
Advanced Methods for Security Constrained Financial

Transmission Rights (FTR)

Stephen Elbert, Steve.Elbert@PNNL.gov

Karan Kalsi, Kurt Glaesemann, Mark Rice, Maria Vlachopoulou, Ning Zhou

Pacific Northwest National Laboratory, Richland, WA

FERC Staff Technical Conference on
Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software

(Docket No. AD10-12-003)

June 25-27, 2012

Washington,DC

Motivation - Challenges with FTR Calculations

Financial Transmission Rights (FTR) improve power market operation
efficiency by providing financial tool to hedge price risk associated with
congestion

Mitigate incentives for inefficient transmission investment

FTR auction is formulated as a linear programming optimization problem

FTR calculations are computationally expensive because

Large number of security constraints (N-1 contingency analysis)

Many FTR variables (obligatory and optional FTR bids)

Multiple time periods (security constraints coupled & no. of constraints
increase exponentially with no. of categories)

FTR computation must be finished in time to improve market efficiency

2

Objectives

Develop innovative mathematical reformulation of the FTR problem

Compare multiple solvers for FTR computations

Developed approaches will be able to

Support N-1 Simultaneous Feasibility Test (SFT) e.g. DC contingency

analysis

Support both optional and obligatory FTR bids

Support multi-period FTR calculation (e.g. winter, summer and annual)

Algorithms designed to solve FTR problem should be parallelizable

to support large-scale implementation in a cloud environment

3

Problem Formulation

Power flow constraints

B is (singular) admittance matrix

θi are the bus voltage angles

A is FTR location matrix

Thermal constraints

C converts voltage angles to line flows

Li are transmission line limits

Bid-in constraints

Combine

A dimension is

(constraints x bids)











































































mnmn

m

m

nnnn

n

n

FTR

FTR

FTR

AA

AAA

AAA

BB

BBB

BBB





















2

1

1

22221

11211

2

1

1

22221

11211





















































































bnbnb

n

n

b L

L

L

CC

CCC

CCC

L

L

L












2

1

2

1

1

22221

11211

2

1

































































mm FH

FH

FH

FTR

FTR

FTR


2

1

2

1

0

0

0





















































































































bmnmn

m

m

nnn

n

n

bnb

n

n

b L

L

L

FTR

FTR

FTR

AA

AAA

AAA

BB

BBB

BBB

CC

CCC

CCC

L

L

L




























2

1

2

1

1

33231

22221

1

2

33332

22322

2

22322

11312

2

1

A to solve x b

4

Standard FTR Solvers

5

CPLEX (industry standard)

Primal simplex; most basic LP solver method

Updates tableau containing objective function and constraint information at

every iteration

Consistently slower on FTR than dual simplex

Dual simplex; fastest of the CPLEX methods

Similar to primal simplex method, but uses dual formulation of the LP to

improve convergence time of optimization

Core computation is a linear solve; scales as cube of size

Barrier; an interior point method (best for large sparse problems)

A primal-dual logarithmic barrier algorithm that generates a sequence of strictly

positive primal and dual solutions

Fewest iterations but each is more computationally intense

PNNL FTR solver –

Parallel Adaptive Non-linear Dynamical System (NDS)

Transform LP into coupled set of non-linear dynamical equations

Dynamical system converges to stable states which are solutions of

primal and dual LP problems respectively

Kernel is a pair of easily parallelized matrix-vector operations: scale

as square of problem size (constraints x variables)

6

Primal

Dual

maximize 𝑐𝑇𝑥
 subject to 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0

minimize 𝑏𝑇𝑦
 subject to 𝐴𝑇𝑦 ≥ 𝑐 and 𝑦 ≥ 0

𝑑𝑥

𝑑𝑡
= 𝑘1 𝑐 − 𝐴𝑇 𝑦 + 𝑘

𝑑𝑦

𝑑𝑡

𝑑𝑦

𝑑𝑡
= 𝑘2 −𝑏 + 𝐴 𝑥 + 𝑘

𝑑𝑥

𝑑𝑡

𝑘1 =
𝐾

𝑖
 𝑖 = 1, 2, … 𝑀 𝑘2 =

1

𝑘1

Non-linear Dynamical System

Implementation notes

Obligatory and Optional bids sorted into separate blocks

Obligatory bids may use dense matrix arithmetic

Optional bids use sparse matrix arithmetic (up to 50% sparse)

𝐴 matrix segments communicated once at beginning

𝐴 and 𝐴𝑇 stored separately to maximize unit stride access

Global sums for product vectors and distribution of x and y vectors are

the only communication after initialization

Symmetry of Obligatory bids reduces computation by two

7

Validation test cases

8

WECC 230 & 100 model power flow on

transmission lines operating at min of

230 kV (1,930 buses and 2,681 branches)

100 kV (7,485 buses and 9,547 branches)

Cases Constraints Bids

1a. WECC 230 single period 5,362 5,790

2a. WECC 230 single period & many bids 5,362 100,000

3a. WECC 230 multi-period 10,724 17,370

4a. WECC 230 multi-period & many bids 10,724 300,000

1b. WECC 100 single period 19,094 22,455

2b. WECC 100 single period & many bids 19,094 100,000

3b. WECC 100 multi-period 38,188 67,365

4b. WECC 100 multi-period & many bids 38,188 300,000

FTR bids PF (winter) PF (summer)

Bids (winter)

Bids (summer)

Bids (annual,)

Multi-period problems have

independent periods plus a

coupling block

Results – single period cases

WECC 100

At 4 hours, dual simplex not yet

converged

Parallel NDS 46X faster than dual

simplex

9

WECC 230

Primal simplex takes 20 min, dual

simplex and serial NDS (1 core)

takes 2 minutes

Parallel NDS is six times faster than

dual simplex (CPLEX)

Results – single period & many bids (100,000)

 WECC 230

NDS 256-core and CPLEX

comparable results (cross at 53

seconds)

WECC 100

NDS 100 times faster when

crossing CPLEX curve

NDS scaling well

10

Results – two period (summer/winter) cases

WECC 230

Serial NDS is faster than CPLEX

NDS 128-core is 17 times faster

WECC 100

CPLEX no longer practical—time is

divided by 10 and not converged

NDS 256-core is 185 times faster

1.7 billion non-zero matrix elem.

11

The bigger the problem,
The faster the relative performance

Results – two periods & many bids (300,000)

WECC 230

WECC 100

Additional cores and code

improvements  solution in

under 4 hours

15.3 billion non-zero matrix elem.

12

Real-world data 1

13
CPLEX time per iteration slows by 85x from beginning to end due to backfill

Real World Data 2

14

CPLEX time per iteration slows by 269x from beginning to end due to backfill

Summary

Developed novel non-linear dynamical system based FTR solver

Easily parallelized to solve large linear programming (LP) problems for
FTR application within few hours (cloud compatible)

Parallel NDS more computationally efficient than CPLEX for LP
Computational kernel of CPLEX is linear solver that scales as cube of
problem size

NDS kernel is matrix-vector multiplication that scales as square

NDS avoids backfill (filing in zeros) of coupled blocks

Maintains numerical stability through using only original matrix

Uses dense algorithm for obligatory bids, sparse (50%) for optional bids

Half the arithmetic for obligatory bids (two inner products differ only in sign)

Data loaded efficiently in parallel

Further enhancements
Further improve parallelization (asynchronous communication, sparse ops)

Refine adaptive time stepping and explore ode time stepping for faster
convergence

15

Future

Develop quadratic programming capability

Improved FTR constraints

Explore other application needing LP and/or QP capability

Transmission planning

Locational Marginal Pricing (LMP)

Optimal Power Flow (OPF)

Explore using method with discrete problems

Mixed Integer Programming (MIP)

Resource Scheduling and Commitment (RSC) (aka Unit Commitment)

Stochastic RSC

16

Acknowledgements

For providing Alstom data sets

Xing Wang

David Sun

Support

17

This work was supported by the U.S. Department of Energy’s
Office of Electricity Delivery and Energy Reliability, Advanced
Grid Analytics program at the Pacific Northwest National
Laboratory.
Pacific Northwest National Laboratory is operated for the U.S.
Department of Energy by Battelle Memorial Institute under
Contract DE-AC05-76RL01830.

References

Kalsi K, ST Elbert, M Vlachopoulou, N Zhou, and Z

Huang. 2012. "Advanced Computational Methods for Security

Constrained Financial Transmission Rights." to be presented at the

IEEE Power and Energy Society General Meeting 2012. 22-27 July

2012, San Diego.

Elbert ST, K Kalsi, M Vlachopoulou, MJ Rice, KR Glaesemann, and N

Zhou. 2012. "Advanced Computational Methods for Security

Constrained Financial Transmission Rights: Structure and

Parallelism." to be presented at the IFAC (International Federation of

Automatic Control) 8th PP&PSC (Power Plant and Power Systems

Control) Symposium, 2-5 Sept. 2012, Toulouse, France.

18

