
Advanced Methods for Security Constrained Financial 

Transmission Rights (FTR) 

Stephen Elbert, Steve.Elbert@PNNL.gov 

Karan Kalsi, Kurt Glaesemann, Mark Rice, Maria Vlachopoulou, Ning Zhou 

Pacific Northwest National Laboratory, Richland, WA 

 

FERC Staff Technical Conference on 
Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software 

(Docket No. AD10-12-003) 

 

June 25-27, 2012 

Washington,DC 

 



Motivation - Challenges with FTR Calculations  

Financial Transmission Rights (FTR) improve power market operation 
efficiency by providing financial tool to hedge price risk associated with 
congestion 

Mitigate incentives for inefficient transmission investment 

FTR auction is formulated as a linear programming optimization problem 

FTR calculations are computationally expensive because 

Large number of security constraints (N-1 contingency analysis)  

Many FTR variables (obligatory and optional FTR bids) 

Multiple time periods (security constraints coupled & no. of constraints 
increase exponentially with no. of categories) 

FTR computation must be finished in time to improve market efficiency 
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Objectives 

Develop innovative mathematical reformulation of the FTR problem  

Compare multiple solvers for FTR computations 

Developed approaches will be able to 

Support N-1 Simultaneous Feasibility Test (SFT) e.g. DC contingency 

analysis 

Support  both optional and obligatory FTR bids 

Support multi-period FTR calculation (e.g. winter, summer and annual) 

Algorithms designed to solve FTR problem should be parallelizable 

to support large-scale implementation in a cloud environment 

 

3 



Problem Formulation 

Power flow constraints 

B is (singular) admittance matrix 

θi are the bus voltage angles 

A is FTR location matrix 

 

Thermal constraints 

C converts voltage angles to line flows 

Li are transmission line limits 

 

Bid-in constraints 

 

Combine 

 

 

A dimension is  

(constraints x bids) 
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Standard FTR Solvers 
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CPLEX (industry standard) 

Primal simplex; most basic LP solver method 

Updates tableau containing objective function and constraint information at 

every iteration  

Consistently slower on FTR than dual simplex 

Dual simplex; fastest of the CPLEX methods 

Similar to primal simplex method, but uses dual formulation of the LP to 

improve convergence time of optimization 

Core computation is a linear solve; scales as cube of size 

Barrier; an interior point method (best for large sparse problems) 

A primal-dual logarithmic barrier algorithm that generates a sequence of strictly 

positive primal and dual solutions 

Fewest iterations but each is more computationally intense 



PNNL FTR solver –  

Parallel Adaptive Non-linear Dynamical System (NDS) 

Transform LP into coupled set of non-linear dynamical equations 

Dynamical system converges to stable states which are solutions of 

primal and dual LP problems respectively 

 

 

 

 

 

 

 

Kernel is a pair of easily parallelized matrix-vector operations: scale 

as square of problem size (constraints x variables) 
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Primal 

Dual 

maximize  𝑐𝑇𝑥   
  subject to  𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0 

 

minimize  𝑏𝑇𝑦  
    subject to 𝐴𝑇𝑦 ≥ 𝑐 and 𝑦 ≥ 0 

𝑑𝑥

𝑑𝑡
= 𝑘1 𝑐 − 𝐴𝑇 𝑦 + 𝑘

𝑑𝑦

𝑑𝑡
  

𝑑𝑦

𝑑𝑡
= 𝑘2 −𝑏 + 𝐴 𝑥 + 𝑘

𝑑𝑥

𝑑𝑡
  

𝑘1 =
𝐾

𝑖
         𝑖 = 1, 2, … 𝑀         𝑘2 =

1

𝑘1
  

Non-linear Dynamical System 



Implementation notes 

Obligatory and Optional bids sorted into separate blocks 

Obligatory bids may use dense matrix arithmetic 

Optional bids use sparse matrix arithmetic (up to 50% sparse) 

𝐴 matrix segments communicated once at beginning 

𝐴 and 𝐴𝑇 stored separately to maximize unit stride access 

Global sums for product vectors and distribution of x and y vectors are 

the only communication after initialization 

Symmetry of Obligatory bids reduces computation by two 
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Validation test cases 
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WECC 230 & 100 model power flow on 

transmission lines operating at min of 

230 kV (1,930 buses and 2,681 branches)  

100 kV (7,485 buses and 9,547 branches) 

Cases Constraints Bids 

1a. WECC 230 single period 5,362 5,790 

2a. WECC 230 single period & many bids 5,362 100,000 

3a. WECC 230 multi-period  10,724 17,370 

4a. WECC 230 multi-period & many bids 10,724 300,000 

1b. WECC 100 single period 19,094 22,455 

2b. WECC 100 single period & many bids  19,094 100,000 

3b. WECC 100 multi-period 38,188 67,365 

4b. WECC 100 multi-period & many bids 38,188 300,000 

FTR bids PF (winter) PF (summer) 

Bids (winter) 

Bids (summer) 

Bids (annual,) 

Multi-period problems have 

independent periods plus a 

coupling block 



Results – single period cases  

WECC 100 

 

 

 

 

 

 

 

 

 

At 4 hours, dual simplex not yet 

converged 

Parallel NDS 46X faster than dual 

simplex 
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WECC 230 

 

 

 

 

 

 

 

 

 

Primal simplex takes 20 min, dual 

simplex and serial NDS (1 core) 

takes 2 minutes 

Parallel NDS is six times faster than 

dual simplex (CPLEX) 



Results – single period & many bids (100,000) 

                         

                       WECC 230 

 

 

 

 

 

 

 

 

NDS 256-core and CPLEX 

comparable results (cross at 53 

seconds) 

WECC 100 

 

 

 

 

 

 

 

 

NDS 100 times faster when 

crossing CPLEX curve 

NDS scaling well  
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Results – two period (summer/winter) cases 

WECC 230 

 

 

 

 

 

 

 

 

Serial NDS is faster than CPLEX 

NDS 128-core is 17 times faster 

WECC 100 

 

 

 

 

 

 

 

 

CPLEX no longer practical—time is 

divided by 10 and not converged 

NDS 256-core is 185 times faster 

1.7 billion non-zero matrix elem. 
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The bigger the problem,  
The faster the relative performance 



Results – two periods & many bids (300,000) 

WECC 230 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WECC 100 

 

 

 

 

 

 

 

 

Additional cores and code 

improvements  solution in 

under 4 hours 

15.3 billion non-zero matrix elem. 
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Real-world data 1 
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CPLEX time per iteration slows by 85x from beginning to end due to backfill 



Real World Data 2 
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CPLEX time per iteration slows by 269x from beginning to end due to backfill 



Summary 

Developed novel non-linear dynamical system based FTR solver  

Easily parallelized to solve large linear programming (LP) problems for 
FTR application within few hours (cloud compatible) 

Parallel NDS more computationally efficient than CPLEX for LP 
Computational kernel of CPLEX is linear solver that scales as cube of 
problem size 

NDS kernel is matrix-vector multiplication that scales as square 

NDS avoids backfill (filing in zeros) of coupled blocks 

Maintains numerical stability through using only original matrix 

Uses dense algorithm for obligatory bids, sparse (50%) for optional bids 

Half the arithmetic for obligatory bids (two inner products differ only in sign) 

Data loaded efficiently in parallel 

Further enhancements 
Further improve parallelization (asynchronous communication, sparse ops) 

Refine adaptive time stepping and explore ode time stepping for faster 
convergence 
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Future 

Develop quadratic programming capability 

Improved FTR constraints  

Explore other application needing LP and/or QP capability 

Transmission planning 

Locational Marginal Pricing (LMP) 

Optimal Power Flow (OPF) 

Explore using method with discrete problems 

Mixed Integer Programming (MIP) 

Resource Scheduling and Commitment (RSC) (aka Unit Commitment) 

Stochastic RSC 
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