest material model corresponds to the isotropic material, whose mechanical
properties are the same for any direction or plane of loading. As a result, subscripts
indicating coordinate directions and planes in Eq. (2.53) disappear, and it reduces to

12 Y 5 0 o

E E E

L

EE K

[C] = L (2.54)

0O 0 0 = 0 0
G

o o o0 0o X o
¢

o 0 0 0 0 =

L G|

The compliance matrix, Eq. (2.54), contains three elastic constants, E, G, and v. However,
only two of them are independent. To show this, consider the case of pure shear for a plate
discussed in Section 2.4 (see Fig. 2.5). For this problem, ox = 0y = 0; = 7,; = 7y, =0,
7y = 7 and Egs. (2.48) and (2.54) yield

T

nyza

The specific strain energy in Eq. (2.51) can be written as

1 1,

U= Erxyyxy = ET (2.55)

However, from Section 2.4, pure shear can be reduced to tension and compression in the
principal directions (see Fig. 2.5). For these directions, Egs. (2.48) and (2.54) give

o1 03 03 o1
gl =——V—, €&3=——V—
E E E E
Here o1 = 1, 03 = —t and the remaining stresses are equal to zero. The strain energy,

Eg. (2.51), can be presented now in the following form

1+v
E

1
U= 5(0181 +0363) = 7? (2.56)

Since Egs. (2.55) and (2.56) specify one and the same quantity, we get

E

G=30rm (2.57)
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Thus, an isotropic material is characterized within the linear elastic model with two
independent elastic constants — E and v.

2.10. Formulations of the problem

The problem of Solid Mechanics is reduced, as follows from the foregoing derivation, to
a set of 15 equations, i.e., three equilibrium equations, Egs. (2.5), six strain—-displacement
equations, Egs. (2.22), and six constitutive equations, Eq. (2.46) or (2.48). This set of
equations is complete, i.e., it contains 15 unknown functions among which there are six
stresses, six strains, and three displacements. Solution of a particular problem should
satisfy three boundary conditions that can be written at any point of the body surface.
Static or force boundary conditions have the form of Egs. (2.2), whereas kinematic or
displacement boundary conditions are imposed on three displacement functions.

There exist two classical formulations of the problem — displacement formulation and
stress formulation.

According to the displacement formulation, we first determine displacements u,, uy,
and u, from three equilibrium equations, Eqgs. (2.5), written in terms of displacements
with the aid of constitutive equations, Eq. (2.46), and strain—displacement equations,
Egs. (2.22). Having found the displacements, we use Egs. (2.22) and (2.46) to determine
strains and stresses.

The stress formulation is much less straightforward than the displacement one. Indeed,
we have only three equilibrium equations, Egs. (2.5), for six stresses which means that
the problem of solid mechanics is not, in general, a statically determinate problem. All
possible solutions of the equilibrium equations (obviously, there is an infinite number
of them because the number of equations is less than the number of unknown stresses)
satisfying force boundary conditions (solutions that do not satisfy them, obviously, do not
belong to the problem under study) comprise the class of statically admissible stress fields
(see Section 2.8). Suppose that we have one of such stress fields. Now, we can readily find
strains using constitutive equations, Eq. (2.48), but to determine displacements, we need
to integrate a set of six strain—displacement equations, Egs. (2.22) which having only three
unknown displacements are, in general, not compatible. As shown in Section 2.7, this set
can be integrated if strains satisfy six compatibility equations, Eqgs. (2.35). We can write
these equations in terms of stresses using constitutive equations, Eq. (2.48). Thus, the
stress formulation of the problem is reduced to a set of nine equations consisting of three
equilibrium equations and six compatibility equations in terms of stresses. At first glance it
looks like this set is not consistent because it includes only six unknown stresses. However,
this is not the case because of the special properties of the compatibility equations. As
was noted in Section 2.7, these equations provide the existence of Euclidean space inside
the deformed body. But this space automatically exists if strains can be expressed in
terms of three continuous displacements as in Egs. (2.22). Indeed, substituting strains,
Egs. (2.22), into the compatibility equations, Egs. (2.35), we can readily see that they are
identically satisfied for any three functions u,, u,, and u,. This means that the solution
of six Egs. (2.35) including six strains is not unique. The uniqueness is ensured by three
equilibrium equations.
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2.11. Variational principles

The equations of Solid Mechanics considered in the previous sections can be also
derived from variational principles that establish the energy criteria according to which
the actual state of the body under loading can be singled out of a system of admissible
states (see Section 2.8).

Consider a linear elastic solid and introduce two mutually independent fields of
variables: a statically admissible stress field oy, oy, o7, 71y, 7y, 7,, and a kinematically
admissible field characterized with displacements Y, Y, u” and corresponding strains
€y, €5, €2, ¥y, Vaz Vyz- 10 construct the energy criteria allowing us to distinguish the
actual variables from admissible ones, consider the following integral similar to the energy
integral in Egs. (2.51) and (2.52)

1= [[[ @iet s ogey v ol ety + wiori + wppiae (258)
|4

Here, in accordance with the definition of a kinematically admissible field (see
Section 2.8),

" " "
"no__ aux "o aux au}'

T T T dy  ox (x.7.2)

(2.59)

Substituting Egs. (2.59) into Eq. (2.58) and using the following evident relationships
between the derivatives

g’ Bu;’ — i(o,/u//) _ u/,aO'; z aL;c, — i(l_/ u//) _ u//af);y
“ox  ox Y7 Tox Moy o9y WUF * dy

etc.,

we arrive at

d B
= / // [a_x(")?”g Ty ) + ] oyl o)
\%4

ox | 9y 0z
do, 91} ot do! 9t/ o1
N xy Yz n_ f Zz Xz Yz "
<8y + ox + 0z )uy <az + ox + dy )Mz]dv (2.60)

Applying Green’s integral transformation, Eq. (2.4), to the first three terms under the inte-
gral and taking into account that statically admissible stresses should satisfy equilibrium

a / 1 / " /i 3(7/ at;y aT)/CZ 14
+ a_z(’““x + Ty Uy +oLur) — X4 + uy
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equations, Egs. (2.5), (2.6), and force boundary conditions, Eq. (2.2), we obtain from
Egs. (2.58) and (2.60)

J[[ s oy et v el + i+ iy
v
= // (pxuty + pyu’y + pzu;)dsS + // (qxuty + qyu'y + qu?)dV (2.61)
S Vv

For actual stresses, strains, and displacements, Eq. (2.61) reduces to the following equation

/// (oxex + Oy€y + 0,87 + TayVay + TazVaz + Tszyz)dV
Vv
— [[ o+ sy pnords + [[ [ @+ g+ goay @o)
S |4
known as Clapeyron’s theorem.

2.11.1. Principle of minimum total potential energy

This principle allows us to distinguish the actual displacement field of the body from
kinematically admissible fields. To derive it, assume that the stresses in Eq. (2.61) are
actual stresses, i.e., o' = o, ' = T, whereas the displacements and the corresponding
strains differ from the actual values by small kinematically admissible variations, i.e.,
u’" =u+8u, &’ =¢e+8¢, y" =y +§y. Substituting these expressions into Eq. (2.61)
and subtracting Eq. (2.62) from the resulting equation, we arrive at

/// (0x8ex + 0y88y + 0,86, + TxyS¥xy + Taz8¥xz + Tyz8yy)dV
v
= // (pxdux + pyduy + pzduz)dS + /[ (qxdux + qyduy + q:8uz)dV
S 14

Assume that under small variation of displacements and strains belonging to the kinemat-
ically admissible fields the surface tractions and body forces do not change. Then, we can
write the foregoing result in the following form

W, —8A=0 (2.63)
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Here

W, = /// (0x8ex + 0y88y + 0,08, + TxySYxy + Tuz8Vz + Ty 8y )dV (2.64)
1%

is the variation of the strain energy (internal potential energy of an elastic solid) associated
with small kinematically admissible variations of strains and

A= /[ (pxux + pyuy + peuz)dS + // (gxux + qyuy + qrudV (2.65)
S \%4

can be formally treated as work performed by surface tractions and body forces on the
actual displacements. Expressing stresses in Eq. (2.64) in terms of strains with the aid of
the constitutive equations, Eq. (2.46), and integrating, we can determine W,, which is the
body strain energy written in terms of strains. The quantity 7 = W, — A is referred to
as the total potential energy of the body. This name historically came from problems in
which external forces had a potential function F = —A so that T = W, + F was the sum
of internal and external potentials, i.e., the total potential function. Then, the condition in
Eq. (2.63) reduces to

ST =0 (2.66)

which means that 7' has a stationary (actually, minimum) value under small admissible
variation of displacements in the vicinity of actual displacements. Thus, we arrive at the
following variational principle of minimum total potential energy: the actual displacement
field, in contrast to all kinematically admissible fields, delivers the minimum value of
the body total potential energy. This principle is a variational form of the displacement
formulation of the problem discussed in Section 2.10. As can be shown, the variational
equations ensuring the minimum value of the total potential energy of the body coincide
with the equilibrium equations written in terms of displacements.

2.11.2. Principle of minimum strain energy

This principle is valid for a linear elastic body and establishes the criterion according to
which the actual stress field can be singled out of all statically admissible fields. Suppose
that displacements and strains in Eq. (2.61) are actual, i.e., u” = u, &' =¢, y"' =y,
whereas stresses differ from the actual values by small statically admissible variations, i.e.,
o' =0 + 80, 7" = 7 + 8. Substituting these expressions in Eq. (2.61) and subtracting
Eqg. (2.62) for the actual state, we get

SW, =0 (2.67)
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where

SW, = // (ex80x + €480y + €,80; + Viy8Txy + Viz8Txz + Vy07,)AV (2.68)
v

is the variation of the strain energy associated with the variation of stresses. Expressing
strains in terms of stresses with the aid of constitutive equations, Eq. (2.48), and
integrating, we can determine W,, which is the body strain energy written in terms of
stresses. As before, Eq. (2.67) indicates that strain energy, W, has a stationary (in fact,
minimum) value under admissible variation of stresses. As a result, we arrive at the
following variational principle of minimum strain energy: the actual stress field, in contrast
to all statically admissible fields, delivers the minimum value of the body strain energy.
This principle is a variational form of the stress formulation of the problem considered in
Section 2.10. As can be shown, the variational equations providing the minimum value of
the strain energy are compatibility equations written in terms of stresses. It is important
that the stress variation in Eq. (2.68) should be performed within the statically admissible
field, i.e., within stresses that satisfy equilibrium equations and force boundary conditions.

2.11.3. Mixed variational principles

The two variational principles described above imply variations with respect to either
displacements only or stresses only. There exist also the so-called mixed variational prin-
ciples in which variation is performed with respect to both kinematic and static variables.
The first principle from this group follows from the principle of minimum total potential
energy considered in Section 2.11.1. Let us expand the class of admissible kinematic vari-
ables and introduce displacements that are continuous functions satisfying displacement
boundary conditions and strains that are not related to these displacements by strain—
displacement equations, Egs. (2.22). Then we can apply the principle of minimum total
potential energy performing a conditional minimization of the total potential energy and
introduce Egs. (2.22) as additional constraints imposed on strains and displacements with
the aid of Lagrange’s multipliers. Using stresses as these multipliers we can construct the
following augmented function

T—])V_A_l’_//:/ (%_ >+ (aﬂ_ >+ (%_ )
L= Wg Oy P Ex Oy ay &y 0y aZ &z
\%4
+ a& + aﬂ _ 4 aﬂ 4 % _
Txy ay 0 Vxy Txz 9z ox Vxz

Ju Ju
+ Tyz (a—zy + a—yz - )/yz>i| dv

According to the initial principle, Eq. (2.66), 87, = 0. Variation of displacements yields,
as previously equilibrium equations, variation of stresses results in strain—displacement
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equations, and variation of strains gives constitutive equations (W, should be expressed
in terms of strains).

The second form of the mixed variational principle can be derived from the principle of
minimum strain energy discussed in Section 2.11.2. Again expand the class of admissible
static fields and introduce stresses that satisfy force boundary conditions but do not satisfy
equilibrium equations, Eq. (2.5). Then, we can apply the principle of minimum strain
energy if we construct an augmented function adding Egs. (2.5) as additional constraints.
Using displacements as Lagrange’s multipliers we obtain

W—W+//f dox | OTxy | Ofuz |
L= e l o Ty T T
Vv

d ox o)
do; 0Ty, = OTy;
+”Z<a_z+ x5y +qz> dv

According to the original principle, Eq. (2.67), §W_ = 0. The variation with respect to
stresses (W, should be expressed in terms of stresses) yields constitutive equations in
which strains are expressed in terms of displacements via strain—displacement equations,
Egs. (2.22), whereas variation of displacements gives equilibrium equations.

The equations and principles considered in this chapter will be used in the following
chapters in the book for the analysis of the mechanics of composite materials.

2.12. Reference

Vasiliev, V.V. and Gurdal, Z. (1999). Optimal structural design. In Optimal Design (V.V. Vasiliev and Z. Gurdal
eds.). Technomic, Lancaster, pp. 1-29.



Chapter 3

MECHANICS OF A UNIDIRECTIONAL PLY

A ply or lamina is the simplest element of a composite material, an elementary layer
of unidirectional fibers in a matrix (see Fig. 3.1), formed when a unidirectional tape
impregnated with resin is placed onto the surface of the tool, thus providing the shape of
a composite part.

3.1. Ply architecture

As the tape consists of tows (bundles of fibers), the ply thickness (whose minimum
value is about 0.1 mm for modern composites) is much higher than the fiber diameter
(about 0.01 mm). In an actual ply, the fibers are randomly distributed, as in Fig. 3.2. Since
the actual distribution is not known and can hardly be predicted, some typical idealized
regular distributions, i.e., square (Fig. 3.3), hexagonal (Fig. 3.4), and layer-wise (Fig. 3.5),
are used for the analysis.

A composite ply is generally taken to consist of two constituents: fibers and a matrix
whose quantities in the materials are specified by volume, v, and mass, m, fractions

Vi Vi

= —7 = 3-1

Vf Ve Um Ve ( )
M5 Mm

_ M _ Ym 3.2

n M. tm M. (3-2)

Here, V and M are volume and mass, whereas subscripts f, m, and ¢ correspond to fibers,
matrix, and composite material, respectively. Since Vi = Vi + Vi and M = Ms + M,
we have

Uf +vm = 1, ms +mm = 1 (33)
There exist the following relationships between volume and mass fractions

vf = &I’ﬂf, Um = &mm (3.4)

Pf Pm
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Fig. 3.1. A unidirectional ply.

Fig. 3.2. Actual fiber distribution in the cross-section of a ply (vf = 0.65).

where pf, pom, and pc are the densities of fibers, the matrix, and the composite, respectively.
In analysis, volume fractions are used because they enter the stiffness coefficients for a ply,
whereas mass fractions are usually measured directly during processing or experimental
study of the fabricated material.

Two typical situations usually occur. The first situation implies that we know the mass
of fibers used to fabricate a composite part and the mass of the part itself. The mass of
fibers can be found if we weigh the spools with fibers before and after they are used or
calculate the total length of tows and multiply it by the tow tex-number that is the mass
in grams of a 1000-m-long tow. So, we know the values of M; and M. and can use the
first equations of Egs. (3.2) and (3.4) to calculate vs.
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Fig. 3.5. Layer-wise fiber distribution in the cross-section of a ply (v = 0.65).

The second situation takes place if we have a sample of a composite material and know
the densities of the fibers and the matrix used for its fabrication. Then, we can find the
experimental value of material density, o, and use the following equation for theoretical
density

Pc = PFYf + PmUm (3.5)
Putting pc = p¢ and taking into account Egs. (3.3), we obtain

e
v = Pc ~ Pm (3.6)

Pf — Pm
Consider, for example, a carbon-epoxy composite material with fibers AS4 and matrix
EPON DPL-862, for which pf = 1.79g/cm?® and pm = 1.2g/cm® Let p§ = 1.56g/cm®
Then, Eq. (3.6) yields v = 0.61.

This result is approximate because it ignores possible material porosity. To determine
the actual fiber fraction, we should remove the resin using matrix destruction, solvent
extraction, or burning the resin out in an oven. As a result, we get Mz, and having M,
can calculate ms and vf with the aid of Egs. (3.2) and (3.4). Then we find p¢ using
Eq. (3.5) and compare it with p¢. If pc > pg, the material includes voids whose volume
fraction (porosity) can be calculated using the following equation

e
p=1-12 3.7)
Pc
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@ (b) ©

Fig. 3.6. Ultimate fiber arrays for square (a), hexagonal (b), and layer-wise (c) fiber distributions.

For the carbon-epoxy composite material considered above as an example, assume that
the foregoing procedure results in mf = 0.72. Then, Egs. (3.4), (3.5), and (3.7) give
vf = 0.63, pc = 1.58g/cm?, and v, = 0.013, respectively.

For real unidirectional composite materials, we normally have v = 0.50—0.65. Lower
fiber volume content results in lower ply strength and stiffness under tension along the
fibers, whereas higher fiber content, close to the ultimate value, leads to reduction of the
ply strength under longitudinal compression and in-plane shear due to poor bonding of
the fibers.

Since the fibers usually have uniform circular cross-sections, there exists the ultimate
fiber volume fraction, v{, which is less than unity and depends on the fiber arrangement.
For typical arrangements shown in Figs. 3.3-3.5, the ultimate arrays are presented in
Fig. 3.6, and the corresponding ultimate fiber volume fractions are:

1 (nd?
Square array vf = d_2<nT) = % =0.785

Hexagonal array v} 2 (—dz) T _0.907
Vg = = = 0.
d?J/3\ 4 23

_ d?
Layer-wise array vf = (TC > = 0.785

3.2. Fiber-matrix interaction
3.2.1. Theoretical and actual strength

The most important property of advanced composite materials is associated with the
very high strength of a unidirectional ply, accompanied with relatively low density.
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This advantage of the material is provided mainly by the fibers. Correspondingly, a natural
question arises as to how such traditional lightweight materials such as glass or graphite,
which were never utilized as primary load-bearing structural materials, can be used to
make fibers with strength exceeding the strength of such traditional structural materials
as aluminum or steel (see Table 1.1). The general answer is well known: the strength of a
thin wire is usually much higher than the strength of the corresponding bulk material. This
is demonstrated in Fig. 3.7, showing that the wire strength increases as the wire diameter
is reduced.

In connection with this, two questions arise. First, what is the upper limit of strength
that can be predicted for an infinitely thin wire or fiber? And second, what is the nature
of this phenomenon?

The answer to the first question is given in The Physics of Solids. Consider an idealized
model of a solid, namely a regular system of atoms located as shown in Fig. 3.8 and find
the stress, o, that destroys this system. The dependence of o on atomic spacing as given
by The Physics of Solids is presented in Fig. 3.9. Point O of the curve corresponds to
the equilibrium of the unloaded system, whereas point U specifies the ultimate theoretical
stress, ot. The initial tangent angle, «, characterizes the material’s modulus of elasticity, E.
To evaluate &, we can use the following sine approximation (Gilman, 1959) for the OU
segment of the curve

_ . a—ap
o =o¢Sin2xn

ao

0 I I I I d, mm
0.4 0.8 1.2 1.6

Fig. 3.7. Dependence of high-carbon steel wire strength on the wire diameter.
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Fig. 3.8. Material model.
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Fig. 3.9. Atoms’ interaction curve ( ) and its sine approximation (= — = =).

Introducing strain

a— agp

ag
we arrive at

o =0o¢Sin27e
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Now, we can calculate the modulus as

E = (d_O’) = 2]‘[3{
de /|0
Thus,
E
ot = — 3.8
Tt =5 (3.8)

This equation yields a very high value for the theoretical strength. For example, for a
steel wire, oy = 33.4GPa. Until now, the highest strength reached in 2-pm-diameter
monocrystals of iron (whiskers) is about 12 GPa.

The model under study allows us to introduce another important characteristic of the
material. The specific energy that should be spent to destroy the material can be presented
in accordance with Fig. 3.9 as

2y = /ooa(a)da (3.9

0

As material fracture results in the formation of two new free surfaces, y can be referred
to as the specific surface energy (energy spent to form the surface of unit area).

The answer to the second question (why the fibers are stronger than the corresponding
bulk materials) was in fact given by Griffith (1920), whose results have formed the basis
of fracture mechanics.

Consider a fiber loaded in tension and having a thin circumferential crack as shown in
Fig. 3.10. The crack length, I, is much less than the fiber diameter, d.

For a linear elastic fiber, o = E¢, and the elastic potential in Eq. (2.51) can be
presented as

U 1 o?
=_—0&g=—
2 2E

When the crack appears, the strain energy is released in a material volume adjacent to
the crack. Suppose that this volume is comprised of a conical ring whose generating lines
are shown in Fig. 3.10 by dashed lines and heights are proportional to the crack length, /.
Then, the total released energy, Eq. (2.52), is

1 o2

W = Zkn—I%d 3.10
Sk (3.10)

where k is some constant coefficient of proportionality. On the other hand, the formation

of new surfaces consumes the energy

S =2nyld (3.11)
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d d

Fig. 3.10. A fiber with a crack.

where y is the surface energy, Eq. (3.9). Now assume that the crack length is increased
by an infinitesimal increment, di. Then, if for some value of acting stress, o

dw dS
il (3.12)
the crack will propagate, and the fiber will fail. Substituting Egs. (3.10) and (3.11) into

inequality (3.12) we arrive at

2/E
o> T = ,/% (3.13)

The most important result that follows from this condition specifying some critical
stress, o¢, beyond which the fiber with a crack cannot exist is the fact that ¢ depends on
the absolute value of the crack length (not on the ratio //d). Now, for a continuous fiber,
2l < d; so, the thinner the fiber, the smaller is the length of the crack that can exist in this
fiber and the higher is the critical stress, o¢c. More rigorous analysis shows that, reducing
[ to a in Fig. 3.8, we arrive at 6. = o.
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Consider, for example, glass fibers that are widely used as reinforcing elements in
composite materials and have been studied experimentally to support the fundamentals
of fracture mechanics (Griffith, 1920). The theoretical strength of glass, Eqg. (3.8), is
about 14 GPa, whereas the actual strength of 1-mm-diameter glass fibers is only about
0.2 GPa, and for 5-mm-diameter fibers, this value is much lower (about 0.05 GPa). The
fact that such low actual strength is caused by surface cracks can be readily proved if
the fiber surface is smoothed by etching the fiber with acid. Then, the strength of 5-mm-
diameter fibers can be increased up to 2 GPa. If the fiber diameter is reduced by heating
and stretching the fibers to a diameter of about 0.0025 mm, the strength is increased to
6 GPa. Theoretical extrapolation of the experimental curve, showing the dependence of
the fiber strength on the fiber diameter for very small fiber diameters, yields ¢ = 11 GPa,
which is close to ot = 14 GPa.

Thus, we arrive at the following conclusion, clarifying the nature of the high perfor-
mance of advanced composites and their place among modern structural materials.

The actual strength of advanced structural materials is much lower than their theoretical
strength. This difference is caused by defects in the material microstructure (e.g., crys-
talline structure) or macrocracks inside the material and on its surface. Using thin fibers,
we reduce the influence of cracks and thus increase the strength of materials reinforced
with these fibers. So, advanced composites comprise a special class of structural materials
in which we try to utilize the natural potential properties of the material, rather than the
possibilities of technology as we do developing high-strength alloys.

3.2.2. Satistical aspects of fiber strength

Fiber strength, being relatively high, is still less than the corresponding theoretical
strength, which means that fibers of advanced composites have microcracks or other
defects randomly distributed along the fiber length. This is supported by the fact that fiber
strength depends on the length of the tested fiber. The dependence of strength on length for
boron fibers (Mikelsons and Gutans, 1984) is shown in Fig. 3.11. The longer the fiber, the
higher the probability of a deleterious defect to exist within this length, and the lower the
fiber strength. The tensile strengths of fiber segments with the same length but taken from
different parts of a long continuous fiber, or from different fibers, also demonstrates the
strength deviation. A typical strength distribution for boron fibers is presented in Fig. 3.12.

The first important characteristic of the strength deviation is the strength scatter Az =
Omax — omin. FOr the case corresponding to Fig. 3.12, 6 max = 4.2GPa, omin = 2 GPa,
and A = 2.2 GPa. To plot the diagram presented in Fig. 3.12, Ac is divided into a set
of increments, and a normalized number of fibers n = N, /N (N, is the number of fibers
failing at that stress within the increment, and N is the total number of tested fibers) is
calculated and shown on the vertical axis. Thus, the so-called frequency histogram can be
plotted. This histogram allows us to determine the mean value of the fiber strength as

1 N
Tn = Za (3.14)
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Dependence of strength of boron fibers on the fiber length.

Fig. 3.12. Strength distribution for boron fibers.
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and the strength dispersion as

N
1 _
o= | ‘§_1: @m — 0i)? (3.15)

The deviation of fiber strength is characterized by the coefficient of the strength variation,
which is presented as follows

o = f—”100% (3.16)

Om

For the boron fibers under consideration, Eqgs. (3.14)—(3.16) yield o, = 3.2GPa, d, =
0.4 GPa, and r, = 12.5%.

To demonstrate the influence of fiber strength deviation on the strength of a unidi-
rectional ply, consider a bundle of fibers, i.e., a system of approximately parallel fibers
with different strength and slightly different lengths, as in Fig. 3.13. Typical stress—strain
diagrams for fibers tested under tension in a bundle are shown in Fig. 3.14 (Vasiliev and
Tarnopol’skii, 1990). As can be seen, the diagrams have two nonlinear segments. The
nonlinearity in the vicinity of zero stresses is associated with different lengths of fibers
in the bundles, whereas the nonlinear behavior of the bundle under stresses close to the
ultimate values is caused by fracture of the fibers with lower strength.

Useful qualitative results can be obtained if we consider model bundles consisting of
five fibers with different strengths. Five such bundles are presented in Table 3.1, showing
the normalized strength of each fiber. As can be seen, the deviation of fiber strength is
such that the mean strength, o, = 1, is the same for all the bundles, whereas the variation
coefficient, r,, changes from 31.6% for bundle No. 1 to zero for bundle No. 5. The last
row in the table shows the effective (observed) ultimate force, F, for a bundle. Consider,
for example, the first bundle. When the force is increased to F = 3, the stresses in all the
fibers become o; = 0.6, and fiber No. 1 fails. After this happens, the force F = 3 is taken

d

e

Fig. 3.13. Tension of a bundle of fibers.
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Fig. 3.14. Stress—strain diagrams for bundles of carbon (1) and aramid (2) fibers.

Table 3.1
Strength of bundles consisting of fibers of different strengths.
Fiber number Bundle number

1 2 3 4 5
1 0.6 0.7 0.85 0.9 1.0
2 0.8 0.9 0.9 0.95 1.0
3 1.0 1.0 1.0 1.0 1.0
4 1.2 11 1.1 1.05 1.0
5 1.4 1.3 1.15 1.1 1.0
om 1.0 1.0 1.0 1.0 1.0
ro (%) 31.6 224 12.8 7.8 0
F 3.2 3.6 4.25 45 5.0

by four fibers, and o; = 0.75 (j = 2, 3, 4, 5). When the force reaches the value F = 3.2,
the stresses become o; = 0.8, and fiber No. 2 fails. After that, o; = 1.07 (j = 3, 4, 5).
This means that fiber No. 3 also fails at force F = 3.2. Then, for the two remaining fibers,
o4 = o5 = 1.6, and they also fail. Thus, F = 3.2 for bundle No. 1. In a similar way,
F can be calculated for the other bundles in the table. As can be seen, the lower the fiber
strength variation, the higher the F, which reaches its maximum value, F = 5, for bundle
No. 5, consisting of fibers of the same strength.

Table 3.2 demonstrates that strength variation can be more important than the mean
strength. In fact, while the mean strength, o, goes down for bundles No. 1-5, the
ultimate force, F, increases. So, it can be better to have fibers with relatively low strength
and low strength variation rather than high-strength fibers with high strength variation.
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Table 3.2
Strength of bundles consisting of fibers of different strengths.
Fiber number Bundle number

1 2 3 4 5
1 0.6 0.7 0.85 0.9 0.95
2 0.8 0.9 0.9 0.85 0.95
3 1.0 1.2 1.1 1.0 0.95
4 1.6 1.4 1.15 1.05 0.95
5 3.0 1.6 1.4 1.1 0.95
Om 1.4 1.16 1.08 1.0 0.95
ro (%) 95.0 66.0 22.0 7.8 0
F 3.2 36 4.25 45 4.75

3.2.3. Sress diffusion in fibers interacting through the matrix

The foregoing discussion concerned individual fibers or bundles of fibers that are not
joined together. This is not the case for composite materials in which the fibers are embed-
ded in the matrix material. Usually, the stiffness of the matrix is much lower than that of
fibers (see Table 1.1), and the matrix practically does not take the load applied in the fiber
direction. However, the fact that the fibers are bonded with the matrix even having rela-
tively low stiffness changes the mechanism of fiber interaction and considerably increases
their effective strength. To show this, the strength of dry fiber bundles can be compared
with the strength of the same bundles after they were impregnated with epoxy resin and
cured. The results are listed in Table 3.3. As can be seen, composite bundles in which
fibers are joined together by the matrix demonstrate significantly higher strength, and the
higher the fiber sensitivity to damage, the higher the difference in strength of dry and
composite bundles. The influence of a matrix on the variation of strength is even more
significant. As follows from Table 3.4, the variation coefficients of composite bundles are
lower by an order of magnitude than those of individual fibers.

To clarify the role of a matrix in composite materials, consider the simple model of
a unidirectional ply shown in Fig. 3.15 and apply the method of analysis developed for
stringer panels (Goodey, 1946).

Table 3.3
Strength of dry bundles and composite bundles.
Fibers Sensitivity of fibers Ultimate tensile load F (N) Strength
to damage increase (%)
Dry bundle Composite bundle
Carbon High 14 26 85.7
Glass Moderate 21 36 71.4

Aramid Low 66 84 27.3
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Table 3.4
Variation coefficients for fibers and unidirectional composites.
Fibers Variation coefficient r, (%)

Fibers Composite
Glass 29 2.0
Carbon 30 4.7
Aramid 24 5.0
Boron 23 3.0

Fig. 3.15. Model of a unidirectional ply with a broken fiber.

Let the ply of thickness & consist of 2k fibers symmetrically distributed on both sides
of the central fiber n = 0. The fibers are joined with layers of the matrix material, and the
fiber volume fraction is

vf = a—f, a=af +am (3.17)
a

Let the central fiber have a crack induced by the fiber damage or by the shortage of this
fiber’s strength. At a distance from the crack, the fibers are uniformly loaded with stress o
(see Fig. 3.15).

First, derive the set of equations describing the ply under study. Since the stiffness of
the matrix is much less than that of fibers, we neglect the stress in the matrix acting in
the x direction and assume that the matrix works only in shear. We also assume that there
are no displacements in the y direction.
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Considering equilibrium of the last (n = k) fiber, an arbitrary fiber, and the central
(n = 0) fiber shown in Fig. 3.16, we arrive at the following equilibrium equations

afo, — 1% =0
afo, + Tyt1 — 1 =0
afog+ 211 =0

in which ()" = d() /dx.

(3.18)

6~

doy
|—> (op+ ——dx)
dx

E

@

n+1

‘ Tn+1
do,

l_, (o,+ ™ dx)

do,

o]

9 dx)

l—) 0+ dx

(©

Fig. 3.16. Stresses acting in fibers and matrix layers for the last (a), arbitrary n-th fiber (b), and the central
n = 0 fiber (c).
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Constitutive equations for fibers and the matrix can be written as
on = Etén, Th = Gm¥n (3.19)
Here, Es is the fiber elasticity modulus and G, is the matrix shear modulus, whereas
& = U, (3.20)

is the fiber strain expressed in terms of the displacement in the x direction. The shear
strain in the matrix follows from Fig. 3.17, i.e.,

1
Yn = a_(un —Up_1) (3.21)

m

This set of equations, Egs. (3.18)—(3.21), is complete — it includes 10k + 3 equations and
contains the same number of unknown stresses, strains, and displacements.

Consider the boundary conditions. If there is no crack in the central fiber, the solution of
the problem is evident and has the form o, = o, 1, = 0. Assuming that the perturbation
of the stressed state induced by the crack vanishes at a distance from the crack, we
arrive at

op(x > 0)=0, T(x > 00)=0 (3.22)
As a result of the crack in the central fiber, we have

op(x=0)=0 (3.23)
For the remaining fibers, symmetry conditions yield

Uy(x =0)=0 (n=1,2,3...k (3.24)

Fig. 3.17. Shear strain in the matrix layer.
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To solve the problem, we use the stress formulation and, in accordance with Section 2.10,
should consider equilibrium equations in conjunction with compatibility equations
expressed in terms of stresses.
First, transform equilibrium equations introducing the stress function, F(x), such that
w=F,, Fy(x—>00)=0 (3.25)
Substituting Egs. (3.25) into the equilibrium equations, Egs. (3.18), integrating them from
x to oo, and taking into account Egs. (3.22) and (3.25), we obtain

1
o =0+ —F;
af
1
Onp =0 — ;(Fn+l - Fy) (3.26)

2
op=0— —F
arg

Compatibility equations follow from Egs. (3.20) and (3.21), i.e.,

Vri = —(& — &p-1)
am

Using constitutive equations, Eqgs. (3.19), we can write them in terms of stresses

Substituting stresses from Egs. (3.25) and (3.26), and introducing the dimensionless coor-
dinate x = x/a (see Fig. 3.15), we finally arrive at the following set of governing
equations:

F{ — p?(2F; — Fr-1) =0
F + p?(Fyy1 — 2Fy + F_1) =0 (3.27)
F{ + u?(F, —3F1) =0

in which, in accordance with Egs. (3.17),

Gma? G
2= Gma” m (3.28)
aramEs  vi(1 — vp) E¢

With due regard to the second equation in Egs. (3.25), we can take the general solution
of Egs. (3.27) in the form

Fy(X) = Age™ (3.29)
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Substitution in Egs. (3.27) yields:

22
A (2 — —2> — A1 =0 (3.30)
m
)\‘2
Az = An(2=23) 4 Ay =0 (331)
n
)LZ
Ay — A (3 — —2> =0 (3.32)
m

The finite-difference equation, Eq. (3.31), can be reduced to the following form

App1 —2A,c080 + A1 =0 (3.33)
where
22
cosf =1— — 3.34
22 (3:34)

As can be readily checked, the solution for Eq. (3.33) is
A, = Bcosnb + Csinnb (3.35)

whereas Eq. (3.34) yields, after some transformation,
A =2usin g (3.36)
Substituting the solution, Eq. (3.35), into Eqg. (3.30), we obtain, after some transformation,
B =—-Ctan(k + 1)6
Thus, Eq. (3.35) can be written as
A, = C[sinnf — cosnb - tan(k + 1)0] (3.37)

Substituting Eq. (3.37) into Eq. (3.32) and performing rather cumbersome trigonometric
transformations, we arrive at the following equation for 6

0
tan k6 = —tan 3 (3.38)

The periodic properties of the tangent function in Eq. (3.38) mean that it has £+ 1 different
roots corresponding to intersection points of the curves z = tank6 and z = —tan6/2.
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z=tan ko
0 / /l /l / } / 1 0, rad
0 1 2 3 4
2}
-4 F z:—tanﬁ
2
6 L

Fig. 3.18. Geometric interpretation of Eq. (3.38) for k = 4.

For the case k = 4, considered below as an example, these points are shown in Fig. 3.18.
Further transformation allows us to reduce Eq. (3.38) to

2k +1

sin 6=0

from which it follows that

2mi

9; =
YT 2k+1

(i=0,1,2...k) (3.39)

The first root, 6o = 0, corresponds to A = 0 and F,, = const, i.e., to a ply without a crack
in the central fiber. So, Eq. (3.39) specifies k roots (i = 1,2, 3, ..., k) for the ply under
study, and the solution in Egs. (3.29) and (3.37) can be generalized as

k
Fy(¥) =Y Cilsinnf; — cosn; - tan(k + 1)6; e 4% (3.40)
i=1

where, in accordance with Eq. (3.36),
.6
A = 2usin > (3.41)

and 6; are determined by Eq. (3.39).
Using Eq. (3.38), we can transform Eqg. (3.40) to the following final form

k
Fau®) =) CiSy(0n)e i (3.42)
i=1
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where

N sin(2n — 1/2)6;
Sn(0:) = T c0s6,/2) 72) (3.43)

Applying Egs. (3.25) and (3.26), we can find shear and normal stresses, i.e.,

k
1 _
(@) === Y MCiSa@)e T (n=1,2,3...k) (3.44)
a
i=1

k
1 -
ox(X) =0 + . § C; Sk (6;)e ¥ (3.45)
i=1

k
1 _
on(®) =0 — = CilSuy1(6) — Su@)le ™™™ (n=1,23...k—1)  (3.46)
“ i
2 & -
00(®) =0 — > CiSiO)e i (3.47)
i=1

Displacements can be determined with the aid of Egs. (3.19), (3.21), and (3.25). Changing
x forx = x/a, we get

am

aGm Fy (%) + tp—1(X)

up(x) =

For the first fiber (n = 1), we have

_ a
u1(x) = aG'“

Fi(¥) + uo(X)

m

Substituting Eqg. (3.42) into these equations, we arrive at

k
. a . _
Uy (X) = —aGm > CiniSu@)e ™M +up 1 () (n=2,3.4...k) (3.48)
m -1
a k =
u1 (%) = _% > CiniS1(B)e M + ug(x) (3.49)
m ;-1

To determine coefficients C;, we should apply the boundary conditions and write
Egs. (3.23) and (3.24) in the explicit form using Egs. (3.47)—(3.49). Substituting S,, from
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Eq. (3.43) and A; from Eq. (3.41), we have

k

0 . 2n—1
ZC,Ianésm ”2 0,=0 (n=2,34...k)
i=1

k
91' . 9[ aGm
C;tan —sin — = 0
; ftan = sin = = 227 ~uo(0)

Introducing new coefficients
0;
D; = C; tan 3 (350)

we arrive at the final form of the boundary conditions, i.e.,

k
Y b= a (3.51)
: 2
i=1

a 2n —1
> Disin S 0i=0 (n=23.4...k) (3.52)
i=1

£ 4 aG
> Disin - = ——"ug(0) (3.53)
4 2  2uam

This set contains k + 1 equations and includes k£ unknown coefficients D; and displace-
ment uq(0).

The foregoing set of equations allows us to obtain the exact analytical solution for any
number of fibers, k. To find this solution, some transformations are required. First, multiply
Eqg. (3.52) by sin[(2n — 1)6,/2] and sum up all the equations from n = 2 to n = k. Adding
Eg. (3.53) for n = 1 multiplied by sin(6;/2), we obtain

kK k
. 2n—=1  2n-—1 aGnm S
D; sin 6; sin 0 = 0)sin —
ZZ t 2 l 2 s Zﬂam MO( ) 2

Now, the sequence of summation can be changed, as follows

k k
. 2n—=1 . 2n-1 G .0
ZDi Zsm " g sin 2, = 2¥M 0 0) sin 2 (3.54)
= o 2 2 2uam 2
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Using the following known series

sin 2k6
2sino

k
> cos(2n —1)0 =

n=1

we get in several steps

k
. 2n—1  2n-1

Ris:X;S'n 5 6; sin 5 Oy

n—=

k

1 2n—1 2n—1
=§§1[cos 5 (6; — 65) — cos > (9,-+9S)}
n=

1 sink(9; —0s)  sink(6; + 65)
4 |sini@ -6 sini; +6y)
_ cos(b; /2) €0S kB; coS(6y/2) COS kb
o €oS 6, — COS 6;

0; 6,
(tan k6; tan EI — tan k0, tan ?)

Using Eq. (3.38), we can conclude that Rjs = 0 for i # 5. For the case i = s, we have

k

k .
Co2n—1 1 1 sin 2k0
R$=§:S|n2 5 05=§§:[l—cos(2n—1)95]=§<k— ZS"W:)
n=1 n=1 ;

As a result, Eq. (3.54) yields

_ 2aGmu(0)sin(9;/2) sin 6,
" pam 2k sin 6, — sin 2k6;)

(s=1,2,3...k (3.55)

Substituting these coefficients into Eq. (3.51), we can find u#((0), i.e.,

k . . -1
O Lagam sin(6; /2) sin 6;
0) = 3.56
u O == o (; 2k sin 6; — sin 2k6; (356)

Thus, the solution for the problem under study is specified by Egs. (3.44)-(3.50), (3.55),
and (3.56).

For example, consider a carbon-epoxy ply with the following parameters: Ef =
250GPa, Gy, = 1GPa, v = 0.6, and k = 4. The distribution of the normalized stresses
in the fibers along the ply is shown in Fig. 3.19, whereas the same distribution of shear
stresses in the matrix is presented in Fig. 3.20. As can be seen, in the vicinity of the crack
in the central fiber, the load carried by this fiber is transmitted by shear through the matrix
to adjacent fibers. At a distance from the end of the fiber, greater than ;, the stress in
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Fig. 3.19. Distribution of normal stresses along the fibers n = 0, 1, 2, 3, 4 for k = 4, E; = 250 GPa, and
Gm = 1GPa.
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Fig. 3.20. Distribution of shear stresses along the fibers for k = 4, Ef = 250 GPa, and G, = 1 GPa.
Numbers of the matrix layers: = - == n=1; N=2=—===n=3]nnnnun n=A4.

the broken fiber becomes close to o, and for ¥ > [;, the fiber behaves as if there is no
crack. A portion of the broken fiber corresponding to 0 < X < I; is not fully effective in
resisting the applied load, and I; = I;a is referred to as the fiber ineffective length. Since
the fiber defects are randomly distributed along its length, their influence on the strength
of the ply is minimal if there are no other defects in the central and its adjacent fibers
within distance /; from the crack. To minimize the probability of such defects, we should
minimize [;, which depends on fiber and matrix stiffnesses and material microstructure.
To evaluate /;, consider Eq. (3.47) and assume that o (x) becomes close to o if

el = k
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where k is some small parameter indicating how close o (X) should be to o to neglect the
difference between them (as a matter of fact, this difference vanishes only for x — 00).
Taking approximately A, = 2u in accordance with Eq. (3.41) and using Eqg. (3.28)
specifying ., we arrive at

- 1 Ex
liZ—EInk' Uf(l—Uf)G—m

For k = 0.01, we get

E
i =23a- |vp(l—vg)—- (3.57)
Gm

For atypical carbon—epoxy ply (see Fig. 3.19) witha = 0.016 mm and vf = 0.6, Eq. (3.57)
yields 0.29 mm.

Thus, for real composites, the length [; is very small, and this explains why a uni-
directional composite demonstrates much higher strength in longitudinal tension than a
dry bundle of fibers (see Table 3.3). Reducing Gn, i.e., the matrix stiffness, we increase
the fiber ineffective length, which becomes infinitely large for G, — 0. This effect is
demonstrated in Fig. 3.21, which corresponds to a material whose matrix shear stiffness is
much lower than that in the foregoing example (see Fig. 3.19). For this case, I; = 50, and
Eq. (3.57) yields /; = 0.8 mm. The distribution of shear stresses in this material is shown
in Fig. 3.22. Experiments with unidirectional glass—epoxy composites (Ef = 86.8 GPa,
vi = 0.68, and a = 0.015) have shown that reduction of the matrix shear modulus from
1.08 GPa (I; = 0.14 mm) to 0.037 GPa (/; = 0.78 mm) results in reduction of longitudinal
tensile strength from 2010 MPa to 1290 MPa, i.e., by 35.8% (Chiao, 1979).

The ineffective length of a fiber in a matrix can be found experimentally by using the
single-fiber fragmentation test. For this test, a fiber is embedded in a matrix, and tensile
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Fig. 3.21. Distribution of normal stresses along the fibres n = 0, 1, 2, 3, 4 for k = 4, E; = 250 GPa, and
Gm = 0.125GPa.
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Fig. 3.22. Distribution of shear stresses along the fibers for k = 4, Ef = 250GPa, and G, = 0.125GPa.
Numbers of the matrix layers: = - == n=1; N=2=m===n =3 annnun n=A4.

load is applied to the fiber through the matrix until the fiber breaks. Further loading results
in fiber fragmentation, and the length of the fiber fragment that no longer breaks is the fiber
ineffective length. For a carbon fiber in epoxy matrix, /; = 0.3 mm (Fukuda et al., 1993).

According to the foregoing reasoning, it looks as though the stiffness of the matrix
should be as high as possible. However, there exists an upper limit of this stiffness.
Comparing Figs. 3.20 and 3.22, we can see that the higher the value of G, the higher is
the shear stress concentration in the matrix in the vicinity of the crack. If the maximum
shear stress, tm, acting in the matrix reaches its ultimate value, T, delamination will
occur between the matrix layer and the fiber, and the matrix will not transfer the load
from the broken fiber to the adjacent ones. This maximum shear stress depends on the
fiber stiffness — the lower the fiber modulus, the higher the value of zy,. This is shown
in Figs. 3.23 and 3.24, where shear stress distributions are presented for aramid fibers
(Es = 150 GPa) and glass fibers (Es = 90 GPa), respectively.

y
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Fig. 3.23. Distribution of shear stresses along the fibers for k = 4, Es = 150 GPa, and Gy, = 1 GPa. Numbers
of the matrix layers: = - = . = n=1 N=2=m—==p=3snnnnn n=4.



Chapter 3. Mechanics of a unidirectional ply 83

7,/0

-0.02
-0.04
—-0.06
-0.08

-0.1
-0.12

-0.14 X
0O 5 10 15 20 25 30 35 40 45 50

Fig. 3.24. Distribution of shear stresses along the fibers for k = 4, Es = 90GPa, and G, = 1 GPa. Numbers
of the matrix layers: = - = = n=1 N=2m===n=23]annnnn n=4a.

Finally, it should be emphasized that the plane model of a ply, considered in this section
(see Fig. 3.15), provides only qualitative results concerning fibers and matrix interaction.
In real materials, a broken fiber is surrounded by more than two fibers (at least 5 or 6,
as can be seen in Fig. 3.2), so the stress concentration in these fibers and in the matrix
is much lower than would be predicted by the foregoing analysis. For a hexagonal fiber
distribution (see Fig. 3.4), the stress concentration factor for the fibers does not exceed
1.105 (Tikhomirov and Yushanov, 1980). The effect of fiber breakage on tensile strength
of unidirectional composites has been studied by Abu-Farsakh et al. (2000).

3.2.4. Fracture toughness

Fracture toughness is a very important characteristic of a structural material indicating
resistance of a material to cracks and governed by the work needed to destroy a material
(work of fracture). It is well known that there exist brittle and ductile metal alloys, whose
typical stress—strain diagrams are shown in Fig. 3.25. Comparing alloys with one and
the same basic metal (e.g., steel alloys) we can see that while brittle alloys have higher
strength, &, ductile alloys have higher ultimate elongation, g, and, as a result, higher work
of fracture that is proportional to the area under the stress—strain diagram. Though brittle
materials have, in general, higher strength, they are sensitive to cracks that, by propagating,
can cause material failure for a stress that is much lower than the static strength. That is why
design engineers usually prefer ductile materials with lower strength but higher fracture
toughness. A typical dependence of fracture toughness on static strength for metals is
shown in Fig. 3.26 (line 1). For composites, this dependence is entirely different (line 2) —
a higher static strength corresponds usually to higher fracture toughness (Mileiko, 1982).
This phenomenon is demonstrated for a unidirectional boron-aluminum composite in
Fig. 3.27 (Mileiko, 1982). As can be seen, an increase in fiber volume fraction, v¢, results
not only in higher static strength along the fibers (line 1), which is quite natural; it is also
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Fig. 3.25. Typical stress—strain diagrams of brittle (1) and ductile (2) metal alloys.
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Fig. 3.26. Typical relations between fracture toughness (K) and strength (o) for metals (1) and composites (2).

accompanied by an increase in the work of fracture (curve 2) and, consequently, in an
increase in the material fatigue strength (bending under 106 cycles, line 3), which shows
a material’s sensitivity to cracks.

The reason for such a specific behavior in composite materials is associated with their
inhomogeneous microstructure, particularly, with fiber—-matrix interfaces that restrain free
propagation of a crack (see Fig. 3.28). Of some importance are also fiber defects, local
delaminations and fiber strength deviation, which reduce the static strength but increase
the fracture toughness. As a result, by combining brittle fibers and brittle matrix, we
usually arrive at a composite material whose fracture toughness is higher than that of its
components.

Thus, we can conclude that composites comprise a new class of structural materials that
are entirely different from traditional man-made materials for several reasons. Firstly, using
thin fibers we make an attempt to utilize the high strength capacity that is naturally inherent
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Fig. 3.27. Dependence of static strength (1), work of fracture (2), and fatigue strength (3) on fiber volume
fraction for a boron-aluminum composite material.
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Fig. 3.28. Mechanism of the crack stopping at the fiber-matrix interface.

in all the materials. Secondly, this utilization is provided by the matrix material, which
increases the fiber performance and makes it possible to manufacture composite structures.
Thirdly, combination of fibers and matrices can result in new qualities of composite
materials that are not inherent either in individual fibers or in the matrices, and are not
described by the laws of mechanical mixtures. For example, as noted above, brittle fiber
and matrix materials, both having low fracture toughness, can provide a heterogeneous
composite material with high fracture toughness.
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3.3. Micromechanics of a ply

Consider a unidirectional composite ply under the action of in-plane normal and shear
stresses as in Fig. 3.29. Since the normal stresses do not change the right angle between
axes 1 and 2, and shear stresses do not cause elongations in the longitudinal and transverse
directions 1 and 2, the ply is orthotropic, and the corresponding constitutive equations,
Egs. (2.48) and (2.53), yield for the case under study

o1 09
£ = — — V2 —
1=z 12
09 o1
&) = — — V1 — 3.58
2= ~Vag (3.58)
1
V2 = —T12
G2

The inverse form of these equations is

= E1(e1 + v12€2)

02 = Ez(e2 + va1€1) (3.59)
712 = G12Y12
where
— Eip
Ei1p0=—7""—
1— v

and the following symmetry condition is valid

E1vip = Eovpt (3.60)
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Fig. 3.29. A unidirectional ply under in-plane loading.
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The constitutive equations, Egs. (3.58) and (3.59), include effective or apparent longitudi-
nal, E1, transverse, E3, and shear, G12, moduli of a ply and Poisson’s ratios vi2 and vy1,
only one of which is independent, since the second one can be found from Eq. (3.60).

The elastic constants, E1, E2, G12, and vi or vp1, are governed by fibers and matrix
properties and the ply microstructure, i.e., the shape and size of the fibers’ cross-sections,
fiber volume fraction, distribution of fibers in the ply, etc. The task of micromechanics is
to derive the corresponding governing relationships, i.e., to establish the relation between
the properties of a unidirectional ply and those of its constituents.

To achieve this, we should first know the mechanical characteristics of the fibers and
the matrix material of the ply. To determine the matrix modulus, En, its Poisson’s ratio,
vm, and strength, o, conventional material testing specimens and testing procedures can
be used (see Figs. 3.30 and 3.31). The shear modulus, G, can be calculated with the
aid of Eq. (2.57). To find the fibers’ properties is a more complicated problem. There
exist several methods to test elementary fibers by bending or stretching 10-30-mm-long

Fig. 3.30. Specimens of matrix material.

Fig. 3.31. Testing of the matrix specimen.
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fiber segments. All of them are rather specific because of the small (about 0.01 mm) fiber
diameter, and, what is more important, the fiber properties in a composite material can be
different from those of individual fibers (see Section 3.2.3) with the preassigned lengths
provided by these methods.

It is worth knowing a fiber’s actual modulus and strength, not only for micromechanics
but also to check the fiber’s quality before they are used to fabricate a composite part.
For this purpose, a simple and reliable method has been developed to test the fibers in
simulated actual conditions. According to this method, a fine tow or an assembly of fibers
is carefully impregnated with resin, slightly stretched to avoid fiber waviness and cured
to provide a specimen of the so-called microcomposite material. The microcomposite
strand is wrapped over two discs as in Fig. 3.32, or fixed in special friction grips as in
Fig. 3.33, and tested under tension to determine the ultimate tensile force F and strain ¢
corresponding to some force F < F. Then, the resin is removed by burning it out, and the
mass of fibers being divided by the strand length and fiber density yields the cross-sectional
area of fibers in the strand, As. Fiber strength and modulus can be calculated as

Fig. 3.32. Testing of a microcomposite specimen wrapped over discs.
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Fig. 3.33. Testing of a microcomposite specimen gripped at the ends.

In addition to fiber and matrix mechanical properties, micromechanical analysis requires
information about the ply microstructure. Depending on the level of this information, there
exist micromechanical models of different levels of complexity.

The simplest or zero-order model of a ply is a monotropic model ignoring the strength
and stiffness of the matrix and assuming that the ply works only in the fiber direction.
Taking E; = 0 and G12 = 0 in Egs. (3.59) and putting vi = 0 in accordance with
Eq. (3.60), we arrive at the following equations describing this model

o1 =Eie1, 02=0, 7112=0 (3.61)

in which E1 = Efvs. Being very simple and too approximate to be used in the stress—
strain analysis of composite structures, Eqgs. (3.61) are extremely efficient for the design
of optimal composite structures in which the loads are carried mainly by the fibers (see
Chapter 8).

First-order models allow for the matrix stiffness but require only one structural param-
eter to be specified — fiber volume fraction, vs. Since the fiber distribution in the ply is
not important for these models, the ply can be presented as a system of strips shown in
Fig. 3.34 and simulating fibers (shadowed areas) and matrix (light areas). The structural
parameters of the model can be expressed in terms of fiber and matrix volume fractions
only, i.e.,

a—fZUf, a—mzvm, vf+vm =1 (3.62)
a a
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Fig. 3.34. First-order model of a unidirectional ply.

Suppose that the model ply is under in-plane loading with some effective stresses o1, o2,
and 12 as in Fig. 3.34, and find the corresponding effective elastic constants E1, E2, G12,
v12, and vp1 entering Egs. (3.58). Constitutive equations for isotropic fiber and matrix
strips can be written as

1
eimz (0{’ — Vfmoy’ )
Ef,m ’
f,m 1 f,m f.m
gy = —— (0, —vEmoy (3.63)
Ef,m
f.m _ 1 f.m
Yig = Gim T12

Here, f and m indices correspond, as stated earlier, to fibers and matrices, respectively.

Let us make some assumptions concerning the model behavior. First, it is natural to
assume that effective stress resultant o1a is distributed between fiber and matrix strips
and that the longitudinal strains of these strips are the same as the effective (apparent)
longitudinal strain of the ply, e1, i.e.,

o1a = olfaf + o1"am (3.64)

8{ - (3.65)

Second, as can be seen in Fig. 3.34, under transverse tension, the stresses in the strips are
the same and equal to the effective stress o, whereas the ply elongation in the transverse
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direction is the sum of the fiber and matrix strips’ elongations, i.e.,
sz = o = o (3.66)
Aa = Aas + Aam (3.67)
Introducing transverse strains

Aa £ Aas m  Aam
82 = —, 82 = —, 82 frd
a as am

we can write Eq. (3.67) in the following form
goa = sgaf +&f'am (3.68)
The same assumptions can be made for shear stresses and strains, so that
Tl =T = 1 (3.69)
y12a = yioat + y{3am (3.70)

With due regard to Egs. (3.65), (3.66), and (3.69), constitutive equations, Egs. (3.63) can
be reduced to

1 1
ev= g (f —wor). er= 5 (ol = vnoo) &7
1 1
f f
52 — E_f <O’2 — UfO’l>, grzn = _Em (0'2 — l)mO']_m) (372)
1 1
f
V12 = G—fl’lz, y{g = Gm 712 (373)

The first two equations, Egs. (3.71), allow us to find longitudinal stresses, i.e.,
O’]f_ = Ete1 +vio2, 0] = Emé1+ vmo2 (3.74)
Equilibrium equation, Eqg. (3.64), can be rearranged with the aid of Egs. (3.62) to the form
o1 = crlf vt + 01" vm (3.75)

Substituting Egs. (3.74) into this equation, we can express g1 in terms of o1 and o».
Combining this result with the first constitutive equation in Egs. (3.58), we arrive at

E1 = Efvi + Eqvm (3.76)

V12 VfVf + UmUm

V2 _ (3.77)
E> Esvi + Emum
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The first of these equations specifies the apparent longitudinal modulus of the ply and
corresponds to the so-called rule of mixtures, according to which the property of a com-
posite can be calculated as the sum of its constituent material properties, multiplied by
the corresponding volume fractions.

Now consider Eq. (3.67), which can be written as

& = 8£Uf +&5'vm
Substituting strains a£ and &' from Egs. (3.72), stresses alf and o" from Eqgs. (3.74),
and g1 from Eqgs. (3.58) with due regard to Eqgs. (3.76) and (3.77), we can express ¢ in
terms of o1 and 0. Comparing this expression with the second constitutive equation in
Egs. (3.58), we get

1 v vm  vium(Efvm — Emvs)?

—_— =4 — - (3.78)

E; Ef  Em  EfEm(Efve + Emum)

@ i + VmUm (3 79)

Eq Esvi + Emum '
Using Egs. (3.76) and (3.79), we have

V21 = VfUf + UmUm (3.80)

This result corresponds to the rule of mixtures. The second Poisson’s ratio can be found
from Eqgs. (3.77) and (3.78). Finally, Egs. (3.58), (3.70), and (3.73) yield the apparent
shear modulus

1 vf Um
Gi12 Gy - Gm (3.81)
This expression can be derived from the rule of mixtures if we use compliance coefficients
instead of stiffnesses, as in Eq. (3.76).
Since the fiber modulus is typically many times greater than the matrix modulus,
Egs. (3.76), (3.78), and (3.81) can be simplified, neglecting small terms, and presented in
the following approximate form

E1 = Efvs, E2= Lz G2 = Gm
Um (1 - vm) Um

Only two of the foregoing expressions, namely Eq. (3.76) for E1 and Eq. (3.80) for vo1,
both following from the rule of mixtures, demonstrate good agreement with experimen-
tal results. Moreover, expressions analogous to Egs. (3.76) and (3.80) follow practically
from the numerous studies based on different micromechanical models. Comparison of
predicted and experimental results is presented in Figs. 3.35-3.37, where theoretical
dependencies of normalized moduli on the fiber volume fraction are shown with lines.
The dots correspond to the test data for epoxy composites reinforced with different fibers
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Fig. 3.35. Dependence of the normalized longitudinal modulus on fiber volume fraction. — — — zero-order
model, Egs. (3.61); first-order model, Egs. (3.76); @ experimental data.
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Fig. 3.36. Dependence of the normalized transverse modulus on fiber volume fraction. first-order model,
Eq. (3.78); «oeeeeee second-order model, Eq. (3.89); — - — higher-order model (elasticity solution) (Van Fo Fy,
1966); - — — the upper bound; @ experimental data.
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Fig. 3.37. Dependence of the normalized in-plane shear modulus on fiber volume fraction. first-order
model, Eqg. (3.81); oo second-order model, Eg. (3.90); —-— higher-order model (elasticity solution)
(Van Fo Fy, 1966); @ experimental data.

that have been measured by the authors or taken from publications of Tarnopol’skii and
Roze (1969), Kondo and Aoki (1982), and Lee et al. (1995). As can be seen in Fig. 3.35,
not only the first-order model, Eq. (3.76), but also the zero-order model, Egs. (3.61),
provide fair predictions for E1, whereas Figs. 3.36 and 3.37 for E» and G12 call for
an improvement to the first-order model (the corresponding results are shown with solid
lines).

Second-order models allow for the fiber shape and distribution, but, in contrast to
higher-order models, ignore the complicated stressed state in the fibers and matrix under
loading of the ply as shown in Fig. 3.29. To demonstrate this approach, consider a layer-
wise fiber distribution (see Fig. 3.5) and assume that the fibers are absolutely rigid and
the matrix is in the simplest uniaxial stressed state under transverse tension. The typical
element of this model is shown in Fig. 3.38, from which we can obtain the following
equation

7 R? TR
_ _ 3.82
= %Ra " 2a (3.82)

Since 2R < a, v < m/4 = 0.785. The equilibrium condition yields

R
2Ro7 =/ omdxs (3.83)
—R



Chapter 3. Mechanics of a unidirectional ply 95

X3

-— - —
@ N\ :

- F------ | —
o 1

- 3 P —
R p I SN .
’ 1

624— A k 2- X2 E—>0'2

- 1 —
1

-— :—>
o i

-— -
|
a Aa

Fig. 3.38. Microstructural model of the second order.

where x3 = Rcosa and oy is some average transverse stress that induces average strain

& = Aa (3.84)
a

such that the effective (apparent) transverse modulus is calculated as

E, =22 (3.85)
&2

The strain in the matrix can be determined with the aid of Fig. 3.38 and Eq. (3.84), i.e.,

A A
Sm = l—a = 2: - = 82 (386)
() a— sino 1—1 /1—(x3/R)2
where, in accordance with Eq. (3.82),
2R 4
PP . (3.87)
a T

Assuming that there is no strain in the matrix in the fiber direction and there is no stress
in the matrix in the x3 direction, we have

o = Lmém (3.88)

- 2
1-v5
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Substituting o> from Eq. (3.85) and oy, from Eq. (3.88) into Eq. (3.83) and using Eq. (3.86)
to express em, We arrive at

E R d
Ey = m / X3

ZR(l_V%) R 1—A,/1—x§

Calculating the integral and taking into account Eq. (3.87), we finally get

_ TCEmr()\.)
Fa= 2vs (1 —v3) (3.89)

where

) = 1 tan-1 1+12 =m
ez Vi-a 3

Similar derivation for an in-plane shear yields

Gm

G om
2= 2v¢

r(}) (3.90)
The dependencies of E» and G172 on the fiber volume fraction corresponding to Egs. (3.89)
and (3.90) are shown in Figs. 3.36 and 3.37 (dotted lines). As can be seen, the second-
order model of a ply provides better agreement with the experimental results than the
first-order model. This agreement can be further improved if we take a more realistic
microstructure of the material. Consider the actual microstructure shown in Fig. 3.2 and
single out a typical square element with size a as in Fig. 3.39. The dimension « should
provide the same fiber volume fraction for the element as for the material under study.
To calculate E», we divide the element into a system of thin (h < a) strips parallel to

AU

/ X,
j@ . L

. 2

S :
" LJ\@/

Fig. 3.39. Typical structural element.
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axis xz. The ith strip is shown in Fig. 3.39. For each strip, we measure the lengths, jj,
of the matrix elements, the jth of which is shown in Fig. 3.39. Then, equations analogous
to Egs. (3.83), (3.88), and (3.86) take the form

. Em 20
o2a=nh E U(’) O’rg) = —1 5 ﬁ,ﬁ), r(ﬁ) -
Z ij

and the final result is

-1

Emh
=1L Z

where & = h/a, Zi,- = ljj/a. The second-order models considered above can be readily
generalized to account for the fiber transverse stiffness and matrix nonlinearity.

Numerous higher-order microstructural models and descriptive approaches have been
proposed, including
e analytical solutions in the problems of elasticity for an isotropic matrix having regular

inclusions — fibers or periodically spaced groups of fibers,

e numerical (finite element, finite difference methods) stress analysis of the matrix in the
vicinity of fibers,

e averaging of stress and strain fields for a media filled in with regularly or randomly
distributed fibers,

e asymptotic solutions of elasticity equations for inhomogeneous solids characterized by

a small microstructural parameter (fiber diameter),

e photoelasticity methods.

Exact elasticity solution for a periodical system of fibers embedded in an isotropic matrix
(Van Fo Fy (Vanin), 1966) is shown in Figs. 3.36 and 3.37. As can be seen, due to the
high scatter in experimental data, the higher-order model does not demonstrate significant
advantages with respect to elementary models.

Moreover, all the micromechanical models can hardly be used for practical analysis of
composite materials and structures. The reason for this is that irrespective of how rigorous
the micromechanical model is, it cannot describe sufficiently adequately real material
microstructure governed by a particular manufacturing process, taking into account voids,
microcracks, randomly damaged or misaligned fibers, and many other effects that cannot
be formally reflected in a mathematical model. As a result of this, micromechanical
models are mostly used for qualitative analysis, providing us with the understanding of
how material microstructural parameters affect the mechanical properties rather than with
quantitative information about these properties. Particularly, the foregoing analysis should
result in two main conclusions. First, the ply stiffness along the fibers is governed by the
fibers and linearly depends on the fiber volume fraction. Second, the ply stiffness across
the fibers and in shear is determined not only by the matrix (which is natural), but by the
fibers as well. Although the fibers do not take directly the load applied in the transverse
direction, they significantly increase the ply transverse stiffness (in comparison with the
stiffness of a pure matrix) acting as rigid inclusions in the matrix. Indeed, as can be seen
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in Fig. 3.34, the higher the fiber fraction, as, the lower the matrix fraction, am, for the
same a, and the higher stress o should be applied to the ply to cause the same transverse
strain g2 because only matrix strips are deformable in the transverse direction.

Due to the aforementioned limitations of micromechanics, only the basic models were
considered above. Historical overview of micromechanical approaches and more detailed
description of the corresponding results can be found elsewhere (Bogdanovich and Pastore,
1996; Jones, 1999).

To analyze the foregoing micromechanical models, we used the traditional approach
based on direct derivation and solution of the system of equilibrium, constitutive, and
strain—displacement equations. Alternatively, the same problems can be solved with the aid
of variational principles discussed in Section 2.11. In their application to micromechanics,
these principles allow us not only to determine the apparent stiffnesses of the ply, but also
to establish the upper and the lower bounds on them.

Consider, for example, the problem of transverse tension of a ply under the action of
some average stress o2 (see Fig. 3.29) and apply the principle of minimum strain energy
(see Section 2.11.2). According to this principle, the actual stress field provides the value
of the body strain energy, which is equal to or less than that of any statically admissible
stress field. Equality takes place only if the admissible stress state coincides with the
actual one. Excluding this case, i.e., assuming that the class of admissible fields under
study does not contain the actual field, we can write the following strict inequality

wadm - yact (3.91)

For the problem of transverse tension, the fibers can be treated as absolutely rigid, and
only the matrix strain energy needs to be taken into account. We can also neglect the
energy of shear strain and consider the energy corresponding to normal strains only. With
due regard to these assumptions, we use Egs. (2.51) and (2.52) to get

W= /V / / UdVim (3.92)

where Vp, is the volume of the matrix, and

1
U= E(alme[” + 03¢y +03'€5') (3.93)

To find energy W, entering inequality (3.91), we should express strains in terms of stresses
with the aid of constitutive equations, i.e.,

1
e = (of" = vmo = vmo)
Em
1
ey = —(03" — vmoy" — vmo3") (3.94)
Em
m 1 m m m
&3 = —(03" — vmo1" — vmoy")

Em



Chapter 3. Mechanics of a unidirectional ply 99

Consider first the actual stress state. Let the ply in Fig. 3.29 be loaded with stress o>
inducing apparent strain g2 such that

02

= 5 (3.95)

&2

Here, Eg‘Ct is the actual apparent modulus, which is not known. With due regard to
Egs. (3.92) and (3.93) we get

(3.96)

where V is the volume of the material. As an admissible field, we can take any state of
stress that satisfies the equilibrium equations and force boundary conditions. Using the
simplest first-order model shown in Fig. 3.34, we assume that

m m m
o1 =03 =0, 0oy =02

Then, Egs. (3.92)—(3.94) yield

adm 022
W = —=YV, 3.97

Substituting Egs. (3.96) and (3.97) into the inequality (3.91), we arrive at
E > E)

where, in accordance with Egs. (3.62) and Fig. 3.34,

£l = EnV _ Em
Vi Um
This result, specifying the lower bound on the apparent transverse modulus, follows from
Eq. (3.78) if we put Ef — oo. Thus, the lower (solid) line in Fig. 3.36 represents actually
the lower bound on Ej.

To derive the expression for the upper bound, we should use the principle of minimum
total potential energy (see Section 2.11.1), according to which (we again assume that the
admissible field does not include the actual state)

Tadm > Tact (398)

where T = W, — A. Here, W, is determined with Eq. (3.92), in which stresses are
expressed in terms of strains with the aid of Eqgs. (3.94), and A, for the problem under
study, is the product of the force acting on the ply and the ply extension induced by this
force. Since the force is the resultant of stress o2 (see Fig. 3.29), which induces strain >,
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and same for actual and admissible states, A is also the same for both states, and we can
present inequality (3.98) as

wadm . yact (3.99)
For the actual state, we can write equations similar to Egs. (3.96), i.e.,
1 act __ 1 act 2
W= 5(7282‘/, W, 2E 5V (3.100)

in which V = 2Ra in accordance with Fig. 3.38. For the admissible state, we use the
second-order model (see Fig. 3.38) and assume that

where e, is the matrix strain specified by Eq. (3.86). Then, Egs. (3.94) yield

Ene
o] =pmoy, 03 =umoy., 03 = % (3.101)
where
s = vm(1+ vm)
o= =T Im)
1—v3

Substituting Egs. (3.101) into Eq. (3.93) and performing integration in accordance with
Eq. (3.92), we have

pyadm _ _ Emej / ds / #rdxp _ mRaEmefr() (3.102)

¢ 1—2vmum 2 va (1= 2vmpm)
Here,
x3\2
y=1-x/1- (R)

and r(A) is given above; see also Eq. (3.89). Applying Egs. (3.100) and (3.102) in
conjunction with inequality (3.99), we arrive at

act u
ES < E}
where

u _ T[Em
27 2ue(L1 — 2vmptm)

is the upper bound on E> shown in Fig. 3.36 with a dashed curve.



Chapter 3. Mechanics of a unidirectional ply 101

Taking statically and kinematically admissible stress and strain fields that are closer to
the actual states of stress and strain, one can increase E5 and decrease E%, making the
difference between the bounds smaller (Hashin and Rosen, 1964).

It should be emphasized that the bounds established thus are not the bounds imposed
on the modulus of a real composite material but on the result of calculation corresponding
to the accepted material model. Indeed, we can return to the first-order model shown in
Fig. 3.34 and consider in-plane shear with stress t12. As can be readily proved, the actual
stress—strain state of the matrix in this case is characterized with the following stresses
and strains

m m m m 3 73

o' =0y =03 =0, T1,=112, T3=73=0, (3.103)
B 3=723=0 |

g =& =863 =0, yp=v12, V3=V =

Assuming that the fibers are absolutely rigid and considering stresses and strains in
Eqgs. (3.103) as statically and kinematically admissible, we can readily find that

G} =Gl = Gip = f_:
Thus, we have found the exact solution, but its agreement with experimental data is rather
poor (see Fig. 3.37) because the material model is not sufficiently adequate.

As follows from the foregoing discussion, micromechanical analysis provides only
qualitative prediction of the ply stiffness. The same is true for ply strength. Although
the micromechanical approach, in principle, can be used for strength analysis (Skudra
et al., 1989), it provides mainly better understanding of the failure mechanism rather
than the values of the ultimate stresses for typical loading cases. For practical appli-
cations, these stresses are determined by experimental methods described in the next
section.

3.4. Mechanical properties of a ply under tension, shear, and compression

As is shown in Fig. 3.29, a ply can experience five types of elementary loading, i.e.,
tension along the fibers,
tension across the fibers,
in-plane shear,
compression along the fibers,
compression across the fibers.
Actual mechanical properties of a ply under these loading cases are determined experi-
mentally by testing specially fabricated specimens. Since the thickness of an elementary
ply is very small (0.1-0.02 mm), the specimen usually consists of tens of plies having the
same fiber orientations.

Mechanical properties of composite materials depend on the processing method and
parameters. So, to obtain the adequate material characteristics that can be used for analysis
of structural elements, the specimens should be fabricated by the same processes that are
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Table 3.5
Typical properties of unidirectional composites.

Property Glass— Carbon- Carbon- Aramid— Boron- Boron- Carbon—- Al,03—
epoxy epoxy PEEK epoxy epoxy Al Carbon Al

Fiber volume fraction, vs 0.65 0.62 0.61 0.6 0.5 0.5 0.6 0.6

Density, p (g/cm3) 2.1 1.55 1.6 1.32 2.1 2.65 1.75 3.45

Longitudinal modulus, 60 140 140 95 210 260 170 260

E; (GPa)

Transverse modulus, E; 13 11 10 5.1 19 140 19 150

(GPa)

Shear modulus, G12 3.4 55 5.1 1.8 4.8 60 9 60

(GPa)

Poisson’s ratio, vp1 0.3 0.27 0.3 0.34 0.21 0.3 0.3 0.24

Longitudinal tensile 1800 2000 2100 2500 1300 1300 340 700

strength, &7 (MPa)
Longitudinal compressive 650 1200 1200 300 2000 2000 180 3400
strength, 5, (MPa)

Transverse tensile 40 50 75 30 70 140 7 190
strength, &5 (MPa)

Transverse compressive 90 170 250 130 300 300 50 400
strength, 7, (MPa)

In-plane shear strength, 50 70 160 30 80 90 30 120
712 (MPa)

used to manufacture the structural elements. In connection with this, there exist two
standard types of specimens — flat ones that are used to test materials made by hand or
machine lay-up and cylindrical (tubular or ring) specimens that represent materials made
by winding.

Typical mechanical properties of unidirectional advanced composites are presented in
Table 3.5 and in Figs. 3.40-3.43. More data relevant to the various types of particular
composite materials could be found in Peters (1998).

We now consider typical loading cases.

3.4.1. Longitudinal tension

Stiffness and strength of unidirectional composites under longitudinal tension are deter-
mined by the fibers. As follows from Fig. 3.35, material stiffness linearly increases with
increase in the fiber volume fraction. The same law following from Eq. (3.75) is valid for
the material strength. If the fiber’s ultimate elongation, &z, is less than that of the matrix
(which is normally the case), the longitudinal tensile strength is determined as

Ef = (Efvi + Emvm)est (3.104)

However, in contrast to Eq. (3.76) for E1, this equation is not valid for very small and very
high fiber volume fractions. The dependence of Ef on vs is shown in Fig. 3.44. For very
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Fig. 3.40. Stress—strain curves for unidirectional glass—epoxy composite material under longitudinal tension and
compression (a), transverse tension and compression (b), and in-plane shear (b).

&3 71 %

low vg, the fibers do not restrain the matrix deformation. Being stretched by the matrix,
the fibers fail because their ultimate elongation is less than that of the matrix and the
induced stress concentration in the matrix can reduce material strength below the strength
of the matrix (point B). Line BC in Fig. 3.44 corresponds to Eq. (3.104). At point C, the
amount of the matrix reduces below the level necessary for a monolithic material, and the
material strength at point D approximately corresponds to the strength of a dry bundle
of fibers, which is less than the strength of a composite bundle of fibers bound with the
matrix (see Table 3.3).

Strength and stiffness under longitudinal tension are determined using unidirectional
strips or rings. The strips are cut out of unidirectionally reinforced plates, and their ends
are made thicker (usually glass—epoxy tabs are bonded onto the ends) to avoid specimen
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Fig. 3.41. Stress—strain curves for unidirectional carbon-epoxy composite material under longitudinal tension
and compression (a), transverse tension and compression (b), and in-plane shear (b).

failure in the grips of the testing machine (Jones, 1999; Lagace, 1985). Rings are cut
out of a circumferentially wound cylinder or wound individually on a special mandrel, as
shown in Fig. 3.45. The strips are tested using traditional approaches, whereas the rings
should be loaded with internal pressure. There exist several methods to apply the pressure
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Fig. 3.42. Stress—strain curves for unidirectional aramid—epoxy composite material under longitudinal tension
and compression (a), transverse tension and compression (b), and in-plane shear (b).

(Tarnopol’skii and Kincis, 1985), the simplest of which involves the use of mechanical
fixtures with various numbers of sectors as in Figs. 3.46 and 3.47. The failure mode is
shown in Fig. 3.48. Longitudinal tension yields the following mechanical properties of the
material

¢ longitudinal modulus, E1,

o longitudinal tensile strength, &7,

e Poisson’s ratio, vo1.
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Fig. 3.43. Stress—strain curves for unidirectional boron-epoxy composite material under longitudinal tension

and compression (a), transverse tension and compression (b), and in-plane shear (b).

Typical values of these characteristics for composites with various fibers and matrices are
listed in Table 3.5. It follows from Figs. 3.40-3.43, that the stress—strain diagrams are
linear practically up to failure.

3.4.2. Transverse tension

There are three possible modes of material failure under transverse tension with stress
o shown in Fig. 3.49 — failure of the fiber-matrix interface (adhesion failure), failure
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Fig. 3.44. Dependence of normalized longitudinal strength on fiber volume fraction (O — experimental results).

Fig. 3.45. A mandrel for test rings.
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Fig. 3.46. Two-, four-, and eight-sector test fixtures for composite rings.

Fig. 3.47. A composite ring on a eight-sector test fixture.

Fig. 3.48. Failure modes of unidirectional rings.
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Fig. 3.49. Modes of failure under transverse tension: 1 — adhesion failure; 2 — cohesion failure; 3 — fiber failure.

of the matrix (cohesion failure), and fiber failure. The last failure mode is specific for
composites with aramid fibers, which consist of thin filaments (fibrils) and have low
transverse strength. As follows from the micromechanical analysis (Section 3.3), material
stiffness under tension across the fibers is higher than that of a pure matrix (see Fig. 3.36).

For qualitative analysis of transverse strength, consider again the second-order model in
Fig. 3.38. As can be seen, the stress distribution o, (x3) is not uniform, and the maximum
stress in the matrix corresponds to o« = 90°. Using Eqgs. (3.85), (3.86), and (3.88), we
obtain

omax _ Ema?
m (1—v3)E21— 1)

Taking op® =omand oy = E{, where & and E{ are the ultimate stresses for the matrix
and composite material, respectively, and substituting for A and E» their expressions in
accordance with Eqgs. (3.87) and (3.89), we arrive at

A
E; = Emrz(—vf)(n — 4dvy) (3.105)

The variation of the ratio Ej/Em for epoxy composites is shown in Fig. 3.50. As can be
seen, the transverse strength of a unidirectional material is considerably lower than the
strength of the matrix. It should be noted that for the first-order model, which ignores the
shape of the fiber cross sections (see Fig. 3.34), E; is equal to o . Thus, the reduction
of E; is caused by stress concentration in the matrix induced by cylindrical fibers.
However, both polymeric and metal matrices exhibit, as follows from Figs. 1.11 and
1.14, elastic—plastic behavior, and it is known that plastic deformation reduces the effect of
stress concentration. Nevertheless, the stress—strain diagrams E;—sz, shown in Figs. 3.40-
3.43, are linear up to the failure point. To explain this phenomenon, consider element A
of the matrix located in the vicinity of a fiber as in Fig. 3.38. Assuming that the fiber is
absolutely rigid, we can conclude that the matrix strains in directions 1 and 3 are close to
zero. Taking " = ¢5' = 0 in Eqgs. (3.94), we arrive at Eqs. (3.101) for stresses, according
to which of" = 03" = umoy". The dependence of parameter 1y, on the matrix Poisson’s
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Fig. 3.50. Dependence of material strength under transverse tension on fiber volume fraction:
( ) Eg. (3.105); (@) experimental data.

ratio is presented in Fig. 3.51. As follows from this figure, in the limiting case vy, = 0.5,
we have um = land of" = 0" = of", i.e., the state of stress under which all the materials
behave as absolutely brittle. For epoxy resin, vy = 0.35 and um = 0.54, which, as can be
supposed, does not allow the resin to demonstrate its rather limited (see Fig. 1.11) plastic
properties.

Strength and stiffness under transverse tension are experimentally determined using
flat strips (see Fig. 3.52) or tubular specimens (see Fig. 3.53). These tests allow us to
determine
e transverse modulus, E>,

e transverse tensile strength, E;
For typical composite materials, these properties are given in Table 3.5.

3.4.3. In-plane shear

The failure modes in unidirectional composites under in-plane pure shear with stress 712
shown in Fig. 3.29 are practically the same as those for the case of transverse tension
(see Fig. 3.49). However, there is a significant difference in material behavior. As follows
from Figs. 3.40-3.43, the stress—strain curves t12—y12 are not linear, and 712 exceeds E;
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Fig. 3.51. Dependence of parameter ., on the matrix Poisson’s ratio.

Fig. 3.52. Test fixture for transverse tension and compression of unidirectional strips.

This means that the fibers do not restrict the free shear deformation of the matrix, and the
stress concentration in the vicinity of the fibers does not significantly influence material
strength because of matrix plastic deformation.

Strength and stiffness under in-plane shear are determined experimentally by testing
plates and thin-walled cylinders. A plate is reinforced at 45° to the loading direction and



Fig. 3.53. Test fixture for transverse tension or compression of unidirectional tubular specimens.
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Fig. 3.54. Simulation of pure shear in a square frame.
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Fig. 3.55. A tubular specimen for shear test.

is fixed in a square frame consisting of four hinged members, as shown in Fig. 3.54.
Simple equilibrium consideration and geometric analysis with the aid of Eq. (2.27) yield
the following equations

m—i V2 =6y — €& G12—E
V2ah’ o Y12

in which £ is the plate thickness. Thus, knowing P and measuring strains in the x and
y directions, we can determine 712> and G12. More accurate and reliable results can be
obtained if we induce pure shear in a twisted tubular specimen reinforced in the circum-
ferential direction (Fig. 3.55). Again, using simple equilibrium and geometric analysis,
we get

M R 712

= —, = —, G = —
mR2n TR l 1 V12

712
Here, M is the torque, R and h are the cylinder radius and thickness, and ¢ is the
twist angle between two cross-sections located at some distance / from each other. Thus,
knowing M and measuring ¢, we can find 712 and G1».

3.4.4. Longitudinal compression

Failure under compression along the fibers can occur in different modes, depending on
the material microstructural parameters, and can hardly be predicted by micromechanical
analysis because of the rather complicated interaction of these modes. Nevertheless, useful
qualitative results allowing us to understand material behavior and, hence, to improve
properties, can be obtained with microstructural models.
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Fig. 3.56. Shear failure under compression.

Consider typical compression failure modes. The usual failure mode under compression
is associated with shear in some oblique plane as in Fig. 3.56. The shear stress can be
calculated using Eg. (2.9), i.e.,

T = 015N COS &

and reaches its maximum value at « = 45°. Shear failure under compression is usually typ-
ical for unidirectional composites that demonstrate the highest strength under longitudinal
compression. On the other hand, materials showing the lowest strength under compres-
sion exhibit a transverse extension failure mode typical of wood compressed along the
fibers, and is shown in Fig. 3.57. This failure is caused by tensile transverse strain, whose
absolute value is

£ = 12161 (3.106)
where vy1 is Poisson’s ratio and &1 = o1/ E1 is the longitudinal strain. Consider Table 3.6,

showing some data taken from Table 3.5 and the results of calculations for epoxy compos-
ites. The fourth column displays the experimental ultimate transverse strains Ej = Eg‘ /E2

0 —> - 0
— -
= = =
— -

Fig. 3.57. Transverse extension failure mode under longitudinal compression.

Table 3.6
Characteristics of epoxy composites.

Material Characteristic

&1 (MPa) g (%) Va1 25 (%) g = Vi8]
Glass—epoxy 600 1.00 0.30 0.31 0.30
Carbon-epoxy 1200 0.86 0.27 0.45 0.23
Aramid-epoxy 300 0.31 0.34 0.59 0.11

Boron—epoxy 2000 0.95 0.21 0.37 0.20
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Fig. 3.58. Dependence of strain concentration factor on the fiber volume fraction.

calculated with the aid of data presented in Table 3.5, whereas the last column shows the
results following from Eq. (3.106). As can be seen, the failure mode associated with
transverse tension under longitudinal compression is not dangerous for the composites
under consideration because E; > g2. However, this is true only for fiber volume frac-
tions v¢ = 0.50—0.65, to which the data presented in Table 3.6 correspond. To see what
happens for higher fiber volume fractions, let us use the second-order micromechanical
model and the corresponding results in Figs. 3.36 and 3.50. We can plot the strain con-
centration factor k. (which is the ratio of the ultimate matrix elongation, gy, to Ej for
the composite material) versus the fiber volume fraction. As can be seen in Fig. 3.58, this
factor, being about 6 for v = 0.6, becomes as high as 25 for vy = 0.75. This means
that Eg“ dramatically decreases for higher v, and the fracture mode shown in Fig. 3.57
becomes quite usual for composites with high fiber volume fractions.

Both fracture modes shown in Figs. 3.56 and 3.57 are accompanied with fibers bending
induced by local buckling of fibers. According to N.F. Dow and B.W. Rosen (Jones, 1999),
there can exist two modes of fiber buckling, as shown in Fig. 3.59 — a shear mode and
a transverse extension mode. To study the fiber’s local buckling (or microbuckling, which
means that the material specimen is straight, whereas the fibers inside the material are
curved), consider a plane model of a unidirectional ply, shown in Figs. 3.15 and 3.60, and
take am = a and as = § = d, where d is the fiber diameter. Then, Egs. (3.17) yield

d _
V= ——) d=
1+d

QX

(3.107)
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Fig. 3.60. Local buckling of fibers in unidirectional ply.

Because of the symmetry conditions, consider two fibers 1 and 2 in Fig. 3.60 and the
matrix between these fibers. The buckling displacement, v, of the fibers can be represented
with a sine function as

v1(x) = Vsini,x, v2(x)=Vsini,(x —c) (3.108)

where V is an unknown amplitude value, the same for all the fibers, 1, = =/l,, [, is
a half of a fiber wavelength (see Fig. 3.60), and ¢ = (a + d)cota is a phase shift.
Taking ¢ = 0, we can describe the shear mode of buckling (Fig. 3.59(a)), whereas ¢ = [,
corresponds to the extension mode (Fig. 3.59(b)). To find the critical value of stress o1, we
use the Timoshenko energy method (Timoshenko and Gere, 1961), yielding the following
buckling condition

A=W (3.109)
Here, A is the work of external forces, and W is the strain energy accumulated in the

material while the fibers undergo buckling. Work A and energy W are calculated for a
typical ply element consisting of two halves of fibers 1 and 2 and the matrix between
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Fig. 3.61. A typical ply element.
them (see Fig. 3.61). The work, A, can be calculated as
A=o1(a+d)d-$ (3.110)

with displacement § following from Fig. 3.62, i.e.,

J 2
5=zn—/ ‘/1+<dﬂ> dx
0 dx

Using conventional assumptions, i.e., taking (dvi/dx) <« 1 and § <« [ and substituting vy
from Egs. (3.108), we arrive at

1 (i /dup\? 1
§== — ) dx=>V2%2
2/0 (dx) . 4V nn

Vi

dvy

dx

Fig. 3.62. Deformation of a fiber.
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Thus, Eg. (3.110) yields

2

A= 0iV2ad1 +3) (3.112)
4l,

Strain energy consists of three parts, i.e.,
W = W + Wy, + Wy, (3.112)

where W is the energy of buckled fibers, whereas Wy, and W, correspond to shear strain
and transverse extension of the matrix that supports the fibers. The strain energy of fibers
deformed in accordance with Egs. (3.108) and shown in Fig. 3.61 has the form

1 In d2vy 2 d2v, 2
=D - -
Wi 2 f/o |:<dx2) +<dx2) dx
where Dy is the fiber bending stiffness. Substituting Egs. (3.108) and calculating the
integrals, we get

754 2

Wi = —DsV 3.113

TR (3.113)

To determine the strain energy of the matrix, we assume that the matrix element shown

in Fig. 3.61 is in a state of plane stress (nonzero stresses are o, oy, and t,,), and the
equilibrium equations, Egs. (2.5), can be written as

do,  OTyy _0 doy,  OTyy

ox 9y dy 0x =0 (3.114)

To simplify the solution, we assume that the longitudinal stress, oy, acting in the matrix
can be neglected in comparison with the corresponding stress acting in the fibers. Thus,
we can set o, = 0. Then, Egs. (3.114) can be integrated and yield

Ty =1(x), oy =o0(x)—1t'(x)y (3.115)

Here, T(x) and o (x) are arbitrary functions of integration and ( )’ = d( )/dx. Neglecting
also the Poisson effects, we can express the strains as follows

T(x) 1 ,
Yxy = G_m’ &y = E_m[a(x) — 7 (x)y] (3116)

which can in turn be expressed in terms of displacements with the aid of Egs. (2.22), i.e.,

Juy  duy duy
oy = —, &y ==
Vey dy ox YT 9y

(3.117)
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Substituting Egs. (3.116) into Egs. (3.117) and integrating, we can determine the
displacements as

- 7 (x) 1 1
Uy —M(x)+[G—m —v'(x )]y— E[U (x)y? — —T "(x)y :|

1 1 / 2
uy =v(x) + E—|:U(X)y - ET (x)y ]
m

Here, u(x) and v(x) are functions of integration that, in addition to the functions z (x) and
o (x), should be found using compatibility conditions at fiber—-matrix interfaces. Using
Fig. 3.63, we can write these conditions in the following form:

d d
ux(y = 0) = _Evl(x)g ux(y = a) = Evz(x)

uy(y =0) =v1(x), uy(y=a)=r2)

Satisfying them, we can find u(x) and v(x) directly as

d .
ux) = ——Vk CoOSAyx, wv(x)=VsIini,x

-
d/2 Pt
l _____/__\‘__________
= \
=y

Vy(X) — x
V1) V2l
V-~ e

— \H
d/2 N7
2 Y =\
d/2 P
—

Fig. 3.63. Compatible fiber—-matrix deformation.
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and derive the following equations for o (x) and 7 (x)

E 1
o(x) = =M yIsin A, (x —¢) —sinA,x]+ Et/(x)a (3.118)
a
a® 2 —
— 1" (x) — —1(x) = =VAi, (L +d)[cOS L, (x — c) + COS A,x] (3.119)
6Em Gm

We need a periodic solution of Eq. (3.119) and can find it in the following form
T(x) = C[cOS A, (x — ¢) + COS Ay x] (3.120)
Substituting into Eq. (3.119) and taking into account that A, = wt/l,,, we have

Gm(l+d) 72a’Gnm
C=V iy - - 7 3.121
20,(1+ ) P 12I2Em ( )

Now, using Egs. (3.115), (3.118), and (3.120), we can write the final expressions for the
stresses acting in the matrix

Tyy = C[COS A, (x — ) + COS Apx]
a Enm . a E,, .
oy =— [Ckn(z — y) — 7Vi| sini,(x —c) — |:C)»,,(§ — y) + 7Vi| SinA,x
(3.122)

in which C is specified with Egs. (3.121). The corresponding strain energies of the typical
element in Fig. 3.61 are

In

I}
s _ ad n 2 e _ Cld 2
™= 2Gm /0 Tl Wn = op fy PO

Substituting Egs. (3.122) and integrating, we arrive at

adl 2
WS = ZGn,: C%(1 4 cos A,c)
adl, [ n2a? E2
We = —"| ——_C%1+cosh =M y2(1 — cos A
m 2Em [ 1213 a+ nC) + 42 ( nC)
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In conjunction with these results, Egs. (3.109), (3.111)—(3.113), and (3.121) allow us to
determine o1, which takes the following final form

" 72 Dy 4 Gm (1 +d) <1 + cos JTE)
1= 5= — = =
Ld(1+d)at  2(1+ (x2Gm/ (127, En))) f
=2
2Emln ( T[E)
1 cos ¢ 3.123
2ra T, (3429

where d = d/a, I, = l,/a, and ¢ = c/a. The critical value of o1 can be found by
minimization of the right-hand part of Eq. (3.123) with respect to /,, and ¢. However,
having in mind only qualitative analysis, we can omit this cumbersome procedure and use
Eg. (3.123) for qualitative assessments and estimates.

As follows from this equation, the strength of a unidirectional composite under lon-
gitudinal compression should increase with an increase in the fiber bending stiffness.
This prediction is definitely supported with experimental data presented in Table 3.6. The
highest strength is demonstrated by composites reinforced with boron fibers that have
relatively high diameter and high modulus, providing very high fiber bending stiffness.
Carbon fibers, also having high modulus but smaller diameter than boron fibers, provide
compressive strength that is 40% lower than that of boron composites, but is twice the
strength of a composite reinforced with glass fibers having the same diameter as that of
carbon fibers, but lower modulus. The lowest strength in compression is demonstrated
by composites with aramid fibers. As was already noted, these fibers, although having
high tensile stiffness, consist of a system of poorly bonded thin filaments and possess low
bending stiffness. As can be seen in Eq. (3.123), compressive strength also increases with
an increase in the matrix stiffness. Available experimental results (Woolstencroft et al.,
1982; Crasto and Kim, 1993) show that the strength of carbon composites in compression
increases linearly, while the matrix shear modulus rises up to G, = 1500 MPa, which
is the value typical for epoxy resins. For higher values of Gp,, the compressive strength
does not change, and we can expect that there exists some maximum value of G, beyond
which the matrix does not allow fibers to buckle, and the material strength is controlled
by the fiber strength in compression. Results listed in Table 3.5 support this conclusion.
As can be seen, changing an epoxy matrix for an aluminum one with higher stiffness,
we do not increase the compressive strength of boron fiber composites. Moreover, by
increasing the matrix stiffness, we usually reduce its ultimate elongation. As a result, the
material can fail under relatively low stress because of delamination (see Fig. 3.57). An
example of such a material can also be found in Table 3.5. Carbon—carbon unidirectional
composites with brittle carbon matrix possessing very high stiffness demonstrate very low
strength under longitudinal compression.

Fracture of actual unidirectional composites occurs usually as a result of interaction of
fracture modes discussed above. Such a fracture is shown in Fig. 3.64. The ultimate stress
depends on material structural and manufacturing parameters, has considerable scatter, and
can hardly be predicted theoretically. For example, the compressive strength of composites
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Fig. 3.64. Failure mode of a unidirectional carbon—epoxy composite under longitudinal compression.

with the same fibers and matrices having the same stiffness but different nature (thermoset
or thermoplastic) can be different (Crasto and Kim, 1993).

The strength of composites under longitudinal compression is determined experimen-
tally using ring or flat specimens and special methods to prevent the specimen buckling
(Tarnopol’skii and Kincis, 1985). The most accurate results are provided by compres-
sion of sandwich specimens with composite facings made from the material under study
(Crasto and Kim, 1993).

3.4.5. Transverse compression

Under compression across the fibers, unidirectional composites exhibit conventional
shear mode of fracture of the type shown in Fig. 3.65. The transverse compression strength
is higher than in-plane shear strength (see Table 3.5) due to two main reasons. Firstly,
the area of the oblique failure plane is larger than the area of the orthogonal longitudinal
ply cross-section in which the ply fails under in-plane shear and, secondly, additional
compression across the oblique failure plane (see Fig. 3.65) increases the shear strength.
Strength under transverse compression is measured using flat or tubular specimens shown
in Figs. 3.52 and 3.53.

—_— -
(ONe) (ONe)

[ O O \/ O O o
(ONe) (ONe)

Fig. 3.65. Failure under transverse compression.
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3.5. Hybrid composites

The foregoing sections of this chapter are concerned with the properties of unidirec-
tional plies reinforced with fibers of a certain type — glass, carbon, aramid, etc. In hybrid
composites, the plies can include fibers of two or may be more types, e.g., carbon and
glass, glass and aramid, and so on. Hybrid composites provide wider opportunities to
control material stiffness, strength, and cost. A promising application of these materials is
associated with the so-called thermostable structures, which do not change their dimen-
sions under heating or cooling. For some composites, e.g., with glass or boron fibers, the
longitudinal coefficient of thermal expansion is positive, whereas for other materials, e.g.,
with carbon or aramid fibers, it is negative (see Table 7.1 and Section 7.1.2 of Chapter 7).
So, the appropriate combination of fibers with positive and negative coefficients can result
in material with zero thermal expansion.

Consider the problem of micromechanics for a unidirectional ply reinforced with two
types of fibers. Naturally, the stiffness of these fibers should be different, and we assume
that Ef(l) > Ef(z). The first-order model of the ply that generalizes the model in Fig. 3.34
is presented in Fig. 3.66. For tension in the fiber direction, the apparent stress and strain,
o1 and g1, are linked by Hooke’s law

o1 = E1e1 (3.124)

in which the effective modulus is specified by the following equation, generalizing
Eqg. (3.76)

Er=EMolY + EPv? + Emom (3.125)

Fig. 3.66. First-order microstructural model of a hybrid unidirectional ply.
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Here, vf(l) and Uf(z) are volume fractions of the fibers of the first and second type, and
vm is the matrix volume fraction, so that

o 0@ 4o =1

We also introduce the total volume fraction of the fibers

vf = v(l) +v

and normalized volume fractions of fibers as
@ (2)
@ _ Y <2>
wf = —
vf vf

Obviously,

wf(l) + wf(z) =1

Then, Eqg. (3.125) can be written in the form

Ey = [EPu + EP (1= wf®) ]+ En - ) (3.126)

The linear dependence of E1 on w(l) predicted by Eq. (3.126) is in good correlation with
the experimental data reported by Zabolotsku and Varshavskii (1984) and is presented in
Fig. 3.67.

Since the fibers of hybrid composites have different stiffness, they are characterized, as
arule, with different ultimate elongations. As follows from Fig. 3.68, plotted with the data
listed in Table 3.5, there exists an inverse linear dependence between the ply longitudinal
modulus and the ultimate elongation g1. So, assuming Ef(l) > Ef(z), we should take

into account that € ‘(1) ﬁz) . This means that Eq. (3.124) is valid for &1 < E#l). Strain
g1 = e#l) is accompanled with the failure of fibers of the first type. The corresponding
part of a possible stress—strain diagram is shown in Fig. 3.69 with the line OA. The stress
at point A is 01(1> = Elgél). After the fibers of the first type fail, the material modulus

reduces to
Ef = E?v (1 — wﬁl)) + Em(1— vf)

This modulus determines the slope of line OC in Fig. 3.69.
1)

Since ET < Ej, the ply experiences a jump in strain under constant stress o1 = o
As follows from Fig. 3.69, the final strain is

0,(1)
* _ 1
&1 =

Ej
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Fig. 3.67. Experimental dependencies of longitudinal modulus on the volume fraction of the higher modulus
fibers in hybrid unidirectional composites: 1 — boron—carbon, 2 — boron-aramid, 3 — boron—glass, 4 — carbon—
aramid, 5 — carbon-glass, 6 — aramid—glass.
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Fig. 3.68. Longitudinal modulus versus ultimate tensile strain for advanced epoxy unidirectional composites.
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Fig. 3.69. Typical stress—strain diagrams for hybrid unidirectional composites.

There are two possible scenarios of the further material behavior, depending on the relation
between strain ¢7 and the ultimate strain of the fibers of the second type, E#Z). If e >
5#2), these fibers will also fail under stress crl(l), and the material stress—strain diagram
corresponds to the dashed line OA in Fig. 3.69. If 5#2) > g7, the material would work up

to point C in this figure. Experimental diagrams supporting this prediction are shown in
Fig. 3.70 (Gunyaev, 1981).
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Fig. 3.70. Experimental stress—strain diagrams for hybrid carbon—glass epoxy unidirectional composite with
various volume fraction of glass fibers vg and carbon fibers ve: 1 — vg =0; 2 — vg = 0.07; 3 — vg = 0.14;
4 —vg=0255 —vy3=05 6—-v.=0.
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Fig. 3.71. Dependence of the longitudinal strength of unidirectional carbon-glass epoxy composite on the
volume fraction of glass fibers.

The threshold value of wf(z) indicating the minimum amount of the second-type fibers
that is sufficient to withstand the load after the failure of the first-type fibers can be found

from the condition &7 = Eﬁz) (Skudra et al., 1989). The final result is as follows

1) -1 —(2 -1
EF )Ufé‘; ) 1—vp)Em (815 ) —81(= )>

—2) _
o [EVEY + EP (57 - 7))

i

For w;z) < w;z), material strength can be calculated as 71 = E1§§1) whereas for w

wgz), o1 = Efggz). The corresponding theoretical prediction of the dependence of material

strength on wf(z) is shown in Fig. 3.71 (Skudra et al., 1989).

3.6. Composites with high fiber fraction

We now return to Fig. 3.44, which shows the dependence of the tensile longitudinal
strength of unidirectional composites on the fiber volume fraction vs. As follows from
this figure, the strength increases up to vf, which is close to 0.7 and becomes lower for
higher fiber volume fractions. This is a typical feature of unidirectional fibrous composites
(Andreevskaiya, 1966). However, there are some experimental results (e.g., Roginskii
and Egorov, 1966) showing that material strength can increase up to v = 0.88, which
corresponds to the maximum theoretical fiber volume fraction discussed in Section 3.1.
The reason that the material strength usually starts to decrease at higher fiber volume
fractions is associated with material porosity, which becomes significant for materials
with a shortage of resin. By reducing the material porosity, we can increase material
tensile strength for high fiber volume fractions.
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€Y (b)

Fig. 3.72. Cross-section of aramid—epoxy composite with high fiber fraction: (a) initial structure; (b) structure

with delaminated fibers.

Moreover, applying the correct combination of compacting pressure and temperature to
composites with organic (aramid or polyethylene) fibers, we can deform the fiber cross-
sections and reach a value of v that would be close to unity. Such composite materials
studied by Golovkin (1985), Kharchenko (1999), and other researchers are referred to as
composites with high fiber fraction (CHFF). The cross-section of a typical CHFF is shown

in Fig. 3.72.
Table 3.7
Properties of aramid-epoxy composites with high fiber fraction.
Property Fiber volume fraction, vf

0.65 0.92 0.96
Density, p (g/cm?3) 1.33 1.38 1.41
Longitudinal modulus, E; (GPa) 85 118 127
Transverse modulus, E; (GPa) 33 2.1 4.5
Shear modulus, G1» (GPa) 1.6 1.7 —
Longitudinal tensile strength, ﬁf (MPa) 2200 2800 2800
Longitudinal compressive strength, o, (MPa) 293 295 310
Transverse tensile strength, E; (MPa) 22 12 —
Transverse compressive strength, o, (MPa) 118 48 —
In-plane shear strength, 712 (MPa) 41 28 18
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The properties of aramid—epoxy CHFF are listed in Table 3.7 (Kharchenko, 1999).
Comparing traditional composites (vi = 0.65) with CHFF, we can conclude that CHFF
have significantly higher longitudinal modulus (up to 50%) and longitudinal tensile
strength (up to 30%), whereas the density is only 6% higher. However, the transverse
and shear strengths of CHFF are lower than those of traditional composites. Because of
this, composites with high fiber fraction can be efficient in composite structures whose
loading induces high tensile stresses acting mainly along the fibers, e.g., in cables, pressure
vessels, etc.

3.7. Phenomenological homogeneous model of a ply

It follows from the foregoing discussion that micromechanical analysis provides very
approximate predictions for the ply stiffness and only qualitative information concerning
the ply strength. However, the design and analysis of composite structures require quite
accurate and reliable information about the properties of the ply as the basic element
of composite structures. This information is provided by experimental methods as dis-
cussed above. As a result, the ply is presented as an orthotropic homogeneous material
possessing some apparent (effective) mechanical characteristics determined experimen-
tally. This means that, on the ply level, we use a phenomenological model of a composite
material (see Section 1.1) that ignores its actual microstructure.

It should be emphasized that this model, being quite natural and realistic for the majority
of applications, sometimes does not allow us to predict actual material behavior. To demon-
strate this, consider a problem of biaxial compression of a unidirectional composite in the
23-plane as in Fig. 3.73. Testing a glass—epoxy composite material described by Koltunov
et al. (1977) shows a surprising result — its strength is about & = 1200 MPa, which is
quite close to the level of material strength under longitudinal tension, and material failure
is accompanied by fiber breakage typical for longitudinal tension.

The phenomenological model fails to predict this mode of failure. Indeed, the average
stress in the longitudinal direction specified by Eq. (3.75) is equal to zero under loading
shown in Fig. 3.73, i.e.,

o1 = olf vf + 07 vm =0 (3.127)

To apply the first-order micromechanical model considered in Section 3.3, we generalize
constitutive equations, Egs. (3.63), for the three-dimensional stress state of the fibers and
the matrix as

=5 o™ —vem(o) ™ +0s™)] @ 2.3) (3.128)

Changing 1 for 2, 2 for 3, and 3 for 1, we can write the corresponding equations for &
and es.
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Suppose that the stresses acting in the fibers and in the matrix in the plane of loading
are the same, i.e.,

crzf = O'; =o0) =0§ =—0 (3.129)

and that ef = &[". Substituting &f and " from Egs. (3.128), we get with due regard to
Egs. (3.129)

Eif(af + ZVfU) = Ei((’lm +2Vm0)
m

In conjunction with Eq. (3.127), this equation allows us to find a{, which has the form

_ ZU(EfUm — Em\)f)l)m
B Efvi + Emvm

f
01
Simplifying this result for the situation Ef > Ep, we arrive at

YmUm
olf =20

Uf

Thus, the loading shown in Fig. 3.73 indeed induces tension in the fibers as can be revealed
using the micromechanical model. The ultimate stress can be expressed in terms of the
fibers’ strength o5 as

_ 1
G_zafVmUm
1 /
3/—>2
I
% . -5

e

Fig. 3.73. Biaxial compression of a unidirectional composite.
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The actual material strength is not as high as follows from this equation, which is
derived under the condition that the adhesive strength between the fibers and the matrix is
infinitely high. Tension of fibers is induced by the matrix that expands in the 1-direction
(see Fig. 3.73) due to Poisson’s effect and interacts with fibers through shear stresses
whose maximum value is limited by the fiber—-matrix adhesion strength. Under high shear
stress, debonding of the fibers can occur, reducing the material strength, which is, nev-
ertheless, very high. This effect is utilized in composite shells with radial reinforcement
designed to withstand an external pressure of high intensity (Koltunov et al., 1977).
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Chapter 4

MECHANICS OF A COMPOSITE LAYER

A typical composite laminate consists of individual layers (see Fig. 4.1) which are
usually made of unidirectional plies with the same or regularly alternating orientation.
A layer can also be made from metal, thermosetting or thermoplastic polymer, or fabric
or can have a spatial three-dimensionally reinforced structure. In contrast to a ply as
considered in Chapter 3, a layer is generally referred to the global coordinate frame x, y,
and z of the structural element rather than to coordinates 1, 2, and 3 associated with the
ply orientation. Usually, a layer is much thicker than a ply and has a more complicated
structure, but this structure does not change through its thickness, or this change is ignored.
Thus, a layer can be defined as a three-dimensional structural element that is uniform in
the transverse (normal to the layer plane) direction.

4.1. Isotropic layer

The simplest layer that can be observed in composite laminates is an isotropic layer of
metal or thermoplastic polymer that is used to protect the composite material (Fig. 4.2)
and to provide tightness. For example, filament-wound composite pressure vessels usually
have a sealing metal (Fig. 4.3) or thermoplastic (Fig. 4.4) internal liner, which can also be
used as a mandrel for winding. Since the layer is isotropic, we need only one coordinate
system and let it be the global coordinate frame as in Fig. 4.5.

4.1.1. Linear elastic model

The explicit form of Hooke’s law in Egs. (2.48) and (2.54) can be written as

&y = —(0y —voy —voy) =

x = E X y 7). Vay = G
T

&y = E(Uy —VOy —V07),  Vaz = % (4.1)
Tyz

&, = E(UZ —VOy —VOy), Vy; = E



Fig. 4.1. Laminated structure of a composite pipe.

Fig. 4.2. Composite drive shaft with external metal protection layer. Courtesy of CRISM.
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Fig. 4.3. Aluminum liner for a composite pressure vessel.

Fig. 4.4. Filament-wound composite pressure vessel with a polyethylene liner. Courtesy of CRISM.
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Fig. 4.5. An isotropic layer.

where E is the modulus of elasticity, v the Poisson’s ratio, and G is the shear modulus
which can be expressed in terms of E and v with Eq. (2.57). Adding Egs. (4.1) for normal
strains we get

1
- = 4.2
€0 = 200 (4.2)
where
g0 =¢x+ &y +e; (4.3)

is the volume deformation. For small strains, the volume dV; of an infinitesimal material
element after deformation can be found knowing the volume dV before the deformation
and gg as

dvi = (1 + gg)dV

Volume deformation is related to the mean stress
1
00 =505 + 0y + ) (44)

through the volume or bulk modulus

E

“=sa-m 7

Forv=1/2, K — o0, g9 = 0, and dV; = dV for any stress. Such materials are called
incompressible — they do not change their volume under deformation and can change only
their shape.
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The foregoing equations correspond to the general three-dimensional stress state of a
layer. However, working as a structural element of a thin-walled composite laminate, a
layer is usually loaded with a system of stresses one of which, namely, transverse normal
stress o, is much less than the other stresses. Bearing this in mind, we can neglect the
terms in Egs. (4.1) that include o, and write these equations in a simplified form

1
ex = —=(0oy —voy), &y =—(oy —voy)
E E (4.6)
Txy Txz Tyz
Vxy = E, Vxz = E, Vyz = E
or
or = E(ex +vey), 0y = E(gy + vey)
4.7)

Txy = nyy’ Trz = GYxz, Ty, = nyz

where E = E/(1 —v?).

4.1.2. Nonlinear models

Materials of metal and polymeric layers considered in this section demonstrate linear
response only under moderate stresses (see Figs. 1.11 and 1.14). Further loading results
in nonlinear behavior, to describe which we need to apply one of the nonlinear material
models discussed in Section 1.1.

A relatively simple nonlinear constitutive theory suitable for polymeric layers can be
constructed using a nonlinear elastic material model (see Fig. 1.2). In the strict sense,
this model can be applied to materials whose stress—strain curves are the same for active
loading and unloading. However, normally structural analysis is undertaken only for active
loading. If unloading is not considered, an elastic model can be formally used for materials
that are not perfectly elastic.

There exist a number of models developed to describe the nonlinear behavior of highly
deformable elastomers such as rubber (Green and Adkins, 1960). Polymeric materials
used to form isotropic layers of composite laminates admitting, in principal, high strains
usually do not demonstrate them in composite structures whose deformation is governed
by fibers with relatively low ultimate elongation (1-3%). So, creating the model, we can
restrict ourselves to the case of small strains, i.e., to materials whose typical stress—strain
diagram is shown in Fig. 4.6.

A natural way is to apply Egs. (2.41) and (2.42), i.e., (we use tensor notations for
stresses and strains introduced in Section 2.9 and the rule of summation over repeated
subscripts)

U

5o (4.8)

dU=O’,‘jd€,‘j, Ojj =



138 Advanced mechanics of composite materials

o, MPa
50

40 Q

10

0 1 1 1 1 I g%
0 0.5 1 1.5 2 2.5

Fig. 4.6. A typical stress—strain diagram (circles) for a polymeric film and its cubic approximation (solid line).

Approximation of elastic potential U as a function of ¢;; with some unknown parameters
allows us to write constitutive equations directly using the second relation in Egs. (4.8).
However, the polynomial approximation similar to Eq. (2.43), which is the most simple
and natural results in a constitutive equation of the type o = S¢”, in which § is some
stiffness coefficient and » is an integer. As can be seen in Fig. 4.7, the resulting stress—
strain curve is not typical for the materials under study. Better agreement with nonlinear
experimental diagrams presented, e.g., in Fig. 4.6, is demonstrated by the curve specified
by the equation ¢ = Co™”, in which C is some compliance coefficient. To arrive at this
form of a constitutive equation, we need to have a relationship similar to the second one in
Egs. (4.8) but allowing us to express strains in terms of stresses. Such relationships exist
and are known as Castigliano’s formulas. To derive them, introduce the complementary
elastic potential U in accordance with the following equation

dUc = Eijdo‘ij (49)

The term ‘complementary’ becomes clear if we consider a bar in Fig. 1.1 and the corre-
sponding stress—strain curve in Fig. 4.8. The area 0BC below the curve represents U in
accordance with the first equation in Egs. (4.8), whereas the area 0AC above the curve is
equal to U¢. As shown in Section 2.9, dU in Egs. (4.8) is an exact differential. To prove
the same for dU¢, consider the following sum

dU +dU; = O‘,‘jdé‘,‘j + Eijdo‘,‘j = d(o‘,‘jé‘,‘j)
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Fig. 4.7. Two forms of approximation of the stress—strain curve.

do

e de

Fig. 4.8. Geometric interpretation of elastic potential, U, and complementary potential, U..
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which is obviously an exact differential. Since dU in this sum is also an exact differential,
dU; should have the same property and can be expressed as

aUc
dUc = Eddl]

Comparing this result with Eq. (4.9), we arrive at Castigliano’s formulae

U

= 4.10
o (4.10)

Eij =

which are valid for any elastic solid (for a linear elastic solid, U = U).

The complementary potential, U, in general, depends on stresses, but for an isotropic
material, Eq. (4.10) should yield invariant constitutive equations that do not depend on the
direction of coordinate axes. This means that U; should depend on stress invariants I1, I,
and I3 in Egs. (2.13). Using different approximations for the function U (11, I2, I3), we
can construct different classes of nonlinear elastic models. Existing experimental verifi-
cation of such models shows that the dependence of U, on I3 can be neglected. Thus, we
can present the complementary potential in a simplified form U, (11, I2) and expand this
function as a Taylor series as

1 , 1 3 1 4
Us=co+culi+ 5012]1 + 501311 + 4701411 + -

1 2.1 5. 1 4
+ca1ly + Seo2ly + cea3ly + —coaly + - -

2 3! 4!
(4.12)
1 1 ) 1 )
+ 5611211112 + 56122111 I+ 5011221112 +---
b L ot B+ L 212 4 Eerp I + -
qcralile + peelily + penshl
where
anUc an+mUc
Cin = s Cinjm = S50
oI’ 01 =0 aIl 81}” o=
Constitutive equations follow from Eq. (4.10) and can be written in the form
oU. 91 oU. dI
£ij c 91 c 042 (4.12)

= 301 3oy | O, 3oy

Assuming that for zero stresses Uc = 0 and ¢;; = 0 we should take ¢co = 0 and ¢13 = 0
in Eq. (4.11).



Chapter 4. Mechanics of a composite layer 141

Consider a plane stress state with stresses oy, oy, 7y, shown in Fig. 4.5. The stress
invariants in Egs. (2.13) to be substituted into Eq. (4.12) are

I =0,+0y, DL =—0.0,+ tfy (4.13)
A linear elastic material model is described with Eq. (4.11) if we take

U = %clzlf + el (4.14)
Using Egs. (4.12)—(4.14) and engineering notations for stresses and strains, we arrive at

&x = c12(0x +0y) — €210y, &y = c12(0x + 0y) — €210x,  Vxy = 2C21Txy

These equations coincide with the corresponding equations in Egs. (4.6) if we take

1 1+v
cp=—, (1=
12 E 21 E

To describe a nonlinear stress—strain diagram of the type shown in Fig. 4.6, we can
generalize Eq. (4.14) as

1 2 1 s 1 2
U. = §C1211 + co1l + mcl411 + §C2212

Then, Eq. (4.12) yields the following cubic constitutive law
1
&x = c12(0x + Uy) — 210y + 6614(‘7x + Uy)s + CZZ(UXG}' - szy)ay
1
&y = c12(ox + Uy) —C210x + 6614(Ux + 0,}7)3 + C22((7x(7y - szy)ax

2
Vxy = 2[C21 — €22 (Gxay - fxy>:| Txy

The corresponding approximation is shown in Fig. 4.6 with a solid line. Retaining more
higher order terms in Eq. (4.11), we can describe the nonlinear behavior of any isotropic
polymeric material.

To describe the nonlinear elastic—plastic behavior of metal layers, we should use consti-
tutive equations of the theory of plasticity. There exist two basic versions of this theory —
the deformation theory and the flow theory which are briefly described below.

According to the deformation theory of plasticity, the strains are decomposed into two
components — elastic strains (with superscript ‘e’) and plastic strains (superscript ‘p’), i.e.,

£ij = &5 + 8} (4.15)
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We again use the tensor notations of strains and stresses (i.e., &;; and o;;) introduced in
Section 2.9. Elastic strains are related to stresses by Hooke’s law, Eqgs. (4.1), which can
be written with the aid of Eq. (4.10) in the form

. oUe
& aO’,’j

(4.16)

where U, is the elastic potential that for a linear elastic solid coincides with the comple-
mentary potential U; in Eq. (4.10). An explicit expression for U, can be obtained from
Eqg. (2.51) if we change strains for stresses with the aid of Hooke’s law, i.e.,

1ra o 2 _, 1o 2
Ue 091 +09,+033 V(011022 +011033 +022033) +2G 01 +013+0%3

T 2E
(4.17)
Now describing the plastic strains in Eq. (4.15) in a form similar to Eq. (4.16)
oy
p P
g 4.18
81/ anj ( )

where Uy is the plastic potential. To approximate the dependence of Up on stresses,
a special generalized stress characteristic, i.e., the so-called stress intensity o, is introduced
in the classical theory of plasticity as

Nl

o =

[(011 — 022)% + (022 — 033)> + (011 — 033)° + 6 (0122 +of+ 0223>]
(4.19)

1
V2
Transforming Eq. (4.19) with the aid of Egs. (2.13), we can reduce it to the following form

O'=,/]12+312

This means that o is an invariant characteristic of a stress state, i.e., that it does not depend
on the orientation of a coordinate frame. For unidirectional tension as in Fig. 1.1, we have
only one nonzero stress, e.g., o11. Then, Eq. (4.19) yields o = o11. In a similar way, the
strain intensity ¢ can be introduced as

Nl=

Nz
&= 3 [(811 — £22)? + (22 — £33)° + (e11 — £33)° + 6 (sz + 65y + 8%3)]

(4.20)

The strain intensity is also an invariant characteristic. For uniaxial tension (Fig. 1.1) with
stress o171 and strain e11 in the loading direction, we have exp = e33 = —vpe11, Where



Chapter 4. Mechanics of a composite layer 143

vp is the elastic-plastic Poisson’s ratio which, in general, depends on o31;. For this case,
Eq. (4.20) yields

2
&= §(1 + vp)ent (4.21)

For an incompressible material (see Section 4.1.1), vy = 1/2 and & = &11. Thus, the
numerical coefficients in Egs. (4.19) and (4.20) provide o = 011 and & = g11 for uniaxial
tension of an incompressible material. The stress and strain intensities in Eqgs. (4.19) and
(4.20) have an important physical meaning. As known from experiments, metals do not
demonstrate plastic properties under loading with stresses o, = o, = 0, = op resulting
only in a change of material volume. Under such loading, materials exhibit only elastic
volume deformation specified by Eq. (4.2). Plastic strains occur in metals if we change
the material shape. For a linear elastic material, the elastic potential U in Eq. (2.51) can
be reduced after rather cumbersome transformation with the aid of Eqgs. (4.3), (4.4) and
(4.19), (4.20) to the following form

U= %GOSO + %08 (4.22)
The first term in the right-hand side part of this equation is the strain energy associated with
the volume change, whereas the second term corresponds to the change of material shape.
Thus, o and ¢ in Egs. (4.19) and (4.20) are stress and strain characteristics associated with
the change of material shape under which it demonstrates the plastic behavior.

In the theory of plasticity, the plastic potential U, is assumed to be a function of stress
intensity o, and according to Eq. (4.18), the plastic strains are given by

p _ dUp 90

= do oy @29

Consider further a plane stress state with stresses oy, o, and 7, in Fig. 4.5. For this case,
Eqg. (4.19) takes the form

o =,/02+0%—0y0y+ 372 (4.24)

Using Egs. (4.15)—(4.17), (4.23), and (4.24), we finally arrive at the following constitutive
equations

&y = E(O'x —voy) +w(o) (Gx - E”y)
1 1 4.25
&y = E(Oy — Vax) +0)(O') Oy — on ( ' )

1
Vxy = 5 xy T Sw(a)rxy
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in which
w()=——— (4.26)

To find w (o), we need to specify the dependence of U; on o. The most simple and suitable
for practical applications is the power approximation

Up = Co" 4.27)
where C and n are some experimental constants. As a result, Eq. (4.26) yields
(o) = Cno"? (4.28)

To determine coefficients C and n, we introduce the basic assumption of the plasticity
theory concerning the existence of a universal stress—strain diagram (master curve).
According to this assumption, for any particular material, there exists a relationship
between stress and strain intensities, i.e., o = ¢(¢) (or ¢ = f(o)), that is one and
the same for all loading cases. This fact enables us to find coefficients C and »n from a test
under uniaxial tension and thus extend the obtained results to an arbitrary state of stress.

Indeed, consider uniaxial tension as in Fig. 1.1 with stress o11. For this case, o = oy,
and Eqgs. (4.25) yield

Ex = % + w(0x)oy (429)
v 1

gy = —Eax - Ea)(ax)ax (4.30)

Yxy = 0

Solving Eq. (4.29) for w(o,), we get

1 z (4.31)

@)= 50 E

where Es = o, /e, is the secant modulus introduced in Section 1.1 (see Fig. 1.4). Using
now the existence of the universal diagram for stress intensity o and taking into account
that o = o, for uniaxial tension we can generalize Eq. (4.31) and write it for an arbitrary
state of stress as

_ 2 (4.32)

To determine Es(o) = o/e, we need to plot the universal stress—strain curve. For this
purpose, we can use an experimental diagram o, (¢,) for the case of uniaxial tension, e.g.,
the one shown in Fig. 4.9 for an aluminum alloy with a solid line. To plot the universal
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Fig. 4.9. Experimental stress—strain diagram for an aluminum alloy under uniaxial tension (solid line), the
universal stress—strain curve (dashed line) and its power approximation (dots).

curve o (g), we should put o = o, and change the scale on the strain axis in accordance
with Eq. (4.21). To do this, we need to know the plastic Poisson’s ratio v, which can be
found from vy = —¢,/e,. Using Egs. (4.29) and (4.30), we arrive at

It follows from this equation that, vp = v if Es = E and vp — 1/2 for Es — 0. The
dependencies of Es and vp on ¢ for the aluminum alloy under consideration are presented
in Fig. 4.10. With the aid of this figure and Eq. (4.21) in which we should take 11 = &y
we can calculate ¢ and plot the universal curve shown in Fig. 4.9 with a dashed line. As
can be seen, this curve is slightly different from the diagram corresponding to a uniaxial
tension. For the power approximation in Eq. (4.27), we get from Egs. (4.26) and (4.32)
the following equations

(o) = Cno" 2, w()=

Q| m™
| -

Matching these results, we find

= % + Cno"L (4.33)
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Fig. 4.10. Dependencies of the secant modulus (Es), tangent modulus (E¢), and the plastic Poisson’s ratio (vp),
on strain for an aluminum alloy.

This is a traditional approximation for a material with a power hardening law. Now, we
can find C and n using Eq. (4.33) to approximate the dashed line in Fig. 4.9. The results
of this approximation are shown in this figure with dots that correspond to E = 71.4 GPa,
n=6,and C = 6.23 x 10715 (MPa)~>.

Thus, constitutive equations of the deformation theory of plasticity are specified by
Egs. (4.25) and (4.32). These equations are valid only for active loading that can be iden-
tified by the condition do > 0. Being applied for unloading (i.e., for do < 0), Egs. (4.25)
correspond to nonlinear elastic material with stress—strain diagram shown in Fig. 1.2. For
an elastic—plastic material (see Fig. 1.5), the unloading diagram is linear. So, if we reduce
the stresses by some decrements Aoy, Aoy, and At,,, the corresponding decrements of
strains will be

1 1 1
Agy = E(on —VAoy), Agy = E(Aoy —VA0y), Ay = EArxy

Direct application of the nonlinear equations (4.25) substantially hinders the problem of
stress—strain analysis because these equations include function w (o) in Eq. (4.32) which,
in turn, contains the secant modulus Es(o). For the power approximation corresponding
to Eq. (4.33), Es can be expressed analytically, i.e.,

1 1
= C n—2
E+ no
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However, in many cases Es is given graphically as in Fig. 4.10 or numerically in the
form of a table. Thus, Egs. (4.25) sometimes cannot be even written in an explicit ana-
Iytical form. This implies application of numerical methods in conjunction with iterative
linearization of Egs. (4.25).

There exist several methods of such linearization that will be demonstrated using the
first equation in Eqgs. (4.25), i.e.,

& = %(ax —voy) +w(o) (ax - %@) (4.34)

In the method of elastic solutions (Ilyushin, 1948), Eq. (4.34) is used in the following
form

1
e = E(J)f —voy) + 151 (4.35)

where s is the number of the iteration step and

11
Ns-1 = w(05-1) (6;‘ t- 5o 1)

For the first step (s = 1), we take o = 0 and solve the problem of linear elasticity with
Eqg. (4.35) in the form

1
gl = E(le - vo&) (4.36)

Finding the stresses, we calculate n1 and write Eq. (4.35) as

, 1

SXZE

(02 —vod)+m

where the first term is linear, whereas the second term is a known function of coordinates.
Thus, we have another linear problem resolving which we find stresses, calculate 7, and
switch to the third step. This process is continued until the strains corresponding to some
step become sufficiently close within the stipulated accuracy to the results found at the
previous step.

Thus, the method of elastic solutions reduces the initial nonlinear problem to a sequence
of linear problems of the theory of elasticity for the same material but with some initial
strains that can be transformed into initial stresses or additional loads. This method read-
ily provides a nonlinear solution for any problem that has a linear solution, analytical
or numerical. The main shortcoming of the method is its poor convergence. Graphical
interpretation of this process for the case of uniaxial tension with stress o is presented in
Fig. 4.11a. This figure shows a simple way to improve the convergence of the process.
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Fig. 4.11. Geometric interpretation of (a) the method of elastic solutions, (b) the method of variable elasticity
parameters, (c) Newton’s method, and (d) method of successive loading.

If we need to find the strain at the point of the curve that is close to point A, it is not
necessary to start the process with initial modulus E. Taking E’ < E in Eq. (4.36) we can
reach the result with much fewer steps.

According to the method of elastic variables (Birger, 1951), we should present
Eq. (4.34) as

1 , 1
el = E(a)f — va;) + w(os_1) (O’; - EaS) (4.37)

In contrast to Eq. (4.35), stresses o and o2 in the second term correspond to the current
step rather than to the previous one. This enables us to write Eq. (4.37) in a form analogous
to Hooke’s law, i.e.,

1
e = (03 — vx,la;) (4.38)
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where

v

1 _1
Es 1= I:E + w(o's—l)il . vs—1=Es 1 |:E

+ gw@_l)} (4.39)

are elastic variables corresponding to the step with number s — 1. The iteration procedure
is similar to that described above. For the first step we take Eg = E and vg = v in
Eq. (4.38). We then find o}, o, and o1, determine E1, vy, switch to the second step
and so on. Graphical interpretation of the process is shown in Fig. 4.11b. Convergence of
this method is by an order faster than that of the method of elastic solutions. However,
elastic variables in the linear constitutive equation of the method, Eq. (4.38), depend
on stresses and hence, on coordinates whence the method has obtained its hame. This
method can be efficiently applied in conjunction with the finite element method according
to which the structure is simulated with the system of elements with constant stiffness
coefficients. Being calculated for each step with the aid of Eqgs. (4.39), these stiffnesses
will change only with transition from one element to another, which is as apparent would
not practically hinder the calculation procedure for the finite element method.

The iteration process having the best convergence is provided by the classical Newton’s
method requiring the following form of Eq. (4.34)

s _ 51 s—1 s s—1 s—1 s s—1 s—1 s s—1
& =&, ~+cyg (ox — oy ) +cip (ay -0y ) +ci3 (rxy — Ty ) (4.40)

. 1 11
C11 :E—i—a)(crs_l)—i—(o; 1—50'; 1)8—

_ v 1 ,7 _ 9
cizl =5 Ea)(as_l) + (0; - 50y 1) Fw(%—l)
y

1 i
s—1 _ ( _s-1 -1
3 = <U)f - 505 ) af;y,lw((fs—l)

Since coefficients ¢ are known from the previous step (s — 1), Eq. (4.40) is linear with
respect to stresses and strains corresponding to step number s. Graphical interpretation
of this method is presented in Fig. 4.11c. In contrast to the methods discussed above,
Newton’s method has no physical interpretation and being characterized with very high
convergence, is rather cumbersome for practical applications.

The iteration methods discussed above are used to solve direct problems of stress
analysis, i.e., to find stresses and strains induced by a given load. However, there
exists another class of problems requiring us to evaluate the load-carrying capacity of
the structure. To solve these problems, we need to trace the evolution of stresses while
the load increases from zero to some ultimate value. To do this, we can use the method of
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successive loading. According to this method, the load is applied with some increments,
and for each s-step of loading the strain is determined as

s _ 51
gx_gx +

E L (AO’; - vs_leyS) (4.41)
A

where E;_1 and v,_1 are specified by Egs. (4.39) and correspond to the previous loading
step. Graphical interpretation of this method is shown in Fig. 4.11d. To obtain reliable
results, the load increments should be as small as possible, because the error of calculation
is cumulative in this method. To avoid this effect, the method of successive loading can
be used in conjunction with the method of elastic variables. Being applied after several
loading steps (black circles in Fig. 4.11d) the latter method allows us to eliminate the
accumulated error and to start again the process of loading from a ‘correct’ initial state
(light circles in Fig. 4.11d).

Returning to the constitutive equations of the deformation theory of plasticity,
Eq. (4.25), it is important to note that these equations are algebraic. This means that strains
corresponding to some combination of loads are determined by the stresses induced by
these loads and do not depend on the history of loading, i.e., on what happened to the
material before this combination of loads was reached.

However, existing experimental data show that, in general, strains should depend on
the history of loading. This means that constitutive equations should be differential rather
than algebraic as they are in the deformation theory. Such equations are provided by the
flow theory of plasticity. According to this theory, decomposition in Eq. (4.15) is used for
infinitesimal increments of stresses, i.e.,

deij = def; + dsfl. (4.42)

Here, increments of elastic strains are related to the increments of stresses by Hooke’s
law, e.g., for the plane stress state

1 1 1
ded = E(da)C —vdoy), ds(; = E(dcry —vdoy), dyyy = Edrxy (4.43)
whereas increments of plastic strains

0
de?. = ﬂd)»
Y aO’ij

are expressed in the form of Eq. (4.18) but include a parameter A which characterizes the
loading process.

Assuming that U, = Up(o), where o is the stress intensity specified by Eq. (4.19) or
(4.24), we get

i do anj
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The explicit form of these equations for the plane stress state is
p 1
dey = dw(o) | oy — an

de} = dw(0) (oy - %ou) (4.44)
d)/fy = 3dw (o) Txy

where

dU,
do(o) = ;d_;dx (4.45)

To determine the parameter X, assume that the plastic potential Uy, being on the one hand
a function of o, can be treated as the work performed by stresses on plastic strains, i.e.,

Loy
dUp = a—apdo
= 0,del + oyded + 7, dyd,

Substituting strain increments from Eqgs. (4.44) and taking into account Eq. (4.24) for o,
we have

d
ﬂdcr = o?dw (o)
do

With due regard to Eq. (4.45), we arrive at the following simple and natural relationship
dir = do/o. Thus, Eq. (4.45) takes the form

(4.46)

and Eqs. (4.42)-(4.44) result in the following constitutive equations for the flow theory
1 1
de, = E(dax —vdoy) +dw(o) | ox — 59y
1 1
dey, = E(doy —vdoy) + dw(o) (O'y — Eax) (4.47)

1
dyxy = Edtxy + 3dw (o) 1y

As can be seen, in contrast to the deformation theory, stresses govern the increments of
plastic strains rather than the strains themselves.
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In the general case, irrespective of any particular approximation of plastic potential

Up, we can obtain for function dw (o) in Egs. (4.47) an expression similar to Eq. (4.32).
Consider uniaxial tension for which Egs. (4.47) yield

d
de, = % + dw(oy)oy

Repeating the derivation of Eq. (4.32), we finally have

do 1 1
do() = <Et<a> B E) (449)

where Ei(o0) = do/de is the tangent modulus introduced in Section 1.1 (see Fig. 1.4).
The dependence of E; on strain for an aluminum alloy is shown in Fig. 4.10. For the
power approximation for plastic potential

Up = Bo" (4.49)
matching Eqs. (4.46) and (4.48), we arrive at the following equation

de 1
R — B n72
do E + Bno

Upon integration, we get

o Bn 4
— 4.50
E + n—1° (4.50)

£ =

As can be seen, this equation has the same form as Eq. (4.33). The only difference is in the
form of coefficients C and B. As in the theory of deformation, Eq. (4.50) can be used to
approximate the experimental stress—strain curve and to determine coefficients B and n.
Thus, the constitutive equations for the flow theory of plasticity are specified by Egs. (4.47)
and (4.48).

For a plane stress state, introduce the stress space shown in Fig. 4.12 and referred to
a Cartesian coordinate frame with stresses as coordinates. In this space, any loading can
be presented as a curve specified by the parametric equations o, = 0, (p), oy = oy(p),
and 7y, = 74y(p), in which p is the loading parameter. To find strains corresponding
to point A on the curve, we should integrate Eqgs. (4.47) along this curve, thus taking
into account the whole history of loading. In the general case, the obtained result will
be different from what follows from Egs. (4.25) of the deformation theory for point A.
However, there exists one loading path (the straight line 0A in Fig. 4.12) that is completely
determined by the location of its final point A. This is the so-called proportional loading
during which the stresses increase in proportion to parameter p, i.e.,

oy = afp, oy = O’;)p, Tyy = r)?yp (4.51)
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/

Oy

Fig. 4.12. Loading path (0A) in the stress space.

where stresses with superscript ‘0’ can depend on coordinates only. For such loading,
o = ogp, do = opdp, and Egs. (4.46) and (4.49) yield

dw(o) = Bno"3do = Bnoé’_zp"_3dp (4.52)

Consider, for example, the first equation of Egs. (4.47). Substituting Egs. (4.51) and (4.52),
we have

1 1
dey = z (0)? — va}?) dp + Bnog™? <<7)9 — EU)?) p"2dp

This equation can be integrated with respect to p. Using again Egs. (4.51), we arrive at
the constitutive equation of the deformation theory

l( )+ B——o"? L
Ex = — 0y — VOy o Oy — O
tTETY T n—1 to27

Thus, for a proportional loading, the flow theory reduces to the deformation theory of
plasticity. Unfortunately, before the problem is solved and the stresses are found we
do not know whether the loading is proportional or not and which particular theory of
plasticity should be used. There exists a theorem of proportional loading (Ilyushin, 1948)
according to which the stresses increase proportionally and the deformation theory can be
used if:

(1) external loads increase in proportion to one loading parameter,

(2) the material is incompressible and its hardening can be described with the power law

o = Se".
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In practice, both conditions of this theorem are rarely met. However, existing experience
shows that the second condition is not very important and that the deformation theory of
plasticity can be reliably (but approximately) applied if all the loads acting on the structure
increase in proportion to one parameter.

4.2. Unidirectional orthotropic layer

A composite layer with the simplest structure consists of unidirectional plies whose
material coordinates, 1, 2, and 3, coincide with coordinates of the layer, x, y, and z, as
in Fig. 4.13. An example of such a layer is presented in Fig. 4.14 — the principal material
axes of an outer circumferential unidirectional layer of a pressure vessel coincide with
global (axial and circumferential) coordinates of the vessel.

4.2.1. Linear elastic model

For the layer under study, the constitutive equations, Egs. (2.48) and (2.53), yield

01 02 03
&1 = E_l - VlZE—2 - \113E—3
02 o1 o3
&2 = E_Z - U21E—1 - U23E—3
- o1 - (4.53)
&3 = E—3 - V31E—l - \132E—2
712 713 723
)’12=G—12, V13=G—13, )’23=G—23

> x,1

712
02

Fig. 4.13. An orthotropic layer.
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Fig. 4.14. Filament-wound composite pressure vessel.

where
vioE1 = vp1Ep, vizE1 =v31E3, v3Ey = v3E3
The inverse form of Egs. (4.53) is

o1 = A1(e1 + 11282 + 113€3)
02 = Ap(g2 + n21€1 + 423€3)
(4.54)
03 = Az(e3 + 13161 + 13282)

1712 = G12y12, 7113 = G13y13, 123 = G23y23
where
Ay = ﬂ(1 —v23v32), A2 = 2(1 —v13v31), Az = —3(1 — v12V21)
D D D

D =1 — v12v23v31 — V13V21V32 — V13V31 — Vi2V21 — V23V32

V12 + V13V32 V21 + v23v31

Uip = ——————, U=
1—v3v32 1—vi3v3
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V13 + V12V23 V31 + V21V32
HB3= """, MU= ——

1— vz 1—vpvn

V23 + V13v21 V31 + V21V32
M3 = —"—, P=—

1—v3v3 1— v

As for an isotropic layer considered in Section 4.1, the terms including the transverse
normal stress o3 can be neglected for a thin layer in Egs. (4.53) and (4.54), and they can
be written in the following simplified forms

o1 02 02 o1
g1 =——V2—, €2=— —V—
1 Er 12 £ 2 £, 21 Er
(4.55)
)’12—E 713—£ 23—E
G’ Gis’ Go3
and
01 = E1(e1+ vi2e2), 02 = Ez(e2 + vp161)
(4.56)
712 = G12y12, 713 = G13y13, 7123 = Go3y23
where
_ Ei2
Ei17=—"——
1—vpvn

The constitutive equations presented above include elastic constants for a layer that are
determined experimentally. For in-plane characteristics E1, E2, G12, and vi2, the corre-
sponding test methods are discussed in Chapter 3. The transverse modulus E3 is usually
found by testing the layer under compression in the z-direction. The transverse shear
moduli G13 and G»3 can be obtained by various methods, e.g., by inducing pure shear
in two symmetric specimens shown in Fig. 4.15 and calculating the shear modulus as
G13 = P/(2Ay), where A is the in-plane area of the specimen.

[H11]
T

N
N
=
N
AN

Fig. 4.15. A test to determine transverse shear modulus.
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Table 4.1
Transverse shear moduli of unidirectional composites (Herakovich, 1998).

Material Glass—epoxy Carbon-epoxy Aramid-epoxy Boron-Al

Gas (GPa) 41 32 14 49.1

For unidirectional composites, G13 = G12 (see Table 3.5) whereas typical values of
G are listed in Table 4.1 (Herakovich, 1998).

Poisson’s ratios v3; and vz can be determined by measuring the change in the layer
thickness under in-plane tension in directions 1 and 2.

4.2.2. Nonlinear models

Consider Figs. 3.40-3.43 showing typical stress—strain diagrams for unidirectional
advanced composites. As can be seen, the materials demonstrate linear behavior only
under tension. The curves corresponding to compression are slightly nonlinear, whereas
the shear curves are definitely nonlinear. It should be emphasized that this does not mean
that the linear constitutive equations presented in Section 4.2.1 are not valid for these
materials. First, it should be taken into account that the deformations of properly designed
composite materials are controlled by the fibers, and they do not allow the shear strain
to reach the values at which the shear stress—strain curve is highly nonlinear. Second, the
shear stiffness is usually very small in comparison with the longitudinal one, and so is its
contribution to the apparent material stiffness. The material behavior is usually close to
linear even if the shear deformation is nonlinear. Thus, a linear elastic model provides, as
a rule, a reasonable approximation to the actual material behavior. However, there exist
problems to solve in which we need to allow for material nonlinearity and apply one of
the nonlinear constitutive theories discussed below.

First, note that material behavior under elementary loading (pure tension, compression,
and shear) is specified by experimental stress—strain diagrams of the type shown in
Figs. 3.40-3.43, and we do not need any theory. The necessity for a theory occurs if
we are to study the interaction of simultaneously acting stresses. Because for the layer
under study this interaction usually takes place for in-plane stresses o1, o2, and 712 (see
Fig. 4.13), we consider further the plane state of stress.

In the simplest, but quite useful for practical engineering analysis approach, the stress
interaction is ignored completely, and the linear constitutive equations, Egs. (4.55), are
generalized as

o1 s 02 0?2 s 01 712

1= s Vs 2= ps T Vags: Y27 o5
El E2 E2 El G12

(4.57)

where the superscript ‘s’ indicates the corresponding secant characteristics specified by
Egs. (1.8). These characteristics depend on stresses and are determined using experimental
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diagrams similar to those presented in Figs. 3.40-3.43. Particularly, diagrams o1(e1) and
&2(g1) plotted under uniaxial longitudinal loading yield E3 (o1) and v3, (o1), secant moduli
E5(02) and G3,(t12) are determined from experimental curves for o2 (e2) and t12(y12),
respectively, whereas v3, is found from the symmetry condition in Egs. (4.53). In a more
rigorous model (Jones, 1977), the secant characteristics of the material in Egs. (4.57) are
also functions but in this case they are functions of strain energy U in Eq. (2.51) rather
than of individual stresses. Models of this type provide adequate results for unidirectional
composites with moderate nonlinearity.

To describe pronounced nonlinear elastic behavior of a unidirectional layer, we can use
Eg. (4.10). Expanding the complementary potential U into a Taylor series with respect
to stresses, we have

1 1 1
Uc = co + ¢cjjoij + zcijklaij(fkl + §Cijk1mn0ij0k16mn + mcijklmnpqaijaklamngpq
1 1
+ aCijklmnpqrso'ijUklo—mno—pqars + aCijklmnpqrxtwUijoklamnapqO—rsatw + -
(4.58)
where
AU, QFU,
co=Uc (0;j=0), c¢j= - LGl = 3 , etc.
Oij lo;;=0 0ij 90kl |5;,=0, o3y=0

A sixth-order approximation with the terms presented in Eq. (4.58) (where summation
over repeated subscripts is implied) allows us to construct constitutive equations includ-
ing stresses in the fifth power. The coefficients ‘c’ should be found from experiments
with material specimens. Since these coefficients are particular derivatives that do not
depend on the sequence of differentiation, the sequence of their subscripts is not impor-
tant. As a result, the sixth-order polynomial in Eq. (4.58) includes 84 ‘c’-coefficients.
This is clearly far too many for the practical analysis of composite materials. To reduce
the number of coefficients, we can first use some general considerations. Namely,
assume that Uc = 0 and &;; = O if there are no stresses (o;; = 0). Then, ¢cg = 0
and ¢;; = 0. Second, we should take into account that the material under study is
orthotropic. This means that normal stresses do not induce shear strain, and shear stresses
do not cause normal strains. Third, the direction of shear stresses should influence only
shear strains, i.e., shear stresses should have only even powers in constitutive equations
for normal strains, whereas the corresponding equation for shear strain should include
only odd powers of shear stresses. As a result, the constitutive equations will con-
tain 37 coefficients and take the following form (in new notations for coefficients and
stresses)

&1 = ai101 + azolz + agaf’ + a4014 + a5015 + dio1 + 2dro102 + d3622 + 3d401262

+d50‘23 +d661622 + 4d701362 + 3d80‘12022 + 2d90‘10‘23 + d10024 + 5d116f02
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+ 4d12013022 + 3d13012023 + 2d14(71(724 + d1505’ + kloj_‘[fz + kzazl’fz
+ 3k3612t122 + 4/(4013 r122 + 2k50‘17,'142
_ 2 3 4 5 2 3
&2 = b102 + b0y + b305 + baoy + bso; + dio1 + dro + 2d3o102 + dyof
2 2 4 3 2 2 3 5
+ 3ds0105 + deo{ 02 + d7oqy + 2dgoy 02 + 3deoy 0y + 4d100105 + d110]
+ 2d120f0'2 + 3d130’13022 + 2d140120'23 + 5d15010£1 + mlo'g‘l:fz + kzaltlzz
+ 3m20221122 + 4m3<7231122 + 2m402rf2 (4.59)
y12 = C17T12 + C2T132 + €313y + k111207 + m1T1207 + 2koT1201072

+ 2k3‘l,'120'13 + 2m2‘l,'120'23 + 2](4‘[120‘{1 + 4k5‘rfz<712 + 21713‘1:120‘51 + 4m4‘l,'1320'22

For unidirectional composites, the dependence €1 (o1) is linear which means that we should
putds =... di5 =0, k1 = ... ks = 0. Then, the foregoing equations reduce to

&1 = a101 + d1o2
— 2 3 4 5 2 2.2
&2 = b102 + b0y + b30) + baoy + bsoy + dioy + m102T], + 3maoy T4,
+ 4mzo3ts + 2maoyts (4.60)

3 5 2 3 4 3 2
Y12 = C1T12 + €2T1p + €3T)p + m111205 + 2m211202 + ZM3‘L’1262 + 4mgti,05

As an example, consider a specific unidirectional two-matrix fiberglass composite with
high in-plane transverse and shear deformation (see Section 4.4.3 for further details).
The stress—strain curves corresponding to transverse tension, compression, and in-plane
shear are shown in Fig. 4.16. Solid lines correspond to Egs. (4.60) used to approximate
the experimental results (circles in Fig. 4.16). The coefficients a; and d; in Egs. (4.60)
are found using diagrams e1(o1) and e2(o2) which are linear and not shown here. The
coefficients by ... bs and ¢1, ¢, and c¢3 are determined using the least-squares method to
approximate curves 02+(82), o, (£2), and t12(y12). The other coefficients, i.e. my ... ma,
should be determined with the aid of a more complicated experiment involving loading
that induces both stresses o7 and 12 acting simultaneously. This experiment is described
in Section 4.3.

As follows from Figs. 3.40-3.43, unidirectional composites demonstrate pronounced
nonlinearity only under shear. Assuming that the dependence 2 (o2) is also linear, we can
reduce Eqs. (4.60) to

3 5
£1 =a101 +d102, & =b1oy +dio1, Y12 =c1T12 + C2T{p + €37

For practical analysis, an even simpler form of these equations (with ¢3 = 0) can be used
(Hahn and Tsai, 1973).
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05, Ty, MPa
o5(9)
o5(ey)
T12:(%12)
O
O 1 1 1 1 J 82, 7/12
0 2 4 6 8 10

Fig. 4.16. Calculated (solid lines) and experimental (circles) stress—strain diagrams for a two-matrix unidirec-
tional composite under in-plane transverse tension (a;), compression (o, ) and shear (t12).

Nonlinear behavior in composite materials can also be described with the aid of the
theory of plasticity which can be constructed as a direct generalization of the classical
plasticity theory developed for metals and described in Section 4.1.2.

To construct such a theory, we decompose strains in accordance with Eq. (4.15) and
use Egs. (4.16) and (4.18) to determine elastic and plastic strains as

U, U,

e € p p

e — = P =_"F 4.61

B =t = 20 (4.61)

where Ue and U, are elastic and plastic potentials. For elastic potential, elasticity theory
yields

U = C,‘jkla',‘jo'kl (462)
where ¢;;i; are compliance coefficients, and summation over repeated subscripts is

implied. The plastic potential is assumed to be a function of stress intensity, o, which is
constructed for a plane stress state as a direct generalization of Eq. (4.24), i.e.,

0 = ajj0ij + \/aijki0ijOk + Yaijkimn0ijOkiOmn + - - - (4.63)

where the coefficients ‘a’ are material constants characterizing its plastic behavior. Finally,
we use the power law in Eq. (4.27) for the plastic potential.
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To write constitutive equations for a plane stress state, we return to engineering notations
for stresses and strains and use conditions that should be imposed on an orthotropic
material and are discussed above in application to Egs. (4.59). Finally, Egs. (4.15), (4.27)
and (4.61)—(4.63) yield

1 1
e1=a101+dior+no" 1 |:R_ (b1101+c1202)+ =2 <d11612 +2e120107 +621022)]
1 2

1 1
ey =b102+dio1+no" 1 |:R—(b2262 +c1201)+ =2 (d22022+2€210201+612012>:|
1 2

(4.64)

_1b12
yYi2=c1t12+2no" 1R—112

1

where

c=R1+ R

Ry = \/ b1102 + b0 + 1272, + 2120107

3
Ry = \/d11c713 + dzzaéq' + 36120’1202 + 36210’10’22

Deriving Egs. (4.64), we use new notations for coefficients and restrict ourselves to the
three-term approximation for o as in Eq. (4.63).

For independent uniaxial loading along the fibers, across the fibers, and in pure shear,
Egs. (4.64) reduce to

n—1
o1
g1 =aio1+n ( bllolz + 01,3/d11> ,/bll_z + 3/d11
o

Vs
n—1
o2 4.65
g2 =b1o2+n ( b22<722 + 02 dzz) \/bzz—2 + Jdoy (4.65)
o

Jo?
Y2 = |:c1 + Zn\/lezZ (\/sz)nl:| N

If nonlinear material behavior does not depend on the sign of normal stresses, then dqi; =
do2 = 0in Egs. (4.65). In the general case, Egs. (4.65) allow us to describe materials with
high nonlinearity and different behavior under tension and compression.
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As an example, consider a boron-aluminum unidirectional composite whose experi-
mental stress—strain diagrams (Herakovich, 1998) are shown in Fig. 4.17 (circles) along
with the corresponding approximations (solid lines) plotted with the aid of Egs. (4.65).

4.3. Unidirectional anisotropic layer

Consider now a unidirectional layer studied in the previous section and assume that its
principal material axis 1 makes some angle ¢ with the x-axis of the global coordinate
frame (see Fig. 4.18). An example of such a layer is shown in Fig. 4.19.

4.3.1. Linear elastic model

Constitutive equations of the layer under study referred to the principal material coor-
dinates are given by Eqgs. (4.55) and (4.56). We need now to derive such equations for
the global coordinate frame x, y, and z (see Fig. 4.18). To do this, we should transfer
stresses o1, 02, T12, T13, T23 acting in the layer and the corresponding strains &1, €2, y12,
Y13, y23 into stress and strain components oy, oy, Txy, Txz, Ty; aNd €y, €y, Viy, Vizr Vyz
using Egs. (2.8), (2.9) and (2.21), (2.27) for coordinate transformation of stresses and
strains. According to Fig. 4.18, the directional cosines, Egs. (2.1), for this transformation
are (wWetake x' =1,y ' =2,7 =3)

=c, 1, =0 (4.66)

where ¢ = cos¢ and s = sin ¢. Using Egs. (2.8) and (2.9), we get
o1 = axcz + oysz + 21y ycs
09 = axsz + aycz — 27yyCS
712 = (0y — 0x)CS + Tyy (c2 — s2) (4.67)
T13 = TyzC + Ty;S
T12 = —TxzS + Ty C
The inverse form of these equations is
oy = 016 + 025% — 2119Cs

oy = 015 + 02¢% + 211905
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Fig. 4.17. Calculated (solid lines) and experimental (circles) stress—strain diagrams for a boron—aluminum
composite under transverse loading (a) and in-plane shear (b).
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Fig. 4.18. A composite layer consisting of a system of unidirectional plies with the same orientation.

Fig. 4.19. An anisotropic outer layer of a composite pressure vessel. Courtesy of CRISM.

Tyy = (01 — 02)cs + rlg(cz - s2) (4.68)
Tyxz = T13C — 1238

Tyz = T13S + 723C
The corresponding transformation for strains follows from Egs. (2.21) and (2.27), i.e.,

&1 = chz + sysz + VxyCS

£y = sxsz + eycz — VxyCS
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Y12 = 2(5}' —&x)es + ny(cz - 52)
V13 = VxzC + VyzS

V23 = —VxzS + VyzC

or

Ex = 81c2 + 82s2 — Y12CS

&y = 81S2 + 826‘2 + y12C8
Yxy = 2(e1 — €2)cs + V12(62 - 82)
Vxz = Y13C — Y238

Vyz = Y138 + Y23C

165

(4.69)

(4.70)

To derive constitutive equations for an anisotropic unidirectional layer, we substitute
strains, Egs. (4.69), into Hooke’s law, Egs. (4.56), and the derived stresses — into

Egs. (4.68). The final result is as follows

oy = A116x + A128y + A14Yxy
oy = An1ex + An2ey + A24Yxy
Toy = As18x + Agpey + Asayyy
Ty = Ass5Yxz + AspYy:
Ty; = AesVxz T A66Vy:

The stiffness coefficients in these equations are
Al = f1c4 + Ezs4 + 2E1202s2
A2 = Aoy = Eqvip + (E1 + Ep — 2E12)c?s?
A1y = Ay = [Elcz — fzs2 — E12(6‘2 — sz)] cs
Az = E15* 4+ Eoc® + 2E12¢%s?
Aog = Agp = [Elsz — Ezcz + E12(02 — sz)] cs
Ass = (E1 + E2 — 2E1v1p)c’s? + Grp(c? — 52)°
Ass = G13c? + Gozs®
Asg = Ags = (G13 — G23)cs

Ags = G13s® + Goac?

(4.71)

4.72)
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Ey )

——=%  Epp=Ev»+2G1, c¢=C0s¢, s=Ssing¢
1—vpvn

Ei .=

The dependence of stiffness coefficients A,,, in Egs. (4.72) on ¢ has been studied by
Tsai and Pagano (see, e.g., Tsai, 1987; Verchery, 1999). Changing the powers of sin ¢
and cos ¢ in Egs. (4.72) for multiple-angle trigonometric functions, we can reduce these
equations to the following form (Merchery, 1999)

A11 = 81+ So + 253 €05 2¢p + S4C0S4¢p

A1p = =81+ S2 — S4cosd¢

A14 = 535in2¢ + Sy sind¢

Ao = S1 4+ Sy — 285305 2¢ + S4 0S8 4¢p

Agq = §35in2¢ — Sysind¢ (4.73)
Agqa = S1 — S4C054¢

Ass = S5 + Sg C0S 2¢

Asg = 48g5in 2¢

Agg = S5 — Sg C0S2¢

In these equations,

1
S1= 5 (A% + A% — 243, +445,)
1/.0 0 0
1/.0 0
S3 = 4 <A11 - Azz)
1/.0 0 0 0
Sa=3 <A11 + Ay — 247, — 4A44>
1/.0 0
1/.0 0
Se = 2 <A55 - Ass)
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where AS are stiffness coefficients corresponding to ¢ = 0. It follows from Egs. (4.72)
that,

Agl = Elr Agz = Fll)]_z, Ag4 = Ag4 = Agﬁ =0
Agz = FL A?M = G12, Ags = G13, A86 = Go3

As can be seen in Egs. (4.73), there exist the following differential relationships between
tensile and coupling stiffnesses (Verchery and Gong, 1999)

dAyy dAy
— =—4A —— =4A
d(b 14, d(b 24

It can be directly checked that Egs. (4.73) provide three invariant stiffness characteristics
whose forms do not depend on ¢, i.e.,

A11($) + A2(¢) + 2A12(p) = AY + A%, + 249,
Au(d) — A12(9) = AYy — AY (4.74)
Ass(®) + Aes(d) = A5 + Agg

Any linear combination of these equations is also an invariant combination of stiffness
coefficients.

The inverse form of Egs. (4.71) can be obtained if we substitute stresses, Eqgs. (4.67),
into Hooke’s law, Egs. (4.55), and the derived strains in Egs. (4.70). As a result, we arrive
at the following particular form of Eqgs. (2.48) and (2.49)

Oy oy Ty oy Oy Tyy
Ex = /0 — Vxy -~ + Nx,xy , &y = —— — Vyx/—— + My, xy
E; E, ny E, E, ny
Txy Ox Oy Txz Tyz
Vxy = + Nxy,x 7= + Nxy,y = Vxz = ~— + )‘xZ, yZ A~ 4.75
Gy E, E, Gy Gy (4.75)
Ty T
¥z Xz
Vyz = + Ayz,xz
Gyz Gy

in which the compliance coefficients are
1 st 1 2v
E, E1 E2 \Gunz Ei

Yy Vv (11 v 1) 2
£ = < +—+ cos

y Ex Ei

2 2
c s 1 v
M:M:2[____<__£> (cz_sz)}cs
Gy E, E1 Ep 2G1», E;
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1 st A 1 2
o +< —_”21)c2s2 (4.76)

E, E1 E; \Gn Ei

2 2
”y,xy:”xy,yzz[s__c_+< ! _E) (cz—sz):|cs
Gy E, E1 E; \2G12 Ei
1 1 1 2U21) 22, 1 (2 2)?
=4 —+—+==c% +—(C —s )
Gy (El E; Ey G2
2 2

1 22 A A 11 !
c N X2,¥2 yz,xz_( )CS, > + :

Gx. Gz Gz' Gy, Gp \Giz Gz Gy,. Gi Gz

Gz G2

There exist the following dependencies between the coefficients of Eqs. (4.71) and (4.75)

L 1(AA AZ) oy _Vux L e AvaAsn)
Ex D]_ 22444 24 ) > = _Dl 12444 14424

Nx,xy  MNxy,x 1 1 1 2
——=—"=—(AnAu—A»A1), —=-— <A11A44—A )
Gy, E. Di E, Di 14

Ny,xy  TNxy,y 1 1 2
= = (Ao A — A1 A, =— (A11A22—A )
Gy E, D1 Gy D1 12

L _Aw 1A heye_ s As
Gy D3 ’ Gyz D; ' Gyz Gy, D;

Here,
D1 = A11An A — A1AS, — AnA2, — AuA?, +2A10A14A0

Dy = As5Ags — Aée

and
1- Ny, xylxy, y Vxy = Nx, xylxy, y
Ay = —————=, Ap=—-—"—"1=
D3Enyy D3Enyy
A14 _ _nx,xy + Vxyly, xy A22 _ 1-— Nx, xyNxy, y
D3EyGyy ’ D3E,Gyy
Agy = — Ny, xy + Vyxlx, xy = 1 — Veyvyx
D3EGyy D3E.E,
1

Axz,yz
Ass = , Asg=——7—, Ag =
D4yGy, DsGy, DyGy;
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where
D !
= - — VyyV — ) — ) y — U , )
3 ExEVGx} xyVyx Nx, xyNxy, x Ny, xyNxy, y xy My, xyNxy, x
- Vyxnx,xynxy,y)
D4 (1 - )Ucz, yz)\yz, xz)

B zeGyz
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As can be seen in Egs. (4.71) and (4.75), the layer under study is anisotropic in plane
Xy because the constitutive equations include shear—extension and shear—shear coupling
coefficients n and A. For ¢ = 0, the foregoing equations degenerate into Egs. (4.55) and

(4.56) for an orthotropic layer.

The dependencies of stiffness coefficients on the orientation angle for a carbon—-epoxy

composite with properties listed in Table 3.5 are presented in Figs. 4.20 and 4.21.

Uniaxial tension of the anisotropic layer (the so-called off-axis test of a unidirectional
composite) is often used to determine material characteristics that cannot be found in
tests with orthotropic specimens or to evaluate constitutive and failure theories. Such a

Ay GPa
140

120

100

80

60

40

20

O 1 1 1 1 1
0 15 30 45 60 75

|¢°

90

Fig. 4.20. Dependencies of tensile (A11, A22) and shear (Aa4) stiffnesses of a unidirectional carbon—epoxy layer

on the orientation angle.
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Fig. 4.21. Dependencies of coupling stiffnesses of a unidirectional carbon—epoxy layer on the orientation angle.

test is shown in Fig. 4.22. To study this loading case, we should take o, = 7,, = 0 in
Egs. (4.75). Then,

o e} o
&x = _x’ &y = _nyE_X’ Vxy = ny,xE_x (4.77)
X

E)C X

As can be seen in these equations, tension in the x-direction is accompanied not only
with transverse contraction, as in orthotropic materials, but also with shear. This results
in the deformed shape of the sample shown in Fig. 4.23. This shape is natural because
the material stiffness in the fiber direction is much higher than that across the fibers.

Such an experiment, in cases where it can be performed, allows us to determine the
in-plane shear modulus, G12 in principle material coordinates using a simple tensile test
rather than the much more complicated tests described in Section 3.4.3 and shown in
Figs. 3.54 and 3.55. Indeed, if we know E, from the tensile test in Fig. 4.23 and find E1,
E>, and vyp1 from tensile tests along and across the fibers (see Sections 3.4.1 and 3.4.2),
we can use the first equation of Egs. (4.76) to determine

B sin ¢ cos? ¢
 (1/Ex) — (cos* ¢/ E1) — (sin® ¢/E2) 4 (2vp1/E1) sin? ¢ cos? ¢

G2 (4.78)

In connection with this, a question arises as to what angle should be substituted into this
equation to provide the most accurate result. The answer is given in Fig. 4.24, which
displays the strains in principal material coordinates for a carbon—epoxy layer calculated
with the aid of Egs. (4.69) and (4.77). As can be seen in this figure, the most appropriate
angle is about 10°. At this angle, the shear strain y12 is much higher than normal strains
g1 and g7, so that material deformation is associated mainly with shear. An off-axis test



<7
0X<—\
——

Fig. 4.23. Deformation of a unidirectional layer loaded at an angle to fiber orientation.
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Fig. 4.22. An off-axis test.
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Fig. 4.24. Dependencies of normalized strains in the principle material coordinates on the angle of the
off-axis test.

with ¢ = 10° can also be used to evaluate material strength in shear 712 (Chamis, 1979).
Stresses acting under off-axis tension in the principal material coordinates are statically
determinate and can be found directly from Eqs. (4.67) as

01=0,C08%h, 09 =0,5iN%P, T2 = —0,SiNGCOSP (4.79)

Thus, applying stress o, and changing ¢ we can induce proportional loading with different
combinations of stresses o1, 02, and 712 to evaluate putative constitutive or failure theories
for a material under study.

However, the test shown in Fig. 4.23 can hardly be performed because the test fixture
(see Fig. 4.22) restrains the shear deformation of the specimen and induces a corresponding
shear stress. The constitutive equations for the specimen loaded with uniaxial tension as
in Fig. 4.23 and fixed as in Fig. 4.22 follow from Egs. (4.75) if we take o, = 0, i.e.,

oy Ty

&y = — ,—— 4.80

X E, + Mx, xy ny ( )
T o

Vxy = L + Nxy. x - (4.81)

Gy E,
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in which elastic constants are specified by Egs. (4.76). The shear stress, being of a reactive
nature, can be found from Eq. (4.81) if we put y,, = 0. Then,

Ty = —1N) —G Yo
Xy Xy, X X
) »xXg

Substituting this result into Eq. (4.80), we arrive at

Ox

= gs (4.82)
Here,
E
po_ B (4.83)
1- Nx, xyNxy, x

is the apparent elastic modulus that can be found from the test shown in Fig. 4.22. As
follows from Eq. (4.83), E2, in general, does not coincide with E, as used in Eq. (4.78)
for Gq».

Thus, measuring o, and ¢, we can determine E, from Eq. (4.82) only under the condi-
tion E2 = E,, which means that the shear—extension coupling coefficient n must be zero.
Applying Eqgs. (4.76) and assuming that ¢ # 0 and ¢ # 90°, we arrive at the following
condition providing n = 0

sin? g = €1 (4.84)
e
in which
14 vy 1 1+vy 14 1
e = — , €)= =+ - —
Eq 2G12 Eq E) G12

Since 0 < sin?¢ < 1, there exist two cases in which Eq. (4.84) is valid. The first case
corresponds to the following set of inequalities

e1>20, >0, e2>ea (4.85)
whereas for the second case,
e1 <0, e<0, e<e (4.86)

To be specific, suppose that E1 > E». Then, taking into account the symmetry condition
vi2E1 = vo1 E> We have

1+ve 14wy
>

4.87
5 El (4.87)
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Consider the first set of inequalities in Egs. (4.85) and assume that the first of them, which
has the following explicit form

1+ vy - 1
Ei T 2Gp

(4.88)

is valid. Then, Eq. (4.87) yields

14+ve 1+wvn 1 14+ 1
> > o o -
E> Eq 2G12 E; 2G12

Matching this result with the last inequality in Egs. (4.85) presented in the form

1+ve 1

4.89
E, T 2Gp ( )

we can conclude that if the first condition in Eqs. (4.85) is valid, then the last of these
conditions is valid too.
Consider the second condition in Egs. (4.85) and write it in explicit form, i.e.,

1+v12_|_1+V21 >i

> (4.90)
E; E; G2

Transforming Eq. (4.87) and using Eq. (4.89), we have

1 1 1 1
+"12+ +V21>2 +VZ12_
E> Eq Eq G2

which means that the condition in Eq. (4.90) is valid.
So, the set of conditions in Egs. (4.85) can be reduced to one inequality in Eq. (4.88),
which can be written in a final form as

Ep
Gip>—"—— 491
=20+ v (4-99)
Consider conditions (4.86) and assume that the last of them, which can be presented in
the following explicit form

1—|—v12< 1

E> 2G12

(4.92)

is valid. Using Egs. (4.87) and (4.92), we get

14+va 1+ 1 14 vy 1
< < or <
Eq E> 2G12 Eq 2G 12
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Since the first condition in Egs. (4.86) can be presented as

1+ - 1
E1 T 2Gp

we can conclude that it is satisfied.
Consider the second inequality in Eqgs. (4.86) and write it in an explicit form, i.e.,

14+vy 14w 1
- <
E; E; G2

(4.93)

Using Eqs. (4.87) and (4.92), we get

1 1 1 1
+V21+ +V12<2 +V12§_
Eq Ep Ey G

which means that the condition in Eq. (4.93) is satisfied.
So, the set of conditions in Egs. (4.86) is reduced to one inequality in Eq. (4.92), which
can be written in the following final form

E;

G T — 4.94
1252(1+v12) (4.94)

Thus, Eq. (4.84) determines the angle ¢g for the orthotropic materials whose mechanical
characteristics satisfy the conditions in Egs. (4.91) or (4.94). Such materials, being loaded
at an angle ¢ = ¢o, do not experience shear—stretching coupling. The shear modulus can
be found from Eq. (4.78) in which E, = o, /ey, Where o, and ¢, are the stress and the
strain determined in the off-axis tension test shown in Fig. 4.22.
Consider as examples unidirectional composites with typical properties (Table 3.5).

(1) For fiberglass—epoxy composite, we have E; = 60GPa, E; = 13GPa,

G112 = 3.4 GPa, vi2 = 0.065, vo1 = 0.3

Calculation in accordance with Egs. (4.91) and (4.94) yields

Eq E
———— =23.08GPa, —————— =6.1GPa
2(1 4 vp1) 21+ v12)

Thus, the condition in Eq. (4.94) is satisfied, and Eq. (4.84) gives ¢g = 54.31°.
(2) For aramid—epoxy composite, E; = 95GPa, E; = 5.1GPa, Gi» =1.8GPa,
vi2 = 0.018, vy =0.34

E E
! _36.45GPa, 2

I — <~  =25GPa, and ¢g = 61.45°
201+ v21) 2(1 + v12) %

(3) For carbon—-epoxy composite with £; = 140GPa, E; = 11 GPa, G12 = 5.5GPa,
vi2 = 0.021, vo1 = 0.27, we have

E E
! _5512GPa, 2

—_— ——— =5.39GPa
2(1+ v21) 2(1 4+ v12)
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As can be seen, the conditions in Egs. (4.91) and (4.94) are not satisfied, and angle ¢g
does not exist for this material.

As can be directly checked with the aid of Egs. (4.76), there exists the following rela-
tionship between the elastic constants of anisotropic materials (\erchery and Gong, 1999)

a4 <i> — oMy

do \ E, Gy
This equation means that ., = 0 for materials whose modulus E, reaches the extremum
value in the interval 0 < ¢ < 90°. The dependencies of E,/E; on ¢ for the materials
considered above as examples, are shown in Fig. 4.25.

As can be seen, curves 1 and 2 corresponding to glass and aramid composites reach
the minimum value at ¢o = 54.31° and ¢g = 61.45°, respectively, whereas curve 3 for
carbon composite does not have a minimum at 0 < ¢ < 90°.

The dependence E,(¢) with the minimum value of E, reached at ¢ = ¢, where
0 < ¢ < 90°, is typical for composites reinforced in two orthogonal directions. For
example, for a fabric composite having E1 = E» and vi2 = vp1, Eq. (4.84) yields the
well-known result ¢ = 45°. For a typical fiberglass fabric composite with £1 = 26 GPa,
Eo =22 GPa, G1p = 7.2 GPa, vi» = 0.11, vp; = 0.13, we have

E E
! _115GPa, 2

= — %  —=99GPg and ¢p = 49.13°
2(1 1 v21) 2(1+ v12) %o

¢=61.45°

Fig. 4.25. Dependencies of E,/E1 on ¢ for fiberglass (1), aramid (2) and carbon (3) epoxy composites.
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In conclusion, it should be noted that the actual application of Eq. (4.78) is hindered by
the fact that the angle ¢g specified by Eq. (4.84) depends on G12, which is not known and
needs to be determined from Eq. (4.78). To find G12, we actually need to perform several
tests for several values of G2 in the vicinity of the expected value and the corresponding
values of ¢ following from Eq. (4.84) and to select the correct value of G12, which
satisfies in conjunction with the corresponding value of ¢g, both equations — Egs. (4.78)
and (4.84) (Morozov and Vasiliev, 2003).

Consider the general case of an off-axis test (see Fig. 4.22) for a composite specimen
with an arbitrary fiber orientation angle ¢ (see Fig. 4.26). To describe this test, we need
to study the coupled problem for an anisotropic strip in which shear is induced by tension
but is restricted at the strip ends by the jaws of a test frame as in Figs. 4.22 and 4.26.
As follows from Fig. 4.26, the action of the grip can be simulated if we apply a bending
moment M and a transverse force V such that the rotation of the strip ends (y in Fig. 4.23)
will become zero. As a result, bending normal and shear stresses appear in the strip that
can be analyzed with the aid of composite beam theory (Vasiliev, 1993).

To derive the corresponding equations, introduce the conventional assumptions of beam
theory according to which axial, u., and transverse, u,, displacements can be presented as

uy =ux)+y0, uy=rv(x)

where u and 6 are the axial displacement and the angle of rotation of the strip cross section
x = constant and v is the strip deflection in the xy-plane (see Fig. 4.26). The strains
corresponding to these displacements follow from Egs. (2.22), i.e.,

9
&y = aux =u' +y0 =¢+ y6
~ (4.95)
duy  Ouy ,
Ty =gy Ty SOt

where () =d ( ) /dx and ¢ is the elongation of the strip axis. These strains are related
to stresses by Eqs. (4.75) which reduce to

Ox Txy
5x=E_x+7lx,xyG_xy vos
ny:&'i'nwxa_x o
Gyy T Ey
y
o o
- N
= 0 =
- | AM

Fig. 4.26. Off-axis tension of a strip fixed at the ends.
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The inverse form of these equations is

oy = Buieyx + Bl4yxys Txy = Baiey + B44ny (497)
where
E Gyy
Bp=— > By=-— 2
1- Nx, xyNxy,x 1- Nx, xyMxy, x
(4.98)
Exny, Xy ny’?xy, X
Bia = By = — = -
1- Nx, xyMxy, x 1- Nx, xyNxy, x

Now, decompose the strip displacements, strains, and stresses into two components
corresponding to

(1) free tension (see Fig. 4.23), and

(2) bending.

For free tension, we have 7,, = 0 and v = 0. So, Egs. (4.95) and (4.96) yield

e =e1+y0;, v =601

( @ (4.99)
s =2 Wy
X Ex ’ Xy Y E

Here, &1 = u} and 0)51) = o = F/ah, where F is the axial force applied to the strip,

a the strip width, and 4 is its thickness. Since o,£1> = constant, Egs. (4.99) give

o 1 o F
01 = nxy, x— =constant, ¢y =¢e1 = —

= — 4.100
E, * E. ah ( )

Adding components corresponding to bending (with index 2), we can write the total
displacements and strains as

uy =ui+up+y0r+02), uy=ruv
ex =61+ 40, Yoy =01+02+ 1)
The total stresses can be expressed with the aid of Egs. (4.97), i.e.,
ox = B11 (1 + &2 + y05) + B1a (61 + 62 + v5)
Tey = Bag (61 + €2 + y05) + Baa (61 + 62 + v5)
Transforming these equations with the aid of Egs. (4.98) and (4.100), we arrive at
ox =0 + Bi1 (€2 + y65) + Bia (62 + v5)

(4.101)
Tvy = Bag (€2 + y65) + Baa(62 + v5)
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These stresses are statically equivalent to the axial force P, the bending moment M, and
the transverse force V/, which can be introduced as

a/? a/? a/2
P= h/ ody, M= h/ oyydy, V= h/ Tyydy
—a/2 —a/2 —a/2

Substitution of Egs. (4.101) and integration yields

P =ah[o + Bugz + Bia (62 + )], (4.102)
Cl3 ,

M = Buh6; (4.103)

V = ah [Baig2 + Bas (62 + v5)] (4.104)

These forces and moments should satisfy the equilibrium equation that follows from
Fig. 4.27, i.e.,

P=0, V=0, M=V (4.105)
Solution of the first equation is P = F = oah. Then, Eq. (4.102) gives

_Bu

B, 02+ 05) (4.106)

&) =

The second equation of Eqgs. (4.105) shows that V = C1, where C1 is a constant of
integration. Then, substituting this result into Eq. (4.104) and eliminating e with the aid
of Eg. (4.106), we have

C1

b2+ U/Z - ah§44

(4.107)
where §44 = B4 — B14Bs;1.

Taking in the third equation of Egs. (4.105) V = (1 and substituting M from
Eq. (4.103), we arrive at the following equation for 6,

12Cq

0l —
2 a3hByy

V + V'’ dx

\%— P+ P’ dx

M + M’ dx

Fig. 4.27. Forces and moments acting on the strip element.
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Integration yields

. 6C,
- ashBu1

6o + Cox + C3

The total angle of rotation 6 = 01 + 62, where 01 is specified by Egs. (4.100), should be
zero at the ends of the strip, i.e., 6(x = £I/2) = 0. Satisfying these conditions, we have

3¢y , 12 o
Op= ——(2x"— =) — — 4,108
2 a3h311 ( X 2 Nxy, x Ex ( )

Substitution into Eq. (4.107) and integration allows us to find the deflection

C1x 3C1x 2x2 ]2 00X
- _ — 4 C 4.109
V2 ahBas a3h By, < 3 2 + Nxy, x E. + Cy ( )

This expression includes two constants, C1 and C4, which can be determined from the
boundary conditions va2(x = £1/2) = 0. The final result, following from Egs. (4.100),
(4.108), and (4.109), is

_ -2 )
oXx B11+1 By (3/2 —2x
U:li]xy’x—|:l— ( )

20—
b S Tk B (4.110)

301% Baa (252 — 1/2)
Ex By +1°Bu

0= Nxy, x

where I =1/a and ¥ = x/I. The deflection of a carbon-epoxy strip having ¢ = 45° and
[ = 10 is shown in Fig. 4.28.
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Fig. 4.28. Normalized deflection of a carbon-epoxy strip (¢ = 45°, [ = 10).
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Now, we can write the relationship between modulus E, corresponding to the ideal test

shown in Fig. 4.23 and apparent modulus E2 that can be found from the real test shown
in Figs. 4.22 and 4.26. Using Egs. (4.98), (4.100), (4.106), and (4.110), we finally get

_ a
o=E¢

where

Ex
1- {Exrlx, xyTxy, x/[Ex +72ny(l = Nx, xylxy, x)]}

E% =

Consider two limiting cases. For an infinitely long strip (I — oc), we have E2 = E,. This
result corresponds to the case of free shear deformation specified by Egs. (4.77). For an
infinitely short strip (I — 0), taking into account Eqgs. (4.98), we get

Ey

El= —— "
1- Nx, xyNxy, x

X

= Bn

In accordance with Eq. (4.97), this result corresponds to a restricted shear deformation
(vxy = 0). For astrip with finite length, E, < E2 < B11. The dependence of the normalized
apparent modulus on the length-to-width ratio for a 45° carbon-epoxy layer is shown in
Fig. 4.29. As can be seen, the difference between E2 and E, becomes less than 5%
for [ > 3a.

E2/E,
14r

1.3
1.2

11

Fig. 4.29. Dependence of the normalized apparent modulus on the strip length-to-width ratio for a 45° carbon-
epoxy layer.
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4.3.2. Nonlinear models

Nonlinear deformation of an anisotropic unidirectional layer can be studied rather
straightforwardly because stresses o1, o2, and 712 in the principal material coordinates
(see Fig. 4.18) are statically determinate and can be found using Egs. (4.67). Substituting
these stresses into the nonlinear constitutive equations, Egs. (4.60) or Egs. (4.64), we can
express strains 1, €2, and y12 in terms of stresses oy, oy, and z.,. Further substitution of
the strains €1, €2, and y12 into Eqs. (4.70) yields constitutive equations that link strains
&x, &y, and yy, With stresses oy, oy, and Ty, thus allowing us to find strains in the global
coordinates x, y, and z if we know the corresponding stresses.

As an example of the application of a nonlinear elastic material model described by
Egs. (4.60), consider a two-matrix fiberglass composite (see Section 4.4.3) whose stress—
strain curves in the principal material coordinates are presented in Fig. 4.16. These curves
allowed us to determine coefficients ‘6* and ‘c’ in Egs. (4.60). To find the coupling
coefficients ‘m,” we use a 45° off-axis test. Experimental results (circles) and the corre-
sponding approximation (solid line) are shown in Fig. 4.30. Thus, the constructed model
can be used now to predict material behavior under tension at any other (different from 0,
45, and 90°) angle (the corresponding results are given in Fig. 4.31 for 60°) or to study
more complicated material structures and loading cases (see Section 4.5).

As an example of the application of the elastic—plastic material model specified by
Eq. (4.64), consider a boron-aluminum composite whose stress—strain diagrams in prin-
cipal material coordinates are shown in Fig. 4.17. Theoretical and experimental curves
(Herakovich, 1998) for 30 and 45° off-axis tension of this material are presented in
Fig. 4.32.

oy, MPa
16

12

Fig. 4.30. Calculated (solid line) and experimental (circles) stress—strain diagram for 45° off-axis tension of a
two-matrix unidirectional composite.
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Fig. 4.31. Theoretical (solid line) and experimental (dashed line) stress—strain diagrams for 60° off-axis tension
of a two-matrix unidirectional composite.
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Fig. 4.32. Theoretical (solid lines) and experimental (dashed lines) stress-strain diagrams for 30° and 45°
off-axis tension of a boron-aluminum composite.

4.4. Orthogonally reinforced orthotropic layer

The simplest layer reinforced in two directions is the so-called cross-ply layer that
consists of alternating plies with 0 and 90° orientations with respect to the global coordi-
nate frame x, y, and z as in Fig. 4.33. Actually, this is a laminated structure, but being
formed with a number of plies, it can be treated as a homogeneous orthotropic layer (see
Section 5.4.2).
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‘z

Fig. 4.33. A cross-ply layer.

4.4.1. Linear elastic model

Let the layer consist of m longitudinal (0°) plies with thicknesses hg) i = 1,

2,3,...,m) and n transverse (90°) plies with thicknesses hé{)) (j=1,2,3,...,n) made
from one and the same composite material. Then, stresses o, oy, and t,, that comprise
the plane stress state in the global coordinate frame can be expressed in terms of stresses
in the principal material coordinates of the plies as

m n
_ (@) 7 (D) ()7 ()
och = E oy hy” + E 0," hgg
i=1 j=1

m

n
osh =) 0 "hg’ + 3 01"y (4.111)
i=1 j=1

m n
_ @), () )y ()
Tyh = Z Tiphy + Z 13 hgp
i=1 j=1

Here, A is the total thickness of the layer (see Fig. 4.33), i.e.,
h = ho + hgo

where
m . n .
ho =20 o= 34
i=1 j=1

are the total thicknesses of the longitudinal and transverse plies.
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The stresses in the principal material coordinates of the plies are related to the
corresponding strains by Egs. (3.59) or Egs. (4.56)

crl(i’ D= fl (SY’ 9 + vlzeg’ j))
az(i’j) _ Fz (Eg’ J) + v218¥’ ./)) (4.112)

()]

w5 = Grayj; "

in which, as earlier El,z = E1.2/(1 —viv1) and Eqvip = Eovp1. Now assume that
the deformation of all the plies is the same as that of the deformation of the whole layer,
i.e., that

() i _ ()

() i
=& =ex, ‘95)281 =& V2 =V2 = Vxy

()
& =

Then, substituting the stresses, Eqgs. (4.112), into Eqgs. (4.111), we arrive at the following
constitutive equations

oy = A&y + Ar2gy
oy = An1ex + Anoey (4.113)
Txy = A4ayxy

in which the stiffness coefficients are

A11 = E1ho + Eohgo, A2 = E1hgo + E2ho

B B (4.114)
A1p = A1 = Eqvip = Epva1,  Au =G
and
- _ho - hgo
ho=—, hg=—
0=" 90
The inverse form of Eqgs. (4.113) is
Oy oy oy Oy Txy
%, D D, & - 4.115
Ex E. Vxy Ey Ey Ey Vyx E. Vxy ny ( )
where
2 2
Ex=Au— 2, E,=Ap—-2 G.=Au
(4.116)
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Fig. 4.34. Pure transverse shear of a cross-ply layer.

To determine the transverse shear moduli G, and G, consider, e.g., pure shear in the
xz-plane (see Fig. 4.34). It follows from the equilibrium conditions for the plies that

0y =) =t 1y =) =1 (4.117)

The total shear strains can be found as

1 (& . " .
Yee =7 Z via ho + Z v53 hoo
i=1 j=1
(4.118)
1o ~ ()
Vyz = n Z Vo3 ho + Z Y13 heo
i=1 j=1
where in accordance with Egs. (4.56)
@, J) G, J)
G.j) _ Us G.j) _ o3
yd) = A8 =2 (4.119)
13 G]_3 23 G23

Substituting Egs. (4.119) into Egs. (4.118) and using Egs. (4.117), we arrive at

Tz _ Tyz
Vxz = =—>» Vyz = G
yz

where

1 Eo Ego 1 _ EO EQO

Gy: Gz G’ G_yz ~ Ga  Gi3
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4.4.2. Nonlinear models

The nonlinear behavior of a cross-ply layer associated with nonlinear material response
under loading in the principal material coordinates (see, e.g., Figs. 4.16 and 4.17) can
be described using nonlinear constitutive equations, Egs. (4.60) or Egs. (4.64) instead of
linear equations (4.113).

However, this layer can demonstrate nonlinearity which is entirely different from that
studied in the previous sections. This nonlinearity is observed in the cross-ply layer
composed of linear elastic plies and is caused by microcracking of the matrix.

To study this phenomenon, consider a cross-ply laminate consisting of three plies as in
Fig. 4.35. Equilibrium conditions yield the following equations

2 (lel_ll + szzz) =0

_ _ (4.120)
2 (Jy]_h]_ + Uyzhz) =0
in which
hi=hi/h, hy=ha/h, h=2(h1+ hy)
The constitutive equations are
ox1,2 = E1,2(ex +v12,218y)
(4.121)

oy1,2 = E2 1(gy + v21,126x)

in which El’z = E1,2/(1 — vipv21). We assume that strains ¢, and &, do not change
through the laminate thickness. Substituting Eqgs. (4.121) in Egs. (4.120), we can find
strains and then stresses using again Eqgs. (4.121). The final result is

0 E1, 2[Esh1 + Evrhy — E1,2V1|2_2’ 21(h1 + h)]
2[(E1h1 + Ezh2)(Ezh1 + Ethp) — E2v2,(h1 + h2)?]

O0x1,2 =

Fig. 4.35. Tension of a cross-ply laminate.
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To simplify the analysis, neglect Poisson’s effect, i.e., taking vi> = vp1 = 0. Then

oEq ok

= op=ol=——" (4.122)
2(E1hy + E2h)) 2(E1h1 + E2h))

0
Ox1 = 0q

Consider, for example, the case 11 = hp = 0.5 and find the ultimate stresses corresponding
to the failure of longitudinal plies or to the failure of the transverse ply. Putting af = Ef
and o =5, we get

E E
7V =57} <1+ E—i) . 7@ =5} <1+ E—;)

The results of calculation for the composites listed in Table 3.5 are presented in Table 4.2.
As can be seen, E)(Cl) > E)(Cz). This means that the first failure occurs in the transverse

ply under stress
_ Ei—
o =5 =20} <h2 T E—lhl) (4.123)
2

This stress does not cause failure of the whole laminate because the longitudinal plies
can carry the load, but the material behavior becomes nonlinear. Actually, the effect
under consideration is the result of the difference between the ultimate elongations of the
unidirectional plies along and across the fibers. From the data presented in Table 4.2 we
can see that for all the materials listed in this table g1 > z,. As a result, transverse plies
drawn under tension by longitudinal plies that have much higher stiffness and elongation
fail because their ultimate elongation is smaller. This failure is accompanied with a system
of cracks parallel to the fibers which can be observed not only in cross-ply layers but also
in many other laminates that include unidirectional plies experiencing transverse tension
caused by interaction with the adjacent plies (see Fig. 4.36).

Now assume that the acting stress o > &, where & is specified by Eq. (4.123) and
corresponds to the load causing the first crack in the transverse ply as in Fig. 4.37. To study

Table 4.2
Ultimate stresses causing the failure of longitudinal (Eﬁl)) or transverse (5;2)) plies and deformation

characteristics of typical advanced composites.

o(MPa); ¢ (%) Glass— Carbon— Carbon-  Aramid- Boron- Boron-  Carbon-  Al,O3-Al

epoxy epoxy PEEC epoxy epoxy Al Carbon
s 2190 2160 2250 2630 1420 2000 890 1100
7@ 225 690 1125 590 840 400 100 520
31 3 1.43 15 2.63 0.62 0.50 0.47 0.27
) 0.31 0.45 0.75 0.2 0.37 0.1 0.05 0.13

e1/€ 9.7 3.2 2 13.1 1.68 5 9.4 2.1
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Fig. 4.36. Cracks in the circumferential layer of the failed pressure vessel induced by transverse (for the vessel,
axial) tension of the layer.
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Fig. 4.37. A cross-ply layer with a crack in the transverse ply.

the stress state in the vicinity of the crack, decompose the stresses in the three plies shown
in Fig. 4.37 as

Oyl = 0y3 = 010 +o01, Oy = ag — 0y (4.124)

and assume that the crack induces also transverse through-the-thickness shear and normal
stresses

Ty =T, O0z;=s;, =123 (4.125)
The stresses o and o in Egs. (4.124) are specified by Egs. (4.122) with o = &, cor-
responding to the acting stress under which the first crack appears in the transverse ply.

Stresses o1 and o2 should be self-balanced, i.e.,

o1h1 = oo2hs (4.126)
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The total stresses in Egs. (4.124) and (4.125) should satisfy equilibrium equations,
Eq. (2.5), which yield for the problem under study

007 afxzi aazi afxzi
=0, =0 4,127
ox dz dz ox ( )
where i =1, 2, 3.

To simplify the problem, suppose that the additional stresses o1 and o> do not depend
on z, i.e., that they are uniformly distributed through the thickness of longitudinal plies.
Then, Egs. (4.127), upon substitution of Egs. (4.124) and (4.125), can be integrated with
respect to z. The resulting stresses should satisfy the following boundary and interface
conditions (see Fig. 4.37)

1(z=h1+hz) =0 s1(z=h1+h2) =0

11(z = h2) = 12(z = h2) 51(z = h2) = s2(z = h2)
12(z = —h2) = 13(z = —h2) so(z = —hy) = s3(z = —hy)
13(z = —h1—h2) =0 s3(z=—h1—h2) =0

Finally, using Eq. (4.126) to express o1 in terms of o», we arrive at the following stress
distribution (Vasiliev et al., 1970)

0 h 0
Oyl =0x3 =0y + UZ(X)h—, 0x2 =0y — 02(x)
1

h h
1 =—"0j(x)z1, T=03(x)z T3=——0y()22 (4.128)
h1 h1
1= g ) (021, s2 = —Eoé’(X) (z — hihy — hz) S3= g 5 (X)z5
where

z21=z—hi1—hy, z2=z+hi+hyand( ) =d( )/dx

Thus, we need to find only one unknown function: o2(x). To do this, we can use the
principle of minimum strain energy (see Section 2.11.2) according to which the function
o2(x) should deliver the minimum value of

1! 3 ol o2 Vyzi 2
W. = —/ / <i I R R S0 Y T e < )dx (4.129)
7 2 Jo ; hi Eyi E; E; e Gyzi

where Exy = Ex3 = E1, Ex2 = E, E;i = E2, Gyp1 = Gy3 = G13, G2 = Gog,
Vrzl = Vxz3 = V13, Vxz2 = v23 and E1, E>, G13, G23, v13, V23 are elastic constants of a
unidirectional ply. Substituting stresses, Eqgs. (4.128), into the functional in Eq. (4.129),
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integrating with respect to z, and using the traditional procedure of variational calculus
providing 8 W, = 0, we arrive at the following equation for o2 (x)

4 _
dx4 “ dx? +blo2 =0

in which
1] h h v 2 hiv 1 1 1
P e T e e e S B S (S £
d| 3Gy 3G13 E> 3 3E> d\hE1 hyE>

1 1 3 3 2 2 2
=2_E2 g<h1+h2)—§h2(hl+h2)+h2(hl+h2)

The general solution for this equation is
o9 = e K% (¢q sinkox + ¢2 cOSkax) + €% (3 sin kox + ca COS kox) (4.130)

where

1 1
k= 5@ +5), k=502~ a?)

Suppose that the strip shown in Fig. 4.37 is infinitely long in the x-direction. Then, we
should have o1 — 0 and oo — 0 for x — oo in Egs. (4.124). This means that we should
put c3 = ca = 0 in Eq. (4.130). The other two constants, ¢1 and cz, should be determined
from the conditions on the crack surface (see Fig. 4.37), i.e.,

o2(x=0)=0, 71, 2x=0=0
Satisfying these conditions, we obtain the following expressions for stresses

h k1 .
0x1 =0y3 =00 + ozoh—ie_klx (k_; sinkox + COSkzx)

k1 .
Ox2 = 0F [1 — g kax (k_; sin kpx + cos kgx):|
(4.131)

0
0. .
Tx2 = ——ki (kf + k%) ze K% sin kox

0
0. .
o = —ﬁ (kf n k§) (22 — ho(h1 + ho)le™ 1% (ky sin kox — ky COS kpx)

As an example, consider a glass—epoxy sandwich layer with the following
parameters: h; = 0.365mm, hy; = 0.735mm, E; = 56GPa, E; = 17GPa,
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G13 = 5.6GPa, Go3 =6.4GPa, vi3 = 0.095, 13 = 0.35, 55 = 255MPa. The
distributions of stresses normalized to the acting stress o are presented in Fig. 4.38.
As can be seen, there is a stress concentration in the longitudinal plies in the vicinity
of the crack, whereas the stress in the transverse ply, being zero on the crack surface,
practically reaches 020 at a distance of about 4 mm (or about twice the thickness of the
laminate) from the crack. The curves have the expected forms for this problem of stress
diffusion. However, analysis of the second equation of Egs. (4.131) allows us to reveal
an interesting phenomenon which can be demonstrated if we increase the vertical scale of
the graph in the vicinity of points A and B (see Fig. 4.38). It follows from this analysis
that stress o2 becomes equal to af at point A with coordinate

1 k
xqa=—|m—tan~1(-2
ko k1

and reaches a maximum value at point B with coordinate xg = 7t/k2. This maximum
value

kq
ok
O_;l;ax =020 <l+e k2>

(041, Oy)lo
3
25
Ox1
2 -
010
15 — 1
| B
0 = —
o. |
2| A |
1} [
0
o. __
-2 = ooy
05 A B
Ox2
0 1 1 1 1 X, mm
0 4 8 12 16

Fig. 4.38. Variation of normalized normal stresses in longitudinal (o,1) and transverse (oy2) plies with a distance
from the crack.
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Fig. 4.39. A system of cracks in the transverse ply.

is higher than stress 020 which causes failure of the transverse ply. This means that a
single crack cannot exist. When stress 020 reaches its ultimate value E;, a regular system
of cracks located at a distance of [ = m/kp from one another appears in the transverse
ply (see Fig. 4.39). For the example considered above, [ = 12.6 mm.

To study the stress state of a layer with cracks shown in Fig. 4.39, we can use solution
(4.130) but should write it in a different form, i.e.,

o2 = CySinhkyx sinkax + Co sinh k1x cos kox
+ C3cosh kix Sin kox + C4 cosh k1x COS kox (4.132)
Since the stress state of an element —Ic/2 < x < [;/2 is symmetric with respect to
coordinate x, we should put C; = C3 = 0 and find constants C1 and C4 from the
following boundary conditions

ox2(x =1c/2) =0, T2(x=10/2)=0 (4.133)

where I; = 1t/ k3.
The final expressions for stresses are

h k . .
0yl =043 =olo+02°h—lzc (é cosh k1.x coskpx +sinhkyx sin kzx)
0 1 kl . -
Ox2 =07 1—; Ecoshklxcosk2x+smhk1xsmk2x

0
tea= 2 (K443 ) zsinh kg coskax (4.134)
koc

0
0,2= _G—ZC (kf+k§) [12 —ha(h1 +h2)] (k1 coshkix coskox —kpsinhkixsinkox)

in which ¢ = sinh(mtky/2k»).
For the layer considered above as an example, stress distributions corresponding to
o = o = 44.7 MPa are shown in Figs. 4.40 and 4.41. Under further loading (¢ > &), two
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Fig. 4.40. Distribution of normalized stresses in longitudinal (o, 1) and transverse (o2) plies between the cracks.

modes of the layer failure are possible. The first one is the formation of another transverse
crack separating the block with length /¢ in Fig. 4.39 into two pieces. The second one is
a delamination in the vicinity of the crack caused by stresses 7., and o, (see Fig. 4.41).
Usually, the first situation takes place because stresses z,, and o, are considerably lower
than the corresponding ultimate stresses, whereas the maximum value of o, is close to
the ultimate stress 020 =0, . Indeed, the second equation of Egs. (4.134) yields

o = 0y(x =0) = 020(1 —k)

where k = k1/(koc). For the foregoing example, k = 3.85 x 10~*. So, o5 is so close
to 020 that we can presume that under practically the same load, another crack occurs in
the central cross section x = 0 of the central block in Fig. 4.39 (as well as in all the
other blocks). Thus, the distance between the cracks becomes I = 7t/2k, (6.4 mm for
the example under study). The corresponding stress distribution can be determined with
the aid of Egs. (4.128) and (4.132), and boundary conditions (4.133) in which we should
take I = m/2k. The next crack will again appear at the block center and this process
will be continued until failure of the longitudinal plies.

To plot the stress—strain diagram of the cross-ply layer with allowance for the cracks
in the transverse ply, we introduce the mean longitudinal strain

2 zc/zd hy ]
= hale Jo x/o R
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Fig. 4.41. Distribution of normalized shear (zy;2) and transverse normal stresses (o;2) at the ply interface
(z = h2) between the cracks.

where
1
£x2 = —(0x2 — V23072)
E;

For a layer with the properties given above, such a diagram is shown in Fig. 4.42 with
a solid line and is in good agreement with experimental results (circles). The formation
of cracks is accompanied with horizontal jumps and reduction in material stiffness. The
stress—strain diagram for the transverse layer that is formally singled out of the diagram
in Fig. 4.42 is presented in Fig. 4.43.

To develop a nonlinear phenomenological model of the cross-ply layer, we need to
approximate the diagram in Fig. 4.43. As follows from this figure and numerous exper-
iments, the most suitable and simple approximation is that shown by the dashed line.
It implies that the ply is linear elastic until its transverse stress o, reaches its ultimate
value EQL, and after that o = Ej, i.e., oo remains constant up to failure of the longitu-
dinal plies. This means that under transverse tension, a unidirectional ply is in a state of
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Fig. 4.42. Stress—strain diagram for a glass—epoxy cross-ply layer: o experiment;
tion; = = = model.

theoretical predic-
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Fig. 4.43. Stress—strain diagram for a transverse ply.

permanent failure and takes from the longitudinal plies the necessary load to support this
state (Vasiliev and Elpatievskii, 1967). The stress—strain diagram of the cross-ply layer
corresponding to this model is shown in Fig. 4.42 with a dashed line.

Now consider a general plane stress state with stresses oy, oy, and 7., as in Fig. 4.44.
As can be seen, stress o, induces cracks in the inner ply, stress o, causes cracks in
the outer orthogonal plies, whereas shear stress 7., can give rise to cracks in all the
plies. The ply model that generalizes the model introduced above for a uniaxial tension is
demonstrated in Fig. 4.45. To determine strains corresponding to a given combination of
stresses oy, oy, and tyy, we can use the following procedure.
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Fig. 4.44. A cross-ply layer in a plane stress state.
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Fig. 4.45. Stress—strain diagrams of a unidirectional ply simulating its behavior in the laminate and allowing
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for cracks in the matrix.

For the first stage of loading (before the cracks appear), the strains are calculated with
the aid of Egs. (4.114) and (4.115) providing ¢{” (o), ¢{" (o), and 1.} (o), where
o = (0x, 0y, Tyy) is the given combination of stresses. Using Egs. (4.112), we find
stresses o1, o2 and 712 in principal material coordinates for all the plies.

We determine the combination of stresses o7}, o5, and 75, which induce the first
failure of the matrix in some ply and indicate the number of this ply, say k, applying
the appropriate strength criterion (see Section 6.2). Then, the corresponding stresses
o* = (o], oy*, r;:y) and strains 8)({1) (c™), s§l) (c™), and yx(;) (™) are calculated.

To proceed, i.e., to study the material behavior for o > o*, we need to consider two
possible cases for the layer stiffnesses. For this purpose, we should write Egs. (4.114)

for stiffness coefficients in a more general form, i.e.,
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Al = ZE(ll)hé’) +ZE(]) 5(96), ZEél)hg) —i—ZE(]) sl
- )7 (D7) @) ()
[ 4 i i
A=Y v E) hy +Z vIDE RS, ZGYz)h + ZGmh J

i=1
(4.135)

where i) = 1/ and 7y = h) /.

(@) If o > 0 in the kth pIy it can work only along the fibers, and we should calculate
the stiffnesses of the degraded layer taking E5 = 0, G5, = 0, and v}, = 0 in
Egs. (4.135).

(b) If o2r < 0 in the kth ply, it cannot work only in shear, so we should take G]iz =0in
Egs. (4.135).

Thus, we find coefficients Ag)(st = 11, 12, 22, 44) corresponding to the second stage

of loading (with one degraded ply). Using Egs. (4.116) and (4.115) we can determine

Eff), Eﬁz), G)(Czy), vﬁzv), vﬁ) and express the strains in terms of stresses, i.e., sff)(o),

s§2)(o), yx(ﬁ)(a). The final strains corresponding to the second stage of loading are

calculated as

8}; = g)(cl)(a*) + efcz) (60 —o™), 8; = 8;1) (c™) + 8§,2) (60 —o™)
1 2
vh =" + v — 0%

To study the third stage, we should find o1, o2, and 12 in all the plies, except the kth
one, identify the next degraded ply and repeat step 3 of the procedure which is continued
up to failure of the fibers. The resulting stress—strain curves are multi-segmented broken
lines with straight segments and kinks corresponding to degradation of particular plies.

The foregoing procedure was described for a cross-ply layer consisting of plies with
different properties. For the layer made of one and the same material, there are only three
stages of loading — first, before the plies degradation, second, after the degradation of the
longitudinal or the transverse ply only, and third, after the degradation of all the plies.

As a numerical example, consider a carbon—epoxy cylindrical pressure vessel consisting
of axial plies with total thickness kg and circumferential plies with total thickness fgg.
The vessel has the following parameters: radius R = 500 mm, total thickness of the
wall A = 7.5mm, hg = 2.5mm, hgy = 5mm. The mechanical characteristics of
a carbon—epoxy unidirectional ply are E; = 140GPa, E; = 11GPa, vi2 = 0.0212,
vo1 = 0.27, Ef“ = 2000 MPa, o," = 50 MPa. Axial, oy, and circumferential, o, stresses
are expressed as (see Fig. 4.46)

PR PR
Ox =T, Oy = - (4.136)

where p is the internal pressure.
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Fig. 4.46. Element of a composite pressure vessel.

Using Egs. (4.114) and (4.116), we calculate first the stiffness coefficients. The result
is as follows

A11 =54.1GPa, A2 =3GPa, A =97.1GPa

(4.137)
E, =54GPa, E,=97GPa, v,, =0.055 v, =0.031

Substituting stresses, Eqs. (4.136) into the constitutive equations, Egs. (4.115), we obtain

Wy PR L vy — 058 x 10~3
e (p) h <2Ex Ey) -0 X p

Wy = PR (L ) g6 5103
8y (P) h (Ey 2Ex . X p

where p is measured in mega pascals. For axial plies, e, = €10 and &, = &7 . The
corresponding stresses are

1 = 1 =
01( 3(p) = E1(e1,0 + vi2e2,0) = 83.2p, 02( () = Ea(e2,0 + vo161,0) = 9.04p

For circumferential plies, ex = e2,90, &, = €1,90 and

01 go(p) = E1(e1,00+v1262,90) = 94.15p, 02 go(P) E2(g2,90+v2161,00) =8.4p

As can be seen, 02(1()) > 02(12,0 This means that the cracks appear first in the axial plies

under the pressure p* that can be found from the equation oz(}g)(p*) = Ej. The result is
p* = 5.53 MPa.

To study the second stage of loading for p > p*, we should put £ = 0, and v1 = 0in
Eqgs. (4.135) for the axial plies. Then, the stiffness coefficients and elastic constants become

A11 =54.06GPa, A1p =2GPa, Ay =93.4GPa
E, =54GPa, E, =933GPa, v,, =0.037, v, =0.021
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The strains and stresses in the plies are
eP(p) =059 x107%p, @ p)=07x107°p, o2 (p) =826p
ol 90 p) =99.8p, 02 90(p) =8.62p

The total transverse stress in the circumferential plies can be calculated as
_ M * *
02,90 = 0 go(p™) +8.62(p — p*)

Using the condition o2 go(p™*) = 02 , we find the pressure p** = 5.95MPa at which
cracks appear in the matrix of the circumferential plies.
For p > p**, we should take E; = 0 and v1o = O for all the plies. Then

A;; =462GPa, A;p =0, Ay =93.4GPa
E, =46.2GPa, E,=93.4GPa, v,y =1y, =0 (4.138)
eP(p)=072x107%p, P (p)=071x1073p
oL 9(p) =100.8p, ol90(p) = 99.4p
The total stresses acting along the fibers are
o1.0(p) = oL 3(p*) + 025 (P™ — p*) + o g (p — p™*) = 100.8p — 105
01.90(p) = 0140 (P") + 0L 4o (P** — P*) + 0L 4 (p — p*™*) = 99.4p — 28.9

To determine the ultimate pressure, we can use two possible strength conditions — for axial
fibers and for circumferential fibers. The criterion o1 0(p) = Ef yields p = 20.9 MPa,
whereas the criterion o1 90(p) = Ef gives p = 20.4MPa. Thus, the burst pressure
governed by failure of the fibers in the circumferential plies, is p = 20.4 MPa.

The strains can be calculated for all three stages of loading using the following equations
e for p < p*

ey (p) =, (p)
o for p* < p < p*™

ery(p) = e (P + 62, (p — p
o for p™ < p<p

er,y(p) = e, (p*) + 6@, (p™ = p*) + P, (p — p™)
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Fig. 4.47. Dependence of the axial and the circumferential strains of the carbon—epoxy pressure vessel on
pressure: model allowing for cracks in the matrix; = = = = model ignoring cracks in the matrix; = - = - =
model ignoring the matrix.

For the pressure vessel under study, the dependency of the circumferential strain on
pressure is shown in Fig. 4.47 (solid line). The circles correspond to failure of the matrix
and fibers.

For comparison, consider two limiting cases. First, assume that no cracks occur in the
matrix, and the material stiffness is specified by Egs. (4.137). The corresponding diagram
is shown in Fig. 4.47 with a dashed line. Second, suppose that the load is taken by the
fibers only, i.e., use the monotropic model of a ply introduced in Section 3.3. Then, the
material stiffnesses are given by Egs. (4.138). The corresponding result is also presented
in Fig. 4.47. It follows from this figure that all three models give close results for the
burst pressure (which is expected since E; < Ef), but different strains.

4.4.3. Two-matrix composites

The problem of the analysis of a cracked cross-ply composite laminate has been studied
by Tsai and Azzi (1966), Vasiliev and Elpatievckii (1967), Vasiliev et al. (1970), Hahn and
Tsai (1974), Reifsnaider (1977), Hashin (1987), and many other authors. In spite of this,
the topic is still receiving repeated attention in the literature (Lungren and Gudmundson,
1999). Taking into account that matrix degradation leads to reduction of material stiffness
and fatigue strength, absorption of moisture and many other consequences that are difficult
to predict but are definitely undesirable, it is surprising how many efforts have been
undertaken to study this phenomenon rather than try to avoid it. At first glance, the
problem looks simple — all we need is to synthesize unidirectional composite whose
ultimate elongations along and across the fibers, i.e., €1 and g are the same. Actually,
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the problem is even simpler, because €, can be less than g1 by a factor that is equal to
the safety factor of the structure. This means that matrix degradation can occur but at the
load that exceeds the operational level (the safety factor is the ratio of the failure load to
the operational load and can vary from 1.25 up to 3 or more depending on the application
of a particular composite structure). Returning to Table 4.2, in which g1 and &, are given
for typical advanced composites, we can see that g1 > &, for all the materials and that
for polymeric matrices the problem could be, in principle, solved if we could increase 2,
up to about 1%.

Two main circumstances hinder the direct solution of this problem. The first is that
being locked between the fibers, the matrix does not show the high elongation that it
has under uniaxial tension and behaves as a brittle material (see Section 3.4.2). To study
this effect, epoxy resins were modified to have different ultimate elongations. The corre-
sponding curves are presented in Fig. 4.48 (only the initial part of curve 4 is shown in
this figure, the ultimate elongation of this resin is 60%). Fiberglass composites that have
been fabricated with these resins were tested under transverse tension. As can be seen
in Fig. 4.49, the desired value of g2 (that is about 1%) is reached if the matrix elonga-
tion is about 60%. However, the stiffness of this matrix is relatively low, and the second
circumstance arises — matrix material with low stiffness cannot provide sufficient stress
diffusion in the vicinity of damaged or broken fibers (see Section 3.2.3). As a result, the
main material characteristic — its longitudinal tensile strength — decreases. Experimental
results corresponding to composites with resins 1, 2, 3, and 4 are presented in Fig. 4.50.
Thus, a significant increase in transverse elongation is accompanied with an unacceptable
drop in longitudinal strength (see also Chiao, 1979).

One of the possible ways for synthesizing composite materials with high transverse
elongation and high longitudinal strength is to combine two matrix materials — one with
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Fig. 4.48. Stress—strain curves for epoxy matrices modified for various ultimate elongations.
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Fig. 4.49. Stress—strain curves for transverse tension of unidirectional fiberglass composites with various epoxy
matrices (numbers on the curves correspond to Fig. 4.48).
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Fig. 4.50. Dependence of the longitudinal strength on the matrix ultimate elongation (numbers on the curve
correspond to Figs. 4.48 and 4.49).
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high stiffness to bind the fibers and the other with high elongation to provide the appro-
priate transverse deformability (Vasiliev and Salov, 1984). The manufacturing process
involves two-stage impregnation. At the first stage, a fine tow is impregnated with a high-
stiffness epoxy resin (of the type 2 in Fig. 4.48) and cured. The properties of the composite
fiber fabricated in this way are as follows

e number of elementary glass fibers in the cross section — 500;

mean cross-sectional area — 0.15 mm?;

fiber volume fraction — 0.75;

density — 2.2 g/em?;

longitudinal modulus — 53.5 GPa;

longitudinal strength — 2100 MPa;

longitudinal elongation — 4.5%;

transverse modulus — 13.5 GPa;

transverse strength — 400 MPag;

transverse elongation — 0.32%.

At the second stage, a tape formed of composite fibers is impregnated with a highly
deformable epoxy matrix whose stress—strain diagram is presented in Fig. 4.51. The
microstructure of the resulting two-matrix unidirectional composite is shown in Fig. 4.52
(the dark areas are cross sections of composite fibers, the magnification is not sufficient
to see the elementary glass fibers). Stress—strain diagrams corresponding to transverse
tension, compression, and in-plane shear of this material are presented in Fig. 4.16.

The main mechanical characteristics of the two-matrix fiberglass composite are listed
in Table 4.3 (material No. 1). As can be seen, two-stage impregnation results in relatively
low fiber volume content (about 50%). Material No. 2 that is composed of composite
fibers and a conventional epoxy matrix has also low fiber fraction, but its transverse
elongation is 10 times lower than that of material No. 1. Material No. 3 is a conventional
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Fig. 4.51. Stress—strain diagram of a deformable epoxy matrix.
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Fig. 4.52. Microstructure of a unidirectional two-matrix composite.

Table 4.3

Properties of glass—epoxy unidirectional composites.

No.  Material components Fiber Longitudinal Ultimate Density Specific strength
volume  strength o} transverse p(glem®)  FF/p x 103 (m)
fraction  (MPa) strain g5 (%)

1 Composite fibers and 0.51 1420 3.0 1.83 77.6

deformable matrix

2 Composite fibers and 0.52 1430 0.3 1.88 76.1

high-stiffness matrix

3 Glass fibers and high-  0.67 1470 0.2 2.07 71.0

stiffness matrix
4 Glass fibers and 0.65 1100 1.2 2.02 54.4

deformable matrix

glass—epoxy composite that has the highest longitudinal strength and the lowest transverse
strain. Comparing materials No. 1 and No. 3, we can see that although the fiber volume
fraction of the two-matrix composite is lower by 24%, its longitudinal strength is less
than that of a traditional composite by 3.4% only (because the composite fibers are not
damaged in the processing of composite materials), whereas its specific strength is a bit
higher (due to its lower density). Material No. 4 demonstrates that direct application of
a highly deformable matrix allows us to increase transverse strains but results in a 23%
reduction in longitudinal specific strength.

Thus, two-matrix glass—epoxy composites have practically the same longitudinal
strength as conventional materials but their transverse elongation is greater by an order
of magnitude.

Comparison of a conventional cross-ply glass—epoxy layer and a two-matrix one is
presented in Fig. 4.53. Line 1 corresponds to a traditional material and has, typical for
this material, a kink corresponding to matrix failure in the transverse plies (see also
Fig. 4.37). A theoretical diagram was plotted using the procedure described above. Line 2
corresponds to a two-matrix composite and was plotted using Eqgs. (4.60). As can be seen,
there is no kink on the stress—strain diagram. To prove that no cracks appear in the matrix
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Fig. 4.53. Stress—strain diagrams of a conventional (1) and two-matrix (2) cross-ply glass—epoxy layers under
tension: theoretical prediction; O experiment.

Fig. 4.54. Intensity of acoustic emission for a cross-ply two-matrix composite (above) and a conventional
fiberglass composite (below).

of this material under loading, the intensity of acoustic emission was recorded during
loading. The results are shown in Fig. 4.54.

Composite fibers of two-matrix materials can also be made from fine carbon or aramid
tows, and the deformable thermosetting resin can be replaced with a thermoplastic matrix
(Vasiliev et al., 1997). The resulting hybrid thermoset—thermoplastic unidirectional com-
posite is characterized by high longitudinal strength and transverse strain exceeding 1%.
Having high strength, composite fibers are not damaged in the process of laying-up
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or winding, and the tapes formed from these fibers are readily impregnated even with
high-viscosity thermoplastic polymers.

4.4.4. Composites with controlled cracks

Now we return to the conventional composites discussed in Section 4.4.2. Since the
transverse ultimate elongation of a ply, g2, is less than the corresponding longitudinal
elongation, z1, (see Table 4.2), the stress o in Eq. (4.123) induces a system of cracks in
the matrix of the transverse ply as in Fig. 4.39. As has been already noted, these cracks
do not cause laminate failure because its strength is controlled by the longitudinal plies.
What is actually not desirable is matrix failure in the process of laminate loading. So, since
the cracks shown in Fig. 4.39 will occur anyway at some stress o, suppose that the material
has these cracks before loading, i.e., that the transverse ply consists of individual strips
with width [; as in Fig. 4.39. The problem is to find the width /. for which no other cracks
will appear in the transverse ply up to failure of the fibers in the longitudinal plies.

Consider the solution in Eq. (4.132), take C, = C3 = 0 and find the constants C1 and
C4 from the boundary conditions in Egs. (4.133) in which [ is some unknown width.
The resulting expression for the stress in the transverse ply is

1

— - - ko cosh A1 sin A
k1 sin Ao cos Ao + ko sinh A1 cosh A1 [k ! 2

Oy2 = 020 {1

—kq sinh A1 cos A) sinh kqx sin kox

+ (k1 cosh A1 sin Ay + k» sinh A1 cos A») cosh k1x €os kpx] }

in which A1 = k1l;/2 and A = kalc/2. The maximum stress acts at x = 0 (see Fig. 4.40)
and can be presented as

of' =03 [1 - Flo)] (4.139)
where
2(k hiisin Ay +kpsinh A A
Fl) = (k1 cosh i1 sin A + ko sinh A1 CcOS A2) (4.140)

k1 Sin 22 + ko sinh 21

The stress 020 in Eq. (4.139) is specified by the second equation of Egs. (4.122). Taking
into account the first equation, we have
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where of is the stress in the longitudinal plies. So, Eq. (4.139) can be written as
E
o = E—%f [1— F(o)] (4.141)
1

Now suppose that o1 = @71, i.e., that the longitudinal stress reaches the corresponding
ultimate value. The cracks in the matrix of the transverse ply do not appear if o} < &>,
where o is the transverse tensile strength of the ply. Then, Eq. (4.141) yields

F(lo) >t (4.142)

o
wheret =1 — 192

201
As an example, consider a cross-ply (see Fig. 4.35) carbon—epoxy composite with the
following parameters

E1 =140GPa, E; =11GPa, G113 =55GPa, Gy3 =4.1GPa,
vp3 =0.3, o1 =2000MPa, o, =50MPa

for which ¢ = 0.68. Introduce normalized thicknesses of the plies as

_ 2h1 — 2h>
=t h, =2
1= 2=

where h = 2(hy + hy) (see Fig. 4.37). Let hy = 1 — «, hp = o, Where the parameter «
specifies the relative thickness of the transverse ply. The dependencies of the coefficients
k1 = ki/h and kp = k/ h (in which k1 and k are given in the notations to Eq. (4.130))
on the parameter « are shown in Fig. 4.55. The dependence of function F in Eq. (4.140)
on the normalized distance between the cracks /¢ = I¢/h is presented in Fig. 4.56 for
a = 0.1,0.5, and 0.9. The intersections of the horizontal line F = ¢ = 0.68 give the
values of I, for which no new cracks appear in the transverse ply up to the fibers’ failure.
The final dependence of /¢ on « is shown in Fig. 4.57. As can be seen, [ varies from
about 2 up to 4 thicknesses of the laminate. For 1 = hy = §, where § = 0.15mm is the
thickness of the unidirectional ply, we get A = 48, « = 0.5, and [ = 1.9 mm. A yarn of
such width is typical for carbon fabrics made of 3K carbon tows. Experiments with such
fabric composites show that the tensile stress—strain diagram of the material is linear up
to failure, and no cracks are observed in the matrix.

4.5. Angle-ply orthotropic layer
The angle-ply layer is a combination of an even number of alternating plies with angles

+¢ and —¢ as in Fig. 4.58. The structure of this layer is typical for the process of
filament winding (see Fig. 4.59). As for the cross-ply layer considered in the previous
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Fig. 4.55. Dependencies of the coefficients k1 and &, on the relative thickness of the transverse ply «.

section, an angle-ply layer is actually a laminate, but for a large number of plies it can be
approximately treated as a homogeneous orthotropic layer (see Section 5.4.3).

4.5.1. Linear elastic model

Consider two symmetric systems of unidirectional anisotropic plies (see Section 4.3)
consisting of the same number of plies, made of one and the same material and having
alternating angles +¢ and —¢. Then, the total stresses oy, oy, and z, acting on the layer
can be expressed in terms of the corresponding stresses acting in the +¢ and —¢ plies as

_h +h —h +h
+ o, > oyh =0y - +o, 2 Txyhztxy§+

— At
oh=o0 v 5 y

X

(4.143)

NS

'nyz

where h is the total thickness of the layer. Stresses with superscripts ‘“+” and ‘—’ are
related to strains e, €,, and yx, (which are presumed to be the same for all the plies)
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Fig. 4.58. Two symmetric plies forming an angle-ply layer.

Fig. 4.59. Angle-ply layer of a filament-wound shell. Courtesy of CRISM.

by Egs. (4.71), i.e.,

+ + + + + _ 4* + +
oy = Anéx +ARey + ALYay, 0y = Ajec + Ajey + Ajy ¥y,

N N N N (4.144)

Toy = Ajiéx + Agpey + AggVy
o which A+ - + - _ + o oa— v a4
inwhich A7} = A} = An, A}, = A, = A, Ay, = Ay, = Ap, A], = —A}, =

Awa, Ay = —A,, = Ao, Af, = Ay, = Aua, Where Ay, (Mn =11, 12, 22, 14, 24, 44)
are specified by Egs. (4.72). Substituting Eqgs. (4.144) into Egs. (4.143), we arrive at the
following constitutive equations for an angle-ply layer

oy = A6y + Ar28y

oy = A218x + A28y (4.145)

Txy = A44yxy
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The inverse form of these equations is

Oy Oy ay Oy Txy
Exy = — — Vyy——, &y = —— — Vyy—, , = 4.146
X E, Xy Ey y Ey yx E. Vxy ny ( )
where
A? A?
Ex=An— 2, Ey=Ap— -2, G, =Au,
Az An (4.147)

YT AT YT A
It follows from Eqs. (4.145) and (4.146) that the layer under study is orthotropic.

Now derive constitutive equations relating transverse shear stresses ., and t,, and
the corresponding shear strains y,, and y,.. Let the angle-ply layer be loaded by stress
7. Then for all the plies, 7% = 1 = 7,. and because the layer is orthotropic, y;% =
Yoo = Vazo yyz = y\; = yy; = 0. In a similar way, applying stress t,, we have
T = T = Ty Ve = Vyz = Vyo» Vae = Vaz = Yz = 0. Writing the last two
constitutive equations of Egs. (4 71) for these two cases, we arrive at

Tyy = As5Vis, Ty; = A66Vyz (4-148)

where the stiffness coefficients Ass and Agg are specified by Egs. (4.72).

The dependencies of E, and G,, on ¢, plotted using Eqgs. (4.147), are shown in
Fig. 4.60 with solid lines. The theoretical curve for E, is in very good agreement with
experimental data shown with circles (Lagace, 1985). For comparison, the same moduli
are presented for the +¢ anisotropic layer considered in Section 4.3.1. As can be seen,
E((+¢) > E7. To explain this effect, consider uniaxial tension of both layers in the
x-direction. Whereas tension of the +¢ and —¢ individual plies shown in Fig. 4.61 is
accompanied with shear strain, the system of these plies does not demonstrate shear under
tension and, as a result, has higher stiffness. Working as plies of a symmetric angle-ply
layer, individual anisotropic +¢ and —¢ plies are loaded not only with a normal stress o
that is applied to the layer, but also with shear stress ., that restricts the shear of individual
plies (see Fig. 4.61). In order to find the reactive shear stress, which is balanced between
the plies, we can use Egs. (4.75). Taking o, = 0, we can simulate the stress—strain state
of the ply in the angle-ply layer putting y,, = 0. Then, the third equation yields

G+
E+

+

T)Cy = _nxy

Superscript ‘+’ indicates that elastic constants correspond to an individual +¢ ply. Sub-
stituting this shear stress into the first equation of Egs. (4.75), we arrive at o, = E,é&y,
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Fig. 4.60. Dependencies of the moduli of a carbon—epoxy layer on the orientation angle:
angle-ply +¢ layer; - = = = anisotropic +¢ layer; O experiment for an angle-ply layer.
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Fig. 4.61. Deformation and stresses induced in individual plies (a) and bonded symmetric plies (b) by uniaxial
tension.
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where

ETf Et
E, = x - x (4.149)
! 1- 77)4{, xyn;ry,x 1— G+}

is the modulus of the ¢ angle-ply layer.

Under pure shear of an angle-ply layer, its plies are loaded with the additional normal
stresses. These stresses can be found if we take e = 0 and &, = 0 in the first two
equations of Egs. (4.75). The result is

+(pt + .+ +(pt v+t
Ex (nx,xy - vxvny xy) Ey (ny,xy - yxnx xy)
T . Oy = —Tyy 7
ny(l nyVyx) ny(l nyVyx)

Ox = —Txy

Substituting these expressions into the third equation, we get ., = G, yxy, Where

G;fy(l — vjvv+ )

Gy =

1- Vx+y‘}yx nx xy’?xy x 77;, xy’?jy,y - nyny, xylxy, x — Vyxn)t xynjy,y
is the shear modulus of an angle-ply layer which is much higher than ngy (see Fig. 4.60).
Tension of +45°angle-ply specimen provides a simple way to determine the in-plane

shear modulus of a unidirectional ply, G12. Indeed, for this layer, Egs. (4.72) and (4.147)
yield

A11 = Azz = —(El + Ep + 2E1v12 + 4G1p)
% _ Fivip+ S(E1+ Ep— 2E1vng — 4
Al = Evip + 4(E1+E2 Ejv1p —4G1)
and

1 1
Ess =~ (A11 + A‘llg) (Aﬁ - A‘llg) - L =g <A11 + Ag)
1 1

Taking into account that A%> — A3 = 2G12, we have

Eys
Gip= — 2 4.150
27 2 + vas) (4.150)

Thus, to find G12, we can test a 45° specimen under tension, measure &, and ey,
determine E4s = ox/ex, v45 = —&,/ex, and use Eq. (4.150) rather than perform the
cumbersome tests described in Section 3.
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4.5.2. Nonlinear models
To describe nonlinear behavior of an angle-ply layer associated with material non-
linearity in its plies, we can use nonlinear constitutive equations, Egs. (4.60) or (4.64)
instead of Hooke’s law. Indeed, assuming that the ply behavior is linear under tension or
compression along the fibers, we can write these equations in the following general form
e1=c1101+c1202, €2=c1201+¢2202+w2(02,712), Y12 =Ca4T12+@12(02, T12)

Functions w; and w12 include all the nonlinear terms. The inverse form of these equations is

01 = Crie1 + C1262 — Crowp, 02 = Cr261 + C62 — Coowy,

(4.151)
712 = Caay12 — Caqw12
in which
€22 c1 1 €12 2
Cn=—, Cp=—, Cy=— Cpp=—-——", c=cucan—cp
c c C44 c

Repeating the derivation of Eqgs. (4.145) but using this time Eqgs. (4.151) as the constitutive
equations for the ply, we arrive at

oy = A118x + A128y — Aiolv oy = A216x + Axey — Aczuzy Tey = A4d4¥xy — A2.04

where s = sin¢ and ¢ = cos ¢.
Ay = (Cazs?+ Crac? ) wp—2Cueswnz,  Afy=(Crac? +Cizs? ) wp+2Cuscsonz,
Agy=(C12—Ca2)csw+Cay (c2 —s2) w12

These equations can be used in conjunction with the method of elastic solutions described
in Section 4.1.2.

As an example, consider the two-matrix glass—epoxy composite described in
Section 4.4.3 (see also Figs. 4.16, 4.30, and 4.31). Theoretical (solid lines) and exper-
imental (dashed lines) stress—strain diagrams for +30, +45, and £75° angle-ply layers
under tension along the x-axis are shown in Fig. 4.62.

Angle-ply layers demonstrate a specific type of material nonlinearity — structural non-
linearity that can occur in the layers composed of linear elastic plies due to the change of
the plies’ orientations caused by loading. Since this effect manifests itself at high strains,
consider a geometrically nonlinear problem of the ply deformation. This deformation can
be described with the longitudinal, 1, transverse, e2, and shear, y12, strains that follow
from Fig. 4.63 and can be expressed as

1 1 T
g1 = d—Sl(dsi —ds1), e = E(dsé —ds2), yi2= 5~ 14 (4.152)
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Fig. 4.62. Theoretical (solid lines) and experimental (dashed lines) stress—strain diagrams for +-30°(a), +45°(b),
and £75°(c) angle-ply two-matrix composites under uniaxial tension.
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ds,
ds, 1

Y ¢ X

Fig. 4.63. Ply element before and after deformation.

In addition to this, we introduce strain 8/2/ in the direction normal to the fibers
" 1 14
gy = —(dsy — ds2) (4.153)
dso
and the angle of rotation of the element as a solid in the 12-plane

1
w1 = §(w1 — wy)

where w1 = ¢’ — ¢, w2 = 5 + ¢ — (¢' + V) are the angles of rotation of axes 1" and 2’
(see Fig. 4.63). Thus,

(4.154)

w12=¢/—¢+%

N

Consider some arbitrary element ds,, shown in Fig. 4.64, and introduce its strain
1 !/
dsq = —(ds;, — dsg) (4.155)
dsy
Repeating the derivation described in Section 2.5, we have
dsé =dx? +dy?
(ds;)® = (@dx)? + (dy")? = (dx + du)® + (dy + du,)?

= (14 £0)%dx? 4 (1 + ,)2dy? + 2¢,,dxdy



218 Advanced mechanics of composite materials

y
ds;, dy
U, o
dx’
d u
S dy Yy
o
X
dx
Fig. 4.64. Linear element before and after deformation.
where
ou 1/, \° 1 /%uy\>
1 2 14| =4 = -y
(4 ex) + |:ax+2<ax>+2<ax
Ju 1/, \° 1 /%u\>
1 =142 2+ (2 e 4.156
A+ep* +[a'5<®>+2<®)} (4159)

g = Qux  Ouy | Ouy duy  Ouy duy
Ty ox dx dy dx dy

Using Eq. (4.155), we arrive at
(L +e0)? = (L+e0?cos® @+ (1 + &y)?sin® a + &,y sin 20 (4.157)

where cosa = dx/ds, and sina = dy/ds,.
In a similar way, we can find the angle «’ after the deformation, i.e.,

sin Wt 1+a sin +a cos
a_dsa_l—}—sa 0y * ox ¢

(4.158)
coso’ = de’ _ 1 14+ — Oty cosa + —— oty ~ sin
a_dsa_l—}—ea ox “ 9y ¢
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Now return to the ply element in Fig. 4.63. Taking « = ¢ in Egs. (4.157) and (4.158), we
obtain

(L+e1)? =L+ e)?c0s? ¢ + (L + )2 sin ¢ + ey, 5in 26
sing’ = ! [(1+a )sm +a cos ]
¢= 146 dy ¢ ox ¢ (4.159)

cos¢’ = ! [<1+ auX) ]
14 X

Putting « = 7 + ¢, we have
(14 £2)% = (L4 &,)2sin° ¢ + (1 + £)? cOS% § — 26y, 5iN 26

) , _ 1 1 a“y auy R
sin@’ +v) = 7 [( + W) c0s ¢ — == sin ¢} (4.160)

cos(¢’ + 1 [—1 du cos +a sm]
@+ =1 ( ax> ¢+ 5, Sine

Using the last equation of Egs. (4.152), we can find the shear strain as sin y12 = cos .
After some rearrangement, with the aid of Egs. (4.159) and (4.160), we arrive at

1

N, . 2_ 2 . y
Ltend+e) {[(1+8y) (L+er) ]SIn¢COS¢+sx} 0052¢>}

(4.161)

sinyip =

For ¢ = 0, axes 1 and 2 coincide, respectively, with axes x and y (see Fig. 4.63), and
Eq. (4.161) yields

. gxy
SIn = — 4.162
YT Tt e +ey) (4.162)

Using this result to express ¢,,, we can write Egs. (4.159)—(4.161) in the following final
form

(1 +e1)? = L+ £,)%c08% ¢ + (L + £y)28in% ¢ + (L + £x) (L + £y) SiN yyy SiN 29

(L+e2)? =1 +e)?sin? ¢+ (L +y)2c05% ¢ — (14 £,) (1 + &) i yyy 5in 26

1

2 27 .
m{[(lJrSy) (14 &x)?]sing cos¢

sin Y12 =

+(1 4 &)(1 + &) sin yyy COS 2¢}
(4.163)
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It follows from Fig. 4.63 and the last equation of Egs. (4.152), that ds; = ds5siny =
ds; cos y12. So, in accordance with Egs. (4.152) and (4.153),

14 &5 = (14 &2)COSy12
Using Egs. (4.163) to transform this equation we get

1+e)d+ey)

1+ey= Tte

COS Yxy (4.164)

To express ¢ in terms of ¢ and strains referred to the global coordinate frame x, y,
consider Eq. (4.154). After rather cumbersome transformation with the aid of Egs. (4.159)
and (4.160), we obtain

1 ou u Ouy Ou Ouy Ou
N2y — L (Ouy  Oux  OuyOuy duy Qur\ o,
Sih 012 L+e1)(1+e2) {( ox dy + dx dy dx dy ) cos™2¢

Ouy  Ouy  Ouy Ouy  Ouy Ouy\ . o
—_— —_—— —_—— 2
+ ( ox dy + ox Ox dy dy )Sm ¢

L[ (e 2 uy L 2 cin o
4 ox dy ox dy
Taking ¢ = 0, we can write rotation angle w, around the z-axis of the global coordinate
frame, i.e.,

(4.165)

9 Ouy, 0
Sin 2. — 1 ( uy  Ouy n iy Ouy Out aux>

(1+e)d+e)\dx dy  ox dy ox Oy
Consider now Egs. (4.156), (4.162), and (4.165) which form a set of four algebraic

equations with respect to the derivatives of the displacements. Omitting the solution
procedure, we can write the final outcome as

aux Yxy aux . Vx

— = (1 + &) cos (T}+wz) -1, Sy = (1+ &y)sin <7y —a)z),
%=(1+ex)sin(m+w) %=(1+8,)cos(@—w)—l
ox 2 0y y 2 ¢

Substituting these expressions into Eqgs. (4.159), we have

l X Xy -
sing’ = ——[(1+¢&,)sin (% + wz) cos¢ + (14 &) cos (VT) - a)z) sin¢

1+
1 Vxy . Vxy .
cos¢’ = rﬂ[(l + &,) COS (7 + a)Z) cos¢ + (1 +&y)sin (T - a)z) sing¢

(4.166)
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The derived nonlinear equations, Egs. (4.163), generalize Eqs. (4.69) for the case of large
strains, whereas Eqs. (4.166) allow us to find the fiber orientation angle after deformation.

The equilibrium equations, Egs. (4.68), retain their form but should be written for the
deformed state, i.e.,

oy =0y cos® ¢’ + oy sin? ¢’ — 71, Sin 2¢’
oy = o1 sin? ¢’ + o} cos® ¢’ + 17, sin 2¢’ (4.167)

Tyy = (07 — 05) Sin¢’' cos ¢’ + 17, C0S 2¢’

where o7, 05, and t;, are stresses referred to coordinate frame 1'2” (see Fig. 4.63) and
to the current thickness of the ply.

Consider a problem of uniaxial tension of a ¢ angle-ply layer with stress o,. For this
case, yxy = 0, w, = 0, and Eqgs. (4.163), (4.164), (4.166) take the form

(1+e1)? = L +6,)%c0s? ¢ + (1 +,)2sin% ¢

(L+e2)? = (L4 e0)?sin? ¢ + (1 +y)? cos? ¢

. _ singcos¢ 2 5

Siny2 = —(1+81)(1+82)[(1+8y) (1 +&x)7]
1 (l+€x)(l+€ )
1+82 = le

. 1 . 1
sing’ = %‘Zsm ¢, cos¢ = %Zcow

For composite materials, the longitudinal strain e1 is usually small, and these equations
can be further simplified as follows
2 2 12, 2 2 qin2
£1 = £, COS" ¢ + &, SIN“ ¢ + 3 (excos ¢ +e5sin ¢>
(L+e2)? = (L4 e0)?sin? ¢ + (1 +y)? cos? ¢

siny12 = rlsz [(1 +e)?—(1+ ex)z] sin ¢ cos ¢ (4.168)

1+ey=0Q+e)A+ey)

1
tang’ = li—gy tan ¢

€x

As an example, consider a specially synthesized highly deformable composite mate-
rial made from glass composite fibers and thermoplastic matrix as discussed in
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Section 4.4.3. Neglecting interaction of strains, we take constitutive equations for the
unidirectional ply as

Eqeq1
o] = rg,z,, oy = w2(ey), 11, = w12(y12) (4.169)

where Ej in the first equation is the longitudinal elasticity modulus, whereas &5 in the
denominator takes account of the decrease of the ply stiffness due to the increase in
the fiber spacing. The constant E1 and functions wy and w1 are determined from the
experimental stress—strain diagrams for 0, 90, and +45° specimens that are shown in
Fig. 4.65. The results of calculations with the aid of Eqgs. (4.167)—(4.169) are presented
together with the corresponding experimental data in Fig. 4.66.

The foregoing equations comprise the analytical background for a promising manu-
facturing process allowing us to fabricate composite parts with complicated shapes by
deforming partially cured preforms of simple shapes made by winding or laying-up (see,
e.g., Cherevatsky, 1999). An example of such a part is presented in Fig. 4.67. The curved
composite pipe shown in this figure was fabricated from a straight cylinder that was par-
tially cured, loaded with pre-assigned internal pressure and end forces and moments, and
cured completely in this state. The desired deformation of the part under loading is pro-
vided by the appropriate change of the fibers’ orientation angles governed by Egs. (4.163),
(4.166), and (4.167).

Angle-ply layers can also demonstrate nonlinear behavior caused by the matrix cracking
described in Section 4.4.2. To illustrate this type of nonlinearity, consider carbon—epoxy
415, 430, +45, +60, and +75° angle-ply specimens studied experimentally by Lagace
(1985). The unidirectional ply has the following mechanical properties: E1 = 131 GPa,
E, = 11GPa, Gy = 6GPa, v» = 0.28, o, = 1770MPa, o, = 54MPa,

MPa
p=0°

0.8
0.6

0.4r
+45°

0.2
¢=90°

0 T | ] ] I &, %
0 10 20 30 40 50

Fig. 4.65. Experimental stress—strain diagrams for 0, +45, and 90° angle-ply layers.
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Fig. 4.66. Calculated (circles) and experimental (solid lines) stress—strain diagrams for £15, +30, +60, and
+75° angle-ply layers.

Fig. 4.67. A curved angle-ply pipe made by deformation of a filament-wound cylinder.

o, =230MPa, and 71 = 70MPa. The dependencies o1(e1) and o2(s2) are linear,
whereas for in-plane shear, the stress—strain diagram is not linear and is shown in Fig. 4.68.
To take into account the material nonlinearity associated with shear, we use the constitutive
equation derived in Section 4.2.2, i.e.,

3
V12 = C1T12 + 2T

in which ¢1 = 1/G12 and ¢, = 5.2 x 10~8(MPa) 3.
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Fig. 4.68. Experimental stress—strain diagrams for transverse tension (1) and in-plane shear (2) of a carbon-
epoxy unidirectional ply.

The specimens were tested in uniaxial tension in the x-direction. To calculate the applied
stress o, that causes failure of the matrix, we use the simplest maximum stress strength
criterion (see Chapter 6) which ignores the interaction of stresses, i.e.,

—G, <02 <G4, |2l <71

Nonlinear behavior associated with ply degradation is predicted applying the proce-
dure described in Section 4.4.2. Stress—strain diagrams are plotted using the method of
successive loading (see Section 4.1.2).

Consider a £15° angle-ply layer. Point 1 on the theoretical diagram, shown in Fig. 4.69,
corresponds to cracks in the matrix caused by shear. These cracks do not result in complete
failure of the matrix because the transverse normal stress o7 is compressive (see Fig. 4.70)
and does not reach o, before the failure of fibers under tension (point 2 on the diagram).
As can be seen, the theoretical prediction of the material stiffness is quite good, whereas
the predicted material strength (point 2) is much higher than the experimental (dot on the
solid line). The reasons for this are discussed in the next section.

The theoretical diagram corresponding to the +30° layer (see Fig. 4.69) also has two
specific points. Point 1 again corresponds to cracks in the matrix induced by the shear stress
112, Whereas point 2 indicates complete failure of the matrix caused by the compressive
stress o which reaches o, at this point. After the matrix fails, the fibers of an angle-ply
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Fig. 4.69. Experimental (solid lines) and calculated (dashed lines) stress—strain diagrams for 0, +15, and +30°

angle-ply carbon—epoxy layers.

12

(1 /GX
1

0.6 [

0.4 r

“n

T12 / Ox

¢o

-0.2 -

Fig. 4.70. Dependencies of the normalized stresses in the plies on the ply orientation angle.
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layer cannot take the load. Indeed, putting E2 = G12 = v12 = 0 in EQs. (4.72), we obtain
the following stiffness coefficients

A = E1c08* ¢, App = E1sin®¢, A1 = Eqsin®¢cos? ¢

With these coefficients, the first equation of Eqgs. (4.147) yields E, = 0, which means
that the system of fibers becomes a mechanism, and the stresses in the fibers, no matter
how high they are, cannot balance the load. A typical failure mode for a £=30° angle-ply
specimen is shown in Fig. 4.71.

Angle-ply layers with fiber orientation angles exceeding 45° demonstrate a different
type of behavior. As can be seen in Fig. 4.70, the transverse normal stress o7 is tensile for
¢ > 45°. This means that the cracks induced in the matrix by normal, o>, or shear, 712,
stresses cause failure of the layer. The stress—strain diagrams for +60 and £75° layers are
shown in Fig. 4.72. As follows from this figure, the theoretical curves are linear and are
close to the experimental ones, whereas the predicted ultimate stresses (circles) are again
higher than the experimental values (dots).

Now consider the +45° angle-ply layer which demonstrates a very specific behavior.
For this layer, the transverse normal stress, o2, is tensile but not high (see Fig. 4.70), and
the cracks in the matrix are caused by the shear stress, r12. According to the ply model
we use, to predict material response after the cracks appeared, we should take G12 = 0
in the stiffness coefficients. Then, Egs. (4.72) yield

1 - 1—
A1l = App = Axp = Z(El + Ej) + §E1v12

whereas Eqgs. (4.146) and (4.147) give

Aoy Aoy
A11A22 — A%Z ' A1 A — Aiz

&x gy =

The denominator of both expressions is zero, so it looks as though the material becomes
a mechanism and should fail under the load that causes cracks in the matrix. However,

Fig. 4.71. A failure mode of £30° angle-ply specimen.
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Fig. 4.72. Experimental (solid lines) and calculated (dashed lines) stress—strain diagrams for +60 and +75°
angle-ply carbon-epoxy layers.

this is not the case. To explain why, consider the last equation of Egs. (4.168), i.e.,

1 ,
tan¢’ = 11—8) tan ¢

Ex

For the layer under study, tang = 1, ¢y < 0, & > 0, so tan¢’ < 1 and ¢’ < 45°.
However, in the plies with ¢ < 45° the transverse normal stresses, o2, become compres-
sive (see Fig. 4.70) and close the cracks. Thus, the load exceeding the level at which the
cracks appear due to shear locks the cracks and induces compression across the fibers thus
preventing material failure. Since ¢’ is only slightly less than 45°, the material stiffness,
E., is very low and slightly increases with the increase in strains and decrease of ¢’. For
the material under study, the calculated and experimental diagrams are shown in Fig. 4.73.
The circle on the theoretical curve indicates the stress o, that causes cracks in the matrix.
More pronounced behavior of this type is demonstrated by the glass—epoxy composites
whose stress—strain diagram is presented with curve 1 in Fig. 4.74 (Alfutov and Zinoviev,
1982). A specific plateau on the curve and material hardening at high strain are the result
of the angle variation as is also shown in Fig. 4.74 (line 2).

4.5.3. Free-edge effects

As shown in the previous section, there is a significant difference between the pre-
dicted and measured strength of an angle-ply specimen loaded in tension. This difference
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Fig. 4.73. Experimental (solid line) and calculated (dashed line) stress—strain diagrams for +45° angle-ply
carbon—epoxy layer.

o,, MPa (o)
300

200

100

0 ' : ' 30
0 2 4 6 8 g, %

Fig. 4.74. Experimental dependencies of stress (1) and ply orientation angle (2) on strain for +45° angle-ply
glass—epoxy composite.

is associated with the stress concentration that occurs in the vicinity of the specimen
longitudinal edges and was not taken into account in the analysis.

To study a free-edge effect in an angle-ply specimen, consider a strip whose initial width
a is much smaller than the length /. Under tension with longitudinal stress o, symmetric
plies with orientation angles +¢ and —¢ tend to deform as shown in Fig. 4.75. As can
be seen, deformation of the plies in the y-direction is the same, whereas the deformation
in the x-direction tends to be different. This means that symmetric plies forming the
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Fig. 4.75. Deformation of symmetric plies under tension.

angle-ply layer interact through the interlaminar shear stress 7., acting between the plies
in the longitudinal direction. To describe the ply interaction, introduce the model shown in
Fig. 4.76 according to which the in-plane stresses in the plies are applied to their middle
surfaces, whereas transverse shear stresses act in some hypothetical layers introduced
between these surfaces.

To simplify the problem, we further assume that the transverse stress can be neglected,
i.e.,, o, =0, and that the axial strain in the middle part of the long strip is constant,
i.e., &x = & = constant. Thus, the constitutive equations, Eqgs. (4.75), for a +¢ ply have
the form

Oy + Ty

& = + ' 4.170

= g Tl Gt (4.170)
+ Ox + T

&y = —v,, — + 1} 4.171

! WES VY GE (417

+ Ox Txy
—pf 4.172
ny nx),x E;J, Gjy ( )

where the elastic constants for an individual ply are specified by Egs. (4.76). The strain-
displacement equations, Egs. (2.22), for the problem under study are

Out duy Juy  Ouy

g’ {;‘y = a—y’ yxy = a—y —|— ax (4173)

ooy =---24 <

Fig. 4.76. A model simulating the plies interaction.
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Integration of the first equation yields for the +¢ and —¢ plies
uﬁ’ =¢e-x+u(y), u;d’ =¢e-x—u(y) (4.174)

where u(y) is the displacement shown in Fig. 4.76. This displacement results in the
following transverse shear deformation and transverse shear stress

2
Vxz = gu(y), Taz = GxzVaz (4.175)

where G, is the transverse shear modulus of the ply specified by Eqgs. (4.76). Consider
the equilibrium state of +¢ ply element shown in Fig. 4.77. Equilibrium equations can
be written as

5 OTyy _o s OTyy
ox dy

— 27 =0 (4.176)

The first of these equations shows that ., does not depend on x. Since the axial stress, o,
in the middle part of a long specimen also does not depend on x, Egs. (4.171) and (4.173)
allow us to conclude that ¢,, and hence u,, do not depend on x. As a result, the last
equation of Egs. (4.173) yields in conjunction with the first equation of Eqs. (4.174)

_ Ju _ du
Ty Ty

Using this expression and substituting ¢ from Eq. (4.170) in Eq. (4.172), we arrive at

GY, (du
= () (4177)

where n = 77;" xyn;’iv’x.

a7,
xy
dy)é
(T + Py Y)

T
+—Ldx)6
X

- P)

(Ty 5
/:%i -
X

~—

)
dy
dx
Txy5

o,
‘L'Xy5

Fig. 4.77. Forces acting on the infinitesimal element of a ply.
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Substitution of Eqgs. (4.175) and (4.177) into the second equation of Egs. (4.176) provides
the following governing equation for the problem under study

d2u

0~ kK?u =0 (4.178)
in which
k2 _ 4ze(1 )]
Giy82

Using the symmetry conditions, we can present the solution of Eq. (4.178) as
u = Csinhky
The constant C can be determined from the boundary conditions for the free longitudinal

edges of the specimen (see Fig. 4.75) according to which 7., (y = +a/2) = 0. Satisfying
these conditions and using Egs. (4.170), (4.171), (4.175), and (4.177), we finally obtain

Ex =€
N 4 cosh)&_1 + cosh)&_1
A [ny’”n”’x < cosh A 0\ M oosha
4 coshay
Vey = &Mxy.x 005k a
n cosh Ay
=¢El|[1- — -1 4.179
o 8"[ 1—r;<coshA )} ( )
o Gy« (coshay L
YT o1—y cosh
2¢ sinh Ay
— +
e = EG“’?”’X cosh A
where
ka a ze — 2y
A= —=— [1— a3 == 4.180
7 =5y & G V= (4.180)

The axial stress, oy, should provide the stress resultant equal to oa (see Fig. 4.75), i.e.,

al2
/ oxdy =o0a
—a/2
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This condition allows us to determine the axial strain as

o
E = —
Ex
where
E=E |1+ (1- Leanna (4.181)
* * 1—p A '

is the apparent modulus of an angle-ply specimen.
Consider two limiting cases. First, suppose that G, = 0, i.e., that the plies are not
bonded. Then, A = 0 and because

1
lim—-tanhA =1
A
r—0

E. = E]. Second, assume that G,, — oo, i.e., that the interlaminar shear stiffness is
infinitely high. Then A — oo and Eq. (4.181) yields

EY

E, =
X l—)’]

(4.182)

This result coincides with Eq. (4.149), which specifies the modulus of an angle-ply layer.

For finite values of G,,, the parameter A in Egs. (4.180) is rather large because it
includes the ratio of the specimen width, a, to the ply thickness, 8, which is, usually,
a large number. Taking into account that tanh A < 1, we can neglect the last term in
Eqg. (4.181) in comparison with unity. Thus, this equation reduces to Eq. (4.182). This
means that tension of angle-ply specimens allows us to measure material stiffness with
good accuracy despite the fact that the fibers are cut on the longitudinal edges of the
specimens.

However, this is not true for the strength. The distribution of stresses over the half-
width of the carbon—epoxy specimen with the properties given above and a/§ = 20,
¢ = 45° is shown in Fig. 4.78. The stresses oy, 7,y, and t,, were calculated with the aid
of Eqgs. (4.179), whereas stresses o1, o2, and 12 in the principal material directions of the
plies were found using Eqgs. (4.69) for the corresponding strains and Hooke’s law for the
plies. As can be seen in Fig. 4.78, there exists a significant concentration of stress o, that
causes cracks in the matrix. Moreover, the interlaminar shear stress t,, that appears in the
vicinity of the specimen edge can induce delamination of the specimen. The maximum
value of stress o7 is

o)™ = 09(y = 1) = Eze [(1 — varv}f,) sin® ¢
+ (V21 — Vyx) €082 — (1 — vp1)ny,, , sin g cos ¢

Using the modified strength condition, i.e., 0" = E; to evaluate the strength of +60°
specimen, we arrive at the result shown with a triangular symbol in Fig. 4.72. As can



Chapter 4. Mechanics of a composite layer 233

o /o
/o

0.6
/o
04k Txy/“
02r 62/0' Tz /U
0 I I I 0.8 1 y

y
0 0.2 0.4 0.6

Fig. 4.78. Distribution of normalized stresses over the width of a +45° angle-ply carbon—epoxy specimen.

be seen, the allowance for the stress concentration results is in fair agreement with the
experimental strength (dot).

Thus, the strength of angle-ply specimens is reduced by the free-edge effects, which
causes a dependence of the observed material strength on the width of the specimen. Such
dependence is shown in Fig. 4.79 for 105-mm diameter and 2.5-mm-thick fiberglass rings
made by winding at £35°angles with respect to the axis and loaded with internal pressure
by two half-disks as in Fig. 3.46 (Fukui et al., 1966).

It should be emphasized that the free-edge effect occurs in specimens only and does
not show itself in composite structures which, being properly designed, must not have
free edges of such a type.

4.6. Fabric layers

Textile preforming plays an important role in composite technology providing glass,
aramid, carbon (see Fig. 4.80), and hybrid fabrics that are widely used as reinforcing
materials. The main advantages of woven composites are their cost efficiency and high pro-
cessability, particularly, in lay-up manufacturing of large-scale structures (see Figs. 4.81
and 4.82). However, on the other hand, processing of fibers and their bending in the pro-
cess of weaving results in substantial reduction of material strength and stiffness. As can
be seen in Fig. 4.83, in which a typical woven structure is shown the warp (lengthwise)
and fill (crosswise) yarns forming the fabric make angle « > 0 with the plane of the fabric
layer.

To demonstrate how this angle influences material stiffness, consider tension of the
structure shown in Fig. 4.83 in the warp direction. The apparent modulus of elasticity can
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Fig. 4.79. Experimental dependence of strength of a £35°angle-ply layer on the width of the specimen.

Fig. 4.80. A carbon fabric tape.



Fig. 4.81. A composite body of a boat made of fiberglass fabric by lay-up method. Courtesy of CRISM.

Fig. 4.82. A composite leading edge of an aeroplane wing made of carbon fabric by lay-up method. Courtesy
of CRISM.
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Fig. 4.83. Unit cell of a fabric structure.
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be expressed as
EaAa = Ef At + EwAw (4.183)

where Ay = h(2t1 + t2) is the apparent cross-sectional area and

h h
Af = §(2t1 tr), Aw=7(@n+0n)

are the areas of the fill and warp yarns in the cross section. Substitution into Eq. (4.183)
yields

E, = 1 |: Ew(4t; + tz)]

2 2211 + 12)

Since the fibers of the fill yarns are orthogonal to the loading direction, we can take Ef =
E>, where E> is the transverse modulus of a unidirectional composite. The compliance of
the warp yarn can be decomposed into two parts corresponding to 71 and 77 in Fig. 4.83, i.e.,

2t1 4+ 12 . 211 n t
Ew  E1  E,

where E1 is the longitudinal modulus of a unidirectional composite, whereas E, can be
determined with the aid of the first equation of Egs. (4.76) if we change ¢ for «, i.e.,

G2 E;

1 cos* sin? 1 2 )
= i * Y21 ) sin2 o cos? (4.184)
E, E;q E>

The final result is as follows

E E> E1(4t1 + 1)
L= 2
2y {Ztl +1 [cos4a + —g; sin*a + (—GEllz - 2v21) sin? & cos? a]}

(4.185)

For example, consider a glass fabric with the following parameters: o = 12°, t, = 211.
Taking elastic constants for a unidirectional material from Table 3.5, we get for the fabric
composite E; = 23.5GPa. For comparison, a cross-ply [0°/90°] laminate made of the
same material has £ = 36.5GPa. Thus, the modulus of a woven structure is lower by
37% than the modulus of the same material but reinforced with straight fibers. Typical
mechanical characteristics of fabric composites are listed in Table 4.4.

The stiffness and strength of fabric composites depend not only on the yarns and matrix
properties, but also on the material structural parameters, i.e., on fabric count and weave.
The fabric count specifies the number of warp and fill yarns per inch (25.4 mm), whereas
the weave determines how the warp and the fill yarns are interlaced. Typical weave
patterns are shown in Fig. 4.84 and include plain, twill, and triaxial woven fabrics. In the
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Table 4.4
Typical properties of fabric composites.

237

Property

Glass
fabric—epoxy

Aramid
fabric—epoxy

Carbon
fabric—epoxy

Fiber volume fraction

Density (g/cm?)

Longitudinal modulus (GPa)
Transverse modulus (GPa)

Shear modulus (GPa)

Poisson’s ratio

Longitudinal tensile strength (MPa)
Longitudinal compressive strength (MPa)
Transverse tensile strength (MPa)
Transverse compressive strength (MPa)
In-plane shear strength (MPa)

0.43
1.85
26
22
7.2
0.13
400
350
380
280
45

0.46
1.25
34
34
5.6
0.15
600
150
500
150
44

0.45
1.40
70
70
5.8
0.09
860
560
850
560
150

=

-

(@)

LI
LU I

LT

(©

Fig. 4.84. Plain (a), twill (b) and (c), and triaxial (d) woven fabrics.

plain weave (see Fig. 4.84a) which is the most common and the oldest, the warp yarn
is repeatedly woven over the fill yarn and under the next fill yarn. In the twill weave,
the warp yarn passes over and under two or more fill yarns (as in Fig. 4.84b and ¢) in a

regular way.
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Fig. 4.85. Stress—strain curves for fiberglass fabric composite loaded in tension at different angles with respect
to the warp direction.

Being formed from one and the same type of yarns, plain and twill weaves provide
approximately the same strength and stiffness of the fabric in the warp and the fill direc-
tions. Typical stress—strain diagrams for a fiberglass fabric composite of such a type are
presented in Fig. 4.85. As can be seen, this material demonstrates relatively low stiffness
and strength under tension at an angle of 45° with respect to the warp or fill directions.
To improve these properties, multiaxial woven fabrics, one of which is shown in Fig. 4.84d,
can be used.

Fabric materials whose properties are closer to those of unidirectional composites are
made by weaving a greater number of larger yarns in the longitudinal direction and fewer
and smaller yarns in the orthogonal direction. Such a weave is called unidirectional.
It provides materials with high stiffness and strength in one direction, which is specific
for unidirectional composites and high processability typical of fabric composites.

Being fabricated as planar structures, fabrics can be shaped on shallow surfaces using
the material’s high stretching capability under tension at 45° to the yarns’ directions. Many
more possibilities for such shaping are provided by the implementation of knitted fabrics
whose strain to failure exceeds 100%. Moreover, knitting allows us to shape the fibrous
preform in accordance with the shape of the future composite part. There exist different
knitting patterns, some of which are shown in Fig. 4.86. Relatively high curvature of the
yarns in knitted fabrics, and possible fiber breakage in the process of knitting, result in
materials whose strength and stiffness are less than those of woven fabric composites, but
whose processability is better, and the cost is lower. Typical stress—strain diagrams for
composites reinforced by knitted fabrics are presented in Fig. 4.87.

Material properties close to those of woven composites are provided by braided
structures which, being usually tubular in form, are fabricated by mutual intertwining,
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Fig. 4.86. Typical knitted structures.

o, MPa
250 -
OO
200 -
150 -

90°

100 -
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Fig. 4.87. Typical stress—strain curves for fiberglass-knitted composites loaded in tension at different angles
with respect to direction indicated by the arrow Fig. 4.86.

or twisting of yarns around each other. Typical braided structures are shown in Fig. 4.88.
The biaxial braided fabrics in Fig. 4.88 can incorporate longitudinal yarns forming a
triaxial braid whose structure is similar to that shown in Fig. 4.84d. Braided preforms
are characterized with very high processability providing near net-shape manufacturing
of tubes and profiles with various cross-sectional shapes.

Although microstructural models of the type shown in Fig. 4.83 which lead to equations
similar to Eq. (4.185) have been developed to predict the stiffness and even strength
characteristics of fabric composites (e.g., Skudra et al., 1989), for practical design and
analysis, these characteristics are usually determined by experimental methods. The elastic
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Fig. 4.88. Diamond (a) and regular (b) braided fabric structures.

constants entering the constitutive equations written in principal material coordinates,
e.g., Egs. (4.55), are determined by testing strips cut out of fabric composite plates at
different angles with respect to the orthotropy axes. The 0 and 90° specimens are used to
determine moduli of elasticity E1 and E; and Poisson’s ratios v12 and vp; (or parameters
for nonlinear stress—strain curves), whereas the in-plane shear stiffness can be obtained
with the aid of off-axis tension described in Section 4.3.1. For fabric composites, the elastic
constants usually satisfy conditions in Eqgs. (4.85) and (4.86), and there exists the angle
¢ specified by Eq. (4.84) such that off-axis tension under this angle is not accompanied
with shear—extension coupling.

Since Eq. (4.84) specifying ¢ includes the shear modulus G12, which is not known, we
can transform the results presented in Section 4.3.1. Using Egs. (4.76) and assuming that
there is no shear—extension coupling (nx, xy = 0), we can write the following equations

1 1+ vy 4 14+vp 4 V21 1 .5 2

— = —=costp+ —=sin*¢p — ——= + ——sin“pcos’ ¢

E, Eq Ey E1  Gn

Vyx V21 I1+va 14ve 1 ) 2 2

2= = + — — ) sin“¢cos- ¢ (4.186)
E, Ei ( Eq E, G2

14+v1 5 1+vi2 . 5 1

———C0S“¢p — ———siN“¢p — ——C0s2¢ =0

Summing up the first two of these equations, we get

14+vo . 2 .
2 2 2 2
0S“ ¢ — ————sin“ ¢ ) cos2¢p + —— sin“ ¢ CoS” ¢
Eq E; ) G2

l—l—vyx _ :|.~|—1)21C
E.

Using the third equation, we arrive at the following remarkable result

E,

Gipg = ————
2T 20+ vy

(4.187)

similar to the corresponding formula for isotropic materials, Eq. (2.57). It should be
emphasized that Eq. (4.187) is valid for off-axis tension in the x-direction making some
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special angle ¢ with the principal material axis 1. This angle is given by Eq. (4.84). Another
form of this expression follows from the last equation of Egs. (4.186) and (4.187), i.e.,

[(1 + Vyx)/Ex] —[(A +v21)/E1]
L+ vy0)/Ex] — 1+ v21)/E1 — (14 vi2)/ E2

.9 _
sin‘¢ = A (4.188)

For fabric composites whose stiffness in the warp and the fill directions is the same
(E1 = E»), Eq. (4.188) yields ¢ = 45°.

4.7. Lattice layer

A layer with a relatively low density and high stiffness can be obtained with a lattice
structure which can be made by a winding modified in such a way that the tapes are
laid onto preceding tapes and not beside them, as in conventional filament winding (see
Fig. 4.89). The lattice layer can be the single layer of the structure as in Fig. 4.90, or can
be combined with a skin as in Fig. 4.91. As a rule, lattice structures have the form of
cylindrical or conical shells in which the lattice layer is formed with two systems of ribs —
a symmetric system of helical ribs and a system of circumferential ribs (see Figs. 4.90 and
4.91). However, there exist lattice structures with three systems of ribs as in Fig. 4.92.

In general, a lattice layer can consist of k symmetric systems of ribs making angles
+¢;(j = 1,2,3...k) with the x-axis and having geometric parameters shown in
Fig. 4.93. Particularly, the lattice layer presented in this figure has k = 2, ¢1 = ¢,
and ¢ = 90°.

Fig. 4.89. Winding of a lattice layer. Courtesy of CRISM.
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Fig. 4.90. Carbon—epoxy lattice spacecraft fitting in the assemble fixture. Courtesy of CRISM.

Fig. 4.91. Interstage composite lattice structure. Courtesy of CRISM.
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Fig. 4.92. A composite lattice shear web structure.

Since the lattice structure is formed with dense and regular systems of ribs, the ribs
can be smeared over the layer surface when modeled, which is thus simulated with a
continuous layer having some effective (apparent) stiffnesses. Taking into account that
the ribs work in their axial directions only, neglecting the ribs’ torsion and bending in the
plane of the lattice layer, and using Egs. (4.72), we get

k k
Aun =) Bjcos'¢;, An=) Bjsin‘g;,
j=1 j=1

k
Ao = Ay = Ay = Z B; sin? @j cos? P, (4.189)
j=1

k k
A=Y Cjcos’¢;, Ass=» C;sin’g;
j=1 j=1
Here, Bj = E;8;/aj and C; = G;8;/aj, where E; and G are the modulus of elasticity

and the shear modulus of the ribs” materials, §; are the ribs’ widths, and a; are the ribs’
spacings (see Fig. 4.93).

4.8. Spatially reinforced layers and bulk materials

The layers considered in the previous sections and formed of unidirectionally rein-
forced plies and tapes (Sections 4.2-4.5 and 4.7) or fabrics reinforced in the layer plane
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Fig. 4.93. Geometric parameters of a lattice structure.

(Section 4.6) suffer from a serious shortcoming — their transverse (normal to the layer
plane) stiffness and strength are substantially lower than the corresponding in-plane
characteristics. To improve the material properties under tension or compression in the
z-direction and in shear in the xz- and the yz-planes (see, e.g., Fig. 4.18), the material
should be additionally reinforced with fibers or yarns directed along the z-axis or making
some angles (less than a right angle) with this axis.

A simple and natural way of such triaxial reinforcement is provided by the implemen-
tation of three-dimensionally woven or braided fabrics. Three-dimensional weaving or
braiding is a variant of the corresponding planar process wherein some yarns are going
in the thickness direction. An alternative method involves assembling elementary fabric
layers or unidirectional plies into a three-dimensionally reinforced structure by sewing
or stitching. Depending on the size of the additional yarn and frequency of sewing or
stitching, the transverse mechanical properties of the two-dimensionally reinforced com-
posite can be improved to a greater or lesser extent. A third way is associated with the
introduction of composite or metal pins parallel to the z-axis that can be inserted in the
material before or after it is cured. A similar effect can be achieved by the so-called needle
punching. The needles puncture the fabric, break the fibers that compose the yarns, and
direct the broken fibers through the layer thickness. Short fibers (or whiskers) may also be
introduced into the matrix with which the fabrics or the systems of fibers are impregnated.

Another class of spatially reinforced composites, used mainly in carbon—carbon technol-
ogy, is formed by bulk materials multi-dimensionally reinforced with fine rectilinear yarns
composed of carbon fibers bound with a polymeric or carbon matrix. The basic structural
element of these materials is a parallelepiped shown in Fig. 4.94. The simplest spatial struc-
ture is the so-called 3D (three-dimensionally reinforced) in which reinforcing elements
are directed along the ribs AA;, AB, and AD of the basic parallelepiped in Fig. 4.94. This
structure is shown in Fig. 4.95 (Vasiliev and Tarnopol’skii, 1990). A more complicated
4D structure with reinforcing elements directed along the diagonals AC1, A1C, BD1,
and By D (see Fig. 4.94) is shown in Fig. 4.96 (Tarnopol’skii et al., 1987). An example of
this structure is presented in Fig. 1.22. A cross section of a 5D structure reinforced along
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A D

Fig. 4.94. The basic structural element of multi-dimensionally reinforced materials.

Fig. 4.95. 3D spatially reinforced structure.
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Fig. 4.96. 4D spatially reinforced structure.

@
L O]

Fig. 4.97. Cross section of a 5D spatially reinforced structure.

diagonals AD;, A1 D and ribs AA;, AB, and AD is shown in Fig. 4.97 (Vasiliev and
Tarnopol’skii, 1990). There exist structures with a greater number of reinforcing direc-
tions. For example, combination of a 4D structure (Fig. 4.96) with reinforcements along
the ribs AB and AD (see Fig. 4.94) results in a 6D structure; addition of reinforcements in
the direction of the rib AA; gives a 7D structure, and so on up to 13D which is the most
complicated of the spatial structures under discussion.
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The mechanical properties of multi-dimensional composite structures can be qualita-
tively predicted with the microstructural models discussed, e.g., by Tarnopol’skii et al.
(1992). However, for practical applications these characteristics are usually obtained by
experimental methods. Being orthotropic in the global coordinates of the structure x, y,
and z, spatially reinforced composites are described within the framework of a phenomeno-
logical model ignoring their microctructure by three-dimensional constitutive equations
analogous to Eqgs. (4.53) or Egs. (4.54) in which 1 should be changed for x, 2 for y, and
3 for z. These equations include nine independent elastic constants. Stiffness coefficients
in the basic plane, i.e., Ey, Ey, Gy, and vy, are determined using traditional tests devel-
oped for unidirectional and fabric composites as discussed in Sections 3.4, 4.2, and 4.6.
The transverse modulus E; and the corresponding Poisson’s ratios vy, and v,, can be
determined using material compression in the z-direction. Transverse shear moduli G,
and G, can be calculated using the results of a three-point beam bending test shown
in Fig. 4.98. A specimen cut out of the material is loaded with force P, and the deflec-
tion at the central point, w, is measured. According to the theory of composite beams
(Vasiliev, 1993)

P - h2E,
w =
4bh3E, 12G,.

Knowing P, the corresponding w and modulus E, (or E,), we can calculate G, (or
Gy.). It should be noted that for reliable calculation the beam should be rather short,
because for high ratios of // & the second term in parenthesis is small in comparison with
unity.

The last spatially reinforced structure that is considered here is formed by a unidirec-
tional composite material whose principal material axes 1, 2, and 3 make some angles with
the global structural axes x, y, and z (see Fig. 4.99). In the principal material coordinates,
the constitutive equations have the form of Eqgs. (4.53) or Egs. (4.54). Introducing direc-
tional cosines /,;, [y;, and [;; which are cosines of the angles that the i-axis (i =1, 2, 3)
makes with axes x, y, and z, respectively, applying Egs. (2.8), (2.9), and (2.31) to trans-
form stresses and strains in coordinates 1, 2, and 3 to stresses and strains referred to
coordinates x, y, and z, and using the procedure described in Section 4.3.1, we finally

/2 2 T

Fig. 4.98. Three-point bending test.
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Fig. 4.99. Material elements referred to the global structural coordinate frame x, y, and z and to the principal
material axes 1, 2, and 3.

arrive at the following constitutive equations in the global structural coordinate frame

Ox Ex
Oy €y
oy &z
=[S 4.190
slemfr (4.190)
Txz Vxz
Tyz Vyz
in which

S1111 S1122 S113z Sz S1113 S1123
82000 82233 S2212 S2213 82223

[S] = S3333  S3312 3313 $3323
S1212 S1213 S1223
sym $1313  S1323

82323
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is the stiffness matrix where

S = A]_l;ll + Azl;lz + A3l;l3 + 2A112[§1152 + 2A113l§1133 + 2A2231§2153 1,2,3)

Stz = Arl1% + Agl1% + Asl%al% + Arusa (151152 + lle§1>

+ 4(Gralcalyalyily2 + Gaslealislyilyz + Gazlxolyslyoly3) (1,2,3)

S1112 = A1l311 + Aol + Asl3lys + Aria(aly2 + Lioly)lal?

+ A113(Le1ly3 + Lealyn)le1les + A223(leoly3 + Lialy2)loli3 1,2,3)

S113 = Allfglzl + A2132112 + Aslgglzs + An2(xalz2 + I2l1) alx2

+ A13(lxalzo + Lealz)lales + A223(Ix2lz3 + [x3l;2) 203 (1,2,3)

S1123 = A1l Lyl + Agl?,lyol0 + Asl?alyale
+ vz (Plalia + Polka) + Avpuas (Pihyalis + Bglyala )

+ Aapaa(Pylyales + 1251y210) + 2[Gr2(yiler + Laly2)alea
+ G13(lyllz2 + lzllyZ)lxllx3 + G23(ly3112 + ly2113)lx21x3] (11 2, 3)

S1212 = A1ley 151 + Aalyl%, + Aslsl%
+ 2(Arpaoleleolyilyo + Arpaslialeslyalys + Aoposliolyslyoly3)

+ G1a(silyz + Lioly1)? + Gia(lalys + Lialy1)® + Goz(lealys + Lialy2)?
(1,2,3)

S1213 = A1l?y1y1l.1 + Aol 1yl + Asl?3l 315
+ A2 (yalz2 +lyol) alxo + Arpas(lyalzz +1y2l1) 1 lxs
+ Azu3(y2l 3 +1y3l2) xalxs + Gra(aly2 +x2ly1) (Uxaly2 +1x2l71)
+Ga3(lx1lyz+1aly1) (a3 +13l;2)
+Go3(lr2ly3+1x3ly2) (2l 3 +13l2)  (1,2,3) (4.191)
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It should be noted that stiffness coefficients are symmetric with respect to the couples of
subscripts (S;jxu = Swij) and that notation (1, 2, 3) means that performing permutation,
i.e., changing 1 for 2, 2 for 3, and 3 for 1, we can use Eqgs. (4.191) to write the expres-
sions for all the stiffness coefficients entering Eq. (4.190). The coefficients A; and p;; in
Egs. (4.191) are given in the notations to Egs. (4.54) and

A = A2 +2Gr2,  Anz = A1z +2Gi3, Az = Az + 2Go3

Resolving Egs. (4.190) for strains, we arrive at Eq. (2.48) with the following coefficients
for the compliance matrix in Eq. (2.49)

E_ — g_i+g_2+EZ_]?;+Clzzlill§1~|—C1331§1l221+C2331511221 (17 25 3)5 (X, Vs Z)
X
Vyy Vy V12 (2 2 2 .2 V13 (12 12 |, 42 12
ol ot (PUCST LY Rl (TESSEY
y x

2 2 2 72 272
) (lz 12112 12 )_ Lalio Falya ks
Es y1%z2 T hy2%z1 E; E, E3

1 1 1
——lLallyilyy — —Ili2l1l,0 — —11l 2111 1,2,3), , Y,
G x1ix2ly1ly2 G x1ix2lz1L72 G y1lty2tz1L72 ( ) (x,y,2)
(4.192)

- Eq E> E3

3
e, xy _ My, x lfllﬂ Baly2 131112
Gy E,

+ C122(lxlly2 + leIyl)lxllyl + Ci133(x1l2 + Ix2l1)aln
+ Cazz(lyal2 + ly2lz)ala (1, 2, 3),  (x, y, 2),

3
NMx,xz _ Mxz,x 2 lfllx3 + lylly3 n lg’llzg
Gy, Ex Eq E; E3

+ Ci2(x1lys + Lalxa)lxalyy + C13z(xal3 + Leal) il n
+ Cazz(lyals + Lyl il (L, 2, 3),  (x, y, 2),

2
NMx,yz _ Myz,x 2 lill)chxB i lyll)'zl)’3 i lzzllz2123
Gy: E, E; E E3

V12 V13
-2 (Zaalys + Pilialia) - = (atezlia + Bililia)
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1
x21y3 + lx3ly2)

‘)23
(1211121z3 + lzlly21y3>]

Il

+ G y2123 +ly3122) (17 27 3)7 (xv yv Z)

(xalz3 + 1i3l;

1 122, 1515 1212 V12
G =4 |: 2;2 + £, + 12;2 -2 (E_lxllx21ylly2 + _lxllx2121122
xy

+_lylly2111112 + _(lxllyZ + leIyl) + _(lxllz2 + leIzl)
E3 G2 Gi3

1
+ Gy (ka2 +1hla)? (@, 2,3), (x, 5, 2)

2
)\xy, Xz )hxz,xy —4 lillx21x3 + lylly21y3 + lZ211z2lz3
Eq E> E3

22 Lalig + Loly3)ealyt — 22 (aleg + Loalea) ol
E; x3ly2 x2ly3)ix1lyl E3 x26z3 z20x3)ix1iz1
V23 1
__(ly2113 + ly3112)lyllzl + _(lxlly3 + leZyl)(lxllyZ + leZyl)
E3 G2
1
+ ——(ealzz + Lialz) (xalo + Lr2lz1)
Gi3
1
+ G_ZS(lyllZS + sl (yal2 +12l1) (4, 2, 3), (x, y, 2)

in which

1 2v12 1 2v13 1 2v23
Cip=———-——7, Cs=——-——7, C3=———+
G2 E> Gi3 E3 G E3

Consider a special spatial structure (Pagano and Whitford, 1985) formed by a fabric
composite in which the plies reinforced at angle ¢ (warp direction) with respect to the
x-axis make angles o and 8 with the x-axis and the y-axis, respectively, as in Fig. 4.100.
The directional cosines for this structure are

ly1 =COSACOSY, Iy = —SIiNACOSY
Iy3=—siny, ly1 =sinicospB — cosasingsiny

lyp =cosicosB +sinasingsiny, I,3=—sinpcosy
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Fig. 4.100. Orientation angles in a spatial composite structure.

l;1 = sinAsin B + cos A cos B sin ¥

l,o =cosAsin B —sinicosBsiny, [,3 =C0SpBCoSy
where
A =¢+tan"L(tan Bsiny), ¥ =tan"(tanacosB)

The dependencies of elastic constants E,, E,, Gy;, and Gy, calculated with the aid
of Eqgs. (4.192) for the material with E; = 12.9GPa, E; = 5.2GPa, E3 = 3GPa,
G12 = G13 = 1.5GPa, Gp3 = 1 GPa, vp; = 0.15, v33 = 0.2, and v3p = 0.2 are presented
in Fig. 4.101 (Vasiliev and Morozov, 1988).

For planar structures (¢ = 8 = 0), Egs. (4.191) and (4.192) generalize Egs. (4.72) and
(4.76) for a three-dimensional stress state of a layer.

E, GPa G, GPa
16

1.2

0.8

0.4}

0 1 1 1 1 L ) ¢O 0 L L L L L ) ¢O
0 15 30 45 60 75 90 0 15 30 45 60 75 90

Fig. 4.101. Dependencies of the elastic constants of a spatially reinforced composite on the orientation angles:
l—a=B8=0,2—a=8=8° 3—a=p=16°.
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Chapter 5

MECHANICS OF LAMINATES

A typical composite structure consists of a system of layers bonded together. The layers
can be made of different isotropic or anisotropic materials, and have different structures
(see Chapter 4), thicknesses, and mechanical properties. In contrast to typical layers which
are described in Chapter 4 and whose basic properties are determined experimentally,
the laminate characteristics are usually calculated using the information concerning the
number of layers, their stacking sequence, geometric and mechanical properties, which
must be known. A finite number of layers can be combined to form so many different
laminates that the concept of studying them using experimental methods does not seem
realistic. Whereas the most complicated typical layer is described with nine stiffness
coefficients A,,, (mn = 11, 22, 12, 14, 24, 44, 55, 56, 66), some of which can be
calculated, the laminate is characterized by 21 coefficients and demonstrates coupling
effects that are difficult to simulate in experiments.

Thus, the topic of this chapter is to provide equations allowing us to predict the behavior
of a laminate as a system of layers with given properties. The only restriction that is
imposed on the laminate as an element of a composite structure concerns its total thickness,
which is assumed to be much smaller than the other dimensions of the structure.

5.1. Stiffness coefficients of a generalized anisotropic layer

For the sake of brevity, consider first a thin homogeneous layer, which is anisotropic
in the xy-plane and whose mechanical properties are some functions of the normal
coordinate z (see Fig. 5.1). Coordinate axes x and y belong to some plane which is
referred to as a reference plane such that z = 0 on this plane and —e < z < s for the layer
under study. There exist some special locations of the reference plane discussed below,
but in this section its coordinates e and s are not specified. We introduce two assumptions
both based on the fact that thickness & = ¢ + s is small.

First, it is assumed that the layer thickness, h, does not change under the action of
stresses shown in Fig. 5.1. Actually, the thickness does change, but because it is small,
this change is negligible. This means that there is no strain in the z-direction, and in

255
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Fig. 5.1. An element of a generalized layer.

accordance with Egs. (2.22),

£, = % =0, u,=wkx,y) (5.1)
oz
Here, w(x, y) is the so-called normal deflection which is a translational displacement of
a normal element a—b (see Fig. 5.1) as a solid in the z-direction.
Second, we suppose that in-plane displacements u, and u, are linear functions of the
thickness coordinate z, i.e.,

ux(x’ y’ Z) = u(x, )’) +Z0x(~x’ }’)
(5.2)
uy(x,y,z) =v(x, y) + z20y(x,y)

where u and v are the displacements of the points of the reference plane z = 0 or, which
is the same, the translational displacements of the normal element a—b (see Fig. 5.1) as
a solid in the x- and y-direction, whereas 6, and 6, are the angles of rotations (usually
referred to as ‘rotations’) of the normal element a—b in the xz- and yz-planes. Geometric
interpretation of the first expression in Egs. (5.2) is presented in Fig. 5.2.

In-plane strains of the layer, &, €, and yxy, can be found using Egs. (2.22), (5.1), and
(5.2) as

e n
&y = =¢ K
T x T
uy, 0
gy = E =&, + 2Ky (5.3)
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> o
4
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Fig. 5.2. Decomposition of displacement u, of point A into translational (x) and rotation (z6,) components.

where

0 au 0 aU 0 au aU
& = =, &, = =, )/x y — N BN
T ox Y 9y Y9y  ox

00y 90, 90, 0y
CTR T TR TR
These generalized strains correspond to the following four basic deformations of the layer
shown in Fig. 5.3:

e in-plane tension or compression (sfg, s;’),

e in-plane shear (y)g,),

e bending in the xz- and yz-planes (ky, «,), and

o twisting (kxy).

The constitutive equations for an anisotropic layer, Egs. (4.71), upon substitution of
Egs. (5.3), yield

op = A1l + A1288 + A14)/,9y + z(An1kx + A12ky + Alakyy)
oy = Aglsg + A228§), + A24)/)?y + z(Agiky + A22Ky + A24ny) (5-4)

Toy = Aq1e) + Ane) + Aaay?, + 2(Aaikx + Asaicy + Assicry)

where A,,, = A, are the stiffness coefficients of the material that will depend, in general,
on the coordinate z.

It follows from Egs. (5.4), that the stresses depend on six generalized strains ¢, y, and
« which are functions of coordinates x and y only. To derive the constitutive equations for
the layer under study, we introduce the corresponding force functions as stress resultants
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@

(b)

©

(d)

Fig. 5.3. Basic deformations of the layer: (a) in-plane tension and compression (

shear (y%); (c) bending (x); (d) twisting («yy).

and couples shown in Fig. 5.4 and specified as (see also Fig. 5.1)

N s s
N, =/ o,dz, N :/ oydz, Ny :/ Tyydz,
—e —e —e

N s N
M =/ oxzdz, M, =/ oyzdz, M,y =/ Tyyzdz
—e —e

—e

0
£r, €

8); (b) in-plane
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Fig. 5.4. Stress resultants and couples applied to the reference plane of the layer.

Substituting the stresses, Eqgs. (5.4), into these equations, we arrive at constitutive
equations that relate stress resultants and couples to the corresponding generalized
strains, i.e.,

N, = 31182 + 31288 + B14y)?y + Ci1kx + Cr2iy + Crakyy

Ny, = 32182 + 32288 + 324)/,9y + Corkx + Cooky + Cogkcyy

Nyy = B418g + B428(y) + B44)/)?y + Ca1kx + Caicy + Cagkxy

(5.5)
M, = Cyel + Clsz + C14)/)?y + Diikx + Di2ky + Diskxy
My, = C21£2 + ngag + C24)/)9y + Do1kx + Daoky + Doskyy
My = Cqe2 + C4288 + C44ny + Daikx + Dazxcy + Dagky
These equations include membrane stiffhess coefficients
N
Bun = Bnm = / Apnndz (5.6)
—e

which specify the layer stiffness under in-plane deformation (Fig. 5.3a and b), bending
stiffness coefficients

s
Dy = Dy = / AngZdZ (57)

e

which are associated with the layer bending and twisting (Fig. 5.3c and d), and membrane-
bending coupling coefficients

s
Cnn = Com = / Apnzdz (58)

—e
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through which in-plane stress resultants are related to bending deformations, and stress
couples are linked with in-plane strains.

Coefficients with subscripts 11, 12, 22, and 44 compose the basic set of the layer stiff-
nesses associated with in-plane extension, contraction, and shear (Bi1, B12, B22, Baa),
bending and twisting (D11, D12, D22, Das), and coupling effects (C11, C12, C22, Ca4).
For an anisotropic layer there also exists coupling between extension (a) and
shear (b) in Fig. 5.3 (coefficients Bi4, By4), extension (a) and twisting (d) in
Fig. 5.3 (coefficients C14, C24), bending (c) and twisting (d) in Fig. 5.3 (coefficients
D14, Day).

The forces and moments N and M specified by Egs. (5.5) are resultants and couples
of in-plane stresses oy, oy, and z,, (see Fig. 5.1). However, there are also transverse
shear stresses t,; and t,; which should be expressed in terms of the corresponding shear
strains. Unfortunately, we cannot apply for this purpose the direct approach that was used
above to derive Egs. (5.5). This different approach involves strain—displacement equations,
Egs. (2.22),

Vez= =+t =5, Vyz:=—=—+=— (59)
Z Z
in conjunction with Hooke’s law

Tyy = Assyy; + A56Vyz’ Ty; = Ag5Yxz + A66Vyz (5-10)

or
Vxz = A55Tx; + A56Tyz,  Vyz = A65Txz + A66Ty; (5.11)

where A,,, and a,,, are stiffness and compliance coefficients, respectively. The problem
is associated with Eqgs. (5.2) which specify only approximate dependence of displace-
ments u, and u, on coordinate z (the actual distribution of u, and u, through the layer
thickness is not known) and must not be differentiated with respect to z. So we cannot sub-
stitute Egs. (5.2) into Egs. (5.9) which include derivatives of u, and u, with respect to z.
To see what can happen if we violate this well-known mathematical restriction, consider
a sandwich laminate shown in Fig. 5.5. It can be seen that while linear approximation of
u(z) (dashed line) looks reasonable, the derivatives of the actual displacements and the
approximate ones have little in common.

To derive constitutive equations for transverse shear, consider Fig. 5.6. The actual dis-
tribution of shear stresses 7, and t,; across the layer thickness is not known, but we
can assume that it is not important. Indeed, as follows from Egs. (5.1), elements a—b
(see Fig. 5.6) along which the shear stresses act are absolutely rigid. This means
(in accordance with the corresponding theorem of Statics of Solids) that the displace-
ments of these elements in the z-direction depend only on the resultants of the shear
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Ju

u2 0z

= |
@ (b)

Fig. 5.5. Actual (solid lines) and approximate (dashed lines) distributions of a displacement (a) and its
derivative (b) through the thickness of a sandwich laminate.

Fig. 5.6. Reduction of transverse shear stresses to stress resultants (transverse shear forces).

stresses, i.e., on transverse shear forces
N N
Ve = / T dz, V= / Ty.0z2 (5.12)
—e —e

Since the particular distributions of z,, and z,, do not influence the displacements, we
can introduce some average stresses having the same resultants as the actual ones, i.e.,

1% 1/ V 1/
txzzx:ﬁ‘/;efxzdz, Ty:IyZE‘/;etyZdz

However, according to Eqgs. (5.11), shear strains are linear combinations of shear stresses.
So, we can use the same law to introduce average shear strains as

1/ 1 /9
Vx = _/ )/xde’ Yy = _/ Vyde (5-13)
hJ_. hJ_.
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Average shear strains y, and y, can be readily expressed in terms of displacements if we
substitute Egs. (5.9) into Egs. (5.13), i.e.,

1 § du,
ve = [ux(S) —uy(—e) + /_e gdz]

5 Qu,

Y :E uy(s) —ux(—e) + —dz
’ h[y /—e dy ]

These equations, in contrast to Egs. (5.9), do not include derivatives with respect to z.
So, we can substitute Egs. (5.1) and (5.2) to get the final result

Jw Jw
Vx =9X+gv Vy=9y+a—y (5.14)
Consider Egs. (5.10) and (5.11). Integrating them over the layer thickness and using
Egs. (5.12) and (5.13), we get

s

s s
Vi = / (Assyxz + ASGVyZ)dZs Vy = / (Apsyxz + ABGV)’z)dZ

—e —e
N \y

1 1/
Yx = 7 (as5Ty; + 356tyz)dzv Yy = n (ags5Ty; + 966Tyz)dz
—e —e

Since the actual distribution of stresses and strains according to the foregoing reasoning
is not significant, we can change them for the corresponding average stresses and strains:

Vi = Sssyx + Ssevy,  Vy = Ses¥x + SesVy (5.15)
Yx =855V +556Vy, ¥y = 565V + 566V (5.16)
where
s
Smn = Spm = f AmndZ (517)
—e
1 s
Smn = Snm = _2/ amndz (518)
he J_.

It should be emphasized that Eqgs. (5.16) are not the inverse form of Egs. (5.15). Indeed,
solving Egs. (5.16), using Egs. (5.18), and taking into account that
ass = Aes, ase = —Ase, ass = Ass,

e _ Amn
mn — ~— . .9
AssAgs — A,
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we arrive at Egs. (5.15) in which S,,,, should be changed to

h? fie Zmndz
(/*, Assdz) ([*, Agsdz) — (/*, Asedz)’

(5.19)

Emn =

These expressions, in general, do not coincide with Egs. (5.17).

Thus, the constitutive equations for transverse shear are specified by Egs. (5.15),
and there exist two, in general different, approximate forms of stiffness coefficients —
Egs. (5.17) and (5.19). The fact that equations obtained in this way are approximate
is quite natural because the assumed displacement field, Egs. (5.1) and (5.2), is also
approximate.

To compare two possible forms of constitutive equations for transverse shear, consider
for the sake of brevity an orthotropic layer for which

Asg =0, asg=0, Ass=Gy;, Ass=Gy,

_ 1 _
ass = Agg = G (6= Asgs =
Xz yz

For transverse shear in the xz-plane, Egs. (5.15) yield
Ve =Sssyx Or Vi = Ss5ys (5.20)

in which, in accordance with Eq. (5.17)

S55 = / GdeZ (521)

—e

whereas Eq. (5.19) yields
Sg5 = ———— (5.22)
[ b

If the shear modulus does not depend on z, both equations, Eq. (5.21) and (5.22), give the
same result Sss = Ss5 = G.h. The same, of course, holds true for the transverse shear
in the yz-plane.

Using the energy method applied in Section 3.3, we can show that the Egs. (5.21) and
(5.22) provide the upper and the lower bounds for the exact transverse shear stiffness.
Indeed, consider a strip with unit width experiencing transverse shear induced by force
V. as in Fig. 5.7. Assume that Eq. (5.20) links the actual force V, with the exact angle
¥x = A/I through the exact shear stiffness Sg; which we do not know, and which we
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Fig. 5.7. Transverse shear of a strip with unit width.

would like to evaluate. To do this, we can use the two variational principles described in
Section 2.11. According to the principle of minimum total potential energy

Text < Tadm (5.23)
where

Text = Uesxt — Aext,  Tadm = Ugdm — Aadm
are the total energies of the exact state and some admissible kinematic state expressed
in terms of the strain energy, U, and work A performed by force V, on displacement A
(see Fig. 5.7). For both states

Aext = Aadm = VA
and condition (5.23) reduces to

Usxt < Usgm (5.24)

For the exact state, with due regard to Eq. (5.20), we get

I I
Uext = zvxyx = §S§5)’XZ (5.25)

For the admissible state, we should use the following general equation

1 I s 1 1 K
U= —/ dx/ TooVaz0z = —/ dx/ zeyxzzdz =U*
2 0 —e 2 0 —e

and admit some approximation for y,,. The simplest one is y,, = yx, o that

l N
am = ¥4 f G.:0z (5.26)

—e
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Then, Egs. (5.24)—(5.26) yield

s
S§5 S/ zedZ

—e

Comparing this inequality with Eq. (5.21), we can conclude that this equation specifies
the upper bound for Sg;.

To determine the lower bound, we should apply the principle of minimum strain energy,
according to which

Uext < Uggm (5.27)
where
v by 1 15
ext = 2 xVx = 2 S§5

For the admissible state we should apply

1 I s 1 l s ‘L'Z
U=+ d dz == d X2 dz =U°
o [t [ ] G

and use some admissible distribution for z,,. The simplest approximation is t,, = V,/h
so that

% =LV2/S dz
am e 2n2 T ), Gy

Substitution in the condition (5.27) yields

h2

e
Sg5 = —fs i
—e Gy;

Thus, Eq. (5.22) provides the lower bound for S¢s, and the exact stiffness satisfies the
following inequality

/’l2 s
= a4 =< S§5 =< / Gy dz
f—e Gy; e

It should be emphasized that Sgg in this analysis is not the actual shear stiffness coef-
ficient of the laminate. It is the exact value of the stiffness coefficient which can be
found using the exact stress and strain fields following from three-dimensional elasticity
equations.
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z
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e,

e

Fig. 5.8. Coordinates of an arbitrary point A.

So, constitutive equations for the generalized layer under study are specified by
Egs. (5.5) and (5.15). Stiffness coefficients, which are given by Egs. (5.6)-(5.8), and
(5.17) or (5.19), can be written in a form more suitable for calculations. To do this, intro-
duce the new coordinate r = z + e such that 0 < r < & (see Fig. 5.8). Transforming the

integrals to this new variable, we have

B =19, Cop=19 -e® p, =12 _2eD 1,270

mn> mn?

where mn = 11, 12, 22, 14, 24, 44 and
h

i =/ Apnt'dt, r=0,1,2
0

The transverse shear stiffnesses, Egs. (5.17) and (5.19), take the form

Son = 1%
and
_ w219
mn —
—0)50)  (+(0))2
Iss Igs — (156>

where mn = 55, 56, 66 and

h
70 = / At
0

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

The coefficients A,,, are specified by the expression given in notations to Eq. (5.19).
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5.2. Stiffness coefficients of a homogeneous layer

Consider a layer whose material stiffness coefficients A,,, do not depend on coordi-
nate z. Then

A r - —
rE:rZ = r —’:n]_h +1a I(O) = Amnh (533)

and Egs. (5.28), (5.30), and (5.31) yield the following stiffness coefficients for the layer

h
Byn = Amnh,  Cpn = Amn <§ - e)a
. (5.34)

h
Dyn = Amn (? —eh+ 62), Smn = Amnh

Both Egs. (5.30) and (5.31) give the same result for S,,,. It follows from the second of
Egs. (5.34), that the membrane—bending coupling coefficients C,,,, become equal to zero
if we take e = h/2, i.e., if the reference plane coincides with the middle-plane of the layer
shown in Fig. 5.9. In this case, Egs. (5.5) and (5.15) take the following de-coupled form

N, = 31182 + 31288 + Bl47/fy, Ny = 32182 + 32282 + 324%2»”
_ 0 0 0
Nyy = Bai&y + Bazey + Baayy,
My = Di1ky + Di2ky + Diskyy, My = Doikyx + D22icy + Doakyy, (5.35)
M,y = Daiky + Dapicy + Dasicyy,

Vi = Ss5¥x + Ss6vy,  Vy = Sesyx + Seeyy

As can be seen, we have arrived at three independent groups of constitutive equations,
i.e., for in-plane stressed state of the layer, bending and twisting, and transverse shear.

h/2
h/2

Fig. 5.9. Middle-plane of a laminate.
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The stiffness coefficients, Egs. (5.34), become

A
Bun = Amnh, Dpn = %h% Sn = Apmnh (5.36)

For an orthotropic layer, there are no in-plane stretching—shear coupling (B14 = B24 = 0)
and transverse shear coupling (Ss¢ = 0). Then, Egs. (5.35) reduce to

Ny = Buel + 31288, Ny = B2ned + 32288’ Nyy = B44)/)9y
Mx = Dlle + D12Ky1 My = D21Kx + D22Ky, Mxy = D44ny (537)

Vi = Ss5¥x, Vy = S66Vy

In terms of engineering elastic constants, the material stiffness coefficients of an
orthotropic layer can be expressed as

Al]_:Fx, A12:nyEx» A22:Eya A44:nyv As5 =Gy, A66:Gyz
(5.38)

where E, y = Ey /(1 — vyyvy,). Then, Egs. (5.36) yield

Bl]_ = Exh, B]_Z = nyExhv 322 = Eyh, B44 = nyh
1 Vyy — 1 1
D= —Eh®, D= —-2EHh% Dyp=—Eh® Diu=-—Gyh® (639
u =155 12 = 75 Ex 2= 5E; 44 = 175Gy (5.39)
Ss5 = Gyxzh, Se6 = Gy:h
Finally, for an isotropic layer, we have

E

Ex — Ey — E’ ny = \)yx =, ny - GXZ = Gyz =G = m

and
Bii = Bp =Eh, Bip=vEh, B = Ss5= Ses=Gh

(5.40)

Dy =Dy = SES. D= “FW. Du— LGh

where E = E/(1 —1?).
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5.3. Stiffness coefficients of a laminate

Consider the general case, i.e., a laminate consisting of an arbitrary number of layers
with different thicknesses #; and stiffnesses A,(jf,, (i=12,3,...,k). The location of an
arbitrary ith layer of the laminate is specified by the coordinate ¢;, which is the distance
from the bottom plane of the laminate to the top plane of the ith layer (see Fig. 5.10).
Assuming that the material stiffness coefficients do not change within thickness of the
layer, and using piece-wise integration, we can write parameter I, in Egs. (5.29) and
(5.32) as

0
1" = - ZA% ( e r+1) ( ) ZA(:) —t1) (5.41)

where r =0,1,2 and 19 = 0, tx = h (see Fig. 5.10). For thin layers, Egs. (5.41) can be
reduced to the following form, which is more suitable for calculations

1(0) ZA(I) h;, 7’(1?) ZA(I) h;.

1
Iin =5 ZA“) hi(ti + ti-1), 49
1S
1@ = 3 Z A h; (t,»z +titi-1 + fiz—l)
i=1

in which h; = t; — t;_1 is the thickness of the ith layer.
The membrane, coupling, and bending stiffness coefficients of the laminate are specified
by Egs. (5.28) and (5.42).

Fig. 5.10. Structure of the laminate.
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Consider transverse shear stiffnesses that have two different forms determined by
Egs. (5.30) and (5.31) in which

k k
i ( (@)
Il =D Afhic Ty =D Aphi (5.43)
i=1

i=1

A particular case, important for practical applications, is an orthotropic laminate for
which Egs. (5.5) take the form

Ny = Buied + B1oed + Crikx + Caky
Ny = Bnel + Bzzeg + Cr2kx + C22ky
Nyy = B44J/fy + Caakxy
(5.44)
M, = Cpe® + Clzsg + Diikx + Dizky
My = C2182 + szsg + Doikx + D22kcy

Mxy = C44)/)?y + D44ny

Here, membrane, coupling, and bending stiffnesses, B,,, Cyun, and D,,,, are specified by
Egs. (5.28), i.e.,

Bun =19, Cpn=1%—-e® D, =12 _2e1 1 2O (5.45)

mn> mn?

where mn = 11, 12, 22, 44,
Transverse shear forces V, and V, are specified by equations similar to Egs. (5.20)

Vi = Ss5¥x, Vy = SG6Vy

in which the corresponding stiffness coefficients, Eqs. (5.30) and (5.31) reduce to
(mn = 55, 66)

hZ
k h;
izl

Afon

k
Sun = _ A i, Spm = (5.46)
i=1

Laminates composed of unidirectional plies have special stacking-sequence notations. For
example, notation [05/ +45°/ —45°/905] means that the laminate consists of 0° layer
having two plies, £45° angle-ply layer, and 90° layer also having two plies. Notation
[0°/90°]s means that the laminate has five cross-ply layers.
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5.4. Symmetric laminates

Symmetric laminates are composed of layers that are symmetrically arranged with
respect to the laminate’s middle plane as shown in Fig. 5.11. Introduce the layer
coordinate z;, (see Fig. 5.11). Since for any layer which is above the middle surface
z = 0 and has the coordinate z; there is a similar layer which is located under the middle
surface and has the coordinate (—z;), the integration over the laminate thickness can be
performed from z = 0 to z = h/2 (see Fig. 5.11). Then, the integrals for B,,, and D,
similar to Egs. (5.6) and (5.7) must be doubled, whereas the integral for C,,, similar to
Egs. (5.8) is equal to zero. Thus, the stiffhess coefficients entering Egs. (5.5) become

h/2 h/2
By = 2/ Amndza Dpyn = 2/ Amnzzdza Cun=0 (547)
0 0

For a symmetric laminate shown in Fig. 5.11, we get

k/2 k/2
Bun =2) Az —2i-1) =2 Al

i=1
Com =0 (5.48)

k/2 k/2

ZA,S’J, (z -z 1) ZA(l)hi(Z,'z + Zizi-1 +zf_1>

where h; = z; — z;—1. The transverse shear stiffness coefficients are given by Egs. (5.30)
and (5.31) in which

© _ @) 70 (@) —0) AD),
19 =2 § ADp; 1) =2 § Aphi, A = ——— — (5.49)
A(I)A(l) _ (A(1)>
5566 56

ki 2

N |z

N =

S

< S
a2 7

Fig. 5.11. Layer coordinates of a symmetric laminate.
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To indicate symmetric laminates, a contracted stacking-sequence notation is used, e.g.,
[0°/90°/45°], instead of [0°/90°/45°/45°/90°/0°]. Symmetric laminates are character-
ized by a specific feature — their bending stiffness is higher than the bending stiffness of
any asymmetric laminate composed of the same layers. To show this property of sym-
metric laminates, consider Egs. (5.28) and (5.29) and apply them to calculate stiffness
coefficients with some combination of subscripts, e.g., m = 1 and n = 1. Since the
coordinate of the reference plane, e, is an arbitrary parameter, we can find it from the
condition C11 = 0. Then,

Ly
e= 1L (5.50)
Ill
and
()
Dy =12 — (5.51)

©
Ill

Introduce a new coordinate for an arbitrary point A in Fig. 5.12 as z = ¢ — (h/2). Changing
t to z, we can present Eqg. (5.29) in the form

h/2 h r
11 :/ A11(§+z) dz
—h/2

Substituting these integrals into Egs. (5.50) and (5.51), we have

(68)
h J

e=5+ =5 (5.52)

J11

and
2
1)
D — J@ (Jll )

1= Jll ](0) (5.53)

: A
Iz' h/2

t h/2

Fig. 5.12. Coordinate of point A referred to the middle plane.
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where
h/2
s = / Apz'dz (5.54)
—h/2
and r =0,1, 2.

Now decompose A1 as a function of z into symmetric and antisymmetric compo-
nents, i.e.,

An(z) = A3 (2) + A} (@)

Then, Eq. (5.54) yields
0 h/2 1 h/2 ) h/2
11(1) = / Apdz, Jl(l) Z/ Afyzdz, J1( : =/ Ay 2Pdz
—h/2 —h/2 —h/2

As can be seen from Eq. (5.53), D11 reaches its maximum value if Jl(l) =00rA}; =0
and A1 = A3;. In this case, Eq. (5.52) gives e = h/2.

Thus, symmetric laminates provide the maximum bending stiffness for a given num-
ber and mechanical properties of layers and, being referred to the middle-plane, do
not have membrane-bending coupling effects. This essentially simplifies the behavior
of the laminate under loading and constitutive equations which have the form specified
by Egs. (5.35).

5.5. Engineering stiffness coefficients of orthotropic laminates

It follows from Egs. (5.28) that the laminate stiffness coefficients depend, in the general
case, on the coordinate of the reference surface e. By changing e, we can change the
bending stiffness coefficient D,,,,. Naturally, the result of the laminate analysis undertaken
with the aid of the constitutive equations, Egs. (5.5) does not depend on the particular
pre-assigned value of the coordinate e because of the coupling coefficients C,,, which
also depend on e. To demonstrate this, consider an orthotropic laminated element loaded
with axial forces N and bending moments M uniformly distributed over the element width
as in Fig. 5.13. Suppose that the element displacement does not depend on coordinate y.
Then, taking N, = N, M, = M, 88 =0and x, = 0 in Egs. (5.44), we get

N = 31182 + Criky, M= Cllt’?g + D11k (5.55)
where, in accordance with Egs. (5.28),

2
Bu=1Y, cu=17 -6, Du=17 -2e + 2L (5.56)
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Fig. 5.13. Laminated element under tension and bending.

Here, as follows from Egs. (5.41)

l({) = - — 1 Z A(l) ( r+l r+11) (557)

(r =0, 1, 2) are coefficients which do not depend on the coordinate of the reference
plane e. It is important to emphasize that forces N in Fig. 5.13 act in the reference plane
z =0, and the strain gfg in Egs. (5.55) is the strain of the reference plane.

Solving Egs. (5.55) for £2 and ., we have

1 1
6] = —(DuN — CuM), 1 = —(BuM — CuiN) (5.58)
D1 D,
where
D1 = BuDu —Ch (5.59)

Substituting B, D, and C from Egs. (5.56), we find
2
0 ;2 (€8]
Dy=1IyIy — (111 )
As can be seen, the parameter D, does not depend on e.
Consider now the same element but loaded with forces P applied to the middle plane of

the element as in Fig. 5.14. As follows from Fig. 5.15 showing the element cross section,
the forces and the moments in Fig. 5.13 induced by the forces in Fig. 5.14 are

N=P, M= P(% - e> (5.60)

________ —

Fig. 5.14. Laminated element under tension.
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h2| = e —
T B I O AR e

Fig. 5.15. Cross section of the element.

Substitution of Egs. (5.60) into Egs. (5.58) yields

P h
0 @ 4O @O 40
P (h o
Ky = D_l (5111 — Ill (562)

It follows from Eqg. (5.62), that «, does not depend on e, which is expected because the
curvature induced by forces P in Fig. 5.14 is the same for all the planes z = constant
of the element. However, Eq. (5.61) includes e which is also expected because efﬁ is the
strain in the plane z = 0 located at the distance ¢ from the lower plane of the element
(see Fig. 5.15). Let us find the strain &% at some arbitrary point A of the cross section for
which z = — e (see Fig. 5.15). Using the first equation of Egs. (5.3), we have

Pl@_hio 1 1
=+ (1~ ek = D—l[ll(l’ -5 (0 - 1) - oy

This equation includes the coordinate of point A and does not depend on e. Thus, taking
an arbitrary coordinate of the reference plane, and applying Eqgs. (5.56) for the stiffness
coefficients, we arrive at values of C1; and D13, the combination of which provides the
final result that does not depend on e. However, the derived stiffness coefficient D11 is
not the actual bending stiffness of the laminate which cannot depend on e.

To determine the actual stiffness of the laminate, return to Egs. (5.58) for £0 and .
Suppose that C11 = 0, which means that the laminate has no bending-stretching coupling
effects. Then, Eq. (5.59) yields D = B13 D11 and Egs. (5.58) become

o N M

)= ——, Ky = —
Y B D11

(5.63)

It is obvious that now Bjj is the actual axial stiffness and Dj; is the actual bending
stiffness of the laminate. However, Egs. (5.63) are valid only if C11 = 0. Using the
second equation of Egs. (5.56), we get

6y
_ Ill

S (5.64)
0)
Ill



276 Advanced mechanics of composite materials

Substituting this result into Egs. (5.56) and introducing new notations B, = Bi; and
D, = D1 for the actual axial and bending stiffness of the laminate in the x-direction, we

arrive at
()
By =17, D.=12 -

11>
1©

(5.65)

Here, coefficients I(’) (r = 0,1,2) are specified by Egs. (5.57). The corresponding
stiffnesses in the y- dlrection (see Fig. 5.13) are determined from similar equations, i.e.,

@
0 2 ( 2 )
By=1Iy. Dy=1Ip — %~ (5.66)
122

in which

(r) @) Pas r+1
_ Al ( )
I r+1 Z

For symmetric laminates, as discussed in Section 5.4, C,,, = 0 and coefficients D, in
Egs. (5.48) specify the actual bending stiffnesses of the laminate, i.e.,

o k2

Q) 2 2
D, = 3 Zl AL} hi (zi +2zizi-1+ Zi—l)
1=
(5.67)
’ k/2
Q) 2 2
D, = 3 21: Ay hi (z,- +zizi-1+ Zi—l)
i—

where coordinates z; and z;—1 are shown in Fig. 5.11. Note, that if the number of layers
k is not even, the central layer is divided by the plane z = 0 into two identical layers,
so k becomes even.

To find the shear stiffness, consider the element in Fig. 5.13 but loaded with shear
forces, S, and twisting moments H, uniformly distributed along the element edges as
shown in Fig. 5.16. It should be recalled that forces and moments are applied to the
element reference plane z = 0 (see Fig. 5.13). Taking Ny, = S and M,, = H in the
corresponding Eqgs. (5.44), we get

S = Baayy + Caakcxy.  H = Cagyl, + Daarcry (5.68)
in which, in accordance with Egs. (5.28) and (5.41),

1 2 1
By = Iﬁ), Cyy = I( ) _ elf&), Dyy = 154) - 28'514) + 62152) (5.69)
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Fig. 5.16. Shear and torsion of the element.

where

k
w_ 1 @) (1 4l
lyy = P § :A44 (tzr _tir—l>

i=

The solution of Egs. (5.68) is

1 1
v = ——(DasS — CauH), kyy = — (BaaM — Cu4S) (5.70)
’ Dy Dy

2
in which Dy = 1912 — (15?) .

A further transformation is used similar to that for Egs. (5.58) and (5.59). Taking the
coordinate of the reference plane as

iy
€= -5 (5.71)
Iy
we get Ca4 = 0, and Eqgs. (5.70) reduce to

S H

2 = 5.72
B 7 Dag .72)

0 _
yxy_

Using the new notations Bas = By, and D4 = D,, and applying Egs. (5.69) and (5.71),

we arrive at
2
@
(1)

) _ @
Biy =1, Dxy =15 —~—5— (5.73)
144

where By, is the actual in-plane shear stiffness of the laminate, whereas D,, needs some
comments. The second equation of Egs. (5.72) yields

H = Dyykyy (5.74)
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Fig. 5.17. Deformation of the element under torsion.

where «, is given in notations to Egs. (5.3), i.e.,

%, 9,

= > 4L Y 5.75
Kxy dy ox (5.75)
The deformed state of the laminated element (see Fig. 5.16) loaded with twisting moments
only is shown in Fig. 5.17. Consider the deflection of point A with coordinates x and y.
It follows from Fig. 5.17 that w = x6, or w = y#6,. Introduce the gradient of the torsional
angle

0 = % = %

dy ox
Since 6" does not depend on x and y, 6, = y8’, 6, = x6’ and w = xy6’. Using Eq. (5.75),
we have «,, = 26. Then, Eq. (5.74) yields

H = D¢’ (5.76)
where
D! =2D,, (5.77)

is the plate torsional stiffness specifying the stiffness of the element which is loaded with
twisting moments applied to all four edges of the element as shown in Fig. 5.16.

However, in practice we usually need the torsional stiffness of the element loaded with
twisting moments applied to only two opposite edges of the element, whereas the two other
edges are free. Since such loading induces not only twisting moments (see Fig. 5.4) but
also transverse shear forces V (see Fig. 5.6), we must first determine the actual transverse
(through-the-thickness) stiffnesses of a laminate.
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= /o
1

Fig. 5.18. Laminated element loaded with transverse shear forces.

Consider an orthotropic laminated element loaded with transverse shear forces V, = V
uniformly distributed over the element edge as in Fig. 5.18. From Egs. (5.20), we have
two possible constitutive equations, i.e.,

V =Ss57x, V =Sssy (5.78)
in which, in accordance with Egs. (5.46),

k 2
i — h
Sss = ) Agghi,  Sss = (5.79)
i=1 i=1,@
55
For the orthotropic material, Agg = fog, where foz? is the transverse shear modulus of
the ith layer. Thus, Egs. (5.79) take the form

k 2
. — h
Ss5 = Z G)(Clz)hi, S5 = =i i (5.80)
i=1 i=1 @

As shown in Section 5.1, Sss gives the upper bound and Sss gives the lower bound of
the actual transverse shear stiffness of the laminate. For a laminate consisting of identical
layers, i.e., for the case G)(fz) = G, for all the layers, both equations of Egs. (5.80) give
the same result Sss = Ss5 = G..h. However, in some cases, following from Egs. (5.80)
the results can be dramatically different, whereas for engineering applications we must

have instead of Egs. (5.78) a unique constitutive equation, i.e.,
V =Sy (5.81)

and the question arises whether Sss or Sss should be taken as S, in this equation. Since for
a homogeneous material there is no difference between Sss and Sss, we can expect that
this difference shows itself in the laminates consisting of layers with different transverse
shear moduli.

Consider, for example, sandwich structures composed of high-stiffness thin facing
layers (facings) and low-stiffness light foam core (Fig. 5.19a). The facings are made
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2 w7 —hy

(@ (b)

Fig. 5.19. Three-layered (sandwich) and two-layered laminates.

of aluminum alloy with modulus Ef = 70 GPa and shear modulus G¢ = 26.9 GPa. The
foam core has E; = 0.077GPa and G; = 0.0385GPa. The geometric and stiffness
parameters of two sandwich beams studied experimentally (Aleksandrov et al., 1960) are
presented in Table 5.1. The beams with length / = 280 mm have been tested under trans-
verse bending. The coefficient S, in the table corresponds to the actual shear stiffness
found from experimental results. Actually, experimental study allows us to determine the
shear parameter (Vasiliev, 1993)

D

kG = ——
G502

(5.82)

which is presented in the third column of the table and depends on the bending stiffness, D,
and the beam length, . Since the sandwich structure is symmetric, we can use Eq. (5.67)
for D, in which 2k = 2 (the core is divided into two identical layers as in Fig. 5.19a)

o _ @ _
Ay = Ec,  Agy = Ey,

he he he
=—, hy=h;, =0, = =, = —4h
> 2 f 20 21 5 22 5 + ng

The final expression is

2M1 3, 3
D, = §|:§Ech§ + Ethg (Zhg + Sheh + h%)]

The results of the caI_cuIation are listed in the last column of Table 5.1. The shear stiffness
coefficients Sss and Ss5 can be found from Egs. (5.80) which for the structure in Fig. 5.19a

Table 5.1
Parameters of sandwich structures.
ht (mm) he (mm) kG Shear stiffness (GPa x mm) Bending stiffness
— (GPa x mm?)
Sa Ss5 Ss5
2.4 18.8 0.444 1.09 1.14 130 37960

1.0 17.0 0.184 0.79 0.82 54.5 11380
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take the form

Ss5 = heGe + 2hi Gt
(he + 2ht)?
e 2
GC Gf

355 =

The results of the calculation are presented in Table 5.1. As can be seen, coefficients Sss
are in good agreement with the corresponding experimental data, whereas coefficients Sss
are higher by an order of magnitude. Note, that Sss, providing the lower boundary for
the exact shear stiffness, is higher than the actual stiffness S,. The reason for this effect
has been discussed in Section 5.1. Coefficient Sss specifies the lower boundary for the
theoretical exact stiffness corresponding to the applied model of the laminate, but not for
the actual stiffness following from experiment. For example, the actual shear stiffness
of the sandwich beams described above can be affected by the compliance of adhesive
layers which bond the facings and the core and are not allowed for in the laminate model.

So, it can be concluded that the shear stiffness coefficient Sss specified by the corre-
sponding equation of Egs. (5.79) can be used to describe the transverse shear stiffhess
of composite laminates. However, there are special structures for which coefficient Sss
provides a better approximation of shear stiffness than coefficient Sss. Consider, for exam-
ple, a two-layered structure shown in Fig. 5.19b and composed of a high-stiffness facing
and a low-stiffness core. Assume, as for the sandwich structure considered above, that
Gi = 26.9GPa and G = 0.0385GPa, so that G¢/G. = 699, and take 4, = 9.9mm,
and hf = 2.4 mm. It is obvious that the core, having such a low shear modulus, does not
work, and the transverse shear stiffness of the laminate is governed by the facing layer.
For this layer only, we get

S55 = §55 = G¢hf = 64.6 GPa- mm
whereas for the laminate, Egs. (5.80) yield

Ss5 = heGe + hiGg = 65 GPa - mm

_ he + hf)?

Ses = e M7 _ e GPa . mm
hc hf
GC Gf

As can be seen, coefficient Ss is very far from the value that would be expected. However,
structures of type for which the stiffness coefficient Sss is more appropriate than the
coefficient Sss are not typical in composite technology and, being used, they usually do
not require the calculation of transverse shear stiffnesses. For laminated composites it can
be recommended to use the coefficient Sss (Chen and Tsai, 1996). Thus, the transverse
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shear stiffness coefficient in Eq. (5.81) can be taken in the following form

h2
Zi:l G<l~)
For shear in the yz-plane (see Fig. 5.18), we get a similar expression, i.e.,
h2
Yie1 =y
Gy,

In engineering analysis of laminated composites, transverse shear stiffnesses are mainly
used to study the problems of transverse bending of composite beams and plates. Note,
that the so-called classical theory of laminated beams and plates ignores the transverse
shear deformation of the laminate. Consider the constitutive equations for the shear forces
and write them in the following form

Taking Sy — oo and S, — oo, we get y, = 0 and y, = 0. Applying Egs. (5.14) for y;
and yy,, we can express the rotation angles in terms of the deflection as

o — Jw o — ow
S P S
Then, the expressions for curvatures entering Egs. (5.3) take the form

Pw Fw Fw
=T T TR T T

For actual laminates, the transverse shear stiffness coefficients are not infinitely high, but
nevertheless, the classical theories ignoring the corresponding deformation are widely used
in the analysis of composite structures. To evaluate the possibility of neglecting transverse
shear deformation, we can use parameter ks specified by Eq. (5.82) and compare it with
unity. The effect of the transverse shear deformation is demonstrated in Table 5.2 for
the problem of transverse bending of simply supported sandwich beams with various
parameters k¢ listed in the table. The right hand column of the table shows the ratio
of the maximum deflections of the beam, w, found with allowance for transverse shear
deformation (w¢) and corresponding to the classical beam theory (wo). As can be seen,
for beams number 4 and 5, having parameter ks which is negligible in comparison with
unity, the shear deformation practically does not affect the beams deflections.

Returning to the problem of torsion, we consider an orthotropic laminated strip with
width b loaded with a torque M; as in Fig. 5.20. In contrast to the laminate shown
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Table 5.2
The effect of transverse shear deformation on the deflection of sandwich beams.
D weG
Beam number - —
ko =5 Woo
1 0.444 5.386
2 0.184 2.805
3 0.015 1.152
4 0.0015 1.014
5 0.0004 1.002

Fig. 5.20. Torsion of a laminated strip.

Fig. 5.21. Forces and moments acting in the strip cross section.

in Fig. 5.6, the strip in Fig. 5.20 is loaded only at the transverse edges, whereas the
longitudinal edges y = £b/2 are free. The shear stresses 7, and t,, induced by torsion
give rise to the shear forces N,,, twisting moment M,, and transverse shear force V,
shown in Fig. 5.21. Applying the corresponding constitutive equations, Egs. (5.44) and

(5.81), we get

Nyy = B44V)?y + Caskxy, Myy = C44)/)?y + Duskry

Vi = Sxyx

(5.85)
(5.86)

where the stiffness coefficients B, C, D, and S are specified by Egs. (5.69) and
(5.82). Pre-assign the coordinate of the reference plane e in accordance with Eq. (5.71).
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Then, C44 = 0 and Egs. (5.85) reduce to

Niy = Boyvy, (5.87)

My = Dyyicry (5.88)

where By, and D,, are given by Egs. (5.73). Since the strip is loaded with a torque M
only (see Fig. 5.20), N,, = 0, and as follows from Eq. (5.87), y)?y = 0. So, we have
only two constitutive equations, i.e., Egs. (5.86) and (5.88) for V, and M., which are
expressed in terms of the transverse shear strain y, and the twisting deformation «,..
Applying Egs. (5.14) and (5.75), we have

ow 90, by

=0 -, = — P —
Ve = Ot W W dy Ox

(5.89)

Consider the deformation of the strip. Assume that the strip cross section rotates around
the longitudinal axis x through an angle 6 which depends only on x (Fig. 5.22). Then, as
follows from Fig. 5.22,

Substitution into Egs. (5.89) yields

90
)/x=9x—9/y, ny:_x+9/
dy

where 8’ = df/dx. Using the first of these equations to transform the second one, we get

0
Kxy = al; +20'

zZ, W

s

Fig. 5.22. Rotation of the strip cross section.
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o
aVy
M V, + 5 dx
Xy
(\ dx dy
| ”””””””””””” ) { oM
My + % dy
VX h ox
oM
+ —Xg
Xy ay y

Fig. 5.23. Forces and moments acting on the strip element.

Thus, the constitutive equations, Egs. (5.86) and (5.88) take the following final form

e 20’) (5.90)

Vi =58¥x, My = ny< R

Consider the equilibrium of the strip element shown in Fig. 5.23. The equilibrium
equations in this case are

W, M,

X _0 =0 5.91
ox ’ ox (5.91)
M,y
My _ Ve=0 (5.92)
dy

The first two equations, Egs. (5.91) show that V, = V,(y) and My, = M,,(y). Then, as
follows from Eq. (5.90) for Vy, yx = yx(y). Substituting M., and V, from Egs. (5.90)
into Eq. (5.92) and taking into account that &’ does not depend on y, we arrive at the
following ordinary differential equation for y,

d?y,
dy2

_kax =0

in which k? = Sx/Dyy. The general solution of this equation is
yx = C18inhky + Cz cosh ky
Substitution in Eq. (5.90) for M, yields

Myy = Dyy[20" + k(C1coshky + Ca sinhky)]
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The integration constants C1 and C2 can be found from the boundary conditions according
to which My, (y = £b/2) = 0 (see Fig. 5.20). The final solution is

28, sinhky , cosh ky
= M., =2D 1-— .
Va k cosh A o * x9 cosh A (5.93)
in which
1 b | S,
A= —kb=— 5.94
2 2\ Dyy (5.94)

Consider Fig. 5.21 and express the applied torque M; in terms of internal forces and
moments V, and M,, as

b/2
My = / (Mxy - ny)dy
—b/2

Substituting M., and V, from Egs. (5.93), we arrive at

M; = D6’
where
1
Dt = 4nyb<1 7 tanh A) (5.95)

is the torsional stiffness of the strip. For a homogeneous orthotropic laminate discussed
in Section 5.2,

1
Dy = Enyh3, Se = Gyzh

and Eq. (5.95) reduces to

1
3

b [3G,;
h\ Gyy
The stiffness coefficient in Eg. (5.96) is in good agreement with the exact elasticity theory
solutions (Vasiliev, 1993). Particularly, for b/ h > 3 the difference between D; given by

1
Dy = Zbh3Gy, (1 — - tanh x) (5.96)
where

A=
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Eqg. (5.96) and the exact result is less than 2%. For a wide strip with relatively large b,
the parameter A in Eq. (5.94) is also large, and Eq. (5.95) can be approximately reduced to

Dy = 4D, b (5.97)
Dividing Dy by b, we can find the stiffness of the laminate with a unit width, i.e.,
D} = 4D, (5.98)

This is a beam torsional stiffness which is twice as high as the plate stiffness specified by
Eq. (5.77). The difference between Egs. (5.77) and (5.98) is natural because Eq. (5.77)
corresponds to torsion with the moments acting on all four edges of the element (see
Fig. 5.16), whereas Eq. (5.98) describes torsion with only two moments applied at the
transverse edges (see Fig. 5.20).

Thus, the laminate membrane, bending, transverse shear, and torsional stiffness coeffi-
cients are specified by Egs. (5.65), (5.66), (5.82), (5.83), and (5.95).

5.6. Quasi-homogeneous laminates
Some typical layers considered in Chapter 4 were actually quasi-homogeneous lami-

nates (see Sections 4.4 and 4.5), but being composed of a number of identical plies, they
were treated as homogeneous layers. The accuracy of this assumption is evaluated below.

5.6.1. Laminate composed of identical homogeneous layers

Consider a laminate composed of layers with different thicknesses but the same
stiffnesses, i.e., Af,’lz, =Ap, foralli =1,2,3,...,k. Then, Egs. (5.29) and (5.32) yield

A — _
I(r) _ Amn hr+l, 1(0) — A h

mn r + 1 mn

This result coincides with Egs. (5.33), which means that a laminate consisting of layers
with the same mechanical properties is a homogeneous laminate (layer) as studied in
Section 5.2.

5.6.2. Laminate composed of inhomogeneous orthotropic layers

Let the laminate have the following structure [0°/90°],, where p = 1, 2, 3, ... specifies
the number of elementary cross-ply couples of 0 and 90° plies. In Section 4.4, this
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laminate was treated as a homogeneous layer with material stiffness coefficients specified
by Egs. (4.114). Taking kg = hgo = 0.5 in these equations, we have

An=Ap=-(E1+E2), Awn=Ev, Au=Gn (5.99)

N =

In accordance with Egs. (5.36), the stiffness coefficients of this layer should be

1

EAmnh3 (5.100)

B =Auh, C° =0 D° =

To calculate the actual stiffnesses of the laminate, we should puth; = 68,# = i, k = 2p,
e=nh/2, and h = 2pé (see Fig. 5.10), where § is the thickness of a unidirectional ply.
Then, Egs. (5.28) and (5.42) yield

Bun =19, Cpp =19 — ps1©

mn?> mn>

(5.101)
Dyn =112 — 2ps1D) 4 p?521©
Here,
_ h_— _ _

I:E](?) = 12((2)) =pSE1(l+a)= §E1(1 + ), I{g) =2pSEqv12 = Eqv12h,

0) y 82— u
1 =2p3G1a = Gpoh, 1Y) = ~E1 S i+ - @+l

j=1

w_ 5§ w_1z >

Iy, = ?E12[4j(1+a) — @+ D), Iy = ZEwh’,
j=1

w_1 2

144 = -Guh*, (5.102)

2

B &, .
2= €E12[1212(1+a)—6](3+oz)+7+a],
j=1

53_ p
Iy = 3 b Z [121'2(1 +a)—6jBa+1)+Ta+ 1],
j=1

2 1 2 1
IZEZ) = §E1U12h3, 124) = §G12h3

where o = E»/E1.
Matching Egs. (5.99), (5.100), (5.101), and (5.102), we can see that B, = B

mn?

i.e., membrane stiffnesses are the same for both models of the laminate. The coupling
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and bending stiffnesses are also the same for mn = 12, 44. There is no difference between
the models for « = 1 because the laminate reduces in this case to a homogeneous layer.
Summing up the series in Egs. (5.102) and using Egs. (5.101), we arrive at

1
Cun=-Cp= §E132P(Ol —1), Crpo=Cu=0,
. (5.103)
Dy = Dy = §f133173(1 +a), D= Dgg, Dyg = D24

Taking into account that in accordance with Egs. (5.100) and accepted notations
1—
DYy = DY = ZE18°p* (L + )
we can conclude that the only difference between the homogeneous and the laminated
models is associated with the coupling coefficients C11 and C22 which are equal to zero

for the homogeneous model and are specified by Eqgs. (5.103) for the laminated one.
Since p§ = h/2, we can write these coefficients in the form

1
Cyy=—-Cyp= ZElh(S(l + )

showing that C,,,, — 0 for § — 0.

5.6.3. Laminate composed of angle-ply layers

Consider a laminate with the following structure [+¢/ — ¢],, where p is the number of
layers each consisting of +¢ and —¢ unidirectional plies. Constitutive equations Egs. (5.5)
for this laminate are

N, = 31152 + 31288 + C14kxy
Ny = Byel + 32288 + Cogkexy
Ny = B44)/)?y + Carkx + Caoxcy
(5.104)
M, = Cray, + Diiky + Diaxy
M, = C24V)9y + Do1kx + Daz2ky
My = Cqe2 + C4288 + Dagkcxy

in which

1
an = Amnh, Cmn = _EAmnhga Dmn = EAmnh3
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where, & is the laminate thickness, § the ply thickness, and A,,,, are material stiffness
coefficients specified by Eqgs. (4.72). As can be seen, the laminate is anisotropic because
+¢ and —¢ plies are located in different planes. The homogeneous model of the laminate
ignores this fact and yields C14 = C24 = 0. Calculations show that these coefficients,
although not actually equal to zero, have virtually no influence practically on the laminate
behavior for h/8 > 20.

Laminates in which any ply or layer with orientation angle +¢ is accompanied by
the same ply or layer but with angle —¢ are referred to as balanced laminates. Being
composed of only angle-ply layers, these laminates have no shear—extension coupling
(B14 = Baq = 0), bending-stretching and shear—twisting coupling (C11 = C12 = C22 =
Cyq = 0). As follows from Egs. (5.104), only stretching—twisting and bending—shear
coupling can exist in balanced laminates. These laminates can include also 0 and 90°
layers, but membrane-bending coupling can appear in such laminates.

5.7. Quasi-isotropic laminates

The layers of a laminate can be arranged in such a way that the laminate will behave
as an isotropic layer under in-plane loading. Actually, the laminate is not isotropic (that
is why it is called a quasi-isotropic laminate) because under transverse (normal to the
laminate plane) loading and under interlaminar shear its behavior is different from that of
an isotropic (e.g., metal) layer.

To derive the conditions that should be met by the structure of a quasi-isotropic laminate,
consider in-plane loading with stresses oy, oy, and z,, that are shown in Fig. 5.1 and
induce only in-plane strains &2, £9, and y?,. Taking «, = ky = Ky, = 0 in Egs. (5.5) and
introducing average (through the laminate thickness #) stresses as

ox =Ny/h, oy,=Ny/h, Ty =Ny/h
we can write the first three equations of Egs. (5.5) in the following form
Oy = Fneg + Elzsg + §14V)9y
oy = B2ued + Baoed + Byl (5.105)
Txy = §4182 + §4288 + §44J/)?y
in which, in accordance with Egs. (5.28) and (5.42)

k
Bun =Y AW ki, hi=hi/h (5.106)
i=1

where, %; is the thickness of the ith layer normalized to the laminate thickness and A,,, are
the stiffness coefficients specified by Eqgs. (4.72). For an isotropic layer, the constitutive



Chapter 5. Mechanics of laminates 291

equations analogous to Egs. (5.105) are

or=E (82 + vsS), oy = f(sg + veg), Tyy = Gy)?y (5.107)
where

_ E E 1 —

E— Z1-WE (5.108)

i G:—:
112 20 +v) 2

Comparing Egs. (5.105) and (5.107), we can see that the shear—stretching coefficients
of the laminate, i.e., Bi4 = Ba1 and Bos = Bap, should be equal to zero. As follows
from Egs. (4.72) and Section 5.6.3, this means that the laminate should be balanced,
i.e., it should be composed of 0°, +¢; (or ¢; and = — ¢;), and 90° layers only. Since
the laminate stiffness in the x- and the y-directions must be the same, we require that
Bi1y = Bap. Using Egs. (4.72), taking 7; = h for all i, and performing the appropriate
transformation, we arrive at the following condition

k
Z cos2¢; =0
i=1

As can be checked by direct substitutions, for k = 1 this equation is satisfied if ¢; = 45°
and for k = 2 if 1 = 0 and ¢ = 90°. Naturally, such one- and two-layered materials
cannot be isotropic even in one plane. So, consider the case k > 3, for which the solution
has the form

¢,~=(i—1)%, i=1,2.3,... .k (5.109)

Using the sums that are valid for angles specified by Eq. (5.109), i.e.,

k k k

$02 2, _ K
Zsm bi _Zcos ¢ =3
i=1 i=1
k k

3k

04 4

SIN" @; = CoS" ¢ = —
L= e

L k
Z sin? ¢; cos® ¢; = 5
i—1
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and calculating stiffness coefficients from Egs. (5.106) and (4.72), we get
_ _ 1. - _
B11 = By = 5[3(E1 + Ez) + 2(E11)12 + 2G12)]

B = [El + EZ + 2(3E1V12 - 2G12)]

|~ |k

Bay = Z[E1+ E2 = 2( E1vip — 2G12)]

These stiffnesses provide constitutive equations in the form of Egs. (5.107) and satisfy
the conditions in Egs. (5.108) which can be written as

By =By = Bu=G

E
1—v2’

_ (E1+E2+42E1v1)(E1+ E2 — 2E1v12 + 4G 1)
3(E1+ E2) +2( E1v12 + 2G12)

T (5.110)
E1+ Ep +2(3E1v1p — 2G12) E

3(E1 ~|—fg) +2(F1V12+2G12)’ - 21 +v)

Possible solutions to Egs. (5.109) providing quasi-isotropic properties of the laminates
with different number of layers are listed in Table 5.3 for k < 6.

All quasi-isotropic laminates, having different structures determined by Eqg. (5.109)
for a given number of layers, k, possess the same apparent modulus and Poisson’s ratio
specified by Egs. (5.110). For typical advanced composites with the properties listed in
Table 3.5, these characteristics are presented in Table 5.4.

As follows from Tables 5.4 and 1.1, the specific stiffness of quasi-isotropic compos-
ites with carbon and boron fibers exceeds the corresponding characteristic of traditional
isotropic structural materials — steel, aluminum, and titanium.

Table 5.3
Angles providing quasi-isotropic properties of the laminates.

Number of layers, & Orientation angle of the ith layer
7 &3 &3 4 e e
3 0 60 120 - - -
4 0 45 90 135 - -
5 0 36 72 108 144 -
6 0 30 60 90 120 150
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Table 5.4
Modulus of elasticity and Poisson’s ratio of quasi-isotropic laminates made of typical advanced composites.

Property Glass—epoxy Carbon-epoxy Aramid-epoxy Boron-epoxy Boron-Al
Modulus, 27.0 54.8 34.8 80.3 183.1

E (GPa)

Poisson’s 0.34 0.31 0.33 0.33 0.28
ratio, v

Specific 1290 3530 2640 3820 6910
modulus,

kg x 108 (m)

5.8. Antisymmetric laminates

In antisymmetric laminates, symmetrically located layers have mutually reversed ori-
entations. For example, whereas laminates [0°/90°/90°/0°] and [+¢/ — ¢/ — ¢/ + @] are
symmetric, laminates [0°/90°/0°/90°] or [0°/0°/90°/90°] and [+¢/ — ¢/ + ¢/ — ¢] are
antisymmetric. In contrast to symmetric laminates which have maximum bending and zero
coupling stiffness coefficients, antisymmetric laminates demonstrate pronounced coupling
that can be important for some special applications (e.g., robotic parts undergoing compli-
cated deformation under simple loading, rotor blades that twist under centrifugal forces,
airplane wings twisting under bending etc.).

The simplest antisymmetric laminate is a cross-ply layer consisting of two plies with
angles 0 and 90°, and the same thickness 1/2 (see Fig. 5.24). Taking ¢ = h/2 and using
Egs. (5.28) and (5.41), we arrive at the following stiffness coefficients entering Egs. (5.44)

o _

Bn:Bzzzz(El—i-Ez), Bi2 = E1vioh, Bas = Gu2h,
o

C11=—C22=§(E2—E1), Co=0, Cu=0,

h3 _ _ h3— h3
D11 =Dp = 2 (Er+E2), D= EE1V12, Day = EG12

hi2
| hi2

4

Fig. 5.24. An antisymmetric cross-ply laminate.
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h/2

h/2

Fig. 5.25. Unbonded view of an antisymmetric angle-ply laminate.

Comparing these results with Egs. (5.99) and (5.100), corresponding to a quasi-
homogeneous cross-ply laminate, we can see that the antisymmetric cross-ply laminate has
the same membrane and bending stiffnesses but nonzero coupling coefficients C13 and Caps.
This fact shows, in accordance with Eqgs. (5.44), that in-plane tension or compression of
this laminate induces bending.

As another typical example of an antisymmetric laminate, consider an angle-ply struc-
ture consisting of two plies with the same thickness 2/2 and orientation angles +¢ and
—¢, respectively (see Fig. 5.25). The plies (or layers) are characterized with the following
stiffness coefficients

@ _ 4@ Q4@ o _ 4@
Ayl = A =An, A = A = A, Ay = Ay = A,

AD = AP = A, A = AR = Ay, AR =AD = Ay
where coefficients A,,, are specified by Eqgs. (4.72). Taking again e = /2, we arrive at
constitutive equations in Egs. (5.104) in which

h? h®
an = Amnh’ mn = _ZAmna Dmn = EAmn (5111)

Comparing these coefficients with those entering Egs. (5.104) and corresponding to a
quasi-homogeneous angle-ply laminate, we can conclude that the antisymmetric laminate
has much larger coupling coefficients C14 and Cy4, and thus a much more pronounced
extension—-twisting coupling effect.

In composite technology, an antisymmetric +¢ angle-ply laminate is usually fabricated
by a continuous filament winding process. A typical structure made by filament winding
is shown in Fig. 4.59 of Chapter 4. As can be seen in this figure, the angle-ply layer
is composed from two plies with +¢ and —¢ orientation of the fibers and these plies
are interlaced in the process of filament winding. As a result, the structure of the layer
is characterized by the distinctive regular mosaic pattern consisting of triangular-shaped,
repeating in chess-board fashion, two-ply segments (7-segments) with alternating +¢ and
F¢ reinforcement. The T-segments are arranged in regular geometric pattern around the
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@ (b) (©) (d)

Fig. 5.26. Filament-wound cylinders with various numbers nyof T-segments: ny = 2 (a), 4 (b), 8 (c),
and 16 (d).

circumference and along the axis forming the so-called cross-over circles (see Fig. 4.59).
Depending on the parameters of the winding process, various numbers ny of T-segments
located along the circumference can be obtained. For a cylindrical shell, the structures
corresponding to ny = 2, 4, 8, and 16 are shown in Fig. 5.26.

Each T-segment consists of two plies with either [+@/—¢] or [—¢/+¢] structure and
the plies are not interlaced within the T-segment area. If, for instance, a T-segment
consists of the top triangular-shaped ply, reinforced with fibers oriented at angle +¢, and
the bottom one reinforced with an angle —¢, then the neighboring adjacent T -segments
have an inverse structure: their top plies are reinforced at angle —¢, and the bottom ones
are reinforced at +¢.

The traditional approach used to analyze the laminates under consideration is based
on the model discussed in Section 4.5 according to which the laminate is treated as a
homogeneous orthotropic layer with stiffness coefficients specified by Egs. (4.72) and
(4.147). The constitutive equations are taken in accordance with Egs. (5.44), i.e.,

N, = B11e? + 31282, Ny = Be® + 32283, Nyy = B44V)?y,
M. = Dukyx + Di2ky, My = Dok + Daky, Myy = Daakyy
where

h3
an = Amnh7 Dmn = EAmn
and A,,, are specified by Eqgs. (4.72). The approach based on these constitutive equations
corresponds to an infinite number of T-segments, i.e., to ny — oc.



296 Advanced mechanics of composite materials

Considering a T-segment as an antisymmetric laminate, we must apply a more general
version of Egs. (5.44) including the coupling stiffness coefficients, i.e.,

N, = 31182 + 31288 + Ciskyy
_ 0 0

Ny = Byie; + Bzzey + Coskxy

Nyy = Baayy + Carkx + Caky

M, = Cr4y), + Diikx + Diaky

My = C24)/,9y + Do1kx + Daky

My = C4182 + C4288 + Daakyxy

where the stiffness coefficients are specified by Egs. (5.111). It is important that whereas for
the laminate with [+¢/—¢] structure shown in Fig. 5.25 the coupling stiffness coefficient
is negative, for the adjacent T-segment having [—¢/+¢], this coefficient is positive.
This difference results in the specific behavior of the two different laminate structures
of T-segments that exhibit antisymmetric opposite anisotropic stretching—twisting and
bending—shear coupling effects alternating along the circumference and axis of rotation of
the shell. Due to the general alternating pattern of the 7-segments (chess-board structure)
and their interactions within a layer, the anisotropic effects are balancing each other,
inducing at the same time, additional stresses in the plies.

To study the effect of the filament-wound mosaic pattern, the stress analysis of cylin-
drical shells has been performed (Morozov, 2006). The shells under consideration consist
of one filament-wound +¢ angle-ply layer and loaded with internal pressure. The solid
modeling (Solid Edge) and finite-element analysis (MSC NASTRAN) techniques have
been employed to model the shells with different mosaic pattern structures. Each shell is
partitioned into triangular-shaped 7'-segments according to the particular filament-wound
pattern. Correspondingly, the finite elements are also combined into the respective alternat-
ing groups. The material structure of the finite elements for each of these groups is defined
as either [+¢/—¢] or [—¢/+¢] laminate. The cylindrical shells under consideration are
reinforced with a winding angle ¢ = +60° and loaded with internal pressure of 1 MPa.
The mechanical properties of the unidirectional glass—epoxy composite ply correspond to
Table 3.5. The ends of the shells are clamped and the distance between the ends (length
of the cylinder) is fixed and equal to 140 mm. The diameter of the cylinder is 60 mm and
total thickness of the wall is # = 1.4 mm (with the thickness of the unidirectional ply
0.7mm). The stress analysis was performed for four types of shells.

The first cylinder is modeled with homogeneous orthotropic angle-ply layer and ana-
lyzed using finite-element models available within the MSC NASTRAN software. This
model corresponds to ny — oo. The other three cylinders have 2, 4, and 8 triangular-
shaped segments around the circumference (ny = 2,4, 8) and are analyzed using the
FE modeling of the shells with allowance for their mosaic structure. The finite-element
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Ny — oo

N =2

@ (b)

Fig. 5.27. Finite-element models (a) and deformed shapes (b) of the cylinders with ny — oo, ny = 2, and
nr = 4,

models and the deformed shapes for ny — oo, ny = 2, and ny = 4 are shown in
Fig. 5.27.

As can be seen, the deformation of the shells distinctively reflects the corresponding
filament-wound mosaic texture. The calculated maximum values of stresses along and
across fibers, o1, o2, and shear stresses, 12, acting in the plies are presented in Table 5.5.
It can be noted from this table that the maximum stresses strongly depend on the laminate
structure. The traditional model (ny — o0) significantly underestimated the stresses.

Table 5.5
Maximum stresses in the plies of the shells with various filament-wound structures.

Structural parameter, ny o1 (MPa) o2 (MPa) 712 (MPa)
00 249 3.79 1.98
2 40.99 177 4.82
4 33.2 20.3 5.33
8 27.30 18.2 4.94




298 Advanced mechanics of composite materials

p, MPa p, MPa
-,
15 e 15 4
= 1.0 1.0
05— 05

£ 10° -150 -100 -50 O 50 £10° g 10° -200 -150 -100 -50 O 50 107

@ (b)

p, MPa

2.0

15

1.0

05

€ 10° —200 -100 O 100 gy.lo’5
(c) (d)

Fig. 5.28. Dependencies of the axial () and the circumferential (e,) strains on internal pressure (p) for
cylindrical shells with ny = 2 (a), ny = 4 (b), ny = 16 (c) and the corresponding failure modes (d).

With an increase in the structural parameter n7, the stresses acting along the fibers reduce
and approach the value following from the traditional laminate model.

Thus, it can be expected that the higher the parameter ny, the higher the strength of
+¢ angle-ply filament-wound structures. This prediction is confirmed by the test results
presented in Fig. 5.28 (Morobey et al., 1992). Carbon—phenolic cylindrical shells with the
geometrical parameters given above have been loaded with internal pressure up to the
failure. As follows from Fig. 5.28, the increase of parameter ny from 2 (Fig. 5.28a) to 16
(Fig. 5.28c) results in a significant increase in the burst pressure.

In conclusion, it should be noted that the effect under discussion shows itself mainly
in £¢ angle-ply structures consisting of two symmetric plies. For laminated structures
consisting of a system of +¢ angle-ply layers, the coupling stiffness coefficient which
causes the specific behavior discussed above is given in notations to Egs. (5.104) and has
the form

1
Con = 5 Annhd (5.112)

in which £ is the laminate thickness and § is the thickness of the ply. Since § is relatively
small, the coefficient C,,,, in Eq. (5.112) is smaller than the corresponding coefficient in
Egs. (5.111), and the coupling effect caused by this coefficient is less pronounced.
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5.9. Sandwich structures

Sandwich structures are three-layered laminates consisting of thin facings and a light-
weight honeycomb or foam core as in Figs. 5.29 and 5.30. Since the in-plane stiffnesses
of the facings are much higher than those of the core, whereas their transverse shear
compliance is much lower than the same parameter of the core, the stiffness coefficients
of sandwich structures are usually calculated presuming that the in-plane stiffnesses of
the core are equal to zero. The transverse shear stiffnesses of the facings are assumed to
be infinitely high. For the laminate shown in Fig. 5.31 this means that

A@ —0,  mn=11,12, 14, 24, 44,

A2 5 00, mn =55,56,66

Fig. 5.29. Composite sandwich panel with honeycomb core.

Fig. 5.30. Composite sandwich rings with foam core.
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Now, a natural question as to whether it is possible to reduce Egs. (5.5) to this form in
the general case arises. Taking C,,, = 0 in Egs. (5.28), we have

I (¢5)

e =2 (5.114)
I 0)
mn

It is important that the reference plane should be one and the same for all mn = 11, 12,
22, 14, 24, 44, and these six equations should give the same value of e. In the general
case, this is not possible, so a universal reference plane providing C,,, = 0 cannot exist.

However, there are some other (in addition to homogeneous and symmetric structures)
particular laminates for which this condition can be met. For example, consider a laminate
composed of isotropic layers (see Sections 4.1 and 5.2). For such laminates,

(@) (@) i @) Vi (@) i
A = A = 5 A = N = ——m
1 2= Viz 12777 ”iz “ T 2010
and in accordance with Egs. (5.42)
Y Eh L Ejvih Y En
o _ 0 _ ini o _ ivihi © _ in
W=lp'=) 77 h =) 17 I —Z—z(lJﬂ,)’
i=1 i i=1 i i=1 !
1 Eih 1 & Envih
() () ini ) Vil
111 =122 = Ezl_vz(l‘i‘i‘ti*l)v 112 =§Zm(ti+tifl):
i=1 14 i=1 i

k
1 E;h;
(€8] i
Iy ==Y ———(ti +ti
44 2;2(1+vi)(1+11)

As can be seen, these parameters, when substituted into Eq. (5.114), do not provide one
and the same value of e. However, if Poisson’s ratio is the same for all the layers, i.e.,
vi=v(@=123,...,k), we get

L Tica Eihilti +1-1)
2 Z{'{:I E;h;

For practical analysis, this result is often used even if the Poisson’s ratios of the layers are
different. In these cases, it is assumed that all the layers can be approximately characterized
with some average value of Poisson’s ratio, i.e.,

As another example, consider the sandwich structure described in Section 5.9. In the
general case, we again fail to find the desired reference plane. However, if we assume that
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the facings are made of one and the same material (only the thicknesses are different),
Egs. (5.113) and (5.114) yield

_ hf+ h3(h3 + 2h1 + 2h2)
B 2(hy + h3)

Returning to the general case, we should emphasize that the reference plane providing
Cun = 0 for all the mn values does not exist in this case only if the laminate structure is
given. If the stacking-sequence of the layers is not pre-assigned and there are sufficient
number of layers, they can be arranged in such a way that C,,, = 0. Indeed, consider
a laminate in Fig. 5.32 and suppose that its structure is, in general, not symmetric, i.e.,
7; # z; and k" # k. Using plane z = 0 as the reference plane, we can write the membrane—
bending coupling coefficients as

k/2 ¥/2

1 : 1 i /
Cnn = 2 ;A%hi(a +2zi-1) — 3 Z;A;('rlm)h; (¢ +zi1)
— i=

where, z; > 0 and z; > 0. Introduce a new layer coordinate z; = (z; + zi—1)/2, which
is the distance between the reference plane of the laminate and the middle plane of the
ith layer. Then, the condition C,,,, = 0 yields

k/2 K2
> ANz =) ASKZ
i=1 i'=1

=~

\/\

NSV
-

Fig. 5.32. Layer coordinates with respect to the reference plane.
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Now assume that we have a group of identical layers or plies with the same stiffhess
coefficients A,,,, and thicknesses. For example, the laminate could include a 1.5 mm thick
0° unidirectional layer which consists of 10 plies (the thickness of an elementary ply is
0.15 mm). Arranging these plies above (z;) and below (z}) the reference plane in such a
way that

> (z,- - Z'j) =0 (5.115)

we have no coupling for this group of plies. Doing the same with the other layers, we
arrive at a laminate with no coupling. Naturally, some additional conditions following
from the fact that the laminate is a continuous structure should be satisfied. However even
with these conditions, Eq. (5.115) can be met with several systems of ply coordinates, and
symmetric arrangement of the plies (z; = Z’j) is only one of these systems. The general
analysis of the problem under discussion has been presented by Verchery (1999).

Return to laminates with pre-assigned stacking-sequences for the layers. It follows from
Eg. (5.114), we can always make one of the coupling stiffness coefficients equal to zero,
e.g., taking e = est where

1o
est = 25 (5.116)
Ist

we get Cst = 0 (the rest of coupling coefficients are not zero).
Another way to simplify the equations for stiffnesses is to take e = 0, i.e., to take the
surface of the laminate as the reference plane. In this case, Egs. (5.28) take the form

Bun =135 Con = 1), Dun = 17)
In practical analysis, the constitutive equations for laminates with arbitrary structure
are often approximately simplified using the method of reduced or minimum bending
stiffnesses described, e.g., by Ashton (1969), Karmishin (1974), and Whitney (1987).
To introduce this method, consider the corresponding equation of Egs. (5.28) for bending
stiffnesses, i.e.,

Dyn =12 —2elD 4 21O (5.117)

and find the coordinate e delivering the minimum value of D,,,. Using the minimum
conditions

d d?
—Dmn = 0, @Dmn >0
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we have
Iy,
e=em =5 (5.118)
]mn

This result coincides with Eq. (5.116) and yields C,,,, = 0. Thus, calculating I,ﬁ,ln) and

I,flon) we use for each mn = 11, 12, 22, 14, 24, 44 the corresponding value e,,,, specified

by Eg. (5.118). Substitution yields

JD)?
r (2) m r
Dy =15 = ~—g— Chn=0 (5.119)
mn

and the constitutive equations, Egs. (5.5) become uncoupled. Naturally, this approach
is only approximate because the reference plane coordinate should be the same for all
stiffnesses, but it is not in the method under discussion. It follows from the foregoing
derivation that the coefficients D! = specified by Egs. (5.119) do not exceed the actual
values of bending stiffnesses, i.e., D), < Du,. So, the method of reduced bending
stiffnesses leads to underestimation of the laminate bending stiffness. In conclusion, it
should be noted that this method is not formally grounded and can yield both good and
poor approximation of the laminate behavior, depending on the laminate structure.

5.11. Stresses in laminates

The constitutive equations derived in the previous sections of this chapter relate forces
and moments acting on the laminate to the corresponding generalized strains. For compos-
ite structures, forces and moments should satisfy equilibrium equations, whereas strains
are expressed in terms of displacements. As a result, a complete set of equations is formed
allowing us to find forces, moments, strains, and displacements corresponding to a given
system of loads acting on the structure. Since the subject of structural mechanics is beyond
the scope of this book and is discussed elsewhere (Vasiliev, 1993), we assume that this
problem has already been solved, i.e., we know either generalized strains ¢, y, and «
entering Eqgs. (5.5) or forces and moments N and M. If this is the case, we can use
Egs. (5.5) to find ¢, y, and «. Now, to complete the analysis, we need to determine the
stress acting in each layer of the laminate.

To do this, we should first find strains in any ith layer using Egs. (5.3) which yield

8)(Ci) = 82 + Ziky, E_g) = 88 + ZiKy, yx(;/) = )/,9) + ZiKxy (5120)

where z; is the layer normal coordinate changing over the thickness of the ith layer.
If the ith layer is orthotropic with principal material axes coinciding with axes x and vy,
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(e.g., made of fabric), Hooke’s law provides the stresses we need, i.e.,

o =B (o +0el). o) =BV () 1 uel). w) = Gy
(5.121)

where E, = E&)/ (1 - v)(lx)) and £, EV GY), vl v{) are the elastic constants

of the layer referred to the principal material axes. For an isotropic layer (e.g., metal or
polymeric), we should take in Egs. (5.121), E)(f) = Eﬁi) = Ej, v,(f}) = v§lx) =, G;y =
Gi = Ei/2(1+v)).

Consider a layer composed of unidirectional plies with orientation angle ¢;. Using
Egs. (4.69), we can express strains in the principal material coordinates as

e = e cos? gy + £V sin? ¢; + y1) sin ¢; cos
ey) = e sin? ¢ + &) cos? ; — D) sin ; cos ¢ (5.122)

riy =2 (e — &) sin g, cos gi + 3 cos 26
and find the corresponding stresses, i.e.,

o =B (o) ). o =B (o +Rel). ol = oy
(5.123)

where By, = EU)/ (1 — vl vgf) and £V, ES, GV, v, vi)) are the elastic constants

of a unidirectional ply.

Thus, Egs. (5.120)-(5.123) allow us to find in-plane stresses acting in each layer or in
an elementary composite ply.

Compatible deformation of the layers is provided by interlaminar stresses 7., Ty,
and o,. To find these stresses, we need to use the three-dimensional equilibrium equations,
Egs. (2.5), which yield

0Ty, B _(% N atxy) a1y, _ _(Bay N thy> % B _<arxz N E)rxz>
o ox dy )7 0z dy o ) oz ox dy

(5.124)

Substituting stresses oy, oy, and ., from Egs. (5.4) and integrating Eqgs. (5.124) with due
regard to the forces that can act on the laminate surfaces, we can calculate the transverse
shear and normal stresses tx, 7y, and o.
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5.12. Example

As an example, consider the two-layered cylinder shown in Fig. 5.33 which consists
of a £36° angle-ply layer with total thickness 21 = 0.62mm and 90° unidirectional
layer with thickness 42 = 0.60 mm. The 200 mm diameter cylinder is made by filament
winding from glass—epoxy composite with the following mechanical properties: E1 =
44 GPa, E; = 9.4GPa, G12 = 4GPa, vp; = 0.26. Consider two loading cases — axial
compression with force P and torsion with torque 7 as in Fig. 5.33.

The cylinder is orthotropic, and to study the problem, we need to apply Egs. (5.44)
with some simplifications specific for this problem. First, we assume that applied loads
do not induce interlaminar shear and we can take y, = 0 and y, = 0 in Egs. (5.83)
and (5.84). Hence, V, = 0 and V, = 0. In this case, deformations «., ky, and «y, in
Egs. (5.3) become the changes of curvatures of the laminate. Since the loads shown in
Fig. 5.33 deform the cylinder into another cylinder inducing only its axial shortening,
change of radius, and rotation of the cross sections, there is no bending in the axial
direction (see Fig. 5.3c) or out-of-plane twisting (see Fig. 5.3d) of the laminate. So,
we can take «, = 0 and «,, = 0 and write constitutive equations, Egs. (5.44), in the
following form

N, = Bllé‘g + 31288 + Cr2Ky
Ny = 32182 + 32288, + Coky
ny = B44V,\9y
(5.125)
M, = Cr1ed + C1288 + Di2ky
My = C2182 + szsg + Daky
Mxy = C44V;?y

To determine the change of the circumferential curvature «y, we should take into
account that the length of the cross-sectional contour being equal to 2xR before

deformation becomes equal to 27:R(1+a§’,) after deformation. Thus, the curvature

Z, W
X, U

ERNVAVA Y/

Fig. 5.33. Experimental cylinder.
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h2 Ny
hy L1/
y. My

N

Fig. 5.34. Forces and moments acting on an element of the cylinder under axial compression.

change is
0
1 1 3
Ky=—F———c— =~ —2 (5.126)
R(1+e§3) R R
The final result is obtained with the assumption that the strain is small
(88 «1).

Consider the case of axial compression. The free body diagram for the laminate element
shown in Fig. 5.34 yields (see Fig. 5.33)

Ny =0

As a result, the constitutive equations of Egs. (5.125) that we need to use for the analysis
of this case become

_ P _
ang + 31288 = "o 32183 + 32283 =0 (5.127)
M, = Cllsg + 61288, M, = Czlag + 62282 (5.128)
in which
_ Cp — Cx»
B12=B12—7, Bzz=322—7,
(5.129)
_ D1y — D>
Cpp=Cpp——, Copp=0Cyp——7
12 12 R 22 22 R
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The first two equations, Eqgs. (5.127), allow us to find strains, i.e.,

Q0 PBy 0 _ PB>1
* 2nRB’ Y 2nRB

(5.130)

where B = 311E22 — 512321 and By; = Bio.

The bending moments can be determined with the aid of Egs. (5.128). The axial moment,
M,, has a reactive nature in this problem. The asymmetric laminate in Fig. 5.34 tends
to bend in the xz-plane under axial compression of the cylinder. However, the cylinder
meridian remains straight at a distance from its ends. As a result, a reactive axial bending
moment appears in the laminate. The circumferential bending moment, M,, associated
with the change in curvature of the cross-sectional contour in Eq. (5.126) is very small.

For numerical analysis, we first use Egs. (4.72) to calculate stiffness coefficients for the
angle-ply layer, i.e.,

(€] 1) @) 1)
Ay =25GPa, Aj) =10GPa, A;; =14.1GPa, A,/ =115GPa (5.131)
and for the hoop layer
2 2 (2) (2
A7 =95GPa, A5 =25GPa, Aj =447GPa, A, =4GPa (5.132)

Then, we apply Egs. (5.41) to find the 7-coefficients that are necessary for the cases (axial
compression and torsion) under study:

¥ =212GPamm, 19 =7.7GPamm, I =35.6GPamm,

19 =95GPamm; 1 =10.1GPamm?, Iy =3.3GPamm?,

Iy =27.4GPamm?, I} = 4.4GPamm?; Il(f) = 21.7GPamm?,

1Y =59GPamm?®, 12 = 94GPamm®
To determine the stiffness coefficients of the laminate, we should pre-assign the coordinate
of the reference surface (a cylindrical surface for the cylinder). Let us put e = 0 for

simplicity, i.e., we take the inner surface of the cylinder as the reference surface (see
Fig. 5.34). Then, Egs. (5.28) yield

B11 = 11(2) =21.2GPamm, By = 11(2) = 7.7GPamm,
By = I} =35.6GPamm; Cy = I’ = 10.1GPamm?,
Cro = Iy =33GPamm?, Cz = Iy, = 27.4GPamm?;

D1y = I[9 =5.9GPamm®, Dy = 1,2 = 94GPamm®



Chapter 5. Mechanics of laminates 309
and in accordance with Egs. (5.129) for R = 100 mm,
Biy = 7.7GPamm, By = 35.3GPamm,
C1p =3.2GPamm?,  Cy = 26.5GPamm?
Calculation with the aid of Egs. (5.130) gives
ed=-81-10°P, £9=18.10"°P
where P should be substituted in kN. Comparison of the obtained results with experimental
data for the cylinder in Fig. 5.35 is presented in Fig. 5.36.
To determine the stresses, we first use Egs. (5.120) which, in conjunction with

Eq. (5.126) yield

e =@ =0 8§,1) = 88 <1 - %), 8;2) = 88 (1 - %) (5.133)

where 0 < z1 < hy and hy < z2 < h1 + hp. Since (h1 + hp)/R = 0.0122 for the cylinder
under study, we can neglect z1/R and z2/R in comparison with unity and write

8§1) _ 8;2> - 58 (5.134)

Fig. 5.35. Experimental composite cylinder in test fixtures.
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P, kN
401

o

o

30F |O
(e]

60, % L 1 1 ! | 88, %
-0.4 -0.3 -0.2 -0.1 0 0.1

Fig. 5.36. Dependence of axial ( ) and circumferential (So) strains of a composite cylinder on the axial force:
analysis; O experiment.

Applying Egs. (5.122) to calculate the strains in the plies’ principal material coordinates
and Egs. (5.123) to find the stresses, we get
e in the angle-ply layer,

o’ = 0. 26 oy = 0. 028— 7y =0. 023—
e in the hoop layer,
o® = 0.073i, ol? = 0. 089— Do
1 Rh 2 ]’l 12

where h = h1 + h» is the total thickness of the laminate. To calculate the interlaminar
stresses acting between the angle-ply and the hoop layers, we apply Egs. (5.124). Using
Egs. (5.4) and taking Egs. (5.133) and (5.134) into account, we first find the stresses in
the layers referred to the global coordinate frame x, y, z, i.e.,

@) .0 @) .0 @) .0 @) .0 i
o = Af)ed +AD)e £y, (’) = Ayje, + Ay, z;’;:o (5.135)

where i =1, 2 and Aﬁ,’,,, are given by Egs. (5.131) and (5.132). Since these stresses do
not depend on x and y, the first two equations in Egs. (5.124) yield

0Ty, a7y,
5 = 0, N 0

This means that both interlaminar shear stresses do not depend on z. However, on the inner
and on the outer surfaces of the cylinder the shear stresses are equal to zero, so t,, = 0
and t,; = 0. The fact that r,, = 0 is natural. Both layers are orthotropic and do not tend
to twist under axial compression of the cylinder. Concerning 1., = 0, a question arises as
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to how compatibility of the axial deformations of the layers with different stiffnesses can
be provided without interlaminar shear stresses. The answer follows from the model used
above to describe the stress state of the cylinder. According to this model, the transverse
shear deformation y, is zero. Actually, this condition can be met if part of the axial force
applied to the layer is proportional to the layer stiffness, i.e., as

P = —2710’}51)/’11 = 27‘[/’11(14%[) e, + Ag_lz) ?)
(5.136)
Py = —2m0 Py = 2mhz (A2 + AZED)

Substituting strains from Egs. (5.130), we can conclude that within the accuracy of a
small parameter /R (which was neglected in comparison with unity when we calculated
stresses) P; + P, = — P, and that the axial strains are the same even if the layers are not
bonded together. In the middle part of a long cylinder, the axial forces are automatically
distributed between the layers in accordance with Egs. (5.136). However, in the vicinity of
the cylinder ends, this distribution depends on the loading conditions. The corresponding
boundary problem will be discussed further in this section.

The third equation in Egs. (5.124) formally yields o, = 0. However, this result is
not correct because the equation corresponds to a plane laminate and is not valid for the
cylinder. In cylindrical coordinates, the corresponding equation has the following form
(see e.g., Vasiliev, 1993)

[0 D=0+ ) T+ 5 - 7]

Taking 7., = 0 and t,;, = 0, substituting o, from Eqgs. (5.135), and integrating, we obtain

R 1
= — A A d 5.137
o R+Z|:R,/o(218+ 228)Z+C:| ( )

where, A, (mn = 21, 22) are the step-wise functions of z, i.e.,
Apn =AY for0<z<hn
Amn = AD forhy <z<h=hi+hy

mn

and C is the constant of integration. Since no pressure is applied to the inner surface of the
cylinder, o, (z = 0) = 0 and C = 0. Substitution of the stiffness coefficients, Egs. (5.131),
(5.132), and strains, Egs. (5.130), into Eq. (5.137) yields

P
o® = _0.068— - —
Rh R+z
(5.138)

i—h
0@ =Mz =hy) +007E R+Z1
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1 L J 0_-2,104
0 2 4 6

Fig. 5.37. Distribution of the normalized radial stress o, = o, Rh/ P over the laminate thickness.

On the outer surface of the cylinder, z = & and Gz(z) = 0 which is natural because this

surface is free of any loading. The distribution of o, over the laminate thickness is shown
in Fig. 5.37. As can be seen, interaction of the layers under axial compression of the
cylinder results in radial compression that occurs between the layers.

We now return to transverse shear stress 7., and try to determine the transverse stresses
taking into account the transverse shear deformation of the laminate. To do this, we
should first specify the character of loading, e.g., suppose that axial force T in Fig. 5.33
is uniformly distributed over the cross-sectional contour of the angle-ply layer middle
surface as in Fig. 5.38. As a result, we can take T = 2nRN (since the cylinder is very
thin, we neglect the radius change over its thickness).

To study this problem, we should supplement constitutive equations, Egs. (5.125), with
the missing equation for transverse shear, Eqg. (5.83) and add the terms including the

Fig. 5.38. Application of the axial forces.
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change of the meridian curvature «,, which is no longer zero. As a result, we arrive at the
following constitutive equations

Ny = Buel + §1288 + C1akyx (5.139)
Ny = Bl + Ezsz + Co1ky (5.140)
M, = Cped + 51288 + D11k, (5.141)
My = Ca169 + C26) + Doy (5.142)
Vi = Siyx (5.143)

Forces and moments in the left-hand sides of these equations are linked by equilibrium
equations that can be written as (see Fig. 5.39)

N, =0, M,-V,=0, V;—Tzo (5.144)
in which ( )’ = d( )/dx. The generalized strains entering Egs. (5.139)—(5.143) are related
to displacements by formulas given as notations to Egs. (5.3) and (5.14), i.e.,

=u, k=0, b=y —uw (5.145)

Here, u is the axial displacement and w is the radial displacement (deflection) of the points
belonging to the reference surface (see Fig. 5.33), whereas 6, is the angle of rotation of
the normal to this surface in the xz-plane and y, is the transverse shear deformation
in this plane. The foregoing strain—displacement equations are the same as those for flat
laminates. The cylindrical shape of the structure under study shows itself in the expression
for circumferential strain 88. Since the radius of the cylinder after deformation becomes
equal to (R + w), we get

27(R _2%R
Q- 2Ry w) —ZmR _w (5.146)
Y 2R R

My

Ny ,
V, +V,d,

M, | Vx :
A D i,
Ne dx ) N+ Nyd,

[

Fig. 5.39. Forces and moments acting on the cylindrical element.
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To proceed with the derivation, we introduce the coordinate of the laminate reference
surface, e, which gives C11 = 0, i.e., in accordance with Eq. (5.116), ¢ = Iﬁ)/ll(f). For
the laminate under study, e = 0.48 mm, i.e., the reference surface is located within the
internal angle-ply layer. Then, Egs. (5.139)-(5.141), and (5.143), upon substitution of
strains from Eqgs. (5.145) and (5.146) can be written as

Ny = Buu' + Eu% (5.147)

Ny = Bou’ + Ezz% + C219)/C (5.148)
J— w ’

M, = ClZE + D116, (5.149)

Ve = S (0 +w) (5.150)

where stiffness coefficients B11, B1p, Bo1 = Bip, Co1 = C1o, C1 are presented above and

2
@
@) (111) h?
Dy =12 - PR e (5.151)
u &8

For the unidirectional ply, we take transverse shear moduli G13 = G12 = 4GPa and
Go3 = 3GPa. Using Egs. (4.72), we get

AL = G13c05° ¢ + Gozsin’ ¢ = 3.7GPaand AL = 3GPa

Now, calculation with the aid of Egs. (5.151) yields D;; = 16.9GPamm? and S, =
4.05 GPa mm.

The equilibrium equations, Egs. (5.144), in conjunction with the constitutive equations,
Egs. (5.147)-(5.150) compose a set of seven ordinary differential equations including
the same number of unknown functions — N,, N, My, Vi, u, w, and 6,. Thus, the set is
complete and can be reduced to one governing equation for deflection w.

To do this, we integrate the first equilibrium equation in Egs. (5.144) which shows that
N, = constant. Since at the cylinder ends N, = —N, this result is valid for the whole
cylinder. Using Egs. (5.145) and (5.147), we obtain

1 - w
=i = —B—M(N n Ble) (5.152)

Substitution in Eq. (5.148) yields

B By ,
L= - —N A
Ny = =2 N +Caif] (5.153)
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where B = B11B2» — B11B»1. We can express 0, from Eq. (5.150) and, after differen-
tiation, change v/ for N, with the aid of the last equilibrium equation in Egs. (5.144).
Substituting N, from Eq. (5.153), we arrive at

1T 1 [/ B B
i w— AN —w” (5.154)
C|SyR\ BuR B1

where C = 1— (C21/(S¢R)). Using Egs. (5.149) and (5.154), we can express the bending
moment in terms of deflection, i.e.,

Dl 1 B B> y — w
M, =—— ——N ) - Cio— 5.155
e [SxR<Ban B11 ) B ™ ( )

The governing equation follows now from the second equilibrium equation in Egs. (5.144)
if we differentiate it, substitute M from Eq. (5.155), express V/ in terms of 6, and w”
using Eq. (5.150) and substitute 6, from Eq. (5.154). The final equation is as follows

w'V — 202w + rw =p (5.156)
in which
1/C B B
e e N AT
2R\ D11 BuS:R D11BuiR
BauN By P

pP= D11B11 R o ZJTRzD]_]_B]_l

For the cylinder under study, o2 = 14/R? and 2 = 139/R2. Since 8 > «, the solution
of Eq. (5.156) can be written in the following form

4
w=Y " CyFy(x)+w, (5.157)

n=1
in which C, are constants of integration and

Fi = e ™costx, F»=e¢ sintx, F3=ecostx, Fs=e""sintx

1 1 B P
_ [tp2_ .2 —_ |22 42 _
r= 2(,3 ac), t 2(,3 +ac), wp 5B

To analyze the local effects in the vicinity of the cylinder end, e.g., x = 0 (the stress state
of the cylinder at a distance from its ends is presented above), we should take C3 = 0
and C4 = 0 in Eq. (5.157) which reduces to

w=C1F1(x) + CoF2(x) + w) (5.158)
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To differentiate the functions entering this solution, the following relationships can be used
Fl’ = —(tF2 +rFyp), Fz’ =tF; —rfky,
F = (r2 — t2> Fi+2rtFp, Fj = (r2 — t2> F> — 2rtFq,
F/"=-r <r2 — 3t2) F1+t (t2 — 3r2) F,
Fy = —r (rz — 3t2> Fy—t (t2 — 3r2) Fi

The constants of integration C1 and C; entering Eq. (5.158) can be determined from the
boundary conditions at x = 0. As follows from Figs. 5.38 and 5.39

M,Ax:O):N(e—%), Vix=0)=0

in which M, is specified by Egs. (5.155) and (5.158), whereas V, can be found from the
second equilibrium equation in Egs. (5.144).

For the cylinder under study, the final expressions for the strains and the rotation
angle are

0 PEZZ

= — 1+ ¢~ "™(0.11 sin tx — 0.052 cos tx
&y ZnRB[ +e ™ )]
€0 = P21y 4 o0 51sintx — 0.24 cost)] (5.159)
Y 2nRB
PB1

= me‘”‘(G.S costx — 2.3sintx),
1

in which r = 7.9/R and ¢ = 8.75/R. Thus, the solution in Egs. (5.130) is supplemented
with a boundary-layer solution that vanishes at a distance from the cylinder end.

To determine the transverse shear stress t,;, we integrate the first equation in
Egs. (5.124) subject to the condition 7., (z = 0) = 0. As a result, the shear stress
acting in the angle-ply layer is specified by the following expression

@
'L'(l) = — ) de dZ
* 0 dx
in which

1 D @), 4D
o = AfelY + A7l

1 0 1 0
8)(6) =&, + Ky, s;) =&, + 2Ky,

/ J
Ky =0, Kky=——
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Substitution of Egs. (5.159) and rearranging yields

PB.
D 22 o Tx

= 5rap [(23.75 costx — 9.75sintX)z 4 (6.3 cos tx + 24.9sin tX)zz]
T

(5.160)

The transverse normal stress can be found from the following equation similar to
Eq. (5.137)

o, = le_z /OZ [%(Aﬂgg + Azzgg) - (1 + %)a;—xxz} dz

For a thin cylinder, we can neglect z/R in comparison with unity. Using Egs. (5.159) and
(5.160) for the angle-ply layer, we have

o® = _0.068-L_ {z + e*fx[(o 18costx — 0.0725sin tx)z
! 068> . .

— (0.12cos tx + 0.059 sin tx)z? + (0.05 cos tx — 0.076 sin tx)z3] }

As can be seen, the first equation in Egs. (5.138) follows from this solution if x — ooc.
The distribution of shear stress rg)(z = hp) and normal stress Gz(l)(z = h1) acting at
the interface between the angle-ply and the hoop layer of the cylinder along its length is
shown in Fig. 5.40.

-10% 5, 10*

Qi

o 1 1 1
0 0.04 0.08 0.12 0.16 0.2

x/R
(1

Fig. 5.40. Distribution of normalized transverse shear stress Ty, = rxz)Rh/P and normal stress o, = oz(l) Rh/ P
acting on the layers interface (z = h1) along the cylinder axis.



318 Advanced mechanics of composite materials

Consider now the problem of torsion (see Fig. 5.33). The constitutive equations in
Egs. (5.125) that we need to use for this problem are

Nyy = B44)/)9y, Myy = Casyxy (5.161)
Taking the coordinate of the reference surface in accordance with Eq. (5.116), i.e.,

D)
Iy

44

we get Cq4 = 0 and Myq = 0. For the cylinder under study, e = 0.46 mm, i.e., the
reference surface is within the angle-ply layer. The free-body diagram for the cylinder
loaded with torque T, (see Figs. 5.33 and 5.41) yields

T
Mo = ke
Thus,
T
0
= — 5.163
Yy 21t R2Bua ( )

For the experimental cylinder, shown in Fig. 5.35, normal strains were measured in the
directions making +45° angles with the cylinder meridian. To find these strains, we can
use Egs. (5.122) with ¢; = £45°, i.e.,

1
+ 0
€15 = :I:nyy

M

Ve
NXV

T oo

Ny

Fig. 5.41. Forces and moments acting on an element of the cylinder under torsion.
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analysis; O experiment.

Fig. 5.42. Dependence of s4i5 on the torque T for a composite cylinder:

For the cylinder under study with Bgq = 15? = 9.5GPamm and R = 100 mm, we get

i T

=4+ =4084.107°T
b4 47t R2Baa

where T is measured in Nm. A comparison of the calculated results with experimental
data is shown in Fig. 5.42.
To find the stresses acting in the plies, we should first use Egs. (5.120) which for the
case under study yield
sg) = e;i) =0, yx(;) = )/)?y i=12

Then, Egs. (5.122) enable us to determine the strains
e in +¢ plies of the angle-ply layer,

ef =xysingcosg, & =Fylsingcose, y; = vy, €026
e in unidirectional plies of a hoop layer (¢ = 90°),

9 _ 90 _ 9 _ .0
e =& =0, Y12 = Vxy
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Finally, the stresses can be obtained with the aid of Eqgs. (5.123). For the cylinder under
study, we get:
e in the angle-ply layer,

T T T
+ __ + _ + .
of =204l 0y = F0.068 7, T = 0.025

e in the hoop layer,
60 =0 —0, 200820
1 2 v T2 RAlYI

where h = 1.22 mm is the total thickness of the laminate.
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Chapter 6

FAILURE CRITERIA AND STRENGTH OF LAMINATES

Consider a laminate consisting of orthotropic layers or plies whose principal material
axes 1, 2, and 3, in general, do not coincide with the global coordinates of the laminate
(x, y, z) and suppose that this layer or ply is in a state of plane stress as in Fig. 6.1. It should
be emphasized that, in contrast to a laminate that can be anisotropic and demonstrate
coupling effects, the layer under consideration is orthotropic and is referred to its principal
material axes. Using the procedure that is described in Section 5.11, we find stresses o1,
o2, and 12 corresponding to a given system of loads acting on the laminate. The problem
that we approach now is to evaluate the laminate load-carrying capacity, i.e., to calculate
the loads that cause failure of the individual layers and of the laminate as a whole. For
the layer, this problem can be readily solved if we have a failure or strength criterion

F(o1,02,112) =1 (6.1)

specifying the combination of stresses that causes layer fracture. In other words, the layer
works while F <1, fails if F = 1, and does not exist as a load-carrying structural element
if F> 1. In the relevant stress space, i.e., o1, o2, and 712, Eq. (6.1) specifies the so-called
failure surface (or failure envelope) shown in Fig. 6.2. Each point in this space corresponds
to a particular stress state, and if the point is inside the surface, the layer withstands the
corresponding combination of stresses without failure.

Thus, the problem of strength analysis is reduced to the construction of a failure cri-
terion in its analytical, Eq. (6.1), or graphical (Fig. 6.2) form. Up to the present time,
numerous Vvariants of these forms have been proposed for traditional and composite struc-
tural materials (Gol’denblat and Kopnov, 1968; Wu, 1974; Rowlands, 1975; Tsai and
Hahn, 1975; Vicario and Toland, 1975; etc.) and these have been described by the authors
of many textbooks in composite materials. Omitting the history and comparative analysis
of particular criteria that can be found elsewhere, we discuss here mainly the practical
aspects of the problem.

6.1. Failure criteria for an elementary composite layer or ply

There exist, in general, two approaches to construct the failure surface, the first of which
can be referred to as the microphenomenological approach. The term ‘phenomenological’

321
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Fig. 6.1. An orthotropic layer or ply in a plane-stressed state.

Fig. 6.2. Failure surface in the stress space.

means that the actual physical mechanisms of failure at the microscopic material level
are not considered and that we deal with stresses and strains, i.e., with conventional and
not actually observed state variables introduced in Chapter 2. In the micro-approach, we
evaluate the layer strength using microstresses acting in the fibers and in the matrix and
failure criteria proposed for homogeneous materials. Being developed up to a certain
extent (see, e.g., Skudra et al., 1989), this approach requires the minimum number of
experimental material characteristics, i.e., only those determining the strengths of fibers
and matrices. As a result, coordinates of all the points of the failure surface in Fig. 6.2
including points A, B, and C corresponding to uniaxial and pure shear loading are found by
calculation. To do this, we should simulate the layer or the ply with a suitable microstruc-
tural model (see, e.g., Section 3.3), apply a pre-assigned system of average stresses o1, o2,
and 712, (e.g., corresponding to vector OD in Fig. 6.2), find the stresses acting in the
material components, specify the failure mode that can be associated with the fibers or
with the matrix, and determine the ultimate combination of average stresses correspond-
ing, e.g., to point D in Fig. 6.2. Thus, the whole failure surface can be constructed.
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However, the uncertainty and approximate character of the existing micromechanical
models discussed in Section 3.3 results in relatively poor accuracy using this method
which, being in principle rather promising, has not found wide practical application at the
present time.

The second basic approach which can be referred to as the macrophenomenological
one deals with the average stresses o1, o2, and t12 shown in Fig. 6.1 and ignores the ply
microstructure. For a plane stress state in an orthotropic ply, this approach requires at least
five experimental results specifying material strength under:

e longitudinal tension, &, (point A in Fig. 6.2),

e longitudinal compression, 7,

e transverse tension, E; (point B in Fig. 6.2),

e transverse compression, o, , and

e in-plane shear, T12 (point C in Fig. 6.2).

Obviously, these data are not enough to construct the complete failure surface, and two
possible ways leading to two types of failure criteria can be used.

The first type referred to as structural failure criteria involves some assumptions con-
cerning the possible failure modes that can help us to specify the shape of the failure
surface. According to the second type, which provides a failure surface of an approximate
form, experiments simulating a set of complicated stress states (such that two or all three
stresses o1, 02, and 112 are induced simultaneously) are undertaken. As a result, a system
of points, like point D in Fig. 6.2, is determined and approximated with some suitable
surface.

The experimental data that are necessary to construct the failure surface are usually
obtained by testing thin-walled tubular specimens such as those shown in Figs. 6.3 and 6.4.
These specimens are loaded with internal or external pressure p, tensile or compressive
axial forces P, and end torques 7', providing a known combination of axial stress, oy,
circumferential stress, o, and shear stress t., that can be calculated as

P PR T
Oy = ———, Oy=—, Txyy= "5
Y7 2nRh ) h VT 2nR2h

Here, R is the cylinder radius and % is its thickness. For the tubular specimens shown in
Fig. 6.4, which were made from unidirectional carbon—epoxy composite by circumferential
winding, o, = 03, 0, = 01, and 7y, = 717 (see Fig. 6.1).

We shall now consider typical structural and approximation strength criteria developed
for typical composite layers and plies.

6.1.1. Maximum stress and strain criteria

These criteria belong to a structural type and are based on the assumption that there can
exist three possible modes of failure caused by stresses o1, 02, and t12 or strains e1, &2,
and y12, when they reach the corresponding ultimate values.
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Fig. 6.3. Glass fabric—epoxy test tubular specimens.

The maximum stress criterion can be presented in the form of the following inequalities

01551“, 02532' if 01>0 o02>0
lo1l <&;, lo2l <@, if 01<0 o02<0 (6.2)
|T12] < T12

It should be noted here and subsequently that all the ultimate stresses & and 7 including
compressive strength values are taken as positive quantities. The failure surface corre-
sponding to the criterion in Egs. (6.2) is shown in Fig. 6.5. As can be seen, according
to this criterion failure is associated with independently acting stresses, and any possible
stress interaction is ignored.

It can be expected that the maximum stress criterion describes adequately the behavior of
those materials in which stresses o1, o2, and 12 are taken by different structural elements.
Atypical example of such a material is the fabric composite layer discussed in Section 4.6.
Indeed, warp and filling yarns (see Fig. 4.83) working independently provide material
strength under tension and compression in two orthogonal directions (1 and 2), whereas
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Fig. 6.4. Carbon-epoxy test tubular specimens made by circumferential winding (the central cylinder failed
under axial compression and the right one under torsion).
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Fig. 6.5. Failure surface corresponding to maximum stress criterion.

the polymeric matrix controls the layer strength under in-plane shear. A typical failure
envelope in the plane (o1, o2) for a glass—epoxy fabric composite is shown in Fig. 6.6
(the experimental data are from G. Prokhorov and N. Volkov). The corresponding results
in the plane (o1, 112), but for a different glass fabric experimentally studied by Annin and
Baev (1979), are presented in Fig. 6.7. It follows from Figs. 6.6 and 6.7, that the maximum
stress criterion provides a satisfactory prediction of strength for fabric composites within
the accuracy determined by the scatter of experimental results. As has been already noted,
this criterion ignores the interaction of stresses. However, this interaction takes place
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Fig. 6.6. Failure envelope for glass—epoxy fabric composite in plane (o1, 02). (
criterion, Egs. (6.2); (O) experimental data.
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Fig. 6.7. Failure envelope for glass—epoxy fabric composite in plane (o1, 712). (
criterion, Egs. (6.2); (O) experimental data.

) maximum stress

in fabric composites which are loaded with compression in two orthogonal directions,
because compression of the filling yarns increases the strength in the warp direction and
vice versa. The corresponding experimental results from Belyankin et al. (1971) are shown
in Fig. 6.8. As can be seen, there is a considerable discrepancy between the experimental
data and the maximum stress criterion shown with solid lines. However, even in such
cases this criterion is sometimes used to design composite structures, because it is simple
and conservative, i.e., it underestimates material strength, thus increasing the safety factor
for the structure under design. There exist fabric composites for which the interaction
of normal stresses is exhibited in tension as well. An example of such a material is
presented in Fig. 6.9 (experimental data from Gol’denblat and Kopnov (1968)). Naturally,
the maximum stress criterion (solid lines in Fig. 6.9) should not be used in this case
because it overestimates the material strength, and the structure can fail under loads that
are lower than those predicted by this criterion.
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Fig. 6.8. Failure envelope for glass—phenolic fabric composite loaded with compression in plane (o1, 02).
( ) maximum stress criterion, Egs. (6.2); (- - -) polynomial criterion, Egs. (6.16); (O) experimental data.
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Fig. 6.9. Failure envelope for glass—epoxy fabric composite in plane (o1, 02). ( ) maximum stress cri-
terion, Egs. (6.2); (- - - =) approximation criterion, Egs. (6.11) and (6.12); (-+-«----- ) approximation criterion,
Egs. (6.15); (0) experimental data.

The foregoing discussion concerns fabric composites. Now consider a unidirectional
ply and try to apply the maximum stress criterion in this situation. First of all, because the
longitudinal strength of the ply is controlled by the fibers whose strength is much higher
than that of the matrix, it is natural to neglect the interaction of stress o1 on one side and
stresses o and t12, on the other side. In other words, we can apply the maximum stress
criterion to predict material strength under tension or compression in the fiber direction
and, hence, use the first part of Egs. (6.2), i.e.,

o1 < EI_ if 01>0
(6.3)
logl <o, if 01 <0
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Fig. 6.10. Failure envelope for carbon-carbon unidirectional composite in plane (o2, 712). (
stress criterion, Eqgs. (6.2); (0) experimental data.
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Actually, there exist unidirectional composites with a very brittle matrix (carbon or
ceramic) for which the other conditions in Egs. (6.2) can also be applied. As an exam-
ple, Fig. 6.10 displays the failure envelope for a carbon—carbon unidirectional material
(experimental data from Vorobey et al., 1992). However, for the majority of unidirectional
composites, the interaction of transverse normal and shear stresses is essential and should
be taken into account. This means that we should apply Eq. (6.1) but can simplify it as
follows

F(o2,1120) =1 (6.4)

The simplest way to induce a combined stress state for a unidirectional ply is to use the
off-axis tension or compression test as discussed in Section 4.3.1. Applying stress o, as
in Figs. 4.22 and 4.23, we have stresses o1, o2, and 712 specified by Eq. (4.78). Then,
Egs. (6.2) yield the following ultimate stresses:

For o, > 0,
_ EI_ _ EZ _ T12
Ox = » Ox = y, Ox = = —F————— (6.5
2 ia2
cos2 ¢ sin? ¢ sin ¢ cos ¢
For o, < 0O,
_ o _ o, _ T12
Ox = —1 » Ox = 2 y, Ox = = —F————— (6.6)
2 in2
cos2 ¢ sin? ¢ sin ¢ cos ¢

The actual ultimate stress is the minimum &, value of the three values provided by
Egs. (6.5) for tension or Egs. (6.6) for compression. The experimental data of S.W. Tsai
taken from (Jones, 1999) and corresponding to a glass—epoxy unidirectional composite
are presented in Fig. 6.11. As can be seen, the maximum stress criterion (solid lines)
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% 15 s 4 60 75 90 ¢
(b)
Fig. 6.11. Dependence of the stress on the fiber orientation angle for off-axes tension (a) and compression (b) of
glass—epoxy unidirectional composite. ( - =) maximum stress criterion, Eqs. (6.2); (- ) approximation
criterion, Egs. (6.3) and (6.17); (= ===~ ) approximation criterion, Egs. (6.3) and (6.18).

demonstrates fair agreement with experimental results for angles close to 0 and 90° only.
An important feature of this criterion belonging to a structural type is its ability to predict
the failure mode. Curves 1, 2, and 3 in Fig. 6.11 correspond to the first, the second, and
the third equations of Egs. (6.5) and (6.6). It follows from Fig. 6.11a, that fiber failure
occurs only for ¢ = 0°. For 0° < ¢ < 30°, material failure is associated with in-plane
shear, whereas for 30° < ¢ < 90°, it is caused by the transverse normal stress o.

The maximum strain failure criterion is similar to the maximum stress criterion
discussed above, but is formulated in terms of strains, i.e.,

ngf, 82§§§r if ¢1>0 & >0
lerl <&, le2l <& if ¢1<0 & <0 (6.7)
12l < V12
where
= v =y R = 2 (6.8)
Eq E> E; Eq G2

The maximum strain criterion ignores the strain interaction but allows for the stress inter-
action due to Poisson’s effect. This criterion provides results that are generally closely
similar to those following from the maximum stress criterion.

There exists a unique stress state which can only be studied using the maximum strain
criterion. This is longitudinal compression of a unidirectional ply as discussed earlier
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Fig. 6.12. Failure modes of a unidirectional glass—epoxy composite under longitudinal compression.

in Section 3.4.4. Under this type of loading, only longitudinal stress o7 is induced,
whereas oo = 0 and 712 = 0. Nevertheless, fracture is accompanied with cracks
parallel to the fibers (see Fig. 6.12 showing tests performed by Katarzhnov (1982)).
These cracks are caused by transverse tensile strain e, induced by Poisson’s effect.
The corresponding strength condition follows from Egs. (6.7) and (6.8) and can be
written as

£
loy] <&5 —
V21

It should be emphasized that the test shown in Fig. 6.12 can be misleading because
transverse deformation of the ply is not restricted in this test, whereas it is normally
restricted in actual laminated composite structural elements. Indeed, a long cylinder
with material structure [07;] being tested under compression yields a material strength
o, = 300MPa whereas the same cylinder with material structure [05,/90°] gives
o, = 505MPa (Katarzhnov, 1982). Thus, if we change one longitudinal ply for a circum-
ferential ply that practically does not bear any of the load in compression along the cylinder
axis, but restricts its circumferential deformation, we increase the material strength
in compression by 68.3%. Correspondingly, the failure mode becomes quite different
(see Fig. 6.13).
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@) (b)

Fig. 6.13. Failure mode of a glass—epoxy tubular specimen with 10 longitudinal plies and one outside
circumferential ply: (a) inside view; (b) outside view.

6.1.2. Approximation strength criteria

In contrast to structural strength criteria, approximation criteria do not indicate the
mode of failure and are constructed by approximation of available experimental results
with some appropriate function depending on stresses o1, o2, and t12. The simplest and
the most widely used criterion is a second-order polynomial approximation, typical forms
of which are presented in Fig. 6.14. In the stress space shown in Fig. 6.2, the polynomial
criterion corresponding to Fig. 6.14a can be written as

F (01,02, T12) = R116% + Rapo2 4 172, =1 (6.9)
To determine the coefficients R and S, we need to perform three tests providing material

strength under uniaxial loading in 1 and 2 directions and in shear. Then, applying the
following conditions

Flo1=01,00=0,112=0)=1
F(o1=0,00=02,112=0) =1 (6.10)

Fl01=0,00=0,t2=7T12) =1
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Fig. 6.14. Typical shapes of the curves corresponding to the second-order polynomials.

we can find R and S and write Eq. (6.9) in its final form

o1 2 02 2 T12 2
<_—) + <_—) + <_—> =1 (6.11)
o1 02 T12

It appears as though this criterion yields the same strength estimate in tension and compres-
sion. However, it can be readily made specific for tension or compression. It is important
to realize that when evaluating a material’s strength we usually know the stresses acting
in this material. Thus, we can take in Eq. (6.10)

o1=0; if 01>0 or o1=0; if 01<0
(6.12)
02 = E;_r if 0>0 or ox2=0, if 02<0

thus describing the cases of tension and compression. The failure criterion given by
Egs. (6.11) and (6.12) is demonstrated in Fig. 6.9 with application to a fabric composite
loaded with stresses o1 and o2 (12 = 0). Naturally, this criterion is specified by different
equations for different quadrants in Fig. 6.9.
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For some problems, e.g., for the problem of design, for which we usually do not know
the signs of stresses, we may need to use a universal form of the polynomial criterion
valid both for tension and compression. In this case, we should apply an approximation
of the type shown in Fig. 6.14b and generalize Eq. (6.9) as

F (o1, 02, 112) = R101 + Rooo + Rllolz + R22022 + Slzrlzz =1 (6.13)
Using criteria similar to Egs. (6.10), i.e.,

F(olzﬁf,az =0,t720=0=1 if 01>0

Fo1=-0,,020=0,112=0=1 if 01<0

Flo1=0,00=04,12=0=1 if 0,>0 (6.14)

F(o1=0,00=-0,,112=0=1 if 02<0

F(o1=0,00=0,120=712) =1

we arrive at

1 1 1 1 o? o? 112\ 2
o1 (: - _—) + 02 (ﬁ - _—> b+ =+ (#) =1 (6.15)
O'l O'l 0'2 0'2 010'1 0'20'2 T12

Comparison of this criterion with the criteria discussed above and with experimental results
is presented in Fig. 6.9. As can be seen, the criteria specified by Egs. (6.11), (6.12), and
(6.15) provide close results which are in fair agreement with the experimental data for all
the stress states except, possibly, biaxial compression for which there are practically no
experimental results shown in Fig. 6.9. Such results are presented in Fig. 6.8 and allow
us to conclude that the failure envelope can be approximated in this case by a polynomial
of the type shown in Fig. 6.14c, i.e.,

F(o1,02, 112) = R11012 + Rip0102 + Rzzﬁz2 + 512f122 =1

The coefficients R11, R22, and Si2 can be found as earlier from Egs. (6.10), and we
need to use an additional strength condition to determine the coupling coefficient, Ri2.
A reasonable form of this condition is F(oy = —0,,02 = —0,, 112 = 0) = 1. This
means that whereas for |o1] < o, and |o2| < o, the interaction of stresses increases
material strength under compression, the combination of compressive failure stresses
lo1| = oy and |oz2| = o, results in material failure. Then

2 2 )
o) o (o2 +(fﬁ) _1 (6.16)

Comparison of this criterion with experimental data is presented in Fig. 6.8.
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Now consider unidirectional composites and return to Fig. 6.11. As can be seen, the
maximum stress criterion (solid lines), ignoring the interaction of stresses o2 and 712
demonstrates rather poor agreement with experimental data. The simplest approximation
criterion, Egs. (6.11) and (6.12), takes, for the case under study, the form

o2 \? 112\?
F(o2, 112) = 7 + =" =1 (6.17)

and the corresponding failure envelope is shown in Fig. 6.11 with dotted lines. Although
providing fair agreement with experimental results for tension (Fig. 6.11a), this criterion
fails to predict material strength under compression (Fig. 6.11b). Moreover, for this case,
the approximation criterion yields worse results than those demonstrated by the maximum
stress criterion. There are simple physical reasons for this discrepancy. In contrast to the
maximum stress criterion, Eq. (6.17) allows for stress interaction, but in such a way that
the transverse stress o reduces the material strength under shear. However, this holds true
only if the transverse stress is tensile. As can be seen in Fig. 6.15, in which the experimental
results taken from Barbero’s (1998) book are presented, a compressive stress o7 increases
the ultimate value of shear stress t1p. As a result, the simplest polynomial criterion in
Eq. (6.17), being, as it has been already noted, quite adequate for o, > 0, significantly
underestimates material strength for o < 0 (solid line in Fig. 6.15). As also follows from
Fig. 6.15, a reasonable approximation to the experimental results can be achieved if we
use a curve of the type shown in Fig. 6.14b, (but moved to the left with respect to the
y-axis), i.e., if we apply for this case the criterion presented by Eq. (6.15) which can be
written as

11 o2 2
F(o2, 112) = 09 (_—+ — _—_) + _+2 + (—T:LZ) =1 (6.18)
Io]

5 0, 0,0, T12

The corresponding approximations are shown in Figs. 6.11 and 6.15 with dashed lines.

- - - 0, MPz
-160 -120 -80 -40 0 40

Fig. 6.15. Failure envelope for glass—epoxy unidirectional composite in plane (o2, t12). ( ) approximation
criterion, Egs. (6.12) and (6.17); (- - - -) approximation criterion, Egs. (6.18); (O) experimental data.
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In conclusion, it should be noted that there exist more complicated polynomial strength
criteria than those considered above, e.g., the fourth-order criterion of Ashkenazi (1966)
and cubic criterion proposed by Tennyson et al. (1980).

6.1.3. Tensor strength criteria

The polynomial approximation strength criteria discussed in Section 6.1.2 have been
introduced as some formal approximations of the experimental data in the principal mate-
rial coordinates. When written in some other coordinate frame, these criteria become much
more complicated. Consider for example an orthotropic material shown in Fig. 6.16 and
referred to the principal material axes 1 and 2 and to some axes 1 and 2’ which make an
angle ¢ = 45° with the principal axes. For the principal material axes 1 and 2, apply a
generalized form of the criterion in Eq. (6.13), i.e.,

F(01, 02, T12) = R101 + R0y + R1167 + Ri20102 4+ Rapos + S1ot5, =1 (6.19)

Using the strength conditions in Eqgs. (6.14) to determine the coefficients R and S, we
arrive at

1 1 1 1 o?
Flo,02,t2) =\ — —= | o1+ | = — == | 92 + ——= + Rneo102
91 01 92 02 0101
2 2
0. T
+ =2+ (#) =1 (6.20)
0'2 02 712

This criterion is similar to the criterion in Eg. (6.15), but it includes the coefficient
R12 which cannot be found from simple tests using Egs. (6.14). Treating Eq. (6.20) as
the approximation strength criterion, we can apply some additional testing or additional
assumptions similar to those used to derive Eq. (6.16) and determine the coefficient R15.

1

o

1

Fig. 6.16. An orthotropic material referred to coordinates (1, 2) and (1’, 2').
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We can also simplify the problem and take R12 = 0 arriving at Eq. (6.15), i.e.,

1 1 1 1 o?
F(o1,02,7112) = i oot |\~ — o2+ ——

01 1 0y 03 010,

2 2

0.
02 4 (22) o1 (6.21)
G50, T12

which is in good agreement with experimental results (see Fig. 6.9). To simplify the
analysis, assume that the material strength in tension and compression is the same for
both principal directions 1 and 2, i.e.,

G, =0, =0, =0, =00, T12=T70 (6.22)

Then, Eq. (6.21) reduces to

2 2 2
+
Flonopmpy = %) | (3) —1 (6.23)
UO 70

Now, let us write Eq. (6.23) in coordinates 1’ and 2’ (see Fig. 6.16). To transform the
stresses o1, o, and 712 to the stresses o°, o,°, and z;5 corresponding to coordinates
1" and 2, we can use Egs. (4.68). Taking ¢ = 45°, o = 01, 0y = 02, Ty, = 112 and
o1 = Uf‘s, oy = 0;5, T2 = ‘[f'25, we get

1

= E(UfS + 0515) - tfzs
1

02 = E(Gfs + 0;'5) + 15 (6.24)

1
T12 = E(GfS — 0245)

Substitution in Eq. (6.23) yields

F(of®, o5, o) = %(% + %) [(ofs)Z + (ags)z} + %(E% - %) 025,45
+ % (ff?)z =1 (6.25)
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For tension in the directions of axes 1’ and 2’ in Fig. 6.16 and for shear in plane 1’2/, we
can write Eq. (6.25) in the following forms similar to Egs. (6.10)

F(afS = 045,02 =0, 1:12 = 0) 1
F(of% =0,01% =5, of§ =0) =1 (6.26)

45 45 45 _ —
F(Ul = 0, 02 = 0, '[12 = '[45) = 1

Here, 545 and 745 determine material strength in coordinates 1’ and 2’ (see Fig. 6.16).
Then, Eq. (6.25) can be reduced to

1 2 2 12 5
45 45 _45 45 45 45 45 12

45

where 45 and 745 are given by

1 1f2 1\ o 1,
= %+§, Ta5 = 590

Comparing Eq. (6.27) with Eq. (6.23), we can see that Eq. (6.27), in contrast to Eq. (6.23),
includes a term with the product of stresses 015 and o, 45, S0, the strength criterion under
study changes its form with a transformation of the coordinate frame (from 1 and 2 to 1’
and 2" in Fig. 6.16) which means that the approximation polynomial strength criterion in
Eq. (6.23) and, hence, the original criterion in Eq. (6.21) is not invariant with respect to
the rotation of the coordinate frame.

Consider the class of invariant strength criteria which are formulated in a tensor-
polynomial form as linear combinations of mixed invariants of the stress tensor o;; and
the strength tensors of different ranks S;;, S;;ju, etc., i.e.,

Z Sikoik + Z SikmnOikOmn + -+ =1 (628)

i,k,m,n

Using the standard transformation for tensor components we can readily write this equation
for an arbitrary coordinate frame. However, the fact that the strength components form
a tensor induces some conditions that should be imposed on these components and not
necessarily correlate with experimental data.

To be specific, consider a second-order tensor criterion. Introducing contracted nota-
tions for tensor components and restricting ourselves to the consideration of orthotropic
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materials referred to the principal material coordinates 1 and 2 (see Fig. 6.16), we can
present Eq. (6.22) as

F(o1,02,112) = R(l)(rl + Rgaz + R?lolz + 2R820102 + Rgzazz + 4S82r122 =1
(6.29)

which corresponds to Eq. (6.28) if we put
o1 =01, O12=T12, oxp=o0 and Sy =Ri, Sp=R, Suu-= Rgl,
Su2 = Soo11 = R}y, S22220 = Ry, S1212 = S2121 = S1201 = Sa112 = Sy

The superscript ‘0’ indicates that the components of the strength tensors are referred to

the principal material coordinates. Applying the strength conditions in Egs. (6.14), we can
reduce Eq. (6.29) to the following form

1 1 1 1
Flop, 00, t2) =01 | = —— | to2| & — —
01 01 02 02

of 0 of 12\ 2
+ - +2Rpoion+ -+ | =) =1 (6.30)
G,0;, G,0, T12

This equation looks similar to Eq. (6.20), but there is a principal difference between them.
Whereas Eq. (6.20) is only an approximation to the experimental results, and we can take
any suitable value of coefficient R1> (in particular, we put R = 0), the criterion in
Eqg. (6.30) has an invariant tensor form, and coefficient R?Z should be determined using
this property of the criterion.

Following Gol’denblat and Kopnov (1968) consider two cases of pure shear in coordi-
nates 1 and 2’ shown in Fig. 6.17 and assume that 7, = 7/, and 7,5 = T, where the
overbar denotes, as earlier, the ultimate value of the corresponding stress. In the general
case, ?;1*5 # T,5. Indeed, for a unidirectional composite, stress rjé induces tension in

\525

(b)

Fig. 6.17. Pure shear in coordinates (1, 2’) rotated by 45° with respect to the principal material
coordinates (1, 2).
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the fibers, whereas 7,5 causes compression of the fibers, and the corresponding ultimate
values can be different. Using the results presented in Section 2.4, we can conclude that
for the loading case shown in Fig. 6.17a, 01 = 7,5, 02 = —7,5, and 712 = 0, whereas for
the case in Fig. 6.17b, o1 = —1,5, 02 = 7,5, and 712 = 0. Applying the strength criterion
in Eq. (6.30) for these loading cases, we arrive at

—t —+
F(o1 = Ty, 02 = —Tyg, 112 = 0

L 1 1 1 1 2 1 1
=T45<—_—_i+3_—_—>+(f45) (I"’ +——_2R(1)2>=1

01 01 0 0y 0101 020,

In general, these two equations give different solutions for R‘l’z. A unique solution exists
if the following compatibility condition is valid

T . A (6.31)

If the actual material strength characteristics do not satisfy this equation, the strength
criteria in Eq. (6.30) cannot be applied to this material. If they do, the coefficient R?Z can
be found as

1 1 1 1
Ry =2 F—+—F— - =— (6.32)
2\0(0] 0,0, T4l

For further analysis, consider for the sake of brevity a special orthotropic material shown
in Fig. 6.16 for which, in accordance with Egs. (6.22), 5, =5, =g, =0, = 00,
?;1*5 = T,5 = T45, and T12 = To. As can be seen, Eq. (6.31) is satisfied in this case, and
the strength criterion, Eq. (6.30), referred to the principal material coordinates (1, 2) in
Fig. 6.16 takes the form

1 112\ 2
= <012 + 022) +2R% 0107 + (fi;) =1 (6.33)
0

where, in accordance with Eq. (6.32),

1 1
Ry == — = (6.34)
I 2145
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Substituting Eq. (6.34) into Eq. (6.33), we arrive at the final form of the criterion under
consideration

2 2 2
ol + o 2 1 T12
F(o1,02,112) = —( 1_2 2) T | — = |owoz2+ (_—> =1 (6.35)
00 00 Tys T0

Now, presenting Eq. (6.32) in the following matrix form

{o)7 [RO] o) =1 (6.36)
where
01 R?l R:(L)Z 0
o} =492 ¢, [RO] =|R, R} O
712 0 0 4522 (6.37)
1 1 1 1
RO — = RO —— _ _— g0 _ =
11 3% 12 Eg 2f4215 12 4?%

Superscript ‘T’ means transposition converting the column vector {o} into the row
vector {o}T.

Let us transform stresses referred to axes (1, 2) into stresses corresponding to axes
(1" and 2) shown in Fig. 6.16. Such a transformation can be performed with the aid of
Egs. (6.24). The matrix form of this transformation is

(o) =I11{o*}, (6.38)
where
Lo
Tof
A
2 2 0

Substitution of the stresses in Eq. (6.38) into Eq. (6.36) yields
T
o) o [#]iryfo] =1

This equation, being rewritten as

{045]T [R45] {0—45] -1 (6.39)
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specifies the strength criterion for the same material but referred to coordinates (1/, 2').
The strength matrix has the following form

45 45
Rll R12 0

[RE] =11 [R°](r1= | RE RE O
0 0 483
where
1 1(1 1
R — :
Hoa 4<?% T%>
1 1(1 1
ng:_—z—z<3+7> (6.40)
) To U5
1
45 _
g

The explicit form of Eq. (6.39) is

i)l -]

2
1 11 1 5
+2| S5 -2 (5 +5 ) oo+ (22) =1 (6.41)
o5 4\T5 Ty T45
Now apply the strength conditions in Egs. (6.26) to give
1 1 1f1 1
7=—_2+Z<—_2_T> (6.42)
045 9g To T

Then, the strength criterion in Eq. (6.41) can be presented as

1 2 2
Flofroft o) = o (o) + (o8]

045

2
2 1 5
+ (j - _—2> 01°03° + (_1—2> =1 (6.43)
Os55 Tg T45

Thus, we have two formulations of the strength criterion under con